1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 172 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 173 "Inserting command %p into mlqueue\n", cmd)); 174 175 scsi_set_blocked(cmd, reason); 176 177 /* 178 * Decrement the counters, since these commands are no longer 179 * active on the host/device. 180 */ 181 if (unbusy) 182 scsi_device_unbusy(device); 183 184 /* 185 * Requeue this command. It will go before all other commands 186 * that are already in the queue. Schedule requeue work under 187 * lock such that the kblockd_schedule_work() call happens 188 * before blk_cleanup_queue() finishes. 189 */ 190 cmd->result = 0; 191 192 /* 193 * Before a SCSI command is dispatched, 194 * get_device(&sdev->sdev_gendev) is called and the host, 195 * target and device busy counters are increased. Since 196 * requeuing a request causes these actions to be repeated and 197 * since scsi_device_unbusy() has already been called, 198 * put_device(&device->sdev_gendev) must still be called. Call 199 * put_device() after blk_mq_requeue_request() to avoid that 200 * removal of the SCSI device can start before requeueing has 201 * happened. 202 */ 203 blk_mq_requeue_request(cmd->request, true); 204 put_device(&device->sdev_gendev); 205 } 206 207 /* 208 * Function: scsi_queue_insert() 209 * 210 * Purpose: Insert a command in the midlevel queue. 211 * 212 * Arguments: cmd - command that we are adding to queue. 213 * reason - why we are inserting command to queue. 214 * 215 * Lock status: Assumed that lock is not held upon entry. 216 * 217 * Returns: Nothing. 218 * 219 * Notes: We do this for one of two cases. Either the host is busy 220 * and it cannot accept any more commands for the time being, 221 * or the device returned QUEUE_FULL and can accept no more 222 * commands. 223 * Notes: This could be called either from an interrupt context or a 224 * normal process context. 225 */ 226 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 227 { 228 __scsi_queue_insert(cmd, reason, true); 229 } 230 231 232 /** 233 * __scsi_execute - insert request and wait for the result 234 * @sdev: scsi device 235 * @cmd: scsi command 236 * @data_direction: data direction 237 * @buffer: data buffer 238 * @bufflen: len of buffer 239 * @sense: optional sense buffer 240 * @sshdr: optional decoded sense header 241 * @timeout: request timeout in seconds 242 * @retries: number of times to retry request 243 * @flags: flags for ->cmd_flags 244 * @rq_flags: flags for ->rq_flags 245 * @resid: optional residual length 246 * 247 * Returns the scsi_cmnd result field if a command was executed, or a negative 248 * Linux error code if we didn't get that far. 249 */ 250 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 251 int data_direction, void *buffer, unsigned bufflen, 252 unsigned char *sense, struct scsi_sense_hdr *sshdr, 253 int timeout, int retries, u64 flags, req_flags_t rq_flags, 254 int *resid) 255 { 256 struct request *req; 257 struct scsi_request *rq; 258 int ret = DRIVER_ERROR << 24; 259 260 req = blk_get_request(sdev->request_queue, 261 data_direction == DMA_TO_DEVICE ? 262 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 263 if (IS_ERR(req)) 264 return ret; 265 rq = scsi_req(req); 266 267 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 268 buffer, bufflen, GFP_NOIO)) 269 goto out; 270 271 rq->cmd_len = COMMAND_SIZE(cmd[0]); 272 memcpy(rq->cmd, cmd, rq->cmd_len); 273 rq->retries = retries; 274 req->timeout = timeout; 275 req->cmd_flags |= flags; 276 req->rq_flags |= rq_flags | RQF_QUIET; 277 278 /* 279 * head injection *required* here otherwise quiesce won't work 280 */ 281 blk_execute_rq(req->q, NULL, req, 1); 282 283 /* 284 * Some devices (USB mass-storage in particular) may transfer 285 * garbage data together with a residue indicating that the data 286 * is invalid. Prevent the garbage from being misinterpreted 287 * and prevent security leaks by zeroing out the excess data. 288 */ 289 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 290 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 291 292 if (resid) 293 *resid = rq->resid_len; 294 if (sense && rq->sense_len) 295 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 296 if (sshdr) 297 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 298 ret = rq->result; 299 out: 300 blk_put_request(req); 301 302 return ret; 303 } 304 EXPORT_SYMBOL(__scsi_execute); 305 306 /* 307 * Function: scsi_init_cmd_errh() 308 * 309 * Purpose: Initialize cmd fields related to error handling. 310 * 311 * Arguments: cmd - command that is ready to be queued. 312 * 313 * Notes: This function has the job of initializing a number of 314 * fields related to error handling. Typically this will 315 * be called once for each command, as required. 316 */ 317 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 318 { 319 scsi_set_resid(cmd, 0); 320 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 321 if (cmd->cmd_len == 0) 322 cmd->cmd_len = scsi_command_size(cmd->cmnd); 323 } 324 325 /* 326 * Decrement the host_busy counter and wake up the error handler if necessary. 327 * Avoid as follows that the error handler is not woken up if shost->host_busy 328 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 329 * with an RCU read lock in this function to ensure that this function in its 330 * entirety either finishes before scsi_eh_scmd_add() increases the 331 * host_failed counter or that it notices the shost state change made by 332 * scsi_eh_scmd_add(). 333 */ 334 static void scsi_dec_host_busy(struct Scsi_Host *shost) 335 { 336 unsigned long flags; 337 338 rcu_read_lock(); 339 atomic_dec(&shost->host_busy); 340 if (unlikely(scsi_host_in_recovery(shost))) { 341 spin_lock_irqsave(shost->host_lock, flags); 342 if (shost->host_failed || shost->host_eh_scheduled) 343 scsi_eh_wakeup(shost); 344 spin_unlock_irqrestore(shost->host_lock, flags); 345 } 346 rcu_read_unlock(); 347 } 348 349 void scsi_device_unbusy(struct scsi_device *sdev) 350 { 351 struct Scsi_Host *shost = sdev->host; 352 struct scsi_target *starget = scsi_target(sdev); 353 354 scsi_dec_host_busy(shost); 355 356 if (starget->can_queue > 0) 357 atomic_dec(&starget->target_busy); 358 359 atomic_dec(&sdev->device_busy); 360 } 361 362 static void scsi_kick_queue(struct request_queue *q) 363 { 364 blk_mq_run_hw_queues(q, false); 365 } 366 367 /* 368 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 369 * and call blk_run_queue for all the scsi_devices on the target - 370 * including current_sdev first. 371 * 372 * Called with *no* scsi locks held. 373 */ 374 static void scsi_single_lun_run(struct scsi_device *current_sdev) 375 { 376 struct Scsi_Host *shost = current_sdev->host; 377 struct scsi_device *sdev, *tmp; 378 struct scsi_target *starget = scsi_target(current_sdev); 379 unsigned long flags; 380 381 spin_lock_irqsave(shost->host_lock, flags); 382 starget->starget_sdev_user = NULL; 383 spin_unlock_irqrestore(shost->host_lock, flags); 384 385 /* 386 * Call blk_run_queue for all LUNs on the target, starting with 387 * current_sdev. We race with others (to set starget_sdev_user), 388 * but in most cases, we will be first. Ideally, each LU on the 389 * target would get some limited time or requests on the target. 390 */ 391 scsi_kick_queue(current_sdev->request_queue); 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 if (starget->starget_sdev_user) 395 goto out; 396 list_for_each_entry_safe(sdev, tmp, &starget->devices, 397 same_target_siblings) { 398 if (sdev == current_sdev) 399 continue; 400 if (scsi_device_get(sdev)) 401 continue; 402 403 spin_unlock_irqrestore(shost->host_lock, flags); 404 scsi_kick_queue(sdev->request_queue); 405 spin_lock_irqsave(shost->host_lock, flags); 406 407 scsi_device_put(sdev); 408 } 409 out: 410 spin_unlock_irqrestore(shost->host_lock, flags); 411 } 412 413 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 414 { 415 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 416 return true; 417 if (atomic_read(&sdev->device_blocked) > 0) 418 return true; 419 return false; 420 } 421 422 static inline bool scsi_target_is_busy(struct scsi_target *starget) 423 { 424 if (starget->can_queue > 0) { 425 if (atomic_read(&starget->target_busy) >= starget->can_queue) 426 return true; 427 if (atomic_read(&starget->target_blocked) > 0) 428 return true; 429 } 430 return false; 431 } 432 433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 434 { 435 if (shost->can_queue > 0 && 436 atomic_read(&shost->host_busy) >= shost->can_queue) 437 return true; 438 if (atomic_read(&shost->host_blocked) > 0) 439 return true; 440 if (shost->host_self_blocked) 441 return true; 442 return false; 443 } 444 445 static void scsi_starved_list_run(struct Scsi_Host *shost) 446 { 447 LIST_HEAD(starved_list); 448 struct scsi_device *sdev; 449 unsigned long flags; 450 451 spin_lock_irqsave(shost->host_lock, flags); 452 list_splice_init(&shost->starved_list, &starved_list); 453 454 while (!list_empty(&starved_list)) { 455 struct request_queue *slq; 456 457 /* 458 * As long as shost is accepting commands and we have 459 * starved queues, call blk_run_queue. scsi_request_fn 460 * drops the queue_lock and can add us back to the 461 * starved_list. 462 * 463 * host_lock protects the starved_list and starved_entry. 464 * scsi_request_fn must get the host_lock before checking 465 * or modifying starved_list or starved_entry. 466 */ 467 if (scsi_host_is_busy(shost)) 468 break; 469 470 sdev = list_entry(starved_list.next, 471 struct scsi_device, starved_entry); 472 list_del_init(&sdev->starved_entry); 473 if (scsi_target_is_busy(scsi_target(sdev))) { 474 list_move_tail(&sdev->starved_entry, 475 &shost->starved_list); 476 continue; 477 } 478 479 /* 480 * Once we drop the host lock, a racing scsi_remove_device() 481 * call may remove the sdev from the starved list and destroy 482 * it and the queue. Mitigate by taking a reference to the 483 * queue and never touching the sdev again after we drop the 484 * host lock. Note: if __scsi_remove_device() invokes 485 * blk_cleanup_queue() before the queue is run from this 486 * function then blk_run_queue() will return immediately since 487 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 488 */ 489 slq = sdev->request_queue; 490 if (!blk_get_queue(slq)) 491 continue; 492 spin_unlock_irqrestore(shost->host_lock, flags); 493 494 scsi_kick_queue(slq); 495 blk_put_queue(slq); 496 497 spin_lock_irqsave(shost->host_lock, flags); 498 } 499 /* put any unprocessed entries back */ 500 list_splice(&starved_list, &shost->starved_list); 501 spin_unlock_irqrestore(shost->host_lock, flags); 502 } 503 504 /* 505 * Function: scsi_run_queue() 506 * 507 * Purpose: Select a proper request queue to serve next 508 * 509 * Arguments: q - last request's queue 510 * 511 * Returns: Nothing 512 * 513 * Notes: The previous command was completely finished, start 514 * a new one if possible. 