xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 	if (IS_ERR(req))
254 		return ret;
255 	rq = scsi_req(req);
256 
257 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
258 					buffer, bufflen, GFP_NOIO))
259 		goto out;
260 
261 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 	memcpy(rq->cmd, cmd, rq->cmd_len);
263 	rq->retries = retries;
264 	req->timeout = timeout;
265 	req->cmd_flags |= flags;
266 	req->rq_flags |= rq_flags | RQF_QUIET;
267 
268 	/*
269 	 * head injection *required* here otherwise quiesce won't work
270 	 */
271 	blk_execute_rq(req->q, NULL, req, 1);
272 
273 	/*
274 	 * Some devices (USB mass-storage in particular) may transfer
275 	 * garbage data together with a residue indicating that the data
276 	 * is invalid.  Prevent the garbage from being misinterpreted
277 	 * and prevent security leaks by zeroing out the excess data.
278 	 */
279 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281 
282 	if (resid)
283 		*resid = rq->resid_len;
284 	if (sense && rq->sense_len)
285 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 	if (sshdr)
287 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 	ret = rq->result;
289  out:
290 	blk_put_request(req);
291 
292 	return ret;
293 }
294 EXPORT_SYMBOL(__scsi_execute);
295 
296 /*
297  * Wake up the error handler if necessary. Avoid as follows that the error
298  * handler is not woken up if host in-flight requests number ==
299  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
300  * with an RCU read lock in this function to ensure that this function in
301  * its entirety either finishes before scsi_eh_scmd_add() increases the
302  * host_failed counter or that it notices the shost state change made by
303  * scsi_eh_scmd_add().
304  */
305 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
306 {
307 	unsigned long flags;
308 
309 	rcu_read_lock();
310 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
311 	if (unlikely(scsi_host_in_recovery(shost))) {
312 		spin_lock_irqsave(shost->host_lock, flags);
313 		if (shost->host_failed || shost->host_eh_scheduled)
314 			scsi_eh_wakeup(shost);
315 		spin_unlock_irqrestore(shost->host_lock, flags);
316 	}
317 	rcu_read_unlock();
318 }
319 
320 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
321 {
322 	struct Scsi_Host *shost = sdev->host;
323 	struct scsi_target *starget = scsi_target(sdev);
324 
325 	scsi_dec_host_busy(shost, cmd);
326 
327 	if (starget->can_queue > 0)
328 		atomic_dec(&starget->target_busy);
329 
330 	atomic_dec(&sdev->device_busy);
331 }
332 
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 	blk_mq_run_hw_queues(q, false);
336 }
337 
338 /*
339  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
340  * and call blk_run_queue for all the scsi_devices on the target -
341  * including current_sdev first.
342  *
343  * Called with *no* scsi locks held.
344  */
345 static void scsi_single_lun_run(struct scsi_device *current_sdev)
346 {
347 	struct Scsi_Host *shost = current_sdev->host;
348 	struct scsi_device *sdev, *tmp;
349 	struct scsi_target *starget = scsi_target(current_sdev);
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(shost->host_lock, flags);
353 	starget->starget_sdev_user = NULL;
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 
356 	/*
357 	 * Call blk_run_queue for all LUNs on the target, starting with
358 	 * current_sdev. We race with others (to set starget_sdev_user),
359 	 * but in most cases, we will be first. Ideally, each LU on the
360 	 * target would get some limited time or requests on the target.
361 	 */
362 	scsi_kick_queue(current_sdev->request_queue);
363 
364 	spin_lock_irqsave(shost->host_lock, flags);
365 	if (starget->starget_sdev_user)
366 		goto out;
367 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
368 			same_target_siblings) {
369 		if (sdev == current_sdev)
370 			continue;
371 		if (scsi_device_get(sdev))
372 			continue;
373 
374 		spin_unlock_irqrestore(shost->host_lock, flags);
375 		scsi_kick_queue(sdev->request_queue);
376 		spin_lock_irqsave(shost->host_lock, flags);
377 
378 		scsi_device_put(sdev);
379 	}
380  out:
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 }
383 
384 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
385 {
386 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
387 		return true;
388 	if (atomic_read(&sdev->device_blocked) > 0)
389 		return true;
390 	return false;
391 }
392 
393 static inline bool scsi_target_is_busy(struct scsi_target *starget)
394 {
395 	if (starget->can_queue > 0) {
396 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
397 			return true;
398 		if (atomic_read(&starget->target_blocked) > 0)
399 			return true;
400 	}
401 	return false;
402 }
403 
404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
405 {
406 	if (atomic_read(&shost->host_blocked) > 0)
407 		return true;
408 	if (shost->host_self_blocked)
409 		return true;
410 	return false;
411 }
412 
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 	LIST_HEAD(starved_list);
416 	struct scsi_device *sdev;
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(shost->host_lock, flags);
420 	list_splice_init(&shost->starved_list, &starved_list);
421 
422 	while (!list_empty(&starved_list)) {
423 		struct request_queue *slq;
424 
425 		/*
426 		 * As long as shost is accepting commands and we have
427 		 * starved queues, call blk_run_queue. scsi_request_fn
428 		 * drops the queue_lock and can add us back to the
429 		 * starved_list.
430 		 *
431 		 * host_lock protects the starved_list and starved_entry.
432 		 * scsi_request_fn must get the host_lock before checking
433 		 * or modifying starved_list or starved_entry.
434 		 */
435 		if (scsi_host_is_busy(shost))
436 			break;
437 
438 		sdev = list_entry(starved_list.next,
439 				  struct scsi_device, starved_entry);
440 		list_del_init(&sdev->starved_entry);
441 		if (scsi_target_is_busy(scsi_target(sdev))) {
442 			list_move_tail(&sdev->starved_entry,
443 				       &shost->starved_list);
444 			continue;
445 		}
446 
447 		/*
448 		 * Once we drop the host lock, a racing scsi_remove_device()
449 		 * call may remove the sdev from the starved list and destroy
450 		 * it and the queue.  Mitigate by taking a reference to the
451 		 * queue and never touching the sdev again after we drop the
452 		 * host lock.  Note: if __scsi_remove_device() invokes
453 		 * blk_cleanup_queue() before the queue is run from this
454 		 * function then blk_run_queue() will return immediately since
455 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 		 */
457 		slq = sdev->request_queue;
458 		if (!blk_get_queue(slq))
459 			continue;
460 		spin_unlock_irqrestore(shost->host_lock, flags);
461 
462 		scsi_kick_queue(slq);
463 		blk_put_queue(slq);
464 
465 		spin_lock_irqsave(shost->host_lock, flags);
466 	}
467 	/* put any unprocessed entries back */
468 	list_splice(&starved_list, &shost->starved_list);
469 	spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471 
472 /**
473  * scsi_run_queue - Select a proper request queue to serve next.
474  * @q:  last request's queue
475  *
476  * The previous command was completely finished, start a new one if possible.
477  */
478 static void scsi_run_queue(struct request_queue *q)
479 {
480 	struct scsi_device *sdev = q->queuedata;
481 
482 	if (scsi_target(sdev)->single_lun)
483 		scsi_single_lun_run(sdev);
484 	if (!list_empty(&sdev->host->starved_list))
485 		scsi_starved_list_run(sdev->host);
486 
487 	blk_mq_run_hw_queues(q, false);
488 }
489 
490 void scsi_requeue_run_queue(struct work_struct *work)
491 {
492 	struct scsi_device *sdev;
493 	struct request_queue *q;
494 
495 	sdev = container_of(work, struct scsi_device, requeue_work);
496 	q = sdev->request_queue;
497 	scsi_run_queue(q);
498 }
499 
500 void scsi_run_host_queues(struct Scsi_Host *shost)
501 {
502 	struct scsi_device *sdev;
503 
504 	shost_for_each_device(sdev, shost)
505 		scsi_run_queue(sdev->request_queue);
506 }
507 
508 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
509 {
510 	if (!blk_rq_is_passthrough(cmd->request)) {
511 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
512 
513 		if (drv->uninit_command)
514 			drv->uninit_command(cmd);
515 	}
516 }
517 
518 void scsi_free_sgtables(struct scsi_cmnd *cmd)
519 {
520 	if (cmd->sdb.table.nents)
521 		sg_free_table_chained(&cmd->sdb.table,
522 				SCSI_INLINE_SG_CNT);
523 	if (scsi_prot_sg_count(cmd))
524 		sg_free_table_chained(&cmd->prot_sdb->table,
525 				SCSI_INLINE_PROT_SG_CNT);
526 }
527 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
528 
529 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
530 {
531 	scsi_free_sgtables(cmd);
532 	scsi_uninit_cmd(cmd);
533 }
534 
535 static void scsi_run_queue_async(struct scsi_device *sdev)
536 {
537 	if (scsi_target(sdev)->single_lun ||
538 	    !list_empty(&sdev->host->starved_list)) {
539 		kblockd_schedule_work(&sdev->requeue_work);
540 	} else {
541 		/*
542 		 * smp_mb() present in sbitmap_queue_clear() or implied in
543 		 * .end_io is for ordering writing .device_busy in
544 		 * scsi_device_unbusy() and reading sdev->restarts.
545 		 */
546 		int old = atomic_read(&sdev->restarts);
547 
548 		/*
549 		 * ->restarts has to be kept as non-zero if new budget
550 		 *  contention occurs.
551 		 *
552 		 *  No need to run queue when either another re-run
553 		 *  queue wins in updating ->restarts or a new budget
554 		 *  contention occurs.
555 		 */
556 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
557 			blk_mq_run_hw_queues(sdev->request_queue, true);
558 	}
559 }
560 
561 /* Returns false when no more bytes to process, true if there are more */
562 static bool scsi_end_request(struct request *req, blk_status_t error,
563 		unsigned int bytes)
564 {
565 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
566 	struct scsi_device *sdev = cmd->device;
567 	struct request_queue *q = sdev->request_queue;
568 
569 	if (blk_update_request(req, error, bytes))
570 		return true;
571 
572 	if (blk_queue_add_random(q))
573 		add_disk_randomness(req->rq_disk);
574 
575 	if (!blk_rq_is_scsi(req)) {
576 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
577 		cmd->flags &= ~SCMD_INITIALIZED;
578 	}
579 
580 	/*
581 	 * Calling rcu_barrier() is not necessary here because the
582 	 * SCSI error handler guarantees that the function called by
583 	 * call_rcu() has been called before scsi_end_request() is
584 	 * called.
585 	 */
586 	destroy_rcu_head(&cmd->rcu);
587 
588 	/*
589 	 * In the MQ case the command gets freed by __blk_mq_end_request,
590 	 * so we have to do all cleanup that depends on it earlier.
591 	 *
592 	 * We also can't kick the queues from irq context, so we
593 	 * will have to defer it to a workqueue.
594 	 */
595 	scsi_mq_uninit_cmd(cmd);
596 
597 	/*
598 	 * queue is still alive, so grab the ref for preventing it
599 	 * from being cleaned up during running queue.
600 	 */
601 	percpu_ref_get(&q->q_usage_counter);
602 
603 	__blk_mq_end_request(req, error);
604 
605 	scsi_run_queue_async(sdev);
606 
607 	percpu_ref_put(&q->q_usage_counter);
608 	return false;
609 }
610 
611 /**
612  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
613  * @cmd:	SCSI command
614  * @result:	scsi error code
615  *
616  * Translate a SCSI result code into a blk_status_t value. May reset the host
617  * byte of @cmd->result.
