xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision e42dd3ee)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 
172 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
173 		"Inserting command %p into mlqueue\n", cmd));
174 
175 	scsi_set_blocked(cmd, reason);
176 
177 	/*
178 	 * Decrement the counters, since these commands are no longer
179 	 * active on the host/device.
180 	 */
181 	if (unbusy)
182 		scsi_device_unbusy(device);
183 
184 	/*
185 	 * Requeue this command.  It will go before all other commands
186 	 * that are already in the queue. Schedule requeue work under
187 	 * lock such that the kblockd_schedule_work() call happens
188 	 * before blk_cleanup_queue() finishes.
189 	 */
190 	cmd->result = 0;
191 
192 	/*
193 	 * Before a SCSI command is dispatched,
194 	 * get_device(&sdev->sdev_gendev) is called and the host,
195 	 * target and device busy counters are increased. Since
196 	 * requeuing a request causes these actions to be repeated and
197 	 * since scsi_device_unbusy() has already been called,
198 	 * put_device(&device->sdev_gendev) must still be called. Call
199 	 * put_device() after blk_mq_requeue_request() to avoid that
200 	 * removal of the SCSI device can start before requeueing has
201 	 * happened.
202 	 */
203 	blk_mq_requeue_request(cmd->request, true);
204 	put_device(&device->sdev_gendev);
205 }
206 
207 /*
208  * Function:    scsi_queue_insert()
209  *
210  * Purpose:     Insert a command in the midlevel queue.
211  *
212  * Arguments:   cmd    - command that we are adding to queue.
213  *              reason - why we are inserting command to queue.
214  *
215  * Lock status: Assumed that lock is not held upon entry.
216  *
217  * Returns:     Nothing.
218  *
219  * Notes:       We do this for one of two cases.  Either the host is busy
220  *              and it cannot accept any more commands for the time being,
221  *              or the device returned QUEUE_FULL and can accept no more
222  *              commands.
223  * Notes:       This could be called either from an interrupt context or a
224  *              normal process context.
225  */
226 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
227 {
228 	__scsi_queue_insert(cmd, reason, true);
229 }
230 
231 
232 /**
233  * __scsi_execute - insert request and wait for the result
234  * @sdev:	scsi device
235  * @cmd:	scsi command
236  * @data_direction: data direction
237  * @buffer:	data buffer
238  * @bufflen:	len of buffer
239  * @sense:	optional sense buffer
240  * @sshdr:	optional decoded sense header
241  * @timeout:	request timeout in seconds
242  * @retries:	number of times to retry request
243  * @flags:	flags for ->cmd_flags
244  * @rq_flags:	flags for ->rq_flags
245  * @resid:	optional residual length
246  *
247  * Returns the scsi_cmnd result field if a command was executed, or a negative
248  * Linux error code if we didn't get that far.
249  */
250 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
251 		 int data_direction, void *buffer, unsigned bufflen,
252 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
253 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
254 		 int *resid)
255 {
256 	struct request *req;
257 	struct scsi_request *rq;
258 	int ret = DRIVER_ERROR << 24;
259 
260 	req = blk_get_request(sdev->request_queue,
261 			data_direction == DMA_TO_DEVICE ?
262 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
263 	if (IS_ERR(req))
264 		return ret;
265 	rq = scsi_req(req);
266 
267 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
268 					buffer, bufflen, GFP_NOIO))
269 		goto out;
270 
271 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
272 	memcpy(rq->cmd, cmd, rq->cmd_len);
273 	rq->retries = retries;
274 	req->timeout = timeout;
275 	req->cmd_flags |= flags;
276 	req->rq_flags |= rq_flags | RQF_QUIET;
277 
278 	/*
279 	 * head injection *required* here otherwise quiesce won't work
280 	 */
281 	blk_execute_rq(req->q, NULL, req, 1);
282 
283 	/*
284 	 * Some devices (USB mass-storage in particular) may transfer
285 	 * garbage data together with a residue indicating that the data
286 	 * is invalid.  Prevent the garbage from being misinterpreted
287 	 * and prevent security leaks by zeroing out the excess data.
288 	 */
289 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
290 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
291 
292 	if (resid)
293 		*resid = rq->resid_len;
294 	if (sense && rq->sense_len)
295 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
296 	if (sshdr)
297 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
298 	ret = rq->result;
299  out:
300 	blk_put_request(req);
301 
302 	return ret;
303 }
304 EXPORT_SYMBOL(__scsi_execute);
305 
306 /*
307  * Function:    scsi_init_cmd_errh()
308  *
309  * Purpose:     Initialize cmd fields related to error handling.
310  *
311  * Arguments:   cmd	- command that is ready to be queued.
312  *
313  * Notes:       This function has the job of initializing a number of
314  *              fields related to error handling.   Typically this will
315  *              be called once for each command, as required.
316  */
317 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
318 {
319 	scsi_set_resid(cmd, 0);
320 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
321 	if (cmd->cmd_len == 0)
322 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
323 }
324 
325 /*
326  * Decrement the host_busy counter and wake up the error handler if necessary.
327  * Avoid as follows that the error handler is not woken up if shost->host_busy
328  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
329  * with an RCU read lock in this function to ensure that this function in its
330  * entirety either finishes before scsi_eh_scmd_add() increases the
331  * host_failed counter or that it notices the shost state change made by
332  * scsi_eh_scmd_add().
333  */
334 static void scsi_dec_host_busy(struct Scsi_Host *shost)
335 {
336 	unsigned long flags;
337 
338 	rcu_read_lock();
339 	atomic_dec(&shost->host_busy);
340 	if (unlikely(scsi_host_in_recovery(shost))) {
341 		spin_lock_irqsave(shost->host_lock, flags);
342 		if (shost->host_failed || shost->host_eh_scheduled)
343 			scsi_eh_wakeup(shost);
344 		spin_unlock_irqrestore(shost->host_lock, flags);
345 	}
346 	rcu_read_unlock();
347 }
348 
349 void scsi_device_unbusy(struct scsi_device *sdev)
350 {
351 	struct Scsi_Host *shost = sdev->host;
352 	struct scsi_target *starget = scsi_target(sdev);
353 
354 	scsi_dec_host_busy(shost);
355 
356 	if (starget->can_queue > 0)
357 		atomic_dec(&starget->target_busy);
358 
359 	atomic_dec(&sdev->device_busy);
360 }
361 
362 static void scsi_kick_queue(struct request_queue *q)
363 {
364 	blk_mq_run_hw_queues(q, false);
365 }
366 
367 /*
368  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
369  * and call blk_run_queue for all the scsi_devices on the target -
370  * including current_sdev first.
371  *
372  * Called with *no* scsi locks held.
373  */
374 static void scsi_single_lun_run(struct scsi_device *current_sdev)
375 {
376 	struct Scsi_Host *shost = current_sdev->host;
377 	struct scsi_device *sdev, *tmp;
378 	struct scsi_target *starget = scsi_target(current_sdev);
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(shost->host_lock, flags);
382 	starget->starget_sdev_user = NULL;
383 	spin_unlock_irqrestore(shost->host_lock, flags);
384 
385 	/*
386 	 * Call blk_run_queue for all LUNs on the target, starting with
387 	 * current_sdev. We race with others (to set starget_sdev_user),
388 	 * but in most cases, we will be first. Ideally, each LU on the
389 	 * target would get some limited time or requests on the target.
390 	 */
391 	scsi_kick_queue(current_sdev->request_queue);
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	if (starget->starget_sdev_user)
395 		goto out;
396 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
397 			same_target_siblings) {
398 		if (sdev == current_sdev)
399 			continue;
400 		if (scsi_device_get(sdev))
401 			continue;
402 
403 		spin_unlock_irqrestore(shost->host_lock, flags);
404 		scsi_kick_queue(sdev->request_queue);
405 		spin_lock_irqsave(shost->host_lock, flags);
406 
407 		scsi_device_put(sdev);
408 	}
409  out:
410 	spin_unlock_irqrestore(shost->host_lock, flags);
411 }
412 
413 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
414 {
415 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
416 		return true;
417 	if (atomic_read(&sdev->device_blocked) > 0)
418 		return true;
419 	return false;
420 }
421 
422 static inline bool scsi_target_is_busy(struct scsi_target *starget)
423 {
424 	if (starget->can_queue > 0) {
425 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
426 			return true;
427 		if (atomic_read(&starget->target_blocked) > 0)
428 			return true;
429 	}
430 	return false;
431 }
432 
433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
434 {
435 	if (shost->can_queue > 0 &&
436 	    atomic_read(&shost->host_busy) >= shost->can_queue)
437 		return true;
438 	if (atomic_read(&shost->host_blocked) > 0)
439 		return true;
440 	if (shost->host_self_blocked)
441 		return true;
442 	return false;
443 }
444 
445 static void scsi_starved_list_run(struct Scsi_Host *shost)
446 {
447 	LIST_HEAD(starved_list);
448 	struct scsi_device *sdev;
449 	unsigned long flags;
450 
451 	spin_lock_irqsave(shost->host_lock, flags);
452 	list_splice_init(&shost->starved_list, &starved_list);
453 
454 	while (!list_empty(&starved_list)) {
455 		struct request_queue *slq;
456 
457 		/*
458 		 * As long as shost is accepting commands and we have
459 		 * starved queues, call blk_run_queue. scsi_request_fn
460 		 * drops the queue_lock and can add us back to the
461 		 * starved_list.
462 		 *
463 		 * host_lock protects the starved_list and starved_entry.
464 		 * scsi_request_fn must get the host_lock before checking
465 		 * or modifying starved_list or starved_entry.
466 		 */
467 		if (scsi_host_is_busy(shost))
468 			break;
469 
470 		sdev = list_entry(starved_list.next,
471 				  struct scsi_device, starved_entry);
472 		list_del_init(&sdev->starved_entry);
473 		if (scsi_target_is_busy(scsi_target(sdev))) {
474 			list_move_tail(&sdev->starved_entry,
475 				       &shost->starved_list);
476 			continue;
477 		}
478 
479 		/*
480 		 * Once we drop the host lock, a racing scsi_remove_device()
481 		 * call may remove the sdev from the starved list and destroy
482 		 * it and the queue.  Mitigate by taking a reference to the
483 		 * queue and never touching the sdev again after we drop the
484 		 * host lock.  Note: if __scsi_remove_device() invokes
485 		 * blk_cleanup_queue() before the queue is run from this
486 		 * function then blk_run_queue() will return immediately since
487 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
488 		 */
489 		slq = sdev->request_queue;
490 		if (!blk_get_queue(slq))
491 			continue;
492 		spin_unlock_irqrestore(shost->host_lock, flags);
493 
494 		scsi_kick_queue(slq);
495 		blk_put_queue(slq);
496 
497 		spin_lock_irqsave(shost->host_lock, flags);
498 	}
499 	/* put any unprocessed entries back */
500 	list_splice(&starved_list, &shost->starved_list);
501 	spin_unlock_irqrestore(shost->host_lock, flags);
502 }
503 
504 /*
505  * Function:   scsi_run_queue()
506  *
507  * Purpose:    Select a proper request queue to serve next
508  *
509  * Arguments:  q       - last request's queue
510  *
511  * Returns:     Nothing
512  *
513  * Notes:      The previous command was completely finished, start
514  *             a new one if possible.