515 */ 516 static void scsi_run_queue(struct request_queue *q) 517 { 518 struct scsi_device *sdev = q->queuedata; 519 520 if (scsi_target(sdev)->single_lun) 521 scsi_single_lun_run(sdev); 522 if (!list_empty(&sdev->host->starved_list)) 523 scsi_starved_list_run(sdev->host); 524 525 blk_mq_run_hw_queues(q, false); 526 } 527 528 void scsi_requeue_run_queue(struct work_struct *work) 529 { 530 struct scsi_device *sdev; 531 struct request_queue *q; 532 533 sdev = container_of(work, struct scsi_device, requeue_work); 534 q = sdev->request_queue; 535 scsi_run_queue(q); 536 } 537 538 void scsi_run_host_queues(struct Scsi_Host *shost) 539 { 540 struct scsi_device *sdev; 541 542 shost_for_each_device(sdev, shost) 543 scsi_run_queue(sdev->request_queue); 544 } 545 546 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 547 { 548 if (!blk_rq_is_passthrough(cmd->request)) { 549 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 550 551 if (drv->uninit_command) 552 drv->uninit_command(cmd); 553 } 554 } 555 556 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 557 { 558 if (cmd->sdb.table.nents) 559 sg_free_table_chained(&cmd->sdb.table, true); 560 if (scsi_prot_sg_count(cmd)) 561 sg_free_table_chained(&cmd->prot_sdb->table, true); 562 } 563 564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 565 { 566 scsi_mq_free_sgtables(cmd); 567 scsi_uninit_cmd(cmd); 568 scsi_del_cmd_from_list(cmd); 569 } 570 571 /* Returns false when no more bytes to process, true if there are more */ 572 static bool scsi_end_request(struct request *req, blk_status_t error, 573 unsigned int bytes) 574 { 575 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 576 struct scsi_device *sdev = cmd->device; 577 struct request_queue *q = sdev->request_queue; 578 579 if (blk_update_request(req, error, bytes)) 580 return true; 581 582 if (blk_queue_add_random(q)) 583 add_disk_randomness(req->rq_disk); 584 585 if (!blk_rq_is_scsi(req)) { 586 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 587 cmd->flags &= ~SCMD_INITIALIZED; 588 destroy_rcu_head(&cmd->rcu); 589 } 590 591 /* 592 * In the MQ case the command gets freed by __blk_mq_end_request, 593 * so we have to do all cleanup that depends on it earlier. 594 * 595 * We also can't kick the queues from irq context, so we 596 * will have to defer it to a workqueue. 597 */ 598 scsi_mq_uninit_cmd(cmd); 599 600 /* 601 * queue is still alive, so grab the ref for preventing it 602 * from being cleaned up during running queue. 603 */ 604 percpu_ref_get(&q->q_usage_counter); 605 606 __blk_mq_end_request(req, error); 607 608 if (scsi_target(sdev)->single_lun || 609 !list_empty(&sdev->host->starved_list)) 610 kblockd_schedule_work(&sdev->requeue_work); 611 else 612 blk_mq_run_hw_queues(q, true); 613 614 percpu_ref_put(&q->q_usage_counter); 615 put_device(&sdev->sdev_gendev); 616 return false; 617 } 618 619 /** 620 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 621 * @cmd: SCSI command 622 * @result: scsi error code 623 * 624 * Translate a SCSI result code into a blk_status_t value. May reset the host 625 * byte of @cmd->result. 626 */ 627 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 628 { 629 switch (host_byte(result)) { 630 case DID_OK: 631 /* 632 * Also check the other bytes than the status byte in result 633 * to handle the case when a SCSI LLD sets result to 634 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 635 */ 636 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 637 return BLK_STS_OK; 638 return BLK_STS_IOERR; 639 case DID_TRANSPORT_FAILFAST: 640 return BLK_STS_TRANSPORT; 641 case DID_TARGET_FAILURE: 642 set_host_byte(cmd, DID_OK); 643 return BLK_STS_TARGET; 644 case DID_NEXUS_FAILURE: 645 set_host_byte(cmd, DID_OK); 646 return BLK_STS_NEXUS; 647 case DID_ALLOC_FAILURE: 648 set_host_byte(cmd, DID_OK); 649 return BLK_STS_NOSPC; 650 case DID_MEDIUM_ERROR: 651 set_host_byte(cmd, DID_OK); 652 return BLK_STS_MEDIUM; 653 default: 654 return BLK_STS_IOERR; 655 } 656 } 657 658 /* Helper for scsi_io_completion() when "reprep" action required. */ 659 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 660 struct request_queue *q) 661 { 662 /* A new command will be prepared and issued. */ 663 scsi_mq_requeue_cmd(cmd); 664 } 665 666 /* Helper for scsi_io_completion() when special action required. */ 667 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 668 { 669 struct request_queue *q = cmd->device->request_queue; 670 struct request *req = cmd->request; 671 int level = 0; 672 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 673 ACTION_DELAYED_RETRY} action; 674 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 675 struct scsi_sense_hdr sshdr; 676 bool sense_valid; 677 bool sense_current = true; /* false implies "deferred sense" */ 678 blk_status_t blk_stat; 679 680 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 681 if (sense_valid) 682 sense_current = !scsi_sense_is_deferred(&sshdr); 683 684 blk_stat = scsi_result_to_blk_status(cmd, result); 685 686 if (host_byte(result) == DID_RESET) { 687 /* Third party bus reset or reset for error recovery 688 * reasons. Just retry the command and see what 689 * happens. 690 */ 691 action = ACTION_RETRY; 692 } else if (sense_valid && sense_current) { 693 switch (sshdr.sense_key) { 694 case UNIT_ATTENTION: 695 if (cmd->device->removable) { 696 /* Detected disc change. Set a bit 697 * and quietly refuse further access. 698 */ 699 cmd->device->changed = 1; 700 action = ACTION_FAIL; 701 } else { 702 /* Must have been a power glitch, or a 703 * bus reset. Could not have been a 704 * media change, so we just retry the 705 * command and see what happens. 706 */ 707 action = ACTION_RETRY; 708 } 709 break; 710 case ILLEGAL_REQUEST: 711 /* If we had an ILLEGAL REQUEST returned, then 712 * we may have performed an unsupported 713 * command. The only thing this should be 714 * would be a ten byte read where only a six 715 * byte read was supported. Also, on a system 716 * where READ CAPACITY failed, we may have 717 * read past the end of the disk. 718 */ 719 if ((cmd->device->use_10_for_rw && 720 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 721 (cmd->cmnd[0] == READ_10 || 722 cmd->cmnd[0] == WRITE_10)) { 723 /* This will issue a new 6-byte command. */ 724 cmd->device->use_10_for_rw = 0; 725 action = ACTION_REPREP; 726 } else if (sshdr.asc == 0x10) /* DIX */ { 727 action = ACTION_FAIL; 728 blk_stat = BLK_STS_PROTECTION; 729 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 730 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 731 action = ACTION_FAIL; 732 blk_stat = BLK_STS_TARGET; 733 } else 734 action = ACTION_FAIL; 735 break; 736 case ABORTED_COMMAND: 737 action = ACTION_FAIL; 738 if (sshdr.asc == 0x10) /* DIF */ 739 blk_stat = BLK_STS_PROTECTION; 740 break; 741 case NOT_READY: 742 /* If the device is in the process of becoming 743 * ready, or has a temporary blockage, retry. 744 */ 745 if (sshdr.asc == 0x04) { 746 switch (sshdr.ascq) { 747 case 0x01: /* becoming ready */ 748 case 0x04: /* format in progress */ 749 case 0x05: /* rebuild in progress */ 750 case 0x06: /* recalculation in progress */ 751 case 0x07: /* operation in progress */ 752 case 0x08: /* Long write in progress */ 753 case 0x09: /* self test in progress */ 754 case 0x14: /* space allocation in progress */ 755 case 0x1a: /* start stop unit in progress */ 756 case 0x1b: /* sanitize in progress */ 757 case 0x1d: /* configuration in progress */ 758 case 0x24: /* depopulation in progress */ 759 action = ACTION_DELAYED_RETRY; 760 break; 761 default: 762 action = ACTION_FAIL; 763 break; 764 } 765 } else 766 action = ACTION_FAIL; 767 break; 768 case VOLUME_OVERFLOW: 769 /* See SSC3rXX or current. */ 770 action = ACTION_FAIL; 771 break; 772 default: 773 action = ACTION_FAIL; 774 break; 775 } 776 } else 777 action = ACTION_FAIL; 778 779 if (action != ACTION_FAIL && 780 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 781 action = ACTION_FAIL; 782 783 switch (action) { 784 case ACTION_FAIL: 785 /* Give up and fail the remainder of the request */ 786 if (!(req->rq_flags & RQF_QUIET)) { 787 static DEFINE_RATELIMIT_STATE(_rs, 788 DEFAULT_RATELIMIT_INTERVAL, 789 DEFAULT_RATELIMIT_BURST); 790 791 if (unlikely(scsi_logging_level)) 792 level = 793 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 794 SCSI_LOG_MLCOMPLETE_BITS); 795 796 /* 797 * if logging is enabled the failure will be printed 798 * in scsi_log_completion(), so avoid duplicate messages 799 */ 800 if (!level && __ratelimit(&_rs)) { 801 scsi_print_result(cmd, NULL, FAILED); 802 if (driver_byte(result) == DRIVER_SENSE) 803 scsi_print_sense(cmd); 804 scsi_print_command(cmd); 805 } 806 } 807 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 808 return; 809 /*FALLTHRU*/ 810 case ACTION_REPREP: 811 scsi_io_completion_reprep(cmd, q); 812 break; 813 case ACTION_RETRY: 814 /* Retry the same command immediately */ 815 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 816 break; 817 case ACTION_DELAYED_RETRY: 818 /* Retry the same command after a delay */ 819 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 820 break; 821 } 822 } 823 824 /* 825 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 826 * new result that may suppress further error checking. Also modifies 827 * *blk_statp in some cases. 828 */ 829 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 830 blk_status_t *blk_statp) 831 { 832 bool sense_valid; 833 bool sense_current = true; /* false implies "deferred sense" */ 834 struct request *req = cmd->request; 835 struct scsi_sense_hdr sshdr; 836 837 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 838 if (sense_valid) 839 sense_current = !scsi_sense_is_deferred(&sshdr); 840 841 if (blk_rq_is_passthrough(req)) { 842 if (sense_valid) { 843 /* 844 * SG_IO wants current and deferred errors 845 */ 846 scsi_req(req)->sense_len = 847 min(8 + cmd->sense_buffer[7], 848 SCSI_SENSE_BUFFERSIZE); 849 } 850 if (sense_current) 851 *blk_statp = scsi_result_to_blk_status(cmd, result); 852 } else if (blk_rq_bytes(req) == 0 && sense_current) { 853 /* 854 * Flush commands do not transfers any data, and thus cannot use 855 * good_bytes != blk_rq_bytes(req) as the signal for an error. 