xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision e105007c)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1,
115 		 printk("Inserting command %p into mlqueue\n", cmd));
116 
117 	/*
118 	 * Set the appropriate busy bit for the device/host.
119 	 *
120 	 * If the host/device isn't busy, assume that something actually
121 	 * completed, and that we should be able to queue a command now.
122 	 *
123 	 * Note that the prior mid-layer assumption that any host could
124 	 * always queue at least one command is now broken.  The mid-layer
125 	 * will implement a user specifiable stall (see
126 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 	 * if a command is requeued with no other commands outstanding
128 	 * either for the device or for the host.
129 	 */
130 	switch (reason) {
131 	case SCSI_MLQUEUE_HOST_BUSY:
132 		host->host_blocked = host->max_host_blocked;
133 		break;
134 	case SCSI_MLQUEUE_DEVICE_BUSY:
135 		device->device_blocked = device->max_device_blocked;
136 		break;
137 	case SCSI_MLQUEUE_TARGET_BUSY:
138 		starget->target_blocked = starget->max_target_blocked;
139 		break;
140 	}
141 
142 	/*
143 	 * Decrement the counters, since these commands are no longer
144 	 * active on the host/device.
145 	 */
146 	if (unbusy)
147 		scsi_device_unbusy(device);
148 
149 	/*
150 	 * Requeue this command.  It will go before all other commands
151 	 * that are already in the queue.
152 	 *
153 	 * NOTE: there is magic here about the way the queue is plugged if
154 	 * we have no outstanding commands.
155 	 *
156 	 * Although we *don't* plug the queue, we call the request
157 	 * function.  The SCSI request function detects the blocked condition
158 	 * and plugs the queue appropriately.
159          */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245 
246 	if (resid)
247 		*resid = req->resid_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost = sdev->host;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	if (scsi_target(sdev)->single_lun)
408 		scsi_single_lun_run(sdev);
409 
410 	spin_lock_irqsave(shost->host_lock, flags);
411 	list_splice_init(&shost->starved_list, &starved_list);
412 
413 	while (!list_empty(&starved_list)) {
414 		int flagset;
415 
416 		/*
417 		 * As long as shost is accepting commands and we have
418 		 * starved queues, call blk_run_queue. scsi_request_fn
419 		 * drops the queue_lock and can add us back to the
420 		 * starved_list.
421 		 *
422 		 * host_lock protects the starved_list and starved_entry.
423 		 * scsi_request_fn must get the host_lock before checking
424 		 * or modifying starved_list or starved_entry.
425 		 */
426 		if (scsi_host_is_busy(shost))
427 			break;
428 
429 		sdev = list_entry(starved_list.next,
430 				  struct scsi_device, starved_entry);
431 		list_del_init(&sdev->starved_entry);
432 		if (scsi_target_is_busy(scsi_target(sdev))) {
433 			list_move_tail(&sdev->starved_entry,
434 				       &shost->starved_list);
435 			continue;
436 		}
437 
438 		spin_unlock(shost->host_lock);
439 
440 		spin_lock(sdev->request_queue->queue_lock);
441 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 				!test_bit(QUEUE_FLAG_REENTER,
443 					&sdev->request_queue->queue_flags);
444 		if (flagset)
445 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 		__blk_run_queue(sdev->request_queue);
447 		if (flagset)
448 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 		spin_unlock(sdev->request_queue->queue_lock);
450 
451 		spin_lock(shost->host_lock);
452 	}
453 	/* put any unprocessed entries back */
454 	list_splice(&starved_list, &shost->starved_list);
455 	spin_unlock_irqrestore(shost->host_lock, flags);
456 
457 	blk_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct request *req = cmd->request;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(q->queue_lock, flags);
484 	scsi_unprep_request(req);
485 	blk_requeue_request(q, req);
486 	spin_unlock_irqrestore(q->queue_lock, flags);
487 
488 	scsi_run_queue(q);
489 }
490 
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 	struct scsi_device *sdev = cmd->device;
494 	struct request_queue *q = sdev->request_queue;
495 
496 	/* need to hold a reference on the device before we let go of the cmd */
497 	get_device(&sdev->sdev_gendev);
498 
499 	scsi_put_command(cmd);
500 	scsi_run_queue(q);
501 
502 	/* ok to remove device now */
503 	put_device(&sdev->sdev_gendev);
504 }
505 
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 	struct scsi_device *sdev;
509 
510 	shost_for_each_device(sdev, shost)
511 		scsi_run_queue(sdev->request_queue);
512 }
513 
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515 
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *		of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd	 - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *		requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  *
534  *		We are guaranteeing that the request queue will be goosed
535  *		at some point during this call.
536  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 					  int bytes, int requeue)
540 {
541 	struct request_queue *q = cmd->device->request_queue;
542 	struct request *req = cmd->request;
543 
544 	/*
545 	 * If there are blocks left over at the end, set up the command
546 	 * to queue the remainder of them.
547 	 */
548 	if (blk_end_request(req, error, bytes)) {
549 		/* kill remainder if no retrys */
550 		if (error && scsi_noretry_cmd(cmd))
551 			blk_end_request_all(req, error);
552 		else {
553 			if (requeue) {
554 				/*
555 				 * Bleah.  Leftovers again.  Stick the
556 				 * leftovers in the front of the
557 				 * queue, and goose the queue again.
558 				 */
559 				scsi_release_buffers(cmd);
560 				scsi_requeue_command(q, cmd);
561 				cmd = NULL;
562 			}
563 			return cmd;
564 		}
565 	}
566 
567 	/*
568 	 * This will goose the queue request function at the end, so we don't
569 	 * need to worry about launching another command.
570 	 */
571 	__scsi_release_buffers(cmd, 0);
572 	scsi_next_command(cmd);
573 	return NULL;
574 }
575 
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 	unsigned int index;
579 
580 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581 
582 	if (nents <= 8)
583 		index = 0;
584 	else
585 		index = get_count_order(nents) - 3;
586 
587 	return index;
588 }
589 
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 	struct scsi_host_sg_pool *sgp;
593 
594 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 	mempool_free(sgl, sgp->pool);
596 }
597 
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 	struct scsi_host_sg_pool *sgp;
601 
602 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 	return mempool_alloc(sgp->pool, gfp_mask);
604 }
605 
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 			      gfp_t gfp_mask)
608 {
609 	int ret;
610 
611 	BUG_ON(!nents);
612 
613 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 			       gfp_mask, scsi_sg_alloc);
615 	if (unlikely(ret))
616 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 				scsi_sg_free);
618 
619 	return ret;
620 }
621 
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626 
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629 
630 	if (cmd->sdb.table.nents)
631 		scsi_free_sgtable(&cmd->sdb);
632 
633 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634 
635 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 		struct scsi_data_buffer *bidi_sdb =
637 			cmd->request->next_rq->special;
638 		scsi_free_sgtable(bidi_sdb);
639 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 		cmd->request->next_rq->special = NULL;
641 	}
642 
643 	if (scsi_prot_sg_count(cmd))
644 		scsi_free_sgtable(cmd->prot_sdb);
645 }
646 
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd	- command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *		command, we must release resources allocated during
660  *		the __init_io() function.  Primarily this would involve
661  *		the scatter-gather table, and potentially any bounce
662  *		buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 	__scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669 
670 /*
671  * Function:    scsi_io_completion()
672  *
673  * Purpose:     Completion processing for block device I/O requests.