515  */
516 static void scsi_run_queue(struct request_queue *q)
517 {
518 	struct scsi_device *sdev = q->queuedata;
519 
520 	if (scsi_target(sdev)->single_lun)
521 		scsi_single_lun_run(sdev);
522 	if (!list_empty(&sdev->host->starved_list))
523 		scsi_starved_list_run(sdev->host);
524 
525 	blk_mq_run_hw_queues(q, false);
526 }
527 
528 void scsi_requeue_run_queue(struct work_struct *work)
529 {
530 	struct scsi_device *sdev;
531 	struct request_queue *q;
532 
533 	sdev = container_of(work, struct scsi_device, requeue_work);
534 	q = sdev->request_queue;
535 	scsi_run_queue(q);
536 }
537 
538 void scsi_run_host_queues(struct Scsi_Host *shost)
539 {
540 	struct scsi_device *sdev;
541 
542 	shost_for_each_device(sdev, shost)
543 		scsi_run_queue(sdev->request_queue);
544 }
545 
546 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
547 {
548 	if (!blk_rq_is_passthrough(cmd->request)) {
549 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
550 
551 		if (drv->uninit_command)
552 			drv->uninit_command(cmd);
553 	}
554 }
555 
556 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
557 {
558 	if (cmd->sdb.table.nents)
559 		sg_free_table_chained(&cmd->sdb.table, true);
560 	if (scsi_prot_sg_count(cmd))
561 		sg_free_table_chained(&cmd->prot_sdb->table, true);
562 }
563 
564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
565 {
566 	scsi_mq_free_sgtables(cmd);
567 	scsi_uninit_cmd(cmd);
568 	scsi_del_cmd_from_list(cmd);
569 }
570 
571 /* Returns false when no more bytes to process, true if there are more */
572 static bool scsi_end_request(struct request *req, blk_status_t error,
573 		unsigned int bytes)
574 {
575 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
576 	struct scsi_device *sdev = cmd->device;
577 	struct request_queue *q = sdev->request_queue;
578 
579 	if (blk_update_request(req, error, bytes))
580 		return true;
581 
582 	if (blk_queue_add_random(q))
583 		add_disk_randomness(req->rq_disk);
584 
585 	if (!blk_rq_is_scsi(req)) {
586 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
587 		cmd->flags &= ~SCMD_INITIALIZED;
588 		destroy_rcu_head(&cmd->rcu);
589 	}
590 
591 	/*
592 	 * In the MQ case the command gets freed by __blk_mq_end_request,
593 	 * so we have to do all cleanup that depends on it earlier.
594 	 *
595 	 * We also can't kick the queues from irq context, so we
596 	 * will have to defer it to a workqueue.
597 	 */
598 	scsi_mq_uninit_cmd(cmd);
599 
600 	/*
601 	 * queue is still alive, so grab the ref for preventing it
602 	 * from being cleaned up during running queue.
603 	 */
604 	percpu_ref_get(&q->q_usage_counter);
605 
606 	__blk_mq_end_request(req, error);
607 
608 	if (scsi_target(sdev)->single_lun ||
609 	    !list_empty(&sdev->host->starved_list))
610 		kblockd_schedule_work(&sdev->requeue_work);
611 	else
612 		blk_mq_run_hw_queues(q, true);
613 
614 	percpu_ref_put(&q->q_usage_counter);
615 	put_device(&sdev->sdev_gendev);
616 	return false;
617 }
618 
619 /**
620  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
621  * @cmd:	SCSI command
622  * @result:	scsi error code
623  *
624  * Translate a SCSI result code into a blk_status_t value. May reset the host
625  * byte of @cmd->result.
626  */
627 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
628 {
629 	switch (host_byte(result)) {
630 	case DID_OK:
631 		/*
632 		 * Also check the other bytes than the status byte in result
633 		 * to handle the case when a SCSI LLD sets result to
634 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
635 		 */
636 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
637 			return BLK_STS_OK;
638 		return BLK_STS_IOERR;
639 	case DID_TRANSPORT_FAILFAST:
640 		return BLK_STS_TRANSPORT;
641 	case DID_TARGET_FAILURE:
642 		set_host_byte(cmd, DID_OK);
643 		return BLK_STS_TARGET;
644 	case DID_NEXUS_FAILURE:
645 		set_host_byte(cmd, DID_OK);
646 		return BLK_STS_NEXUS;
647 	case DID_ALLOC_FAILURE:
648 		set_host_byte(cmd, DID_OK);
649 		return BLK_STS_NOSPC;
650 	case DID_MEDIUM_ERROR:
651 		set_host_byte(cmd, DID_OK);
652 		return BLK_STS_MEDIUM;
653 	default:
654 		return BLK_STS_IOERR;
655 	}
656 }
657 
658 /* Helper for scsi_io_completion() when "reprep" action required. */
659 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
660 				      struct request_queue *q)
661 {
662 	/* A new command will be prepared and issued. */
663 	scsi_mq_requeue_cmd(cmd);
664 }
665 
666 /* Helper for scsi_io_completion() when special action required. */
667 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
668 {
669 	struct request_queue *q = cmd->device->request_queue;
670 	struct request *req = cmd->request;
671 	int level = 0;
672 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
673 	      ACTION_DELAYED_RETRY} action;
674 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
675 	struct scsi_sense_hdr sshdr;
676 	bool sense_valid;
677 	bool sense_current = true;      /* false implies "deferred sense" */
678 	blk_status_t blk_stat;
679 
680 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
681 	if (sense_valid)
682 		sense_current = !scsi_sense_is_deferred(&sshdr);
683 
684 	blk_stat = scsi_result_to_blk_status(cmd, result);
685 
686 	if (host_byte(result) == DID_RESET) {
687 		/* Third party bus reset or reset for error recovery
688 		 * reasons.  Just retry the command and see what
689 		 * happens.
690 		 */
691 		action = ACTION_RETRY;
692 	} else if (sense_valid && sense_current) {
693 		switch (sshdr.sense_key) {
694 		case UNIT_ATTENTION:
695 			if (cmd->device->removable) {
696 				/* Detected disc change.  Set a bit
697 				 * and quietly refuse further access.
698 				 */
699 				cmd->device->changed = 1;
700 				action = ACTION_FAIL;
701 			} else {
702 				/* Must have been a power glitch, or a
703 				 * bus reset.  Could not have been a
704 				 * media change, so we just retry the
705 				 * command and see what happens.
706 				 */
707 				action = ACTION_RETRY;
708 			}
709 			break;
710 		case ILLEGAL_REQUEST:
711 			/* If we had an ILLEGAL REQUEST returned, then
712 			 * we may have performed an unsupported
713 			 * command.  The only thing this should be
714 			 * would be a ten byte read where only a six
715 			 * byte read was supported.  Also, on a system
716 			 * where READ CAPACITY failed, we may have
717 			 * read past the end of the disk.
718 			 */
719 			if ((cmd->device->use_10_for_rw &&
720 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
721 			    (cmd->cmnd[0] == READ_10 ||
722 			     cmd->cmnd[0] == WRITE_10)) {
723 				/* This will issue a new 6-byte command. */
724 				cmd->device->use_10_for_rw = 0;
725 				action = ACTION_REPREP;
726 			} else if (sshdr.asc == 0x10) /* DIX */ {
727 				action = ACTION_FAIL;
728 				blk_stat = BLK_STS_PROTECTION;
729 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
730 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
731 				action = ACTION_FAIL;
732 				blk_stat = BLK_STS_TARGET;
733 			} else
734 				action = ACTION_FAIL;
735 			break;
736 		case ABORTED_COMMAND:
737 			action = ACTION_FAIL;
738 			if (sshdr.asc == 0x10) /* DIF */
739 				blk_stat = BLK_STS_PROTECTION;
740 			break;
741 		case NOT_READY:
742 			/* If the device is in the process of becoming
743 			 * ready, or has a temporary blockage, retry.
744 			 */
745 			if (sshdr.asc == 0x04) {
746 				switch (sshdr.ascq) {
747 				case 0x01: /* becoming ready */
748 				case 0x04: /* format in progress */
749 				case 0x05: /* rebuild in progress */
750 				case 0x06: /* recalculation in progress */
751 				case 0x07: /* operation in progress */
752 				case 0x08: /* Long write in progress */
753 				case 0x09: /* self test in progress */
754 				case 0x14: /* space allocation in progress */
755 				case 0x1a: /* start stop unit in progress */
756 				case 0x1b: /* sanitize in progress */
757 				case 0x1d: /* configuration in progress */
758 				case 0x24: /* depopulation in progress */
759 					action = ACTION_DELAYED_RETRY;
760 					break;
761 				default:
762 					action = ACTION_FAIL;
763 					break;
764 				}
765 			} else
766 				action = ACTION_FAIL;
767 			break;
768 		case VOLUME_OVERFLOW:
769 			/* See SSC3rXX or current. */
770 			action = ACTION_FAIL;
771 			break;
772 		default:
773 			action = ACTION_FAIL;
774 			break;
775 		}
776 	} else
777 		action = ACTION_FAIL;
778 
779 	if (action != ACTION_FAIL &&
780 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
781 		action = ACTION_FAIL;
782 
783 	switch (action) {
784 	case ACTION_FAIL:
785 		/* Give up and fail the remainder of the request */
786 		if (!(req->rq_flags & RQF_QUIET)) {
787 			static DEFINE_RATELIMIT_STATE(_rs,
788 					DEFAULT_RATELIMIT_INTERVAL,
789 					DEFAULT_RATELIMIT_BURST);
790 
791 			if (unlikely(scsi_logging_level))
792 				level =
793 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
794 						    SCSI_LOG_MLCOMPLETE_BITS);
795 
796 			/*
797 			 * if logging is enabled the failure will be printed
798 			 * in scsi_log_completion(), so avoid duplicate messages
799 			 */
800 			if (!level && __ratelimit(&_rs)) {
801 				scsi_print_result(cmd, NULL, FAILED);
802 				if (driver_byte(result) == DRIVER_SENSE)
803 					scsi_print_sense(cmd);
804 				scsi_print_command(cmd);
805 			}
806 		}
807 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
808 			return;
809 		/*FALLTHRU*/
810 	case ACTION_REPREP:
811 		scsi_io_completion_reprep(cmd, q);
812 		break;
813 	case ACTION_RETRY:
814 		/* Retry the same command immediately */
815 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
816 		break;
817 	case ACTION_DELAYED_RETRY:
818 		/* Retry the same command after a delay */
819 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
820 		break;
821 	}
822 }
823 
824 /*
825  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
826  * new result that may suppress further error checking. Also modifies
827  * *blk_statp in some cases.
828  */
829 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
830 					blk_status_t *blk_statp)
831 {
832 	bool sense_valid;
833 	bool sense_current = true;	/* false implies "deferred sense" */
834 	struct request *req = cmd->request;
835 	struct scsi_sense_hdr sshdr;
836 
837 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
838 	if (sense_valid)
839 		sense_current = !scsi_sense_is_deferred(&sshdr);
840 
841 	if (blk_rq_is_passthrough(req)) {
842 		if (sense_valid) {
843 			/*
844 			 * SG_IO wants current and deferred errors
845 			 */
846 			scsi_req(req)->sense_len =
847 				min(8 + cmd->sense_buffer[7],
848 				    SCSI_SENSE_BUFFERSIZE);
849 		}
850 		if (sense_current)
851 			*blk_statp = scsi_result_to_blk_status(cmd, result);
852 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
853 		/*
854 		 * Flush commands do not transfers any data, and thus cannot use
855 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
856 		 * This sets *blk_statp explicitly for the problem case.