618  */
619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
620 {
621 	switch (host_byte(result)) {
622 	case DID_OK:
623 		/*
624 		 * Also check the other bytes than the status byte in result
625 		 * to handle the case when a SCSI LLD sets result to
626 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
627 		 */
628 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
629 			return BLK_STS_OK;
630 		return BLK_STS_IOERR;
631 	case DID_TRANSPORT_FAILFAST:
632 		return BLK_STS_TRANSPORT;
633 	case DID_TARGET_FAILURE:
634 		set_host_byte(cmd, DID_OK);
635 		return BLK_STS_TARGET;
636 	case DID_NEXUS_FAILURE:
637 		set_host_byte(cmd, DID_OK);
638 		return BLK_STS_NEXUS;
639 	case DID_ALLOC_FAILURE:
640 		set_host_byte(cmd, DID_OK);
641 		return BLK_STS_NOSPC;
642 	case DID_MEDIUM_ERROR:
643 		set_host_byte(cmd, DID_OK);
644 		return BLK_STS_MEDIUM;
645 	default:
646 		return BLK_STS_IOERR;
647 	}
648 }
649 
650 /* Helper for scsi_io_completion() when "reprep" action required. */
651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
652 				      struct request_queue *q)
653 {
654 	/* A new command will be prepared and issued. */
655 	scsi_mq_requeue_cmd(cmd);
656 }
657 
658 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
659 {
660 	struct request *req = cmd->request;
661 	unsigned long wait_for;
662 
663 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
664 		return false;
665 
666 	wait_for = (cmd->allowed + 1) * req->timeout;
667 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
668 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
669 			    wait_for/HZ);
670 		return true;
671 	}
672 	return false;
673 }
674 
675 /* Helper for scsi_io_completion() when special action required. */
676 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
677 {
678 	struct request_queue *q = cmd->device->request_queue;
679 	struct request *req = cmd->request;
680 	int level = 0;
681 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
682 	      ACTION_DELAYED_RETRY} action;
683 	struct scsi_sense_hdr sshdr;
684 	bool sense_valid;
685 	bool sense_current = true;      /* false implies "deferred sense" */
686 	blk_status_t blk_stat;
687 
688 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
689 	if (sense_valid)
690 		sense_current = !scsi_sense_is_deferred(&sshdr);
691 
692 	blk_stat = scsi_result_to_blk_status(cmd, result);
693 
694 	if (host_byte(result) == DID_RESET) {
695 		/* Third party bus reset or reset for error recovery
696 		 * reasons.  Just retry the command and see what
697 		 * happens.
698 		 */
699 		action = ACTION_RETRY;
700 	} else if (sense_valid && sense_current) {
701 		switch (sshdr.sense_key) {
702 		case UNIT_ATTENTION:
703 			if (cmd->device->removable) {
704 				/* Detected disc change.  Set a bit
705 				 * and quietly refuse further access.
706 				 */
707 				cmd->device->changed = 1;
708 				action = ACTION_FAIL;
709 			} else {
710 				/* Must have been a power glitch, or a
711 				 * bus reset.  Could not have been a
712 				 * media change, so we just retry the
713 				 * command and see what happens.
714 				 */
715 				action = ACTION_RETRY;
716 			}
717 			break;
718 		case ILLEGAL_REQUEST:
719 			/* If we had an ILLEGAL REQUEST returned, then
720 			 * we may have performed an unsupported
721 			 * command.  The only thing this should be
722 			 * would be a ten byte read where only a six
723 			 * byte read was supported.  Also, on a system
724 			 * where READ CAPACITY failed, we may have
725 			 * read past the end of the disk.
726 			 */
727 			if ((cmd->device->use_10_for_rw &&
728 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
729 			    (cmd->cmnd[0] == READ_10 ||
730 			     cmd->cmnd[0] == WRITE_10)) {
731 				/* This will issue a new 6-byte command. */
732 				cmd->device->use_10_for_rw = 0;
733 				action = ACTION_REPREP;
734 			} else if (sshdr.asc == 0x10) /* DIX */ {
735 				action = ACTION_FAIL;
736 				blk_stat = BLK_STS_PROTECTION;
737 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
738 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
739 				action = ACTION_FAIL;
740 				blk_stat = BLK_STS_TARGET;
741 			} else
742 				action = ACTION_FAIL;
743 			break;
744 		case ABORTED_COMMAND:
745 			action = ACTION_FAIL;
746 			if (sshdr.asc == 0x10) /* DIF */
747 				blk_stat = BLK_STS_PROTECTION;
748 			break;
749 		case NOT_READY:
750 			/* If the device is in the process of becoming
751 			 * ready, or has a temporary blockage, retry.
752 			 */
753 			if (sshdr.asc == 0x04) {
754 				switch (sshdr.ascq) {
755 				case 0x01: /* becoming ready */
756 				case 0x04: /* format in progress */
757 				case 0x05: /* rebuild in progress */
758 				case 0x06: /* recalculation in progress */
759 				case 0x07: /* operation in progress */
760 				case 0x08: /* Long write in progress */
761 				case 0x09: /* self test in progress */
762 				case 0x14: /* space allocation in progress */
763 				case 0x1a: /* start stop unit in progress */
764 				case 0x1b: /* sanitize in progress */
765 				case 0x1d: /* configuration in progress */
766 				case 0x24: /* depopulation in progress */
767 					action = ACTION_DELAYED_RETRY;
768 					break;
769 				default:
770 					action = ACTION_FAIL;
771 					break;
772 				}
773 			} else
774 				action = ACTION_FAIL;
775 			break;
776 		case VOLUME_OVERFLOW:
777 			/* See SSC3rXX or current. */
778 			action = ACTION_FAIL;
779 			break;
780 		case DATA_PROTECT:
781 			action = ACTION_FAIL;
782 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
783 			    (sshdr.asc == 0x55 &&
784 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
785 				/* Insufficient zone resources */
786 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
787 			}
788 			break;
789 		default:
790 			action = ACTION_FAIL;
791 			break;
792 		}
793 	} else
794 		action = ACTION_FAIL;
795 
796 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
797 		action = ACTION_FAIL;
798 
799 	switch (action) {
800 	case ACTION_FAIL:
801 		/* Give up and fail the remainder of the request */
802 		if (!(req->rq_flags & RQF_QUIET)) {
803 			static DEFINE_RATELIMIT_STATE(_rs,
804 					DEFAULT_RATELIMIT_INTERVAL,
805 					DEFAULT_RATELIMIT_BURST);
806 
807 			if (unlikely(scsi_logging_level))
808 				level =
809 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
810 						    SCSI_LOG_MLCOMPLETE_BITS);
811 
812 			/*
813 			 * if logging is enabled the failure will be printed
814 			 * in scsi_log_completion(), so avoid duplicate messages
815 			 */
816 			if (!level && __ratelimit(&_rs)) {
817 				scsi_print_result(cmd, NULL, FAILED);
818 				if (driver_byte(result) == DRIVER_SENSE)
819 					scsi_print_sense(cmd);
820 				scsi_print_command(cmd);
821 			}
822 		}
823 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
824 			return;
825 		fallthrough;
826 	case ACTION_REPREP:
827 		scsi_io_completion_reprep(cmd, q);
828 		break;
829 	case ACTION_RETRY:
830 		/* Retry the same command immediately */
831 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
832 		break;
833 	case ACTION_DELAYED_RETRY:
834 		/* Retry the same command after a delay */
835 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
836 		break;
837 	}
838 }
839 
840 /*
841  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
842  * new result that may suppress further error checking. Also modifies
843  * *blk_statp in some cases.
844  */
845 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
846 					blk_status_t *blk_statp)
847 {
848 	bool sense_valid;
849 	bool sense_current = true;	/* false implies "deferred sense" */
850 	struct request *req = cmd->request;
851 	struct scsi_sense_hdr sshdr;
852 
853 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
854 	if (sense_valid)
855 		sense_current = !scsi_sense_is_deferred(&sshdr);
856 
857 	if (blk_rq_is_passthrough(req)) {
858 		if (sense_valid) {
859 			/*
860 			 * SG_IO wants current and deferred errors
861 			 */
862 			scsi_req(req)->sense_len =
863 				min(8 + cmd->sense_buffer[7],
864 				    SCSI_SENSE_BUFFERSIZE);
865 		}
866 		if (sense_current)
867 			*blk_statp = scsi_result_to_blk_status(cmd, result);
868 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
869 		/*
870 		 * Flush commands do not transfers any data, and thus cannot use
871 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
872 		 * This sets *blk_statp explicitly for the problem case.
873 		 */
874 		*blk_statp = scsi_result_to_blk_status(cmd, result);
875 	}
876 	/*
877 	 * Recovered errors need reporting, but they're always treated as
878 	 * success, so fiddle the result code here.  For passthrough requests
879 	 * we already took a copy of the original into sreq->result which
880 	 * is what gets returned to the user
881 	 */
882 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
883 		bool do_print = true;
884 		/*
885 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
886 		 * skip print since caller wants ATA registers. Only occurs
887 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
888 		 */
889 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
890 			do_print = false;
891 		else if (req->rq_flags & RQF_QUIET)
892 			do_print = false;
893 		if (do_print)
894 			scsi_print_sense(cmd);
895 		result = 0;
896 		/* for passthrough, *blk_statp may be set */
897 		*blk_statp = BLK_STS_OK;
898 	}
899 	/*
900 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
901 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
902 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
903 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
904 	 * intermediate statuses (both obsolete in SAM-4) as good.
905 	 */
906 	if (status_byte(result) && scsi_status_is_good(result)) {
907 		result = 0;
908 		*blk_statp = BLK_STS_OK;
909 	}
910 	return result;
911 }
912 
913 /**
914  * scsi_io_completion - Completion processing for SCSI commands.
915  * @cmd:	command that is finished.
916  * @good_bytes:	number of processed bytes.
917  *
918  * We will finish off the specified number of sectors. If we are done, the
919  * command block will be released and the queue function will be goosed. If we
920  * are not done then we have to figure out what to do next:
921  *
922  *   a) We can call scsi_io_completion_reprep().  The request will be
923  *	unprepared and put back on the queue.  Then a new command will
924  *	be created for it.  This should be used if we made forward
925  *	progress, or if we want to switch from READ(10) to READ(6) for
926  *	example.
927  *
928  *   b) We can call scsi_io_completion_action().  The request will be
929  *	put back on the queue and retried using the same command as
930  *	before, possibly after a delay.
931  *
932  *   c) We can call scsi_end_request() with blk_stat other than
933  *	BLK_STS_OK, to fail the remainder of the request.
934  */
935 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
936 {
937 	int result = cmd->result;
938 	struct request_queue *q = cmd->device->request_queue;
939 	struct request *req = cmd->request;
940 	blk_status_t blk_stat = BLK_STS_OK;
941 
942 	if (unlikely(result))	/* a nz result may or may not be an error */
943 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
944 
945 	if (unlikely(blk_rq_is_passthrough(req))) {
946 		/*
947 		 * scsi_result_to_blk_status may have reset the host_byte
948 		 */
949 		scsi_req(req)->result = cmd->result;
950 	}
951 
952 	/*
953 	 * Next deal with any sectors which we were able to correctly
954 	 * handle.
955 	 */
956 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
957 		"%u sectors total, %d bytes done.\n",
958 		blk_rq_sectors(req), good_bytes));
959 
960 	/*
961 	 * Failed, zero length commands always need to drop down
962 	 * to retry code. Fast path should return in this block.