674  *
675  * Arguments:   cmd   - command that is finished.
676  *
677  * Lock status: Assumed that no lock is held upon entry.
678  *
679  * Returns:     Nothing
680  *
681  * Notes:       This function is matched in terms of capabilities to
682  *              the function that created the scatter-gather list.
683  *              In other words, if there are no bounce buffers
684  *              (the normal case for most drivers), we don't need
685  *              the logic to deal with cleaning up afterwards.
686  *
687  *		We must call scsi_end_request().  This will finish off
688  *		the specified number of sectors.  If we are done, the
689  *		command block will be released and the queue function
690  *		will be goosed.  If we are not done then we have to
691  *		figure out what to do next:
692  *
693  *		a) We can call scsi_requeue_command().  The request
694  *		   will be unprepared and put back on the queue.  Then
695  *		   a new command will be created for it.  This should
696  *		   be used if we made forward progress, or if we want
697  *		   to switch from READ(10) to READ(6) for example.
698  *
699  *		b) We can call scsi_queue_insert().  The request will
700  *		   be put back on the queue and retried using the same
701  *		   command as before, possibly after a delay.
702  *
703  *		c) We can call blk_end_request() with -EIO to fail
704  *		   the remainder of the request.
705  */
706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707 {
708 	int result = cmd->result;
709 	struct request_queue *q = cmd->device->request_queue;
710 	struct request *req = cmd->request;
711 	int error = 0;
712 	struct scsi_sense_hdr sshdr;
713 	int sense_valid = 0;
714 	int sense_deferred = 0;
715 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716 	      ACTION_DELAYED_RETRY} action;
717 	char *description = NULL;
718 
719 	if (result) {
720 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721 		if (sense_valid)
722 			sense_deferred = scsi_sense_is_deferred(&sshdr);
723 	}
724 
725 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
726 		req->errors = result;
727 		if (result) {
728 			if (sense_valid && req->sense) {
729 				/*
730 				 * SG_IO wants current and deferred errors
731 				 */
732 				int len = 8 + cmd->sense_buffer[7];
733 
734 				if (len > SCSI_SENSE_BUFFERSIZE)
735 					len = SCSI_SENSE_BUFFERSIZE;
736 				memcpy(req->sense, cmd->sense_buffer,  len);
737 				req->sense_len = len;
738 			}
739 			if (!sense_deferred)
740 				error = -EIO;
741 		}
742 
743 		req->resid_len = scsi_get_resid(cmd);
744 
745 		if (scsi_bidi_cmnd(cmd)) {
746 			/*
747 			 * Bidi commands Must be complete as a whole,
748 			 * both sides at once.
749 			 */
750 			req->next_rq->resid_len = scsi_in(cmd)->resid;
751 
752 			scsi_release_buffers(cmd);
753 			blk_end_request_all(req, 0);
754 
755 			scsi_next_command(cmd);
756 			return;
757 		}
758 	}
759 
760 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
761 
762 	/*
763 	 * Next deal with any sectors which we were able to correctly
764 	 * handle.
765 	 */
766 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
767 				      "%d bytes done.\n",
768 				      blk_rq_sectors(req), good_bytes));
769 
770 	/*
771 	 * Recovered errors need reporting, but they're always treated
772 	 * as success, so fiddle the result code here.  For BLOCK_PC
773 	 * we already took a copy of the original into rq->errors which
774 	 * is what gets returned to the user
775 	 */
776 	if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
777 		if (!(req->cmd_flags & REQ_QUIET))
778 			scsi_print_sense("", cmd);
779 		result = 0;
780 		/* BLOCK_PC may have set error */
781 		error = 0;
782 	}
783 
784 	/*
785 	 * A number of bytes were successfully read.  If there
786 	 * are leftovers and there is some kind of error
787 	 * (result != 0), retry the rest.
788 	 */
789 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
790 		return;
791 
792 	error = -EIO;
793 
794 	if (host_byte(result) == DID_RESET) {
795 		/* Third party bus reset or reset for error recovery
796 		 * reasons.  Just retry the command and see what
797 		 * happens.
798 		 */
799 		action = ACTION_RETRY;
800 	} else if (sense_valid && !sense_deferred) {
801 		switch (sshdr.sense_key) {
802 		case UNIT_ATTENTION:
803 			if (cmd->device->removable) {
804 				/* Detected disc change.  Set a bit
805 				 * and quietly refuse further access.
806 				 */
807 				cmd->device->changed = 1;
808 				description = "Media Changed";
809 				action = ACTION_FAIL;
810 			} else {
811 				/* Must have been a power glitch, or a
812 				 * bus reset.  Could not have been a
813 				 * media change, so we just retry the
814 				 * command and see what happens.
815 				 */
816 				action = ACTION_RETRY;
817 			}
818 			break;
819 		case ILLEGAL_REQUEST:
820 			/* If we had an ILLEGAL REQUEST returned, then
821 			 * we may have performed an unsupported
822 			 * command.  The only thing this should be
823 			 * would be a ten byte read where only a six
824 			 * byte read was supported.  Also, on a system
825 			 * where READ CAPACITY failed, we may have
826 			 * read past the end of the disk.
827 			 */
828 			if ((cmd->device->use_10_for_rw &&
829 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
830 			    (cmd->cmnd[0] == READ_10 ||
831 			     cmd->cmnd[0] == WRITE_10)) {
832 				/* This will issue a new 6-byte command. */
833 				cmd->device->use_10_for_rw = 0;
834 				action = ACTION_REPREP;
835 			} else if (sshdr.asc == 0x10) /* DIX */ {
836 				description = "Host Data Integrity Failure";
837 				action = ACTION_FAIL;
838 				error = -EILSEQ;
839 			} else
840 				action = ACTION_FAIL;
841 			break;
842 		case ABORTED_COMMAND:
843 			action = ACTION_FAIL;
844 			if (sshdr.asc == 0x10) { /* DIF */
845 				description = "Target Data Integrity Failure";
846 				error = -EILSEQ;
847 			}
848 			break;
849 		case NOT_READY:
850 			/* If the device is in the process of becoming
851 			 * ready, or has a temporary blockage, retry.
852 			 */
853 			if (sshdr.asc == 0x04) {
854 				switch (sshdr.ascq) {
855 				case 0x01: /* becoming ready */
856 				case 0x04: /* format in progress */
857 				case 0x05: /* rebuild in progress */
858 				case 0x06: /* recalculation in progress */
859 				case 0x07: /* operation in progress */
860 				case 0x08: /* Long write in progress */
861 				case 0x09: /* self test in progress */
862 				case 0x14: /* space allocation in progress */
863 					action = ACTION_DELAYED_RETRY;
864 					break;
865 				default:
866 					description = "Device not ready";
867 					action = ACTION_FAIL;
868 					break;
869 				}
870 			} else {
871 				description = "Device not ready";
872 				action = ACTION_FAIL;
873 			}
874 			break;
875 		case VOLUME_OVERFLOW:
876 			/* See SSC3rXX or current. */
877 			action = ACTION_FAIL;
878 			break;
879 		default:
880 			description = "Unhandled sense code";
881 			action = ACTION_FAIL;
882 			break;
883 		}
884 	} else {
885 		description = "Unhandled error code";
886 		action = ACTION_FAIL;
887 	}
888 
889 	switch (action) {
890 	case ACTION_FAIL:
891 		/* Give up and fail the remainder of the request */
892 		scsi_release_buffers(cmd);
893 		if (!(req->cmd_flags & REQ_QUIET)) {
894 			if (description)
895 				scmd_printk(KERN_INFO, cmd, "%s\n",
896 					    description);
897 			scsi_print_result(cmd);
898 			if (driver_byte(result) & DRIVER_SENSE)
899 				scsi_print_sense("", cmd);
900 			scsi_print_command(cmd);
901 		}
902 		if (blk_end_request_err(req, error))
903 			scsi_requeue_command(q, cmd);
904 		else
905 			scsi_next_command(cmd);
906 		break;
907 	case ACTION_REPREP:
908 		/* Unprep the request and put it back at the head of the queue.