857 		 */
858 		*blk_statp = scsi_result_to_blk_status(cmd, result);
859 	}
860 	/*
861 	 * Recovered errors need reporting, but they're always treated as
862 	 * success, so fiddle the result code here.  For passthrough requests
863 	 * we already took a copy of the original into sreq->result which
864 	 * is what gets returned to the user
865 	 */
866 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
867 		bool do_print = true;
868 		/*
869 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
870 		 * skip print since caller wants ATA registers. Only occurs
871 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
872 		 */
873 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
874 			do_print = false;
875 		else if (req->rq_flags & RQF_QUIET)
876 			do_print = false;
877 		if (do_print)
878 			scsi_print_sense(cmd);
879 		result = 0;
880 		/* for passthrough, *blk_statp may be set */
881 		*blk_statp = BLK_STS_OK;
882 	}
883 	/*
884 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
885 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
886 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
887 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
888 	 * intermediate statuses (both obsolete in SAM-4) as good.
889 	 */
890 	if (status_byte(result) && scsi_status_is_good(result)) {
891 		result = 0;
892 		*blk_statp = BLK_STS_OK;
893 	}
894 	return result;
895 }
896 
897 /*
898  * Function:    scsi_io_completion()
899  *
900  * Purpose:     Completion processing for block device I/O requests.
901  *
902  * Arguments:   cmd   - command that is finished.
903  *
904  * Lock status: Assumed that no lock is held upon entry.
905  *
906  * Returns:     Nothing
907  *
908  * Notes:       We will finish off the specified number of sectors.  If we
909  *		are done, the command block will be released and the queue
910  *		function will be goosed.  If we are not done then we have to
911  *		figure out what to do next:
912  *
913  *		a) We can call scsi_requeue_command().  The request
914  *		   will be unprepared and put back on the queue.  Then
915  *		   a new command will be created for it.  This should
916  *		   be used if we made forward progress, or if we want
917  *		   to switch from READ(10) to READ(6) for example.
918  *
919  *		b) We can call __scsi_queue_insert().  The request will
920  *		   be put back on the queue and retried using the same
921  *		   command as before, possibly after a delay.
922  *
923  *		c) We can call scsi_end_request() with blk_stat other than
924  *		   BLK_STS_OK, to fail the remainder of the request.
925  */
926 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
927 {
928 	int result = cmd->result;
929 	struct request_queue *q = cmd->device->request_queue;
930 	struct request *req = cmd->request;
931 	blk_status_t blk_stat = BLK_STS_OK;
932 
933 	if (unlikely(result))	/* a nz result may or may not be an error */
934 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
935 
936 	if (unlikely(blk_rq_is_passthrough(req))) {
937 		/*
938 		 * scsi_result_to_blk_status may have reset the host_byte
939 		 */
940 		scsi_req(req)->result = cmd->result;
941 	}
942 
943 	/*
944 	 * Next deal with any sectors which we were able to correctly
945 	 * handle.
946 	 */
947 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
948 		"%u sectors total, %d bytes done.\n",
949 		blk_rq_sectors(req), good_bytes));
950 
951 	/*
952 	 * Next deal with any sectors which we were able to correctly
953 	 * handle. Failed, zero length commands always need to drop down
954 	 * to retry code. Fast path should return in this block.
955 	 */
956 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
957 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
958 			return; /* no bytes remaining */
959 	}
960 
961 	/* Kill remainder if no retries. */
962 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
963 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
964 			WARN_ONCE(true,
965 			    "Bytes remaining after failed, no-retry command");
966 		return;
967 	}
968 
969 	/*
970 	 * If there had been no error, but we have leftover bytes in the
971 	 * requeues just queue the command up again.
972 	 */
973 	if (likely(result == 0))
974 		scsi_io_completion_reprep(cmd, q);
975 	else
976 		scsi_io_completion_action(cmd, result);
977 }
978 
979 static blk_status_t scsi_init_sgtable(struct request *req,
980 		struct scsi_data_buffer *sdb)
981 {
982 	int count;
983 
984 	/*
985 	 * If sg table allocation fails, requeue request later.
986 	 */
987 	if (unlikely(sg_alloc_table_chained(&sdb->table,
988 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
989 		return BLK_STS_RESOURCE;
990 
991 	/*
992 	 * Next, walk the list, and fill in the addresses and sizes of
993 	 * each segment.
994 	 */
995 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
996 	BUG_ON(count > sdb->table.nents);
997 	sdb->table.nents = count;
998 	sdb->length = blk_rq_payload_bytes(req);
999 	return BLK_STS_OK;
1000 }
1001 
1002 /*
1003  * Function:    scsi_init_io()
1004  *
1005  * Purpose:     SCSI I/O initialize function.
1006  *
1007  * Arguments:   cmd   - Command descriptor we wish to initialize
1008  *
1009  * Returns:     BLK_STS_OK on success
1010  *		BLK_STS_RESOURCE if the failure is retryable
1011  *		BLK_STS_IOERR if the failure is fatal
1012  */
1013 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1014 {
1015 	struct request *rq = cmd->request;
1016 	blk_status_t ret;
1017 
1018 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1019 		return BLK_STS_IOERR;
1020 
1021 	ret = scsi_init_sgtable(rq, &cmd->sdb);
1022 	if (ret)
1023 		return ret;
1024 
1025 	if (blk_integrity_rq(rq)) {
1026 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1027 		int ivecs, count;
1028 
1029 		if (WARN_ON_ONCE(!prot_sdb)) {
1030 			/*
1031 			 * This can happen if someone (e.g. multipath)
1032 			 * queues a command to a device on an adapter
1033 			 * that does not support DIX.
1034 			 */
1035 			ret = BLK_STS_IOERR;
1036 			goto out_free_sgtables;
1037 		}
1038 
1039 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1040 
1041 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1042 				prot_sdb->table.sgl)) {
1043 			ret = BLK_STS_RESOURCE;
1044 			goto out_free_sgtables;
1045 		}
1046 
1047 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1048 						prot_sdb->table.sgl);
1049 		BUG_ON(count > ivecs);
1050 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1051 
1052 		cmd->prot_sdb = prot_sdb;
1053 		cmd->prot_sdb->table.nents = count;
1054 	}
1055 
1056 	return BLK_STS_OK;
1057 out_free_sgtables:
1058 	scsi_mq_free_sgtables(cmd);
1059 	return ret;
1060 }
1061 EXPORT_SYMBOL(scsi_init_io);
1062 
1063 /**
1064  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1065  * @rq: Request associated with the SCSI command to be initialized.
1066  *
1067  * This function initializes the members of struct scsi_cmnd that must be
1068  * initialized before request processing starts and that won't be
1069  * reinitialized if a SCSI command is requeued.
1070  *
1071  * Called from inside blk_get_request() for pass-through requests and from
1072  * inside scsi_init_command() for filesystem requests.
1073  */
1074 static void scsi_initialize_rq(struct request *rq)
1075 {
1076 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1077 
1078 	scsi_req_init(&cmd->req);
1079 	init_rcu_head(&cmd->rcu);
1080 	cmd->jiffies_at_alloc = jiffies;
1081 	cmd->retries = 0;
1082 }
1083 
1084 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1085 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1086 {
1087 	struct scsi_device *sdev = cmd->device;
1088 	struct Scsi_Host *shost = sdev->host;
1089 	unsigned long flags;
1090 
1091 	if (shost->use_cmd_list) {
1092 		spin_lock_irqsave(&sdev->list_lock, flags);
1093 		list_add_tail(&cmd->list, &sdev->cmd_list);
1094 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1095 	}
1096 }
1097 
1098 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1099 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1100 {
1101 	struct scsi_device *sdev = cmd->device;
1102 	struct Scsi_Host *shost = sdev->host;
1103 	unsigned long flags;
1104 
1105 	if (shost->use_cmd_list) {
1106 		spin_lock_irqsave(&sdev->list_lock, flags);
1107 		BUG_ON(list_empty(&cmd->list));
1108 		list_del_init(&cmd->list);
1109 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1110 	}
1111 }
1112 
1113 /* Called after a request has been started. */
1114 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1115 {
1116 	void *buf = cmd->sense_buffer;
1117 	void *prot = cmd->prot_sdb;
1118 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1119 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1120 	unsigned long jiffies_at_alloc;
1121 	int retries;
1122 
1123 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1124 		flags |= SCMD_INITIALIZED;
1125 		scsi_initialize_rq(rq);
1126 	}
1127 
1128 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1129 	retries = cmd->retries;
1130 	/* zero out the cmd, except for the embedded scsi_request */
1131 	memset((char *)cmd + sizeof(cmd->req), 0,
1132 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1133 
1134 	cmd->device = dev;
1135 	cmd->sense_buffer = buf;
1136 	cmd->prot_sdb = prot;
1137 	cmd->flags = flags;
1138 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1139 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1140 	cmd->retries = retries;
1141 
1142 	scsi_add_cmd_to_list(cmd);
1143 }
1144 
1145 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1146 		struct request *req)
1147 {
1148 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1149 
1150 	/*
1151 	 * Passthrough requests may transfer data, in which case they must
1152 	 * a bio attached to them.  Or they might contain a SCSI command
1153 	 * that does not transfer data, in which case they may optionally
1154 	 * submit a request without an attached bio.
1155 	 */
1156 	if (req->bio) {
1157 		blk_status_t ret = scsi_init_io(cmd);
1158 		if (unlikely(ret != BLK_STS_OK))
1159 			return ret;
1160 	} else {
1161 		BUG_ON(blk_rq_bytes(req));
1162 
1163 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1164 	}
1165 
1166 	cmd->cmd_len = scsi_req(req)->cmd_len;
1167 	cmd->cmnd = scsi_req(req)->cmd;
1168 	cmd->transfersize = blk_rq_bytes(req);
1169 	cmd->allowed = scsi_req(req)->retries;
1170 	return BLK_STS_OK;
1171 }
1172 
1173 /*
1174  * Setup a normal block command.  These are simple request from filesystems
1175  * that still need to be translated to SCSI CDBs from the ULD.
1176  */
1177 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1178 		struct request *req)
1179 {
1180 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181 
1182 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1183 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1184 		if (ret != BLK_STS_OK)
1185 			return ret;
1186 	}
1187 
1188 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1189 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1190 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1191 }
1192 
1193 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1194 		struct request *req)
1195 {
1196 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1197 
1198 	if (!blk_rq_bytes(req))
1199 		cmd->sc_data_direction = DMA_NONE;
1200 	else if (rq_data_dir(req) == WRITE)
1201 		cmd->sc_data_direction = DMA_TO_DEVICE;
1202 	else
1203 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1204 
1205 	if (blk_rq_is_scsi(req))
1206 		return scsi_setup_scsi_cmnd(sdev, req);
1207 	else
1208 		return scsi_setup_fs_cmnd(sdev, req);
1209 }
1210 
1211 static blk_status_t
1212 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1213 {
1214 	switch (sdev->sdev_state) {
1215 	case SDEV_OFFLINE:
1216 	case SDEV_TRANSPORT_OFFLINE:
1217 		/*
1218 		 * If the device is offline we refuse to process any
1219 		 * commands.  The device must be brought online
1220 		 * before trying any recovery commands.
1221 		 */
1222 		sdev_printk(KERN_ERR, sdev,
1223 			    "rejecting I/O to offline device\n");
1224 		return BLK_STS_IOERR;
1225 	case SDEV_DEL:
1226 		/*
1227 		 * If the device is fully deleted, we refuse to
1228 		 * process any commands as well.