963 	 */
964 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
965 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
966 			return; /* no bytes remaining */
967 	}
968 
969 	/* Kill remainder if no retries. */
970 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
971 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
972 			WARN_ONCE(true,
973 			    "Bytes remaining after failed, no-retry command");
974 		return;
975 	}
976 
977 	/*
978 	 * If there had been no error, but we have leftover bytes in the
979 	 * requeues just queue the command up again.
980 	 */
981 	if (likely(result == 0))
982 		scsi_io_completion_reprep(cmd, q);
983 	else
984 		scsi_io_completion_action(cmd, result);
985 }
986 
987 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
988 		struct request *rq)
989 {
990 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
991 	       !op_is_write(req_op(rq)) &&
992 	       sdev->host->hostt->dma_need_drain(rq);
993 }
994 
995 /**
996  * scsi_alloc_sgtables - allocate S/G tables for a command
997  * @cmd:  command descriptor we wish to initialize
998  *
999  * Returns:
1000  * * BLK_STS_OK       - on success
1001  * * BLK_STS_RESOURCE - if the failure is retryable
1002  * * BLK_STS_IOERR    - if the failure is fatal
1003  */
1004 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1005 {
1006 	struct scsi_device *sdev = cmd->device;
1007 	struct request *rq = cmd->request;
1008 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1009 	struct scatterlist *last_sg = NULL;
1010 	blk_status_t ret;
1011 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1012 	int count;
1013 
1014 	if (WARN_ON_ONCE(!nr_segs))
1015 		return BLK_STS_IOERR;
1016 
1017 	/*
1018 	 * Make sure there is space for the drain.  The driver must adjust
1019 	 * max_hw_segments to be prepared for this.
1020 	 */
1021 	if (need_drain)
1022 		nr_segs++;
1023 
1024 	/*
1025 	 * If sg table allocation fails, requeue request later.
1026 	 */
1027 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1028 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1029 		return BLK_STS_RESOURCE;
1030 
1031 	/*
1032 	 * Next, walk the list, and fill in the addresses and sizes of
1033 	 * each segment.
1034 	 */
1035 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1036 
1037 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1038 		unsigned int pad_len =
1039 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1040 
1041 		last_sg->length += pad_len;
1042 		cmd->extra_len += pad_len;
1043 	}
1044 
1045 	if (need_drain) {
1046 		sg_unmark_end(last_sg);
1047 		last_sg = sg_next(last_sg);
1048 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1049 		sg_mark_end(last_sg);
1050 
1051 		cmd->extra_len += sdev->dma_drain_len;
1052 		count++;
1053 	}
1054 
1055 	BUG_ON(count > cmd->sdb.table.nents);
1056 	cmd->sdb.table.nents = count;
1057 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1058 
1059 	if (blk_integrity_rq(rq)) {
1060 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1061 		int ivecs;
1062 
1063 		if (WARN_ON_ONCE(!prot_sdb)) {
1064 			/*
1065 			 * This can happen if someone (e.g. multipath)
1066 			 * queues a command to a device on an adapter
1067 			 * that does not support DIX.
1068 			 */
1069 			ret = BLK_STS_IOERR;
1070 			goto out_free_sgtables;
1071 		}
1072 
1073 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1074 
1075 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1076 				prot_sdb->table.sgl,
1077 				SCSI_INLINE_PROT_SG_CNT)) {
1078 			ret = BLK_STS_RESOURCE;
1079 			goto out_free_sgtables;
1080 		}
1081 
1082 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1083 						prot_sdb->table.sgl);
1084 		BUG_ON(count > ivecs);
1085 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1086 
1087 		cmd->prot_sdb = prot_sdb;
1088 		cmd->prot_sdb->table.nents = count;
1089 	}
1090 
1091 	return BLK_STS_OK;
1092 out_free_sgtables:
1093 	scsi_free_sgtables(cmd);
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL(scsi_alloc_sgtables);
1097 
1098 /**
1099  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1100  * @rq: Request associated with the SCSI command to be initialized.
1101  *
1102  * This function initializes the members of struct scsi_cmnd that must be
1103  * initialized before request processing starts and that won't be
1104  * reinitialized if a SCSI command is requeued.
1105  *
1106  * Called from inside blk_get_request() for pass-through requests and from
1107  * inside scsi_init_command() for filesystem requests.
1108  */
1109 static void scsi_initialize_rq(struct request *rq)
1110 {
1111 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1112 
1113 	scsi_req_init(&cmd->req);
1114 	init_rcu_head(&cmd->rcu);
1115 	cmd->jiffies_at_alloc = jiffies;
1116 	cmd->retries = 0;
1117 }
1118 
1119 /*
1120  * Only called when the request isn't completed by SCSI, and not freed by
1121  * SCSI
1122  */
1123 static void scsi_cleanup_rq(struct request *rq)
1124 {
1125 	if (rq->rq_flags & RQF_DONTPREP) {
1126 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1127 		rq->rq_flags &= ~RQF_DONTPREP;
1128 	}
1129 }
1130 
1131 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1132 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1133 {
1134 	void *buf = cmd->sense_buffer;
1135 	void *prot = cmd->prot_sdb;
1136 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1137 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1138 	unsigned long jiffies_at_alloc;
1139 	int retries, to_clear;
1140 	bool in_flight;
1141 
1142 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1143 		flags |= SCMD_INITIALIZED;
1144 		scsi_initialize_rq(rq);
1145 	}
1146 
1147 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1148 	retries = cmd->retries;
1149 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1150 	/*
1151 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1152 	 * the driver-private command data if the LLD does not supply a
1153 	 * function to initialize that data.
1154 	 */
1155 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1156 	if (!dev->host->hostt->init_cmd_priv)
1157 		to_clear += dev->host->hostt->cmd_size;
1158 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1159 
1160 	cmd->device = dev;
1161 	cmd->sense_buffer = buf;
1162 	cmd->prot_sdb = prot;
1163 	cmd->flags = flags;
1164 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1165 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1166 	cmd->retries = retries;
1167 	if (in_flight)
1168 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1169 
1170 }
1171 
1172 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173 		struct request *req)
1174 {
1175 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176 
1177 	/*
1178 	 * Passthrough requests may transfer data, in which case they must
1179 	 * a bio attached to them.  Or they might contain a SCSI command
1180 	 * that does not transfer data, in which case they may optionally
1181 	 * submit a request without an attached bio.
1182 	 */
1183 	if (req->bio) {
1184 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1185 		if (unlikely(ret != BLK_STS_OK))
1186 			return ret;
1187 	} else {
1188 		BUG_ON(blk_rq_bytes(req));
1189 
1190 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191 	}
1192 
1193 	cmd->cmd_len = scsi_req(req)->cmd_len;
1194 	if (cmd->cmd_len == 0)
1195 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1196 	cmd->cmnd = scsi_req(req)->cmd;
1197 	cmd->transfersize = blk_rq_bytes(req);
1198 	cmd->allowed = scsi_req(req)->retries;
1199 	return BLK_STS_OK;
1200 }
1201 
1202 static blk_status_t
1203 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 	switch (sdev->sdev_state) {
1206 	case SDEV_OFFLINE:
1207 	case SDEV_TRANSPORT_OFFLINE:
1208 		/*
1209 		 * If the device is offline we refuse to process any
1210 		 * commands.  The device must be brought online
1211 		 * before trying any recovery commands.
1212 		 */
1213 		if (!sdev->offline_already) {
1214 			sdev->offline_already = true;
1215 			sdev_printk(KERN_ERR, sdev,
1216 				    "rejecting I/O to offline device\n");
1217 		}
1218 		return BLK_STS_IOERR;
1219 	case SDEV_DEL:
1220 		/*
1221 		 * If the device is fully deleted, we refuse to
1222 		 * process any commands as well.
1223 		 */
1224 		sdev_printk(KERN_ERR, sdev,
1225 			    "rejecting I/O to dead device\n");
1226 		return BLK_STS_IOERR;
1227 	case SDEV_BLOCK:
1228 	case SDEV_CREATED_BLOCK:
1229 		return BLK_STS_RESOURCE;
1230 	case SDEV_QUIESCE:
1231 		/*
1232 		 * If the devices is blocked we defer normal commands.
1233 		 */
1234 		if (req && !(req->rq_flags & RQF_PREEMPT))
1235 			return BLK_STS_RESOURCE;
1236 		return BLK_STS_OK;
1237 	default:
1238 		/*
1239 		 * For any other not fully online state we only allow
1240 		 * special commands.  In particular any user initiated
1241 		 * command is not allowed.
1242 		 */
1243 		if (req && !(req->rq_flags & RQF_PREEMPT))
1244 			return BLK_STS_IOERR;
1245 		return BLK_STS_OK;
1246 	}
1247 }
1248 
1249 /*
1250  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1251  * return 0.
1252  *
1253  * Called with the queue_lock held.
1254  */
1255 static inline int scsi_dev_queue_ready(struct request_queue *q,
1256 				  struct scsi_device *sdev)
1257 {
1258 	unsigned int busy;
1259 
1260 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1261 	if (atomic_read(&sdev->device_blocked)) {
1262 		if (busy)
1263 			goto out_dec;
1264 
1265 		/*
1266 		 * unblock after device_blocked iterates to zero
1267 		 */
1268 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1269 			goto out_dec;
1270 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1271 				   "unblocking device at zero depth\n"));
1272 	}
1273 
1274 	if (busy >= sdev->queue_depth)
1275 		goto out_dec;
1276 
1277 	return 1;
1278 out_dec:
1279 	atomic_dec(&sdev->device_busy);
1280 	return 0;
1281 }
1282 
1283 /*
1284  * scsi_target_queue_ready: checks if there we can send commands to target
1285  * @sdev: scsi device on starget to check.
1286  */
1287 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1288 					   struct scsi_device *sdev)
1289 {
1290 	struct scsi_target *starget = scsi_target(sdev);
1291 	unsigned int busy;
1292 
1293 	if (starget->single_lun) {
1294 		spin_lock_irq(shost->host_lock);
1295 		if (starget->starget_sdev_user &&
1296 		    starget->starget_sdev_user != sdev) {
1297 			spin_unlock_irq(shost->host_lock);
1298 			return 0;
1299 		}
1300 		starget->starget_sdev_user = sdev;
1301 		spin_unlock_irq(shost->host_lock);
1302 	}
1303 
1304 	if (starget->can_queue <= 0)
1305 		return 1;
1306 
1307 	busy = atomic_inc_return(&starget->target_busy) - 1;
1308 	if (atomic_read(&starget->target_blocked) > 0) {
1309 		if (busy)
1310 			goto starved;
1311 
1312 		/*
1313 		 * unblock after target_blocked iterates to zero
1314 		 */
1315 		if (atomic_dec_return(&starget->target_blocked) > 0)
1316 			goto out_dec;
1317 
1318 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1319 				 "unblocking target at zero depth\n"));
1320 	}
1321 
1322 	if (busy >= starget->can_queue)
1323 		goto starved;
1324 
1325 	return 1;
1326 
1327 starved:
1328 	spin_lock_irq(shost->host_lock);
1329 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1330 	spin_unlock_irq(shost->host_lock);
1331 out_dec:
1332 	if (starget->can_queue > 0)
1333 		atomic_dec(&starget->target_busy);
1334 	return 0;
1335 }
1336 
1337 /*
1338  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1339  * return 0. We must end up running the queue again whenever 0 is
1340  * returned, else IO can hang.