909 		 * A new command will be prepared and issued.
910 		 */
911 		scsi_release_buffers(cmd);
912 		scsi_requeue_command(q, cmd);
913 		break;
914 	case ACTION_RETRY:
915 		/* Retry the same command immediately */
916 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
917 		break;
918 	case ACTION_DELAYED_RETRY:
919 		/* Retry the same command after a delay */
920 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
921 		break;
922 	}
923 }
924 
925 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
926 			     gfp_t gfp_mask)
927 {
928 	int count;
929 
930 	/*
931 	 * If sg table allocation fails, requeue request later.
932 	 */
933 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
934 					gfp_mask))) {
935 		return BLKPREP_DEFER;
936 	}
937 
938 	req->buffer = NULL;
939 
940 	/*
941 	 * Next, walk the list, and fill in the addresses and sizes of
942 	 * each segment.
943 	 */
944 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
945 	BUG_ON(count > sdb->table.nents);
946 	sdb->table.nents = count;
947 	sdb->length = blk_rq_bytes(req);
948 	return BLKPREP_OK;
949 }
950 
951 /*
952  * Function:    scsi_init_io()
953  *
954  * Purpose:     SCSI I/O initialize function.
955  *
956  * Arguments:   cmd   - Command descriptor we wish to initialize
957  *
958  * Returns:     0 on success
959  *		BLKPREP_DEFER if the failure is retryable
960  *		BLKPREP_KILL if the failure is fatal
961  */
962 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
963 {
964 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
965 	if (error)
966 		goto err_exit;
967 
968 	if (blk_bidi_rq(cmd->request)) {
969 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
970 			scsi_sdb_cache, GFP_ATOMIC);
971 		if (!bidi_sdb) {
972 			error = BLKPREP_DEFER;
973 			goto err_exit;
974 		}
975 
976 		cmd->request->next_rq->special = bidi_sdb;
977 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
978 								    GFP_ATOMIC);
979 		if (error)
980 			goto err_exit;
981 	}
982 
983 	if (blk_integrity_rq(cmd->request)) {
984 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
985 		int ivecs, count;
986 
987 		BUG_ON(prot_sdb == NULL);
988 		ivecs = blk_rq_count_integrity_sg(cmd->request);
989 
990 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
991 			error = BLKPREP_DEFER;
992 			goto err_exit;
993 		}
994 
995 		count = blk_rq_map_integrity_sg(cmd->request,
996 						prot_sdb->table.sgl);
997 		BUG_ON(unlikely(count > ivecs));
998 
999 		cmd->prot_sdb = prot_sdb;
1000 		cmd->prot_sdb->table.nents = count;
1001 	}
1002 
1003 	return BLKPREP_OK ;
1004 
1005 err_exit:
1006 	scsi_release_buffers(cmd);
1007 	if (error == BLKPREP_KILL)
1008 		scsi_put_command(cmd);
1009 	else /* BLKPREP_DEFER */
1010 		scsi_unprep_request(cmd->request);
1011 
1012 	return error;
1013 }
1014 EXPORT_SYMBOL(scsi_init_io);
1015 
1016 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1017 		struct request *req)
1018 {
1019 	struct scsi_cmnd *cmd;
1020 
1021 	if (!req->special) {
1022 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1023 		if (unlikely(!cmd))
1024 			return NULL;
1025 		req->special = cmd;
1026 	} else {
1027 		cmd = req->special;
1028 	}
1029 
1030 	/* pull a tag out of the request if we have one */
1031 	cmd->tag = req->tag;
1032 	cmd->request = req;
1033 
1034 	cmd->cmnd = req->cmd;
1035 
1036 	return cmd;
1037 }
1038 
1039 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1040 {
1041 	struct scsi_cmnd *cmd;
1042 	int ret = scsi_prep_state_check(sdev, req);
1043 
1044 	if (ret != BLKPREP_OK)
1045 		return ret;
1046 
1047 	cmd = scsi_get_cmd_from_req(sdev, req);
1048 	if (unlikely(!cmd))
1049 		return BLKPREP_DEFER;
1050 
1051 	/*
1052 	 * BLOCK_PC requests may transfer data, in which case they must
1053 	 * a bio attached to them.  Or they might contain a SCSI command
1054 	 * that does not transfer data, in which case they may optionally
1055 	 * submit a request without an attached bio.
1056 	 */
1057 	if (req->bio) {
1058 		int ret;
1059 
1060 		BUG_ON(!req->nr_phys_segments);
1061 
1062 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1063 		if (unlikely(ret))
1064 			return ret;
1065 	} else {
1066 		BUG_ON(blk_rq_bytes(req));
1067 
1068 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069 		req->buffer = NULL;
1070 	}
1071 
1072 	cmd->cmd_len = req->cmd_len;
1073 	if (!blk_rq_bytes(req))
1074 		cmd->sc_data_direction = DMA_NONE;
1075 	else if (rq_data_dir(req) == WRITE)
1076 		cmd->sc_data_direction = DMA_TO_DEVICE;
1077 	else
1078 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1079 
1080 	cmd->transfersize = blk_rq_bytes(req);
1081 	cmd->allowed = req->retries;
1082 	return BLKPREP_OK;
1083 }
1084 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1085 
1086 /*
1087  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1088  * from filesystems that still need to be translated to SCSI CDBs from
1089  * the ULD.
1090  */
1091 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1092 {
1093 	struct scsi_cmnd *cmd;
1094 	int ret = scsi_prep_state_check(sdev, req);
1095 
1096 	if (ret != BLKPREP_OK)
1097 		return ret;
1098 
1099 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1100 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1101 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1102 		if (ret != BLKPREP_OK)
1103 			return ret;
1104 	}
1105 
1106 	/*
1107 	 * Filesystem requests must transfer data.
1108 	 */
1109 	BUG_ON(!req->nr_phys_segments);
1110 
1111 	cmd = scsi_get_cmd_from_req(sdev, req);
1112 	if (unlikely(!cmd))
1113 		return BLKPREP_DEFER;
1114 
1115 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1116 	return scsi_init_io(cmd, GFP_ATOMIC);
1117 }
1118 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1119 
1120 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1121 {
1122 	int ret = BLKPREP_OK;
1123 
1124 	/*
1125 	 * If the device is not in running state we will reject some
1126 	 * or all commands.
1127 	 */
1128 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1129 		switch (sdev->sdev_state) {
1130 		case SDEV_OFFLINE:
1131 			/*
1132 			 * If the device is offline we refuse to process any
1133 			 * commands.  The device must be brought online
1134 			 * before trying any recovery commands.
1135 			 */
1136 			sdev_printk(KERN_ERR, sdev,
1137 				    "rejecting I/O to offline device\n");
1138 			ret = BLKPREP_KILL;
1139 			break;
1140 		case SDEV_DEL:
1141 			/*
1142 			 * If the device is fully deleted, we refuse to
1143 			 * process any commands as well.