1229 		 */
1230 		sdev_printk(KERN_ERR, sdev,
1231 			    "rejecting I/O to dead device\n");
1232 		return BLK_STS_IOERR;
1233 	case SDEV_BLOCK:
1234 	case SDEV_CREATED_BLOCK:
1235 		return BLK_STS_RESOURCE;
1236 	case SDEV_QUIESCE:
1237 		/*
1238 		 * If the devices is blocked we defer normal commands.
1239 		 */
1240 		if (req && !(req->rq_flags & RQF_PREEMPT))
1241 			return BLK_STS_RESOURCE;
1242 		return BLK_STS_OK;
1243 	default:
1244 		/*
1245 		 * For any other not fully online state we only allow
1246 		 * special commands.  In particular any user initiated
1247 		 * command is not allowed.
1248 		 */
1249 		if (req && !(req->rq_flags & RQF_PREEMPT))
1250 			return BLK_STS_IOERR;
1251 		return BLK_STS_OK;
1252 	}
1253 }
1254 
1255 /*
1256  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1257  * return 0.
1258  *
1259  * Called with the queue_lock held.
1260  */
1261 static inline int scsi_dev_queue_ready(struct request_queue *q,
1262 				  struct scsi_device *sdev)
1263 {
1264 	unsigned int busy;
1265 
1266 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1267 	if (atomic_read(&sdev->device_blocked)) {
1268 		if (busy)
1269 			goto out_dec;
1270 
1271 		/*
1272 		 * unblock after device_blocked iterates to zero
1273 		 */
1274 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1275 			goto out_dec;
1276 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1277 				   "unblocking device at zero depth\n"));
1278 	}
1279 
1280 	if (busy >= sdev->queue_depth)
1281 		goto out_dec;
1282 
1283 	return 1;
1284 out_dec:
1285 	atomic_dec(&sdev->device_busy);
1286 	return 0;
1287 }
1288 
1289 /*
1290  * scsi_target_queue_ready: checks if there we can send commands to target
1291  * @sdev: scsi device on starget to check.
1292  */
1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1294 					   struct scsi_device *sdev)
1295 {
1296 	struct scsi_target *starget = scsi_target(sdev);
1297 	unsigned int busy;
1298 
1299 	if (starget->single_lun) {
1300 		spin_lock_irq(shost->host_lock);
1301 		if (starget->starget_sdev_user &&
1302 		    starget->starget_sdev_user != sdev) {
1303 			spin_unlock_irq(shost->host_lock);
1304 			return 0;
1305 		}
1306 		starget->starget_sdev_user = sdev;
1307 		spin_unlock_irq(shost->host_lock);
1308 	}
1309 
1310 	if (starget->can_queue <= 0)
1311 		return 1;
1312 
1313 	busy = atomic_inc_return(&starget->target_busy) - 1;
1314 	if (atomic_read(&starget->target_blocked) > 0) {
1315 		if (busy)
1316 			goto starved;
1317 
1318 		/*
1319 		 * unblock after target_blocked iterates to zero
1320 		 */
1321 		if (atomic_dec_return(&starget->target_blocked) > 0)
1322 			goto out_dec;
1323 
1324 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1325 				 "unblocking target at zero depth\n"));
1326 	}
1327 
1328 	if (busy >= starget->can_queue)
1329 		goto starved;
1330 
1331 	return 1;
1332 
1333 starved:
1334 	spin_lock_irq(shost->host_lock);
1335 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1336 	spin_unlock_irq(shost->host_lock);
1337 out_dec:
1338 	if (starget->can_queue > 0)
1339 		atomic_dec(&starget->target_busy);
1340 	return 0;
1341 }
1342 
1343 /*
1344  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1345  * return 0. We must end up running the queue again whenever 0 is
1346  * returned, else IO can hang.
1347  */
1348 static inline int scsi_host_queue_ready(struct request_queue *q,
1349 				   struct Scsi_Host *shost,
1350 				   struct scsi_device *sdev)
1351 {
1352 	unsigned int busy;
1353 
1354 	if (scsi_host_in_recovery(shost))
1355 		return 0;
1356 
1357 	busy = atomic_inc_return(&shost->host_busy) - 1;
1358 	if (atomic_read(&shost->host_blocked) > 0) {
1359 		if (busy)
1360 			goto starved;
1361 
1362 		/*
1363 		 * unblock after host_blocked iterates to zero
1364 		 */
1365 		if (atomic_dec_return(&shost->host_blocked) > 0)
1366 			goto out_dec;
1367 
1368 		SCSI_LOG_MLQUEUE(3,
1369 			shost_printk(KERN_INFO, shost,
1370 				     "unblocking host at zero depth\n"));
1371 	}
1372 
1373 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1374 		goto starved;
1375 	if (shost->host_self_blocked)
1376 		goto starved;
1377 
1378 	/* We're OK to process the command, so we can't be starved */
1379 	if (!list_empty(&sdev->starved_entry)) {
1380 		spin_lock_irq(shost->host_lock);
1381 		if (!list_empty(&sdev->starved_entry))
1382 			list_del_init(&sdev->starved_entry);
1383 		spin_unlock_irq(shost->host_lock);
1384 	}
1385 
1386 	return 1;
1387 
1388 starved:
1389 	spin_lock_irq(shost->host_lock);
1390 	if (list_empty(&sdev->starved_entry))
1391 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1392 	spin_unlock_irq(shost->host_lock);
1393 out_dec:
1394 	scsi_dec_host_busy(shost);
1395 	return 0;
1396 }
1397 
1398 /*
1399  * Busy state exporting function for request stacking drivers.
1400  *
1401  * For efficiency, no lock is taken to check the busy state of
1402  * shost/starget/sdev, since the returned value is not guaranteed and
1403  * may be changed after request stacking drivers call the function,
1404  * regardless of taking lock or not.
1405  *
1406  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1407  * needs to return 'not busy'. Otherwise, request stacking drivers
1408  * may hold requests forever.
1409  */
1410 static bool scsi_mq_lld_busy(struct request_queue *q)
1411 {
1412 	struct scsi_device *sdev = q->queuedata;
1413 	struct Scsi_Host *shost;
1414 
1415 	if (blk_queue_dying(q))
1416 		return false;
1417 
1418 	shost = sdev->host;
1419 
1420 	/*
1421 	 * Ignore host/starget busy state.
1422 	 * Since block layer does not have a concept of fairness across
1423 	 * multiple queues, congestion of host/starget needs to be handled
1424 	 * in SCSI layer.
1425 	 */
1426 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1427 		return true;
1428 
1429 	return false;
1430 }
1431 
1432 static void scsi_softirq_done(struct request *rq)
1433 {
1434 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1435 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1436 	int disposition;
1437 
1438 	INIT_LIST_HEAD(&cmd->eh_entry);
1439 
1440 	atomic_inc(&cmd->device->iodone_cnt);
1441 	if (cmd->result)
1442 		atomic_inc(&cmd->device->ioerr_cnt);
1443 
1444 	disposition = scsi_decide_disposition(cmd);
1445 	if (disposition != SUCCESS &&
1446 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1447 		sdev_printk(KERN_ERR, cmd->device,
1448 			    "timing out command, waited %lus\n",
1449 			    wait_for/HZ);
1450 		disposition = SUCCESS;
1451 	}
1452 
1453 	scsi_log_completion(cmd, disposition);
1454 
1455 	switch (disposition) {
1456 		case SUCCESS:
1457 			scsi_finish_command(cmd);
1458 			break;
1459 		case NEEDS_RETRY:
1460 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1461 			break;
1462 		case ADD_TO_MLQUEUE:
1463 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1464 			break;
1465 		default:
1466 			scsi_eh_scmd_add(cmd);
1467 			break;
1468 	}
1469 }
1470 
1471 /**
1472  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1473  * @cmd: command block we are dispatching.
1474  *
1475  * Return: nonzero return request was rejected and device's queue needs to be
1476  * plugged.
1477  */
1478 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1479 {
1480 	struct Scsi_Host *host = cmd->device->host;
1481 	int rtn = 0;
1482 
1483 	atomic_inc(&cmd->device->iorequest_cnt);
1484 
1485 	/* check if the device is still usable */
1486 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1487 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1488 		 * returns an immediate error upwards, and signals
1489 		 * that the device is no longer present */
1490 		cmd->result = DID_NO_CONNECT << 16;
1491 		goto done;
1492 	}
1493 
1494 	/* Check to see if the scsi lld made this device blocked. */
1495 	if (unlikely(scsi_device_blocked(cmd->device))) {
1496 		/*
1497 		 * in blocked state, the command is just put back on
1498 		 * the device queue.  The suspend state has already
1499 		 * blocked the queue so future requests should not
1500 		 * occur until the device transitions out of the
1501 		 * suspend state.
1502 		 */
1503 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1504 			"queuecommand : device blocked\n"));
1505 		return SCSI_MLQUEUE_DEVICE_BUSY;
1506 	}
1507 
1508 	/* Store the LUN value in cmnd, if needed. */
1509 	if (cmd->device->lun_in_cdb)
1510 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1511 			       (cmd->device->lun << 5 & 0xe0);
1512 
1513 	scsi_log_send(cmd);
1514 
1515 	/*
1516 	 * Before we queue this command, check if the command
1517 	 * length exceeds what the host adapter can handle.
1518 	 */
1519 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1520 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1521 			       "queuecommand : command too long. "
1522 			       "cdb_size=%d host->max_cmd_len=%d\n",
1523 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1524 		cmd->result = (DID_ABORT << 16);
1525 		goto done;
1526 	}
1527 
1528 	if (unlikely(host->shost_state == SHOST_DEL)) {
1529 		cmd->result = (DID_NO_CONNECT << 16);
1530 		goto done;
1531 
1532 	}
1533 
1534 	trace_scsi_dispatch_cmd_start(cmd);
1535 	rtn = host->hostt->queuecommand(host, cmd);
1536 	if (rtn) {
1537 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1538 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1539 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1540 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1541 
1542 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1543 			"queuecommand : request rejected\n"));
1544 	}
1545 
1546 	return rtn;
1547  done:
1548 	cmd->scsi_done(cmd);
1549 	return 0;
1550 }
1551 
1552 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1553 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1554 {
1555 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1556 		sizeof(struct scatterlist);
1557 }
1558 
1559 static blk_status_t scsi_mq_prep_fn(struct request *req)
1560 {
1561 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1562 	struct scsi_device *sdev = req->q->queuedata;
1563 	struct Scsi_Host *shost = sdev->host;
1564 	struct scatterlist *sg;
1565 
1566 	scsi_init_command(sdev, cmd);
1567 
1568 	cmd->request = req;
1569 	cmd->tag = req->tag;
1570 	cmd->prot_op = SCSI_PROT_NORMAL;
1571 
1572 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1573 	cmd->sdb.table.sgl = sg;
1574 
1575 	if (scsi_host_get_prot(shost)) {
1576 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1577 
1578 		cmd->prot_sdb->table.sgl =
1579 			(struct scatterlist *)(cmd->prot_sdb + 1);
1580 	}
1581 
1582 	blk_mq_start_request(req);
1583 
1584 	return scsi_setup_cmnd(sdev, req);
1585 }
1586 
1587 static void scsi_mq_done(struct scsi_cmnd *cmd)
1588 {
1589 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1590 		return;
1591 	trace_scsi_dispatch_cmd_done(cmd);
1592 
1593 	/*
1594 	 * If the block layer didn't complete the request due to a timeout
1595 	 * injection, scsi must clear its internal completed state so that the
1596 	 * timeout handler will see it needs to escalate its own error
1597 	 * recovery.