1341  */
1342 static inline int scsi_host_queue_ready(struct request_queue *q,
1343 				   struct Scsi_Host *shost,
1344 				   struct scsi_device *sdev,
1345 				   struct scsi_cmnd *cmd)
1346 {
1347 	if (scsi_host_in_recovery(shost))
1348 		return 0;
1349 
1350 	if (atomic_read(&shost->host_blocked) > 0) {
1351 		if (scsi_host_busy(shost) > 0)
1352 			goto starved;
1353 
1354 		/*
1355 		 * unblock after host_blocked iterates to zero
1356 		 */
1357 		if (atomic_dec_return(&shost->host_blocked) > 0)
1358 			goto out_dec;
1359 
1360 		SCSI_LOG_MLQUEUE(3,
1361 			shost_printk(KERN_INFO, shost,
1362 				     "unblocking host at zero depth\n"));
1363 	}
1364 
1365 	if (shost->host_self_blocked)
1366 		goto starved;
1367 
1368 	/* We're OK to process the command, so we can't be starved */
1369 	if (!list_empty(&sdev->starved_entry)) {
1370 		spin_lock_irq(shost->host_lock);
1371 		if (!list_empty(&sdev->starved_entry))
1372 			list_del_init(&sdev->starved_entry);
1373 		spin_unlock_irq(shost->host_lock);
1374 	}
1375 
1376 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1377 
1378 	return 1;
1379 
1380 starved:
1381 	spin_lock_irq(shost->host_lock);
1382 	if (list_empty(&sdev->starved_entry))
1383 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1384 	spin_unlock_irq(shost->host_lock);
1385 out_dec:
1386 	scsi_dec_host_busy(shost, cmd);
1387 	return 0;
1388 }
1389 
1390 /*
1391  * Busy state exporting function for request stacking drivers.
1392  *
1393  * For efficiency, no lock is taken to check the busy state of
1394  * shost/starget/sdev, since the returned value is not guaranteed and
1395  * may be changed after request stacking drivers call the function,
1396  * regardless of taking lock or not.
1397  *
1398  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1399  * needs to return 'not busy'. Otherwise, request stacking drivers
1400  * may hold requests forever.
1401  */
1402 static bool scsi_mq_lld_busy(struct request_queue *q)
1403 {
1404 	struct scsi_device *sdev = q->queuedata;
1405 	struct Scsi_Host *shost;
1406 
1407 	if (blk_queue_dying(q))
1408 		return false;
1409 
1410 	shost = sdev->host;
1411 
1412 	/*
1413 	 * Ignore host/starget busy state.
1414 	 * Since block layer does not have a concept of fairness across
1415 	 * multiple queues, congestion of host/starget needs to be handled
1416 	 * in SCSI layer.
1417 	 */
1418 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1419 		return true;
1420 
1421 	return false;
1422 }
1423 
1424 static void scsi_softirq_done(struct request *rq)
1425 {
1426 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1427 	int disposition;
1428 
1429 	INIT_LIST_HEAD(&cmd->eh_entry);
1430 
1431 	atomic_inc(&cmd->device->iodone_cnt);
1432 	if (cmd->result)
1433 		atomic_inc(&cmd->device->ioerr_cnt);
1434 
1435 	disposition = scsi_decide_disposition(cmd);
1436 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1437 		disposition = SUCCESS;
1438 
1439 	scsi_log_completion(cmd, disposition);
1440 
1441 	switch (disposition) {
1442 	case SUCCESS:
1443 		scsi_finish_command(cmd);
1444 		break;
1445 	case NEEDS_RETRY:
1446 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1447 		break;
1448 	case ADD_TO_MLQUEUE:
1449 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1450 		break;
1451 	default:
1452 		scsi_eh_scmd_add(cmd);
1453 		break;
1454 	}
1455 }
1456 
1457 /**
1458  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1459  * @cmd: command block we are dispatching.
1460  *
1461  * Return: nonzero return request was rejected and device's queue needs to be
1462  * plugged.
1463  */
1464 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1465 {
1466 	struct Scsi_Host *host = cmd->device->host;
1467 	int rtn = 0;
1468 
1469 	atomic_inc(&cmd->device->iorequest_cnt);
1470 
1471 	/* check if the device is still usable */
1472 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1473 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1474 		 * returns an immediate error upwards, and signals
1475 		 * that the device is no longer present */
1476 		cmd->result = DID_NO_CONNECT << 16;
1477 		goto done;
1478 	}
1479 
1480 	/* Check to see if the scsi lld made this device blocked. */
1481 	if (unlikely(scsi_device_blocked(cmd->device))) {
1482 		/*
1483 		 * in blocked state, the command is just put back on
1484 		 * the device queue.  The suspend state has already
1485 		 * blocked the queue so future requests should not
1486 		 * occur until the device transitions out of the
1487 		 * suspend state.
1488 		 */
1489 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1490 			"queuecommand : device blocked\n"));
1491 		return SCSI_MLQUEUE_DEVICE_BUSY;
1492 	}
1493 
1494 	/* Store the LUN value in cmnd, if needed. */
1495 	if (cmd->device->lun_in_cdb)
1496 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1497 			       (cmd->device->lun << 5 & 0xe0);
1498 
1499 	scsi_log_send(cmd);
1500 
1501 	/*
1502 	 * Before we queue this command, check if the command
1503 	 * length exceeds what the host adapter can handle.
1504 	 */
1505 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1506 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1507 			       "queuecommand : command too long. "
1508 			       "cdb_size=%d host->max_cmd_len=%d\n",
1509 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1510 		cmd->result = (DID_ABORT << 16);
1511 		goto done;
1512 	}
1513 
1514 	if (unlikely(host->shost_state == SHOST_DEL)) {
1515 		cmd->result = (DID_NO_CONNECT << 16);
1516 		goto done;
1517 
1518 	}
1519 
1520 	trace_scsi_dispatch_cmd_start(cmd);
1521 	rtn = host->hostt->queuecommand(host, cmd);
1522 	if (rtn) {
1523 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1524 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1525 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1526 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1527 
1528 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1529 			"queuecommand : request rejected\n"));
1530 	}
1531 
1532 	return rtn;
1533  done:
1534 	cmd->scsi_done(cmd);
1535 	return 0;
1536 }
1537 
1538 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1539 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1540 {
1541 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1542 		sizeof(struct scatterlist);
1543 }
1544 
1545 static blk_status_t scsi_prepare_cmd(struct request *req)
1546 {
1547 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1548 	struct scsi_device *sdev = req->q->queuedata;
1549 	struct Scsi_Host *shost = sdev->host;
1550 	struct scatterlist *sg;
1551 
1552 	scsi_init_command(sdev, cmd);
1553 
1554 	cmd->request = req;
1555 	cmd->tag = req->tag;
1556 	cmd->prot_op = SCSI_PROT_NORMAL;
1557 	if (blk_rq_bytes(req))
1558 		cmd->sc_data_direction = rq_dma_dir(req);
1559 	else
1560 		cmd->sc_data_direction = DMA_NONE;
1561 
1562 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1563 	cmd->sdb.table.sgl = sg;
1564 
1565 	if (scsi_host_get_prot(shost)) {
1566 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1567 
1568 		cmd->prot_sdb->table.sgl =
1569 			(struct scatterlist *)(cmd->prot_sdb + 1);
1570 	}
1571 
1572 	/*
1573 	 * Special handling for passthrough commands, which don't go to the ULP
1574 	 * at all:
1575 	 */
1576 	if (blk_rq_is_scsi(req))
1577 		return scsi_setup_scsi_cmnd(sdev, req);
1578 
1579 	if (sdev->handler && sdev->handler->prep_fn) {
1580 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1581 
1582 		if (ret != BLK_STS_OK)
1583 			return ret;
1584 	}
1585 
1586 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1587 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1588 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1589 }
1590 
1591 static void scsi_mq_done(struct scsi_cmnd *cmd)
1592 {
1593 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1594 		return;
1595 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1596 		return;
1597 	trace_scsi_dispatch_cmd_done(cmd);
1598 	blk_mq_complete_request(cmd->request);
1599 }
1600 
1601 static void scsi_mq_put_budget(struct request_queue *q)
1602 {
1603 	struct scsi_device *sdev = q->queuedata;
1604 
1605 	atomic_dec(&sdev->device_busy);
1606 }
1607 
1608 static bool scsi_mq_get_budget(struct request_queue *q)
1609 {
1610 	struct scsi_device *sdev = q->queuedata;
1611 
1612 	if (scsi_dev_queue_ready(q, sdev))
1613 		return true;
1614 
1615 	atomic_inc(&sdev->restarts);
1616 
1617 	/*
1618 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1619 	 * .restarts must be incremented before .device_busy is read because the
1620 	 * code in scsi_run_queue_async() depends on the order of these operations.
1621 	 */
1622 	smp_mb__after_atomic();
1623 
1624 	/*
1625 	 * If all in-flight requests originated from this LUN are completed
1626 	 * before reading .device_busy, sdev->device_busy will be observed as
1627 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1628 	 * soon. Otherwise, completion of one of these requests will observe
1629 	 * the .restarts flag, and the request queue will be run for handling
1630 	 * this request, see scsi_end_request().
1631 	 */
1632 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1633 				!scsi_device_blocked(sdev)))
1634 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1635 	return false;
1636 }
1637 
1638 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1639 			 const struct blk_mq_queue_data *bd)
1640 {
1641 	struct request *req = bd->rq;
1642 	struct request_queue *q = req->q;
1643 	struct scsi_device *sdev = q->queuedata;
1644 	struct Scsi_Host *shost = sdev->host;
1645 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1646 	blk_status_t ret;
1647 	int reason;
1648 
1649 	/*
1650 	 * If the device is not in running state we will reject some or all
1651 	 * commands.
1652 	 */
1653 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1654 		ret = scsi_device_state_check(sdev, req);
1655 		if (ret != BLK_STS_OK)
1656 			goto out_put_budget;
1657 	}
1658 
1659 	ret = BLK_STS_RESOURCE;
1660 	if (!scsi_target_queue_ready(shost, sdev))
1661 		goto out_put_budget;
1662 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1663 		goto out_dec_target_busy;
1664 
1665 	if (!(req->rq_flags & RQF_DONTPREP)) {
1666 		ret = scsi_prepare_cmd(req);
1667 		if (ret != BLK_STS_OK)
1668 			goto out_dec_host_busy;
1669 		req->rq_flags |= RQF_DONTPREP;
1670 	} else {
1671 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1672 	}
1673 
1674 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1675 	if (sdev->simple_tags)
1676 		cmd->flags |= SCMD_TAGGED;
1677 	if (bd->last)
1678 		cmd->flags |= SCMD_LAST;
1679 
1680 	scsi_set_resid(cmd, 0);
1681 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1682 	cmd->scsi_done = scsi_mq_done;
1683 
1684 	blk_mq_start_request(req);
1685 	reason = scsi_dispatch_cmd(cmd);
1686 	if (reason) {
1687 		scsi_set_blocked(cmd, reason);
1688 		ret = BLK_STS_RESOURCE;
1689 		goto out_dec_host_busy;
1690 	}
1691 
1692 	return BLK_STS_OK;
1693 
1694 out_dec_host_busy:
1695 	scsi_dec_host_busy(shost, cmd);
1696 out_dec_target_busy:
1697 	if (scsi_target(sdev)->can_queue > 0)
1698 		atomic_dec(&scsi_target(sdev)->target_busy);
1699 out_put_budget:
1700 	scsi_mq_put_budget(q);
1701 	switch (ret) {
1702 	case BLK_STS_OK:
1703 		break;
1704 	case BLK_STS_RESOURCE:
1705 	case BLK_STS_ZONE_RESOURCE:
1706 		if (atomic_read(&sdev->device_busy) ||
1707 		    scsi_device_blocked(sdev))
1708 			ret = BLK_STS_DEV_RESOURCE;
1709 		break;
1710 	default:
1711 		if (unlikely(!scsi_device_online(sdev)))
1712 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1713 		else
1714 			scsi_req(req)->result = DID_ERROR << 16;
1715 		/*
1716 		 * Make sure to release all allocated resources when
1717 		 * we hit an error, as we will never see this command
1718 		 * again.
