1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 scsi_mq_requeue_cmd(cmd); 195 return; 196 } 197 spin_lock_irqsave(q->queue_lock, flags); 198 blk_requeue_request(q, cmd->request); 199 kblockd_schedule_work(&device->requeue_work); 200 spin_unlock_irqrestore(q->queue_lock, flags); 201 } 202 203 /* 204 * Function: scsi_queue_insert() 205 * 206 * Purpose: Insert a command in the midlevel queue. 207 * 208 * Arguments: cmd - command that we are adding to queue. 209 * reason - why we are inserting command to queue. 210 * 211 * Lock status: Assumed that lock is not held upon entry. 212 * 213 * Returns: Nothing. 214 * 215 * Notes: We do this for one of two cases. Either the host is busy 216 * and it cannot accept any more commands for the time being, 217 * or the device returned QUEUE_FULL and can accept no more 218 * commands. 219 * Notes: This could be called either from an interrupt context or a 220 * normal process context. 221 */ 222 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 223 { 224 __scsi_queue_insert(cmd, reason, true); 225 } 226 227 228 /** 229 * scsi_execute - insert request and wait for the result 230 * @sdev: scsi device 231 * @cmd: scsi command 232 * @data_direction: data direction 233 * @buffer: data buffer 234 * @bufflen: len of buffer 235 * @sense: optional sense buffer 236 * @sshdr: optional decoded sense header 237 * @timeout: request timeout in seconds 238 * @retries: number of times to retry request 239 * @flags: flags for ->cmd_flags 240 * @rq_flags: flags for ->rq_flags 241 * @resid: optional residual length 242 * 243 * Returns the scsi_cmnd result field if a command was executed, or a negative 244 * Linux error code if we didn't get that far. 245 */ 246 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 247 int data_direction, void *buffer, unsigned bufflen, 248 unsigned char *sense, struct scsi_sense_hdr *sshdr, 249 int timeout, int retries, u64 flags, req_flags_t rq_flags, 250 int *resid) 251 { 252 struct request *req; 253 struct scsi_request *rq; 254 int ret = DRIVER_ERROR << 24; 255 256 req = blk_get_request_flags(sdev->request_queue, 257 data_direction == DMA_TO_DEVICE ? 258 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 259 if (IS_ERR(req)) 260 return ret; 261 rq = scsi_req(req); 262 263 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 264 buffer, bufflen, __GFP_RECLAIM)) 265 goto out; 266 267 rq->cmd_len = COMMAND_SIZE(cmd[0]); 268 memcpy(rq->cmd, cmd, rq->cmd_len); 269 rq->retries = retries; 270 req->timeout = timeout; 271 req->cmd_flags |= flags; 272 req->rq_flags |= rq_flags | RQF_QUIET; 273 274 /* 275 * head injection *required* here otherwise quiesce won't work 276 */ 277 blk_execute_rq(req->q, NULL, req, 1); 278 279 /* 280 * Some devices (USB mass-storage in particular) may transfer 281 * garbage data together with a residue indicating that the data 282 * is invalid. Prevent the garbage from being misinterpreted 283 * and prevent security leaks by zeroing out the excess data. 284 */ 285 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 286 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 287 288 if (resid) 289 *resid = rq->resid_len; 290 if (sense && rq->sense_len) 291 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 292 if (sshdr) 293 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 294 ret = rq->result; 295 out: 296 blk_put_request(req); 297 298 return ret; 299 } 300 EXPORT_SYMBOL(scsi_execute); 301 302 /* 303 * Function: scsi_init_cmd_errh() 304 * 305 * Purpose: Initialize cmd fields related to error handling. 306 * 307 * Arguments: cmd - command that is ready to be queued. 308 * 309 * Notes: This function has the job of initializing a number of 310 * fields related to error handling. Typically this will 311 * be called once for each command, as required. 312 */ 313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 314 { 315 cmd->serial_number = 0; 316 scsi_set_resid(cmd, 0); 317 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 318 if (cmd->cmd_len == 0) 319 cmd->cmd_len = scsi_command_size(cmd->cmnd); 320 } 321 322 /* 323 * Decrement the host_busy counter and wake up the error handler if necessary. 324 * Avoid as follows that the error handler is not woken up if shost->host_busy 325 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 326 * with an RCU read lock in this function to ensure that this function in its 327 * entirety either finishes before scsi_eh_scmd_add() increases the 328 * host_failed counter or that it notices the shost state change made by 329 * scsi_eh_scmd_add(). 330 */ 331 static void scsi_dec_host_busy(struct Scsi_Host *shost) 332 { 333 unsigned long flags; 334 335 rcu_read_lock(); 336 atomic_dec(&shost->host_busy); 337 if (unlikely(scsi_host_in_recovery(shost))) { 338 spin_lock_irqsave(shost->host_lock, flags); 339 if (shost->host_failed || shost->host_eh_scheduled) 340 scsi_eh_wakeup(shost); 341 spin_unlock_irqrestore(shost->host_lock, flags); 342 } 343 rcu_read_unlock(); 344 } 345 346 void scsi_device_unbusy(struct scsi_device *sdev) 347 { 348 struct Scsi_Host *shost = sdev->host; 349 struct scsi_target *starget = scsi_target(sdev); 350 351 scsi_dec_host_busy(shost); 352 353 if (starget->can_queue > 0) 354 atomic_dec(&starget->target_busy); 355 356 atomic_dec(&sdev->device_busy); 357 } 358 359 static void scsi_kick_queue(struct request_queue *q) 360 { 361 if (q->mq_ops) 362 blk_mq_start_hw_queues(q); 363 else 364 blk_run_queue(q); 365 } 366 367 /* 368 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 369 * and call blk_run_queue for all the scsi_devices on the target - 370 * including current_sdev first. 371 * 372 * Called with *no* scsi locks held. 373 */ 374 static void scsi_single_lun_run(struct scsi_device *current_sdev) 375 { 376 struct Scsi_Host *shost = current_sdev->host; 377 struct scsi_device *sdev, *tmp; 378 struct scsi_target *starget = scsi_target(current_sdev); 379 unsigned long flags; 380 381 spin_lock_irqsave(shost->host_lock, flags); 382 starget->starget_sdev_user = NULL; 383 spin_unlock_irqrestore(shost->host_lock, flags); 384 385 /* 386 * Call blk_run_queue for all LUNs on the target, starting with 387 * current_sdev. We race with others (to set starget_sdev_user), 388 * but in most cases, we will be first. Ideally, each LU on the 389 * target would get some limited time or requests on the target. 390 */ 391 scsi_kick_queue(current_sdev->request_queue); 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 if (starget->starget_sdev_user) 395 goto out; 396 list_for_each_entry_safe(sdev, tmp, &starget->devices, 397 same_target_siblings) { 398 if (sdev == current_sdev) 399 continue; 400 if (scsi_device_get(sdev)) 401 continue; 402 403 spin_unlock_irqrestore(shost->host_lock, flags); 404 scsi_kick_queue(sdev->request_queue); 405 spin_lock_irqsave(shost->host_lock, flags); 406 407 scsi_device_put(sdev); 408 } 409 out: 410 spin_unlock_irqrestore(shost->host_lock, flags); 411 } 412 413 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 414 { 415 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 416 return true; 417 if (atomic_read(&sdev->device_blocked) > 0) 418 return true; 419 return false; 420 } 421 422 static inline bool scsi_target_is_busy(struct scsi_target *starget) 423 { 424 if (starget->can_queue > 0) { 425 if (atomic_read(&starget->target_busy) >= starget->can_queue) 426 return true; 427 if (atomic_read(&starget->target_blocked) > 0) 428 return true; 429 } 430 return false; 431 } 432 433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 434 { 435 if (shost->can_queue > 0 && 436 atomic_read(&shost->host_busy) >= shost->can_queue) 437 return true; 438 if (atomic_read(&shost->host_blocked) > 0) 439 return true; 440 if (shost->host_self_blocked) 441 return true; 442 return false; 443 } 444 445 static void scsi_starved_list_run(struct Scsi_Host *shost) 446 { 447 LIST_HEAD(starved_list); 448 struct scsi_device *sdev; 449 unsigned long flags; 450 451 spin_lock_irqsave(shost->host_lock, flags); 452 list_splice_init(&shost->starved_list, &starved_list); 453 454 while (!list_empty(&starved_list)) { 455 struct request_queue *slq; 456 457 /* 458 * As long as shost is accepting commands and we have 459 * starved queues, call blk_run_queue. scsi_request_fn 460 * drops the queue_lock and can add us back to the 461 * starved_list. 462 * 463 * host_lock protects the starved_list and starved_entry. 464 * scsi_request_fn must get the host_lock before checking 465 * or modifying starved_list or starved_entry. 466 */ 467 if (scsi_host_is_busy(shost)) 468 break; 469 470 sdev = list_entry(starved_list.next, 471 struct scsi_device, starved_entry); 472 list_del_init(&sdev->starved_entry); 473 if (scsi_target_is_busy(scsi_target(sdev))) { 474 list_move_tail(&sdev->starved_entry, 475 &shost->starved_list); 476 continue; 477 } 478 479 /* 480 * Once we drop the host lock, a racing scsi_remove_device() 481 * call may remove the sdev from the starved list and destroy 482 * it and the queue. Mitigate by taking a reference to the 483 * queue and never touching the sdev again after we drop the 484 * host lock. Note: if __scsi_remove_device() invokes 485 * blk_cleanup_queue() before the queue is run from this 486 * function then blk_run_queue() will return immediately since 487 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 488 */ 489 slq = sdev->request_queue; 490 if (!blk_get_queue(slq)) 491 continue; 492 spin_unlock_irqrestore(shost->host_lock, flags); 493 494 scsi_kick_queue(slq); 495 blk_put_queue(slq); 496 497 spin_lock_irqsave(shost->host_lock, flags); 498 } 499 /* put any unprocessed entries back */ 500 list_splice(&starved_list, &shost->starved_list); 501 spin_unlock_irqrestore(shost->host_lock, flags); 502 } 503 504 /* 505 * Function: scsi_run_queue() 506 * 507 * Purpose: Select a proper request queue to serve next 508 * 509 * Arguments: q - last request's queue 510 * 511 * Returns: Nothing 512 * 513 * Notes: The previous command was completely finished, start 514 * a new one if possible. 515 */ 516 static void scsi_run_queue(struct request_queue *q) 517 { 518 struct scsi_device *sdev = q->queuedata; 519 520 if (scsi_target(sdev)->single_lun) 521 scsi_single_lun_run(sdev); 522 if (!list_empty(&sdev->host->starved_list)) 523 scsi_starved_list_run(sdev->host); 524 525 if (q->mq_ops) 526 blk_mq_run_hw_queues(q, false); 527 else 528 blk_run_queue(q); 529 } 530 531 void scsi_requeue_run_queue(struct work_struct *work) 532 { 533 struct scsi_device *sdev; 534 struct request_queue *q; 535 536 sdev = container_of(work, struct scsi_device, requeue_work); 537 q = sdev->request_queue; 538 scsi_run_queue(q); 539 } 540 541 /* 542 * Function: scsi_requeue_command() 543 * 544 * Purpose: Handle post-processing of completed commands. 545 * 546 * Arguments: q - queue to operate on 547 * cmd - command that may need to be requeued. 548 * 549 * Returns: Nothing 550 * 551 * Notes: After command completion, there may be blocks left 552 * over which weren't finished by the previous command 553 * this can be for a number of reasons - the main one is 554 * I/O errors in the middle of the request, in which case 555 * we need to request the blocks that come after the bad 556 * sector. 557 * Notes: Upon return, cmd is a stale pointer. 558 */ 559 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 560 { 561 struct scsi_device *sdev = cmd->device; 562 struct request *req = cmd->request; 563 unsigned long flags; 564 565 spin_lock_irqsave(q->queue_lock, flags); 566 blk_unprep_request(req); 567 req->special = NULL; 568 scsi_put_command(cmd); 569 blk_requeue_request(q, req); 570 spin_unlock_irqrestore(q->queue_lock, flags); 571 572 scsi_run_queue(q); 573 574 put_device(&sdev->sdev_gendev); 575 } 576 577 void scsi_run_host_queues(struct Scsi_Host *shost) 578 { 579 struct scsi_device *sdev; 580 581 shost_for_each_device(sdev, shost) 582 scsi_run_queue(sdev->request_queue); 583 } 584 585 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 586 { 587 if (!blk_rq_is_passthrough(cmd->request)) { 588 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 589 590 if (drv->uninit_command) 591 drv->uninit_command(cmd); 592 } 593 } 594 595 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 596 { 597 struct scsi_data_buffer *sdb; 598 599 if (cmd->sdb.table.nents) 600 sg_free_table_chained(&cmd->sdb.table, true); 601 if (cmd->request->next_rq) { 602 sdb = cmd->request->next_rq->special; 603 if (sdb) 604 sg_free_table_chained(&sdb->table, true); 605 } 606 if (scsi_prot_sg_count(cmd)) 607 sg_free_table_chained(&cmd->prot_sdb->table, true); 608 } 609 610 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 611 { 612 scsi_mq_free_sgtables(cmd); 613 scsi_uninit_cmd(cmd); 614 scsi_del_cmd_from_list(cmd); 615 } 616 617 /* 618 * Function: scsi_release_buffers() 619 * 620 * Purpose: Free resources allocate for a scsi_command. 