1144 			 */
1145 			sdev_printk(KERN_ERR, sdev,
1146 				    "rejecting I/O to dead device\n");
1147 			ret = BLKPREP_KILL;
1148 			break;
1149 		case SDEV_QUIESCE:
1150 		case SDEV_BLOCK:
1151 		case SDEV_CREATED_BLOCK:
1152 			/*
1153 			 * If the devices is blocked we defer normal commands.
1154 			 */
1155 			if (!(req->cmd_flags & REQ_PREEMPT))
1156 				ret = BLKPREP_DEFER;
1157 			break;
1158 		default:
1159 			/*
1160 			 * For any other not fully online state we only allow
1161 			 * special commands.  In particular any user initiated
1162 			 * command is not allowed.
1163 			 */
1164 			if (!(req->cmd_flags & REQ_PREEMPT))
1165 				ret = BLKPREP_KILL;
1166 			break;
1167 		}
1168 	}
1169 	return ret;
1170 }
1171 EXPORT_SYMBOL(scsi_prep_state_check);
1172 
1173 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1174 {
1175 	struct scsi_device *sdev = q->queuedata;
1176 
1177 	switch (ret) {
1178 	case BLKPREP_KILL:
1179 		req->errors = DID_NO_CONNECT << 16;
1180 		/* release the command and kill it */
1181 		if (req->special) {
1182 			struct scsi_cmnd *cmd = req->special;
1183 			scsi_release_buffers(cmd);
1184 			scsi_put_command(cmd);
1185 			req->special = NULL;
1186 		}
1187 		break;
1188 	case BLKPREP_DEFER:
1189 		/*
1190 		 * If we defer, the blk_peek_request() returns NULL, but the
1191 		 * queue must be restarted, so we plug here if no returning
1192 		 * command will automatically do that.
1193 		 */
1194 		if (sdev->device_busy == 0)
1195 			blk_plug_device(q);
1196 		break;
1197 	default:
1198 		req->cmd_flags |= REQ_DONTPREP;
1199 	}
1200 
1201 	return ret;
1202 }
1203 EXPORT_SYMBOL(scsi_prep_return);
1204 
1205 int scsi_prep_fn(struct request_queue *q, struct request *req)
1206 {
1207 	struct scsi_device *sdev = q->queuedata;
1208 	int ret = BLKPREP_KILL;
1209 
1210 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1211 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1212 	return scsi_prep_return(q, req, ret);
1213 }
1214 EXPORT_SYMBOL(scsi_prep_fn);
1215 
1216 /*
1217  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1218  * return 0.
1219  *
1220  * Called with the queue_lock held.
1221  */
1222 static inline int scsi_dev_queue_ready(struct request_queue *q,
1223 				  struct scsi_device *sdev)
1224 {
1225 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1226 		/*
1227 		 * unblock after device_blocked iterates to zero
1228 		 */
1229 		if (--sdev->device_blocked == 0) {
1230 			SCSI_LOG_MLQUEUE(3,
1231 				   sdev_printk(KERN_INFO, sdev,
1232 				   "unblocking device at zero depth\n"));
1233 		} else {
1234 			blk_plug_device(q);
1235 			return 0;
1236 		}
1237 	}
1238 	if (scsi_device_is_busy(sdev))
1239 		return 0;
1240 
1241 	return 1;
1242 }
1243 
1244 
1245 /*
1246  * scsi_target_queue_ready: checks if there we can send commands to target
1247  * @sdev: scsi device on starget to check.
1248  *
1249  * Called with the host lock held.
1250  */
1251 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1252 					   struct scsi_device *sdev)
1253 {
1254 	struct scsi_target *starget = scsi_target(sdev);
1255 
1256 	if (starget->single_lun) {
1257 		if (starget->starget_sdev_user &&
1258 		    starget->starget_sdev_user != sdev)
1259 			return 0;
1260 		starget->starget_sdev_user = sdev;
1261 	}
1262 
1263 	if (starget->target_busy == 0 && starget->target_blocked) {
1264 		/*
1265 		 * unblock after target_blocked iterates to zero
1266 		 */
1267 		if (--starget->target_blocked == 0) {
1268 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1269 					 "unblocking target at zero depth\n"));
1270 		} else
1271 			return 0;
1272 	}
1273 
1274 	if (scsi_target_is_busy(starget)) {
1275 		if (list_empty(&sdev->starved_entry)) {
1276 			list_add_tail(&sdev->starved_entry,
1277 				      &shost->starved_list);
1278 			return 0;
1279 		}
1280 	}
1281 
1282 	/* We're OK to process the command, so we can't be starved */
1283 	if (!list_empty(&sdev->starved_entry))
1284 		list_del_init(&sdev->starved_entry);
1285 	return 1;
1286 }
1287 
1288 /*
1289  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1290  * return 0. We must end up running the queue again whenever 0 is
1291  * returned, else IO can hang.
1292  *
1293  * Called with host_lock held.
1294  */
1295 static inline int scsi_host_queue_ready(struct request_queue *q,
1296 				   struct Scsi_Host *shost,
1297 				   struct scsi_device *sdev)
1298 {
1299 	if (scsi_host_in_recovery(shost))
1300 		return 0;
1301 	if (shost->host_busy == 0 && shost->host_blocked) {
1302 		/*
1303 		 * unblock after host_blocked iterates to zero
1304 		 */
1305 		if (--shost->host_blocked == 0) {
1306 			SCSI_LOG_MLQUEUE(3,
1307 				printk("scsi%d unblocking host at zero depth\n",
1308 					shost->host_no));
1309 		} else {
1310 			return 0;
1311 		}
1312 	}
1313 	if (scsi_host_is_busy(shost)) {
1314 		if (list_empty(&sdev->starved_entry))
1315 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1316 		return 0;
1317 	}
1318 
1319 	/* We're OK to process the command, so we can't be starved */
1320 	if (!list_empty(&sdev->starved_entry))
1321 		list_del_init(&sdev->starved_entry);
1322 
1323 	return 1;
1324 }
1325 
1326 /*
1327  * Busy state exporting function for request stacking drivers.
1328  *
1329  * For efficiency, no lock is taken to check the busy state of
1330  * shost/starget/sdev, since the returned value is not guaranteed and
1331  * may be changed after request stacking drivers call the function,
1332  * regardless of taking lock or not.
1333  *
1334  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1335  * (e.g. !sdev), scsi needs to return 'not busy'.
1336  * Otherwise, request stacking drivers may hold requests forever.