856 * This sets *blk_statp explicitly for the problem case. 857 */ 858 *blk_statp = scsi_result_to_blk_status(cmd, result); 859 } 860 /* 861 * Recovered errors need reporting, but they're always treated as 862 * success, so fiddle the result code here. For passthrough requests 863 * we already took a copy of the original into sreq->result which 864 * is what gets returned to the user 865 */ 866 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 867 bool do_print = true; 868 /* 869 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 870 * skip print since caller wants ATA registers. Only occurs 871 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 872 */ 873 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 874 do_print = false; 875 else if (req->rq_flags & RQF_QUIET) 876 do_print = false; 877 if (do_print) 878 scsi_print_sense(cmd); 879 result = 0; 880 /* for passthrough, *blk_statp may be set */ 881 *blk_statp = BLK_STS_OK; 882 } 883 /* 884 * Another corner case: the SCSI status byte is non-zero but 'good'. 885 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 886 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 887 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 888 * intermediate statuses (both obsolete in SAM-4) as good. 889 */ 890 if (status_byte(result) && scsi_status_is_good(result)) { 891 result = 0; 892 *blk_statp = BLK_STS_OK; 893 } 894 return result; 895 } 896 897 /* 898 * Function: scsi_io_completion() 899 * 900 * Purpose: Completion processing for block device I/O requests. 901 * 902 * Arguments: cmd - command that is finished. 903 * 904 * Lock status: Assumed that no lock is held upon entry. 905 * 906 * Returns: Nothing 907 * 908 * Notes: We will finish off the specified number of sectors. If we 909 * are done, the command block will be released and the queue 910 * function will be goosed. If we are not done then we have to 911 * figure out what to do next: 912 * 913 * a) We can call scsi_requeue_command(). The request 914 * will be unprepared and put back on the queue. Then 915 * a new command will be created for it. This should 916 * be used if we made forward progress, or if we want 917 * to switch from READ(10) to READ(6) for example. 918 * 919 * b) We can call __scsi_queue_insert(). The request will 920 * be put back on the queue and retried using the same 921 * command as before, possibly after a delay. 922 * 923 * c) We can call scsi_end_request() with blk_stat other than 924 * BLK_STS_OK, to fail the remainder of the request. 925 */ 926 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 927 { 928 int result = cmd->result; 929 struct request_queue *q = cmd->device->request_queue; 930 struct request *req = cmd->request; 931 blk_status_t blk_stat = BLK_STS_OK; 932 933 if (unlikely(result)) /* a nz result may or may not be an error */ 934 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 935 936 if (unlikely(blk_rq_is_passthrough(req))) { 937 /* 938 * scsi_result_to_blk_status may have reset the host_byte 939 */ 940 scsi_req(req)->result = cmd->result; 941 } 942 943 /* 944 * Next deal with any sectors which we were able to correctly 945 * handle. 946 */ 947 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 948 "%u sectors total, %d bytes done.\n", 949 blk_rq_sectors(req), good_bytes)); 950 951 /* 952 * Next deal with any sectors which we were able to correctly 953 * handle. Failed, zero length commands always need to drop down 954 * to retry code. Fast path should return in this block. 955 */ 956 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 957 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 958 return; /* no bytes remaining */ 959 } 960 961 /* Kill remainder if no retries. */ 962 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 963 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 964 WARN_ONCE(true, 965 "Bytes remaining after failed, no-retry command"); 966 return; 967 } 968 969 /* 970 * If there had been no error, but we have leftover bytes in the 971 * requeues just queue the command up again. 972 */ 973 if (likely(result == 0)) 974 scsi_io_completion_reprep(cmd, q); 975 else 976 scsi_io_completion_action(cmd, result); 977 } 978 979 static blk_status_t scsi_init_sgtable(struct request *req, 980 struct scsi_data_buffer *sdb) 981 { 982 int count; 983 984 /* 985 * If sg table allocation fails, requeue request later. 986 */ 987 if (unlikely(sg_alloc_table_chained(&sdb->table, 988 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 989 return BLK_STS_RESOURCE; 990 991 /* 992 * Next, walk the list, and fill in the addresses and sizes of 993 * each segment. 994 */ 995 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 996 BUG_ON(count > sdb->table.nents); 997 sdb->table.nents = count; 998 sdb->length = blk_rq_payload_bytes(req); 999 return BLK_STS_OK; 1000 } 1001 1002 /* 1003 * Function: scsi_init_io() 1004 * 1005 * Purpose: SCSI I/O initialize function. 1006 * 1007 * Arguments: cmd - Command descriptor we wish to initialize 1008 * 1009 * Returns: BLK_STS_OK on success 1010 * BLK_STS_RESOURCE if the failure is retryable 1011 * BLK_STS_IOERR if the failure is fatal 1012 */ 1013 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1014 { 1015 struct request *rq = cmd->request; 1016 blk_status_t ret; 1017 1018 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1019 return BLK_STS_IOERR; 1020 1021 ret = scsi_init_sgtable(rq, &cmd->sdb); 1022 if (ret) 1023 return ret; 1024 1025 if (blk_integrity_rq(rq)) { 1026 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1027 int ivecs, count; 1028 1029 if (WARN_ON_ONCE(!prot_sdb)) { 1030 /* 1031 * This can happen if someone (e.g. multipath) 1032 * queues a command to a device on an adapter 1033 * that does not support DIX. 1034 */ 1035 ret = BLK_STS_IOERR; 1036 goto out_free_sgtables; 1037 } 1038 1039 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1040 1041 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1042 prot_sdb->table.sgl)) { 1043 ret = BLK_STS_RESOURCE; 1044 goto out_free_sgtables; 1045 } 1046 1047 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1048 prot_sdb->table.sgl); 1049 BUG_ON(count > ivecs); 1050 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1051 1052 cmd->prot_sdb = prot_sdb; 1053 cmd->prot_sdb->table.nents = count; 1054 } 1055 1056 return BLK_STS_OK; 1057 out_free_sgtables: 1058 scsi_mq_free_sgtables(cmd); 1059 return ret; 1060 } 1061 EXPORT_SYMBOL(scsi_init_io); 1062 1063 /** 1064 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1065 * @rq: Request associated with the SCSI command to be initialized. 1066 * 1067 * This function initializes the members of struct scsi_cmnd that must be 1068 * initialized before request processing starts and that won't be 1069 * reinitialized if a SCSI command is requeued. 1070 * 1071 * Called from inside blk_get_request() for pass-through requests and from 1072 * inside scsi_init_command() for filesystem requests. 1073 */ 1074 static void scsi_initialize_rq(struct request *rq) 1075 { 1076 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1077 1078 scsi_req_init(&cmd->req); 1079 init_rcu_head(&cmd->rcu); 1080 cmd->jiffies_at_alloc = jiffies; 1081 cmd->retries = 0; 1082 } 1083 1084 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1085 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1086 { 1087 struct scsi_device *sdev = cmd->device; 1088 struct Scsi_Host *shost = sdev->host; 1089 unsigned long flags; 1090 1091 if (shost->use_cmd_list) { 1092 spin_lock_irqsave(&sdev->list_lock, flags); 1093 list_add_tail(&cmd->list, &sdev->cmd_list); 1094 spin_unlock_irqrestore(&sdev->list_lock, flags); 1095 } 1096 } 1097 1098 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1099 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1100 { 1101 struct scsi_device *sdev = cmd->device; 1102 struct Scsi_Host *shost = sdev->host; 1103 unsigned long flags; 1104 1105 if (shost->use_cmd_list) { 1106 spin_lock_irqsave(&sdev->list_lock, flags); 1107 BUG_ON(list_empty(&cmd->list)); 1108 list_del_init(&cmd->list); 1109 spin_unlock_irqrestore(&sdev->list_lock, flags); 1110 } 1111 } 1112 1113 /* Called after a request has been started. */ 1114 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1115 { 1116 void *buf = cmd->sense_buffer; 1117 void *prot = cmd->prot_sdb; 1118 struct request *rq = blk_mq_rq_from_pdu(cmd); 1119 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1120 unsigned long jiffies_at_alloc; 1121 int retries; 1122 1123 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1124 flags |= SCMD_INITIALIZED; 1125 scsi_initialize_rq(rq); 1126 } 1127 1128 jiffies_at_alloc = cmd->jiffies_at_alloc; 1129 retries = cmd->retries; 1130 /* zero out the cmd, except for the embedded scsi_request */ 1131 memset((char *)cmd + sizeof(cmd->req), 0, 1132 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1133 1134 cmd->device = dev; 1135 cmd->sense_buffer = buf; 1136 cmd->prot_sdb = prot; 1137 cmd->flags = flags; 1138 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1139 cmd->jiffies_at_alloc = jiffies_at_alloc; 1140 cmd->retries = retries; 1141 1142 scsi_add_cmd_to_list(cmd); 1143 } 1144 1145 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1146 struct request *req) 1147 { 1148 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1149 1150 /* 1151 * Passthrough requests may transfer data, in which case they must 1152 * a bio attached to them. Or they might contain a SCSI command 1153 * that does not transfer data, in which case they may optionally 1154 * submit a request without an attached bio. 1155 */ 1156 if (req->bio) { 1157 blk_status_t ret = scsi_init_io(cmd); 1158 if (unlikely(ret != BLK_STS_OK)) 1159 return ret; 1160 } else { 1161 BUG_ON(blk_rq_bytes(req)); 1162 1163 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1164 } 1165 1166 cmd->cmd_len = scsi_req(req)->cmd_len; 1167 cmd->cmnd = scsi_req(req)->cmd; 1168 cmd->transfersize = blk_rq_bytes(req); 1169 cmd->allowed = scsi_req(req)->retries; 1170 return BLK_STS_OK; 1171 } 1172 1173 /* 1174 * Setup a normal block command. These are simple request from filesystems 1175 * that still need to be translated to SCSI CDBs from the ULD. 1176 */ 1177 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1178 struct request *req) 1179 { 1180 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1181 1182 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1183 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1184 if (ret != BLK_STS_OK) 1185 return ret; 1186 } 1187 1188 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1189 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1190 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1191 } 1192 1193 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1194 struct request *req) 1195 { 1196 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1197 1198 if (!blk_rq_bytes(req)) 1199 cmd->sc_data_direction = DMA_NONE; 1200 else if (rq_data_dir(req) == WRITE) 1201 cmd->sc_data_direction = DMA_TO_DEVICE; 1202 else 1203 cmd->sc_data_direction = DMA_FROM_DEVICE; 1204 1205 if (blk_rq_is_scsi(req)) 1206 return scsi_setup_scsi_cmnd(sdev, req); 1207 else 1208 return scsi_setup_fs_cmnd(sdev, req); 1209 } 1210 1211 static blk_status_t 1212 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1213 { 1214 switch (sdev->sdev_state) { 1215 case SDEV_OFFLINE: 1216 case SDEV_TRANSPORT_OFFLINE: 1217 /* 1218 * If the device is offline we refuse to process any 1219 * commands. The device must be brought online 1220 * before trying any recovery commands. 