621 * 622 * Arguments: cmd - command that we are bailing. 623 * 624 * Lock status: Assumed that no lock is held upon entry. 625 * 626 * Returns: Nothing 627 * 628 * Notes: In the event that an upper level driver rejects a 629 * command, we must release resources allocated during 630 * the __init_io() function. Primarily this would involve 631 * the scatter-gather table. 632 */ 633 static void scsi_release_buffers(struct scsi_cmnd *cmd) 634 { 635 if (cmd->sdb.table.nents) 636 sg_free_table_chained(&cmd->sdb.table, false); 637 638 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 639 640 if (scsi_prot_sg_count(cmd)) 641 sg_free_table_chained(&cmd->prot_sdb->table, false); 642 } 643 644 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 645 { 646 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 647 648 sg_free_table_chained(&bidi_sdb->table, false); 649 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 650 cmd->request->next_rq->special = NULL; 651 } 652 653 static bool scsi_end_request(struct request *req, blk_status_t error, 654 unsigned int bytes, unsigned int bidi_bytes) 655 { 656 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 657 struct scsi_device *sdev = cmd->device; 658 struct request_queue *q = sdev->request_queue; 659 660 if (blk_update_request(req, error, bytes)) 661 return true; 662 663 /* Bidi request must be completed as a whole */ 664 if (unlikely(bidi_bytes) && 665 blk_update_request(req->next_rq, error, bidi_bytes)) 666 return true; 667 668 if (blk_queue_add_random(q)) 669 add_disk_randomness(req->rq_disk); 670 671 if (!blk_rq_is_scsi(req)) { 672 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 673 cmd->flags &= ~SCMD_INITIALIZED; 674 destroy_rcu_head(&cmd->rcu); 675 } 676 677 if (req->mq_ctx) { 678 /* 679 * In the MQ case the command gets freed by __blk_mq_end_request, 680 * so we have to do all cleanup that depends on it earlier. 681 * 682 * We also can't kick the queues from irq context, so we 683 * will have to defer it to a workqueue. 684 */ 685 scsi_mq_uninit_cmd(cmd); 686 687 __blk_mq_end_request(req, error); 688 689 if (scsi_target(sdev)->single_lun || 690 !list_empty(&sdev->host->starved_list)) 691 kblockd_schedule_work(&sdev->requeue_work); 692 else 693 blk_mq_run_hw_queues(q, true); 694 } else { 695 unsigned long flags; 696 697 if (bidi_bytes) 698 scsi_release_bidi_buffers(cmd); 699 scsi_release_buffers(cmd); 700 scsi_put_command(cmd); 701 702 spin_lock_irqsave(q->queue_lock, flags); 703 blk_finish_request(req, error); 704 spin_unlock_irqrestore(q->queue_lock, flags); 705 706 scsi_run_queue(q); 707 } 708 709 put_device(&sdev->sdev_gendev); 710 return false; 711 } 712 713 /** 714 * __scsi_error_from_host_byte - translate SCSI error code into errno 715 * @cmd: SCSI command (unused) 716 * @result: scsi error code 717 * 718 * Translate SCSI error code into block errors. 719 */ 720 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd, 721 int result) 722 { 723 switch (host_byte(result)) { 724 case DID_OK: 725 return BLK_STS_OK; 726 case DID_TRANSPORT_FAILFAST: 727 return BLK_STS_TRANSPORT; 728 case DID_TARGET_FAILURE: 729 set_host_byte(cmd, DID_OK); 730 return BLK_STS_TARGET; 731 case DID_NEXUS_FAILURE: 732 return BLK_STS_NEXUS; 733 case DID_ALLOC_FAILURE: 734 set_host_byte(cmd, DID_OK); 735 return BLK_STS_NOSPC; 736 case DID_MEDIUM_ERROR: 737 set_host_byte(cmd, DID_OK); 738 return BLK_STS_MEDIUM; 739 default: 740 return BLK_STS_IOERR; 741 } 742 } 743 744 /* 745 * Function: scsi_io_completion() 746 * 747 * Purpose: Completion processing for block device I/O requests. 748 * 749 * Arguments: cmd - command that is finished. 750 * 751 * Lock status: Assumed that no lock is held upon entry. 752 * 753 * Returns: Nothing 754 * 755 * Notes: We will finish off the specified number of sectors. If we 756 * are done, the command block will be released and the queue 757 * function will be goosed. If we are not done then we have to 758 * figure out what to do next: 759 * 760 * a) We can call scsi_requeue_command(). The request 761 * will be unprepared and put back on the queue. Then 762 * a new command will be created for it. This should 763 * be used if we made forward progress, or if we want 764 * to switch from READ(10) to READ(6) for example. 765 * 766 * b) We can call __scsi_queue_insert(). The request will 767 * be put back on the queue and retried using the same 768 * command as before, possibly after a delay. 769 * 770 * c) We can call scsi_end_request() with -EIO to fail 771 * the remainder of the request. 772 */ 773 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 774 { 775 int result = cmd->result; 776 struct request_queue *q = cmd->device->request_queue; 777 struct request *req = cmd->request; 778 blk_status_t error = BLK_STS_OK; 779 struct scsi_sense_hdr sshdr; 780 bool sense_valid = false; 781 int sense_deferred = 0, level = 0; 782 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 783 ACTION_DELAYED_RETRY} action; 784 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 785 786 if (result) { 787 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 788 if (sense_valid) 789 sense_deferred = scsi_sense_is_deferred(&sshdr); 790 } 791 792 if (blk_rq_is_passthrough(req)) { 793 if (result) { 794 if (sense_valid) { 795 /* 796 * SG_IO wants current and deferred errors 797 */ 798 scsi_req(req)->sense_len = 799 min(8 + cmd->sense_buffer[7], 800 SCSI_SENSE_BUFFERSIZE); 801 } 802 if (!sense_deferred) 803 error = __scsi_error_from_host_byte(cmd, result); 804 } 805 /* 806 * __scsi_error_from_host_byte may have reset the host_byte 807 */ 808 scsi_req(req)->result = cmd->result; 809 scsi_req(req)->resid_len = scsi_get_resid(cmd); 810 811 if (scsi_bidi_cmnd(cmd)) { 812 /* 813 * Bidi commands Must be complete as a whole, 814 * both sides at once. 815 */ 816 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 817 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 818 blk_rq_bytes(req->next_rq))) 819 BUG(); 820 return; 821 } 822 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 823 /* 824 * Flush commands do not transfers any data, and thus cannot use 825 * good_bytes != blk_rq_bytes(req) as the signal for an error. 826 * This sets the error explicitly for the problem case. 827 */ 828 error = __scsi_error_from_host_byte(cmd, result); 829 } 830 831 /* no bidi support for !blk_rq_is_passthrough yet */ 832 BUG_ON(blk_bidi_rq(req)); 833 834 /* 835 * Next deal with any sectors which we were able to correctly 836 * handle. 837 */ 838 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 839 "%u sectors total, %d bytes done.\n", 840 blk_rq_sectors(req), good_bytes)); 841 842 /* 843 * Recovered errors need reporting, but they're always treated as 844 * success, so fiddle the result code here. For passthrough requests 845 * we already took a copy of the original into sreq->result which 846 * is what gets returned to the user 847 */ 848 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 849 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 850 * print since caller wants ATA registers. Only occurs on 851 * SCSI ATA PASS_THROUGH commands when CK_COND=1 852 */ 853 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 854 ; 855 else if (!(req->rq_flags & RQF_QUIET)) 856 scsi_print_sense(cmd); 857 result = 0; 858 /* for passthrough error may be set */ 859 error = BLK_STS_OK; 860 } 861 862 /* 863 * special case: failed zero length commands always need to 864 * drop down into the retry code. Otherwise, if we finished 865 * all bytes in the request we are done now. 866 */ 867 if (!(blk_rq_bytes(req) == 0 && error) && 868 !scsi_end_request(req, error, good_bytes, 0)) 869 return; 870 871 /* 872 * Kill remainder if no retrys. 873 */ 874 if (error && scsi_noretry_cmd(cmd)) { 875 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 876 BUG(); 877 return; 878 } 879 880 /* 881 * If there had been no error, but we have leftover bytes in the 882 * requeues just queue the command up again. 883 */ 884 if (result == 0) 885 goto requeue; 886 887 error = __scsi_error_from_host_byte(cmd, result); 888 889 if (host_byte(result) == DID_RESET) { 890 /* Third party bus reset or reset for error recovery 891 * reasons. Just retry the command and see what 892 * happens. 893 */ 894 action = ACTION_RETRY; 895 } else if (sense_valid && !sense_deferred) { 896 switch (sshdr.sense_key) { 897 case UNIT_ATTENTION: 898 if (cmd->device->removable) { 899 /* Detected disc change. Set a bit 900 * and quietly refuse further access. 901 */ 902 cmd->device->changed = 1; 903 action = ACTION_FAIL; 904 } else { 905 /* Must have been a power glitch, or a 906 * bus reset. Could not have been a 907 * media change, so we just retry the 908 * command and see what happens. 909 */ 910 action = ACTION_RETRY; 911 } 912 break; 913 case ILLEGAL_REQUEST: 914 /* If we had an ILLEGAL REQUEST returned, then 915 * we may have performed an unsupported 916 * command. The only thing this should be 917 * would be a ten byte read where only a six 918 * byte read was supported. Also, on a system 919 * where READ CAPACITY failed, we may have 920 * read past the end of the disk. 921 */ 922 if ((cmd->device->use_10_for_rw && 923 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 924 (cmd->cmnd[0] == READ_10 || 925 cmd->cmnd[0] == WRITE_10)) { 926 /* This will issue a new 6-byte command. */ 927 cmd->device->use_10_for_rw = 0; 928 action = ACTION_REPREP; 929 } else if (sshdr.asc == 0x10) /* DIX */ { 930 action = ACTION_FAIL; 931 error = BLK_STS_PROTECTION; 932 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 933 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 934 action = ACTION_FAIL; 935 error = BLK_STS_TARGET; 936 } else 937 action = ACTION_FAIL; 938 break; 939 case ABORTED_COMMAND: 940 action = ACTION_FAIL; 941 if (sshdr.asc == 0x10) /* DIF */ 942 error = BLK_STS_PROTECTION; 943 break; 944 case NOT_READY: 945 /* If the device is in the process of becoming 946 * ready, or has a temporary blockage, retry. 947 */ 948 if (sshdr.asc == 0x04) { 949 switch (sshdr.ascq) { 950 case 0x01: /* becoming ready */ 951 case 0x04: /* format in progress */ 952 case 0x05: /* rebuild in progress */ 953 case 0x06: /* recalculation in progress */ 954 case 0x07: /* operation in progress */ 955 case 0x08: /* Long write in progress */ 956 case 0x09: /* self test in progress */ 957 case 0x14: /* space allocation in progress */ 958 action = ACTION_DELAYED_RETRY; 959 break; 960 default: 961 action = ACTION_FAIL; 962 break; 963 } 964 } else 965 action = ACTION_FAIL; 966 break; 967 case VOLUME_OVERFLOW: 968 /* See SSC3rXX or current. */ 969 action = ACTION_FAIL; 970 break; 971 default: 972 action = ACTION_FAIL; 973 break; 974 } 975 } else 976 action = ACTION_FAIL; 977 978 if (action != ACTION_FAIL && 979 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 980 action = ACTION_FAIL; 981 982 switch (action) { 983 case ACTION_FAIL: 984 /* Give up and fail the remainder of the request */ 985 if (!(req->rq_flags & RQF_QUIET)) { 986 static DEFINE_RATELIMIT_STATE(_rs, 987 DEFAULT_RATELIMIT_INTERVAL, 988 DEFAULT_RATELIMIT_BURST); 989 990 if (unlikely(scsi_logging_level)) 991 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 992 SCSI_LOG_MLCOMPLETE_BITS); 993 994 /* 995 * if logging is enabled the failure will be printed 996 * in scsi_log_completion(), so avoid duplicate messages 997 */ 998 if (!level && __ratelimit(&_rs)) { 999 scsi_print_result(cmd, NULL, FAILED); 1000 if (driver_byte(result) & DRIVER_SENSE) 1001 scsi_print_sense(cmd); 1002 scsi_print_command(cmd); 1003 } 1004 } 1005 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 1006 return; 1007 /*FALLTHRU*/ 1008 case ACTION_REPREP: 1009 requeue: 1010 /* Unprep the request and put it back at the head of the queue. 