1337  */
1338 static int scsi_lld_busy(struct request_queue *q)
1339 {
1340 	struct scsi_device *sdev = q->queuedata;
1341 	struct Scsi_Host *shost;
1342 	struct scsi_target *starget;
1343 
1344 	if (!sdev)
1345 		return 0;
1346 
1347 	shost = sdev->host;
1348 	starget = scsi_target(sdev);
1349 
1350 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1351 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1352 		return 1;
1353 
1354 	return 0;
1355 }
1356 
1357 /*
1358  * Kill a request for a dead device
1359  */
1360 static void scsi_kill_request(struct request *req, struct request_queue *q)
1361 {
1362 	struct scsi_cmnd *cmd = req->special;
1363 	struct scsi_device *sdev;
1364 	struct scsi_target *starget;
1365 	struct Scsi_Host *shost;
1366 
1367 	blk_start_request(req);
1368 
1369 	if (unlikely(cmd == NULL)) {
1370 		printk(KERN_CRIT "impossible request in %s.\n",
1371 				 __func__);
1372 		BUG();
1373 	}
1374 
1375 	sdev = cmd->device;
1376 	starget = scsi_target(sdev);
1377 	shost = sdev->host;
1378 	scsi_init_cmd_errh(cmd);
1379 	cmd->result = DID_NO_CONNECT << 16;
1380 	atomic_inc(&cmd->device->iorequest_cnt);
1381 
1382 	/*
1383 	 * SCSI request completion path will do scsi_device_unbusy(),
1384 	 * bump busy counts.  To bump the counters, we need to dance
1385 	 * with the locks as normal issue path does.
1386 	 */
1387 	sdev->device_busy++;
1388 	spin_unlock(sdev->request_queue->queue_lock);
1389 	spin_lock(shost->host_lock);
1390 	shost->host_busy++;
1391 	starget->target_busy++;
1392 	spin_unlock(shost->host_lock);
1393 	spin_lock(sdev->request_queue->queue_lock);
1394 
1395 	blk_complete_request(req);
1396 }
1397 
1398 static void scsi_softirq_done(struct request *rq)
1399 {
1400 	struct scsi_cmnd *cmd = rq->special;
1401 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1402 	int disposition;
1403 
1404 	INIT_LIST_HEAD(&cmd->eh_entry);
1405 
1406 	/*
1407 	 * Set the serial numbers back to zero
1408 	 */
1409 	cmd->serial_number = 0;
1410 
1411 	atomic_inc(&cmd->device->iodone_cnt);
1412 	if (cmd->result)
1413 		atomic_inc(&cmd->device->ioerr_cnt);
1414 
1415 	disposition = scsi_decide_disposition(cmd);
1416 	if (disposition != SUCCESS &&
1417 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1418 		sdev_printk(KERN_ERR, cmd->device,
1419 			    "timing out command, waited %lus\n",
1420 			    wait_for/HZ);
1421 		disposition = SUCCESS;
1422 	}
1423 
1424 	scsi_log_completion(cmd, disposition);
1425 
1426 	switch (disposition) {
1427 		case SUCCESS:
1428 			scsi_finish_command(cmd);
1429 			break;
1430 		case NEEDS_RETRY:
1431 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1432 			break;
1433 		case ADD_TO_MLQUEUE:
1434 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1435 			break;
1436 		default:
1437 			if (!scsi_eh_scmd_add(cmd, 0))
1438 				scsi_finish_command(cmd);
1439 	}
1440 }
1441 
1442 /*
1443  * Function:    scsi_request_fn()
1444  *
1445  * Purpose:     Main strategy routine for SCSI.
1446  *
1447  * Arguments:   q       - Pointer to actual queue.
1448  *
1449  * Returns:     Nothing
1450  *
1451  * Lock status: IO request lock assumed to be held when called.
1452  */
1453 static void scsi_request_fn(struct request_queue *q)
1454 {
1455 	struct scsi_device *sdev = q->queuedata;
1456 	struct Scsi_Host *shost;
1457 	struct scsi_cmnd *cmd;
1458 	struct request *req;
1459 
1460 	if (!sdev) {
1461 		printk("scsi: killing requests for dead queue\n");
1462 		while ((req = blk_peek_request(q)) != NULL)
1463 			scsi_kill_request(req, q);
1464 		return;
1465 	}
1466 
1467 	if(!get_device(&sdev->sdev_gendev))
1468 		/* We must be tearing the block queue down already */
1469 		return;
1470 
1471 	/*
1472 	 * To start with, we keep looping until the queue is empty, or until
1473 	 * the host is no longer able to accept any more requests.
1474 	 */
1475 	shost = sdev->host;
1476 	while (!blk_queue_plugged(q)) {
1477 		int rtn;
1478 		/*
1479 		 * get next queueable request.  We do this early to make sure
1480 		 * that the request is fully prepared even if we cannot
1481 		 * accept it.
1482 		 */
1483 		req = blk_peek_request(q);
1484 		if (!req || !scsi_dev_queue_ready(q, sdev))
1485 			break;
1486 
1487 		if (unlikely(!scsi_device_online(sdev))) {
1488 			sdev_printk(KERN_ERR, sdev,
1489 				    "rejecting I/O to offline device\n");
1490 			scsi_kill_request(req, q);
1491 			continue;
1492 		}
1493 
1494 
1495 		/*
1496 		 * Remove the request from the request list.
1497 		 */
1498 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1499 			blk_start_request(req);
1500 		sdev->device_busy++;
1501 
1502 		spin_unlock(q->queue_lock);
1503 		cmd = req->special;
1504 		if (unlikely(cmd == NULL)) {
1505 			printk(KERN_CRIT "impossible request in %s.\n"
1506 					 "please mail a stack trace to "
1507 					 "linux-scsi@vger.kernel.org\n",
1508 					 __func__);
1509 			blk_dump_rq_flags(req, "foo");
1510 			BUG();
1511 		}
1512 		spin_lock(shost->host_lock);
1513 
1514 		/*
1515 		 * We hit this when the driver is using a host wide
1516 		 * tag map. For device level tag maps the queue_depth check
1517 		 * in the device ready fn would prevent us from trying
1518 		 * to allocate a tag. Since the map is a shared host resource
1519 		 * we add the dev to the starved list so it eventually gets
1520 		 * a run when a tag is freed.
1521 		 */
1522 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1523 			if (list_empty(&sdev->starved_entry))
1524 				list_add_tail(&sdev->starved_entry,
1525 					      &shost->starved_list);
1526 			goto not_ready;
1527 		}
1528 
1529 		if (!scsi_target_queue_ready(shost, sdev))
1530 			goto not_ready;
1531 
1532 		if (!scsi_host_queue_ready(q, shost, sdev))
1533 			goto not_ready;
1534 
1535 		scsi_target(sdev)->target_busy++;
1536 		shost->host_busy++;
1537 
1538 		/*
1539 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1540 		 *		take the lock again.
1541 		 */
1542 		spin_unlock_irq(shost->host_lock);
1543 
1544 		/*
1545 		 * Finally, initialize any error handling parameters, and set up
1546 		 * the timers for timeouts.
1547 		 */
1548 		scsi_init_cmd_errh(cmd);
1549 
1550 		/*
1551 		 * Dispatch the command to the low-level driver.
1552 		 */
1553 		rtn = scsi_dispatch_cmd(cmd);
1554 		spin_lock_irq(q->queue_lock);
1555 		if(rtn) {
1556 			/* we're refusing the command; because of
1557 			 * the way locks get dropped, we need to
1558 			 * check here if plugging is required */
1559 			if(sdev->device_busy == 0)
1560 				blk_plug_device(q);
1561 
1562 			break;
1563 		}
1564 	}
1565 
1566 	goto out;
1567 
1568  not_ready:
1569 	spin_unlock_irq(shost->host_lock);
1570 
1571 	/*
1572 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1573 	 * must return with queue_lock held.
1574 	 *
1575 	 * Decrementing device_busy without checking it is OK, as all such
1576 	 * cases (host limits or settings) should run the queue at some
1577 	 * later time.