1598 	 */
1599 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1600 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1601 }
1602 
1603 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1604 {
1605 	struct request_queue *q = hctx->queue;
1606 	struct scsi_device *sdev = q->queuedata;
1607 
1608 	atomic_dec(&sdev->device_busy);
1609 	put_device(&sdev->sdev_gendev);
1610 }
1611 
1612 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1613 {
1614 	struct request_queue *q = hctx->queue;
1615 	struct scsi_device *sdev = q->queuedata;
1616 
1617 	if (!get_device(&sdev->sdev_gendev))
1618 		goto out;
1619 	if (!scsi_dev_queue_ready(q, sdev))
1620 		goto out_put_device;
1621 
1622 	return true;
1623 
1624 out_put_device:
1625 	put_device(&sdev->sdev_gendev);
1626 out:
1627 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1628 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1629 	return false;
1630 }
1631 
1632 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1633 			 const struct blk_mq_queue_data *bd)
1634 {
1635 	struct request *req = bd->rq;
1636 	struct request_queue *q = req->q;
1637 	struct scsi_device *sdev = q->queuedata;
1638 	struct Scsi_Host *shost = sdev->host;
1639 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1640 	blk_status_t ret;
1641 	int reason;
1642 
1643 	/*
1644 	 * If the device is not in running state we will reject some or all
1645 	 * commands.
1646 	 */
1647 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1648 		ret = scsi_prep_state_check(sdev, req);
1649 		if (ret != BLK_STS_OK)
1650 			goto out_put_budget;
1651 	}
1652 
1653 	ret = BLK_STS_RESOURCE;
1654 	if (!scsi_target_queue_ready(shost, sdev))
1655 		goto out_put_budget;
1656 	if (!scsi_host_queue_ready(q, shost, sdev))
1657 		goto out_dec_target_busy;
1658 
1659 	if (!(req->rq_flags & RQF_DONTPREP)) {
1660 		ret = scsi_mq_prep_fn(req);
1661 		if (ret != BLK_STS_OK)
1662 			goto out_dec_host_busy;
1663 		req->rq_flags |= RQF_DONTPREP;
1664 	} else {
1665 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1666 		blk_mq_start_request(req);
1667 	}
1668 
1669 	if (sdev->simple_tags)
1670 		cmd->flags |= SCMD_TAGGED;
1671 	else
1672 		cmd->flags &= ~SCMD_TAGGED;
1673 
1674 	scsi_init_cmd_errh(cmd);
1675 	cmd->scsi_done = scsi_mq_done;
1676 
1677 	reason = scsi_dispatch_cmd(cmd);
1678 	if (reason) {
1679 		scsi_set_blocked(cmd, reason);
1680 		ret = BLK_STS_RESOURCE;
1681 		goto out_dec_host_busy;
1682 	}
1683 
1684 	return BLK_STS_OK;
1685 
1686 out_dec_host_busy:
1687 	scsi_dec_host_busy(shost);
1688 out_dec_target_busy:
1689 	if (scsi_target(sdev)->can_queue > 0)
1690 		atomic_dec(&scsi_target(sdev)->target_busy);
1691 out_put_budget:
1692 	scsi_mq_put_budget(hctx);
1693 	switch (ret) {
1694 	case BLK_STS_OK:
1695 		break;
1696 	case BLK_STS_RESOURCE:
1697 		if (atomic_read(&sdev->device_busy) ||
1698 		    scsi_device_blocked(sdev))
1699 			ret = BLK_STS_DEV_RESOURCE;
1700 		break;
1701 	default:
1702 		/*
1703 		 * Make sure to release all allocated ressources when
1704 		 * we hit an error, as we will never see this command
1705 		 * again.
1706 		 */
1707 		if (req->rq_flags & RQF_DONTPREP)
1708 			scsi_mq_uninit_cmd(cmd);
1709 		break;
1710 	}
1711 	return ret;
1712 }
1713 
1714 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1715 		bool reserved)
1716 {
1717 	if (reserved)
1718 		return BLK_EH_RESET_TIMER;
1719 	return scsi_times_out(req);
1720 }
1721 
1722 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1723 				unsigned int hctx_idx, unsigned int numa_node)
1724 {
1725 	struct Scsi_Host *shost = set->driver_data;
1726 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1727 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1728 	struct scatterlist *sg;
1729 
1730 	if (unchecked_isa_dma)
1731 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1732 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1733 						    GFP_KERNEL, numa_node);
1734 	if (!cmd->sense_buffer)
1735 		return -ENOMEM;
1736 	cmd->req.sense = cmd->sense_buffer;
1737 
1738 	if (scsi_host_get_prot(shost)) {
1739 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1740 			shost->hostt->cmd_size;
1741 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1748 				 unsigned int hctx_idx)
1749 {
1750 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1751 
1752 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1753 			       cmd->sense_buffer);
1754 }
1755 
1756 static int scsi_map_queues(struct blk_mq_tag_set *set)
1757 {
1758 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1759 
1760 	if (shost->hostt->map_queues)
1761 		return shost->hostt->map_queues(shost);
1762 	return blk_mq_map_queues(&set->map[0]);
1763 }
1764 
1765 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1766 {
1767 	struct device *dev = shost->dma_dev;
1768 
1769 	/*
1770 	 * this limit is imposed by hardware restrictions
1771 	 */
1772 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1773 					SG_MAX_SEGMENTS));
1774 
1775 	if (scsi_host_prot_dma(shost)) {
1776 		shost->sg_prot_tablesize =
1777 			min_not_zero(shost->sg_prot_tablesize,
1778 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1779 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1780 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1781 	}
1782 
1783 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1784 	if (shost->unchecked_isa_dma)
1785 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1786 	blk_queue_segment_boundary(q, shost->dma_boundary);
1787 	dma_set_seg_boundary(dev, shost->dma_boundary);
1788 
1789 	blk_queue_max_segment_size(q, shost->max_segment_size);
1790 	dma_set_max_seg_size(dev, shost->max_segment_size);
1791 
1792 	/*
1793 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1794 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1795 	 * which is set by the platform.
1796 	 *
1797 	 * Devices that require a bigger alignment can increase it later.
1798 	 */
1799 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1800 }
1801 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1802 
1803 static const struct blk_mq_ops scsi_mq_ops = {
1804 	.get_budget	= scsi_mq_get_budget,
1805 	.put_budget	= scsi_mq_put_budget,
1806 	.queue_rq	= scsi_queue_rq,
1807 	.complete	= scsi_softirq_done,
1808 	.timeout	= scsi_timeout,
1809 #ifdef CONFIG_BLK_DEBUG_FS
1810 	.show_rq	= scsi_show_rq,
1811 #endif
1812 	.init_request	= scsi_mq_init_request,
1813 	.exit_request	= scsi_mq_exit_request,
1814 	.initialize_rq_fn = scsi_initialize_rq,
1815 	.busy		= scsi_mq_lld_busy,
1816 	.map_queues	= scsi_map_queues,
1817 };
1818 
1819 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1820 {
1821 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1822 	if (IS_ERR(sdev->request_queue))
1823 		return NULL;
1824 
1825 	sdev->request_queue->queuedata = sdev;
1826 	__scsi_init_queue(sdev->host, sdev->request_queue);
1827 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1828 	return sdev->request_queue;
1829 }
1830 
1831 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1832 {
1833 	unsigned int cmd_size, sgl_size;
1834 
1835 	sgl_size = scsi_mq_sgl_size(shost);
1836 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1837 	if (scsi_host_get_prot(shost))
1838 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
1839 
1840 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1841 	shost->tag_set.ops = &scsi_mq_ops;
1842 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1843 	shost->tag_set.queue_depth = shost->can_queue;
1844 	shost->tag_set.cmd_size = cmd_size;
1845 	shost->tag_set.numa_node = NUMA_NO_NODE;
1846 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1847 	shost->tag_set.flags |=
1848 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1849 	shost->tag_set.driver_data = shost;
1850 
1851 	return blk_mq_alloc_tag_set(&shost->tag_set);
1852 }
1853 
1854 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1855 {
1856 	blk_mq_free_tag_set(&shost->tag_set);
1857 }
1858 
1859 /**
1860  * scsi_device_from_queue - return sdev associated with a request_queue
1861  * @q: The request queue to return the sdev from
1862  *
1863  * Return the sdev associated with a request queue or NULL if the
1864  * request_queue does not reference a SCSI device.
1865  */
1866 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1867 {
1868 	struct scsi_device *sdev = NULL;
1869 
1870 	if (q->mq_ops == &scsi_mq_ops)
1871 		sdev = q->queuedata;
1872 	if (!sdev || !get_device(&sdev->sdev_gendev))
1873 		sdev = NULL;
1874 
1875 	return sdev;
1876 }
1877 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1878 
1879 /*
1880  * Function:    scsi_block_requests()
1881  *
1882  * Purpose:     Utility function used by low-level drivers to prevent further
1883  *		commands from being queued to the device.
1884  *
1885  * Arguments:   shost       - Host in question
1886  *
1887  * Returns:     Nothing
1888  *
1889  * Lock status: No locks are assumed held.
1890  *
1891  * Notes:       There is no timer nor any other means by which the requests
1892  *		get unblocked other than the low-level driver calling
1893  *		scsi_unblock_requests().
1894  */
1895 void scsi_block_requests(struct Scsi_Host *shost)
1896 {
1897 	shost->host_self_blocked = 1;
1898 }
1899 EXPORT_SYMBOL(scsi_block_requests);
1900 
1901 /*
1902  * Function:    scsi_unblock_requests()
1903  *
1904  * Purpose:     Utility function used by low-level drivers to allow further
1905  *		commands from being queued to the device.
1906  *
1907  * Arguments:   shost       - Host in question
1908  *
1909  * Returns:     Nothing
1910  *
1911  * Lock status: No locks are assumed held.
1912  *
1913  * Notes:       There is no timer nor any other means by which the requests
1914  *		get unblocked other than the low-level driver calling
1915  *		scsi_unblock_requests().
1916  *
1917  *		This is done as an API function so that changes to the
1918  *		internals of the scsi mid-layer won't require wholesale
1919  *		changes to drivers that use this feature.
1920  */
1921 void scsi_unblock_requests(struct Scsi_Host *shost)
1922 {
1923 	shost->host_self_blocked = 0;
1924 	scsi_run_host_queues(shost);
1925 }
1926 EXPORT_SYMBOL(scsi_unblock_requests);
1927 
1928 int __init scsi_init_queue(void)
1929 {
1930 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1931 					   sizeof(struct scsi_data_buffer),
1932 					   0, 0, NULL);
1933 	if (!scsi_sdb_cache) {
1934 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1935 		return -ENOMEM;
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 void scsi_exit_queue(void)
1942 {
1943 	kmem_cache_destroy(scsi_sense_cache);
1944 	kmem_cache_destroy(scsi_sense_isadma_cache);
1945 	kmem_cache_destroy(scsi_sdb_cache);
1946 }
1947 
1948 /**
1949  *	scsi_mode_select - issue a mode select
1950  *	@sdev:	SCSI device to be queried
1951  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1952  *	@sp:	Save page bit (0 == don't save, 1 == save)
1953  *	@modepage: mode page being requested
1954  *	@buffer: request buffer (may not be smaller than eight bytes)
1955  *	@len:	length of request buffer.
1956  *	@timeout: command timeout
1957  *	@retries: number of retries before failing
1958  *	@data: returns a structure abstracting the mode header data
1959  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1960  *		must be SCSI_SENSE_BUFFERSIZE big.
