xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision e2c75e76)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		scsi_mq_requeue_cmd(cmd);
195 		return;
196 	}
197 	spin_lock_irqsave(q->queue_lock, flags);
198 	blk_requeue_request(q, cmd->request);
199 	kblockd_schedule_work(&device->requeue_work);
200 	spin_unlock_irqrestore(q->queue_lock, flags);
201 }
202 
203 /*
204  * Function:    scsi_queue_insert()
205  *
206  * Purpose:     Insert a command in the midlevel queue.
207  *
208  * Arguments:   cmd    - command that we are adding to queue.
209  *              reason - why we are inserting command to queue.
210  *
211  * Lock status: Assumed that lock is not held upon entry.
212  *
213  * Returns:     Nothing.
214  *
215  * Notes:       We do this for one of two cases.  Either the host is busy
216  *              and it cannot accept any more commands for the time being,
217  *              or the device returned QUEUE_FULL and can accept no more
218  *              commands.
219  * Notes:       This could be called either from an interrupt context or a
220  *              normal process context.
221  */
222 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
223 {
224 	__scsi_queue_insert(cmd, reason, true);
225 }
226 
227 
228 /**
229  * scsi_execute - insert request and wait for the result
230  * @sdev:	scsi device
231  * @cmd:	scsi command
232  * @data_direction: data direction
233  * @buffer:	data buffer
234  * @bufflen:	len of buffer
235  * @sense:	optional sense buffer
236  * @sshdr:	optional decoded sense header
237  * @timeout:	request timeout in seconds
238  * @retries:	number of times to retry request
239  * @flags:	flags for ->cmd_flags
240  * @rq_flags:	flags for ->rq_flags
241  * @resid:	optional residual length
242  *
243  * Returns the scsi_cmnd result field if a command was executed, or a negative
244  * Linux error code if we didn't get that far.
245  */
246 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
247 		 int data_direction, void *buffer, unsigned bufflen,
248 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
249 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
250 		 int *resid)
251 {
252 	struct request *req;
253 	struct scsi_request *rq;
254 	int ret = DRIVER_ERROR << 24;
255 
256 	req = blk_get_request_flags(sdev->request_queue,
257 			data_direction == DMA_TO_DEVICE ?
258 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
259 	if (IS_ERR(req))
260 		return ret;
261 	rq = scsi_req(req);
262 
263 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
264 					buffer, bufflen, __GFP_RECLAIM))
265 		goto out;
266 
267 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
268 	memcpy(rq->cmd, cmd, rq->cmd_len);
269 	rq->retries = retries;
270 	req->timeout = timeout;
271 	req->cmd_flags |= flags;
272 	req->rq_flags |= rq_flags | RQF_QUIET;
273 
274 	/*
275 	 * head injection *required* here otherwise quiesce won't work
276 	 */
277 	blk_execute_rq(req->q, NULL, req, 1);
278 
279 	/*
280 	 * Some devices (USB mass-storage in particular) may transfer
281 	 * garbage data together with a residue indicating that the data
282 	 * is invalid.  Prevent the garbage from being misinterpreted
283 	 * and prevent security leaks by zeroing out the excess data.
284 	 */
285 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
286 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
287 
288 	if (resid)
289 		*resid = rq->resid_len;
290 	if (sense && rq->sense_len)
291 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
292 	if (sshdr)
293 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
294 	ret = rq->result;
295  out:
296 	blk_put_request(req);
297 
298 	return ret;
299 }
300 EXPORT_SYMBOL(scsi_execute);
301 
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd	- command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315 	cmd->serial_number = 0;
316 	scsi_set_resid(cmd, 0);
317 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318 	if (cmd->cmd_len == 0)
319 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321 
322 /*
323  * Decrement the host_busy counter and wake up the error handler if necessary.
324  * Avoid as follows that the error handler is not woken up if shost->host_busy
325  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
326  * with an RCU read lock in this function to ensure that this function in its
327  * entirety either finishes before scsi_eh_scmd_add() increases the
328  * host_failed counter or that it notices the shost state change made by
329  * scsi_eh_scmd_add().
330  */
331 static void scsi_dec_host_busy(struct Scsi_Host *shost)
332 {
333 	unsigned long flags;
334 
335 	rcu_read_lock();
336 	atomic_dec(&shost->host_busy);
337 	if (unlikely(scsi_host_in_recovery(shost))) {
338 		spin_lock_irqsave(shost->host_lock, flags);
339 		if (shost->host_failed || shost->host_eh_scheduled)
340 			scsi_eh_wakeup(shost);
341 		spin_unlock_irqrestore(shost->host_lock, flags);
342 	}
343 	rcu_read_unlock();
344 }
345 
346 void scsi_device_unbusy(struct scsi_device *sdev)
347 {
348 	struct Scsi_Host *shost = sdev->host;
349 	struct scsi_target *starget = scsi_target(sdev);
350 
351 	scsi_dec_host_busy(shost);
352 
353 	if (starget->can_queue > 0)
354 		atomic_dec(&starget->target_busy);
355 
356 	atomic_dec(&sdev->device_busy);
357 }
358 
359 static void scsi_kick_queue(struct request_queue *q)
360 {
361 	if (q->mq_ops)
362 		blk_mq_start_hw_queues(q);
363 	else
364 		blk_run_queue(q);
365 }
366 
367 /*
368  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
369  * and call blk_run_queue for all the scsi_devices on the target -
370  * including current_sdev first.
371  *
372  * Called with *no* scsi locks held.
373  */
374 static void scsi_single_lun_run(struct scsi_device *current_sdev)
375 {
376 	struct Scsi_Host *shost = current_sdev->host;
377 	struct scsi_device *sdev, *tmp;
378 	struct scsi_target *starget = scsi_target(current_sdev);
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(shost->host_lock, flags);
382 	starget->starget_sdev_user = NULL;
383 	spin_unlock_irqrestore(shost->host_lock, flags);
384 
385 	/*
386 	 * Call blk_run_queue for all LUNs on the target, starting with
387 	 * current_sdev. We race with others (to set starget_sdev_user),
388 	 * but in most cases, we will be first. Ideally, each LU on the
389 	 * target would get some limited time or requests on the target.
390 	 */
391 	scsi_kick_queue(current_sdev->request_queue);
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	if (starget->starget_sdev_user)
395 		goto out;
396 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
397 			same_target_siblings) {
398 		if (sdev == current_sdev)
399 			continue;
400 		if (scsi_device_get(sdev))
401 			continue;
402 
403 		spin_unlock_irqrestore(shost->host_lock, flags);
404 		scsi_kick_queue(sdev->request_queue);
405 		spin_lock_irqsave(shost->host_lock, flags);
406 
407 		scsi_device_put(sdev);
408 	}
409  out:
410 	spin_unlock_irqrestore(shost->host_lock, flags);
411 }
412 
413 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
414 {
415 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
416 		return true;
417 	if (atomic_read(&sdev->device_blocked) > 0)
418 		return true;
419 	return false;
420 }
421 
422 static inline bool scsi_target_is_busy(struct scsi_target *starget)
423 {
424 	if (starget->can_queue > 0) {
425 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
426 			return true;
427 		if (atomic_read(&starget->target_blocked) > 0)
428 			return true;
429 	}
430 	return false;
431 }
432 
433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
434 {
435 	if (shost->can_queue > 0 &&
436 	    atomic_read(&shost->host_busy) >= shost->can_queue)
437 		return true;
438 	if (atomic_read(&shost->host_blocked) > 0)
439 		return true;
440 	if (shost->host_self_blocked)
441 		return true;
442 	return false;
443 }
444 
445 static void scsi_starved_list_run(struct Scsi_Host *shost)
446 {
447 	LIST_HEAD(starved_list);
448 	struct scsi_device *sdev;
449 	unsigned long flags;
450 
451 	spin_lock_irqsave(shost->host_lock, flags);
452 	list_splice_init(&shost->starved_list, &starved_list);
453 
454 	while (!list_empty(&starved_list)) {
455 		struct request_queue *slq;
456 
457 		/*
458 		 * As long as shost is accepting commands and we have
459 		 * starved queues, call blk_run_queue. scsi_request_fn
460 		 * drops the queue_lock and can add us back to the
461 		 * starved_list.
462 		 *
463 		 * host_lock protects the starved_list and starved_entry.
464 		 * scsi_request_fn must get the host_lock before checking
465 		 * or modifying starved_list or starved_entry.
466 		 */
467 		if (scsi_host_is_busy(shost))
468 			break;
469 
470 		sdev = list_entry(starved_list.next,
471 				  struct scsi_device, starved_entry);
472 		list_del_init(&sdev->starved_entry);
473 		if (scsi_target_is_busy(scsi_target(sdev))) {
474 			list_move_tail(&sdev->starved_entry,
475 				       &shost->starved_list);
476 			continue;
477 		}
478 
479 		/*
480 		 * Once we drop the host lock, a racing scsi_remove_device()
481 		 * call may remove the sdev from the starved list and destroy
482 		 * it and the queue.  Mitigate by taking a reference to the
483 		 * queue and never touching the sdev again after we drop the
484 		 * host lock.  Note: if __scsi_remove_device() invokes
485 		 * blk_cleanup_queue() before the queue is run from this
486 		 * function then blk_run_queue() will return immediately since
487 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
488 		 */
489 		slq = sdev->request_queue;
490 		if (!blk_get_queue(slq))
491 			continue;
492 		spin_unlock_irqrestore(shost->host_lock, flags);
493 
494 		scsi_kick_queue(slq);
495 		blk_put_queue(slq);
496 
497 		spin_lock_irqsave(shost->host_lock, flags);
498 	}
499 	/* put any unprocessed entries back */
500 	list_splice(&starved_list, &shost->starved_list);
501 	spin_unlock_irqrestore(shost->host_lock, flags);
502 }
503 
504 /*
505  * Function:   scsi_run_queue()
506  *
507  * Purpose:    Select a proper request queue to serve next
508  *
509  * Arguments:  q       - last request's queue
510  *
511  * Returns:     Nothing
512  *
513  * Notes:      The previous command was completely finished, start
514  *             a new one if possible.
515  */
516 static void scsi_run_queue(struct request_queue *q)
517 {
518 	struct scsi_device *sdev = q->queuedata;
519 
520 	if (scsi_target(sdev)->single_lun)
521 		scsi_single_lun_run(sdev);
522 	if (!list_empty(&sdev->host->starved_list))
523 		scsi_starved_list_run(sdev->host);
524 
525 	if (q->mq_ops)
526 		blk_mq_run_hw_queues(q, false);
527 	else
528 		blk_run_queue(q);
529 }
530 
531 void scsi_requeue_run_queue(struct work_struct *work)
532 {
533 	struct scsi_device *sdev;
534 	struct request_queue *q;
535 
536 	sdev = container_of(work, struct scsi_device, requeue_work);
537 	q = sdev->request_queue;
538 	scsi_run_queue(q);
539 }
540 
541 /*
542  * Function:	scsi_requeue_command()
543  *
544  * Purpose:	Handle post-processing of completed commands.
545  *
546  * Arguments:	q	- queue to operate on
547  *		cmd	- command that may need to be requeued.
548  *
549  * Returns:	Nothing
550  *
551  * Notes:	After command completion, there may be blocks left
552  *		over which weren't finished by the previous command
553  *		this can be for a number of reasons - the main one is
554  *		I/O errors in the middle of the request, in which case
555  *		we need to request the blocks that come after the bad
556  *		sector.
557  * Notes:	Upon return, cmd is a stale pointer.
558  */
559 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
560 {
561 	struct scsi_device *sdev = cmd->device;
562 	struct request *req = cmd->request;
563 	unsigned long flags;
564 
565 	spin_lock_irqsave(q->queue_lock, flags);
566 	blk_unprep_request(req);
567 	req->special = NULL;
568 	scsi_put_command(cmd);
569 	blk_requeue_request(q, req);
570 	spin_unlock_irqrestore(q->queue_lock, flags);
571 
572 	scsi_run_queue(q);
573 
574 	put_device(&sdev->sdev_gendev);
575 }
576 
577 void scsi_run_host_queues(struct Scsi_Host *shost)
578 {
579 	struct scsi_device *sdev;
580 
581 	shost_for_each_device(sdev, shost)
582 		scsi_run_queue(sdev->request_queue);
583 }
584 
585 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
586 {
587 	if (!blk_rq_is_passthrough(cmd->request)) {
588 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
589 
590 		if (drv->uninit_command)
591 			drv->uninit_command(cmd);
592 	}
593 }
594 
595 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
596 {
597 	struct scsi_data_buffer *sdb;
598 
599 	if (cmd->sdb.table.nents)
600 		sg_free_table_chained(&cmd->sdb.table, true);
601 	if (cmd->request->next_rq) {
602 		sdb = cmd->request->next_rq->special;
603 		if (sdb)
604 			sg_free_table_chained(&sdb->table, true);
605 	}
606 	if (scsi_prot_sg_count(cmd))
607 		sg_free_table_chained(&cmd->prot_sdb->table, true);
608 }
609 
610 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
611 {
612 	scsi_mq_free_sgtables(cmd);
613 	scsi_uninit_cmd(cmd);
614 	scsi_del_cmd_from_list(cmd);
615 }
616 
617 /*
618  * Function:    scsi_release_buffers()
619  *
620  * Purpose:     Free resources allocate for a scsi_command.