1719 		 */
1720 		if (req->rq_flags & RQF_DONTPREP)
1721 			scsi_mq_uninit_cmd(cmd);
1722 		scsi_run_queue_async(sdev);
1723 		break;
1724 	}
1725 	return ret;
1726 }
1727 
1728 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1729 		bool reserved)
1730 {
1731 	if (reserved)
1732 		return BLK_EH_RESET_TIMER;
1733 	return scsi_times_out(req);
1734 }
1735 
1736 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1737 				unsigned int hctx_idx, unsigned int numa_node)
1738 {
1739 	struct Scsi_Host *shost = set->driver_data;
1740 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1741 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1742 	struct scatterlist *sg;
1743 	int ret = 0;
1744 
1745 	if (unchecked_isa_dma)
1746 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1747 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1748 						    GFP_KERNEL, numa_node);
1749 	if (!cmd->sense_buffer)
1750 		return -ENOMEM;
1751 	cmd->req.sense = cmd->sense_buffer;
1752 
1753 	if (scsi_host_get_prot(shost)) {
1754 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1755 			shost->hostt->cmd_size;
1756 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1757 	}
1758 
1759 	if (shost->hostt->init_cmd_priv) {
1760 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1761 		if (ret < 0)
1762 			scsi_free_sense_buffer(unchecked_isa_dma,
1763 					       cmd->sense_buffer);
1764 	}
1765 
1766 	return ret;
1767 }
1768 
1769 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1770 				 unsigned int hctx_idx)
1771 {
1772 	struct Scsi_Host *shost = set->driver_data;
1773 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1774 
1775 	if (shost->hostt->exit_cmd_priv)
1776 		shost->hostt->exit_cmd_priv(shost, cmd);
1777 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1778 			       cmd->sense_buffer);
1779 }
1780 
1781 static int scsi_map_queues(struct blk_mq_tag_set *set)
1782 {
1783 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1784 
1785 	if (shost->hostt->map_queues)
1786 		return shost->hostt->map_queues(shost);
1787 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1788 }
1789 
1790 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1791 {
1792 	struct device *dev = shost->dma_dev;
1793 
1794 	/*
1795 	 * this limit is imposed by hardware restrictions
1796 	 */
1797 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1798 					SG_MAX_SEGMENTS));
1799 
1800 	if (scsi_host_prot_dma(shost)) {
1801 		shost->sg_prot_tablesize =
1802 			min_not_zero(shost->sg_prot_tablesize,
1803 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1804 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1805 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1806 	}
1807 
1808 	if (dev->dma_mask) {
1809 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1810 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1811 	}
1812 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1813 	if (shost->unchecked_isa_dma)
1814 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1815 	blk_queue_segment_boundary(q, shost->dma_boundary);
1816 	dma_set_seg_boundary(dev, shost->dma_boundary);
1817 
1818 	blk_queue_max_segment_size(q, shost->max_segment_size);
1819 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1820 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1821 
1822 	/*
1823 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1824 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1825 	 * which is set by the platform.
1826 	 *
1827 	 * Devices that require a bigger alignment can increase it later.
1828 	 */
1829 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1830 }
1831 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1832 
1833 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1834 	.get_budget	= scsi_mq_get_budget,
1835 	.put_budget	= scsi_mq_put_budget,
1836 	.queue_rq	= scsi_queue_rq,
1837 	.complete	= scsi_softirq_done,
1838 	.timeout	= scsi_timeout,
1839 #ifdef CONFIG_BLK_DEBUG_FS
1840 	.show_rq	= scsi_show_rq,
1841 #endif
1842 	.init_request	= scsi_mq_init_request,
1843 	.exit_request	= scsi_mq_exit_request,
1844 	.initialize_rq_fn = scsi_initialize_rq,
1845 	.cleanup_rq	= scsi_cleanup_rq,
1846 	.busy		= scsi_mq_lld_busy,
1847 	.map_queues	= scsi_map_queues,
1848 };
1849 
1850 
1851 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1852 {
1853 	struct request_queue *q = hctx->queue;
1854 	struct scsi_device *sdev = q->queuedata;
1855 	struct Scsi_Host *shost = sdev->host;
1856 
1857 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1858 }
1859 
1860 static const struct blk_mq_ops scsi_mq_ops = {
1861 	.get_budget	= scsi_mq_get_budget,
1862 	.put_budget	= scsi_mq_put_budget,
1863 	.queue_rq	= scsi_queue_rq,
1864 	.commit_rqs	= scsi_commit_rqs,
1865 	.complete	= scsi_softirq_done,
1866 	.timeout	= scsi_timeout,
1867 #ifdef CONFIG_BLK_DEBUG_FS
1868 	.show_rq	= scsi_show_rq,
1869 #endif
1870 	.init_request	= scsi_mq_init_request,
1871 	.exit_request	= scsi_mq_exit_request,
1872 	.initialize_rq_fn = scsi_initialize_rq,
1873 	.cleanup_rq	= scsi_cleanup_rq,
1874 	.busy		= scsi_mq_lld_busy,
1875 	.map_queues	= scsi_map_queues,
1876 };
1877 
1878 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1879 {
1880 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1881 	if (IS_ERR(sdev->request_queue))
1882 		return NULL;
1883 
1884 	sdev->request_queue->queuedata = sdev;
1885 	__scsi_init_queue(sdev->host, sdev->request_queue);
1886 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1887 	return sdev->request_queue;
1888 }
1889 
1890 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1891 {
1892 	unsigned int cmd_size, sgl_size;
1893 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1894 
1895 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1896 				scsi_mq_inline_sgl_size(shost));
1897 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1898 	if (scsi_host_get_prot(shost))
1899 		cmd_size += sizeof(struct scsi_data_buffer) +
1900 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1901 
1902 	memset(tag_set, 0, sizeof(*tag_set));
1903 	if (shost->hostt->commit_rqs)
1904 		tag_set->ops = &scsi_mq_ops;
1905 	else
1906 		tag_set->ops = &scsi_mq_ops_no_commit;
1907 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1908 	tag_set->queue_depth = shost->can_queue;
1909 	tag_set->cmd_size = cmd_size;
1910 	tag_set->numa_node = NUMA_NO_NODE;
1911 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1912 	tag_set->flags |=
1913 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1914 	tag_set->driver_data = shost;
1915 	if (shost->host_tagset)
1916 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1917 
1918 	return blk_mq_alloc_tag_set(tag_set);
1919 }
1920 
1921 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1922 {
1923 	blk_mq_free_tag_set(&shost->tag_set);
1924 }
1925 
1926 /**
1927  * scsi_device_from_queue - return sdev associated with a request_queue
1928  * @q: The request queue to return the sdev from
1929  *
1930  * Return the sdev associated with a request queue or NULL if the
1931  * request_queue does not reference a SCSI device.
1932  */
1933 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1934 {
1935 	struct scsi_device *sdev = NULL;
1936 
1937 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1938 	    q->mq_ops == &scsi_mq_ops)
1939 		sdev = q->queuedata;
1940 	if (!sdev || !get_device(&sdev->sdev_gendev))
1941 		sdev = NULL;
1942 
1943 	return sdev;
1944 }
1945 
1946 /**
1947  * scsi_block_requests - Utility function used by low-level drivers to prevent
1948  * further commands from being queued to the device.
1949  * @shost:  host in question
1950  *
1951  * There is no timer nor any other means by which the requests get unblocked
1952  * other than the low-level driver calling scsi_unblock_requests().
1953  */
1954 void scsi_block_requests(struct Scsi_Host *shost)
1955 {
1956 	shost->host_self_blocked = 1;
1957 }
1958 EXPORT_SYMBOL(scsi_block_requests);
1959 
1960 /**
1961  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1962  * further commands to be queued to the device.
1963  * @shost:  host in question
1964  *
1965  * There is no timer nor any other means by which the requests get unblocked
1966  * other than the low-level driver calling scsi_unblock_requests(). This is done
1967  * as an API function so that changes to the internals of the scsi mid-layer
1968  * won't require wholesale changes to drivers that use this feature.
1969  */
1970 void scsi_unblock_requests(struct Scsi_Host *shost)
1971 {
1972 	shost->host_self_blocked = 0;
1973 	scsi_run_host_queues(shost);
1974 }
1975 EXPORT_SYMBOL(scsi_unblock_requests);
1976 
1977 void scsi_exit_queue(void)
1978 {
1979 	kmem_cache_destroy(scsi_sense_cache);
1980 	kmem_cache_destroy(scsi_sense_isadma_cache);
1981 }
1982 
1983 /**
1984  *	scsi_mode_select - issue a mode select
1985  *	@sdev:	SCSI device to be queried
1986  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1987  *	@sp:	Save page bit (0 == don't save, 1 == save)
1988  *	@modepage: mode page being requested
1989  *	@buffer: request buffer (may not be smaller than eight bytes)
1990  *	@len:	length of request buffer.
1991  *	@timeout: command timeout
1992  *	@retries: number of retries before failing
1993  *	@data: returns a structure abstracting the mode header data
1994  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1995  *		must be SCSI_SENSE_BUFFERSIZE big.
1996  *
1997  *	Returns zero if successful; negative error number or scsi
1998  *	status on error
1999  *
2000  */
2001 int
2002 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2003 		 unsigned char *buffer, int len, int timeout, int retries,
2004 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2005 {
2006 	unsigned char cmd[10];
2007 	unsigned char *real_buffer;
2008 	int ret;
2009 
2010 	memset(cmd, 0, sizeof(cmd));
2011 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2012 
2013 	if (sdev->use_10_for_ms) {
2014 		if (len > 65535)
2015 			return -EINVAL;
2016 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2017 		if (!real_buffer)
2018 			return -ENOMEM;
2019 		memcpy(real_buffer + 8, buffer, len);
2020 		len += 8;
2021 		real_buffer[0] = 0;
2022 		real_buffer[1] = 0;
2023 		real_buffer[2] = data->medium_type;
2024 		real_buffer[3] = data->device_specific;
2025 		real_buffer[4] = data->longlba ? 0x01 : 0;
2026 		real_buffer[5] = 0;
2027 		real_buffer[6] = data->block_descriptor_length >> 8;
2028 		real_buffer[7] = data->block_descriptor_length;
2029 
2030 		cmd[0] = MODE_SELECT_10;
2031 		cmd[7] = len >> 8;
2032 		cmd[8] = len;
2033 	} else {
2034 		if (len > 255 || data->block_descriptor_length > 255 ||
2035 		    data->longlba)
2036 			return -EINVAL;
2037 
2038 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2039 		if (!real_buffer)
2040 			return -ENOMEM;
2041 		memcpy(real_buffer + 4, buffer, len);
2042 		len += 4;
2043 		real_buffer[0] = 0;
2044 		real_buffer[1] = data->medium_type;
2045 		real_buffer[2] = data->device_specific;
2046 		real_buffer[3] = data->block_descriptor_length;
2047 
2048 		cmd[0] = MODE_SELECT;
2049 		cmd[4] = len;
2050 	}
2051 
2052 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2053 			       sshdr, timeout, retries, NULL);
2054 	kfree(real_buffer);
2055 	return ret;
2056 }
2057 EXPORT_SYMBOL_GPL(scsi_mode_select);
2058 
2059 /**
2060  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2061  *	@sdev:	SCSI device to be queried
2062  *	@dbd:	set if mode sense will allow block descriptors to be returned
2063  *	@modepage: mode page being requested
2064  *	@buffer: request buffer (may not be smaller than eight bytes)
2065  *	@len:	length of request buffer.