1011 * A new command will be prepared and issued. 1012 */ 1013 if (q->mq_ops) { 1014 scsi_mq_requeue_cmd(cmd); 1015 } else { 1016 scsi_release_buffers(cmd); 1017 scsi_requeue_command(q, cmd); 1018 } 1019 break; 1020 case ACTION_RETRY: 1021 /* Retry the same command immediately */ 1022 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 1023 break; 1024 case ACTION_DELAYED_RETRY: 1025 /* Retry the same command after a delay */ 1026 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 1027 break; 1028 } 1029 } 1030 1031 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1032 { 1033 int count; 1034 1035 /* 1036 * If sg table allocation fails, requeue request later. 1037 */ 1038 if (unlikely(sg_alloc_table_chained(&sdb->table, 1039 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1040 return BLKPREP_DEFER; 1041 1042 /* 1043 * Next, walk the list, and fill in the addresses and sizes of 1044 * each segment. 1045 */ 1046 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1047 BUG_ON(count > sdb->table.nents); 1048 sdb->table.nents = count; 1049 sdb->length = blk_rq_payload_bytes(req); 1050 return BLKPREP_OK; 1051 } 1052 1053 /* 1054 * Function: scsi_init_io() 1055 * 1056 * Purpose: SCSI I/O initialize function. 1057 * 1058 * Arguments: cmd - Command descriptor we wish to initialize 1059 * 1060 * Returns: 0 on success 1061 * BLKPREP_DEFER if the failure is retryable 1062 * BLKPREP_KILL if the failure is fatal 1063 */ 1064 int scsi_init_io(struct scsi_cmnd *cmd) 1065 { 1066 struct scsi_device *sdev = cmd->device; 1067 struct request *rq = cmd->request; 1068 bool is_mq = (rq->mq_ctx != NULL); 1069 int error = BLKPREP_KILL; 1070 1071 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1072 goto err_exit; 1073 1074 error = scsi_init_sgtable(rq, &cmd->sdb); 1075 if (error) 1076 goto err_exit; 1077 1078 if (blk_bidi_rq(rq)) { 1079 if (!rq->q->mq_ops) { 1080 struct scsi_data_buffer *bidi_sdb = 1081 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1082 if (!bidi_sdb) { 1083 error = BLKPREP_DEFER; 1084 goto err_exit; 1085 } 1086 1087 rq->next_rq->special = bidi_sdb; 1088 } 1089 1090 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1091 if (error) 1092 goto err_exit; 1093 } 1094 1095 if (blk_integrity_rq(rq)) { 1096 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1097 int ivecs, count; 1098 1099 if (prot_sdb == NULL) { 1100 /* 1101 * This can happen if someone (e.g. multipath) 1102 * queues a command to a device on an adapter 1103 * that does not support DIX. 1104 */ 1105 WARN_ON_ONCE(1); 1106 error = BLKPREP_KILL; 1107 goto err_exit; 1108 } 1109 1110 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1111 1112 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1113 prot_sdb->table.sgl)) { 1114 error = BLKPREP_DEFER; 1115 goto err_exit; 1116 } 1117 1118 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1119 prot_sdb->table.sgl); 1120 BUG_ON(unlikely(count > ivecs)); 1121 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1122 1123 cmd->prot_sdb = prot_sdb; 1124 cmd->prot_sdb->table.nents = count; 1125 } 1126 1127 return BLKPREP_OK; 1128 err_exit: 1129 if (is_mq) { 1130 scsi_mq_free_sgtables(cmd); 1131 } else { 1132 scsi_release_buffers(cmd); 1133 cmd->request->special = NULL; 1134 scsi_put_command(cmd); 1135 put_device(&sdev->sdev_gendev); 1136 } 1137 return error; 1138 } 1139 EXPORT_SYMBOL(scsi_init_io); 1140 1141 /** 1142 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1143 * @rq: Request associated with the SCSI command to be initialized. 1144 * 1145 * This function initializes the members of struct scsi_cmnd that must be 1146 * initialized before request processing starts and that won't be 1147 * reinitialized if a SCSI command is requeued. 1148 * 1149 * Called from inside blk_get_request() for pass-through requests and from 1150 * inside scsi_init_command() for filesystem requests. 1151 */ 1152 static void scsi_initialize_rq(struct request *rq) 1153 { 1154 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1155 1156 scsi_req_init(&cmd->req); 1157 init_rcu_head(&cmd->rcu); 1158 cmd->jiffies_at_alloc = jiffies; 1159 cmd->retries = 0; 1160 } 1161 1162 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1163 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1164 { 1165 struct scsi_device *sdev = cmd->device; 1166 struct Scsi_Host *shost = sdev->host; 1167 unsigned long flags; 1168 1169 if (shost->use_cmd_list) { 1170 spin_lock_irqsave(&sdev->list_lock, flags); 1171 list_add_tail(&cmd->list, &sdev->cmd_list); 1172 spin_unlock_irqrestore(&sdev->list_lock, flags); 1173 } 1174 } 1175 1176 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1177 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1178 { 1179 struct scsi_device *sdev = cmd->device; 1180 struct Scsi_Host *shost = sdev->host; 1181 unsigned long flags; 1182 1183 if (shost->use_cmd_list) { 1184 spin_lock_irqsave(&sdev->list_lock, flags); 1185 BUG_ON(list_empty(&cmd->list)); 1186 list_del_init(&cmd->list); 1187 spin_unlock_irqrestore(&sdev->list_lock, flags); 1188 } 1189 } 1190 1191 /* Called after a request has been started. */ 1192 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1193 { 1194 void *buf = cmd->sense_buffer; 1195 void *prot = cmd->prot_sdb; 1196 struct request *rq = blk_mq_rq_from_pdu(cmd); 1197 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1198 unsigned long jiffies_at_alloc; 1199 int retries; 1200 1201 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1202 flags |= SCMD_INITIALIZED; 1203 scsi_initialize_rq(rq); 1204 } 1205 1206 jiffies_at_alloc = cmd->jiffies_at_alloc; 1207 retries = cmd->retries; 1208 /* zero out the cmd, except for the embedded scsi_request */ 1209 memset((char *)cmd + sizeof(cmd->req), 0, 1210 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1211 1212 cmd->device = dev; 1213 cmd->sense_buffer = buf; 1214 cmd->prot_sdb = prot; 1215 cmd->flags = flags; 1216 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1217 cmd->jiffies_at_alloc = jiffies_at_alloc; 1218 cmd->retries = retries; 1219 1220 scsi_add_cmd_to_list(cmd); 1221 } 1222 1223 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1224 { 1225 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1226 1227 /* 1228 * Passthrough requests may transfer data, in which case they must 1229 * a bio attached to them. Or they might contain a SCSI command 1230 * that does not transfer data, in which case they may optionally 1231 * submit a request without an attached bio. 1232 */ 1233 if (req->bio) { 1234 int ret = scsi_init_io(cmd); 1235 if (unlikely(ret)) 1236 return ret; 1237 } else { 1238 BUG_ON(blk_rq_bytes(req)); 1239 1240 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1241 } 1242 1243 cmd->cmd_len = scsi_req(req)->cmd_len; 1244 cmd->cmnd = scsi_req(req)->cmd; 1245 cmd->transfersize = blk_rq_bytes(req); 1246 cmd->allowed = scsi_req(req)->retries; 1247 return BLKPREP_OK; 1248 } 1249 1250 /* 1251 * Setup a normal block command. These are simple request from filesystems 1252 * that still need to be translated to SCSI CDBs from the ULD. 1253 */ 1254 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1255 { 1256 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1257 1258 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1259 int ret = sdev->handler->prep_fn(sdev, req); 1260 if (ret != BLKPREP_OK) 1261 return ret; 1262 } 1263 1264 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1265 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1266 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1267 } 1268 1269 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1270 { 1271 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1272 1273 if (!blk_rq_bytes(req)) 1274 cmd->sc_data_direction = DMA_NONE; 1275 else if (rq_data_dir(req) == WRITE) 1276 cmd->sc_data_direction = DMA_TO_DEVICE; 1277 else 1278 cmd->sc_data_direction = DMA_FROM_DEVICE; 1279 1280 if (blk_rq_is_scsi(req)) 1281 return scsi_setup_scsi_cmnd(sdev, req); 1282 else 1283 return scsi_setup_fs_cmnd(sdev, req); 1284 } 1285 1286 static int 1287 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1288 { 1289 int ret = BLKPREP_OK; 1290 1291 /* 1292 * If the device is not in running state we will reject some 1293 * or all commands. 1294 */ 1295 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1296 switch (sdev->sdev_state) { 1297 case SDEV_OFFLINE: 1298 case SDEV_TRANSPORT_OFFLINE: 1299 /* 1300 * If the device is offline we refuse to process any 1301 * commands. The device must be brought online 1302 * before trying any recovery commands. 1303 */ 1304 sdev_printk(KERN_ERR, sdev, 1305 "rejecting I/O to offline device\n"); 1306 ret = BLKPREP_KILL; 1307 break; 1308 case SDEV_DEL: 1309 /* 1310 * If the device is fully deleted, we refuse to 1311 * process any commands as well. 1312 */ 1313 sdev_printk(KERN_ERR, sdev, 1314 "rejecting I/O to dead device\n"); 1315 ret = BLKPREP_KILL; 1316 break; 1317 case SDEV_BLOCK: 1318 case SDEV_CREATED_BLOCK: 1319 ret = BLKPREP_DEFER; 1320 break; 1321 case SDEV_QUIESCE: 1322 /* 1323 * If the devices is blocked we defer normal commands. 1324 */ 1325 if (req && !(req->rq_flags & RQF_PREEMPT)) 1326 ret = BLKPREP_DEFER; 1327 break; 1328 default: 1329 /* 1330 * For any other not fully online state we only allow 1331 * special commands. In particular any user initiated 1332 * command is not allowed. 1333 */ 1334 if (req && !(req->rq_flags & RQF_PREEMPT)) 1335 ret = BLKPREP_KILL; 1336 break; 1337 } 1338 } 1339 return ret; 1340 } 1341 1342 static int 1343 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1344 { 1345 struct scsi_device *sdev = q->queuedata; 1346 1347 switch (ret) { 1348 case BLKPREP_KILL: 1349 case BLKPREP_INVALID: 1350 scsi_req(req)->result = DID_NO_CONNECT << 16; 1351 /* release the command and kill it */ 1352 if (req->special) { 1353 struct scsi_cmnd *cmd = req->special; 1354 scsi_release_buffers(cmd); 1355 scsi_put_command(cmd); 1356 put_device(&sdev->sdev_gendev); 1357 req->special = NULL; 1358 } 1359 break; 1360 case BLKPREP_DEFER: 1361 /* 1362 * If we defer, the blk_peek_request() returns NULL, but the 1363 * queue must be restarted, so we schedule a callback to happen 1364 * shortly. 1365 */ 1366 if (atomic_read(&sdev->device_busy) == 0) 1367 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1368 break; 1369 default: 1370 req->rq_flags |= RQF_DONTPREP; 1371 } 1372 1373 return ret; 1374 } 1375 1376 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1377 { 1378 struct scsi_device *sdev = q->queuedata; 1379 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1380 int ret; 1381 1382 ret = scsi_prep_state_check(sdev, req); 1383 if (ret != BLKPREP_OK) 1384 goto out; 1385 1386 if (!req->special) { 1387 /* Bail if we can't get a reference to the device */ 1388 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1389 ret = BLKPREP_DEFER; 1390 goto out; 1391 } 1392 1393 scsi_init_command(sdev, cmd); 1394 req->special = cmd; 1395 } 1396 1397 cmd->tag = req->tag; 1398 cmd->request = req; 1399 cmd->prot_op = SCSI_PROT_NORMAL; 1400 1401 ret = scsi_setup_cmnd(sdev, req); 1402 out: 1403 return scsi_prep_return(q, req, ret); 1404 } 1405 1406 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1407 { 1408 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1409 } 1410 1411 /* 1412 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1413 * return 0. 1414 * 1415 * Called with the queue_lock held. 1416 */ 1417 static inline int scsi_dev_queue_ready(struct request_queue *q, 1418 struct scsi_device *sdev) 1419 { 1420 unsigned int busy; 1421 1422 busy = atomic_inc_return(&sdev->device_busy) - 1; 1423 if (atomic_read(&sdev->device_blocked)) { 1424 if (busy) 1425 goto out_dec; 1426 1427 /* 1428 * unblock after device_blocked iterates to zero 1429 */ 1430 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1431 /* 1432 * For the MQ case we take care of this in the caller. 