1221 */ 1222 sdev_printk(KERN_ERR, sdev, 1223 "rejecting I/O to offline device\n"); 1224 return BLK_STS_IOERR; 1225 case SDEV_DEL: 1226 /* 1227 * If the device is fully deleted, we refuse to 1228 * process any commands as well. 1229 */ 1230 sdev_printk(KERN_ERR, sdev, 1231 "rejecting I/O to dead device\n"); 1232 return BLK_STS_IOERR; 1233 case SDEV_BLOCK: 1234 case SDEV_CREATED_BLOCK: 1235 return BLK_STS_RESOURCE; 1236 case SDEV_QUIESCE: 1237 /* 1238 * If the devices is blocked we defer normal commands. 1239 */ 1240 if (req && !(req->rq_flags & RQF_PREEMPT)) 1241 return BLK_STS_RESOURCE; 1242 return BLK_STS_OK; 1243 default: 1244 /* 1245 * For any other not fully online state we only allow 1246 * special commands. In particular any user initiated 1247 * command is not allowed. 1248 */ 1249 if (req && !(req->rq_flags & RQF_PREEMPT)) 1250 return BLK_STS_IOERR; 1251 return BLK_STS_OK; 1252 } 1253 } 1254 1255 /* 1256 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1257 * return 0. 1258 * 1259 * Called with the queue_lock held. 1260 */ 1261 static inline int scsi_dev_queue_ready(struct request_queue *q, 1262 struct scsi_device *sdev) 1263 { 1264 unsigned int busy; 1265 1266 busy = atomic_inc_return(&sdev->device_busy) - 1; 1267 if (atomic_read(&sdev->device_blocked)) { 1268 if (busy) 1269 goto out_dec; 1270 1271 /* 1272 * unblock after device_blocked iterates to zero 1273 */ 1274 if (atomic_dec_return(&sdev->device_blocked) > 0) 1275 goto out_dec; 1276 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1277 "unblocking device at zero depth\n")); 1278 } 1279 1280 if (busy >= sdev->queue_depth) 1281 goto out_dec; 1282 1283 return 1; 1284 out_dec: 1285 atomic_dec(&sdev->device_busy); 1286 return 0; 1287 } 1288 1289 /* 1290 * scsi_target_queue_ready: checks if there we can send commands to target 1291 * @sdev: scsi device on starget to check. 1292 */ 1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1294 struct scsi_device *sdev) 1295 { 1296 struct scsi_target *starget = scsi_target(sdev); 1297 unsigned int busy; 1298 1299 if (starget->single_lun) { 1300 spin_lock_irq(shost->host_lock); 1301 if (starget->starget_sdev_user && 1302 starget->starget_sdev_user != sdev) { 1303 spin_unlock_irq(shost->host_lock); 1304 return 0; 1305 } 1306 starget->starget_sdev_user = sdev; 1307 spin_unlock_irq(shost->host_lock); 1308 } 1309 1310 if (starget->can_queue <= 0) 1311 return 1; 1312 1313 busy = atomic_inc_return(&starget->target_busy) - 1; 1314 if (atomic_read(&starget->target_blocked) > 0) { 1315 if (busy) 1316 goto starved; 1317 1318 /* 1319 * unblock after target_blocked iterates to zero 1320 */ 1321 if (atomic_dec_return(&starget->target_blocked) > 0) 1322 goto out_dec; 1323 1324 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1325 "unblocking target at zero depth\n")); 1326 } 1327 1328 if (busy >= starget->can_queue) 1329 goto starved; 1330 1331 return 1; 1332 1333 starved: 1334 spin_lock_irq(shost->host_lock); 1335 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1336 spin_unlock_irq(shost->host_lock); 1337 out_dec: 1338 if (starget->can_queue > 0) 1339 atomic_dec(&starget->target_busy); 1340 return 0; 1341 } 1342 1343 /* 1344 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1345 * return 0. We must end up running the queue again whenever 0 is 1346 * returned, else IO can hang. 1347 */ 1348 static inline int scsi_host_queue_ready(struct request_queue *q, 1349 struct Scsi_Host *shost, 1350 struct scsi_device *sdev) 1351 { 1352 unsigned int busy; 1353 1354 if (scsi_host_in_recovery(shost)) 1355 return 0; 1356 1357 busy = atomic_inc_return(&shost->host_busy) - 1; 1358 if (atomic_read(&shost->host_blocked) > 0) { 1359 if (busy) 1360 goto starved; 1361 1362 /* 1363 * unblock after host_blocked iterates to zero 1364 */ 1365 if (atomic_dec_return(&shost->host_blocked) > 0) 1366 goto out_dec; 1367 1368 SCSI_LOG_MLQUEUE(3, 1369 shost_printk(KERN_INFO, shost, 1370 "unblocking host at zero depth\n")); 1371 } 1372 1373 if (shost->can_queue > 0 && busy >= shost->can_queue) 1374 goto starved; 1375 if (shost->host_self_blocked) 1376 goto starved; 1377 1378 /* We're OK to process the command, so we can't be starved */ 1379 if (!list_empty(&sdev->starved_entry)) { 1380 spin_lock_irq(shost->host_lock); 1381 if (!list_empty(&sdev->starved_entry)) 1382 list_del_init(&sdev->starved_entry); 1383 spin_unlock_irq(shost->host_lock); 1384 } 1385 1386 return 1; 1387 1388 starved: 1389 spin_lock_irq(shost->host_lock); 1390 if (list_empty(&sdev->starved_entry)) 1391 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1392 spin_unlock_irq(shost->host_lock); 1393 out_dec: 1394 scsi_dec_host_busy(shost); 1395 return 0; 1396 } 1397 1398 /* 1399 * Busy state exporting function for request stacking drivers. 1400 * 1401 * For efficiency, no lock is taken to check the busy state of 1402 * shost/starget/sdev, since the returned value is not guaranteed and 1403 * may be changed after request stacking drivers call the function, 1404 * regardless of taking lock or not. 1405 * 1406 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1407 * needs to return 'not busy'. Otherwise, request stacking drivers 1408 * may hold requests forever. 1409 */ 1410 static bool scsi_mq_lld_busy(struct request_queue *q) 1411 { 1412 struct scsi_device *sdev = q->queuedata; 1413 struct Scsi_Host *shost; 1414 1415 if (blk_queue_dying(q)) 1416 return false; 1417 1418 shost = sdev->host; 1419 1420 /* 1421 * Ignore host/starget busy state. 1422 * Since block layer does not have a concept of fairness across 1423 * multiple queues, congestion of host/starget needs to be handled 1424 * in SCSI layer. 1425 */ 1426 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1427 return true; 1428 1429 return false; 1430 } 1431 1432 static void scsi_softirq_done(struct request *rq) 1433 { 1434 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1435 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1436 int disposition; 1437 1438 INIT_LIST_HEAD(&cmd->eh_entry); 1439 1440 atomic_inc(&cmd->device->iodone_cnt); 1441 if (cmd->result) 1442 atomic_inc(&cmd->device->ioerr_cnt); 1443 1444 disposition = scsi_decide_disposition(cmd); 1445 if (disposition != SUCCESS && 1446 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1447 sdev_printk(KERN_ERR, cmd->device, 1448 "timing out command, waited %lus\n", 1449 wait_for/HZ); 1450 disposition = SUCCESS; 1451 } 1452 1453 scsi_log_completion(cmd, disposition); 1454 1455 switch (disposition) { 1456 case SUCCESS: 1457 scsi_finish_command(cmd); 1458 break; 1459 case NEEDS_RETRY: 1460 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1461 break; 1462 case ADD_TO_MLQUEUE: 1463 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1464 break; 1465 default: 1466 scsi_eh_scmd_add(cmd); 1467 break; 1468 } 1469 } 1470 1471 /** 1472 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1473 * @cmd: command block we are dispatching. 1474 * 1475 * Return: nonzero return request was rejected and device's queue needs to be 1476 * plugged. 1477 */ 1478 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1479 { 1480 struct Scsi_Host *host = cmd->device->host; 1481 int rtn = 0; 1482 1483 atomic_inc(&cmd->device->iorequest_cnt); 1484 1485 /* check if the device is still usable */ 1486 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1487 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1488 * returns an immediate error upwards, and signals 1489 * that the device is no longer present */ 1490 cmd->result = DID_NO_CONNECT << 16; 1491 goto done; 1492 } 1493 1494 /* Check to see if the scsi lld made this device blocked. */ 1495 if (unlikely(scsi_device_blocked(cmd->device))) { 1496 /* 1497 * in blocked state, the command is just put back on 1498 * the device queue. The suspend state has already 1499 * blocked the queue so future requests should not 1500 * occur until the device transitions out of the 1501 * suspend state. 1502 */ 1503 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1504 "queuecommand : device blocked\n")); 1505 return SCSI_MLQUEUE_DEVICE_BUSY; 1506 } 1507 1508 /* Store the LUN value in cmnd, if needed. */ 1509 if (cmd->device->lun_in_cdb) 1510 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1511 (cmd->device->lun << 5 & 0xe0); 1512 1513 scsi_log_send(cmd); 1514 1515 /* 1516 * Before we queue this command, check if the command 1517 * length exceeds what the host adapter can handle. 1518 */ 1519 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1520 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1521 "queuecommand : command too long. " 1522 "cdb_size=%d host->max_cmd_len=%d\n", 1523 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1524 cmd->result = (DID_ABORT << 16); 1525 goto done; 1526 } 1527 1528 if (unlikely(host->shost_state == SHOST_DEL)) { 1529 cmd->result = (DID_NO_CONNECT << 16); 1530 goto done; 1531 1532 } 1533 1534 trace_scsi_dispatch_cmd_start(cmd); 1535 rtn = host->hostt->queuecommand(host, cmd); 1536 if (rtn) { 1537 trace_scsi_dispatch_cmd_error(cmd, rtn); 1538 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1539 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1540 rtn = SCSI_MLQUEUE_HOST_BUSY; 1541 1542 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1543 "queuecommand : request rejected\n")); 1544 } 1545 1546 return rtn; 1547 done: 1548 cmd->scsi_done(cmd); 1549 return 0; 1550 } 1551 1552 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1553 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1554 { 1555 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1556 sizeof(struct scatterlist); 1557 } 1558 1559 static blk_status_t scsi_mq_prep_fn(struct request *req) 1560 { 1561 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1562 struct scsi_device *sdev = req->q->queuedata; 1563 struct Scsi_Host *shost = sdev->host; 1564 struct scatterlist *sg; 1565 1566 scsi_init_command(sdev, cmd); 1567 1568 cmd->request = req; 1569 cmd->tag = req->tag; 1570 cmd->prot_op = SCSI_PROT_NORMAL; 1571 1572 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1573 cmd->sdb.table.sgl = sg; 1574 1575 if (scsi_host_get_prot(shost)) { 1576 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1577 1578 cmd->prot_sdb->table.sgl = 1579 (struct scatterlist *)(cmd->prot_sdb + 1); 1580 } 1581 1582 blk_mq_start_request(req); 1583 1584 return scsi_setup_cmnd(sdev, req); 1585 } 1586 1587 static void scsi_mq_done(struct scsi_cmnd *cmd) 1588 { 1589 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1590 return; 1591 trace_scsi_dispatch_cmd_done(cmd); 1592 1593 /* 1594 * If the block layer didn't complete the request due to a timeout 1595 * injection, scsi must clear its internal completed state so that the 1596 * timeout handler will see it needs to escalate its own error 1597 * recovery. 