621  *
622  * Arguments:   cmd	- command that we are bailing.
623  *
624  * Lock status: Assumed that no lock is held upon entry.
625  *
626  * Returns:     Nothing
627  *
628  * Notes:       In the event that an upper level driver rejects a
629  *		command, we must release resources allocated during
630  *		the __init_io() function.  Primarily this would involve
631  *		the scatter-gather table.
632  */
633 static void scsi_release_buffers(struct scsi_cmnd *cmd)
634 {
635 	if (cmd->sdb.table.nents)
636 		sg_free_table_chained(&cmd->sdb.table, false);
637 
638 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639 
640 	if (scsi_prot_sg_count(cmd))
641 		sg_free_table_chained(&cmd->prot_sdb->table, false);
642 }
643 
644 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
645 {
646 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
647 
648 	sg_free_table_chained(&bidi_sdb->table, false);
649 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
650 	cmd->request->next_rq->special = NULL;
651 }
652 
653 static bool scsi_end_request(struct request *req, blk_status_t error,
654 		unsigned int bytes, unsigned int bidi_bytes)
655 {
656 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
657 	struct scsi_device *sdev = cmd->device;
658 	struct request_queue *q = sdev->request_queue;
659 
660 	if (blk_update_request(req, error, bytes))
661 		return true;
662 
663 	/* Bidi request must be completed as a whole */
664 	if (unlikely(bidi_bytes) &&
665 	    blk_update_request(req->next_rq, error, bidi_bytes))
666 		return true;
667 
668 	if (blk_queue_add_random(q))
669 		add_disk_randomness(req->rq_disk);
670 
671 	if (!blk_rq_is_scsi(req)) {
672 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
673 		cmd->flags &= ~SCMD_INITIALIZED;
674 		destroy_rcu_head(&cmd->rcu);
675 	}
676 
677 	if (req->mq_ctx) {
678 		/*
679 		 * In the MQ case the command gets freed by __blk_mq_end_request,
680 		 * so we have to do all cleanup that depends on it earlier.
681 		 *
682 		 * We also can't kick the queues from irq context, so we
683 		 * will have to defer it to a workqueue.
684 		 */
685 		scsi_mq_uninit_cmd(cmd);
686 
687 		__blk_mq_end_request(req, error);
688 
689 		if (scsi_target(sdev)->single_lun ||
690 		    !list_empty(&sdev->host->starved_list))
691 			kblockd_schedule_work(&sdev->requeue_work);
692 		else
693 			blk_mq_run_hw_queues(q, true);
694 	} else {
695 		unsigned long flags;
696 
697 		if (bidi_bytes)
698 			scsi_release_bidi_buffers(cmd);
699 		scsi_release_buffers(cmd);
700 		scsi_put_command(cmd);
701 
702 		spin_lock_irqsave(q->queue_lock, flags);
703 		blk_finish_request(req, error);
704 		spin_unlock_irqrestore(q->queue_lock, flags);
705 
706 		scsi_run_queue(q);
707 	}
708 
709 	put_device(&sdev->sdev_gendev);
710 	return false;
711 }
712 
713 /**
714  * __scsi_error_from_host_byte - translate SCSI error code into errno
715  * @cmd:	SCSI command (unused)
716  * @result:	scsi error code
717  *
718  * Translate SCSI error code into block errors.
719  */
720 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
721 		int result)
722 {
723 	switch (host_byte(result)) {
724 	case DID_OK:
725 		return BLK_STS_OK;
726 	case DID_TRANSPORT_FAILFAST:
727 		return BLK_STS_TRANSPORT;
728 	case DID_TARGET_FAILURE:
729 		set_host_byte(cmd, DID_OK);
730 		return BLK_STS_TARGET;
731 	case DID_NEXUS_FAILURE:
732 		return BLK_STS_NEXUS;
733 	case DID_ALLOC_FAILURE:
734 		set_host_byte(cmd, DID_OK);
735 		return BLK_STS_NOSPC;
736 	case DID_MEDIUM_ERROR:
737 		set_host_byte(cmd, DID_OK);
738 		return BLK_STS_MEDIUM;
739 	default:
740 		return BLK_STS_IOERR;
741 	}
742 }
743 
744 /*
745  * Function:    scsi_io_completion()
746  *
747  * Purpose:     Completion processing for block device I/O requests.
748  *
749  * Arguments:   cmd   - command that is finished.
750  *
751  * Lock status: Assumed that no lock is held upon entry.
752  *
753  * Returns:     Nothing
754  *
755  * Notes:       We will finish off the specified number of sectors.  If we
756  *		are done, the command block will be released and the queue
757  *		function will be goosed.  If we are not done then we have to
758  *		figure out what to do next:
759  *
760  *		a) We can call scsi_requeue_command().  The request
761  *		   will be unprepared and put back on the queue.  Then
762  *		   a new command will be created for it.  This should
763  *		   be used if we made forward progress, or if we want
764  *		   to switch from READ(10) to READ(6) for example.
765  *
766  *		b) We can call __scsi_queue_insert().  The request will
767  *		   be put back on the queue and retried using the same
768  *		   command as before, possibly after a delay.
769  *
770  *		c) We can call scsi_end_request() with -EIO to fail
771  *		   the remainder of the request.
772  */
773 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
774 {
775 	int result = cmd->result;
776 	struct request_queue *q = cmd->device->request_queue;
777 	struct request *req = cmd->request;
778 	blk_status_t error = BLK_STS_OK;
779 	struct scsi_sense_hdr sshdr;
780 	bool sense_valid = false;
781 	int sense_deferred = 0, level = 0;
782 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
783 	      ACTION_DELAYED_RETRY} action;
784 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
785 
786 	if (result) {
787 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
788 		if (sense_valid)
789 			sense_deferred = scsi_sense_is_deferred(&sshdr);
790 	}
791 
792 	if (blk_rq_is_passthrough(req)) {
793 		if (result) {
794 			if (sense_valid) {
795 				/*
796 				 * SG_IO wants current and deferred errors
797 				 */
798 				scsi_req(req)->sense_len =
799 					min(8 + cmd->sense_buffer[7],
800 					    SCSI_SENSE_BUFFERSIZE);
801 			}
802 			if (!sense_deferred)
803 				error = __scsi_error_from_host_byte(cmd, result);
804 		}
805 		/*
806 		 * __scsi_error_from_host_byte may have reset the host_byte
807 		 */
808 		scsi_req(req)->result = cmd->result;
809 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
810 
811 		if (scsi_bidi_cmnd(cmd)) {
812 			/*
813 			 * Bidi commands Must be complete as a whole,
814 			 * both sides at once.
815 			 */
816 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
817 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
818 					blk_rq_bytes(req->next_rq)))
819 				BUG();
820 			return;
821 		}
822 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
823 		/*
824 		 * Flush commands do not transfers any data, and thus cannot use
825 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
826 		 * This sets the error explicitly for the problem case.
827 		 */
828 		error = __scsi_error_from_host_byte(cmd, result);
829 	}
830 
831 	/* no bidi support for !blk_rq_is_passthrough yet */
832 	BUG_ON(blk_bidi_rq(req));
833 
834 	/*
835 	 * Next deal with any sectors which we were able to correctly
836 	 * handle.
837 	 */
838 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
839 		"%u sectors total, %d bytes done.\n",
840 		blk_rq_sectors(req), good_bytes));
841 
842 	/*
843 	 * Recovered errors need reporting, but they're always treated as
844 	 * success, so fiddle the result code here.  For passthrough requests
845 	 * we already took a copy of the original into sreq->result which
846 	 * is what gets returned to the user
847 	 */
848 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
849 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
850 		 * print since caller wants ATA registers. Only occurs on
851 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
852 		 */
853 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
854 			;
855 		else if (!(req->rq_flags & RQF_QUIET))
856 			scsi_print_sense(cmd);
857 		result = 0;
858 		/* for passthrough error may be set */
859 		error = BLK_STS_OK;
860 	}
861 
862 	/*
863 	 * special case: failed zero length commands always need to
864 	 * drop down into the retry code. Otherwise, if we finished
865 	 * all bytes in the request we are done now.
866 	 */
867 	if (!(blk_rq_bytes(req) == 0 && error) &&
868 	    !scsi_end_request(req, error, good_bytes, 0))
869 		return;
870 
871 	/*
872 	 * Kill remainder if no retrys.
873 	 */
874 	if (error && scsi_noretry_cmd(cmd)) {
875 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
876 			BUG();
877 		return;
878 	}
879 
880 	/*
881 	 * If there had been no error, but we have leftover bytes in the
882 	 * requeues just queue the command up again.
883 	 */
884 	if (result == 0)
885 		goto requeue;
886 
887 	error = __scsi_error_from_host_byte(cmd, result);
888 
889 	if (host_byte(result) == DID_RESET) {
890 		/* Third party bus reset or reset for error recovery
891 		 * reasons.  Just retry the command and see what
892 		 * happens.
893 		 */
894 		action = ACTION_RETRY;
895 	} else if (sense_valid && !sense_deferred) {
896 		switch (sshdr.sense_key) {
897 		case UNIT_ATTENTION:
898 			if (cmd->device->removable) {
899 				/* Detected disc change.  Set a bit
900 				 * and quietly refuse further access.
901 				 */
902 				cmd->device->changed = 1;
903 				action = ACTION_FAIL;
904 			} else {
905 				/* Must have been a power glitch, or a
906 				 * bus reset.  Could not have been a
907 				 * media change, so we just retry the
908 				 * command and see what happens.
909 				 */
910 				action = ACTION_RETRY;
911 			}
912 			break;
913 		case ILLEGAL_REQUEST:
914 			/* If we had an ILLEGAL REQUEST returned, then
915 			 * we may have performed an unsupported
916 			 * command.  The only thing this should be
917 			 * would be a ten byte read where only a six
918 			 * byte read was supported.  Also, on a system
919 			 * where READ CAPACITY failed, we may have
920 			 * read past the end of the disk.
921 			 */
922 			if ((cmd->device->use_10_for_rw &&
923 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
924 			    (cmd->cmnd[0] == READ_10 ||
925 			     cmd->cmnd[0] == WRITE_10)) {
926 				/* This will issue a new 6-byte command. */
927 				cmd->device->use_10_for_rw = 0;
928 				action = ACTION_REPREP;
929 			} else if (sshdr.asc == 0x10) /* DIX */ {
930 				action = ACTION_FAIL;
931 				error = BLK_STS_PROTECTION;
932 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
933 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
934 				action = ACTION_FAIL;
935 				error = BLK_STS_TARGET;
936 			} else
937 				action = ACTION_FAIL;
938 			break;
939 		case ABORTED_COMMAND:
940 			action = ACTION_FAIL;
941 			if (sshdr.asc == 0x10) /* DIF */
942 				error = BLK_STS_PROTECTION;
943 			break;
944 		case NOT_READY:
945 			/* If the device is in the process of becoming
946 			 * ready, or has a temporary blockage, retry.
947 			 */
948 			if (sshdr.asc == 0x04) {
949 				switch (sshdr.ascq) {
950 				case 0x01: /* becoming ready */
951 				case 0x04: /* format in progress */
952 				case 0x05: /* rebuild in progress */
953 				case 0x06: /* recalculation in progress */
954 				case 0x07: /* operation in progress */
955 				case 0x08: /* Long write in progress */
956 				case 0x09: /* self test in progress */
957 				case 0x14: /* space allocation in progress */
958 					action = ACTION_DELAYED_RETRY;
959 					break;
960 				default:
961 					action = ACTION_FAIL;
962 					break;
963 				}
964 			} else
965 				action = ACTION_FAIL;
966 			break;
967 		case VOLUME_OVERFLOW:
968 			/* See SSC3rXX or current. */
969 			action = ACTION_FAIL;
970 			break;
971 		default:
972 			action = ACTION_FAIL;
973 			break;
974 		}
975 	} else
976 		action = ACTION_FAIL;
977 
978 	if (action != ACTION_FAIL &&
979 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
980 		action = ACTION_FAIL;
981 
982 	switch (action) {
983 	case ACTION_FAIL:
984 		/* Give up and fail the remainder of the request */
985 		if (!(req->rq_flags & RQF_QUIET)) {
986 			static DEFINE_RATELIMIT_STATE(_rs,
987 					DEFAULT_RATELIMIT_INTERVAL,
988 					DEFAULT_RATELIMIT_BURST);
989 
990 			if (unlikely(scsi_logging_level))
991 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
992 						       SCSI_LOG_MLCOMPLETE_BITS);
993 
994 			/*
995 			 * if logging is enabled the failure will be printed
996 			 * in scsi_log_completion(), so avoid duplicate messages
997 			 */
998 			if (!level && __ratelimit(&_rs)) {
999 				scsi_print_result(cmd, NULL, FAILED);
1000 				if (driver_byte(result) & DRIVER_SENSE)
1001 					scsi_print_sense(cmd);
1002 				scsi_print_command(cmd);
1003 			}
1004 		}
1005 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1006 			return;
1007 		/*FALLTHRU*/
1008 	case ACTION_REPREP:
1009 	requeue:
1010 		/* Unprep the request and put it back at the head of the queue.