1433 */ 1434 if (!q->mq_ops) 1435 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1436 goto out_dec; 1437 } 1438 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1439 "unblocking device at zero depth\n")); 1440 } 1441 1442 if (busy >= sdev->queue_depth) 1443 goto out_dec; 1444 1445 return 1; 1446 out_dec: 1447 atomic_dec(&sdev->device_busy); 1448 return 0; 1449 } 1450 1451 /* 1452 * scsi_target_queue_ready: checks if there we can send commands to target 1453 * @sdev: scsi device on starget to check. 1454 */ 1455 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1456 struct scsi_device *sdev) 1457 { 1458 struct scsi_target *starget = scsi_target(sdev); 1459 unsigned int busy; 1460 1461 if (starget->single_lun) { 1462 spin_lock_irq(shost->host_lock); 1463 if (starget->starget_sdev_user && 1464 starget->starget_sdev_user != sdev) { 1465 spin_unlock_irq(shost->host_lock); 1466 return 0; 1467 } 1468 starget->starget_sdev_user = sdev; 1469 spin_unlock_irq(shost->host_lock); 1470 } 1471 1472 if (starget->can_queue <= 0) 1473 return 1; 1474 1475 busy = atomic_inc_return(&starget->target_busy) - 1; 1476 if (atomic_read(&starget->target_blocked) > 0) { 1477 if (busy) 1478 goto starved; 1479 1480 /* 1481 * unblock after target_blocked iterates to zero 1482 */ 1483 if (atomic_dec_return(&starget->target_blocked) > 0) 1484 goto out_dec; 1485 1486 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1487 "unblocking target at zero depth\n")); 1488 } 1489 1490 if (busy >= starget->can_queue) 1491 goto starved; 1492 1493 return 1; 1494 1495 starved: 1496 spin_lock_irq(shost->host_lock); 1497 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1498 spin_unlock_irq(shost->host_lock); 1499 out_dec: 1500 if (starget->can_queue > 0) 1501 atomic_dec(&starget->target_busy); 1502 return 0; 1503 } 1504 1505 /* 1506 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1507 * return 0. We must end up running the queue again whenever 0 is 1508 * returned, else IO can hang. 1509 */ 1510 static inline int scsi_host_queue_ready(struct request_queue *q, 1511 struct Scsi_Host *shost, 1512 struct scsi_device *sdev) 1513 { 1514 unsigned int busy; 1515 1516 if (scsi_host_in_recovery(shost)) 1517 return 0; 1518 1519 busy = atomic_inc_return(&shost->host_busy) - 1; 1520 if (atomic_read(&shost->host_blocked) > 0) { 1521 if (busy) 1522 goto starved; 1523 1524 /* 1525 * unblock after host_blocked iterates to zero 1526 */ 1527 if (atomic_dec_return(&shost->host_blocked) > 0) 1528 goto out_dec; 1529 1530 SCSI_LOG_MLQUEUE(3, 1531 shost_printk(KERN_INFO, shost, 1532 "unblocking host at zero depth\n")); 1533 } 1534 1535 if (shost->can_queue > 0 && busy >= shost->can_queue) 1536 goto starved; 1537 if (shost->host_self_blocked) 1538 goto starved; 1539 1540 /* We're OK to process the command, so we can't be starved */ 1541 if (!list_empty(&sdev->starved_entry)) { 1542 spin_lock_irq(shost->host_lock); 1543 if (!list_empty(&sdev->starved_entry)) 1544 list_del_init(&sdev->starved_entry); 1545 spin_unlock_irq(shost->host_lock); 1546 } 1547 1548 return 1; 1549 1550 starved: 1551 spin_lock_irq(shost->host_lock); 1552 if (list_empty(&sdev->starved_entry)) 1553 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1554 spin_unlock_irq(shost->host_lock); 1555 out_dec: 1556 scsi_dec_host_busy(shost); 1557 return 0; 1558 } 1559 1560 /* 1561 * Busy state exporting function for request stacking drivers. 1562 * 1563 * For efficiency, no lock is taken to check the busy state of 1564 * shost/starget/sdev, since the returned value is not guaranteed and 1565 * may be changed after request stacking drivers call the function, 1566 * regardless of taking lock or not. 1567 * 1568 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1569 * needs to return 'not busy'. Otherwise, request stacking drivers 1570 * may hold requests forever. 1571 */ 1572 static int scsi_lld_busy(struct request_queue *q) 1573 { 1574 struct scsi_device *sdev = q->queuedata; 1575 struct Scsi_Host *shost; 1576 1577 if (blk_queue_dying(q)) 1578 return 0; 1579 1580 shost = sdev->host; 1581 1582 /* 1583 * Ignore host/starget busy state. 1584 * Since block layer does not have a concept of fairness across 1585 * multiple queues, congestion of host/starget needs to be handled 1586 * in SCSI layer. 1587 */ 1588 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1589 return 1; 1590 1591 return 0; 1592 } 1593 1594 /* 1595 * Kill a request for a dead device 1596 */ 1597 static void scsi_kill_request(struct request *req, struct request_queue *q) 1598 { 1599 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1600 struct scsi_device *sdev; 1601 struct scsi_target *starget; 1602 struct Scsi_Host *shost; 1603 1604 blk_start_request(req); 1605 1606 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1607 1608 sdev = cmd->device; 1609 starget = scsi_target(sdev); 1610 shost = sdev->host; 1611 scsi_init_cmd_errh(cmd); 1612 cmd->result = DID_NO_CONNECT << 16; 1613 atomic_inc(&cmd->device->iorequest_cnt); 1614 1615 /* 1616 * SCSI request completion path will do scsi_device_unbusy(), 1617 * bump busy counts. To bump the counters, we need to dance 1618 * with the locks as normal issue path does. 1619 */ 1620 atomic_inc(&sdev->device_busy); 1621 atomic_inc(&shost->host_busy); 1622 if (starget->can_queue > 0) 1623 atomic_inc(&starget->target_busy); 1624 1625 blk_complete_request(req); 1626 } 1627 1628 static void scsi_softirq_done(struct request *rq) 1629 { 1630 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1631 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1632 int disposition; 1633 1634 INIT_LIST_HEAD(&cmd->eh_entry); 1635 1636 atomic_inc(&cmd->device->iodone_cnt); 1637 if (cmd->result) 1638 atomic_inc(&cmd->device->ioerr_cnt); 1639 1640 disposition = scsi_decide_disposition(cmd); 1641 if (disposition != SUCCESS && 1642 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1643 sdev_printk(KERN_ERR, cmd->device, 1644 "timing out command, waited %lus\n", 1645 wait_for/HZ); 1646 disposition = SUCCESS; 1647 } 1648 1649 scsi_log_completion(cmd, disposition); 1650 1651 switch (disposition) { 1652 case SUCCESS: 1653 scsi_finish_command(cmd); 1654 break; 1655 case NEEDS_RETRY: 1656 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1657 break; 1658 case ADD_TO_MLQUEUE: 1659 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1660 break; 1661 default: 1662 scsi_eh_scmd_add(cmd); 1663 break; 1664 } 1665 } 1666 1667 /** 1668 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1669 * @cmd: command block we are dispatching. 1670 * 1671 * Return: nonzero return request was rejected and device's queue needs to be 1672 * plugged. 1673 */ 1674 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1675 { 1676 struct Scsi_Host *host = cmd->device->host; 1677 int rtn = 0; 1678 1679 atomic_inc(&cmd->device->iorequest_cnt); 1680 1681 /* check if the device is still usable */ 1682 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1683 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1684 * returns an immediate error upwards, and signals 1685 * that the device is no longer present */ 1686 cmd->result = DID_NO_CONNECT << 16; 1687 goto done; 1688 } 1689 1690 /* Check to see if the scsi lld made this device blocked. */ 1691 if (unlikely(scsi_device_blocked(cmd->device))) { 1692 /* 1693 * in blocked state, the command is just put back on 1694 * the device queue. The suspend state has already 1695 * blocked the queue so future requests should not 1696 * occur until the device transitions out of the 1697 * suspend state. 1698 */ 1699 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1700 "queuecommand : device blocked\n")); 1701 return SCSI_MLQUEUE_DEVICE_BUSY; 1702 } 1703 1704 /* Store the LUN value in cmnd, if needed. */ 1705 if (cmd->device->lun_in_cdb) 1706 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1707 (cmd->device->lun << 5 & 0xe0); 1708 1709 scsi_log_send(cmd); 1710 1711 /* 1712 * Before we queue this command, check if the command 1713 * length exceeds what the host adapter can handle. 1714 */ 1715 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1716 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1717 "queuecommand : command too long. " 1718 "cdb_size=%d host->max_cmd_len=%d\n", 1719 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1720 cmd->result = (DID_ABORT << 16); 1721 goto done; 1722 } 1723 1724 if (unlikely(host->shost_state == SHOST_DEL)) { 1725 cmd->result = (DID_NO_CONNECT << 16); 1726 goto done; 1727 1728 } 1729 1730 trace_scsi_dispatch_cmd_start(cmd); 1731 rtn = host->hostt->queuecommand(host, cmd); 1732 if (rtn) { 1733 trace_scsi_dispatch_cmd_error(cmd, rtn); 1734 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1735 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1736 rtn = SCSI_MLQUEUE_HOST_BUSY; 1737 1738 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1739 "queuecommand : request rejected\n")); 1740 } 1741 1742 return rtn; 1743 done: 1744 cmd->scsi_done(cmd); 1745 return 0; 1746 } 1747 1748 /** 1749 * scsi_done - Invoke completion on finished SCSI command. 1750 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1751 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1752 * 1753 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1754 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1755 * calls blk_complete_request() for further processing. 1756 * 1757 * This function is interrupt context safe. 1758 */ 1759 static void scsi_done(struct scsi_cmnd *cmd) 1760 { 1761 trace_scsi_dispatch_cmd_done(cmd); 1762 blk_complete_request(cmd->request); 1763 } 1764 1765 /* 1766 * Function: scsi_request_fn() 1767 * 1768 * Purpose: Main strategy routine for SCSI. 1769 * 1770 * Arguments: q - Pointer to actual queue. 1771 * 1772 * Returns: Nothing 1773 * 1774 * Lock status: request queue lock assumed to be held when called. 1775 * 1776 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1777 * protection for ZBC disks. 1778 */ 1779 static void scsi_request_fn(struct request_queue *q) 1780 __releases(q->queue_lock) 1781 __acquires(q->queue_lock) 1782 { 1783 struct scsi_device *sdev = q->queuedata; 1784 struct Scsi_Host *shost; 1785 struct scsi_cmnd *cmd; 1786 struct request *req; 1787 1788 /* 1789 * To start with, we keep looping until the queue is empty, or until 1790 * the host is no longer able to accept any more requests. 1791 */ 1792 shost = sdev->host; 1793 for (;;) { 1794 int rtn; 1795 /* 1796 * get next queueable request. We do this early to make sure 1797 * that the request is fully prepared even if we cannot 1798 * accept it. 1799 */ 1800 req = blk_peek_request(q); 1801 if (!req) 1802 break; 1803 1804 if (unlikely(!scsi_device_online(sdev))) { 1805 sdev_printk(KERN_ERR, sdev, 1806 "rejecting I/O to offline device\n"); 1807 scsi_kill_request(req, q); 1808 continue; 1809 } 1810 1811 if (!scsi_dev_queue_ready(q, sdev)) 1812 break; 1813 1814 /* 1815 * Remove the request from the request list. 1816 */ 1817 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1818 blk_start_request(req); 1819 1820 spin_unlock_irq(q->queue_lock); 1821 cmd = blk_mq_rq_to_pdu(req); 1822 if (cmd != req->special) { 1823 printk(KERN_CRIT "impossible request in %s.\n" 1824 "please mail a stack trace to " 1825 "linux-scsi@vger.kernel.org\n", 1826 __func__); 1827 blk_dump_rq_flags(req, "foo"); 1828 BUG(); 1829 } 1830 1831 /* 1832 * We hit this when the driver is using a host wide 1833 * tag map. For device level tag maps the queue_depth check 1834 * in the device ready fn would prevent us from trying 1835 * to allocate a tag. Since the map is a shared host resource 1836 * we add the dev to the starved list so it eventually gets 1837 * a run when a tag is freed. 1838 */ 1839 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1840 spin_lock_irq(shost->host_lock); 1841 if (list_empty(&sdev->starved_entry)) 1842 list_add_tail(&sdev->starved_entry, 1843 &shost->starved_list); 1844 spin_unlock_irq(shost->host_lock); 1845 goto not_ready; 1846 } 1847 1848 if (!scsi_target_queue_ready(shost, sdev)) 1849 goto not_ready; 1850 1851 if (!scsi_host_queue_ready(q, shost, sdev)) 1852 goto host_not_ready; 1853 1854 if (sdev->simple_tags) 1855 cmd->flags |= SCMD_TAGGED; 1856 else 1857 cmd->flags &= ~SCMD_TAGGED; 1858 1859 /* 1860 * Finally, initialize any error handling parameters, and set up 1861 * the timers for timeouts. 