2066  *	@timeout: command timeout
2067  *	@retries: number of retries before failing
2068  *	@data: returns a structure abstracting the mode header data
2069  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2070  *		must be SCSI_SENSE_BUFFERSIZE big.
2071  *
2072  *	Returns zero if unsuccessful, or the header offset (either 4
2073  *	or 8 depending on whether a six or ten byte command was
2074  *	issued) if successful.
2075  */
2076 int
2077 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2078 		  unsigned char *buffer, int len, int timeout, int retries,
2079 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2080 {
2081 	unsigned char cmd[12];
2082 	int use_10_for_ms;
2083 	int header_length;
2084 	int result, retry_count = retries;
2085 	struct scsi_sense_hdr my_sshdr;
2086 
2087 	memset(data, 0, sizeof(*data));
2088 	memset(&cmd[0], 0, 12);
2089 
2090 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2091 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2092 	cmd[2] = modepage;
2093 
2094 	/* caller might not be interested in sense, but we need it */
2095 	if (!sshdr)
2096 		sshdr = &my_sshdr;
2097 
2098  retry:
2099 	use_10_for_ms = sdev->use_10_for_ms;
2100 
2101 	if (use_10_for_ms) {
2102 		if (len < 8)
2103 			len = 8;
2104 
2105 		cmd[0] = MODE_SENSE_10;
2106 		cmd[8] = len;
2107 		header_length = 8;
2108 	} else {
2109 		if (len < 4)
2110 			len = 4;
2111 
2112 		cmd[0] = MODE_SENSE;
2113 		cmd[4] = len;
2114 		header_length = 4;
2115 	}
2116 
2117 	memset(buffer, 0, len);
2118 
2119 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2120 				  sshdr, timeout, retries, NULL);
2121 
2122 	/* This code looks awful: what it's doing is making sure an
2123 	 * ILLEGAL REQUEST sense return identifies the actual command
2124 	 * byte as the problem.  MODE_SENSE commands can return
2125 	 * ILLEGAL REQUEST if the code page isn't supported */
2126 
2127 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2128 	    driver_byte(result) == DRIVER_SENSE) {
2129 		if (scsi_sense_valid(sshdr)) {
2130 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2131 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2132 				/*
2133 				 * Invalid command operation code
2134 				 */
2135 				sdev->use_10_for_ms = 0;
2136 				goto retry;
2137 			}
2138 		}
2139 	}
2140 
2141 	if (scsi_status_is_good(result)) {
2142 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2143 			     (modepage == 6 || modepage == 8))) {
2144 			/* Initio breakage? */
2145 			header_length = 0;
2146 			data->length = 13;
2147 			data->medium_type = 0;
2148 			data->device_specific = 0;
2149 			data->longlba = 0;
2150 			data->block_descriptor_length = 0;
2151 		} else if (use_10_for_ms) {
2152 			data->length = buffer[0]*256 + buffer[1] + 2;
2153 			data->medium_type = buffer[2];
2154 			data->device_specific = buffer[3];
2155 			data->longlba = buffer[4] & 0x01;
2156 			data->block_descriptor_length = buffer[6]*256
2157 				+ buffer[7];
2158 		} else {
2159 			data->length = buffer[0] + 1;
2160 			data->medium_type = buffer[1];
2161 			data->device_specific = buffer[2];
2162 			data->block_descriptor_length = buffer[3];
2163 		}
2164 		data->header_length = header_length;
2165 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2166 		   scsi_sense_valid(sshdr) &&
2167 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2168 		retry_count--;
2169 		goto retry;
2170 	}
2171 
2172 	return result;
2173 }
2174 EXPORT_SYMBOL(scsi_mode_sense);
2175 
2176 /**
2177  *	scsi_test_unit_ready - test if unit is ready
2178  *	@sdev:	scsi device to change the state of.
2179  *	@timeout: command timeout
2180  *	@retries: number of retries before failing
2181  *	@sshdr: outpout pointer for decoded sense information.
2182  *
2183  *	Returns zero if unsuccessful or an error if TUR failed.  For
2184  *	removable media, UNIT_ATTENTION sets ->changed flag.
2185  **/
2186 int
2187 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2188 		     struct scsi_sense_hdr *sshdr)
2189 {
2190 	char cmd[] = {
2191 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2192 	};
2193 	int result;
2194 
2195 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2196 	do {
2197 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2198 					  timeout, 1, NULL);
2199 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2200 		    sshdr->sense_key == UNIT_ATTENTION)
2201 			sdev->changed = 1;
2202 	} while (scsi_sense_valid(sshdr) &&
2203 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2204 
2205 	return result;
2206 }
2207 EXPORT_SYMBOL(scsi_test_unit_ready);
2208 
2209 /**
2210  *	scsi_device_set_state - Take the given device through the device state model.
2211  *	@sdev:	scsi device to change the state of.
2212  *	@state:	state to change to.
2213  *
2214  *	Returns zero if successful or an error if the requested
2215  *	transition is illegal.
2216  */
2217 int
2218 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2219 {
2220 	enum scsi_device_state oldstate = sdev->sdev_state;
2221 
2222 	if (state == oldstate)
2223 		return 0;
2224 
2225 	switch (state) {
2226 	case SDEV_CREATED:
2227 		switch (oldstate) {
2228 		case SDEV_CREATED_BLOCK:
2229 			break;
2230 		default:
2231 			goto illegal;
2232 		}
2233 		break;
2234 
2235 	case SDEV_RUNNING:
2236 		switch (oldstate) {
2237 		case SDEV_CREATED:
2238 		case SDEV_OFFLINE:
2239 		case SDEV_TRANSPORT_OFFLINE:
2240 		case SDEV_QUIESCE:
2241 		case SDEV_BLOCK:
2242 			break;
2243 		default:
2244 			goto illegal;
2245 		}
2246 		break;
2247 
2248 	case SDEV_QUIESCE:
2249 		switch (oldstate) {
2250 		case SDEV_RUNNING:
2251 		case SDEV_OFFLINE:
2252 		case SDEV_TRANSPORT_OFFLINE:
2253 			break;
2254 		default:
2255 			goto illegal;
2256 		}
2257 		break;
2258 
2259 	case SDEV_OFFLINE:
2260 	case SDEV_TRANSPORT_OFFLINE:
2261 		switch (oldstate) {
2262 		case SDEV_CREATED:
2263 		case SDEV_RUNNING:
2264 		case SDEV_QUIESCE:
2265 		case SDEV_BLOCK:
2266 			break;
2267 		default:
2268 			goto illegal;
2269 		}
2270 		break;
2271 
2272 	case SDEV_BLOCK:
2273 		switch (oldstate) {
2274 		case SDEV_RUNNING:
2275 		case SDEV_CREATED_BLOCK:
2276 		case SDEV_QUIESCE:
2277 		case SDEV_OFFLINE:
2278 			break;
2279 		default:
2280 			goto illegal;
2281 		}
2282 		break;
2283 
2284 	case SDEV_CREATED_BLOCK:
2285 		switch (oldstate) {
2286 		case SDEV_CREATED:
2287 			break;
2288 		default:
2289 			goto illegal;
2290 		}
2291 		break;
2292 
2293 	case SDEV_CANCEL:
2294 		switch (oldstate) {
2295 		case SDEV_CREATED:
2296 		case SDEV_RUNNING:
2297 		case SDEV_QUIESCE:
2298 		case SDEV_OFFLINE:
2299 		case SDEV_TRANSPORT_OFFLINE:
2300 			break;
2301 		default:
2302 			goto illegal;
2303 		}
2304 		break;
2305 
2306 	case SDEV_DEL:
2307 		switch (oldstate) {
2308 		case SDEV_CREATED:
2309 		case SDEV_RUNNING:
2310 		case SDEV_OFFLINE:
2311 		case SDEV_TRANSPORT_OFFLINE:
2312 		case SDEV_CANCEL:
2313 		case SDEV_BLOCK:
2314 		case SDEV_CREATED_BLOCK:
2315 			break;
2316 		default:
2317 			goto illegal;
2318 		}
2319 		break;
2320 
2321 	}
2322 	sdev->offline_already = false;
2323 	sdev->sdev_state = state;
2324 	return 0;
2325 
2326  illegal:
2327 	SCSI_LOG_ERROR_RECOVERY(1,
2328 				sdev_printk(KERN_ERR, sdev,
2329 					    "Illegal state transition %s->%s",
2330 					    scsi_device_state_name(oldstate),
2331 					    scsi_device_state_name(state))
2332 				);
2333 	return -EINVAL;
2334 }
2335 EXPORT_SYMBOL(scsi_device_set_state);
2336 
2337 /**
2338  * 	sdev_evt_emit - emit a single SCSI device uevent
2339  *	@sdev: associated SCSI device
2340  *	@evt: event to emit
2341  *
2342  *	Send a single uevent (scsi_event) to the associated scsi_device.
2343  */
2344 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2345 {
2346 	int idx = 0;
2347 	char *envp[3];
2348 
2349 	switch (evt->evt_type) {
2350 	case SDEV_EVT_MEDIA_CHANGE:
2351 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2352 		break;
2353 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2354 		scsi_rescan_device(&sdev->sdev_gendev);
2355 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2356 		break;
2357 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2358 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2359 		break;
2360 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2361 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2362 		break;
2363 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2364 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2365 		break;
2366 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2367 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2368 		break;
2369 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2370 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2371 		break;
2372 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2373 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2374 		break;
2375 	default:
2376 		/* do nothing */
2377 		break;
2378 	}
2379 
2380 	envp[idx++] = NULL;
2381 
2382 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2383 }
2384 
2385 /**
2386  * 	sdev_evt_thread - send a uevent for each scsi event
2387  *	@work: work struct for scsi_device
2388  *
2389  *	Dispatch queued events to their associated scsi_device kobjects
2390  *	as uevents.
2391  */
2392 void scsi_evt_thread(struct work_struct *work)
2393 {
2394 	struct scsi_device *sdev;
2395 	enum scsi_device_event evt_type;
2396 	LIST_HEAD(event_list);
2397 
2398 	sdev = container_of(work, struct scsi_device, event_work);
2399 
2400 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2401 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2402 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2403 
2404 	while (1) {
2405 		struct scsi_event *evt;
2406 		struct list_head *this, *tmp;
2407 		unsigned long flags;
2408 
2409 		spin_lock_irqsave(&sdev->list_lock, flags);
2410 		list_splice_init(&sdev->event_list, &event_list);
2411 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2412 
2413 		if (list_empty(&event_list))
2414 			break;
2415 
2416 		list_for_each_safe(this, tmp, &event_list) {
2417 			evt = list_entry(this, struct scsi_event, node);
2418 			list_del(&evt->node);
2419 			scsi_evt_emit(sdev, evt);
2420 			kfree(evt);
2421 		}
2422 	}
2423 }
2424 
2425 /**
2426  * 	sdev_evt_send - send asserted event to uevent thread
2427  *	@sdev: scsi_device event occurred on
2428  *	@evt: event to send
2429  *
2430  *	Assert scsi device event asynchronously.