1011 		 * A new command will be prepared and issued.
1012 		 */
1013 		if (q->mq_ops) {
1014 			scsi_mq_requeue_cmd(cmd);
1015 		} else {
1016 			scsi_release_buffers(cmd);
1017 			scsi_requeue_command(q, cmd);
1018 		}
1019 		break;
1020 	case ACTION_RETRY:
1021 		/* Retry the same command immediately */
1022 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1023 		break;
1024 	case ACTION_DELAYED_RETRY:
1025 		/* Retry the same command after a delay */
1026 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1027 		break;
1028 	}
1029 }
1030 
1031 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1032 {
1033 	int count;
1034 
1035 	/*
1036 	 * If sg table allocation fails, requeue request later.
1037 	 */
1038 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1039 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1040 		return BLKPREP_DEFER;
1041 
1042 	/*
1043 	 * Next, walk the list, and fill in the addresses and sizes of
1044 	 * each segment.
1045 	 */
1046 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1047 	BUG_ON(count > sdb->table.nents);
1048 	sdb->table.nents = count;
1049 	sdb->length = blk_rq_payload_bytes(req);
1050 	return BLKPREP_OK;
1051 }
1052 
1053 /*
1054  * Function:    scsi_init_io()
1055  *
1056  * Purpose:     SCSI I/O initialize function.
1057  *
1058  * Arguments:   cmd   - Command descriptor we wish to initialize
1059  *
1060  * Returns:     0 on success
1061  *		BLKPREP_DEFER if the failure is retryable
1062  *		BLKPREP_KILL if the failure is fatal
1063  */
1064 int scsi_init_io(struct scsi_cmnd *cmd)
1065 {
1066 	struct scsi_device *sdev = cmd->device;
1067 	struct request *rq = cmd->request;
1068 	bool is_mq = (rq->mq_ctx != NULL);
1069 	int error = BLKPREP_KILL;
1070 
1071 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1072 		goto err_exit;
1073 
1074 	error = scsi_init_sgtable(rq, &cmd->sdb);
1075 	if (error)
1076 		goto err_exit;
1077 
1078 	if (blk_bidi_rq(rq)) {
1079 		if (!rq->q->mq_ops) {
1080 			struct scsi_data_buffer *bidi_sdb =
1081 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1082 			if (!bidi_sdb) {
1083 				error = BLKPREP_DEFER;
1084 				goto err_exit;
1085 			}
1086 
1087 			rq->next_rq->special = bidi_sdb;
1088 		}
1089 
1090 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1091 		if (error)
1092 			goto err_exit;
1093 	}
1094 
1095 	if (blk_integrity_rq(rq)) {
1096 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1097 		int ivecs, count;
1098 
1099 		if (prot_sdb == NULL) {
1100 			/*
1101 			 * This can happen if someone (e.g. multipath)
1102 			 * queues a command to a device on an adapter
1103 			 * that does not support DIX.
1104 			 */
1105 			WARN_ON_ONCE(1);
1106 			error = BLKPREP_KILL;
1107 			goto err_exit;
1108 		}
1109 
1110 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1111 
1112 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1113 				prot_sdb->table.sgl)) {
1114 			error = BLKPREP_DEFER;
1115 			goto err_exit;
1116 		}
1117 
1118 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1119 						prot_sdb->table.sgl);
1120 		BUG_ON(unlikely(count > ivecs));
1121 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1122 
1123 		cmd->prot_sdb = prot_sdb;
1124 		cmd->prot_sdb->table.nents = count;
1125 	}
1126 
1127 	return BLKPREP_OK;
1128 err_exit:
1129 	if (is_mq) {
1130 		scsi_mq_free_sgtables(cmd);
1131 	} else {
1132 		scsi_release_buffers(cmd);
1133 		cmd->request->special = NULL;
1134 		scsi_put_command(cmd);
1135 		put_device(&sdev->sdev_gendev);
1136 	}
1137 	return error;
1138 }
1139 EXPORT_SYMBOL(scsi_init_io);
1140 
1141 /**
1142  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1143  * @rq: Request associated with the SCSI command to be initialized.
1144  *
1145  * This function initializes the members of struct scsi_cmnd that must be
1146  * initialized before request processing starts and that won't be
1147  * reinitialized if a SCSI command is requeued.
1148  *
1149  * Called from inside blk_get_request() for pass-through requests and from
1150  * inside scsi_init_command() for filesystem requests.
1151  */
1152 static void scsi_initialize_rq(struct request *rq)
1153 {
1154 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1155 
1156 	scsi_req_init(&cmd->req);
1157 	init_rcu_head(&cmd->rcu);
1158 	cmd->jiffies_at_alloc = jiffies;
1159 	cmd->retries = 0;
1160 }
1161 
1162 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1163 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1164 {
1165 	struct scsi_device *sdev = cmd->device;
1166 	struct Scsi_Host *shost = sdev->host;
1167 	unsigned long flags;
1168 
1169 	if (shost->use_cmd_list) {
1170 		spin_lock_irqsave(&sdev->list_lock, flags);
1171 		list_add_tail(&cmd->list, &sdev->cmd_list);
1172 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1173 	}
1174 }
1175 
1176 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1177 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1178 {
1179 	struct scsi_device *sdev = cmd->device;
1180 	struct Scsi_Host *shost = sdev->host;
1181 	unsigned long flags;
1182 
1183 	if (shost->use_cmd_list) {
1184 		spin_lock_irqsave(&sdev->list_lock, flags);
1185 		BUG_ON(list_empty(&cmd->list));
1186 		list_del_init(&cmd->list);
1187 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1188 	}
1189 }
1190 
1191 /* Called after a request has been started. */
1192 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1193 {
1194 	void *buf = cmd->sense_buffer;
1195 	void *prot = cmd->prot_sdb;
1196 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1197 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1198 	unsigned long jiffies_at_alloc;
1199 	int retries;
1200 
1201 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1202 		flags |= SCMD_INITIALIZED;
1203 		scsi_initialize_rq(rq);
1204 	}
1205 
1206 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1207 	retries = cmd->retries;
1208 	/* zero out the cmd, except for the embedded scsi_request */
1209 	memset((char *)cmd + sizeof(cmd->req), 0,
1210 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1211 
1212 	cmd->device = dev;
1213 	cmd->sense_buffer = buf;
1214 	cmd->prot_sdb = prot;
1215 	cmd->flags = flags;
1216 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1217 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1218 	cmd->retries = retries;
1219 
1220 	scsi_add_cmd_to_list(cmd);
1221 }
1222 
1223 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1224 {
1225 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1226 
1227 	/*
1228 	 * Passthrough requests may transfer data, in which case they must
1229 	 * a bio attached to them.  Or they might contain a SCSI command
1230 	 * that does not transfer data, in which case they may optionally
1231 	 * submit a request without an attached bio.
1232 	 */
1233 	if (req->bio) {
1234 		int ret = scsi_init_io(cmd);
1235 		if (unlikely(ret))
1236 			return ret;
1237 	} else {
1238 		BUG_ON(blk_rq_bytes(req));
1239 
1240 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1241 	}
1242 
1243 	cmd->cmd_len = scsi_req(req)->cmd_len;
1244 	cmd->cmnd = scsi_req(req)->cmd;
1245 	cmd->transfersize = blk_rq_bytes(req);
1246 	cmd->allowed = scsi_req(req)->retries;
1247 	return BLKPREP_OK;
1248 }
1249 
1250 /*
1251  * Setup a normal block command.  These are simple request from filesystems
1252  * that still need to be translated to SCSI CDBs from the ULD.
1253  */
1254 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1255 {
1256 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1257 
1258 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1259 		int ret = sdev->handler->prep_fn(sdev, req);
1260 		if (ret != BLKPREP_OK)
1261 			return ret;
1262 	}
1263 
1264 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1265 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1266 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1267 }
1268 
1269 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1270 {
1271 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1272 
1273 	if (!blk_rq_bytes(req))
1274 		cmd->sc_data_direction = DMA_NONE;
1275 	else if (rq_data_dir(req) == WRITE)
1276 		cmd->sc_data_direction = DMA_TO_DEVICE;
1277 	else
1278 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1279 
1280 	if (blk_rq_is_scsi(req))
1281 		return scsi_setup_scsi_cmnd(sdev, req);
1282 	else
1283 		return scsi_setup_fs_cmnd(sdev, req);
1284 }
1285 
1286 static int
1287 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1288 {
1289 	int ret = BLKPREP_OK;
1290 
1291 	/*
1292 	 * If the device is not in running state we will reject some
1293 	 * or all commands.
1294 	 */
1295 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1296 		switch (sdev->sdev_state) {
1297 		case SDEV_OFFLINE:
1298 		case SDEV_TRANSPORT_OFFLINE:
1299 			/*
1300 			 * If the device is offline we refuse to process any
1301 			 * commands.  The device must be brought online
1302 			 * before trying any recovery commands.
1303 			 */
1304 			sdev_printk(KERN_ERR, sdev,
1305 				    "rejecting I/O to offline device\n");
1306 			ret = BLKPREP_KILL;
1307 			break;
1308 		case SDEV_DEL:
1309 			/*
1310 			 * If the device is fully deleted, we refuse to
1311 			 * process any commands as well.
1312 			 */
1313 			sdev_printk(KERN_ERR, sdev,
1314 				    "rejecting I/O to dead device\n");
1315 			ret = BLKPREP_KILL;
1316 			break;
1317 		case SDEV_BLOCK:
1318 		case SDEV_CREATED_BLOCK:
1319 			ret = BLKPREP_DEFER;
1320 			break;
1321 		case SDEV_QUIESCE:
1322 			/*
1323 			 * If the devices is blocked we defer normal commands.
1324 			 */
1325 			if (req && !(req->rq_flags & RQF_PREEMPT))
1326 				ret = BLKPREP_DEFER;
1327 			break;
1328 		default:
1329 			/*
1330 			 * For any other not fully online state we only allow
1331 			 * special commands.  In particular any user initiated
1332 			 * command is not allowed.
1333 			 */
1334 			if (req && !(req->rq_flags & RQF_PREEMPT))
1335 				ret = BLKPREP_KILL;
1336 			break;
1337 		}
1338 	}
1339 	return ret;
1340 }
1341 
1342 static int
1343 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1344 {
1345 	struct scsi_device *sdev = q->queuedata;
1346 
1347 	switch (ret) {
1348 	case BLKPREP_KILL:
1349 	case BLKPREP_INVALID:
1350 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1351 		/* release the command and kill it */
1352 		if (req->special) {
1353 			struct scsi_cmnd *cmd = req->special;
1354 			scsi_release_buffers(cmd);
1355 			scsi_put_command(cmd);
1356 			put_device(&sdev->sdev_gendev);
1357 			req->special = NULL;
1358 		}
1359 		break;
1360 	case BLKPREP_DEFER:
1361 		/*
1362 		 * If we defer, the blk_peek_request() returns NULL, but the
1363 		 * queue must be restarted, so we schedule a callback to happen
1364 		 * shortly.
1365 		 */
1366 		if (atomic_read(&sdev->device_busy) == 0)
1367 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1368 		break;
1369 	default:
1370 		req->rq_flags |= RQF_DONTPREP;
1371 	}
1372 
1373 	return ret;
1374 }
1375 
1376 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1377 {
1378 	struct scsi_device *sdev = q->queuedata;
1379 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1380 	int ret;
1381 
1382 	ret = scsi_prep_state_check(sdev, req);
1383 	if (ret != BLKPREP_OK)
1384 		goto out;
1385 
1386 	if (!req->special) {
1387 		/* Bail if we can't get a reference to the device */
1388 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1389 			ret = BLKPREP_DEFER;
1390 			goto out;
1391 		}
1392 
1393 		scsi_init_command(sdev, cmd);
1394 		req->special = cmd;
1395 	}
1396 
1397 	cmd->tag = req->tag;
1398 	cmd->request = req;
1399 	cmd->prot_op = SCSI_PROT_NORMAL;
1400 
1401 	ret = scsi_setup_cmnd(sdev, req);
1402 out:
1403 	return scsi_prep_return(q, req, ret);
1404 }
1405 
1406 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1407 {
1408 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1409 }
1410 
1411 /*
1412  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1413  * return 0.
1414  *
1415  * Called with the queue_lock held.
1416  */
1417 static inline int scsi_dev_queue_ready(struct request_queue *q,
1418 				  struct scsi_device *sdev)
1419 {
1420 	unsigned int busy;
1421 
1422 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1423 	if (atomic_read(&sdev->device_blocked)) {
1424 		if (busy)
1425 			goto out_dec;
1426 
1427 		/*
1428 		 * unblock after device_blocked iterates to zero
1429 		 */
1430 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1431 			/*
1432 			 * For the MQ case we take care of this in the caller.
1433 			 */
1434 			if (!q->mq_ops)
1435 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1436 			goto out_dec;
1437 		}
1438 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1439 				   "unblocking device at zero depth\n"));
1440 	}
1441 
1442 	if (busy >= sdev->queue_depth)
1443 		goto out_dec;
1444 
1445 	return 1;
1446 out_dec:
1447 	atomic_dec(&sdev->device_busy);
1448 	return 0;
1449 }
1450 
1451 /*
1452  * scsi_target_queue_ready: checks if there we can send commands to target
1453  * @sdev: scsi device on starget to check.