1862 */ 1863 scsi_init_cmd_errh(cmd); 1864 1865 /* 1866 * Dispatch the command to the low-level driver. 1867 */ 1868 cmd->scsi_done = scsi_done; 1869 rtn = scsi_dispatch_cmd(cmd); 1870 if (rtn) { 1871 scsi_queue_insert(cmd, rtn); 1872 spin_lock_irq(q->queue_lock); 1873 goto out_delay; 1874 } 1875 spin_lock_irq(q->queue_lock); 1876 } 1877 1878 return; 1879 1880 host_not_ready: 1881 if (scsi_target(sdev)->can_queue > 0) 1882 atomic_dec(&scsi_target(sdev)->target_busy); 1883 not_ready: 1884 /* 1885 * lock q, handle tag, requeue req, and decrement device_busy. We 1886 * must return with queue_lock held. 1887 * 1888 * Decrementing device_busy without checking it is OK, as all such 1889 * cases (host limits or settings) should run the queue at some 1890 * later time. 1891 */ 1892 spin_lock_irq(q->queue_lock); 1893 blk_requeue_request(q, req); 1894 atomic_dec(&sdev->device_busy); 1895 out_delay: 1896 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1897 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1898 } 1899 1900 static inline blk_status_t prep_to_mq(int ret) 1901 { 1902 switch (ret) { 1903 case BLKPREP_OK: 1904 return BLK_STS_OK; 1905 case BLKPREP_DEFER: 1906 return BLK_STS_RESOURCE; 1907 default: 1908 return BLK_STS_IOERR; 1909 } 1910 } 1911 1912 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1913 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1914 { 1915 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1916 sizeof(struct scatterlist); 1917 } 1918 1919 static int scsi_mq_prep_fn(struct request *req) 1920 { 1921 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1922 struct scsi_device *sdev = req->q->queuedata; 1923 struct Scsi_Host *shost = sdev->host; 1924 struct scatterlist *sg; 1925 1926 scsi_init_command(sdev, cmd); 1927 1928 req->special = cmd; 1929 1930 cmd->request = req; 1931 1932 cmd->tag = req->tag; 1933 cmd->prot_op = SCSI_PROT_NORMAL; 1934 1935 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1936 cmd->sdb.table.sgl = sg; 1937 1938 if (scsi_host_get_prot(shost)) { 1939 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1940 1941 cmd->prot_sdb->table.sgl = 1942 (struct scatterlist *)(cmd->prot_sdb + 1); 1943 } 1944 1945 if (blk_bidi_rq(req)) { 1946 struct request *next_rq = req->next_rq; 1947 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1948 1949 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1950 bidi_sdb->table.sgl = 1951 (struct scatterlist *)(bidi_sdb + 1); 1952 1953 next_rq->special = bidi_sdb; 1954 } 1955 1956 blk_mq_start_request(req); 1957 1958 return scsi_setup_cmnd(sdev, req); 1959 } 1960 1961 static void scsi_mq_done(struct scsi_cmnd *cmd) 1962 { 1963 trace_scsi_dispatch_cmd_done(cmd); 1964 blk_mq_complete_request(cmd->request); 1965 } 1966 1967 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1968 { 1969 struct request_queue *q = hctx->queue; 1970 struct scsi_device *sdev = q->queuedata; 1971 1972 atomic_dec(&sdev->device_busy); 1973 put_device(&sdev->sdev_gendev); 1974 } 1975 1976 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1977 { 1978 struct request_queue *q = hctx->queue; 1979 struct scsi_device *sdev = q->queuedata; 1980 1981 if (!get_device(&sdev->sdev_gendev)) 1982 goto out; 1983 if (!scsi_dev_queue_ready(q, sdev)) 1984 goto out_put_device; 1985 1986 return true; 1987 1988 out_put_device: 1989 put_device(&sdev->sdev_gendev); 1990 out: 1991 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1992 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1993 return false; 1994 } 1995 1996 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1997 const struct blk_mq_queue_data *bd) 1998 { 1999 struct request *req = bd->rq; 2000 struct request_queue *q = req->q; 2001 struct scsi_device *sdev = q->queuedata; 2002 struct Scsi_Host *shost = sdev->host; 2003 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2004 blk_status_t ret; 2005 int reason; 2006 2007 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2008 if (ret != BLK_STS_OK) 2009 goto out_put_budget; 2010 2011 ret = BLK_STS_RESOURCE; 2012 if (!scsi_target_queue_ready(shost, sdev)) 2013 goto out_put_budget; 2014 if (!scsi_host_queue_ready(q, shost, sdev)) 2015 goto out_dec_target_busy; 2016 2017 if (!(req->rq_flags & RQF_DONTPREP)) { 2018 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2019 if (ret != BLK_STS_OK) 2020 goto out_dec_host_busy; 2021 req->rq_flags |= RQF_DONTPREP; 2022 } else { 2023 blk_mq_start_request(req); 2024 } 2025 2026 if (sdev->simple_tags) 2027 cmd->flags |= SCMD_TAGGED; 2028 else 2029 cmd->flags &= ~SCMD_TAGGED; 2030 2031 scsi_init_cmd_errh(cmd); 2032 cmd->scsi_done = scsi_mq_done; 2033 2034 reason = scsi_dispatch_cmd(cmd); 2035 if (reason) { 2036 scsi_set_blocked(cmd, reason); 2037 ret = BLK_STS_RESOURCE; 2038 goto out_dec_host_busy; 2039 } 2040 2041 return BLK_STS_OK; 2042 2043 out_dec_host_busy: 2044 scsi_dec_host_busy(shost); 2045 out_dec_target_busy: 2046 if (scsi_target(sdev)->can_queue > 0) 2047 atomic_dec(&scsi_target(sdev)->target_busy); 2048 out_put_budget: 2049 scsi_mq_put_budget(hctx); 2050 switch (ret) { 2051 case BLK_STS_OK: 2052 break; 2053 case BLK_STS_RESOURCE: 2054 if (atomic_read(&sdev->device_busy) || 2055 scsi_device_blocked(sdev)) 2056 ret = BLK_STS_DEV_RESOURCE; 2057 break; 2058 default: 2059 /* 2060 * Make sure to release all allocated ressources when 2061 * we hit an error, as we will never see this command 2062 * again. 2063 */ 2064 if (req->rq_flags & RQF_DONTPREP) 2065 scsi_mq_uninit_cmd(cmd); 2066 break; 2067 } 2068 return ret; 2069 } 2070 2071 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2072 bool reserved) 2073 { 2074 if (reserved) 2075 return BLK_EH_RESET_TIMER; 2076 return scsi_times_out(req); 2077 } 2078 2079 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2080 unsigned int hctx_idx, unsigned int numa_node) 2081 { 2082 struct Scsi_Host *shost = set->driver_data; 2083 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2084 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2085 struct scatterlist *sg; 2086 2087 if (unchecked_isa_dma) 2088 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2089 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2090 GFP_KERNEL, numa_node); 2091 if (!cmd->sense_buffer) 2092 return -ENOMEM; 2093 cmd->req.sense = cmd->sense_buffer; 2094 2095 if (scsi_host_get_prot(shost)) { 2096 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2097 shost->hostt->cmd_size; 2098 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2099 } 2100 2101 return 0; 2102 } 2103 2104 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2105 unsigned int hctx_idx) 2106 { 2107 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2108 2109 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2110 cmd->sense_buffer); 2111 } 2112 2113 static int scsi_map_queues(struct blk_mq_tag_set *set) 2114 { 2115 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2116 2117 if (shost->hostt->map_queues) 2118 return shost->hostt->map_queues(shost); 2119 return blk_mq_map_queues(set); 2120 } 2121 2122 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2123 { 2124 struct device *host_dev; 2125 u64 bounce_limit = 0xffffffff; 2126 2127 if (shost->unchecked_isa_dma) 2128 return BLK_BOUNCE_ISA; 2129 /* 2130 * Platforms with virtual-DMA translation 2131 * hardware have no practical limit. 2132 */ 2133 if (!PCI_DMA_BUS_IS_PHYS) 2134 return BLK_BOUNCE_ANY; 2135 2136 host_dev = scsi_get_device(shost); 2137 if (host_dev && host_dev->dma_mask) 2138 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2139 2140 return bounce_limit; 2141 } 2142 2143 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2144 { 2145 struct device *dev = shost->dma_dev; 2146 2147 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2148 2149 /* 2150 * this limit is imposed by hardware restrictions 2151 */ 2152 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2153 SG_MAX_SEGMENTS)); 2154 2155 if (scsi_host_prot_dma(shost)) { 2156 shost->sg_prot_tablesize = 2157 min_not_zero(shost->sg_prot_tablesize, 2158 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2159 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2160 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2161 } 2162 2163 blk_queue_max_hw_sectors(q, shost->max_sectors); 2164 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2165 blk_queue_segment_boundary(q, shost->dma_boundary); 2166 dma_set_seg_boundary(dev, shost->dma_boundary); 2167 2168 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2169 2170 if (!shost->use_clustering) 2171 q->limits.cluster = 0; 2172 2173 /* 2174 * Set a reasonable default alignment: The larger of 32-byte (dword), 2175 * which is a common minimum for HBAs, and the minimum DMA alignment, 2176 * which is set by the platform. 2177 * 2178 * Devices that require a bigger alignment can increase it later. 2179 */ 2180 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2181 } 2182 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2183 2184 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2185 gfp_t gfp) 2186 { 2187 struct Scsi_Host *shost = q->rq_alloc_data; 2188 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2189 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2190 2191 memset(cmd, 0, sizeof(*cmd)); 2192 2193 if (unchecked_isa_dma) 2194 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2195 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2196 NUMA_NO_NODE); 2197 if (!cmd->sense_buffer) 2198 goto fail; 2199 cmd->req.sense = cmd->sense_buffer; 2200 2201 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2202 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2203 if (!cmd->prot_sdb) 2204 goto fail_free_sense; 2205 } 2206 2207 return 0; 2208 2209 fail_free_sense: 2210 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2211 fail: 2212 return -ENOMEM; 2213 } 2214 2215 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2216 { 2217 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2218 2219 if (cmd->prot_sdb) 2220 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2221 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2222 cmd->sense_buffer); 2223 } 2224 2225 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2226 { 2227 struct Scsi_Host *shost = sdev->host; 2228 struct request_queue *q; 2229 2230 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2231 if (!q) 2232 return NULL; 2233 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2234 q->rq_alloc_data = shost; 2235 q->request_fn = scsi_request_fn; 2236 q->init_rq_fn = scsi_old_init_rq; 2237 q->exit_rq_fn = scsi_old_exit_rq; 2238 q->initialize_rq_fn = scsi_initialize_rq; 2239 2240 if (blk_init_allocated_queue(q) < 0) { 2241 blk_cleanup_queue(q); 2242 return NULL; 2243 } 2244 2245 __scsi_init_queue(shost, q); 2246 blk_queue_prep_rq(q, scsi_prep_fn); 2247 blk_queue_unprep_rq(q, scsi_unprep_fn); 2248 blk_queue_softirq_done(q, scsi_softirq_done); 2249 blk_queue_rq_timed_out(q, scsi_times_out); 2250 blk_queue_lld_busy(q, scsi_lld_busy); 2251 return q; 2252 } 2253 2254 static const struct blk_mq_ops scsi_mq_ops = { 2255 .get_budget = scsi_mq_get_budget, 2256 .put_budget = scsi_mq_put_budget, 2257 .queue_rq = scsi_queue_rq, 2258 .complete = scsi_softirq_done, 2259 .timeout = scsi_timeout, 2260 #ifdef CONFIG_BLK_DEBUG_FS 2261 .show_rq = scsi_show_rq, 2262 #endif 2263 .init_request = scsi_mq_init_request, 2264 .exit_request = scsi_mq_exit_request, 2265 .initialize_rq_fn = scsi_initialize_rq, 2266 .map_queues = scsi_map_queues, 2267 }; 2268 2269 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2270 { 2271 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2272 if (IS_ERR(sdev->request_queue)) 2273 return NULL; 2274 2275 sdev->request_queue->queuedata = sdev; 2276 __scsi_init_queue(sdev->host, sdev->request_queue); 2277 return sdev->request_queue; 2278 } 2279 2280 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2281 { 2282 unsigned int cmd_size, sgl_size; 2283 2284 sgl_size = scsi_mq_sgl_size(shost); 2285 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2286 if (scsi_host_get_prot(shost)) 2287 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2288 2289 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2290 shost->tag_set.ops = &scsi_mq_ops; 2291 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2292 shost->tag_set.queue_depth = shost->can_queue; 2293 shost->tag_set.cmd_size = cmd_size; 2294 shost->tag_set.numa_node = NUMA_NO_NODE; 2295 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2296 shost->tag_set.flags |= 2297 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2298 shost->tag_set.driver_data = shost; 2299 2300 return blk_mq_alloc_tag_set(&shost->tag_set); 2301 } 2302 2303 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2304 { 2305 blk_mq_free_tag_set(&shost->tag_set); 2306 } 2307 2308 /** 2309 * scsi_device_from_queue - return sdev associated with a request_queue 2310 * @q: The request queue to return the sdev from 2311 * 2312 * Return the sdev associated with a request queue or NULL if the 2313 * request_queue does not reference a SCSI device. 