1961  *
1962  *	Returns zero if successful; negative error number or scsi
1963  *	status on error
1964  *
1965  */
1966 int
1967 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1968 		 unsigned char *buffer, int len, int timeout, int retries,
1969 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1970 {
1971 	unsigned char cmd[10];
1972 	unsigned char *real_buffer;
1973 	int ret;
1974 
1975 	memset(cmd, 0, sizeof(cmd));
1976 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1977 
1978 	if (sdev->use_10_for_ms) {
1979 		if (len > 65535)
1980 			return -EINVAL;
1981 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1982 		if (!real_buffer)
1983 			return -ENOMEM;
1984 		memcpy(real_buffer + 8, buffer, len);
1985 		len += 8;
1986 		real_buffer[0] = 0;
1987 		real_buffer[1] = 0;
1988 		real_buffer[2] = data->medium_type;
1989 		real_buffer[3] = data->device_specific;
1990 		real_buffer[4] = data->longlba ? 0x01 : 0;
1991 		real_buffer[5] = 0;
1992 		real_buffer[6] = data->block_descriptor_length >> 8;
1993 		real_buffer[7] = data->block_descriptor_length;
1994 
1995 		cmd[0] = MODE_SELECT_10;
1996 		cmd[7] = len >> 8;
1997 		cmd[8] = len;
1998 	} else {
1999 		if (len > 255 || data->block_descriptor_length > 255 ||
2000 		    data->longlba)
2001 			return -EINVAL;
2002 
2003 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2004 		if (!real_buffer)
2005 			return -ENOMEM;
2006 		memcpy(real_buffer + 4, buffer, len);
2007 		len += 4;
2008 		real_buffer[0] = 0;
2009 		real_buffer[1] = data->medium_type;
2010 		real_buffer[2] = data->device_specific;
2011 		real_buffer[3] = data->block_descriptor_length;
2012 
2013 
2014 		cmd[0] = MODE_SELECT;
2015 		cmd[4] = len;
2016 	}
2017 
2018 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2019 			       sshdr, timeout, retries, NULL);
2020 	kfree(real_buffer);
2021 	return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(scsi_mode_select);
2024 
2025 /**
2026  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2027  *	@sdev:	SCSI device to be queried
2028  *	@dbd:	set if mode sense will allow block descriptors to be returned
2029  *	@modepage: mode page being requested
2030  *	@buffer: request buffer (may not be smaller than eight bytes)
2031  *	@len:	length of request buffer.
2032  *	@timeout: command timeout
2033  *	@retries: number of retries before failing
2034  *	@data: returns a structure abstracting the mode header data
2035  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2036  *		must be SCSI_SENSE_BUFFERSIZE big.
2037  *
2038  *	Returns zero if unsuccessful, or the header offset (either 4
2039  *	or 8 depending on whether a six or ten byte command was
2040  *	issued) if successful.
2041  */
2042 int
2043 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2044 		  unsigned char *buffer, int len, int timeout, int retries,
2045 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2046 {
2047 	unsigned char cmd[12];
2048 	int use_10_for_ms;
2049 	int header_length;
2050 	int result, retry_count = retries;
2051 	struct scsi_sense_hdr my_sshdr;
2052 
2053 	memset(data, 0, sizeof(*data));
2054 	memset(&cmd[0], 0, 12);
2055 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2056 	cmd[2] = modepage;
2057 
2058 	/* caller might not be interested in sense, but we need it */
2059 	if (!sshdr)
2060 		sshdr = &my_sshdr;
2061 
2062  retry:
2063 	use_10_for_ms = sdev->use_10_for_ms;
2064 
2065 	if (use_10_for_ms) {
2066 		if (len < 8)
2067 			len = 8;
2068 
2069 		cmd[0] = MODE_SENSE_10;
2070 		cmd[8] = len;
2071 		header_length = 8;
2072 	} else {
2073 		if (len < 4)
2074 			len = 4;
2075 
2076 		cmd[0] = MODE_SENSE;
2077 		cmd[4] = len;
2078 		header_length = 4;
2079 	}
2080 
2081 	memset(buffer, 0, len);
2082 
2083 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2084 				  sshdr, timeout, retries, NULL);
2085 
2086 	/* This code looks awful: what it's doing is making sure an
2087 	 * ILLEGAL REQUEST sense return identifies the actual command
2088 	 * byte as the problem.  MODE_SENSE commands can return
2089 	 * ILLEGAL REQUEST if the code page isn't supported */
2090 
2091 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2092 	    driver_byte(result) == DRIVER_SENSE) {
2093 		if (scsi_sense_valid(sshdr)) {
2094 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2095 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2096 				/*
2097 				 * Invalid command operation code
2098 				 */
2099 				sdev->use_10_for_ms = 0;
2100 				goto retry;
2101 			}
2102 		}
2103 	}
2104 
2105 	if(scsi_status_is_good(result)) {
2106 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2107 			     (modepage == 6 || modepage == 8))) {
2108 			/* Initio breakage? */
2109 			header_length = 0;
2110 			data->length = 13;
2111 			data->medium_type = 0;
2112 			data->device_specific = 0;
2113 			data->longlba = 0;
2114 			data->block_descriptor_length = 0;
2115 		} else if(use_10_for_ms) {
2116 			data->length = buffer[0]*256 + buffer[1] + 2;
2117 			data->medium_type = buffer[2];
2118 			data->device_specific = buffer[3];
2119 			data->longlba = buffer[4] & 0x01;
2120 			data->block_descriptor_length = buffer[6]*256
2121 				+ buffer[7];
2122 		} else {
2123 			data->length = buffer[0] + 1;
2124 			data->medium_type = buffer[1];
2125 			data->device_specific = buffer[2];
2126 			data->block_descriptor_length = buffer[3];
2127 		}
2128 		data->header_length = header_length;
2129 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2130 		   scsi_sense_valid(sshdr) &&
2131 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2132 		retry_count--;
2133 		goto retry;
2134 	}
2135 
2136 	return result;
2137 }
2138 EXPORT_SYMBOL(scsi_mode_sense);
2139 
2140 /**
2141  *	scsi_test_unit_ready - test if unit is ready
2142  *	@sdev:	scsi device to change the state of.
2143  *	@timeout: command timeout
2144  *	@retries: number of retries before failing
2145  *	@sshdr: outpout pointer for decoded sense information.
2146  *
2147  *	Returns zero if unsuccessful or an error if TUR failed.  For
2148  *	removable media, UNIT_ATTENTION sets ->changed flag.
2149  **/
2150 int
2151 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2152 		     struct scsi_sense_hdr *sshdr)
2153 {
2154 	char cmd[] = {
2155 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2156 	};
2157 	int result;
2158 
2159 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2160 	do {
2161 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2162 					  timeout, 1, NULL);
2163 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2164 		    sshdr->sense_key == UNIT_ATTENTION)
2165 			sdev->changed = 1;
2166 	} while (scsi_sense_valid(sshdr) &&
2167 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2168 
2169 	return result;
2170 }
2171 EXPORT_SYMBOL(scsi_test_unit_ready);
2172 
2173 /**
2174  *	scsi_device_set_state - Take the given device through the device state model.
2175  *	@sdev:	scsi device to change the state of.
2176  *	@state:	state to change to.
2177  *
2178  *	Returns zero if successful or an error if the requested
2179  *	transition is illegal.
2180  */
2181 int
2182 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2183 {
2184 	enum scsi_device_state oldstate = sdev->sdev_state;
2185 
2186 	if (state == oldstate)
2187 		return 0;
2188 
2189 	switch (state) {
2190 	case SDEV_CREATED:
2191 		switch (oldstate) {
2192 		case SDEV_CREATED_BLOCK:
2193 			break;
2194 		default:
2195 			goto illegal;
2196 		}
2197 		break;
2198 
2199 	case SDEV_RUNNING:
2200 		switch (oldstate) {
2201 		case SDEV_CREATED:
2202 		case SDEV_OFFLINE:
2203 		case SDEV_TRANSPORT_OFFLINE:
2204 		case SDEV_QUIESCE:
2205 		case SDEV_BLOCK:
2206 			break;
2207 		default:
2208 			goto illegal;
2209 		}
2210 		break;
2211 
2212 	case SDEV_QUIESCE:
2213 		switch (oldstate) {
2214 		case SDEV_RUNNING:
2215 		case SDEV_OFFLINE:
2216 		case SDEV_TRANSPORT_OFFLINE:
2217 			break;
2218 		default:
2219 			goto illegal;
2220 		}
2221 		break;
2222 
2223 	case SDEV_OFFLINE:
2224 	case SDEV_TRANSPORT_OFFLINE:
2225 		switch (oldstate) {
2226 		case SDEV_CREATED:
2227 		case SDEV_RUNNING:
2228 		case SDEV_QUIESCE:
2229 		case SDEV_BLOCK:
2230 			break;
2231 		default:
2232 			goto illegal;
2233 		}
2234 		break;
2235 
2236 	case SDEV_BLOCK:
2237 		switch (oldstate) {
2238 		case SDEV_RUNNING:
2239 		case SDEV_CREATED_BLOCK:
2240 		case SDEV_OFFLINE:
2241 			break;
2242 		default:
2243 			goto illegal;
2244 		}
2245 		break;
2246 
2247 	case SDEV_CREATED_BLOCK:
2248 		switch (oldstate) {
2249 		case SDEV_CREATED:
2250 			break;
2251 		default:
2252 			goto illegal;
2253 		}
2254 		break;
2255 
2256 	case SDEV_CANCEL:
2257 		switch (oldstate) {
2258 		case SDEV_CREATED:
2259 		case SDEV_RUNNING:
2260 		case SDEV_QUIESCE:
2261 		case SDEV_OFFLINE:
2262 		case SDEV_TRANSPORT_OFFLINE:
2263 			break;
2264 		default:
2265 			goto illegal;
2266 		}
2267 		break;
2268 
2269 	case SDEV_DEL:
2270 		switch (oldstate) {
2271 		case SDEV_CREATED:
2272 		case SDEV_RUNNING:
2273 		case SDEV_OFFLINE:
2274 		case SDEV_TRANSPORT_OFFLINE:
2275 		case SDEV_CANCEL:
2276 		case SDEV_BLOCK:
2277 		case SDEV_CREATED_BLOCK:
2278 			break;
2279 		default:
2280 			goto illegal;
2281 		}
2282 		break;
2283 
2284 	}
2285 	sdev->sdev_state = state;
2286 	return 0;
2287 
2288  illegal:
2289 	SCSI_LOG_ERROR_RECOVERY(1,
2290 				sdev_printk(KERN_ERR, sdev,
2291 					    "Illegal state transition %s->%s",
2292 					    scsi_device_state_name(oldstate),
2293 					    scsi_device_state_name(state))
2294 				);
2295 	return -EINVAL;
2296 }
2297 EXPORT_SYMBOL(scsi_device_set_state);
2298 
2299 /**
2300  * 	sdev_evt_emit - emit a single SCSI device uevent
2301  *	@sdev: associated SCSI device
2302  *	@evt: event to emit
2303  *
2304  *	Send a single uevent (scsi_event) to the associated scsi_device.