1454  */
1455 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1456 					   struct scsi_device *sdev)
1457 {
1458 	struct scsi_target *starget = scsi_target(sdev);
1459 	unsigned int busy;
1460 
1461 	if (starget->single_lun) {
1462 		spin_lock_irq(shost->host_lock);
1463 		if (starget->starget_sdev_user &&
1464 		    starget->starget_sdev_user != sdev) {
1465 			spin_unlock_irq(shost->host_lock);
1466 			return 0;
1467 		}
1468 		starget->starget_sdev_user = sdev;
1469 		spin_unlock_irq(shost->host_lock);
1470 	}
1471 
1472 	if (starget->can_queue <= 0)
1473 		return 1;
1474 
1475 	busy = atomic_inc_return(&starget->target_busy) - 1;
1476 	if (atomic_read(&starget->target_blocked) > 0) {
1477 		if (busy)
1478 			goto starved;
1479 
1480 		/*
1481 		 * unblock after target_blocked iterates to zero
1482 		 */
1483 		if (atomic_dec_return(&starget->target_blocked) > 0)
1484 			goto out_dec;
1485 
1486 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1487 				 "unblocking target at zero depth\n"));
1488 	}
1489 
1490 	if (busy >= starget->can_queue)
1491 		goto starved;
1492 
1493 	return 1;
1494 
1495 starved:
1496 	spin_lock_irq(shost->host_lock);
1497 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1498 	spin_unlock_irq(shost->host_lock);
1499 out_dec:
1500 	if (starget->can_queue > 0)
1501 		atomic_dec(&starget->target_busy);
1502 	return 0;
1503 }
1504 
1505 /*
1506  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1507  * return 0. We must end up running the queue again whenever 0 is
1508  * returned, else IO can hang.
1509  */
1510 static inline int scsi_host_queue_ready(struct request_queue *q,
1511 				   struct Scsi_Host *shost,
1512 				   struct scsi_device *sdev)
1513 {
1514 	unsigned int busy;
1515 
1516 	if (scsi_host_in_recovery(shost))
1517 		return 0;
1518 
1519 	busy = atomic_inc_return(&shost->host_busy) - 1;
1520 	if (atomic_read(&shost->host_blocked) > 0) {
1521 		if (busy)
1522 			goto starved;
1523 
1524 		/*
1525 		 * unblock after host_blocked iterates to zero
1526 		 */
1527 		if (atomic_dec_return(&shost->host_blocked) > 0)
1528 			goto out_dec;
1529 
1530 		SCSI_LOG_MLQUEUE(3,
1531 			shost_printk(KERN_INFO, shost,
1532 				     "unblocking host at zero depth\n"));
1533 	}
1534 
1535 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1536 		goto starved;
1537 	if (shost->host_self_blocked)
1538 		goto starved;
1539 
1540 	/* We're OK to process the command, so we can't be starved */
1541 	if (!list_empty(&sdev->starved_entry)) {
1542 		spin_lock_irq(shost->host_lock);
1543 		if (!list_empty(&sdev->starved_entry))
1544 			list_del_init(&sdev->starved_entry);
1545 		spin_unlock_irq(shost->host_lock);
1546 	}
1547 
1548 	return 1;
1549 
1550 starved:
1551 	spin_lock_irq(shost->host_lock);
1552 	if (list_empty(&sdev->starved_entry))
1553 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1554 	spin_unlock_irq(shost->host_lock);
1555 out_dec:
1556 	scsi_dec_host_busy(shost);
1557 	return 0;
1558 }
1559 
1560 /*
1561  * Busy state exporting function for request stacking drivers.
1562  *
1563  * For efficiency, no lock is taken to check the busy state of
1564  * shost/starget/sdev, since the returned value is not guaranteed and
1565  * may be changed after request stacking drivers call the function,
1566  * regardless of taking lock or not.
1567  *
1568  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1569  * needs to return 'not busy'. Otherwise, request stacking drivers
1570  * may hold requests forever.
1571  */
1572 static int scsi_lld_busy(struct request_queue *q)
1573 {
1574 	struct scsi_device *sdev = q->queuedata;
1575 	struct Scsi_Host *shost;
1576 
1577 	if (blk_queue_dying(q))
1578 		return 0;
1579 
1580 	shost = sdev->host;
1581 
1582 	/*
1583 	 * Ignore host/starget busy state.
1584 	 * Since block layer does not have a concept of fairness across
1585 	 * multiple queues, congestion of host/starget needs to be handled
1586 	 * in SCSI layer.
1587 	 */
1588 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1589 		return 1;
1590 
1591 	return 0;
1592 }
1593 
1594 /*
1595  * Kill a request for a dead device
1596  */
1597 static void scsi_kill_request(struct request *req, struct request_queue *q)
1598 {
1599 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1600 	struct scsi_device *sdev;
1601 	struct scsi_target *starget;
1602 	struct Scsi_Host *shost;
1603 
1604 	blk_start_request(req);
1605 
1606 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1607 
1608 	sdev = cmd->device;
1609 	starget = scsi_target(sdev);
1610 	shost = sdev->host;
1611 	scsi_init_cmd_errh(cmd);
1612 	cmd->result = DID_NO_CONNECT << 16;
1613 	atomic_inc(&cmd->device->iorequest_cnt);
1614 
1615 	/*
1616 	 * SCSI request completion path will do scsi_device_unbusy(),
1617 	 * bump busy counts.  To bump the counters, we need to dance
1618 	 * with the locks as normal issue path does.
1619 	 */
1620 	atomic_inc(&sdev->device_busy);
1621 	atomic_inc(&shost->host_busy);
1622 	if (starget->can_queue > 0)
1623 		atomic_inc(&starget->target_busy);
1624 
1625 	blk_complete_request(req);
1626 }
1627 
1628 static void scsi_softirq_done(struct request *rq)
1629 {
1630 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1631 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1632 	int disposition;
1633 
1634 	INIT_LIST_HEAD(&cmd->eh_entry);
1635 
1636 	atomic_inc(&cmd->device->iodone_cnt);
1637 	if (cmd->result)
1638 		atomic_inc(&cmd->device->ioerr_cnt);
1639 
1640 	disposition = scsi_decide_disposition(cmd);
1641 	if (disposition != SUCCESS &&
1642 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1643 		sdev_printk(KERN_ERR, cmd->device,
1644 			    "timing out command, waited %lus\n",
1645 			    wait_for/HZ);
1646 		disposition = SUCCESS;
1647 	}
1648 
1649 	scsi_log_completion(cmd, disposition);
1650 
1651 	switch (disposition) {
1652 		case SUCCESS:
1653 			scsi_finish_command(cmd);
1654 			break;
1655 		case NEEDS_RETRY:
1656 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1657 			break;
1658 		case ADD_TO_MLQUEUE:
1659 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1660 			break;
1661 		default:
1662 			scsi_eh_scmd_add(cmd);
1663 			break;
1664 	}
1665 }
1666 
1667 /**
1668  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1669  * @cmd: command block we are dispatching.
1670  *
1671  * Return: nonzero return request was rejected and device's queue needs to be
1672  * plugged.
1673  */
1674 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1675 {
1676 	struct Scsi_Host *host = cmd->device->host;
1677 	int rtn = 0;
1678 
1679 	atomic_inc(&cmd->device->iorequest_cnt);
1680 
1681 	/* check if the device is still usable */
1682 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1683 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1684 		 * returns an immediate error upwards, and signals
1685 		 * that the device is no longer present */
1686 		cmd->result = DID_NO_CONNECT << 16;
1687 		goto done;
1688 	}
1689 
1690 	/* Check to see if the scsi lld made this device blocked. */
1691 	if (unlikely(scsi_device_blocked(cmd->device))) {
1692 		/*
1693 		 * in blocked state, the command is just put back on
1694 		 * the device queue.  The suspend state has already
1695 		 * blocked the queue so future requests should not
1696 		 * occur until the device transitions out of the
1697 		 * suspend state.
1698 		 */
1699 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1700 			"queuecommand : device blocked\n"));
1701 		return SCSI_MLQUEUE_DEVICE_BUSY;
1702 	}
1703 
1704 	/* Store the LUN value in cmnd, if needed. */
1705 	if (cmd->device->lun_in_cdb)
1706 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1707 			       (cmd->device->lun << 5 & 0xe0);
1708 
1709 	scsi_log_send(cmd);
1710 
1711 	/*
1712 	 * Before we queue this command, check if the command
1713 	 * length exceeds what the host adapter can handle.
1714 	 */
1715 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1716 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1717 			       "queuecommand : command too long. "
1718 			       "cdb_size=%d host->max_cmd_len=%d\n",
1719 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1720 		cmd->result = (DID_ABORT << 16);
1721 		goto done;
1722 	}
1723 
1724 	if (unlikely(host->shost_state == SHOST_DEL)) {
1725 		cmd->result = (DID_NO_CONNECT << 16);
1726 		goto done;
1727 
1728 	}
1729 
1730 	trace_scsi_dispatch_cmd_start(cmd);
1731 	rtn = host->hostt->queuecommand(host, cmd);
1732 	if (rtn) {
1733 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1734 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1735 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1736 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1737 
1738 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1739 			"queuecommand : request rejected\n"));
1740 	}
1741 
1742 	return rtn;
1743  done:
1744 	cmd->scsi_done(cmd);
1745 	return 0;
1746 }
1747 
1748 /**
1749  * scsi_done - Invoke completion on finished SCSI command.
1750  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1751  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1752  *
1753  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1754  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1755  * calls blk_complete_request() for further processing.
1756  *
1757  * This function is interrupt context safe.
1758  */
1759 static void scsi_done(struct scsi_cmnd *cmd)
1760 {
1761 	trace_scsi_dispatch_cmd_done(cmd);
1762 	blk_complete_request(cmd->request);
1763 }
1764 
1765 /*
1766  * Function:    scsi_request_fn()
1767  *
1768  * Purpose:     Main strategy routine for SCSI.
1769  *
1770  * Arguments:   q       - Pointer to actual queue.
1771  *
1772  * Returns:     Nothing
1773  *
1774  * Lock status: request queue lock assumed to be held when called.
1775  *
1776  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1777  * protection for ZBC disks.
1778  */
1779 static void scsi_request_fn(struct request_queue *q)
1780 	__releases(q->queue_lock)
1781 	__acquires(q->queue_lock)
1782 {
1783 	struct scsi_device *sdev = q->queuedata;
1784 	struct Scsi_Host *shost;
1785 	struct scsi_cmnd *cmd;
1786 	struct request *req;
1787 
1788 	/*
1789 	 * To start with, we keep looping until the queue is empty, or until
1790 	 * the host is no longer able to accept any more requests.
1791 	 */
1792 	shost = sdev->host;
1793 	for (;;) {
1794 		int rtn;
1795 		/*
1796 		 * get next queueable request.  We do this early to make sure
1797 		 * that the request is fully prepared even if we cannot
1798 		 * accept it.
1799 		 */
1800 		req = blk_peek_request(q);
1801 		if (!req)
1802 			break;
1803 
1804 		if (unlikely(!scsi_device_online(sdev))) {
1805 			sdev_printk(KERN_ERR, sdev,
1806 				    "rejecting I/O to offline device\n");
1807 			scsi_kill_request(req, q);
1808 			continue;
1809 		}
1810 
1811 		if (!scsi_dev_queue_ready(q, sdev))
1812 			break;
1813 
1814 		/*
1815 		 * Remove the request from the request list.
1816 		 */
1817 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1818 			blk_start_request(req);
1819 
1820 		spin_unlock_irq(q->queue_lock);
1821 		cmd = blk_mq_rq_to_pdu(req);
1822 		if (cmd != req->special) {
1823 			printk(KERN_CRIT "impossible request in %s.\n"
1824 					 "please mail a stack trace to "
1825 					 "linux-scsi@vger.kernel.org\n",
1826 					 __func__);
1827 			blk_dump_rq_flags(req, "foo");
1828 			BUG();
1829 		}
1830 
1831 		/*
1832 		 * We hit this when the driver is using a host wide
1833 		 * tag map. For device level tag maps the queue_depth check
1834 		 * in the device ready fn would prevent us from trying
1835 		 * to allocate a tag. Since the map is a shared host resource
1836 		 * we add the dev to the starved list so it eventually gets
1837 		 * a run when a tag is freed.
1838 		 */
1839 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1840 			spin_lock_irq(shost->host_lock);
1841 			if (list_empty(&sdev->starved_entry))
1842 				list_add_tail(&sdev->starved_entry,
1843 					      &shost->starved_list);
1844 			spin_unlock_irq(shost->host_lock);
1845 			goto not_ready;
1846 		}
1847 
1848 		if (!scsi_target_queue_ready(shost, sdev))
1849 			goto not_ready;
1850 
1851 		if (!scsi_host_queue_ready(q, shost, sdev))
1852 			goto host_not_ready;
1853 
1854 		if (sdev->simple_tags)
1855 			cmd->flags |= SCMD_TAGGED;
1856 		else
1857 			cmd->flags &= ~SCMD_TAGGED;
1858 
1859 		/*
1860 		 * Finally, initialize any error handling parameters, and set up
1861 		 * the timers for timeouts.