2314 */ 2315 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2316 { 2317 struct scsi_device *sdev = NULL; 2318 2319 if (q->mq_ops) { 2320 if (q->mq_ops == &scsi_mq_ops) 2321 sdev = q->queuedata; 2322 } else if (q->request_fn == scsi_request_fn) 2323 sdev = q->queuedata; 2324 if (!sdev || !get_device(&sdev->sdev_gendev)) 2325 sdev = NULL; 2326 2327 return sdev; 2328 } 2329 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2330 2331 /* 2332 * Function: scsi_block_requests() 2333 * 2334 * Purpose: Utility function used by low-level drivers to prevent further 2335 * commands from being queued to the device. 2336 * 2337 * Arguments: shost - Host in question 2338 * 2339 * Returns: Nothing 2340 * 2341 * Lock status: No locks are assumed held. 2342 * 2343 * Notes: There is no timer nor any other means by which the requests 2344 * get unblocked other than the low-level driver calling 2345 * scsi_unblock_requests(). 2346 */ 2347 void scsi_block_requests(struct Scsi_Host *shost) 2348 { 2349 shost->host_self_blocked = 1; 2350 } 2351 EXPORT_SYMBOL(scsi_block_requests); 2352 2353 /* 2354 * Function: scsi_unblock_requests() 2355 * 2356 * Purpose: Utility function used by low-level drivers to allow further 2357 * commands from being queued to the device. 2358 * 2359 * Arguments: shost - Host in question 2360 * 2361 * Returns: Nothing 2362 * 2363 * Lock status: No locks are assumed held. 2364 * 2365 * Notes: There is no timer nor any other means by which the requests 2366 * get unblocked other than the low-level driver calling 2367 * scsi_unblock_requests(). 2368 * 2369 * This is done as an API function so that changes to the 2370 * internals of the scsi mid-layer won't require wholesale 2371 * changes to drivers that use this feature. 2372 */ 2373 void scsi_unblock_requests(struct Scsi_Host *shost) 2374 { 2375 shost->host_self_blocked = 0; 2376 scsi_run_host_queues(shost); 2377 } 2378 EXPORT_SYMBOL(scsi_unblock_requests); 2379 2380 int __init scsi_init_queue(void) 2381 { 2382 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2383 sizeof(struct scsi_data_buffer), 2384 0, 0, NULL); 2385 if (!scsi_sdb_cache) { 2386 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2387 return -ENOMEM; 2388 } 2389 2390 return 0; 2391 } 2392 2393 void scsi_exit_queue(void) 2394 { 2395 kmem_cache_destroy(scsi_sense_cache); 2396 kmem_cache_destroy(scsi_sense_isadma_cache); 2397 kmem_cache_destroy(scsi_sdb_cache); 2398 } 2399 2400 /** 2401 * scsi_mode_select - issue a mode select 2402 * @sdev: SCSI device to be queried 2403 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2404 * @sp: Save page bit (0 == don't save, 1 == save) 2405 * @modepage: mode page being requested 2406 * @buffer: request buffer (may not be smaller than eight bytes) 2407 * @len: length of request buffer. 2408 * @timeout: command timeout 2409 * @retries: number of retries before failing 2410 * @data: returns a structure abstracting the mode header data 2411 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2412 * must be SCSI_SENSE_BUFFERSIZE big. 2413 * 2414 * Returns zero if successful; negative error number or scsi 2415 * status on error 2416 * 2417 */ 2418 int 2419 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2420 unsigned char *buffer, int len, int timeout, int retries, 2421 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2422 { 2423 unsigned char cmd[10]; 2424 unsigned char *real_buffer; 2425 int ret; 2426 2427 memset(cmd, 0, sizeof(cmd)); 2428 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2429 2430 if (sdev->use_10_for_ms) { 2431 if (len > 65535) 2432 return -EINVAL; 2433 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2434 if (!real_buffer) 2435 return -ENOMEM; 2436 memcpy(real_buffer + 8, buffer, len); 2437 len += 8; 2438 real_buffer[0] = 0; 2439 real_buffer[1] = 0; 2440 real_buffer[2] = data->medium_type; 2441 real_buffer[3] = data->device_specific; 2442 real_buffer[4] = data->longlba ? 0x01 : 0; 2443 real_buffer[5] = 0; 2444 real_buffer[6] = data->block_descriptor_length >> 8; 2445 real_buffer[7] = data->block_descriptor_length; 2446 2447 cmd[0] = MODE_SELECT_10; 2448 cmd[7] = len >> 8; 2449 cmd[8] = len; 2450 } else { 2451 if (len > 255 || data->block_descriptor_length > 255 || 2452 data->longlba) 2453 return -EINVAL; 2454 2455 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2456 if (!real_buffer) 2457 return -ENOMEM; 2458 memcpy(real_buffer + 4, buffer, len); 2459 len += 4; 2460 real_buffer[0] = 0; 2461 real_buffer[1] = data->medium_type; 2462 real_buffer[2] = data->device_specific; 2463 real_buffer[3] = data->block_descriptor_length; 2464 2465 2466 cmd[0] = MODE_SELECT; 2467 cmd[4] = len; 2468 } 2469 2470 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2471 sshdr, timeout, retries, NULL); 2472 kfree(real_buffer); 2473 return ret; 2474 } 2475 EXPORT_SYMBOL_GPL(scsi_mode_select); 2476 2477 /** 2478 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2479 * @sdev: SCSI device to be queried 2480 * @dbd: set if mode sense will allow block descriptors to be returned 2481 * @modepage: mode page being requested 2482 * @buffer: request buffer (may not be smaller than eight bytes) 2483 * @len: length of request buffer. 2484 * @timeout: command timeout 2485 * @retries: number of retries before failing 2486 * @data: returns a structure abstracting the mode header data 2487 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2488 * must be SCSI_SENSE_BUFFERSIZE big. 2489 * 2490 * Returns zero if unsuccessful, or the header offset (either 4 2491 * or 8 depending on whether a six or ten byte command was 2492 * issued) if successful. 2493 */ 2494 int 2495 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2496 unsigned char *buffer, int len, int timeout, int retries, 2497 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2498 { 2499 unsigned char cmd[12]; 2500 int use_10_for_ms; 2501 int header_length; 2502 int result, retry_count = retries; 2503 struct scsi_sense_hdr my_sshdr; 2504 2505 memset(data, 0, sizeof(*data)); 2506 memset(&cmd[0], 0, 12); 2507 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2508 cmd[2] = modepage; 2509 2510 /* caller might not be interested in sense, but we need it */ 2511 if (!sshdr) 2512 sshdr = &my_sshdr; 2513 2514 retry: 2515 use_10_for_ms = sdev->use_10_for_ms; 2516 2517 if (use_10_for_ms) { 2518 if (len < 8) 2519 len = 8; 2520 2521 cmd[0] = MODE_SENSE_10; 2522 cmd[8] = len; 2523 header_length = 8; 2524 } else { 2525 if (len < 4) 2526 len = 4; 2527 2528 cmd[0] = MODE_SENSE; 2529 cmd[4] = len; 2530 header_length = 4; 2531 } 2532 2533 memset(buffer, 0, len); 2534 2535 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2536 sshdr, timeout, retries, NULL); 2537 2538 /* This code looks awful: what it's doing is making sure an 2539 * ILLEGAL REQUEST sense return identifies the actual command 2540 * byte as the problem. MODE_SENSE commands can return 2541 * ILLEGAL REQUEST if the code page isn't supported */ 2542 2543 if (use_10_for_ms && !scsi_status_is_good(result) && 2544 (driver_byte(result) & DRIVER_SENSE)) { 2545 if (scsi_sense_valid(sshdr)) { 2546 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2547 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2548 /* 2549 * Invalid command operation code 2550 */ 2551 sdev->use_10_for_ms = 0; 2552 goto retry; 2553 } 2554 } 2555 } 2556 2557 if(scsi_status_is_good(result)) { 2558 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2559 (modepage == 6 || modepage == 8))) { 2560 /* Initio breakage? */ 2561 header_length = 0; 2562 data->length = 13; 2563 data->medium_type = 0; 2564 data->device_specific = 0; 2565 data->longlba = 0; 2566 data->block_descriptor_length = 0; 2567 } else if(use_10_for_ms) { 2568 data->length = buffer[0]*256 + buffer[1] + 2; 2569 data->medium_type = buffer[2]; 2570 data->device_specific = buffer[3]; 2571 data->longlba = buffer[4] & 0x01; 2572 data->block_descriptor_length = buffer[6]*256 2573 + buffer[7]; 2574 } else { 2575 data->length = buffer[0] + 1; 2576 data->medium_type = buffer[1]; 2577 data->device_specific = buffer[2]; 2578 data->block_descriptor_length = buffer[3]; 2579 } 2580 data->header_length = header_length; 2581 } else if ((status_byte(result) == CHECK_CONDITION) && 2582 scsi_sense_valid(sshdr) && 2583 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2584 retry_count--; 2585 goto retry; 2586 } 2587 2588 return result; 2589 } 2590 EXPORT_SYMBOL(scsi_mode_sense); 2591 2592 /** 2593 * scsi_test_unit_ready - test if unit is ready 2594 * @sdev: scsi device to change the state of. 2595 * @timeout: command timeout 2596 * @retries: number of retries before failing 2597 * @sshdr: outpout pointer for decoded sense information. 2598 * 2599 * Returns zero if unsuccessful or an error if TUR failed. For 2600 * removable media, UNIT_ATTENTION sets ->changed flag. 2601 **/ 2602 int 2603 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2604 struct scsi_sense_hdr *sshdr) 2605 { 2606 char cmd[] = { 2607 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2608 }; 2609 int result; 2610 2611 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2612 do { 2613 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2614 timeout, retries, NULL); 2615 if (sdev->removable && scsi_sense_valid(sshdr) && 2616 sshdr->sense_key == UNIT_ATTENTION) 2617 sdev->changed = 1; 2618 } while (scsi_sense_valid(sshdr) && 2619 sshdr->sense_key == UNIT_ATTENTION && --retries); 2620 2621 return result; 2622 } 2623 EXPORT_SYMBOL(scsi_test_unit_ready); 2624 2625 /** 2626 * scsi_device_set_state - Take the given device through the device state model. 2627 * @sdev: scsi device to change the state of. 2628 * @state: state to change to. 2629 * 2630 * Returns zero if successful or an error if the requested 2631 * transition is illegal. 2632 */ 2633 int 2634 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2635 { 2636 enum scsi_device_state oldstate = sdev->sdev_state; 2637 2638 if (state == oldstate) 2639 return 0; 2640 2641 switch (state) { 2642 case SDEV_CREATED: 2643 switch (oldstate) { 2644 case SDEV_CREATED_BLOCK: 2645 break; 2646 default: 2647 goto illegal; 2648 } 2649 break; 2650 2651 case SDEV_RUNNING: 2652 switch (oldstate) { 2653 case SDEV_CREATED: 2654 case SDEV_OFFLINE: 2655 case SDEV_TRANSPORT_OFFLINE: 2656 case SDEV_QUIESCE: 2657 case SDEV_BLOCK: 2658 break; 2659 default: 2660 goto illegal; 2661 } 2662 break; 2663 2664 case SDEV_QUIESCE: 2665 switch (oldstate) { 2666 case SDEV_RUNNING: 2667 case SDEV_OFFLINE: 2668 case SDEV_TRANSPORT_OFFLINE: 2669 break; 2670 default: 2671 goto illegal; 2672 } 2673 break; 2674 2675 case SDEV_OFFLINE: 2676 case SDEV_TRANSPORT_OFFLINE: 2677 switch (oldstate) { 2678 case SDEV_CREATED: 2679 case SDEV_RUNNING: 2680 case SDEV_QUIESCE: 2681 case SDEV_BLOCK: 2682 break; 2683 default: 2684 goto illegal; 2685 } 2686 break; 2687 2688 case SDEV_BLOCK: 2689 switch (oldstate) { 2690 case SDEV_RUNNING: 2691 case SDEV_CREATED_BLOCK: 2692 break; 2693 default: 2694 goto illegal; 2695 } 2696 break; 2697 2698 case SDEV_CREATED_BLOCK: 2699 switch (oldstate) { 2700 case SDEV_CREATED: 2701 break; 2702 default: 2703 goto illegal; 2704 } 2705 break; 2706 2707 case SDEV_CANCEL: 2708 switch (oldstate) { 2709 case SDEV_CREATED: 2710 case SDEV_RUNNING: 2711 case SDEV_QUIESCE: 2712 case SDEV_OFFLINE: 2713 case SDEV_TRANSPORT_OFFLINE: 2714 break; 2715 default: 2716 goto illegal; 2717 } 2718 break; 2719 2720 case SDEV_DEL: 2721 switch (oldstate) { 2722 case SDEV_CREATED: 2723 case SDEV_RUNNING: 2724 case SDEV_OFFLINE: 2725 case SDEV_TRANSPORT_OFFLINE: 2726 case SDEV_CANCEL: 2727 case SDEV_BLOCK: 2728 case SDEV_CREATED_BLOCK: 2729 break; 2730 default: 2731 goto illegal; 2732 } 2733 break; 2734 2735 } 2736 sdev->sdev_state = state; 2737 return 0; 2738 2739 illegal: 2740 SCSI_LOG_ERROR_RECOVERY(1, 2741 sdev_printk(KERN_ERR, sdev, 2742 "Illegal state transition %s->%s", 2743 scsi_device_state_name(oldstate), 2744 scsi_device_state_name(state)) 2745 ); 2746 return -EINVAL; 2747 } 2748 EXPORT_SYMBOL(scsi_device_set_state); 2749 2750 /** 2751 * sdev_evt_emit - emit a single SCSI device uevent 2752 * @sdev: associated SCSI device 2753 * @evt: event to emit 2754 * 2755 * Send a single uevent (scsi_event) to the associated scsi_device. 