1598 */ 1599 if (unlikely(!blk_mq_complete_request(cmd->request))) 1600 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1601 } 1602 1603 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1604 { 1605 struct request_queue *q = hctx->queue; 1606 struct scsi_device *sdev = q->queuedata; 1607 1608 atomic_dec(&sdev->device_busy); 1609 put_device(&sdev->sdev_gendev); 1610 } 1611 1612 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1613 { 1614 struct request_queue *q = hctx->queue; 1615 struct scsi_device *sdev = q->queuedata; 1616 1617 if (!get_device(&sdev->sdev_gendev)) 1618 goto out; 1619 if (!scsi_dev_queue_ready(q, sdev)) 1620 goto out_put_device; 1621 1622 return true; 1623 1624 out_put_device: 1625 put_device(&sdev->sdev_gendev); 1626 out: 1627 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1628 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1629 return false; 1630 } 1631 1632 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1633 const struct blk_mq_queue_data *bd) 1634 { 1635 struct request *req = bd->rq; 1636 struct request_queue *q = req->q; 1637 struct scsi_device *sdev = q->queuedata; 1638 struct Scsi_Host *shost = sdev->host; 1639 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1640 blk_status_t ret; 1641 int reason; 1642 1643 /* 1644 * If the device is not in running state we will reject some or all 1645 * commands. 1646 */ 1647 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1648 ret = scsi_prep_state_check(sdev, req); 1649 if (ret != BLK_STS_OK) 1650 goto out_put_budget; 1651 } 1652 1653 ret = BLK_STS_RESOURCE; 1654 if (!scsi_target_queue_ready(shost, sdev)) 1655 goto out_put_budget; 1656 if (!scsi_host_queue_ready(q, shost, sdev)) 1657 goto out_dec_target_busy; 1658 1659 if (!(req->rq_flags & RQF_DONTPREP)) { 1660 ret = scsi_mq_prep_fn(req); 1661 if (ret != BLK_STS_OK) 1662 goto out_dec_host_busy; 1663 req->rq_flags |= RQF_DONTPREP; 1664 } else { 1665 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1666 blk_mq_start_request(req); 1667 } 1668 1669 if (sdev->simple_tags) 1670 cmd->flags |= SCMD_TAGGED; 1671 else 1672 cmd->flags &= ~SCMD_TAGGED; 1673 1674 scsi_init_cmd_errh(cmd); 1675 cmd->scsi_done = scsi_mq_done; 1676 1677 reason = scsi_dispatch_cmd(cmd); 1678 if (reason) { 1679 scsi_set_blocked(cmd, reason); 1680 ret = BLK_STS_RESOURCE; 1681 goto out_dec_host_busy; 1682 } 1683 1684 return BLK_STS_OK; 1685 1686 out_dec_host_busy: 1687 scsi_dec_host_busy(shost); 1688 out_dec_target_busy: 1689 if (scsi_target(sdev)->can_queue > 0) 1690 atomic_dec(&scsi_target(sdev)->target_busy); 1691 out_put_budget: 1692 scsi_mq_put_budget(hctx); 1693 switch (ret) { 1694 case BLK_STS_OK: 1695 break; 1696 case BLK_STS_RESOURCE: 1697 if (atomic_read(&sdev->device_busy) || 1698 scsi_device_blocked(sdev)) 1699 ret = BLK_STS_DEV_RESOURCE; 1700 break; 1701 default: 1702 /* 1703 * Make sure to release all allocated ressources when 1704 * we hit an error, as we will never see this command 1705 * again. 1706 */ 1707 if (req->rq_flags & RQF_DONTPREP) 1708 scsi_mq_uninit_cmd(cmd); 1709 break; 1710 } 1711 return ret; 1712 } 1713 1714 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1715 bool reserved) 1716 { 1717 if (reserved) 1718 return BLK_EH_RESET_TIMER; 1719 return scsi_times_out(req); 1720 } 1721 1722 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1723 unsigned int hctx_idx, unsigned int numa_node) 1724 { 1725 struct Scsi_Host *shost = set->driver_data; 1726 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1727 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1728 struct scatterlist *sg; 1729 1730 if (unchecked_isa_dma) 1731 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1732 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1733 GFP_KERNEL, numa_node); 1734 if (!cmd->sense_buffer) 1735 return -ENOMEM; 1736 cmd->req.sense = cmd->sense_buffer; 1737 1738 if (scsi_host_get_prot(shost)) { 1739 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1740 shost->hostt->cmd_size; 1741 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 1742 } 1743 1744 return 0; 1745 } 1746 1747 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1748 unsigned int hctx_idx) 1749 { 1750 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1751 1752 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1753 cmd->sense_buffer); 1754 } 1755 1756 static int scsi_map_queues(struct blk_mq_tag_set *set) 1757 { 1758 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1759 1760 if (shost->hostt->map_queues) 1761 return shost->hostt->map_queues(shost); 1762 return blk_mq_map_queues(&set->map[0]); 1763 } 1764 1765 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1766 { 1767 struct device *dev = shost->dma_dev; 1768 1769 /* 1770 * this limit is imposed by hardware restrictions 1771 */ 1772 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1773 SG_MAX_SEGMENTS)); 1774 1775 if (scsi_host_prot_dma(shost)) { 1776 shost->sg_prot_tablesize = 1777 min_not_zero(shost->sg_prot_tablesize, 1778 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1779 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1780 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1781 } 1782 1783 blk_queue_max_hw_sectors(q, shost->max_sectors); 1784 if (shost->unchecked_isa_dma) 1785 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1786 blk_queue_segment_boundary(q, shost->dma_boundary); 1787 dma_set_seg_boundary(dev, shost->dma_boundary); 1788 1789 blk_queue_max_segment_size(q, shost->max_segment_size); 1790 dma_set_max_seg_size(dev, shost->max_segment_size); 1791 1792 /* 1793 * Set a reasonable default alignment: The larger of 32-byte (dword), 1794 * which is a common minimum for HBAs, and the minimum DMA alignment, 1795 * which is set by the platform. 1796 * 1797 * Devices that require a bigger alignment can increase it later. 1798 */ 1799 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1800 } 1801 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1802 1803 static const struct blk_mq_ops scsi_mq_ops = { 1804 .get_budget = scsi_mq_get_budget, 1805 .put_budget = scsi_mq_put_budget, 1806 .queue_rq = scsi_queue_rq, 1807 .complete = scsi_softirq_done, 1808 .timeout = scsi_timeout, 1809 #ifdef CONFIG_BLK_DEBUG_FS 1810 .show_rq = scsi_show_rq, 1811 #endif 1812 .init_request = scsi_mq_init_request, 1813 .exit_request = scsi_mq_exit_request, 1814 .initialize_rq_fn = scsi_initialize_rq, 1815 .busy = scsi_mq_lld_busy, 1816 .map_queues = scsi_map_queues, 1817 }; 1818 1819 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1820 { 1821 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1822 if (IS_ERR(sdev->request_queue)) 1823 return NULL; 1824 1825 sdev->request_queue->queuedata = sdev; 1826 __scsi_init_queue(sdev->host, sdev->request_queue); 1827 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1828 return sdev->request_queue; 1829 } 1830 1831 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1832 { 1833 unsigned int cmd_size, sgl_size; 1834 1835 sgl_size = scsi_mq_sgl_size(shost); 1836 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1837 if (scsi_host_get_prot(shost)) 1838 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 1839 1840 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1841 shost->tag_set.ops = &scsi_mq_ops; 1842 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1843 shost->tag_set.queue_depth = shost->can_queue; 1844 shost->tag_set.cmd_size = cmd_size; 1845 shost->tag_set.numa_node = NUMA_NO_NODE; 1846 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1847 shost->tag_set.flags |= 1848 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1849 shost->tag_set.driver_data = shost; 1850 1851 return blk_mq_alloc_tag_set(&shost->tag_set); 1852 } 1853 1854 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1855 { 1856 blk_mq_free_tag_set(&shost->tag_set); 1857 } 1858 1859 /** 1860 * scsi_device_from_queue - return sdev associated with a request_queue 1861 * @q: The request queue to return the sdev from 1862 * 1863 * Return the sdev associated with a request queue or NULL if the 1864 * request_queue does not reference a SCSI device. 1865 */ 1866 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1867 { 1868 struct scsi_device *sdev = NULL; 1869 1870 if (q->mq_ops == &scsi_mq_ops) 1871 sdev = q->queuedata; 1872 if (!sdev || !get_device(&sdev->sdev_gendev)) 1873 sdev = NULL; 1874 1875 return sdev; 1876 } 1877 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1878 1879 /* 1880 * Function: scsi_block_requests() 1881 * 1882 * Purpose: Utility function used by low-level drivers to prevent further 1883 * commands from being queued to the device. 1884 * 1885 * Arguments: shost - Host in question 1886 * 1887 * Returns: Nothing 1888 * 1889 * Lock status: No locks are assumed held. 1890 * 1891 * Notes: There is no timer nor any other means by which the requests 1892 * get unblocked other than the low-level driver calling 1893 * scsi_unblock_requests(). 1894 */ 1895 void scsi_block_requests(struct Scsi_Host *shost) 1896 { 1897 shost->host_self_blocked = 1; 1898 } 1899 EXPORT_SYMBOL(scsi_block_requests); 1900 1901 /* 1902 * Function: scsi_unblock_requests() 1903 * 1904 * Purpose: Utility function used by low-level drivers to allow further 1905 * commands from being queued to the device. 1906 * 1907 * Arguments: shost - Host in question 1908 * 1909 * Returns: Nothing 1910 * 1911 * Lock status: No locks are assumed held. 1912 * 1913 * Notes: There is no timer nor any other means by which the requests 1914 * get unblocked other than the low-level driver calling 1915 * scsi_unblock_requests(). 1916 * 1917 * This is done as an API function so that changes to the 1918 * internals of the scsi mid-layer won't require wholesale 1919 * changes to drivers that use this feature. 