1862 		 */
1863 		scsi_init_cmd_errh(cmd);
1864 
1865 		/*
1866 		 * Dispatch the command to the low-level driver.
1867 		 */
1868 		cmd->scsi_done = scsi_done;
1869 		rtn = scsi_dispatch_cmd(cmd);
1870 		if (rtn) {
1871 			scsi_queue_insert(cmd, rtn);
1872 			spin_lock_irq(q->queue_lock);
1873 			goto out_delay;
1874 		}
1875 		spin_lock_irq(q->queue_lock);
1876 	}
1877 
1878 	return;
1879 
1880  host_not_ready:
1881 	if (scsi_target(sdev)->can_queue > 0)
1882 		atomic_dec(&scsi_target(sdev)->target_busy);
1883  not_ready:
1884 	/*
1885 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1886 	 * must return with queue_lock held.
1887 	 *
1888 	 * Decrementing device_busy without checking it is OK, as all such
1889 	 * cases (host limits or settings) should run the queue at some
1890 	 * later time.
1891 	 */
1892 	spin_lock_irq(q->queue_lock);
1893 	blk_requeue_request(q, req);
1894 	atomic_dec(&sdev->device_busy);
1895 out_delay:
1896 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1897 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1898 }
1899 
1900 static inline blk_status_t prep_to_mq(int ret)
1901 {
1902 	switch (ret) {
1903 	case BLKPREP_OK:
1904 		return BLK_STS_OK;
1905 	case BLKPREP_DEFER:
1906 		return BLK_STS_RESOURCE;
1907 	default:
1908 		return BLK_STS_IOERR;
1909 	}
1910 }
1911 
1912 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1913 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1914 {
1915 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1916 		sizeof(struct scatterlist);
1917 }
1918 
1919 static int scsi_mq_prep_fn(struct request *req)
1920 {
1921 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1922 	struct scsi_device *sdev = req->q->queuedata;
1923 	struct Scsi_Host *shost = sdev->host;
1924 	struct scatterlist *sg;
1925 
1926 	scsi_init_command(sdev, cmd);
1927 
1928 	req->special = cmd;
1929 
1930 	cmd->request = req;
1931 
1932 	cmd->tag = req->tag;
1933 	cmd->prot_op = SCSI_PROT_NORMAL;
1934 
1935 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1936 	cmd->sdb.table.sgl = sg;
1937 
1938 	if (scsi_host_get_prot(shost)) {
1939 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1940 
1941 		cmd->prot_sdb->table.sgl =
1942 			(struct scatterlist *)(cmd->prot_sdb + 1);
1943 	}
1944 
1945 	if (blk_bidi_rq(req)) {
1946 		struct request *next_rq = req->next_rq;
1947 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1948 
1949 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1950 		bidi_sdb->table.sgl =
1951 			(struct scatterlist *)(bidi_sdb + 1);
1952 
1953 		next_rq->special = bidi_sdb;
1954 	}
1955 
1956 	blk_mq_start_request(req);
1957 
1958 	return scsi_setup_cmnd(sdev, req);
1959 }
1960 
1961 static void scsi_mq_done(struct scsi_cmnd *cmd)
1962 {
1963 	trace_scsi_dispatch_cmd_done(cmd);
1964 	blk_mq_complete_request(cmd->request);
1965 }
1966 
1967 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1968 {
1969 	struct request_queue *q = hctx->queue;
1970 	struct scsi_device *sdev = q->queuedata;
1971 
1972 	atomic_dec(&sdev->device_busy);
1973 	put_device(&sdev->sdev_gendev);
1974 }
1975 
1976 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1977 {
1978 	struct request_queue *q = hctx->queue;
1979 	struct scsi_device *sdev = q->queuedata;
1980 
1981 	if (!get_device(&sdev->sdev_gendev))
1982 		goto out;
1983 	if (!scsi_dev_queue_ready(q, sdev))
1984 		goto out_put_device;
1985 
1986 	return true;
1987 
1988 out_put_device:
1989 	put_device(&sdev->sdev_gendev);
1990 out:
1991 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1992 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1993 	return false;
1994 }
1995 
1996 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1997 			 const struct blk_mq_queue_data *bd)
1998 {
1999 	struct request *req = bd->rq;
2000 	struct request_queue *q = req->q;
2001 	struct scsi_device *sdev = q->queuedata;
2002 	struct Scsi_Host *shost = sdev->host;
2003 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2004 	blk_status_t ret;
2005 	int reason;
2006 
2007 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2008 	if (ret != BLK_STS_OK)
2009 		goto out_put_budget;
2010 
2011 	ret = BLK_STS_RESOURCE;
2012 	if (!scsi_target_queue_ready(shost, sdev))
2013 		goto out_put_budget;
2014 	if (!scsi_host_queue_ready(q, shost, sdev))
2015 		goto out_dec_target_busy;
2016 
2017 	if (!(req->rq_flags & RQF_DONTPREP)) {
2018 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2019 		if (ret != BLK_STS_OK)
2020 			goto out_dec_host_busy;
2021 		req->rq_flags |= RQF_DONTPREP;
2022 	} else {
2023 		blk_mq_start_request(req);
2024 	}
2025 
2026 	if (sdev->simple_tags)
2027 		cmd->flags |= SCMD_TAGGED;
2028 	else
2029 		cmd->flags &= ~SCMD_TAGGED;
2030 
2031 	scsi_init_cmd_errh(cmd);
2032 	cmd->scsi_done = scsi_mq_done;
2033 
2034 	reason = scsi_dispatch_cmd(cmd);
2035 	if (reason) {
2036 		scsi_set_blocked(cmd, reason);
2037 		ret = BLK_STS_RESOURCE;
2038 		goto out_dec_host_busy;
2039 	}
2040 
2041 	return BLK_STS_OK;
2042 
2043 out_dec_host_busy:
2044 	scsi_dec_host_busy(shost);
2045 out_dec_target_busy:
2046 	if (scsi_target(sdev)->can_queue > 0)
2047 		atomic_dec(&scsi_target(sdev)->target_busy);
2048 out_put_budget:
2049 	scsi_mq_put_budget(hctx);
2050 	switch (ret) {
2051 	case BLK_STS_OK:
2052 		break;
2053 	case BLK_STS_RESOURCE:
2054 		if (atomic_read(&sdev->device_busy) ||
2055 		    scsi_device_blocked(sdev))
2056 			ret = BLK_STS_DEV_RESOURCE;
2057 		break;
2058 	default:
2059 		/*
2060 		 * Make sure to release all allocated ressources when
2061 		 * we hit an error, as we will never see this command
2062 		 * again.
2063 		 */
2064 		if (req->rq_flags & RQF_DONTPREP)
2065 			scsi_mq_uninit_cmd(cmd);
2066 		break;
2067 	}
2068 	return ret;
2069 }
2070 
2071 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2072 		bool reserved)
2073 {
2074 	if (reserved)
2075 		return BLK_EH_RESET_TIMER;
2076 	return scsi_times_out(req);
2077 }
2078 
2079 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2080 				unsigned int hctx_idx, unsigned int numa_node)
2081 {
2082 	struct Scsi_Host *shost = set->driver_data;
2083 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2084 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2085 	struct scatterlist *sg;
2086 
2087 	if (unchecked_isa_dma)
2088 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2089 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2090 						    GFP_KERNEL, numa_node);
2091 	if (!cmd->sense_buffer)
2092 		return -ENOMEM;
2093 	cmd->req.sense = cmd->sense_buffer;
2094 
2095 	if (scsi_host_get_prot(shost)) {
2096 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2097 			shost->hostt->cmd_size;
2098 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2099 	}
2100 
2101 	return 0;
2102 }
2103 
2104 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2105 				 unsigned int hctx_idx)
2106 {
2107 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2108 
2109 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2110 			       cmd->sense_buffer);
2111 }
2112 
2113 static int scsi_map_queues(struct blk_mq_tag_set *set)
2114 {
2115 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2116 
2117 	if (shost->hostt->map_queues)
2118 		return shost->hostt->map_queues(shost);
2119 	return blk_mq_map_queues(set);
2120 }
2121 
2122 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2123 {
2124 	struct device *host_dev;
2125 	u64 bounce_limit = 0xffffffff;
2126 
2127 	if (shost->unchecked_isa_dma)
2128 		return BLK_BOUNCE_ISA;
2129 	/*
2130 	 * Platforms with virtual-DMA translation
2131 	 * hardware have no practical limit.
2132 	 */
2133 	if (!PCI_DMA_BUS_IS_PHYS)
2134 		return BLK_BOUNCE_ANY;
2135 
2136 	host_dev = scsi_get_device(shost);
2137 	if (host_dev && host_dev->dma_mask)
2138 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2139 
2140 	return bounce_limit;
2141 }
2142 
2143 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2144 {
2145 	struct device *dev = shost->dma_dev;
2146 
2147 	queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2148 
2149 	/*
2150 	 * this limit is imposed by hardware restrictions
2151 	 */
2152 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2153 					SG_MAX_SEGMENTS));
2154 
2155 	if (scsi_host_prot_dma(shost)) {
2156 		shost->sg_prot_tablesize =
2157 			min_not_zero(shost->sg_prot_tablesize,
2158 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2159 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2160 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2161 	}
2162 
2163 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2164 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2165 	blk_queue_segment_boundary(q, shost->dma_boundary);
2166 	dma_set_seg_boundary(dev, shost->dma_boundary);
2167 
2168 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2169 
2170 	if (!shost->use_clustering)
2171 		q->limits.cluster = 0;
2172 
2173 	/*
2174 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2175 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2176 	 * which is set by the platform.
2177 	 *
2178 	 * Devices that require a bigger alignment can increase it later.
2179 	 */
2180 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2181 }
2182 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2183 
2184 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2185 			    gfp_t gfp)
2186 {
2187 	struct Scsi_Host *shost = q->rq_alloc_data;
2188 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2189 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2190 
2191 	memset(cmd, 0, sizeof(*cmd));
2192 
2193 	if (unchecked_isa_dma)
2194 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2195 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2196 						    NUMA_NO_NODE);
2197 	if (!cmd->sense_buffer)
2198 		goto fail;
2199 	cmd->req.sense = cmd->sense_buffer;
2200 
2201 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2202 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2203 		if (!cmd->prot_sdb)
2204 			goto fail_free_sense;
2205 	}
2206 
2207 	return 0;
2208 
2209 fail_free_sense:
2210 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2211 fail:
2212 	return -ENOMEM;
2213 }
2214 
2215 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2216 {
2217 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2218 
2219 	if (cmd->prot_sdb)
2220 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2221 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2222 			       cmd->sense_buffer);
2223 }
2224 
2225 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2226 {
2227 	struct Scsi_Host *shost = sdev->host;
2228 	struct request_queue *q;
2229 
2230 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2231 	if (!q)
2232 		return NULL;
2233 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2234 	q->rq_alloc_data = shost;
2235 	q->request_fn = scsi_request_fn;
2236 	q->init_rq_fn = scsi_old_init_rq;
2237 	q->exit_rq_fn = scsi_old_exit_rq;
2238 	q->initialize_rq_fn = scsi_initialize_rq;
2239 
2240 	if (blk_init_allocated_queue(q) < 0) {
2241 		blk_cleanup_queue(q);
2242 		return NULL;
2243 	}
2244 
2245 	__scsi_init_queue(shost, q);
2246 	blk_queue_prep_rq(q, scsi_prep_fn);
2247 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2248 	blk_queue_softirq_done(q, scsi_softirq_done);
2249 	blk_queue_rq_timed_out(q, scsi_times_out);
2250 	blk_queue_lld_busy(q, scsi_lld_busy);
2251 	return q;
2252 }
2253 
2254 static const struct blk_mq_ops scsi_mq_ops = {
2255 	.get_budget	= scsi_mq_get_budget,
2256 	.put_budget	= scsi_mq_put_budget,
2257 	.queue_rq	= scsi_queue_rq,
2258 	.complete	= scsi_softirq_done,
2259 	.timeout	= scsi_timeout,
2260 #ifdef CONFIG_BLK_DEBUG_FS
2261 	.show_rq	= scsi_show_rq,
2262 #endif
2263 	.init_request	= scsi_mq_init_request,
2264 	.exit_request	= scsi_mq_exit_request,
2265 	.initialize_rq_fn = scsi_initialize_rq,
2266 	.map_queues	= scsi_map_queues,
2267 };
2268 
2269 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2270 {
2271 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2272 	if (IS_ERR(sdev->request_queue))
2273 		return NULL;
2274 
2275 	sdev->request_queue->queuedata = sdev;
2276 	__scsi_init_queue(sdev->host, sdev->request_queue);
2277 	return sdev->request_queue;
2278 }
2279 
2280 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2281 {
2282 	unsigned int cmd_size, sgl_size;
2283 
2284 	sgl_size = scsi_mq_sgl_size(shost);
2285 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2286 	if (scsi_host_get_prot(shost))
2287 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2288 
2289 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2290 	shost->tag_set.ops = &scsi_mq_ops;
2291 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2292 	shost->tag_set.queue_depth = shost->can_queue;
2293 	shost->tag_set.cmd_size = cmd_size;
2294 	shost->tag_set.numa_node = NUMA_NO_NODE;
2295 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2296 	shost->tag_set.flags |=
2297 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2298 	shost->tag_set.driver_data = shost;
2299 
2300 	return blk_mq_alloc_tag_set(&shost->tag_set);
2301 }
2302 
2303 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2304 {
2305 	blk_mq_free_tag_set(&shost->tag_set);
2306 }
2307 
2308 /**
2309  * scsi_device_from_queue - return sdev associated with a request_queue
2310  * @q: The request queue to return the sdev from
2311  *
2312  * Return the sdev associated with a request queue or NULL if the
2313  * request_queue does not reference a SCSI device.