2431  */
2432 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2433 {
2434 	unsigned long flags;
2435 
2436 #if 0
2437 	/* FIXME: currently this check eliminates all media change events
2438 	 * for polled devices.  Need to update to discriminate between AN
2439 	 * and polled events */
2440 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2441 		kfree(evt);
2442 		return;
2443 	}
2444 #endif
2445 
2446 	spin_lock_irqsave(&sdev->list_lock, flags);
2447 	list_add_tail(&evt->node, &sdev->event_list);
2448 	schedule_work(&sdev->event_work);
2449 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2450 }
2451 EXPORT_SYMBOL_GPL(sdev_evt_send);
2452 
2453 /**
2454  * 	sdev_evt_alloc - allocate a new scsi event
2455  *	@evt_type: type of event to allocate
2456  *	@gfpflags: GFP flags for allocation
2457  *
2458  *	Allocates and returns a new scsi_event.
2459  */
2460 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2461 				  gfp_t gfpflags)
2462 {
2463 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2464 	if (!evt)
2465 		return NULL;
2466 
2467 	evt->evt_type = evt_type;
2468 	INIT_LIST_HEAD(&evt->node);
2469 
2470 	/* evt_type-specific initialization, if any */
2471 	switch (evt_type) {
2472 	case SDEV_EVT_MEDIA_CHANGE:
2473 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2474 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2475 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2476 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2477 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2478 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2479 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2480 	default:
2481 		/* do nothing */
2482 		break;
2483 	}
2484 
2485 	return evt;
2486 }
2487 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2488 
2489 /**
2490  * 	sdev_evt_send_simple - send asserted event to uevent thread
2491  *	@sdev: scsi_device event occurred on
2492  *	@evt_type: type of event to send
2493  *	@gfpflags: GFP flags for allocation
2494  *
2495  *	Assert scsi device event asynchronously, given an event type.
2496  */
2497 void sdev_evt_send_simple(struct scsi_device *sdev,
2498 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2499 {
2500 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2501 	if (!evt) {
2502 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2503 			    evt_type);
2504 		return;
2505 	}
2506 
2507 	sdev_evt_send(sdev, evt);
2508 }
2509 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2510 
2511 /**
2512  *	scsi_device_quiesce - Block user issued commands.
2513  *	@sdev:	scsi device to quiesce.
2514  *
2515  *	This works by trying to transition to the SDEV_QUIESCE state
2516  *	(which must be a legal transition).  When the device is in this
2517  *	state, only special requests will be accepted, all others will
2518  *	be deferred.  Since special requests may also be requeued requests,
2519  *	a successful return doesn't guarantee the device will be
2520  *	totally quiescent.
2521  *
2522  *	Must be called with user context, may sleep.
2523  *
2524  *	Returns zero if unsuccessful or an error if not.
2525  */
2526 int
2527 scsi_device_quiesce(struct scsi_device *sdev)
2528 {
2529 	struct request_queue *q = sdev->request_queue;
2530 	int err;
2531 
2532 	/*
2533 	 * It is allowed to call scsi_device_quiesce() multiple times from
2534 	 * the same context but concurrent scsi_device_quiesce() calls are
2535 	 * not allowed.
2536 	 */
2537 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2538 
2539 	if (sdev->quiesced_by == current)
2540 		return 0;
2541 
2542 	blk_set_pm_only(q);
2543 
2544 	blk_mq_freeze_queue(q);
2545 	/*
2546 	 * Ensure that the effect of blk_set_pm_only() will be visible
2547 	 * for percpu_ref_tryget() callers that occur after the queue
2548 	 * unfreeze even if the queue was already frozen before this function
2549 	 * was called. See also https://lwn.net/Articles/573497/.
2550 	 */
2551 	synchronize_rcu();
2552 	blk_mq_unfreeze_queue(q);
2553 
2554 	mutex_lock(&sdev->state_mutex);
2555 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2556 	if (err == 0)
2557 		sdev->quiesced_by = current;
2558 	else
2559 		blk_clear_pm_only(q);
2560 	mutex_unlock(&sdev->state_mutex);
2561 
2562 	return err;
2563 }
2564 EXPORT_SYMBOL(scsi_device_quiesce);
2565 
2566 /**
2567  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2568  *	@sdev:	scsi device to resume.
2569  *
2570  *	Moves the device from quiesced back to running and restarts the
2571  *	queues.
2572  *
2573  *	Must be called with user context, may sleep.
2574  */
2575 void scsi_device_resume(struct scsi_device *sdev)
2576 {
2577 	/* check if the device state was mutated prior to resume, and if
2578 	 * so assume the state is being managed elsewhere (for example
2579 	 * device deleted during suspend)
2580 	 */
2581 	mutex_lock(&sdev->state_mutex);
2582 	if (sdev->quiesced_by) {
2583 		sdev->quiesced_by = NULL;
2584 		blk_clear_pm_only(sdev->request_queue);
2585 	}
2586 	if (sdev->sdev_state == SDEV_QUIESCE)
2587 		scsi_device_set_state(sdev, SDEV_RUNNING);
2588 	mutex_unlock(&sdev->state_mutex);
2589 }
2590 EXPORT_SYMBOL(scsi_device_resume);
2591 
2592 static void
2593 device_quiesce_fn(struct scsi_device *sdev, void *data)
2594 {
2595 	scsi_device_quiesce(sdev);
2596 }
2597 
2598 void
2599 scsi_target_quiesce(struct scsi_target *starget)
2600 {
2601 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2602 }
2603 EXPORT_SYMBOL(scsi_target_quiesce);
2604 
2605 static void
2606 device_resume_fn(struct scsi_device *sdev, void *data)
2607 {
2608 	scsi_device_resume(sdev);
2609 }
2610 
2611 void
2612 scsi_target_resume(struct scsi_target *starget)
2613 {
2614 	starget_for_each_device(starget, NULL, device_resume_fn);
2615 }
2616 EXPORT_SYMBOL(scsi_target_resume);
2617 
2618 /**
2619  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2620  * @sdev: device to block
2621  *
2622  * Pause SCSI command processing on the specified device. Does not sleep.
2623  *
2624  * Returns zero if successful or a negative error code upon failure.
2625  *
2626  * Notes:
2627  * This routine transitions the device to the SDEV_BLOCK state (which must be
2628  * a legal transition). When the device is in this state, command processing
2629  * is paused until the device leaves the SDEV_BLOCK state. See also
2630  * scsi_internal_device_unblock_nowait().
2631  */
2632 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2633 {
2634 	struct request_queue *q = sdev->request_queue;
2635 	int err = 0;
2636 
2637 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2638 	if (err) {
2639 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2640 
2641 		if (err)
2642 			return err;
2643 	}
2644 
2645 	/*
2646 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2647 	 * block layer from calling the midlayer with this device's
2648 	 * request queue.
2649 	 */
2650 	blk_mq_quiesce_queue_nowait(q);
2651 	return 0;
2652 }
2653 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2654 
2655 /**
2656  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2657  * @sdev: device to block
2658  *
2659  * Pause SCSI command processing on the specified device and wait until all
2660  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2661  *
2662  * Returns zero if successful or a negative error code upon failure.
2663  *
2664  * Note:
2665  * This routine transitions the device to the SDEV_BLOCK state (which must be
2666  * a legal transition). When the device is in this state, command processing
2667  * is paused until the device leaves the SDEV_BLOCK state. See also
2668  * scsi_internal_device_unblock().
2669  */
2670 static int scsi_internal_device_block(struct scsi_device *sdev)
2671 {
2672 	struct request_queue *q = sdev->request_queue;
2673 	int err;
2674 
2675 	mutex_lock(&sdev->state_mutex);
2676 	err = scsi_internal_device_block_nowait(sdev);
2677 	if (err == 0)
2678 		blk_mq_quiesce_queue(q);
2679 	mutex_unlock(&sdev->state_mutex);
2680 
2681 	return err;
2682 }
2683 
2684 void scsi_start_queue(struct scsi_device *sdev)
2685 {
2686 	struct request_queue *q = sdev->request_queue;
2687 
2688 	blk_mq_unquiesce_queue(q);
2689 }
2690 
2691 /**
2692  * scsi_internal_device_unblock_nowait - resume a device after a block request
2693  * @sdev:	device to resume
2694  * @new_state:	state to set the device to after unblocking
2695  *
2696  * Restart the device queue for a previously suspended SCSI device. Does not
2697  * sleep.
2698  *
2699  * Returns zero if successful or a negative error code upon failure.
2700  *
2701  * Notes:
2702  * This routine transitions the device to the SDEV_RUNNING state or to one of
2703  * the offline states (which must be a legal transition) allowing the midlayer
2704  * to goose the queue for this device.
2705  */
2706 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2707 					enum scsi_device_state new_state)
2708 {
2709 	switch (new_state) {
2710 	case SDEV_RUNNING:
2711 	case SDEV_TRANSPORT_OFFLINE:
2712 		break;
2713 	default:
2714 		return -EINVAL;
2715 	}
2716 
2717 	/*
2718 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2719 	 * offlined states and goose the device queue if successful.
2720 	 */
2721 	switch (sdev->sdev_state) {
2722 	case SDEV_BLOCK:
2723 	case SDEV_TRANSPORT_OFFLINE:
2724 		sdev->sdev_state = new_state;
2725 		break;
2726 	case SDEV_CREATED_BLOCK:
2727 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2728 		    new_state == SDEV_OFFLINE)
2729 			sdev->sdev_state = new_state;
2730 		else
2731 			sdev->sdev_state = SDEV_CREATED;
2732 		break;
2733 	case SDEV_CANCEL:
2734 	case SDEV_OFFLINE:
2735 		break;
2736 	default:
2737 		return -EINVAL;
2738 	}
2739 	scsi_start_queue(sdev);
2740 
2741 	return 0;
2742 }
2743 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2744 
2745 /**
2746  * scsi_internal_device_unblock - resume a device after a block request
2747  * @sdev:	device to resume
2748  * @new_state:	state to set the device to after unblocking
2749  *
2750  * Restart the device queue for a previously suspended SCSI device. May sleep.
2751  *
2752  * Returns zero if successful or a negative error code upon failure.
2753  *
2754  * Notes:
2755  * This routine transitions the device to the SDEV_RUNNING state or to one of
2756  * the offline states (which must be a legal transition) allowing the midlayer
2757  * to goose the queue for this device.
2758  */
2759 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2760 					enum scsi_device_state new_state)
2761 {
2762 	int ret;
2763 
2764 	mutex_lock(&sdev->state_mutex);
2765 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2766 	mutex_unlock(&sdev->state_mutex);
2767 
2768 	return ret;
2769 }
2770 
2771 static void
2772 device_block(struct scsi_device *sdev, void *data)
2773 {
2774 	int ret;
2775 
2776 	ret = scsi_internal_device_block(sdev);
2777 
2778 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2779 		  dev_name(&sdev->sdev_gendev), ret);
2780 }
2781 
2782 static int
2783 target_block(struct device *dev, void *data)
2784 {
2785 	if (scsi_is_target_device(dev))
2786 		starget_for_each_device(to_scsi_target(dev), NULL,
2787 					device_block);
2788 	return 0;
2789 }
2790 
2791 void
2792 scsi_target_block(struct device *dev)
2793 {
2794 	if (scsi_is_target_device(dev))
2795 		starget_for_each_device(to_scsi_target(dev), NULL,
2796 					device_block);
2797 	else
2798 		device_for_each_child(dev, NULL, target_block);
2799 }
2800 EXPORT_SYMBOL_GPL(scsi_target_block);
2801 
2802 static void
2803 device_unblock(struct scsi_device *sdev, void *data)
2804 {
2805 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2806 }
2807 
2808 static int
2809 target_unblock(struct device *dev, void *data)
2810 {
2811 	if (scsi_is_target_device(dev))
2812 		starget_for_each_device(to_scsi_target(dev), data,
2813 					device_unblock);
2814 	return 0;
2815 }
2816 
2817 void
2818 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2819 {
2820 	if (scsi_is_target_device(dev))
2821 		starget_for_each_device(to_scsi_target(dev), &new_state,
2822 					device_unblock);
2823 	else
2824 		device_for_each_child(dev, &new_state, target_unblock);
2825 }
2826 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2827 
2828 int
2829 scsi_host_block(struct Scsi_Host *shost)
2830 {
2831 	struct scsi_device *sdev;
2832 	int ret = 0;
2833 
2834 	/*
2835 	 * Call scsi_internal_device_block_nowait so we can avoid
2836 	 * calling synchronize_rcu() for each LUN.