2305  */
2306 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2307 {
2308 	int idx = 0;
2309 	char *envp[3];
2310 
2311 	switch (evt->evt_type) {
2312 	case SDEV_EVT_MEDIA_CHANGE:
2313 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2314 		break;
2315 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2316 		scsi_rescan_device(&sdev->sdev_gendev);
2317 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2318 		break;
2319 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2320 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2321 		break;
2322 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2323 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2324 		break;
2325 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2326 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2327 		break;
2328 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2329 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2330 		break;
2331 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2332 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2333 		break;
2334 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2335 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2336 		break;
2337 	default:
2338 		/* do nothing */
2339 		break;
2340 	}
2341 
2342 	envp[idx++] = NULL;
2343 
2344 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2345 }
2346 
2347 /**
2348  * 	sdev_evt_thread - send a uevent for each scsi event
2349  *	@work: work struct for scsi_device
2350  *
2351  *	Dispatch queued events to their associated scsi_device kobjects
2352  *	as uevents.
2353  */
2354 void scsi_evt_thread(struct work_struct *work)
2355 {
2356 	struct scsi_device *sdev;
2357 	enum scsi_device_event evt_type;
2358 	LIST_HEAD(event_list);
2359 
2360 	sdev = container_of(work, struct scsi_device, event_work);
2361 
2362 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2363 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2364 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2365 
2366 	while (1) {
2367 		struct scsi_event *evt;
2368 		struct list_head *this, *tmp;
2369 		unsigned long flags;
2370 
2371 		spin_lock_irqsave(&sdev->list_lock, flags);
2372 		list_splice_init(&sdev->event_list, &event_list);
2373 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2374 
2375 		if (list_empty(&event_list))
2376 			break;
2377 
2378 		list_for_each_safe(this, tmp, &event_list) {
2379 			evt = list_entry(this, struct scsi_event, node);
2380 			list_del(&evt->node);
2381 			scsi_evt_emit(sdev, evt);
2382 			kfree(evt);
2383 		}
2384 	}
2385 }
2386 
2387 /**
2388  * 	sdev_evt_send - send asserted event to uevent thread
2389  *	@sdev: scsi_device event occurred on
2390  *	@evt: event to send
2391  *
2392  *	Assert scsi device event asynchronously.
2393  */
2394 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2395 {
2396 	unsigned long flags;
2397 
2398 #if 0
2399 	/* FIXME: currently this check eliminates all media change events
2400 	 * for polled devices.  Need to update to discriminate between AN
2401 	 * and polled events */
2402 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2403 		kfree(evt);
2404 		return;
2405 	}
2406 #endif
2407 
2408 	spin_lock_irqsave(&sdev->list_lock, flags);
2409 	list_add_tail(&evt->node, &sdev->event_list);
2410 	schedule_work(&sdev->event_work);
2411 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2412 }
2413 EXPORT_SYMBOL_GPL(sdev_evt_send);
2414 
2415 /**
2416  * 	sdev_evt_alloc - allocate a new scsi event
2417  *	@evt_type: type of event to allocate
2418  *	@gfpflags: GFP flags for allocation
2419  *
2420  *	Allocates and returns a new scsi_event.
2421  */
2422 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2423 				  gfp_t gfpflags)
2424 {
2425 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2426 	if (!evt)
2427 		return NULL;
2428 
2429 	evt->evt_type = evt_type;
2430 	INIT_LIST_HEAD(&evt->node);
2431 
2432 	/* evt_type-specific initialization, if any */
2433 	switch (evt_type) {
2434 	case SDEV_EVT_MEDIA_CHANGE:
2435 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2436 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2437 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2438 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2439 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2440 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2441 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2442 	default:
2443 		/* do nothing */
2444 		break;
2445 	}
2446 
2447 	return evt;
2448 }
2449 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2450 
2451 /**
2452  * 	sdev_evt_send_simple - send asserted event to uevent thread
2453  *	@sdev: scsi_device event occurred on
2454  *	@evt_type: type of event to send
2455  *	@gfpflags: GFP flags for allocation
2456  *
2457  *	Assert scsi device event asynchronously, given an event type.
2458  */
2459 void sdev_evt_send_simple(struct scsi_device *sdev,
2460 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2461 {
2462 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2463 	if (!evt) {
2464 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2465 			    evt_type);
2466 		return;
2467 	}
2468 
2469 	sdev_evt_send(sdev, evt);
2470 }
2471 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2472 
2473 /**
2474  *	scsi_device_quiesce - Block user issued commands.
2475  *	@sdev:	scsi device to quiesce.
2476  *
2477  *	This works by trying to transition to the SDEV_QUIESCE state
2478  *	(which must be a legal transition).  When the device is in this
2479  *	state, only special requests will be accepted, all others will
2480  *	be deferred.  Since special requests may also be requeued requests,
2481  *	a successful return doesn't guarantee the device will be
2482  *	totally quiescent.
2483  *
2484  *	Must be called with user context, may sleep.
2485  *
2486  *	Returns zero if unsuccessful or an error if not.
2487  */
2488 int
2489 scsi_device_quiesce(struct scsi_device *sdev)
2490 {
2491 	struct request_queue *q = sdev->request_queue;
2492 	int err;
2493 
2494 	/*
2495 	 * It is allowed to call scsi_device_quiesce() multiple times from
2496 	 * the same context but concurrent scsi_device_quiesce() calls are
2497 	 * not allowed.
2498 	 */
2499 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2500 
2501 	if (sdev->quiesced_by == current)
2502 		return 0;
2503 
2504 	blk_set_pm_only(q);
2505 
2506 	blk_mq_freeze_queue(q);
2507 	/*
2508 	 * Ensure that the effect of blk_set_pm_only() will be visible
2509 	 * for percpu_ref_tryget() callers that occur after the queue
2510 	 * unfreeze even if the queue was already frozen before this function
2511 	 * was called. See also https://lwn.net/Articles/573497/.
2512 	 */
2513 	synchronize_rcu();
2514 	blk_mq_unfreeze_queue(q);
2515 
2516 	mutex_lock(&sdev->state_mutex);
2517 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2518 	if (err == 0)
2519 		sdev->quiesced_by = current;
2520 	else
2521 		blk_clear_pm_only(q);
2522 	mutex_unlock(&sdev->state_mutex);
2523 
2524 	return err;
2525 }
2526 EXPORT_SYMBOL(scsi_device_quiesce);
2527 
2528 /**
2529  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2530  *	@sdev:	scsi device to resume.
2531  *
2532  *	Moves the device from quiesced back to running and restarts the
2533  *	queues.
2534  *
2535  *	Must be called with user context, may sleep.
2536  */
2537 void scsi_device_resume(struct scsi_device *sdev)
2538 {
2539 	/* check if the device state was mutated prior to resume, and if
2540 	 * so assume the state is being managed elsewhere (for example
2541 	 * device deleted during suspend)
2542 	 */
2543 	mutex_lock(&sdev->state_mutex);
2544 	sdev->quiesced_by = NULL;
2545 	blk_clear_pm_only(sdev->request_queue);
2546 	if (sdev->sdev_state == SDEV_QUIESCE)
2547 		scsi_device_set_state(sdev, SDEV_RUNNING);
2548 	mutex_unlock(&sdev->state_mutex);
2549 }
2550 EXPORT_SYMBOL(scsi_device_resume);
2551 
2552 static void
2553 device_quiesce_fn(struct scsi_device *sdev, void *data)
2554 {
2555 	scsi_device_quiesce(sdev);
2556 }
2557 
2558 void
2559 scsi_target_quiesce(struct scsi_target *starget)
2560 {
2561 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2562 }
2563 EXPORT_SYMBOL(scsi_target_quiesce);
2564 
2565 static void
2566 device_resume_fn(struct scsi_device *sdev, void *data)
2567 {
2568 	scsi_device_resume(sdev);
2569 }
2570 
2571 void
2572 scsi_target_resume(struct scsi_target *starget)
2573 {
2574 	starget_for_each_device(starget, NULL, device_resume_fn);
2575 }
2576 EXPORT_SYMBOL(scsi_target_resume);
2577 
2578 /**
2579  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2580  * @sdev: device to block
2581  *
2582  * Pause SCSI command processing on the specified device. Does not sleep.
2583  *
2584  * Returns zero if successful or a negative error code upon failure.
2585  *
2586  * Notes:
2587  * This routine transitions the device to the SDEV_BLOCK state (which must be
2588  * a legal transition). When the device is in this state, command processing
2589  * is paused until the device leaves the SDEV_BLOCK state. See also
2590  * scsi_internal_device_unblock_nowait().
2591  */
2592 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2593 {
2594 	struct request_queue *q = sdev->request_queue;
2595 	int err = 0;
2596 
2597 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2598 	if (err) {
2599 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2600 
2601 		if (err)
2602 			return err;
2603 	}
2604 
2605 	/*
2606 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2607 	 * block layer from calling the midlayer with this device's
2608 	 * request queue.
2609 	 */
2610 	blk_mq_quiesce_queue_nowait(q);
2611 	return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2614 
2615 /**
2616  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2617  * @sdev: device to block
2618  *
2619  * Pause SCSI command processing on the specified device and wait until all
2620  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2621  *
2622  * Returns zero if successful or a negative error code upon failure.
2623  *
2624  * Note:
2625  * This routine transitions the device to the SDEV_BLOCK state (which must be
2626  * a legal transition). When the device is in this state, command processing
2627  * is paused until the device leaves the SDEV_BLOCK state. See also
2628  * scsi_internal_device_unblock().
2629  *
2630  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2631  * scsi_internal_device_block() has blocked a SCSI device and also
2632  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2633  */
2634 static int scsi_internal_device_block(struct scsi_device *sdev)
2635 {
2636 	struct request_queue *q = sdev->request_queue;
2637 	int err;
2638 
2639 	mutex_lock(&sdev->state_mutex);
2640 	err = scsi_internal_device_block_nowait(sdev);
2641 	if (err == 0)
2642 		blk_mq_quiesce_queue(q);
2643 	mutex_unlock(&sdev->state_mutex);
2644 
2645 	return err;
2646 }
2647 
2648 void scsi_start_queue(struct scsi_device *sdev)
2649 {
2650 	struct request_queue *q = sdev->request_queue;
2651 
2652 	blk_mq_unquiesce_queue(q);
2653 }
2654 
2655 /**
2656  * scsi_internal_device_unblock_nowait - resume a device after a block request
2657  * @sdev:	device to resume
2658  * @new_state:	state to set the device to after unblocking
2659  *
2660  * Restart the device queue for a previously suspended SCSI device. Does not
2661  * sleep.
2662  *
2663  * Returns zero if successful or a negative error code upon failure.
2664  *
2665  * Notes:
2666  * This routine transitions the device to the SDEV_RUNNING state or to one of
2667  * the offline states (which must be a legal transition) allowing the midlayer
2668  * to goose the queue for this device.
2669  */
2670 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2671 					enum scsi_device_state new_state)
2672 {
2673 	/*
2674 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2675 	 * offlined states and goose the device queue if successful.
2676 	 */
2677 	switch (sdev->sdev_state) {
2678 	case SDEV_BLOCK:
2679 	case SDEV_TRANSPORT_OFFLINE:
2680 		sdev->sdev_state = new_state;
2681 		break;
2682 	case SDEV_CREATED_BLOCK:
2683 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2684 		    new_state == SDEV_OFFLINE)
2685 			sdev->sdev_state = new_state;
2686 		else
2687 			sdev->sdev_state = SDEV_CREATED;
2688 		break;
2689 	case SDEV_CANCEL:
2690 	case SDEV_OFFLINE:
2691 		break;
2692 	default:
2693 		return -EINVAL;
2694 	}
2695 	scsi_start_queue(sdev);
2696 
2697 	return 0;
2698 }
2699 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2700 
2701 /**
2702  * scsi_internal_device_unblock - resume a device after a block request
2703  * @sdev:	device to resume
2704  * @new_state:	state to set the device to after unblocking
2705  *
2706  * Restart the device queue for a previously suspended SCSI device. May sleep.