2314  */
2315 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2316 {
2317 	struct scsi_device *sdev = NULL;
2318 
2319 	if (q->mq_ops) {
2320 		if (q->mq_ops == &scsi_mq_ops)
2321 			sdev = q->queuedata;
2322 	} else if (q->request_fn == scsi_request_fn)
2323 		sdev = q->queuedata;
2324 	if (!sdev || !get_device(&sdev->sdev_gendev))
2325 		sdev = NULL;
2326 
2327 	return sdev;
2328 }
2329 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2330 
2331 /*
2332  * Function:    scsi_block_requests()
2333  *
2334  * Purpose:     Utility function used by low-level drivers to prevent further
2335  *		commands from being queued to the device.
2336  *
2337  * Arguments:   shost       - Host in question
2338  *
2339  * Returns:     Nothing
2340  *
2341  * Lock status: No locks are assumed held.
2342  *
2343  * Notes:       There is no timer nor any other means by which the requests
2344  *		get unblocked other than the low-level driver calling
2345  *		scsi_unblock_requests().
2346  */
2347 void scsi_block_requests(struct Scsi_Host *shost)
2348 {
2349 	shost->host_self_blocked = 1;
2350 }
2351 EXPORT_SYMBOL(scsi_block_requests);
2352 
2353 /*
2354  * Function:    scsi_unblock_requests()
2355  *
2356  * Purpose:     Utility function used by low-level drivers to allow further
2357  *		commands from being queued to the device.
2358  *
2359  * Arguments:   shost       - Host in question
2360  *
2361  * Returns:     Nothing
2362  *
2363  * Lock status: No locks are assumed held.
2364  *
2365  * Notes:       There is no timer nor any other means by which the requests
2366  *		get unblocked other than the low-level driver calling
2367  *		scsi_unblock_requests().
2368  *
2369  *		This is done as an API function so that changes to the
2370  *		internals of the scsi mid-layer won't require wholesale
2371  *		changes to drivers that use this feature.
2372  */
2373 void scsi_unblock_requests(struct Scsi_Host *shost)
2374 {
2375 	shost->host_self_blocked = 0;
2376 	scsi_run_host_queues(shost);
2377 }
2378 EXPORT_SYMBOL(scsi_unblock_requests);
2379 
2380 int __init scsi_init_queue(void)
2381 {
2382 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2383 					   sizeof(struct scsi_data_buffer),
2384 					   0, 0, NULL);
2385 	if (!scsi_sdb_cache) {
2386 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2387 		return -ENOMEM;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 void scsi_exit_queue(void)
2394 {
2395 	kmem_cache_destroy(scsi_sense_cache);
2396 	kmem_cache_destroy(scsi_sense_isadma_cache);
2397 	kmem_cache_destroy(scsi_sdb_cache);
2398 }
2399 
2400 /**
2401  *	scsi_mode_select - issue a mode select
2402  *	@sdev:	SCSI device to be queried
2403  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2404  *	@sp:	Save page bit (0 == don't save, 1 == save)
2405  *	@modepage: mode page being requested
2406  *	@buffer: request buffer (may not be smaller than eight bytes)
2407  *	@len:	length of request buffer.
2408  *	@timeout: command timeout
2409  *	@retries: number of retries before failing
2410  *	@data: returns a structure abstracting the mode header data
2411  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2412  *		must be SCSI_SENSE_BUFFERSIZE big.
2413  *
2414  *	Returns zero if successful; negative error number or scsi
2415  *	status on error
2416  *
2417  */
2418 int
2419 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2420 		 unsigned char *buffer, int len, int timeout, int retries,
2421 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2422 {
2423 	unsigned char cmd[10];
2424 	unsigned char *real_buffer;
2425 	int ret;
2426 
2427 	memset(cmd, 0, sizeof(cmd));
2428 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2429 
2430 	if (sdev->use_10_for_ms) {
2431 		if (len > 65535)
2432 			return -EINVAL;
2433 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2434 		if (!real_buffer)
2435 			return -ENOMEM;
2436 		memcpy(real_buffer + 8, buffer, len);
2437 		len += 8;
2438 		real_buffer[0] = 0;
2439 		real_buffer[1] = 0;
2440 		real_buffer[2] = data->medium_type;
2441 		real_buffer[3] = data->device_specific;
2442 		real_buffer[4] = data->longlba ? 0x01 : 0;
2443 		real_buffer[5] = 0;
2444 		real_buffer[6] = data->block_descriptor_length >> 8;
2445 		real_buffer[7] = data->block_descriptor_length;
2446 
2447 		cmd[0] = MODE_SELECT_10;
2448 		cmd[7] = len >> 8;
2449 		cmd[8] = len;
2450 	} else {
2451 		if (len > 255 || data->block_descriptor_length > 255 ||
2452 		    data->longlba)
2453 			return -EINVAL;
2454 
2455 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2456 		if (!real_buffer)
2457 			return -ENOMEM;
2458 		memcpy(real_buffer + 4, buffer, len);
2459 		len += 4;
2460 		real_buffer[0] = 0;
2461 		real_buffer[1] = data->medium_type;
2462 		real_buffer[2] = data->device_specific;
2463 		real_buffer[3] = data->block_descriptor_length;
2464 
2465 
2466 		cmd[0] = MODE_SELECT;
2467 		cmd[4] = len;
2468 	}
2469 
2470 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2471 			       sshdr, timeout, retries, NULL);
2472 	kfree(real_buffer);
2473 	return ret;
2474 }
2475 EXPORT_SYMBOL_GPL(scsi_mode_select);
2476 
2477 /**
2478  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2479  *	@sdev:	SCSI device to be queried
2480  *	@dbd:	set if mode sense will allow block descriptors to be returned
2481  *	@modepage: mode page being requested
2482  *	@buffer: request buffer (may not be smaller than eight bytes)
2483  *	@len:	length of request buffer.
2484  *	@timeout: command timeout
2485  *	@retries: number of retries before failing
2486  *	@data: returns a structure abstracting the mode header data
2487  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2488  *		must be SCSI_SENSE_BUFFERSIZE big.
2489  *
2490  *	Returns zero if unsuccessful, or the header offset (either 4
2491  *	or 8 depending on whether a six or ten byte command was
2492  *	issued) if successful.
2493  */
2494 int
2495 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2496 		  unsigned char *buffer, int len, int timeout, int retries,
2497 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2498 {
2499 	unsigned char cmd[12];
2500 	int use_10_for_ms;
2501 	int header_length;
2502 	int result, retry_count = retries;
2503 	struct scsi_sense_hdr my_sshdr;
2504 
2505 	memset(data, 0, sizeof(*data));
2506 	memset(&cmd[0], 0, 12);
2507 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2508 	cmd[2] = modepage;
2509 
2510 	/* caller might not be interested in sense, but we need it */
2511 	if (!sshdr)
2512 		sshdr = &my_sshdr;
2513 
2514  retry:
2515 	use_10_for_ms = sdev->use_10_for_ms;
2516 
2517 	if (use_10_for_ms) {
2518 		if (len < 8)
2519 			len = 8;
2520 
2521 		cmd[0] = MODE_SENSE_10;
2522 		cmd[8] = len;
2523 		header_length = 8;
2524 	} else {
2525 		if (len < 4)
2526 			len = 4;
2527 
2528 		cmd[0] = MODE_SENSE;
2529 		cmd[4] = len;
2530 		header_length = 4;
2531 	}
2532 
2533 	memset(buffer, 0, len);
2534 
2535 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2536 				  sshdr, timeout, retries, NULL);
2537 
2538 	/* This code looks awful: what it's doing is making sure an
2539 	 * ILLEGAL REQUEST sense return identifies the actual command
2540 	 * byte as the problem.  MODE_SENSE commands can return
2541 	 * ILLEGAL REQUEST if the code page isn't supported */
2542 
2543 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2544 	    (driver_byte(result) & DRIVER_SENSE)) {
2545 		if (scsi_sense_valid(sshdr)) {
2546 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2547 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2548 				/*
2549 				 * Invalid command operation code
2550 				 */
2551 				sdev->use_10_for_ms = 0;
2552 				goto retry;
2553 			}
2554 		}
2555 	}
2556 
2557 	if(scsi_status_is_good(result)) {
2558 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2559 			     (modepage == 6 || modepage == 8))) {
2560 			/* Initio breakage? */
2561 			header_length = 0;
2562 			data->length = 13;
2563 			data->medium_type = 0;
2564 			data->device_specific = 0;
2565 			data->longlba = 0;
2566 			data->block_descriptor_length = 0;
2567 		} else if(use_10_for_ms) {
2568 			data->length = buffer[0]*256 + buffer[1] + 2;
2569 			data->medium_type = buffer[2];
2570 			data->device_specific = buffer[3];
2571 			data->longlba = buffer[4] & 0x01;
2572 			data->block_descriptor_length = buffer[6]*256
2573 				+ buffer[7];
2574 		} else {
2575 			data->length = buffer[0] + 1;
2576 			data->medium_type = buffer[1];
2577 			data->device_specific = buffer[2];
2578 			data->block_descriptor_length = buffer[3];
2579 		}
2580 		data->header_length = header_length;
2581 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2582 		   scsi_sense_valid(sshdr) &&
2583 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2584 		retry_count--;
2585 		goto retry;
2586 	}
2587 
2588 	return result;
2589 }
2590 EXPORT_SYMBOL(scsi_mode_sense);
2591 
2592 /**
2593  *	scsi_test_unit_ready - test if unit is ready
2594  *	@sdev:	scsi device to change the state of.
2595  *	@timeout: command timeout
2596  *	@retries: number of retries before failing
2597  *	@sshdr: outpout pointer for decoded sense information.
2598  *
2599  *	Returns zero if unsuccessful or an error if TUR failed.  For
2600  *	removable media, UNIT_ATTENTION sets ->changed flag.
2601  **/
2602 int
2603 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2604 		     struct scsi_sense_hdr *sshdr)
2605 {
2606 	char cmd[] = {
2607 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2608 	};
2609 	int result;
2610 
2611 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2612 	do {
2613 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2614 					  timeout, retries, NULL);
2615 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2616 		    sshdr->sense_key == UNIT_ATTENTION)
2617 			sdev->changed = 1;
2618 	} while (scsi_sense_valid(sshdr) &&
2619 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2620 
2621 	return result;
2622 }
2623 EXPORT_SYMBOL(scsi_test_unit_ready);
2624 
2625 /**
2626  *	scsi_device_set_state - Take the given device through the device state model.
2627  *	@sdev:	scsi device to change the state of.
2628  *	@state:	state to change to.
2629  *
2630  *	Returns zero if successful or an error if the requested
2631  *	transition is illegal.
2632  */
2633 int
2634 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2635 {
2636 	enum scsi_device_state oldstate = sdev->sdev_state;
2637 
2638 	if (state == oldstate)
2639 		return 0;
2640 
2641 	switch (state) {
2642 	case SDEV_CREATED:
2643 		switch (oldstate) {
2644 		case SDEV_CREATED_BLOCK:
2645 			break;
2646 		default:
2647 			goto illegal;
2648 		}
2649 		break;
2650 
2651 	case SDEV_RUNNING:
2652 		switch (oldstate) {
2653 		case SDEV_CREATED:
2654 		case SDEV_OFFLINE:
2655 		case SDEV_TRANSPORT_OFFLINE:
2656 		case SDEV_QUIESCE:
2657 		case SDEV_BLOCK:
2658 			break;
2659 		default:
2660 			goto illegal;
2661 		}
2662 		break;
2663 
2664 	case SDEV_QUIESCE:
2665 		switch (oldstate) {
2666 		case SDEV_RUNNING:
2667 		case SDEV_OFFLINE:
2668 		case SDEV_TRANSPORT_OFFLINE:
2669 			break;
2670 		default:
2671 			goto illegal;
2672 		}
2673 		break;
2674 
2675 	case SDEV_OFFLINE:
2676 	case SDEV_TRANSPORT_OFFLINE:
2677 		switch (oldstate) {
2678 		case SDEV_CREATED:
2679 		case SDEV_RUNNING:
2680 		case SDEV_QUIESCE:
2681 		case SDEV_BLOCK:
2682 			break;
2683 		default:
2684 			goto illegal;
2685 		}
2686 		break;
2687 
2688 	case SDEV_BLOCK:
2689 		switch (oldstate) {
2690 		case SDEV_RUNNING:
2691 		case SDEV_CREATED_BLOCK:
2692 			break;
2693 		default:
2694 			goto illegal;
2695 		}
2696 		break;
2697 
2698 	case SDEV_CREATED_BLOCK:
2699 		switch (oldstate) {
2700 		case SDEV_CREATED:
2701 			break;
2702 		default:
2703 			goto illegal;
2704 		}
2705 		break;
2706 
2707 	case SDEV_CANCEL:
2708 		switch (oldstate) {
2709 		case SDEV_CREATED:
2710 		case SDEV_RUNNING:
2711 		case SDEV_QUIESCE:
2712 		case SDEV_OFFLINE:
2713 		case SDEV_TRANSPORT_OFFLINE:
2714 			break;
2715 		default:
2716 			goto illegal;
2717 		}
2718 		break;
2719 
2720 	case SDEV_DEL:
2721 		switch (oldstate) {
2722 		case SDEV_CREATED:
2723 		case SDEV_RUNNING:
2724 		case SDEV_OFFLINE:
2725 		case SDEV_TRANSPORT_OFFLINE:
2726 		case SDEV_CANCEL:
2727 		case SDEV_BLOCK:
2728 		case SDEV_CREATED_BLOCK:
2729 			break;
2730 		default:
2731 			goto illegal;
2732 		}
2733 		break;
2734 
2735 	}
2736 	sdev->sdev_state = state;
2737 	return 0;
2738 
2739  illegal:
2740 	SCSI_LOG_ERROR_RECOVERY(1,
2741 				sdev_printk(KERN_ERR, sdev,
2742 					    "Illegal state transition %s->%s",
2743 					    scsi_device_state_name(oldstate),
2744 					    scsi_device_state_name(state))
2745 				);
2746 	return -EINVAL;
2747 }
2748 EXPORT_SYMBOL(scsi_device_set_state);
2749 
2750 /**
2751  * 	sdev_evt_emit - emit a single SCSI device uevent
2752  *	@sdev: associated SCSI device
2753  *	@evt: event to emit
2754  *
2755  *	Send a single uevent (scsi_event) to the associated scsi_device.