1920 */ 1921 void scsi_unblock_requests(struct Scsi_Host *shost) 1922 { 1923 shost->host_self_blocked = 0; 1924 scsi_run_host_queues(shost); 1925 } 1926 EXPORT_SYMBOL(scsi_unblock_requests); 1927 1928 int __init scsi_init_queue(void) 1929 { 1930 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1931 sizeof(struct scsi_data_buffer), 1932 0, 0, NULL); 1933 if (!scsi_sdb_cache) { 1934 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1935 return -ENOMEM; 1936 } 1937 1938 return 0; 1939 } 1940 1941 void scsi_exit_queue(void) 1942 { 1943 kmem_cache_destroy(scsi_sense_cache); 1944 kmem_cache_destroy(scsi_sense_isadma_cache); 1945 kmem_cache_destroy(scsi_sdb_cache); 1946 } 1947 1948 /** 1949 * scsi_mode_select - issue a mode select 1950 * @sdev: SCSI device to be queried 1951 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1952 * @sp: Save page bit (0 == don't save, 1 == save) 1953 * @modepage: mode page being requested 1954 * @buffer: request buffer (may not be smaller than eight bytes) 1955 * @len: length of request buffer. 1956 * @timeout: command timeout 1957 * @retries: number of retries before failing 1958 * @data: returns a structure abstracting the mode header data 1959 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1960 * must be SCSI_SENSE_BUFFERSIZE big. 1961 * 1962 * Returns zero if successful; negative error number or scsi 1963 * status on error 1964 * 1965 */ 1966 int 1967 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1968 unsigned char *buffer, int len, int timeout, int retries, 1969 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1970 { 1971 unsigned char cmd[10]; 1972 unsigned char *real_buffer; 1973 int ret; 1974 1975 memset(cmd, 0, sizeof(cmd)); 1976 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1977 1978 if (sdev->use_10_for_ms) { 1979 if (len > 65535) 1980 return -EINVAL; 1981 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1982 if (!real_buffer) 1983 return -ENOMEM; 1984 memcpy(real_buffer + 8, buffer, len); 1985 len += 8; 1986 real_buffer[0] = 0; 1987 real_buffer[1] = 0; 1988 real_buffer[2] = data->medium_type; 1989 real_buffer[3] = data->device_specific; 1990 real_buffer[4] = data->longlba ? 0x01 : 0; 1991 real_buffer[5] = 0; 1992 real_buffer[6] = data->block_descriptor_length >> 8; 1993 real_buffer[7] = data->block_descriptor_length; 1994 1995 cmd[0] = MODE_SELECT_10; 1996 cmd[7] = len >> 8; 1997 cmd[8] = len; 1998 } else { 1999 if (len > 255 || data->block_descriptor_length > 255 || 2000 data->longlba) 2001 return -EINVAL; 2002 2003 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2004 if (!real_buffer) 2005 return -ENOMEM; 2006 memcpy(real_buffer + 4, buffer, len); 2007 len += 4; 2008 real_buffer[0] = 0; 2009 real_buffer[1] = data->medium_type; 2010 real_buffer[2] = data->device_specific; 2011 real_buffer[3] = data->block_descriptor_length; 2012 2013 2014 cmd[0] = MODE_SELECT; 2015 cmd[4] = len; 2016 } 2017 2018 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2019 sshdr, timeout, retries, NULL); 2020 kfree(real_buffer); 2021 return ret; 2022 } 2023 EXPORT_SYMBOL_GPL(scsi_mode_select); 2024 2025 /** 2026 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2027 * @sdev: SCSI device to be queried 2028 * @dbd: set if mode sense will allow block descriptors to be returned 2029 * @modepage: mode page being requested 2030 * @buffer: request buffer (may not be smaller than eight bytes) 2031 * @len: length of request buffer. 2032 * @timeout: command timeout 2033 * @retries: number of retries before failing 2034 * @data: returns a structure abstracting the mode header data 2035 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2036 * must be SCSI_SENSE_BUFFERSIZE big. 2037 * 2038 * Returns zero if unsuccessful, or the header offset (either 4 2039 * or 8 depending on whether a six or ten byte command was 2040 * issued) if successful. 2041 */ 2042 int 2043 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2044 unsigned char *buffer, int len, int timeout, int retries, 2045 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2046 { 2047 unsigned char cmd[12]; 2048 int use_10_for_ms; 2049 int header_length; 2050 int result, retry_count = retries; 2051 struct scsi_sense_hdr my_sshdr; 2052 2053 memset(data, 0, sizeof(*data)); 2054 memset(&cmd[0], 0, 12); 2055 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2056 cmd[2] = modepage; 2057 2058 /* caller might not be interested in sense, but we need it */ 2059 if (!sshdr) 2060 sshdr = &my_sshdr; 2061 2062 retry: 2063 use_10_for_ms = sdev->use_10_for_ms; 2064 2065 if (use_10_for_ms) { 2066 if (len < 8) 2067 len = 8; 2068 2069 cmd[0] = MODE_SENSE_10; 2070 cmd[8] = len; 2071 header_length = 8; 2072 } else { 2073 if (len < 4) 2074 len = 4; 2075 2076 cmd[0] = MODE_SENSE; 2077 cmd[4] = len; 2078 header_length = 4; 2079 } 2080 2081 memset(buffer, 0, len); 2082 2083 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2084 sshdr, timeout, retries, NULL); 2085 2086 /* This code looks awful: what it's doing is making sure an 2087 * ILLEGAL REQUEST sense return identifies the actual command 2088 * byte as the problem. MODE_SENSE commands can return 2089 * ILLEGAL REQUEST if the code page isn't supported */ 2090 2091 if (use_10_for_ms && !scsi_status_is_good(result) && 2092 driver_byte(result) == DRIVER_SENSE) { 2093 if (scsi_sense_valid(sshdr)) { 2094 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2095 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2096 /* 2097 * Invalid command operation code 2098 */ 2099 sdev->use_10_for_ms = 0; 2100 goto retry; 2101 } 2102 } 2103 } 2104 2105 if(scsi_status_is_good(result)) { 2106 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2107 (modepage == 6 || modepage == 8))) { 2108 /* Initio breakage? */ 2109 header_length = 0; 2110 data->length = 13; 2111 data->medium_type = 0; 2112 data->device_specific = 0; 2113 data->longlba = 0; 2114 data->block_descriptor_length = 0; 2115 } else if(use_10_for_ms) { 2116 data->length = buffer[0]*256 + buffer[1] + 2; 2117 data->medium_type = buffer[2]; 2118 data->device_specific = buffer[3]; 2119 data->longlba = buffer[4] & 0x01; 2120 data->block_descriptor_length = buffer[6]*256 2121 + buffer[7]; 2122 } else { 2123 data->length = buffer[0] + 1; 2124 data->medium_type = buffer[1]; 2125 data->device_specific = buffer[2]; 2126 data->block_descriptor_length = buffer[3]; 2127 } 2128 data->header_length = header_length; 2129 } else if ((status_byte(result) == CHECK_CONDITION) && 2130 scsi_sense_valid(sshdr) && 2131 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2132 retry_count--; 2133 goto retry; 2134 } 2135 2136 return result; 2137 } 2138 EXPORT_SYMBOL(scsi_mode_sense); 2139 2140 /** 2141 * scsi_test_unit_ready - test if unit is ready 2142 * @sdev: scsi device to change the state of. 2143 * @timeout: command timeout 2144 * @retries: number of retries before failing 2145 * @sshdr: outpout pointer for decoded sense information. 2146 * 2147 * Returns zero if unsuccessful or an error if TUR failed. For 2148 * removable media, UNIT_ATTENTION sets ->changed flag. 2149 **/ 2150 int 2151 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2152 struct scsi_sense_hdr *sshdr) 2153 { 2154 char cmd[] = { 2155 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2156 }; 2157 int result; 2158 2159 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2160 do { 2161 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2162 timeout, 1, NULL); 2163 if (sdev->removable && scsi_sense_valid(sshdr) && 2164 sshdr->sense_key == UNIT_ATTENTION) 2165 sdev->changed = 1; 2166 } while (scsi_sense_valid(sshdr) && 2167 sshdr->sense_key == UNIT_ATTENTION && --retries); 2168 2169 return result; 2170 } 2171 EXPORT_SYMBOL(scsi_test_unit_ready); 2172 2173 /** 2174 * scsi_device_set_state - Take the given device through the device state model. 2175 * @sdev: scsi device to change the state of. 2176 * @state: state to change to. 2177 * 2178 * Returns zero if successful or an error if the requested 2179 * transition is illegal. 2180 */ 2181 int 2182 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2183 { 2184 enum scsi_device_state oldstate = sdev->sdev_state; 2185 2186 if (state == oldstate) 2187 return 0; 2188 2189 switch (state) { 2190 case SDEV_CREATED: 2191 switch (oldstate) { 2192 case SDEV_CREATED_BLOCK: 2193 break; 2194 default: 2195 goto illegal; 2196 } 2197 break; 2198 2199 case SDEV_RUNNING: 2200 switch (oldstate) { 2201 case SDEV_CREATED: 2202 case SDEV_OFFLINE: 2203 case SDEV_TRANSPORT_OFFLINE: 2204 case SDEV_QUIESCE: 2205 case SDEV_BLOCK: 2206 break; 2207 default: 2208 goto illegal; 2209 } 2210 break; 2211 2212 case SDEV_QUIESCE: 2213 switch (oldstate) { 2214 case SDEV_RUNNING: 2215 case SDEV_OFFLINE: 2216 case SDEV_TRANSPORT_OFFLINE: 2217 break; 2218 default: 2219 goto illegal; 2220 } 2221 break; 2222 2223 case SDEV_OFFLINE: 2224 case SDEV_TRANSPORT_OFFLINE: 2225 switch (oldstate) { 2226 case SDEV_CREATED: 2227 case SDEV_RUNNING: 2228 case SDEV_QUIESCE: 2229 case SDEV_BLOCK: 2230 break; 2231 default: 2232 goto illegal; 2233 } 2234 break; 2235 2236 case SDEV_BLOCK: 2237 switch (oldstate) { 2238 case SDEV_RUNNING: 2239 case SDEV_CREATED_BLOCK: 2240 case SDEV_OFFLINE: 2241 break; 2242 default: 2243 goto illegal; 2244 } 2245 break; 2246 2247 case SDEV_CREATED_BLOCK: 2248 switch (oldstate) { 2249 case SDEV_CREATED: 2250 break; 2251 default: 2252 goto illegal; 2253 } 2254 break; 2255 2256 case SDEV_CANCEL: 2257 switch (oldstate) { 2258 case SDEV_CREATED: 2259 case SDEV_RUNNING: 2260 case SDEV_QUIESCE: 2261 case SDEV_OFFLINE: 2262 case SDEV_TRANSPORT_OFFLINE: 2263 break; 2264 default: 2265 goto illegal; 2266 } 2267 break; 2268 2269 case SDEV_DEL: 2270 switch (oldstate) { 2271 case SDEV_CREATED: 2272 case SDEV_RUNNING: 2273 case SDEV_OFFLINE: 2274 case SDEV_TRANSPORT_OFFLINE: 2275 case SDEV_CANCEL: 2276 case SDEV_BLOCK: 2277 case SDEV_CREATED_BLOCK: 2278 break; 2279 default: 2280 goto illegal; 2281 } 2282 break; 2283 2284 } 2285 sdev->sdev_state = state; 2286 return 0; 2287 2288 illegal: 2289 SCSI_LOG_ERROR_RECOVERY(1, 2290 sdev_printk(KERN_ERR, sdev, 2291 "Illegal state transition %s->%s", 2292 scsi_device_state_name(oldstate), 2293 scsi_device_state_name(state)) 2294 ); 2295 return -EINVAL; 2296 } 2297 EXPORT_SYMBOL(scsi_device_set_state); 2298 2299 /** 2300 * sdev_evt_emit - emit a single SCSI device uevent 2301 * @sdev: associated SCSI device 2302 * @evt: event to emit 2303 * 2304 * Send a single uevent (scsi_event) to the associated scsi_device. 