2756 */ 2757 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2758 { 2759 int idx = 0; 2760 char *envp[3]; 2761 2762 switch (evt->evt_type) { 2763 case SDEV_EVT_MEDIA_CHANGE: 2764 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2765 break; 2766 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2767 scsi_rescan_device(&sdev->sdev_gendev); 2768 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2769 break; 2770 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2771 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2772 break; 2773 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2774 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2775 break; 2776 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2777 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2778 break; 2779 case SDEV_EVT_LUN_CHANGE_REPORTED: 2780 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2781 break; 2782 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2783 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2784 break; 2785 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2786 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2787 break; 2788 default: 2789 /* do nothing */ 2790 break; 2791 } 2792 2793 envp[idx++] = NULL; 2794 2795 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2796 } 2797 2798 /** 2799 * sdev_evt_thread - send a uevent for each scsi event 2800 * @work: work struct for scsi_device 2801 * 2802 * Dispatch queued events to their associated scsi_device kobjects 2803 * as uevents. 2804 */ 2805 void scsi_evt_thread(struct work_struct *work) 2806 { 2807 struct scsi_device *sdev; 2808 enum scsi_device_event evt_type; 2809 LIST_HEAD(event_list); 2810 2811 sdev = container_of(work, struct scsi_device, event_work); 2812 2813 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2814 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2815 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2816 2817 while (1) { 2818 struct scsi_event *evt; 2819 struct list_head *this, *tmp; 2820 unsigned long flags; 2821 2822 spin_lock_irqsave(&sdev->list_lock, flags); 2823 list_splice_init(&sdev->event_list, &event_list); 2824 spin_unlock_irqrestore(&sdev->list_lock, flags); 2825 2826 if (list_empty(&event_list)) 2827 break; 2828 2829 list_for_each_safe(this, tmp, &event_list) { 2830 evt = list_entry(this, struct scsi_event, node); 2831 list_del(&evt->node); 2832 scsi_evt_emit(sdev, evt); 2833 kfree(evt); 2834 } 2835 } 2836 } 2837 2838 /** 2839 * sdev_evt_send - send asserted event to uevent thread 2840 * @sdev: scsi_device event occurred on 2841 * @evt: event to send 2842 * 2843 * Assert scsi device event asynchronously. 2844 */ 2845 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2846 { 2847 unsigned long flags; 2848 2849 #if 0 2850 /* FIXME: currently this check eliminates all media change events 2851 * for polled devices. Need to update to discriminate between AN 2852 * and polled events */ 2853 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2854 kfree(evt); 2855 return; 2856 } 2857 #endif 2858 2859 spin_lock_irqsave(&sdev->list_lock, flags); 2860 list_add_tail(&evt->node, &sdev->event_list); 2861 schedule_work(&sdev->event_work); 2862 spin_unlock_irqrestore(&sdev->list_lock, flags); 2863 } 2864 EXPORT_SYMBOL_GPL(sdev_evt_send); 2865 2866 /** 2867 * sdev_evt_alloc - allocate a new scsi event 2868 * @evt_type: type of event to allocate 2869 * @gfpflags: GFP flags for allocation 2870 * 2871 * Allocates and returns a new scsi_event. 2872 */ 2873 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2874 gfp_t gfpflags) 2875 { 2876 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2877 if (!evt) 2878 return NULL; 2879 2880 evt->evt_type = evt_type; 2881 INIT_LIST_HEAD(&evt->node); 2882 2883 /* evt_type-specific initialization, if any */ 2884 switch (evt_type) { 2885 case SDEV_EVT_MEDIA_CHANGE: 2886 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2887 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2888 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2889 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2890 case SDEV_EVT_LUN_CHANGE_REPORTED: 2891 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2892 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2893 default: 2894 /* do nothing */ 2895 break; 2896 } 2897 2898 return evt; 2899 } 2900 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2901 2902 /** 2903 * sdev_evt_send_simple - send asserted event to uevent thread 2904 * @sdev: scsi_device event occurred on 2905 * @evt_type: type of event to send 2906 * @gfpflags: GFP flags for allocation 2907 * 2908 * Assert scsi device event asynchronously, given an event type. 2909 */ 2910 void sdev_evt_send_simple(struct scsi_device *sdev, 2911 enum scsi_device_event evt_type, gfp_t gfpflags) 2912 { 2913 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2914 if (!evt) { 2915 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2916 evt_type); 2917 return; 2918 } 2919 2920 sdev_evt_send(sdev, evt); 2921 } 2922 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2923 2924 /** 2925 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2926 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2927 */ 2928 static int scsi_request_fn_active(struct scsi_device *sdev) 2929 { 2930 struct request_queue *q = sdev->request_queue; 2931 int request_fn_active; 2932 2933 WARN_ON_ONCE(sdev->host->use_blk_mq); 2934 2935 spin_lock_irq(q->queue_lock); 2936 request_fn_active = q->request_fn_active; 2937 spin_unlock_irq(q->queue_lock); 2938 2939 return request_fn_active; 2940 } 2941 2942 /** 2943 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2944 * @sdev: SCSI device pointer. 2945 * 2946 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2947 * invoked from scsi_request_fn() have finished. 2948 */ 2949 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2950 { 2951 WARN_ON_ONCE(sdev->host->use_blk_mq); 2952 2953 while (scsi_request_fn_active(sdev)) 2954 msleep(20); 2955 } 2956 2957 /** 2958 * scsi_device_quiesce - Block user issued commands. 2959 * @sdev: scsi device to quiesce. 2960 * 2961 * This works by trying to transition to the SDEV_QUIESCE state 2962 * (which must be a legal transition). When the device is in this 2963 * state, only special requests will be accepted, all others will 2964 * be deferred. Since special requests may also be requeued requests, 2965 * a successful return doesn't guarantee the device will be 2966 * totally quiescent. 2967 * 2968 * Must be called with user context, may sleep. 2969 * 2970 * Returns zero if unsuccessful or an error if not. 2971 */ 2972 int 2973 scsi_device_quiesce(struct scsi_device *sdev) 2974 { 2975 struct request_queue *q = sdev->request_queue; 2976 int err; 2977 2978 /* 2979 * It is allowed to call scsi_device_quiesce() multiple times from 2980 * the same context but concurrent scsi_device_quiesce() calls are 2981 * not allowed. 2982 */ 2983 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2984 2985 blk_set_preempt_only(q); 2986 2987 blk_mq_freeze_queue(q); 2988 /* 2989 * Ensure that the effect of blk_set_preempt_only() will be visible 2990 * for percpu_ref_tryget() callers that occur after the queue 2991 * unfreeze even if the queue was already frozen before this function 2992 * was called. See also https://lwn.net/Articles/573497/. 2993 */ 2994 synchronize_rcu(); 2995 blk_mq_unfreeze_queue(q); 2996 2997 mutex_lock(&sdev->state_mutex); 2998 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2999 if (err == 0) 3000 sdev->quiesced_by = current; 3001 else 3002 blk_clear_preempt_only(q); 3003 mutex_unlock(&sdev->state_mutex); 3004 3005 return err; 3006 } 3007 EXPORT_SYMBOL(scsi_device_quiesce); 3008 3009 /** 3010 * scsi_device_resume - Restart user issued commands to a quiesced device. 3011 * @sdev: scsi device to resume. 3012 * 3013 * Moves the device from quiesced back to running and restarts the 3014 * queues. 3015 * 3016 * Must be called with user context, may sleep. 3017 */ 3018 void scsi_device_resume(struct scsi_device *sdev) 3019 { 3020 /* check if the device state was mutated prior to resume, and if 3021 * so assume the state is being managed elsewhere (for example 3022 * device deleted during suspend) 3023 */ 3024 mutex_lock(&sdev->state_mutex); 3025 WARN_ON_ONCE(!sdev->quiesced_by); 3026 sdev->quiesced_by = NULL; 3027 blk_clear_preempt_only(sdev->request_queue); 3028 if (sdev->sdev_state == SDEV_QUIESCE) 3029 scsi_device_set_state(sdev, SDEV_RUNNING); 3030 mutex_unlock(&sdev->state_mutex); 3031 } 3032 EXPORT_SYMBOL(scsi_device_resume); 3033 3034 static void 3035 device_quiesce_fn(struct scsi_device *sdev, void *data) 3036 { 3037 scsi_device_quiesce(sdev); 3038 } 3039 3040 void 3041 scsi_target_quiesce(struct scsi_target *starget) 3042 { 3043 starget_for_each_device(starget, NULL, device_quiesce_fn); 3044 } 3045 EXPORT_SYMBOL(scsi_target_quiesce); 3046 3047 static void 3048 device_resume_fn(struct scsi_device *sdev, void *data) 3049 { 3050 scsi_device_resume(sdev); 3051 } 3052 3053 void 3054 scsi_target_resume(struct scsi_target *starget) 3055 { 3056 starget_for_each_device(starget, NULL, device_resume_fn); 3057 } 3058 EXPORT_SYMBOL(scsi_target_resume); 3059 3060 /** 3061 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3062 * @sdev: device to block 3063 * 3064 * Pause SCSI command processing on the specified device. Does not sleep. 3065 * 3066 * Returns zero if successful or a negative error code upon failure. 3067 * 3068 * Notes: 3069 * This routine transitions the device to the SDEV_BLOCK state (which must be 3070 * a legal transition). When the device is in this state, command processing 3071 * is paused until the device leaves the SDEV_BLOCK state. See also 3072 * scsi_internal_device_unblock_nowait(). 3073 */ 3074 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3075 { 3076 struct request_queue *q = sdev->request_queue; 3077 unsigned long flags; 3078 int err = 0; 3079 3080 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3081 if (err) { 3082 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3083 3084 if (err) 3085 return err; 3086 } 3087 3088 /* 3089 * The device has transitioned to SDEV_BLOCK. Stop the 3090 * block layer from calling the midlayer with this device's 3091 * request queue. 3092 */ 3093 if (q->mq_ops) { 3094 blk_mq_quiesce_queue_nowait(q); 3095 } else { 3096 spin_lock_irqsave(q->queue_lock, flags); 3097 blk_stop_queue(q); 3098 spin_unlock_irqrestore(q->queue_lock, flags); 3099 } 3100 3101 return 0; 3102 } 3103 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3104 3105 /** 3106 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3107 * @sdev: device to block 3108 * 3109 * Pause SCSI command processing on the specified device and wait until all 3110 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3111 * 3112 * Returns zero if successful or a negative error code upon failure. 