2756  */
2757 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2758 {
2759 	int idx = 0;
2760 	char *envp[3];
2761 
2762 	switch (evt->evt_type) {
2763 	case SDEV_EVT_MEDIA_CHANGE:
2764 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2765 		break;
2766 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2767 		scsi_rescan_device(&sdev->sdev_gendev);
2768 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2769 		break;
2770 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2771 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2772 		break;
2773 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2774 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2775 		break;
2776 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2777 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2778 		break;
2779 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2780 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2781 		break;
2782 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2783 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2784 		break;
2785 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2786 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2787 		break;
2788 	default:
2789 		/* do nothing */
2790 		break;
2791 	}
2792 
2793 	envp[idx++] = NULL;
2794 
2795 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2796 }
2797 
2798 /**
2799  * 	sdev_evt_thread - send a uevent for each scsi event
2800  *	@work: work struct for scsi_device
2801  *
2802  *	Dispatch queued events to their associated scsi_device kobjects
2803  *	as uevents.
2804  */
2805 void scsi_evt_thread(struct work_struct *work)
2806 {
2807 	struct scsi_device *sdev;
2808 	enum scsi_device_event evt_type;
2809 	LIST_HEAD(event_list);
2810 
2811 	sdev = container_of(work, struct scsi_device, event_work);
2812 
2813 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2814 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2815 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2816 
2817 	while (1) {
2818 		struct scsi_event *evt;
2819 		struct list_head *this, *tmp;
2820 		unsigned long flags;
2821 
2822 		spin_lock_irqsave(&sdev->list_lock, flags);
2823 		list_splice_init(&sdev->event_list, &event_list);
2824 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2825 
2826 		if (list_empty(&event_list))
2827 			break;
2828 
2829 		list_for_each_safe(this, tmp, &event_list) {
2830 			evt = list_entry(this, struct scsi_event, node);
2831 			list_del(&evt->node);
2832 			scsi_evt_emit(sdev, evt);
2833 			kfree(evt);
2834 		}
2835 	}
2836 }
2837 
2838 /**
2839  * 	sdev_evt_send - send asserted event to uevent thread
2840  *	@sdev: scsi_device event occurred on
2841  *	@evt: event to send
2842  *
2843  *	Assert scsi device event asynchronously.
2844  */
2845 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2846 {
2847 	unsigned long flags;
2848 
2849 #if 0
2850 	/* FIXME: currently this check eliminates all media change events
2851 	 * for polled devices.  Need to update to discriminate between AN
2852 	 * and polled events */
2853 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2854 		kfree(evt);
2855 		return;
2856 	}
2857 #endif
2858 
2859 	spin_lock_irqsave(&sdev->list_lock, flags);
2860 	list_add_tail(&evt->node, &sdev->event_list);
2861 	schedule_work(&sdev->event_work);
2862 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2863 }
2864 EXPORT_SYMBOL_GPL(sdev_evt_send);
2865 
2866 /**
2867  * 	sdev_evt_alloc - allocate a new scsi event
2868  *	@evt_type: type of event to allocate
2869  *	@gfpflags: GFP flags for allocation
2870  *
2871  *	Allocates and returns a new scsi_event.
2872  */
2873 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2874 				  gfp_t gfpflags)
2875 {
2876 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2877 	if (!evt)
2878 		return NULL;
2879 
2880 	evt->evt_type = evt_type;
2881 	INIT_LIST_HEAD(&evt->node);
2882 
2883 	/* evt_type-specific initialization, if any */
2884 	switch (evt_type) {
2885 	case SDEV_EVT_MEDIA_CHANGE:
2886 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2887 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2888 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2889 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2890 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2891 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2892 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2893 	default:
2894 		/* do nothing */
2895 		break;
2896 	}
2897 
2898 	return evt;
2899 }
2900 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2901 
2902 /**
2903  * 	sdev_evt_send_simple - send asserted event to uevent thread
2904  *	@sdev: scsi_device event occurred on
2905  *	@evt_type: type of event to send
2906  *	@gfpflags: GFP flags for allocation
2907  *
2908  *	Assert scsi device event asynchronously, given an event type.
2909  */
2910 void sdev_evt_send_simple(struct scsi_device *sdev,
2911 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2912 {
2913 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2914 	if (!evt) {
2915 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2916 			    evt_type);
2917 		return;
2918 	}
2919 
2920 	sdev_evt_send(sdev, evt);
2921 }
2922 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2923 
2924 /**
2925  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2926  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2927  */
2928 static int scsi_request_fn_active(struct scsi_device *sdev)
2929 {
2930 	struct request_queue *q = sdev->request_queue;
2931 	int request_fn_active;
2932 
2933 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2934 
2935 	spin_lock_irq(q->queue_lock);
2936 	request_fn_active = q->request_fn_active;
2937 	spin_unlock_irq(q->queue_lock);
2938 
2939 	return request_fn_active;
2940 }
2941 
2942 /**
2943  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2944  * @sdev: SCSI device pointer.
2945  *
2946  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2947  * invoked from scsi_request_fn() have finished.
2948  */
2949 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2950 {
2951 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2952 
2953 	while (scsi_request_fn_active(sdev))
2954 		msleep(20);
2955 }
2956 
2957 /**
2958  *	scsi_device_quiesce - Block user issued commands.
2959  *	@sdev:	scsi device to quiesce.
2960  *
2961  *	This works by trying to transition to the SDEV_QUIESCE state
2962  *	(which must be a legal transition).  When the device is in this
2963  *	state, only special requests will be accepted, all others will
2964  *	be deferred.  Since special requests may also be requeued requests,
2965  *	a successful return doesn't guarantee the device will be
2966  *	totally quiescent.
2967  *
2968  *	Must be called with user context, may sleep.
2969  *
2970  *	Returns zero if unsuccessful or an error if not.
2971  */
2972 int
2973 scsi_device_quiesce(struct scsi_device *sdev)
2974 {
2975 	struct request_queue *q = sdev->request_queue;
2976 	int err;
2977 
2978 	/*
2979 	 * It is allowed to call scsi_device_quiesce() multiple times from
2980 	 * the same context but concurrent scsi_device_quiesce() calls are
2981 	 * not allowed.
2982 	 */
2983 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2984 
2985 	blk_set_preempt_only(q);
2986 
2987 	blk_mq_freeze_queue(q);
2988 	/*
2989 	 * Ensure that the effect of blk_set_preempt_only() will be visible
2990 	 * for percpu_ref_tryget() callers that occur after the queue
2991 	 * unfreeze even if the queue was already frozen before this function
2992 	 * was called. See also https://lwn.net/Articles/573497/.
2993 	 */
2994 	synchronize_rcu();
2995 	blk_mq_unfreeze_queue(q);
2996 
2997 	mutex_lock(&sdev->state_mutex);
2998 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2999 	if (err == 0)
3000 		sdev->quiesced_by = current;
3001 	else
3002 		blk_clear_preempt_only(q);
3003 	mutex_unlock(&sdev->state_mutex);
3004 
3005 	return err;
3006 }
3007 EXPORT_SYMBOL(scsi_device_quiesce);
3008 
3009 /**
3010  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3011  *	@sdev:	scsi device to resume.
3012  *
3013  *	Moves the device from quiesced back to running and restarts the
3014  *	queues.
3015  *
3016  *	Must be called with user context, may sleep.
3017  */
3018 void scsi_device_resume(struct scsi_device *sdev)
3019 {
3020 	/* check if the device state was mutated prior to resume, and if
3021 	 * so assume the state is being managed elsewhere (for example
3022 	 * device deleted during suspend)
3023 	 */
3024 	mutex_lock(&sdev->state_mutex);
3025 	WARN_ON_ONCE(!sdev->quiesced_by);
3026 	sdev->quiesced_by = NULL;
3027 	blk_clear_preempt_only(sdev->request_queue);
3028 	if (sdev->sdev_state == SDEV_QUIESCE)
3029 		scsi_device_set_state(sdev, SDEV_RUNNING);
3030 	mutex_unlock(&sdev->state_mutex);
3031 }
3032 EXPORT_SYMBOL(scsi_device_resume);
3033 
3034 static void
3035 device_quiesce_fn(struct scsi_device *sdev, void *data)
3036 {
3037 	scsi_device_quiesce(sdev);
3038 }
3039 
3040 void
3041 scsi_target_quiesce(struct scsi_target *starget)
3042 {
3043 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3044 }
3045 EXPORT_SYMBOL(scsi_target_quiesce);
3046 
3047 static void
3048 device_resume_fn(struct scsi_device *sdev, void *data)
3049 {
3050 	scsi_device_resume(sdev);
3051 }
3052 
3053 void
3054 scsi_target_resume(struct scsi_target *starget)
3055 {
3056 	starget_for_each_device(starget, NULL, device_resume_fn);
3057 }
3058 EXPORT_SYMBOL(scsi_target_resume);
3059 
3060 /**
3061  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3062  * @sdev: device to block
3063  *
3064  * Pause SCSI command processing on the specified device. Does not sleep.
3065  *
3066  * Returns zero if successful or a negative error code upon failure.
3067  *
3068  * Notes:
3069  * This routine transitions the device to the SDEV_BLOCK state (which must be
3070  * a legal transition). When the device is in this state, command processing
3071  * is paused until the device leaves the SDEV_BLOCK state. See also
3072  * scsi_internal_device_unblock_nowait().
3073  */
3074 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3075 {
3076 	struct request_queue *q = sdev->request_queue;
3077 	unsigned long flags;
3078 	int err = 0;
3079 
3080 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3081 	if (err) {
3082 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3083 
3084 		if (err)
3085 			return err;
3086 	}
3087 
3088 	/*
3089 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3090 	 * block layer from calling the midlayer with this device's
3091 	 * request queue.
3092 	 */
3093 	if (q->mq_ops) {
3094 		blk_mq_quiesce_queue_nowait(q);
3095 	} else {
3096 		spin_lock_irqsave(q->queue_lock, flags);
3097 		blk_stop_queue(q);
3098 		spin_unlock_irqrestore(q->queue_lock, flags);
3099 	}
3100 
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3104 
3105 /**
3106  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3107  * @sdev: device to block
3108  *
3109  * Pause SCSI command processing on the specified device and wait until all
3110  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3111  *
3112  * Returns zero if successful or a negative error code upon failure.
3113  *
3114  * Note:
3115  * This routine transitions the device to the SDEV_BLOCK state (which must be
3116  * a legal transition). When the device is in this state, command processing
3117  * is paused until the device leaves the SDEV_BLOCK state. See also
3118  * scsi_internal_device_unblock().
3119  *
3120  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3121  * scsi_internal_device_block() has blocked a SCSI device and also
3122  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3123  */
3124 static int scsi_internal_device_block(struct scsi_device *sdev)
3125 {
3126 	struct request_queue *q = sdev->request_queue;
3127 	int err;
3128 
3129 	mutex_lock(&sdev->state_mutex);
3130 	err = scsi_internal_device_block_nowait(sdev);
3131 	if (err == 0) {
3132 		if (q->mq_ops)
3133 			blk_mq_quiesce_queue(q);
3134 		else
3135 			scsi_wait_for_queuecommand(sdev);
3136 	}
3137 	mutex_unlock(&sdev->state_mutex);
3138 
3139 	return err;
3140 }
3141 
3142 void scsi_start_queue(struct scsi_device *sdev)
3143 {
3144 	struct request_queue *q = sdev->request_queue;
3145 	unsigned long flags;
3146 
3147 	if (q->mq_ops) {
3148 		blk_mq_unquiesce_queue(q);
3149 	} else {
3150 		spin_lock_irqsave(q->queue_lock, flags);
3151 		blk_start_queue(q);
3152 		spin_unlock_irqrestore(q->queue_lock, flags);
3153 	}
3154 }
3155 
3156 /**
3157  * scsi_internal_device_unblock_nowait - resume a device after a block request
3158  * @sdev:	device to resume
3159  * @new_state:	state to set the device to after unblocking
3160  *
3161  * Restart the device queue for a previously suspended SCSI device. Does not
3162  * sleep.