2305 */ 2306 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2307 { 2308 int idx = 0; 2309 char *envp[3]; 2310 2311 switch (evt->evt_type) { 2312 case SDEV_EVT_MEDIA_CHANGE: 2313 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2314 break; 2315 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2316 scsi_rescan_device(&sdev->sdev_gendev); 2317 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2318 break; 2319 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2320 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2321 break; 2322 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2323 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2324 break; 2325 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2326 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2327 break; 2328 case SDEV_EVT_LUN_CHANGE_REPORTED: 2329 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2330 break; 2331 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2332 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2333 break; 2334 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2335 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2336 break; 2337 default: 2338 /* do nothing */ 2339 break; 2340 } 2341 2342 envp[idx++] = NULL; 2343 2344 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2345 } 2346 2347 /** 2348 * sdev_evt_thread - send a uevent for each scsi event 2349 * @work: work struct for scsi_device 2350 * 2351 * Dispatch queued events to their associated scsi_device kobjects 2352 * as uevents. 2353 */ 2354 void scsi_evt_thread(struct work_struct *work) 2355 { 2356 struct scsi_device *sdev; 2357 enum scsi_device_event evt_type; 2358 LIST_HEAD(event_list); 2359 2360 sdev = container_of(work, struct scsi_device, event_work); 2361 2362 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2363 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2364 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2365 2366 while (1) { 2367 struct scsi_event *evt; 2368 struct list_head *this, *tmp; 2369 unsigned long flags; 2370 2371 spin_lock_irqsave(&sdev->list_lock, flags); 2372 list_splice_init(&sdev->event_list, &event_list); 2373 spin_unlock_irqrestore(&sdev->list_lock, flags); 2374 2375 if (list_empty(&event_list)) 2376 break; 2377 2378 list_for_each_safe(this, tmp, &event_list) { 2379 evt = list_entry(this, struct scsi_event, node); 2380 list_del(&evt->node); 2381 scsi_evt_emit(sdev, evt); 2382 kfree(evt); 2383 } 2384 } 2385 } 2386 2387 /** 2388 * sdev_evt_send - send asserted event to uevent thread 2389 * @sdev: scsi_device event occurred on 2390 * @evt: event to send 2391 * 2392 * Assert scsi device event asynchronously. 2393 */ 2394 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2395 { 2396 unsigned long flags; 2397 2398 #if 0 2399 /* FIXME: currently this check eliminates all media change events 2400 * for polled devices. Need to update to discriminate between AN 2401 * and polled events */ 2402 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2403 kfree(evt); 2404 return; 2405 } 2406 #endif 2407 2408 spin_lock_irqsave(&sdev->list_lock, flags); 2409 list_add_tail(&evt->node, &sdev->event_list); 2410 schedule_work(&sdev->event_work); 2411 spin_unlock_irqrestore(&sdev->list_lock, flags); 2412 } 2413 EXPORT_SYMBOL_GPL(sdev_evt_send); 2414 2415 /** 2416 * sdev_evt_alloc - allocate a new scsi event 2417 * @evt_type: type of event to allocate 2418 * @gfpflags: GFP flags for allocation 2419 * 2420 * Allocates and returns a new scsi_event. 2421 */ 2422 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2423 gfp_t gfpflags) 2424 { 2425 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2426 if (!evt) 2427 return NULL; 2428 2429 evt->evt_type = evt_type; 2430 INIT_LIST_HEAD(&evt->node); 2431 2432 /* evt_type-specific initialization, if any */ 2433 switch (evt_type) { 2434 case SDEV_EVT_MEDIA_CHANGE: 2435 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2436 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2437 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2438 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2439 case SDEV_EVT_LUN_CHANGE_REPORTED: 2440 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2441 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2442 default: 2443 /* do nothing */ 2444 break; 2445 } 2446 2447 return evt; 2448 } 2449 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2450 2451 /** 2452 * sdev_evt_send_simple - send asserted event to uevent thread 2453 * @sdev: scsi_device event occurred on 2454 * @evt_type: type of event to send 2455 * @gfpflags: GFP flags for allocation 2456 * 2457 * Assert scsi device event asynchronously, given an event type. 2458 */ 2459 void sdev_evt_send_simple(struct scsi_device *sdev, 2460 enum scsi_device_event evt_type, gfp_t gfpflags) 2461 { 2462 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2463 if (!evt) { 2464 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2465 evt_type); 2466 return; 2467 } 2468 2469 sdev_evt_send(sdev, evt); 2470 } 2471 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2472 2473 /** 2474 * scsi_device_quiesce - Block user issued commands. 2475 * @sdev: scsi device to quiesce. 2476 * 2477 * This works by trying to transition to the SDEV_QUIESCE state 2478 * (which must be a legal transition). When the device is in this 2479 * state, only special requests will be accepted, all others will 2480 * be deferred. Since special requests may also be requeued requests, 2481 * a successful return doesn't guarantee the device will be 2482 * totally quiescent. 2483 * 2484 * Must be called with user context, may sleep. 2485 * 2486 * Returns zero if unsuccessful or an error if not. 2487 */ 2488 int 2489 scsi_device_quiesce(struct scsi_device *sdev) 2490 { 2491 struct request_queue *q = sdev->request_queue; 2492 int err; 2493 2494 /* 2495 * It is allowed to call scsi_device_quiesce() multiple times from 2496 * the same context but concurrent scsi_device_quiesce() calls are 2497 * not allowed. 2498 */ 2499 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2500 2501 if (sdev->quiesced_by == current) 2502 return 0; 2503 2504 blk_set_pm_only(q); 2505 2506 blk_mq_freeze_queue(q); 2507 /* 2508 * Ensure that the effect of blk_set_pm_only() will be visible 2509 * for percpu_ref_tryget() callers that occur after the queue 2510 * unfreeze even if the queue was already frozen before this function 2511 * was called. See also https://lwn.net/Articles/573497/. 2512 */ 2513 synchronize_rcu(); 2514 blk_mq_unfreeze_queue(q); 2515 2516 mutex_lock(&sdev->state_mutex); 2517 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2518 if (err == 0) 2519 sdev->quiesced_by = current; 2520 else 2521 blk_clear_pm_only(q); 2522 mutex_unlock(&sdev->state_mutex); 2523 2524 return err; 2525 } 2526 EXPORT_SYMBOL(scsi_device_quiesce); 2527 2528 /** 2529 * scsi_device_resume - Restart user issued commands to a quiesced device. 2530 * @sdev: scsi device to resume. 2531 * 2532 * Moves the device from quiesced back to running and restarts the 2533 * queues. 2534 * 2535 * Must be called with user context, may sleep. 2536 */ 2537 void scsi_device_resume(struct scsi_device *sdev) 2538 { 2539 /* check if the device state was mutated prior to resume, and if 2540 * so assume the state is being managed elsewhere (for example 2541 * device deleted during suspend) 2542 */ 2543 mutex_lock(&sdev->state_mutex); 2544 sdev->quiesced_by = NULL; 2545 blk_clear_pm_only(sdev->request_queue); 2546 if (sdev->sdev_state == SDEV_QUIESCE) 2547 scsi_device_set_state(sdev, SDEV_RUNNING); 2548 mutex_unlock(&sdev->state_mutex); 2549 } 2550 EXPORT_SYMBOL(scsi_device_resume); 2551 2552 static void 2553 device_quiesce_fn(struct scsi_device *sdev, void *data) 2554 { 2555 scsi_device_quiesce(sdev); 2556 } 2557 2558 void 2559 scsi_target_quiesce(struct scsi_target *starget) 2560 { 2561 starget_for_each_device(starget, NULL, device_quiesce_fn); 2562 } 2563 EXPORT_SYMBOL(scsi_target_quiesce); 2564 2565 static void 2566 device_resume_fn(struct scsi_device *sdev, void *data) 2567 { 2568 scsi_device_resume(sdev); 2569 } 2570 2571 void 2572 scsi_target_resume(struct scsi_target *starget) 2573 { 2574 starget_for_each_device(starget, NULL, device_resume_fn); 2575 } 2576 EXPORT_SYMBOL(scsi_target_resume); 2577 2578 /** 2579 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2580 * @sdev: device to block 2581 * 2582 * Pause SCSI command processing on the specified device. Does not sleep. 2583 * 2584 * Returns zero if successful or a negative error code upon failure. 2585 * 2586 * Notes: 2587 * This routine transitions the device to the SDEV_BLOCK state (which must be 2588 * a legal transition). When the device is in this state, command processing 2589 * is paused until the device leaves the SDEV_BLOCK state. See also 2590 * scsi_internal_device_unblock_nowait(). 2591 */ 2592 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2593 { 2594 struct request_queue *q = sdev->request_queue; 2595 int err = 0; 2596 2597 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2598 if (err) { 2599 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2600 2601 if (err) 2602 return err; 2603 } 2604 2605 /* 2606 * The device has transitioned to SDEV_BLOCK. Stop the 2607 * block layer from calling the midlayer with this device's 2608 * request queue. 2609 */ 2610 blk_mq_quiesce_queue_nowait(q); 2611 return 0; 2612 } 2613 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2614 2615 /** 2616 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2617 * @sdev: device to block 2618 * 2619 * Pause SCSI command processing on the specified device and wait until all 2620 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2621 * 2622 * Returns zero if successful or a negative error code upon failure. 2623 * 2624 * Note: 2625 * This routine transitions the device to the SDEV_BLOCK state (which must be 2626 * a legal transition). When the device is in this state, command processing 2627 * is paused until the device leaves the SDEV_BLOCK state. See also 2628 * scsi_internal_device_unblock(). 2629 * 2630 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2631 * scsi_internal_device_block() has blocked a SCSI device and also 2632 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2633 */ 2634 static int scsi_internal_device_block(struct scsi_device *sdev) 2635 { 2636 struct request_queue *q = sdev->request_queue; 2637 int err; 2638 2639 mutex_lock(&sdev->state_mutex); 2640 err = scsi_internal_device_block_nowait(sdev); 2641 if (err == 0) 2642 blk_mq_quiesce_queue(q); 2643 mutex_unlock(&sdev->state_mutex); 2644 2645 return err; 2646 } 2647 2648 void scsi_start_queue(struct scsi_device *sdev) 2649 { 2650 struct request_queue *q = sdev->request_queue; 2651 2652 blk_mq_unquiesce_queue(q); 2653 } 2654 2655 /** 2656 * scsi_internal_device_unblock_nowait - resume a device after a block request 2657 * @sdev: device to resume 2658 * @new_state: state to set the device to after unblocking 2659 * 2660 * Restart the device queue for a previously suspended SCSI device. Does not 2661 * sleep. 2662 * 2663 * Returns zero if successful or a negative error code upon failure. 