2707  *
2708  * Returns zero if successful or a negative error code upon failure.
2709  *
2710  * Notes:
2711  * This routine transitions the device to the SDEV_RUNNING state or to one of
2712  * the offline states (which must be a legal transition) allowing the midlayer
2713  * to goose the queue for this device.
2714  */
2715 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2716 					enum scsi_device_state new_state)
2717 {
2718 	int ret;
2719 
2720 	mutex_lock(&sdev->state_mutex);
2721 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2722 	mutex_unlock(&sdev->state_mutex);
2723 
2724 	return ret;
2725 }
2726 
2727 static void
2728 device_block(struct scsi_device *sdev, void *data)
2729 {
2730 	scsi_internal_device_block(sdev);
2731 }
2732 
2733 static int
2734 target_block(struct device *dev, void *data)
2735 {
2736 	if (scsi_is_target_device(dev))
2737 		starget_for_each_device(to_scsi_target(dev), NULL,
2738 					device_block);
2739 	return 0;
2740 }
2741 
2742 void
2743 scsi_target_block(struct device *dev)
2744 {
2745 	if (scsi_is_target_device(dev))
2746 		starget_for_each_device(to_scsi_target(dev), NULL,
2747 					device_block);
2748 	else
2749 		device_for_each_child(dev, NULL, target_block);
2750 }
2751 EXPORT_SYMBOL_GPL(scsi_target_block);
2752 
2753 static void
2754 device_unblock(struct scsi_device *sdev, void *data)
2755 {
2756 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2757 }
2758 
2759 static int
2760 target_unblock(struct device *dev, void *data)
2761 {
2762 	if (scsi_is_target_device(dev))
2763 		starget_for_each_device(to_scsi_target(dev), data,
2764 					device_unblock);
2765 	return 0;
2766 }
2767 
2768 void
2769 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2770 {
2771 	if (scsi_is_target_device(dev))
2772 		starget_for_each_device(to_scsi_target(dev), &new_state,
2773 					device_unblock);
2774 	else
2775 		device_for_each_child(dev, &new_state, target_unblock);
2776 }
2777 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2778 
2779 /**
2780  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2781  * @sgl:	scatter-gather list
2782  * @sg_count:	number of segments in sg
2783  * @offset:	offset in bytes into sg, on return offset into the mapped area
2784  * @len:	bytes to map, on return number of bytes mapped
2785  *
2786  * Returns virtual address of the start of the mapped page
2787  */
2788 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2789 			  size_t *offset, size_t *len)
2790 {
2791 	int i;
2792 	size_t sg_len = 0, len_complete = 0;
2793 	struct scatterlist *sg;
2794 	struct page *page;
2795 
2796 	WARN_ON(!irqs_disabled());
2797 
2798 	for_each_sg(sgl, sg, sg_count, i) {
2799 		len_complete = sg_len; /* Complete sg-entries */
2800 		sg_len += sg->length;
2801 		if (sg_len > *offset)
2802 			break;
2803 	}
2804 
2805 	if (unlikely(i == sg_count)) {
2806 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2807 			"elements %d\n",
2808 		       __func__, sg_len, *offset, sg_count);
2809 		WARN_ON(1);
2810 		return NULL;
2811 	}
2812 
2813 	/* Offset starting from the beginning of first page in this sg-entry */
2814 	*offset = *offset - len_complete + sg->offset;
2815 
2816 	/* Assumption: contiguous pages can be accessed as "page + i" */
2817 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2818 	*offset &= ~PAGE_MASK;
2819 
2820 	/* Bytes in this sg-entry from *offset to the end of the page */
2821 	sg_len = PAGE_SIZE - *offset;
2822 	if (*len > sg_len)
2823 		*len = sg_len;
2824 
2825 	return kmap_atomic(page);
2826 }
2827 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2828 
2829 /**
2830  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2831  * @virt:	virtual address to be unmapped
2832  */
2833 void scsi_kunmap_atomic_sg(void *virt)
2834 {
2835 	kunmap_atomic(virt);
2836 }
2837 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2838 
2839 void sdev_disable_disk_events(struct scsi_device *sdev)
2840 {
2841 	atomic_inc(&sdev->disk_events_disable_depth);
2842 }
2843 EXPORT_SYMBOL(sdev_disable_disk_events);
2844 
2845 void sdev_enable_disk_events(struct scsi_device *sdev)
2846 {
2847 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2848 		return;
2849 	atomic_dec(&sdev->disk_events_disable_depth);
2850 }
2851 EXPORT_SYMBOL(sdev_enable_disk_events);
2852 
2853 /**
2854  * scsi_vpd_lun_id - return a unique device identification
2855  * @sdev: SCSI device
2856  * @id:   buffer for the identification
2857  * @id_len:  length of the buffer
2858  *
2859  * Copies a unique device identification into @id based
2860  * on the information in the VPD page 0x83 of the device.
2861  * The string will be formatted as a SCSI name string.
2862  *
2863  * Returns the length of the identification or error on failure.
2864  * If the identifier is longer than the supplied buffer the actual
2865  * identifier length is returned and the buffer is not zero-padded.
2866  */
2867 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2868 {
2869 	u8 cur_id_type = 0xff;
2870 	u8 cur_id_size = 0;
2871 	const unsigned char *d, *cur_id_str;
2872 	const struct scsi_vpd *vpd_pg83;
2873 	int id_size = -EINVAL;
2874 
2875 	rcu_read_lock();
2876 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2877 	if (!vpd_pg83) {
2878 		rcu_read_unlock();
2879 		return -ENXIO;
2880 	}
2881 
2882 	/*
2883 	 * Look for the correct descriptor.
2884 	 * Order of preference for lun descriptor:
2885 	 * - SCSI name string
2886 	 * - NAA IEEE Registered Extended
2887 	 * - EUI-64 based 16-byte
2888 	 * - EUI-64 based 12-byte
2889 	 * - NAA IEEE Registered
2890 	 * - NAA IEEE Extended
2891 	 * - T10 Vendor ID
2892 	 * as longer descriptors reduce the likelyhood
2893 	 * of identification clashes.
2894 	 */
2895 
2896 	/* The id string must be at least 20 bytes + terminating NULL byte */
2897 	if (id_len < 21) {
2898 		rcu_read_unlock();
2899 		return -EINVAL;
2900 	}
2901 
2902 	memset(id, 0, id_len);
2903 	d = vpd_pg83->data + 4;
2904 	while (d < vpd_pg83->data + vpd_pg83->len) {
2905 		/* Skip designators not referring to the LUN */
2906 		if ((d[1] & 0x30) != 0x00)
2907 			goto next_desig;
2908 
2909 		switch (d[1] & 0xf) {
2910 		case 0x1:
2911 			/* T10 Vendor ID */
2912 			if (cur_id_size > d[3])
2913 				break;
2914 			/* Prefer anything */
2915 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2916 				break;
2917 			cur_id_size = d[3];
2918 			if (cur_id_size + 4 > id_len)
2919 				cur_id_size = id_len - 4;
2920 			cur_id_str = d + 4;
2921 			cur_id_type = d[1] & 0xf;
2922 			id_size = snprintf(id, id_len, "t10.%*pE",
2923 					   cur_id_size, cur_id_str);
2924 			break;
2925 		case 0x2:
2926 			/* EUI-64 */
2927 			if (cur_id_size > d[3])
2928 				break;
2929 			/* Prefer NAA IEEE Registered Extended */
2930 			if (cur_id_type == 0x3 &&
2931 			    cur_id_size == d[3])
2932 				break;
2933 			cur_id_size = d[3];
2934 			cur_id_str = d + 4;
2935 			cur_id_type = d[1] & 0xf;
2936 			switch (cur_id_size) {
2937 			case 8:
2938 				id_size = snprintf(id, id_len,
2939 						   "eui.%8phN",
2940 						   cur_id_str);
2941 				break;
2942 			case 12:
2943 				id_size = snprintf(id, id_len,
2944 						   "eui.%12phN",
2945 						   cur_id_str);
2946 				break;
2947 			case 16:
2948 				id_size = snprintf(id, id_len,
2949 						   "eui.%16phN",
2950 						   cur_id_str);
2951 				break;
2952 			default:
2953 				cur_id_size = 0;
2954 				break;
2955 			}
2956 			break;
2957 		case 0x3:
2958 			/* NAA */
2959 			if (cur_id_size > d[3])
2960 				break;
2961 			cur_id_size = d[3];
2962 			cur_id_str = d + 4;
2963 			cur_id_type = d[1] & 0xf;
2964 			switch (cur_id_size) {
2965 			case 8:
2966 				id_size = snprintf(id, id_len,
2967 						   "naa.%8phN",
2968 						   cur_id_str);
2969 				break;
2970 			case 16:
2971 				id_size = snprintf(id, id_len,
2972 						   "naa.%16phN",
2973 						   cur_id_str);
2974 				break;
2975 			default:
2976 				cur_id_size = 0;
2977 				break;
2978 			}
2979 			break;
2980 		case 0x8:
2981 			/* SCSI name string */
2982 			if (cur_id_size + 4 > d[3])
2983 				break;
2984 			/* Prefer others for truncated descriptor */
2985 			if (cur_id_size && d[3] > id_len)
2986 				break;
2987 			cur_id_size = id_size = d[3];
2988 			cur_id_str = d + 4;
2989 			cur_id_type = d[1] & 0xf;
2990 			if (cur_id_size >= id_len)
2991 				cur_id_size = id_len - 1;
2992 			memcpy(id, cur_id_str, cur_id_size);
2993 			/* Decrease priority for truncated descriptor */
2994 			if (cur_id_size != id_size)
2995 				cur_id_size = 6;
2996 			break;
2997 		default:
2998 			break;
2999 		}
3000 next_desig:
3001 		d += d[3] + 4;
3002 	}
3003 	rcu_read_unlock();
3004 
3005 	return id_size;
3006 }
3007 EXPORT_SYMBOL(scsi_vpd_lun_id);
3008 
3009 /*
3010  * scsi_vpd_tpg_id - return a target port group identifier
3011  * @sdev: SCSI device
3012  *
3013  * Returns the Target Port Group identifier from the information
3014  * froom VPD page 0x83 of the device.
3015  *
3016  * Returns the identifier or error on failure.
3017  */
3018 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3019 {
3020 	const unsigned char *d;
3021 	const struct scsi_vpd *vpd_pg83;
3022 	int group_id = -EAGAIN, rel_port = -1;
3023 
3024 	rcu_read_lock();
3025 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3026 	if (!vpd_pg83) {
3027 		rcu_read_unlock();
3028 		return -ENXIO;
3029 	}
3030 
3031 	d = vpd_pg83->data + 4;
3032 	while (d < vpd_pg83->data + vpd_pg83->len) {
3033 		switch (d[1] & 0xf) {
3034 		case 0x4:
3035 			/* Relative target port */
3036 			rel_port = get_unaligned_be16(&d[6]);
3037 			break;
3038 		case 0x5:
3039 			/* Target port group */
3040 			group_id = get_unaligned_be16(&d[6]);
3041 			break;
3042 		default:
3043 			break;
3044 		}
3045 		d += d[3] + 4;
3046 	}
3047 	rcu_read_unlock();
3048 
3049 	if (group_id >= 0 && rel_id && rel_port != -1)
3050 		*rel_id = rel_port;
3051 
3052 	return group_id;
3053 }
3054 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3055