2837 	 */
2838 	shost_for_each_device(sdev, shost) {
2839 		mutex_lock(&sdev->state_mutex);
2840 		ret = scsi_internal_device_block_nowait(sdev);
2841 		mutex_unlock(&sdev->state_mutex);
2842 		if (ret) {
2843 			scsi_device_put(sdev);
2844 			break;
2845 		}
2846 	}
2847 
2848 	/*
2849 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2850 	 * calling synchronize_rcu() once is enough.
2851 	 */
2852 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2853 
2854 	if (!ret)
2855 		synchronize_rcu();
2856 
2857 	return ret;
2858 }
2859 EXPORT_SYMBOL_GPL(scsi_host_block);
2860 
2861 int
2862 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2863 {
2864 	struct scsi_device *sdev;
2865 	int ret = 0;
2866 
2867 	shost_for_each_device(sdev, shost) {
2868 		ret = scsi_internal_device_unblock(sdev, new_state);
2869 		if (ret) {
2870 			scsi_device_put(sdev);
2871 			break;
2872 		}
2873 	}
2874 	return ret;
2875 }
2876 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2877 
2878 /**
2879  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2880  * @sgl:	scatter-gather list
2881  * @sg_count:	number of segments in sg
2882  * @offset:	offset in bytes into sg, on return offset into the mapped area
2883  * @len:	bytes to map, on return number of bytes mapped
2884  *
2885  * Returns virtual address of the start of the mapped page
2886  */
2887 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2888 			  size_t *offset, size_t *len)
2889 {
2890 	int i;
2891 	size_t sg_len = 0, len_complete = 0;
2892 	struct scatterlist *sg;
2893 	struct page *page;
2894 
2895 	WARN_ON(!irqs_disabled());
2896 
2897 	for_each_sg(sgl, sg, sg_count, i) {
2898 		len_complete = sg_len; /* Complete sg-entries */
2899 		sg_len += sg->length;
2900 		if (sg_len > *offset)
2901 			break;
2902 	}
2903 
2904 	if (unlikely(i == sg_count)) {
2905 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2906 			"elements %d\n",
2907 		       __func__, sg_len, *offset, sg_count);
2908 		WARN_ON(1);
2909 		return NULL;
2910 	}
2911 
2912 	/* Offset starting from the beginning of first page in this sg-entry */
2913 	*offset = *offset - len_complete + sg->offset;
2914 
2915 	/* Assumption: contiguous pages can be accessed as "page + i" */
2916 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2917 	*offset &= ~PAGE_MASK;
2918 
2919 	/* Bytes in this sg-entry from *offset to the end of the page */
2920 	sg_len = PAGE_SIZE - *offset;
2921 	if (*len > sg_len)
2922 		*len = sg_len;
2923 
2924 	return kmap_atomic(page);
2925 }
2926 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2927 
2928 /**
2929  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2930  * @virt:	virtual address to be unmapped
2931  */
2932 void scsi_kunmap_atomic_sg(void *virt)
2933 {
2934 	kunmap_atomic(virt);
2935 }
2936 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2937 
2938 void sdev_disable_disk_events(struct scsi_device *sdev)
2939 {
2940 	atomic_inc(&sdev->disk_events_disable_depth);
2941 }
2942 EXPORT_SYMBOL(sdev_disable_disk_events);
2943 
2944 void sdev_enable_disk_events(struct scsi_device *sdev)
2945 {
2946 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2947 		return;
2948 	atomic_dec(&sdev->disk_events_disable_depth);
2949 }
2950 EXPORT_SYMBOL(sdev_enable_disk_events);
2951 
2952 /**
2953  * scsi_vpd_lun_id - return a unique device identification
2954  * @sdev: SCSI device
2955  * @id:   buffer for the identification
2956  * @id_len:  length of the buffer
2957  *
2958  * Copies a unique device identification into @id based
2959  * on the information in the VPD page 0x83 of the device.
2960  * The string will be formatted as a SCSI name string.
2961  *
2962  * Returns the length of the identification or error on failure.
2963  * If the identifier is longer than the supplied buffer the actual
2964  * identifier length is returned and the buffer is not zero-padded.
2965  */
2966 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2967 {
2968 	u8 cur_id_type = 0xff;
2969 	u8 cur_id_size = 0;
2970 	const unsigned char *d, *cur_id_str;
2971 	const struct scsi_vpd *vpd_pg83;
2972 	int id_size = -EINVAL;
2973 
2974 	rcu_read_lock();
2975 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2976 	if (!vpd_pg83) {
2977 		rcu_read_unlock();
2978 		return -ENXIO;
2979 	}
2980 
2981 	/*
2982 	 * Look for the correct descriptor.
2983 	 * Order of preference for lun descriptor:
2984 	 * - SCSI name string
2985 	 * - NAA IEEE Registered Extended
2986 	 * - EUI-64 based 16-byte
2987 	 * - EUI-64 based 12-byte
2988 	 * - NAA IEEE Registered
2989 	 * - NAA IEEE Extended
2990 	 * - T10 Vendor ID
2991 	 * as longer descriptors reduce the likelyhood
2992 	 * of identification clashes.
2993 	 */
2994 
2995 	/* The id string must be at least 20 bytes + terminating NULL byte */
2996 	if (id_len < 21) {
2997 		rcu_read_unlock();
2998 		return -EINVAL;
2999 	}
3000 
3001 	memset(id, 0, id_len);
3002 	d = vpd_pg83->data + 4;
3003 	while (d < vpd_pg83->data + vpd_pg83->len) {
3004 		/* Skip designators not referring to the LUN */
3005 		if ((d[1] & 0x30) != 0x00)
3006 			goto next_desig;
3007 
3008 		switch (d[1] & 0xf) {
3009 		case 0x1:
3010 			/* T10 Vendor ID */
3011 			if (cur_id_size > d[3])
3012 				break;
3013 			/* Prefer anything */
3014 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3015 				break;
3016 			cur_id_size = d[3];
3017 			if (cur_id_size + 4 > id_len)
3018 				cur_id_size = id_len - 4;
3019 			cur_id_str = d + 4;
3020 			cur_id_type = d[1] & 0xf;
3021 			id_size = snprintf(id, id_len, "t10.%*pE",
3022 					   cur_id_size, cur_id_str);
3023 			break;
3024 		case 0x2:
3025 			/* EUI-64 */
3026 			if (cur_id_size > d[3])
3027 				break;
3028 			/* Prefer NAA IEEE Registered Extended */
3029 			if (cur_id_type == 0x3 &&
3030 			    cur_id_size == d[3])
3031 				break;
3032 			cur_id_size = d[3];
3033 			cur_id_str = d + 4;
3034 			cur_id_type = d[1] & 0xf;
3035 			switch (cur_id_size) {
3036 			case 8:
3037 				id_size = snprintf(id, id_len,
3038 						   "eui.%8phN",
3039 						   cur_id_str);
3040 				break;
3041 			case 12:
3042 				id_size = snprintf(id, id_len,
3043 						   "eui.%12phN",
3044 						   cur_id_str);
3045 				break;
3046 			case 16:
3047 				id_size = snprintf(id, id_len,
3048 						   "eui.%16phN",
3049 						   cur_id_str);
3050 				break;
3051 			default:
3052 				cur_id_size = 0;
3053 				break;
3054 			}
3055 			break;
3056 		case 0x3:
3057 			/* NAA */
3058 			if (cur_id_size > d[3])
3059 				break;
3060 			cur_id_size = d[3];
3061 			cur_id_str = d + 4;
3062 			cur_id_type = d[1] & 0xf;
3063 			switch (cur_id_size) {
3064 			case 8:
3065 				id_size = snprintf(id, id_len,
3066 						   "naa.%8phN",
3067 						   cur_id_str);
3068 				break;
3069 			case 16:
3070 				id_size = snprintf(id, id_len,
3071 						   "naa.%16phN",
3072 						   cur_id_str);
3073 				break;
3074 			default:
3075 				cur_id_size = 0;
3076 				break;
3077 			}
3078 			break;
3079 		case 0x8:
3080 			/* SCSI name string */
3081 			if (cur_id_size + 4 > d[3])
3082 				break;
3083 			/* Prefer others for truncated descriptor */
3084 			if (cur_id_size && d[3] > id_len)
3085 				break;
3086 			cur_id_size = id_size = d[3];
3087 			cur_id_str = d + 4;
3088 			cur_id_type = d[1] & 0xf;
3089 			if (cur_id_size >= id_len)
3090 				cur_id_size = id_len - 1;
3091 			memcpy(id, cur_id_str, cur_id_size);
3092 			/* Decrease priority for truncated descriptor */
3093 			if (cur_id_size != id_size)
3094 				cur_id_size = 6;
3095 			break;
3096 		default:
3097 			break;
3098 		}
3099 next_desig:
3100 		d += d[3] + 4;
3101 	}
3102 	rcu_read_unlock();
3103 
3104 	return id_size;
3105 }
3106 EXPORT_SYMBOL(scsi_vpd_lun_id);
3107 
3108 /*
3109  * scsi_vpd_tpg_id - return a target port group identifier
3110  * @sdev: SCSI device
3111  *
3112  * Returns the Target Port Group identifier from the information
3113  * froom VPD page 0x83 of the device.
3114  *
3115  * Returns the identifier or error on failure.
3116  */
3117 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3118 {
3119 	const unsigned char *d;
3120 	const struct scsi_vpd *vpd_pg83;
3121 	int group_id = -EAGAIN, rel_port = -1;
3122 
3123 	rcu_read_lock();
3124 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3125 	if (!vpd_pg83) {
3126 		rcu_read_unlock();
3127 		return -ENXIO;
3128 	}
3129 
3130 	d = vpd_pg83->data + 4;
3131 	while (d < vpd_pg83->data + vpd_pg83->len) {
3132 		switch (d[1] & 0xf) {
3133 		case 0x4:
3134 			/* Relative target port */
3135 			rel_port = get_unaligned_be16(&d[6]);
3136 			break;
3137 		case 0x5:
3138 			/* Target port group */
3139 			group_id = get_unaligned_be16(&d[6]);
3140 			break;
3141 		default:
3142 			break;
3143 		}
3144 		d += d[3] + 4;
3145 	}
3146 	rcu_read_unlock();
3147 
3148 	if (group_id >= 0 && rel_id && rel_port != -1)
3149 		*rel_id = rel_port;
3150 
3151 	return group_id;
3152 }
3153 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3154