2664 * 2665 * Notes: 2666 * This routine transitions the device to the SDEV_RUNNING state or to one of 2667 * the offline states (which must be a legal transition) allowing the midlayer 2668 * to goose the queue for this device. 2669 */ 2670 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2671 enum scsi_device_state new_state) 2672 { 2673 /* 2674 * Try to transition the scsi device to SDEV_RUNNING or one of the 2675 * offlined states and goose the device queue if successful. 2676 */ 2677 switch (sdev->sdev_state) { 2678 case SDEV_BLOCK: 2679 case SDEV_TRANSPORT_OFFLINE: 2680 sdev->sdev_state = new_state; 2681 break; 2682 case SDEV_CREATED_BLOCK: 2683 if (new_state == SDEV_TRANSPORT_OFFLINE || 2684 new_state == SDEV_OFFLINE) 2685 sdev->sdev_state = new_state; 2686 else 2687 sdev->sdev_state = SDEV_CREATED; 2688 break; 2689 case SDEV_CANCEL: 2690 case SDEV_OFFLINE: 2691 break; 2692 default: 2693 return -EINVAL; 2694 } 2695 scsi_start_queue(sdev); 2696 2697 return 0; 2698 } 2699 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2700 2701 /** 2702 * scsi_internal_device_unblock - resume a device after a block request 2703 * @sdev: device to resume 2704 * @new_state: state to set the device to after unblocking 2705 * 2706 * Restart the device queue for a previously suspended SCSI device. May sleep. 2707 * 2708 * Returns zero if successful or a negative error code upon failure. 2709 * 2710 * Notes: 2711 * This routine transitions the device to the SDEV_RUNNING state or to one of 2712 * the offline states (which must be a legal transition) allowing the midlayer 2713 * to goose the queue for this device. 2714 */ 2715 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2716 enum scsi_device_state new_state) 2717 { 2718 int ret; 2719 2720 mutex_lock(&sdev->state_mutex); 2721 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2722 mutex_unlock(&sdev->state_mutex); 2723 2724 return ret; 2725 } 2726 2727 static void 2728 device_block(struct scsi_device *sdev, void *data) 2729 { 2730 scsi_internal_device_block(sdev); 2731 } 2732 2733 static int 2734 target_block(struct device *dev, void *data) 2735 { 2736 if (scsi_is_target_device(dev)) 2737 starget_for_each_device(to_scsi_target(dev), NULL, 2738 device_block); 2739 return 0; 2740 } 2741 2742 void 2743 scsi_target_block(struct device *dev) 2744 { 2745 if (scsi_is_target_device(dev)) 2746 starget_for_each_device(to_scsi_target(dev), NULL, 2747 device_block); 2748 else 2749 device_for_each_child(dev, NULL, target_block); 2750 } 2751 EXPORT_SYMBOL_GPL(scsi_target_block); 2752 2753 static void 2754 device_unblock(struct scsi_device *sdev, void *data) 2755 { 2756 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2757 } 2758 2759 static int 2760 target_unblock(struct device *dev, void *data) 2761 { 2762 if (scsi_is_target_device(dev)) 2763 starget_for_each_device(to_scsi_target(dev), data, 2764 device_unblock); 2765 return 0; 2766 } 2767 2768 void 2769 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2770 { 2771 if (scsi_is_target_device(dev)) 2772 starget_for_each_device(to_scsi_target(dev), &new_state, 2773 device_unblock); 2774 else 2775 device_for_each_child(dev, &new_state, target_unblock); 2776 } 2777 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2778 2779 /** 2780 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2781 * @sgl: scatter-gather list 2782 * @sg_count: number of segments in sg 2783 * @offset: offset in bytes into sg, on return offset into the mapped area 2784 * @len: bytes to map, on return number of bytes mapped 2785 * 2786 * Returns virtual address of the start of the mapped page 2787 */ 2788 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2789 size_t *offset, size_t *len) 2790 { 2791 int i; 2792 size_t sg_len = 0, len_complete = 0; 2793 struct scatterlist *sg; 2794 struct page *page; 2795 2796 WARN_ON(!irqs_disabled()); 2797 2798 for_each_sg(sgl, sg, sg_count, i) { 2799 len_complete = sg_len; /* Complete sg-entries */ 2800 sg_len += sg->length; 2801 if (sg_len > *offset) 2802 break; 2803 } 2804 2805 if (unlikely(i == sg_count)) { 2806 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2807 "elements %d\n", 2808 __func__, sg_len, *offset, sg_count); 2809 WARN_ON(1); 2810 return NULL; 2811 } 2812 2813 /* Offset starting from the beginning of first page in this sg-entry */ 2814 *offset = *offset - len_complete + sg->offset; 2815 2816 /* Assumption: contiguous pages can be accessed as "page + i" */ 2817 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2818 *offset &= ~PAGE_MASK; 2819 2820 /* Bytes in this sg-entry from *offset to the end of the page */ 2821 sg_len = PAGE_SIZE - *offset; 2822 if (*len > sg_len) 2823 *len = sg_len; 2824 2825 return kmap_atomic(page); 2826 } 2827 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2828 2829 /** 2830 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2831 * @virt: virtual address to be unmapped 2832 */ 2833 void scsi_kunmap_atomic_sg(void *virt) 2834 { 2835 kunmap_atomic(virt); 2836 } 2837 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2838 2839 void sdev_disable_disk_events(struct scsi_device *sdev) 2840 { 2841 atomic_inc(&sdev->disk_events_disable_depth); 2842 } 2843 EXPORT_SYMBOL(sdev_disable_disk_events); 2844 2845 void sdev_enable_disk_events(struct scsi_device *sdev) 2846 { 2847 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2848 return; 2849 atomic_dec(&sdev->disk_events_disable_depth); 2850 } 2851 EXPORT_SYMBOL(sdev_enable_disk_events); 2852 2853 /** 2854 * scsi_vpd_lun_id - return a unique device identification 2855 * @sdev: SCSI device 2856 * @id: buffer for the identification 2857 * @id_len: length of the buffer 2858 * 2859 * Copies a unique device identification into @id based 2860 * on the information in the VPD page 0x83 of the device. 2861 * The string will be formatted as a SCSI name string. 2862 * 2863 * Returns the length of the identification or error on failure. 2864 * If the identifier is longer than the supplied buffer the actual 2865 * identifier length is returned and the buffer is not zero-padded. 2866 */ 2867 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2868 { 2869 u8 cur_id_type = 0xff; 2870 u8 cur_id_size = 0; 2871 const unsigned char *d, *cur_id_str; 2872 const struct scsi_vpd *vpd_pg83; 2873 int id_size = -EINVAL; 2874 2875 rcu_read_lock(); 2876 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2877 if (!vpd_pg83) { 2878 rcu_read_unlock(); 2879 return -ENXIO; 2880 } 2881 2882 /* 2883 * Look for the correct descriptor. 2884 * Order of preference for lun descriptor: 2885 * - SCSI name string 2886 * - NAA IEEE Registered Extended 2887 * - EUI-64 based 16-byte 2888 * - EUI-64 based 12-byte 2889 * - NAA IEEE Registered 2890 * - NAA IEEE Extended 2891 * - T10 Vendor ID 2892 * as longer descriptors reduce the likelyhood 2893 * of identification clashes. 2894 */ 2895 2896 /* The id string must be at least 20 bytes + terminating NULL byte */ 2897 if (id_len < 21) { 2898 rcu_read_unlock(); 2899 return -EINVAL; 2900 } 2901 2902 memset(id, 0, id_len); 2903 d = vpd_pg83->data + 4; 2904 while (d < vpd_pg83->data + vpd_pg83->len) { 2905 /* Skip designators not referring to the LUN */ 2906 if ((d[1] & 0x30) != 0x00) 2907 goto next_desig; 2908 2909 switch (d[1] & 0xf) { 2910 case 0x1: 2911 /* T10 Vendor ID */ 2912 if (cur_id_size > d[3]) 2913 break; 2914 /* Prefer anything */ 2915 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2916 break; 2917 cur_id_size = d[3]; 2918 if (cur_id_size + 4 > id_len) 2919 cur_id_size = id_len - 4; 2920 cur_id_str = d + 4; 2921 cur_id_type = d[1] & 0xf; 2922 id_size = snprintf(id, id_len, "t10.%*pE", 2923 cur_id_size, cur_id_str); 2924 break; 2925 case 0x2: 2926 /* EUI-64 */ 2927 if (cur_id_size > d[3]) 2928 break; 2929 /* Prefer NAA IEEE Registered Extended */ 2930 if (cur_id_type == 0x3 && 2931 cur_id_size == d[3]) 2932 break; 2933 cur_id_size = d[3]; 2934 cur_id_str = d + 4; 2935 cur_id_type = d[1] & 0xf; 2936 switch (cur_id_size) { 2937 case 8: 2938 id_size = snprintf(id, id_len, 2939 "eui.%8phN", 2940 cur_id_str); 2941 break; 2942 case 12: 2943 id_size = snprintf(id, id_len, 2944 "eui.%12phN", 2945 cur_id_str); 2946 break; 2947 case 16: 2948 id_size = snprintf(id, id_len, 2949 "eui.%16phN", 2950 cur_id_str); 2951 break; 2952 default: 2953 cur_id_size = 0; 2954 break; 2955 } 2956 break; 2957 case 0x3: 2958 /* NAA */ 2959 if (cur_id_size > d[3]) 2960 break; 2961 cur_id_size = d[3]; 2962 cur_id_str = d + 4; 2963 cur_id_type = d[1] & 0xf; 2964 switch (cur_id_size) { 2965 case 8: 2966 id_size = snprintf(id, id_len, 2967 "naa.%8phN", 2968 cur_id_str); 2969 break; 2970 case 16: 2971 id_size = snprintf(id, id_len, 2972 "naa.%16phN", 2973 cur_id_str); 2974 break; 2975 default: 2976 cur_id_size = 0; 2977 break; 2978 } 2979 break; 2980 case 0x8: 2981 /* SCSI name string */ 2982 if (cur_id_size + 4 > d[3]) 2983 break; 2984 /* Prefer others for truncated descriptor */ 2985 if (cur_id_size && d[3] > id_len) 2986 break; 2987 cur_id_size = id_size = d[3]; 2988 cur_id_str = d + 4; 2989 cur_id_type = d[1] & 0xf; 2990 if (cur_id_size >= id_len) 2991 cur_id_size = id_len - 1; 2992 memcpy(id, cur_id_str, cur_id_size); 2993 /* Decrease priority for truncated descriptor */ 2994 if (cur_id_size != id_size) 2995 cur_id_size = 6; 2996 break; 2997 default: 2998 break; 2999 } 3000 next_desig: 3001 d += d[3] + 4; 3002 } 3003 rcu_read_unlock(); 3004 3005 return id_size; 3006 } 3007 EXPORT_SYMBOL(scsi_vpd_lun_id); 3008 3009 /* 3010 * scsi_vpd_tpg_id - return a target port group identifier 3011 * @sdev: SCSI device 3012 * 3013 * Returns the Target Port Group identifier from the information 3014 * froom VPD page 0x83 of the device. 3015 * 3016 * Returns the identifier or error on failure. 3017 */ 3018 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3019 { 3020 const unsigned char *d; 3021 const struct scsi_vpd *vpd_pg83; 3022 int group_id = -EAGAIN, rel_port = -1; 3023 3024 rcu_read_lock(); 3025 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3026 if (!vpd_pg83) { 3027 rcu_read_unlock(); 3028 return -ENXIO; 3029 } 3030 3031 d = vpd_pg83->data + 4; 3032 while (d < vpd_pg83->data + vpd_pg83->len) { 3033 switch (d[1] & 0xf) { 3034 case 0x4: 3035 /* Relative target port */ 3036 rel_port = get_unaligned_be16(&d[6]); 3037 break; 3038 case 0x5: 3039 /* Target port group */ 3040 group_id = get_unaligned_be16(&d[6]); 3041 break; 3042 default: 3043 break; 3044 } 3045 d += d[3] + 4; 3046 } 3047 rcu_read_unlock(); 3048 3049 if (group_id >= 0 && rel_id && rel_port != -1) 3050 *rel_id = rel_port; 3051 3052 return group_id; 3053 } 3054 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3055