3163  *
3164  * Returns zero if successful or a negative error code upon failure.
3165  *
3166  * Notes:
3167  * This routine transitions the device to the SDEV_RUNNING state or to one of
3168  * the offline states (which must be a legal transition) allowing the midlayer
3169  * to goose the queue for this device.
3170  */
3171 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3172 					enum scsi_device_state new_state)
3173 {
3174 	/*
3175 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3176 	 * offlined states and goose the device queue if successful.
3177 	 */
3178 	switch (sdev->sdev_state) {
3179 	case SDEV_BLOCK:
3180 	case SDEV_TRANSPORT_OFFLINE:
3181 		sdev->sdev_state = new_state;
3182 		break;
3183 	case SDEV_CREATED_BLOCK:
3184 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3185 		    new_state == SDEV_OFFLINE)
3186 			sdev->sdev_state = new_state;
3187 		else
3188 			sdev->sdev_state = SDEV_CREATED;
3189 		break;
3190 	case SDEV_CANCEL:
3191 	case SDEV_OFFLINE:
3192 		break;
3193 	default:
3194 		return -EINVAL;
3195 	}
3196 	scsi_start_queue(sdev);
3197 
3198 	return 0;
3199 }
3200 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3201 
3202 /**
3203  * scsi_internal_device_unblock - resume a device after a block request
3204  * @sdev:	device to resume
3205  * @new_state:	state to set the device to after unblocking
3206  *
3207  * Restart the device queue for a previously suspended SCSI device. May sleep.
3208  *
3209  * Returns zero if successful or a negative error code upon failure.
3210  *
3211  * Notes:
3212  * This routine transitions the device to the SDEV_RUNNING state or to one of
3213  * the offline states (which must be a legal transition) allowing the midlayer
3214  * to goose the queue for this device.
3215  */
3216 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3217 					enum scsi_device_state new_state)
3218 {
3219 	int ret;
3220 
3221 	mutex_lock(&sdev->state_mutex);
3222 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3223 	mutex_unlock(&sdev->state_mutex);
3224 
3225 	return ret;
3226 }
3227 
3228 static void
3229 device_block(struct scsi_device *sdev, void *data)
3230 {
3231 	scsi_internal_device_block(sdev);
3232 }
3233 
3234 static int
3235 target_block(struct device *dev, void *data)
3236 {
3237 	if (scsi_is_target_device(dev))
3238 		starget_for_each_device(to_scsi_target(dev), NULL,
3239 					device_block);
3240 	return 0;
3241 }
3242 
3243 void
3244 scsi_target_block(struct device *dev)
3245 {
3246 	if (scsi_is_target_device(dev))
3247 		starget_for_each_device(to_scsi_target(dev), NULL,
3248 					device_block);
3249 	else
3250 		device_for_each_child(dev, NULL, target_block);
3251 }
3252 EXPORT_SYMBOL_GPL(scsi_target_block);
3253 
3254 static void
3255 device_unblock(struct scsi_device *sdev, void *data)
3256 {
3257 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3258 }
3259 
3260 static int
3261 target_unblock(struct device *dev, void *data)
3262 {
3263 	if (scsi_is_target_device(dev))
3264 		starget_for_each_device(to_scsi_target(dev), data,
3265 					device_unblock);
3266 	return 0;
3267 }
3268 
3269 void
3270 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3271 {
3272 	if (scsi_is_target_device(dev))
3273 		starget_for_each_device(to_scsi_target(dev), &new_state,
3274 					device_unblock);
3275 	else
3276 		device_for_each_child(dev, &new_state, target_unblock);
3277 }
3278 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3279 
3280 /**
3281  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3282  * @sgl:	scatter-gather list
3283  * @sg_count:	number of segments in sg
3284  * @offset:	offset in bytes into sg, on return offset into the mapped area
3285  * @len:	bytes to map, on return number of bytes mapped
3286  *
3287  * Returns virtual address of the start of the mapped page
3288  */
3289 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3290 			  size_t *offset, size_t *len)
3291 {
3292 	int i;
3293 	size_t sg_len = 0, len_complete = 0;
3294 	struct scatterlist *sg;
3295 	struct page *page;
3296 
3297 	WARN_ON(!irqs_disabled());
3298 
3299 	for_each_sg(sgl, sg, sg_count, i) {
3300 		len_complete = sg_len; /* Complete sg-entries */
3301 		sg_len += sg->length;
3302 		if (sg_len > *offset)
3303 			break;
3304 	}
3305 
3306 	if (unlikely(i == sg_count)) {
3307 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3308 			"elements %d\n",
3309 		       __func__, sg_len, *offset, sg_count);
3310 		WARN_ON(1);
3311 		return NULL;
3312 	}
3313 
3314 	/* Offset starting from the beginning of first page in this sg-entry */
3315 	*offset = *offset - len_complete + sg->offset;
3316 
3317 	/* Assumption: contiguous pages can be accessed as "page + i" */
3318 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3319 	*offset &= ~PAGE_MASK;
3320 
3321 	/* Bytes in this sg-entry from *offset to the end of the page */
3322 	sg_len = PAGE_SIZE - *offset;
3323 	if (*len > sg_len)
3324 		*len = sg_len;
3325 
3326 	return kmap_atomic(page);
3327 }
3328 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3329 
3330 /**
3331  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3332  * @virt:	virtual address to be unmapped
3333  */
3334 void scsi_kunmap_atomic_sg(void *virt)
3335 {
3336 	kunmap_atomic(virt);
3337 }
3338 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3339 
3340 void sdev_disable_disk_events(struct scsi_device *sdev)
3341 {
3342 	atomic_inc(&sdev->disk_events_disable_depth);
3343 }
3344 EXPORT_SYMBOL(sdev_disable_disk_events);
3345 
3346 void sdev_enable_disk_events(struct scsi_device *sdev)
3347 {
3348 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3349 		return;
3350 	atomic_dec(&sdev->disk_events_disable_depth);
3351 }
3352 EXPORT_SYMBOL(sdev_enable_disk_events);
3353 
3354 /**
3355  * scsi_vpd_lun_id - return a unique device identification
3356  * @sdev: SCSI device
3357  * @id:   buffer for the identification
3358  * @id_len:  length of the buffer
3359  *
3360  * Copies a unique device identification into @id based
3361  * on the information in the VPD page 0x83 of the device.
3362  * The string will be formatted as a SCSI name string.
3363  *
3364  * Returns the length of the identification or error on failure.
3365  * If the identifier is longer than the supplied buffer the actual
3366  * identifier length is returned and the buffer is not zero-padded.
3367  */
3368 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3369 {
3370 	u8 cur_id_type = 0xff;
3371 	u8 cur_id_size = 0;
3372 	const unsigned char *d, *cur_id_str;
3373 	const struct scsi_vpd *vpd_pg83;
3374 	int id_size = -EINVAL;
3375 
3376 	rcu_read_lock();
3377 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3378 	if (!vpd_pg83) {
3379 		rcu_read_unlock();
3380 		return -ENXIO;
3381 	}
3382 
3383 	/*
3384 	 * Look for the correct descriptor.
3385 	 * Order of preference for lun descriptor:
3386 	 * - SCSI name string
3387 	 * - NAA IEEE Registered Extended
3388 	 * - EUI-64 based 16-byte
3389 	 * - EUI-64 based 12-byte
3390 	 * - NAA IEEE Registered
3391 	 * - NAA IEEE Extended
3392 	 * - T10 Vendor ID
3393 	 * as longer descriptors reduce the likelyhood
3394 	 * of identification clashes.
3395 	 */
3396 
3397 	/* The id string must be at least 20 bytes + terminating NULL byte */
3398 	if (id_len < 21) {
3399 		rcu_read_unlock();
3400 		return -EINVAL;
3401 	}
3402 
3403 	memset(id, 0, id_len);
3404 	d = vpd_pg83->data + 4;
3405 	while (d < vpd_pg83->data + vpd_pg83->len) {
3406 		/* Skip designators not referring to the LUN */
3407 		if ((d[1] & 0x30) != 0x00)
3408 			goto next_desig;
3409 
3410 		switch (d[1] & 0xf) {
3411 		case 0x1:
3412 			/* T10 Vendor ID */
3413 			if (cur_id_size > d[3])
3414 				break;
3415 			/* Prefer anything */
3416 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3417 				break;
3418 			cur_id_size = d[3];
3419 			if (cur_id_size + 4 > id_len)
3420 				cur_id_size = id_len - 4;
3421 			cur_id_str = d + 4;
3422 			cur_id_type = d[1] & 0xf;
3423 			id_size = snprintf(id, id_len, "t10.%*pE",
3424 					   cur_id_size, cur_id_str);
3425 			break;
3426 		case 0x2:
3427 			/* EUI-64 */
3428 			if (cur_id_size > d[3])
3429 				break;
3430 			/* Prefer NAA IEEE Registered Extended */
3431 			if (cur_id_type == 0x3 &&
3432 			    cur_id_size == d[3])
3433 				break;
3434 			cur_id_size = d[3];
3435 			cur_id_str = d + 4;
3436 			cur_id_type = d[1] & 0xf;
3437 			switch (cur_id_size) {
3438 			case 8:
3439 				id_size = snprintf(id, id_len,
3440 						   "eui.%8phN",
3441 						   cur_id_str);
3442 				break;
3443 			case 12:
3444 				id_size = snprintf(id, id_len,
3445 						   "eui.%12phN",
3446 						   cur_id_str);
3447 				break;
3448 			case 16:
3449 				id_size = snprintf(id, id_len,
3450 						   "eui.%16phN",
3451 						   cur_id_str);
3452 				break;
3453 			default:
3454 				cur_id_size = 0;
3455 				break;
3456 			}
3457 			break;
3458 		case 0x3:
3459 			/* NAA */
3460 			if (cur_id_size > d[3])
3461 				break;
3462 			cur_id_size = d[3];
3463 			cur_id_str = d + 4;
3464 			cur_id_type = d[1] & 0xf;
3465 			switch (cur_id_size) {
3466 			case 8:
3467 				id_size = snprintf(id, id_len,
3468 						   "naa.%8phN",
3469 						   cur_id_str);
3470 				break;
3471 			case 16:
3472 				id_size = snprintf(id, id_len,
3473 						   "naa.%16phN",
3474 						   cur_id_str);
3475 				break;
3476 			default:
3477 				cur_id_size = 0;
3478 				break;
3479 			}
3480 			break;
3481 		case 0x8:
3482 			/* SCSI name string */
3483 			if (cur_id_size + 4 > d[3])
3484 				break;
3485 			/* Prefer others for truncated descriptor */
3486 			if (cur_id_size && d[3] > id_len)
3487 				break;
3488 			cur_id_size = id_size = d[3];
3489 			cur_id_str = d + 4;
3490 			cur_id_type = d[1] & 0xf;
3491 			if (cur_id_size >= id_len)
3492 				cur_id_size = id_len - 1;
3493 			memcpy(id, cur_id_str, cur_id_size);
3494 			/* Decrease priority for truncated descriptor */
3495 			if (cur_id_size != id_size)
3496 				cur_id_size = 6;
3497 			break;
3498 		default:
3499 			break;
3500 		}
3501 next_desig:
3502 		d += d[3] + 4;
3503 	}
3504 	rcu_read_unlock();
3505 
3506 	return id_size;
3507 }
3508 EXPORT_SYMBOL(scsi_vpd_lun_id);
3509 
3510 /*
3511  * scsi_vpd_tpg_id - return a target port group identifier
3512  * @sdev: SCSI device
3513  *
3514  * Returns the Target Port Group identifier from the information
3515  * froom VPD page 0x83 of the device.
3516  *
3517  * Returns the identifier or error on failure.
3518  */
3519 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3520 {
3521 	const unsigned char *d;
3522 	const struct scsi_vpd *vpd_pg83;
3523 	int group_id = -EAGAIN, rel_port = -1;
3524 
3525 	rcu_read_lock();
3526 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3527 	if (!vpd_pg83) {
3528 		rcu_read_unlock();
3529 		return -ENXIO;
3530 	}
3531 
3532 	d = vpd_pg83->data + 4;
3533 	while (d < vpd_pg83->data + vpd_pg83->len) {
3534 		switch (d[1] & 0xf) {
3535 		case 0x4:
3536 			/* Relative target port */
3537 			rel_port = get_unaligned_be16(&d[6]);
3538 			break;
3539 		case 0x5:
3540 			/* Target port group */
3541 			group_id = get_unaligned_be16(&d[6]);
3542 			break;
3543 		default:
3544 			break;
3545 		}
3546 		d += d[3] + 4;
3547 	}
3548 	rcu_read_unlock();
3549 
3550 	if (group_id >= 0 && rel_id && rel_port != -1)
3551 		*rel_id = rel_port;
3552 
3553 	return group_id;
3554 }
3555 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3556