1578 	 */
1579 	spin_lock_irq(q->queue_lock);
1580 	blk_requeue_request(q, req);
1581 	sdev->device_busy--;
1582 	if(sdev->device_busy == 0)
1583 		blk_plug_device(q);
1584  out:
1585 	/* must be careful here...if we trigger the ->remove() function
1586 	 * we cannot be holding the q lock */
1587 	spin_unlock_irq(q->queue_lock);
1588 	put_device(&sdev->sdev_gendev);
1589 	spin_lock_irq(q->queue_lock);
1590 }
1591 
1592 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1593 {
1594 	struct device *host_dev;
1595 	u64 bounce_limit = 0xffffffff;
1596 
1597 	if (shost->unchecked_isa_dma)
1598 		return BLK_BOUNCE_ISA;
1599 	/*
1600 	 * Platforms with virtual-DMA translation
1601 	 * hardware have no practical limit.
1602 	 */
1603 	if (!PCI_DMA_BUS_IS_PHYS)
1604 		return BLK_BOUNCE_ANY;
1605 
1606 	host_dev = scsi_get_device(shost);
1607 	if (host_dev && host_dev->dma_mask)
1608 		bounce_limit = *host_dev->dma_mask;
1609 
1610 	return bounce_limit;
1611 }
1612 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1613 
1614 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1615 					 request_fn_proc *request_fn)
1616 {
1617 	struct request_queue *q;
1618 	struct device *dev = shost->shost_gendev.parent;
1619 
1620 	q = blk_init_queue(request_fn, NULL);
1621 	if (!q)
1622 		return NULL;
1623 
1624 	/*
1625 	 * this limit is imposed by hardware restrictions
1626 	 */
1627 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1628 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1629 
1630 	blk_queue_max_sectors(q, shost->max_sectors);
1631 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1632 	blk_queue_segment_boundary(q, shost->dma_boundary);
1633 	dma_set_seg_boundary(dev, shost->dma_boundary);
1634 
1635 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1636 
1637 	/* New queue, no concurrency on queue_flags */
1638 	if (!shost->use_clustering)
1639 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1640 
1641 	/*
1642 	 * set a reasonable default alignment on word boundaries: the
1643 	 * host and device may alter it using
1644 	 * blk_queue_update_dma_alignment() later.
1645 	 */
1646 	blk_queue_dma_alignment(q, 0x03);
1647 
1648 	return q;
1649 }
1650 EXPORT_SYMBOL(__scsi_alloc_queue);
1651 
1652 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1653 {
1654 	struct request_queue *q;
1655 
1656 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1657 	if (!q)
1658 		return NULL;
1659 
1660 	blk_queue_prep_rq(q, scsi_prep_fn);
1661 	blk_queue_softirq_done(q, scsi_softirq_done);
1662 	blk_queue_rq_timed_out(q, scsi_times_out);
1663 	blk_queue_lld_busy(q, scsi_lld_busy);
1664 	return q;
1665 }
1666 
1667 void scsi_free_queue(struct request_queue *q)
1668 {
1669 	blk_cleanup_queue(q);
1670 }
1671 
1672 /*
1673  * Function:    scsi_block_requests()
1674  *
1675  * Purpose:     Utility function used by low-level drivers to prevent further
1676  *		commands from being queued to the device.
1677  *
1678  * Arguments:   shost       - Host in question
1679  *
1680  * Returns:     Nothing
1681  *
1682  * Lock status: No locks are assumed held.
1683  *
1684  * Notes:       There is no timer nor any other means by which the requests
1685  *		get unblocked other than the low-level driver calling
1686  *		scsi_unblock_requests().
1687  */
1688 void scsi_block_requests(struct Scsi_Host *shost)
1689 {
1690 	shost->host_self_blocked = 1;
1691 }
1692 EXPORT_SYMBOL(scsi_block_requests);
1693 
1694 /*
1695  * Function:    scsi_unblock_requests()
1696  *
1697  * Purpose:     Utility function used by low-level drivers to allow further
1698  *		commands from being queued to the device.
1699  *
1700  * Arguments:   shost       - Host in question
1701  *
1702  * Returns:     Nothing
1703  *
1704  * Lock status: No locks are assumed held.
1705  *
1706  * Notes:       There is no timer nor any other means by which the requests
1707  *		get unblocked other than the low-level driver calling
1708  *		scsi_unblock_requests().
1709  *
1710  *		This is done as an API function so that changes to the
1711  *		internals of the scsi mid-layer won't require wholesale
1712  *		changes to drivers that use this feature.
1713  */
1714 void scsi_unblock_requests(struct Scsi_Host *shost)
1715 {
1716 	shost->host_self_blocked = 0;
1717 	scsi_run_host_queues(shost);
1718 }
1719 EXPORT_SYMBOL(scsi_unblock_requests);
1720 
1721 int __init scsi_init_queue(void)
1722 {
1723 	int i;
1724 
1725 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1726 					   sizeof(struct scsi_data_buffer),
1727 					   0, 0, NULL);
1728 	if (!scsi_sdb_cache) {
1729 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1730 		return -ENOMEM;
1731 	}
1732 
1733 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1734 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1735 		int size = sgp->size * sizeof(struct scatterlist);
1736 
1737 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1738 				SLAB_HWCACHE_ALIGN, NULL);
1739 		if (!sgp->slab) {
1740 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1741 					sgp->name);
1742 			goto cleanup_sdb;
1743 		}
1744 
1745 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1746 						     sgp->slab);
1747 		if (!sgp->pool) {
1748 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1749 					sgp->name);
1750 			goto cleanup_sdb;
1751 		}
1752 	}
1753 
1754 	return 0;
1755 
1756 cleanup_sdb:
1757 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1758 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1759 		if (sgp->pool)
1760 			mempool_destroy(sgp->pool);
1761 		if (sgp->slab)
1762 			kmem_cache_destroy(sgp->slab);
1763 	}
1764 	kmem_cache_destroy(scsi_sdb_cache);
1765 
1766 	return -ENOMEM;
1767 }
1768 
1769 void scsi_exit_queue(void)
1770 {
1771 	int i;
1772 
1773 	kmem_cache_destroy(scsi_sdb_cache);
1774 
1775 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1776 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1777 		mempool_destroy(sgp->pool);
1778 		kmem_cache_destroy(sgp->slab);
1779 	}
1780 }
1781 
1782 /**
1783  *	scsi_mode_select - issue a mode select
1784  *	@sdev:	SCSI device to be queried
1785  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1786  *	@sp:	Save page bit (0 == don't save, 1 == save)
1787  *	@modepage: mode page being requested
1788  *	@buffer: request buffer (may not be smaller than eight bytes)
1789  *	@len:	length of request buffer.
1790  *	@timeout: command timeout
1791  *	@retries: number of retries before failing
1792  *	@data: returns a structure abstracting the mode header data
1793  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1794  *		must be SCSI_SENSE_BUFFERSIZE big.