3113 * 3114 * Note: 3115 * This routine transitions the device to the SDEV_BLOCK state (which must be 3116 * a legal transition). When the device is in this state, command processing 3117 * is paused until the device leaves the SDEV_BLOCK state. See also 3118 * scsi_internal_device_unblock(). 3119 * 3120 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3121 * scsi_internal_device_block() has blocked a SCSI device and also 3122 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3123 */ 3124 static int scsi_internal_device_block(struct scsi_device *sdev) 3125 { 3126 struct request_queue *q = sdev->request_queue; 3127 int err; 3128 3129 mutex_lock(&sdev->state_mutex); 3130 err = scsi_internal_device_block_nowait(sdev); 3131 if (err == 0) { 3132 if (q->mq_ops) 3133 blk_mq_quiesce_queue(q); 3134 else 3135 scsi_wait_for_queuecommand(sdev); 3136 } 3137 mutex_unlock(&sdev->state_mutex); 3138 3139 return err; 3140 } 3141 3142 void scsi_start_queue(struct scsi_device *sdev) 3143 { 3144 struct request_queue *q = sdev->request_queue; 3145 unsigned long flags; 3146 3147 if (q->mq_ops) { 3148 blk_mq_unquiesce_queue(q); 3149 } else { 3150 spin_lock_irqsave(q->queue_lock, flags); 3151 blk_start_queue(q); 3152 spin_unlock_irqrestore(q->queue_lock, flags); 3153 } 3154 } 3155 3156 /** 3157 * scsi_internal_device_unblock_nowait - resume a device after a block request 3158 * @sdev: device to resume 3159 * @new_state: state to set the device to after unblocking 3160 * 3161 * Restart the device queue for a previously suspended SCSI device. Does not 3162 * sleep. 3163 * 3164 * Returns zero if successful or a negative error code upon failure. 3165 * 3166 * Notes: 3167 * This routine transitions the device to the SDEV_RUNNING state or to one of 3168 * the offline states (which must be a legal transition) allowing the midlayer 3169 * to goose the queue for this device. 3170 */ 3171 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3172 enum scsi_device_state new_state) 3173 { 3174 /* 3175 * Try to transition the scsi device to SDEV_RUNNING or one of the 3176 * offlined states and goose the device queue if successful. 3177 */ 3178 switch (sdev->sdev_state) { 3179 case SDEV_BLOCK: 3180 case SDEV_TRANSPORT_OFFLINE: 3181 sdev->sdev_state = new_state; 3182 break; 3183 case SDEV_CREATED_BLOCK: 3184 if (new_state == SDEV_TRANSPORT_OFFLINE || 3185 new_state == SDEV_OFFLINE) 3186 sdev->sdev_state = new_state; 3187 else 3188 sdev->sdev_state = SDEV_CREATED; 3189 break; 3190 case SDEV_CANCEL: 3191 case SDEV_OFFLINE: 3192 break; 3193 default: 3194 return -EINVAL; 3195 } 3196 scsi_start_queue(sdev); 3197 3198 return 0; 3199 } 3200 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3201 3202 /** 3203 * scsi_internal_device_unblock - resume a device after a block request 3204 * @sdev: device to resume 3205 * @new_state: state to set the device to after unblocking 3206 * 3207 * Restart the device queue for a previously suspended SCSI device. May sleep. 3208 * 3209 * Returns zero if successful or a negative error code upon failure. 3210 * 3211 * Notes: 3212 * This routine transitions the device to the SDEV_RUNNING state or to one of 3213 * the offline states (which must be a legal transition) allowing the midlayer 3214 * to goose the queue for this device. 3215 */ 3216 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3217 enum scsi_device_state new_state) 3218 { 3219 int ret; 3220 3221 mutex_lock(&sdev->state_mutex); 3222 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3223 mutex_unlock(&sdev->state_mutex); 3224 3225 return ret; 3226 } 3227 3228 static void 3229 device_block(struct scsi_device *sdev, void *data) 3230 { 3231 scsi_internal_device_block(sdev); 3232 } 3233 3234 static int 3235 target_block(struct device *dev, void *data) 3236 { 3237 if (scsi_is_target_device(dev)) 3238 starget_for_each_device(to_scsi_target(dev), NULL, 3239 device_block); 3240 return 0; 3241 } 3242 3243 void 3244 scsi_target_block(struct device *dev) 3245 { 3246 if (scsi_is_target_device(dev)) 3247 starget_for_each_device(to_scsi_target(dev), NULL, 3248 device_block); 3249 else 3250 device_for_each_child(dev, NULL, target_block); 3251 } 3252 EXPORT_SYMBOL_GPL(scsi_target_block); 3253 3254 static void 3255 device_unblock(struct scsi_device *sdev, void *data) 3256 { 3257 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3258 } 3259 3260 static int 3261 target_unblock(struct device *dev, void *data) 3262 { 3263 if (scsi_is_target_device(dev)) 3264 starget_for_each_device(to_scsi_target(dev), data, 3265 device_unblock); 3266 return 0; 3267 } 3268 3269 void 3270 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3271 { 3272 if (scsi_is_target_device(dev)) 3273 starget_for_each_device(to_scsi_target(dev), &new_state, 3274 device_unblock); 3275 else 3276 device_for_each_child(dev, &new_state, target_unblock); 3277 } 3278 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3279 3280 /** 3281 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3282 * @sgl: scatter-gather list 3283 * @sg_count: number of segments in sg 3284 * @offset: offset in bytes into sg, on return offset into the mapped area 3285 * @len: bytes to map, on return number of bytes mapped 3286 * 3287 * Returns virtual address of the start of the mapped page 3288 */ 3289 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3290 size_t *offset, size_t *len) 3291 { 3292 int i; 3293 size_t sg_len = 0, len_complete = 0; 3294 struct scatterlist *sg; 3295 struct page *page; 3296 3297 WARN_ON(!irqs_disabled()); 3298 3299 for_each_sg(sgl, sg, sg_count, i) { 3300 len_complete = sg_len; /* Complete sg-entries */ 3301 sg_len += sg->length; 3302 if (sg_len > *offset) 3303 break; 3304 } 3305 3306 if (unlikely(i == sg_count)) { 3307 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3308 "elements %d\n", 3309 __func__, sg_len, *offset, sg_count); 3310 WARN_ON(1); 3311 return NULL; 3312 } 3313 3314 /* Offset starting from the beginning of first page in this sg-entry */ 3315 *offset = *offset - len_complete + sg->offset; 3316 3317 /* Assumption: contiguous pages can be accessed as "page + i" */ 3318 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3319 *offset &= ~PAGE_MASK; 3320 3321 /* Bytes in this sg-entry from *offset to the end of the page */ 3322 sg_len = PAGE_SIZE - *offset; 3323 if (*len > sg_len) 3324 *len = sg_len; 3325 3326 return kmap_atomic(page); 3327 } 3328 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3329 3330 /** 3331 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3332 * @virt: virtual address to be unmapped 3333 */ 3334 void scsi_kunmap_atomic_sg(void *virt) 3335 { 3336 kunmap_atomic(virt); 3337 } 3338 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3339 3340 void sdev_disable_disk_events(struct scsi_device *sdev) 3341 { 3342 atomic_inc(&sdev->disk_events_disable_depth); 3343 } 3344 EXPORT_SYMBOL(sdev_disable_disk_events); 3345 3346 void sdev_enable_disk_events(struct scsi_device *sdev) 3347 { 3348 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3349 return; 3350 atomic_dec(&sdev->disk_events_disable_depth); 3351 } 3352 EXPORT_SYMBOL(sdev_enable_disk_events); 3353 3354 /** 3355 * scsi_vpd_lun_id - return a unique device identification 3356 * @sdev: SCSI device 3357 * @id: buffer for the identification 3358 * @id_len: length of the buffer 3359 * 3360 * Copies a unique device identification into @id based 3361 * on the information in the VPD page 0x83 of the device. 3362 * The string will be formatted as a SCSI name string. 3363 * 3364 * Returns the length of the identification or error on failure. 3365 * If the identifier is longer than the supplied buffer the actual 3366 * identifier length is returned and the buffer is not zero-padded. 3367 */ 3368 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3369 { 3370 u8 cur_id_type = 0xff; 3371 u8 cur_id_size = 0; 3372 const unsigned char *d, *cur_id_str; 3373 const struct scsi_vpd *vpd_pg83; 3374 int id_size = -EINVAL; 3375 3376 rcu_read_lock(); 3377 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3378 if (!vpd_pg83) { 3379 rcu_read_unlock(); 3380 return -ENXIO; 3381 } 3382 3383 /* 3384 * Look for the correct descriptor. 3385 * Order of preference for lun descriptor: 3386 * - SCSI name string 3387 * - NAA IEEE Registered Extended 3388 * - EUI-64 based 16-byte 3389 * - EUI-64 based 12-byte 3390 * - NAA IEEE Registered 3391 * - NAA IEEE Extended 3392 * - T10 Vendor ID 3393 * as longer descriptors reduce the likelyhood 3394 * of identification clashes. 3395 */ 3396 3397 /* The id string must be at least 20 bytes + terminating NULL byte */ 3398 if (id_len < 21) { 3399 rcu_read_unlock(); 3400 return -EINVAL; 3401 } 3402 3403 memset(id, 0, id_len); 3404 d = vpd_pg83->data + 4; 3405 while (d < vpd_pg83->data + vpd_pg83->len) { 3406 /* Skip designators not referring to the LUN */ 3407 if ((d[1] & 0x30) != 0x00) 3408 goto next_desig; 3409 3410 switch (d[1] & 0xf) { 3411 case 0x1: 3412 /* T10 Vendor ID */ 3413 if (cur_id_size > d[3]) 3414 break; 3415 /* Prefer anything */ 3416 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3417 break; 3418 cur_id_size = d[3]; 3419 if (cur_id_size + 4 > id_len) 3420 cur_id_size = id_len - 4; 3421 cur_id_str = d + 4; 3422 cur_id_type = d[1] & 0xf; 3423 id_size = snprintf(id, id_len, "t10.%*pE", 3424 cur_id_size, cur_id_str); 3425 break; 3426 case 0x2: 3427 /* EUI-64 */ 3428 if (cur_id_size > d[3]) 3429 break; 3430 /* Prefer NAA IEEE Registered Extended */ 3431 if (cur_id_type == 0x3 && 3432 cur_id_size == d[3]) 3433 break; 3434 cur_id_size = d[3]; 3435 cur_id_str = d + 4; 3436 cur_id_type = d[1] & 0xf; 3437 switch (cur_id_size) { 3438 case 8: 3439 id_size = snprintf(id, id_len, 3440 "eui.%8phN", 3441 cur_id_str); 3442 break; 3443 case 12: 3444 id_size = snprintf(id, id_len, 3445 "eui.%12phN", 3446 cur_id_str); 3447 break; 3448 case 16: 3449 id_size = snprintf(id, id_len, 3450 "eui.%16phN", 3451 cur_id_str); 3452 break; 3453 default: 3454 cur_id_size = 0; 3455 break; 3456 } 3457 break; 3458 case 0x3: 3459 /* NAA */ 3460 if (cur_id_size > d[3]) 3461 break; 3462 cur_id_size = d[3]; 3463 cur_id_str = d + 4; 3464 cur_id_type = d[1] & 0xf; 3465 switch (cur_id_size) { 3466 case 8: 3467 id_size = snprintf(id, id_len, 3468 "naa.%8phN", 3469 cur_id_str); 3470 break; 3471 case 16: 3472 id_size = snprintf(id, id_len, 3473 "naa.%16phN", 3474 cur_id_str); 3475 break; 3476 default: 3477 cur_id_size = 0; 3478 break; 3479 } 3480 break; 3481 case 0x8: 3482 /* SCSI name string */ 3483 if (cur_id_size + 4 > d[3]) 3484 break; 3485 /* Prefer others for truncated descriptor */ 3486 if (cur_id_size && d[3] > id_len) 3487 break; 3488 cur_id_size = id_size = d[3]; 3489 cur_id_str = d + 4; 3490 cur_id_type = d[1] & 0xf; 3491 if (cur_id_size >= id_len) 3492 cur_id_size = id_len - 1; 3493 memcpy(id, cur_id_str, cur_id_size); 3494 /* Decrease priority for truncated descriptor */ 3495 if (cur_id_size != id_size) 3496 cur_id_size = 6; 3497 break; 3498 default: 3499 break; 3500 } 3501 next_desig: 3502 d += d[3] + 4; 3503 } 3504 rcu_read_unlock(); 3505 3506 return id_size; 3507 } 3508 EXPORT_SYMBOL(scsi_vpd_lun_id); 3509 3510 /* 3511 * scsi_vpd_tpg_id - return a target port group identifier 3512 * @sdev: SCSI device 3513 * 3514 * Returns the Target Port Group identifier from the information 3515 * froom VPD page 0x83 of the device. 3516 * 3517 * Returns the identifier or error on failure. 3518 */ 3519 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3520 { 3521 const unsigned char *d; 3522 const struct scsi_vpd *vpd_pg83; 3523 int group_id = -EAGAIN, rel_port = -1; 3524 3525 rcu_read_lock(); 3526 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3527 if (!vpd_pg83) { 3528 rcu_read_unlock(); 3529 return -ENXIO; 3530 } 3531 3532 d = vpd_pg83->data + 4; 3533 while (d < vpd_pg83->data + vpd_pg83->len) { 3534 switch (d[1] & 0xf) { 3535 case 0x4: 3536 /* Relative target port */ 3537 rel_port = get_unaligned_be16(&d[6]); 3538 break; 3539 case 0x5: 3540 /* Target port group */ 3541 group_id = get_unaligned_be16(&d[6]); 3542 break; 3543 default: 3544 break; 3545 } 3546 d += d[3] + 4; 3547 } 3548 rcu_read_unlock(); 3549 3550 if (group_id >= 0 && rel_id && rel_port != -1) 3551 *rel_id = rel_port; 3552 3553 return group_id; 3554 } 3555 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3556