1795  *
1796  *	Returns zero if successful; negative error number or scsi
1797  *	status on error
1798  *
1799  */
1800 int
1801 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1802 		 unsigned char *buffer, int len, int timeout, int retries,
1803 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1804 {
1805 	unsigned char cmd[10];
1806 	unsigned char *real_buffer;
1807 	int ret;
1808 
1809 	memset(cmd, 0, sizeof(cmd));
1810 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1811 
1812 	if (sdev->use_10_for_ms) {
1813 		if (len > 65535)
1814 			return -EINVAL;
1815 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1816 		if (!real_buffer)
1817 			return -ENOMEM;
1818 		memcpy(real_buffer + 8, buffer, len);
1819 		len += 8;
1820 		real_buffer[0] = 0;
1821 		real_buffer[1] = 0;
1822 		real_buffer[2] = data->medium_type;
1823 		real_buffer[3] = data->device_specific;
1824 		real_buffer[4] = data->longlba ? 0x01 : 0;
1825 		real_buffer[5] = 0;
1826 		real_buffer[6] = data->block_descriptor_length >> 8;
1827 		real_buffer[7] = data->block_descriptor_length;
1828 
1829 		cmd[0] = MODE_SELECT_10;
1830 		cmd[7] = len >> 8;
1831 		cmd[8] = len;
1832 	} else {
1833 		if (len > 255 || data->block_descriptor_length > 255 ||
1834 		    data->longlba)
1835 			return -EINVAL;
1836 
1837 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1838 		if (!real_buffer)
1839 			return -ENOMEM;
1840 		memcpy(real_buffer + 4, buffer, len);
1841 		len += 4;
1842 		real_buffer[0] = 0;
1843 		real_buffer[1] = data->medium_type;
1844 		real_buffer[2] = data->device_specific;
1845 		real_buffer[3] = data->block_descriptor_length;
1846 
1847 
1848 		cmd[0] = MODE_SELECT;
1849 		cmd[4] = len;
1850 	}
1851 
1852 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1853 			       sshdr, timeout, retries, NULL);
1854 	kfree(real_buffer);
1855 	return ret;
1856 }
1857 EXPORT_SYMBOL_GPL(scsi_mode_select);
1858 
1859 /**
1860  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1861  *	@sdev:	SCSI device to be queried
1862  *	@dbd:	set if mode sense will allow block descriptors to be returned
1863  *	@modepage: mode page being requested
1864  *	@buffer: request buffer (may not be smaller than eight bytes)
1865  *	@len:	length of request buffer.
1866  *	@timeout: command timeout
1867  *	@retries: number of retries before failing
1868  *	@data: returns a structure abstracting the mode header data
1869  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1870  *		must be SCSI_SENSE_BUFFERSIZE big.
1871  *
1872  *	Returns zero if unsuccessful, or the header offset (either 4
1873  *	or 8 depending on whether a six or ten byte command was
1874  *	issued) if successful.
1875  */
1876 int
1877 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1878 		  unsigned char *buffer, int len, int timeout, int retries,
1879 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1880 {
1881 	unsigned char cmd[12];
1882 	int use_10_for_ms;
1883 	int header_length;
1884 	int result;
1885 	struct scsi_sense_hdr my_sshdr;
1886 
1887 	memset(data, 0, sizeof(*data));
1888 	memset(&cmd[0], 0, 12);
1889 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1890 	cmd[2] = modepage;
1891 
1892 	/* caller might not be interested in sense, but we need it */
1893 	if (!sshdr)
1894 		sshdr = &my_sshdr;
1895 
1896  retry:
1897 	use_10_for_ms = sdev->use_10_for_ms;
1898 
1899 	if (use_10_for_ms) {
1900 		if (len < 8)
1901 			len = 8;
1902 
1903 		cmd[0] = MODE_SENSE_10;
1904 		cmd[8] = len;
1905 		header_length = 8;
1906 	} else {
1907 		if (len < 4)
1908 			len = 4;
1909 
1910 		cmd[0] = MODE_SENSE;
1911 		cmd[4] = len;
1912 		header_length = 4;
1913 	}
1914 
1915 	memset(buffer, 0, len);
1916 
1917 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1918 				  sshdr, timeout, retries, NULL);
1919 
1920 	/* This code looks awful: what it's doing is making sure an
1921 	 * ILLEGAL REQUEST sense return identifies the actual command
1922 	 * byte as the problem.  MODE_SENSE commands can return
1923 	 * ILLEGAL REQUEST if the code page isn't supported */
1924 
1925 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1926 	    (driver_byte(result) & DRIVER_SENSE)) {
1927 		if (scsi_sense_valid(sshdr)) {
1928 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1929 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1930 				/*
1931 				 * Invalid command operation code
1932 				 */
1933 				sdev->use_10_for_ms = 0;
1934 				goto retry;
1935 			}
1936 		}
1937 	}
1938 
1939 	if(scsi_status_is_good(result)) {
1940 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1941 			     (modepage == 6 || modepage == 8))) {
1942 			/* Initio breakage? */
1943 			header_length = 0;
1944 			data->length = 13;
1945 			data->medium_type = 0;
1946 			data->device_specific = 0;
1947 			data->longlba = 0;
1948 			data->block_descriptor_length = 0;
1949 		} else if(use_10_for_ms) {
1950 			data->length = buffer[0]*256 + buffer[1] + 2;
1951 			data->medium_type = buffer[2];
1952 			data->device_specific = buffer[3];
1953 			data->longlba = buffer[4] & 0x01;
1954 			data->block_descriptor_length = buffer[6]*256
1955 				+ buffer[7];
1956 		} else {
1957 			data->length = buffer[0] + 1;
1958 			data->medium_type = buffer[1];
1959 			data->device_specific = buffer[2];
1960 			data->block_descriptor_length = buffer[3];
1961 		}
1962 		data->header_length = header_length;
1963 	}
1964 
1965 	return result;
1966 }
1967 EXPORT_SYMBOL(scsi_mode_sense);
1968 
1969 /**
1970  *	scsi_test_unit_ready - test if unit is ready
1971  *	@sdev:	scsi device to change the state of.
1972  *	@timeout: command timeout
1973  *	@retries: number of retries before failing
1974  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1975  *		returning sense. Make sure that this is cleared before passing
1976  *		in.
1977  *
1978  *	Returns zero if unsuccessful or an error if TUR failed.  For
1979  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1980  *	translated to success, with the ->changed flag updated.
1981  **/
1982 int
1983 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1984 		     struct scsi_sense_hdr *sshdr_external)
1985 {
1986 	char cmd[] = {
1987 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1988 	};
1989 	struct scsi_sense_hdr *sshdr;
1990 	int result;
1991 
1992 	if (!sshdr_external)
1993 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1994 	else
1995 		sshdr = sshdr_external;
1996 
1997 	/* try to eat the UNIT_ATTENTION if there are enough retries */
1998 	do {
1999 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2000 					  timeout, retries, NULL);
2001 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2002 		    sshdr->sense_key == UNIT_ATTENTION)
2003 			sdev->changed = 1;
2004 	} while (scsi_sense_valid(sshdr) &&
2005 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2006 
2007 	if (!sshdr)
2008 		/* could not allocate sense buffer, so can't process it */
2009 		return result;
2010 
2011 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2012 	    (sshdr->sense_key == UNIT_ATTENTION ||
2013 	     sshdr->sense_key == NOT_READY)) {
2014 		sdev->changed = 1;
2015 		result = 0;
2016 	}
2017 	if (!sshdr_external)
2018 		kfree(sshdr);
2019 	return result;
2020 }
2021 EXPORT_SYMBOL(scsi_test_unit_ready);
2022 
2023 /**
2024  *	scsi_device_set_state - Take the given device through the device state model.
2025  *	@sdev:	scsi device to change the state of.
2026  *	@state:	state to change to.
2027  *
2028  *	Returns zero if unsuccessful or an error if the requested
2029  *	transition is illegal.
2030  */
2031 int
2032 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2033 {
2034 	enum scsi_device_state oldstate = sdev->sdev_state;
2035 
2036 	if (state == oldstate)
2037 		return 0;
2038 
2039 	switch (state) {
2040 	case SDEV_CREATED:
2041 		switch (oldstate) {
2042 		case SDEV_CREATED_BLOCK:
2043 			break;
2044 		default:
2045 			goto illegal;
2046 		}
2047 		break;
2048 
2049 	case SDEV_RUNNING:
2050 		switch (oldstate) {
2051 		case SDEV_CREATED:
2052 		case SDEV_OFFLINE:
2053 		case SDEV_QUIESCE:
2054 		case SDEV_BLOCK:
2055 			break;
2056 		default:
2057 			goto illegal;
2058 		}
2059 		break;
2060 
2061 	case SDEV_QUIESCE:
2062 		switch (oldstate) {
2063 		case SDEV_RUNNING:
2064 		case SDEV_OFFLINE:
2065 			break;
2066 		default:
2067 			goto illegal;
2068 		}
2069 		break;
2070 
2071 	case SDEV_OFFLINE:
2072 		switch (oldstate) {
2073 		case SDEV_CREATED:
2074 		case SDEV_RUNNING:
2075 		case SDEV_QUIESCE:
2076 		case SDEV_BLOCK:
2077 			break;
2078 		default:
2079 			goto illegal;
2080 		}
2081 		break;
2082 
2083 	case SDEV_BLOCK:
2084 		switch (oldstate) {
2085 		case SDEV_RUNNING:
2086 		case SDEV_CREATED_BLOCK:
2087 			break;
2088 		default:
2089 			goto illegal;
2090 		}
2091 		break;
2092 
2093 	case SDEV_CREATED_BLOCK:
2094 		switch (oldstate) {
2095 		case SDEV_CREATED:
2096 			break;
2097 		default:
2098 			goto illegal;
2099 		}
2100 		break;
2101 
2102 	case SDEV_CANCEL:
2103 		switch (oldstate) {
2104 		case SDEV_CREATED:
2105 		case SDEV_RUNNING:
2106 		case SDEV_QUIESCE:
2107 		case SDEV_OFFLINE:
2108 		case SDEV_BLOCK:
2109 			break;
2110 		default:
2111 			goto illegal;
2112 		}
2113 		break;
2114 
2115 	case SDEV_DEL:
2116 		switch (oldstate) {
2117 		case SDEV_CREATED:
2118 		case SDEV_RUNNING:
2119 		case SDEV_OFFLINE:
2120 		case SDEV_CANCEL:
2121 			break;
2122 		default:
2123 			goto illegal;
2124 		}
2125 		break;
2126 
2127 	}
2128 	sdev->sdev_state = state;
2129 	return 0;
2130 
2131  illegal:
2132 	SCSI_LOG_ERROR_RECOVERY(1,
2133 				sdev_printk(KERN_ERR, sdev,
2134 					    "Illegal state transition %s->%s\n",
2135 					    scsi_device_state_name(oldstate),
2136 					    scsi_device_state_name(state))
2137 				);
2138 	return -EINVAL;
2139 }
2140 EXPORT_SYMBOL(scsi_device_set_state);
2141 
2142 /**
2143  * 	sdev_evt_emit - emit a single SCSI device uevent
2144  *	@sdev: associated SCSI device
2145  *	@evt: event to emit
2146  *
2147  *	Send a single uevent (scsi_event) to the associated scsi_device.
2148  */
2149 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2150 {
2151 	int idx = 0;
2152 	char *envp[3];
2153 
2154 	switch (evt->evt_type) {
2155 	case SDEV_EVT_MEDIA_CHANGE:
2156 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2157 		break;
2158 
2159 	default:
2160 		/* do nothing */
2161 		break;
2162 	}
2163 
2164 	envp[idx++] = NULL;
2165 
2166 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2167 }
2168 
2169 /**
2170  * 	sdev_evt_thread - send a uevent for each scsi event
2171  *	@work: work struct for scsi_device
2172  *
2173  *	Dispatch queued events to their associated scsi_device kobjects
2174  *	as uevents.
2175  */
2176 void scsi_evt_thread(struct work_struct *work)
2177 {
2178 	struct scsi_device *sdev;
2179 	LIST_HEAD(event_list);
2180 
2181 	sdev = container_of(work, struct scsi_device, event_work);
2182 
2183 	while (1) {
2184 		struct scsi_event *evt;
2185 		struct list_head *this, *tmp;
2186 		unsigned long flags;
2187 
2188 		spin_lock_irqsave(&sdev->list_lock, flags);
2189 		list_splice_init(&sdev->event_list, &event_list);
2190 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2191 
2192 		if (list_empty(&event_list))
2193 			break;
2194 
2195 		list_for_each_safe(this, tmp, &event_list) {
2196 			evt = list_entry(this, struct scsi_event, node);
2197 			list_del(&evt->node);
2198 			scsi_evt_emit(sdev, evt);
2199 			kfree(evt);
2200 		}
2201 	}
2202 }
2203 
2204 /**
2205  * 	sdev_evt_send - send asserted event to uevent thread
2206  *	@sdev: scsi_device event occurred on
2207  *	@evt: event to send
2208  *
2209  *	Assert scsi device event asynchronously.
2210  */
2211 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2212 {
2213 	unsigned long flags;
2214 
2215 #if 0
2216 	/* FIXME: currently this check eliminates all media change events
2217 	 * for polled devices.  Need to update to discriminate between AN
2218 	 * and polled events */
2219 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2220 		kfree(evt);
2221 		return;
2222 	}
2223 #endif
2224 
2225 	spin_lock_irqsave(&sdev->list_lock, flags);
2226 	list_add_tail(&evt->node, &sdev->event_list);
2227 	schedule_work(&sdev->event_work);
2228 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2229 }
2230 EXPORT_SYMBOL_GPL(sdev_evt_send);
2231 
2232 /**
2233  * 	sdev_evt_alloc - allocate a new scsi event
2234  *	@evt_type: type of event to allocate
2235  *	@gfpflags: GFP flags for allocation
2236  *
2237  *	Allocates and returns a new scsi_event.
2238  */
2239 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2240 				  gfp_t gfpflags)
2241 {
2242 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2243 	if (!evt)
2244 		return NULL;
2245 
2246 	evt->evt_type = evt_type;
2247 	INIT_LIST_HEAD(&evt->node);
2248 
2249 	/* evt_type-specific initialization, if any */
2250 	switch (evt_type) {
2251 	case SDEV_EVT_MEDIA_CHANGE:
2252 	default:
2253 		/* do nothing */
2254 		break;
2255 	}
2256 
2257 	return evt;
2258 }
2259 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2260 
2261 /**
2262  * 	sdev_evt_send_simple - send asserted event to uevent thread
2263  *	@sdev: scsi_device event occurred on
2264  *	@evt_type: type of event to send
2265  *	@gfpflags: GFP flags for allocation
2266  *
2267  *	Assert scsi device event asynchronously, given an event type.
2268  */
2269 void sdev_evt_send_simple(struct scsi_device *sdev,
2270 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2271 {
2272 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2273 	if (!evt) {
2274 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2275 			    evt_type);
2276 		return;
2277 	}
2278 
2279 	sdev_evt_send(sdev, evt);
2280 }
2281 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2282 
2283 /**
2284  *	scsi_device_quiesce - Block user issued commands.
2285  *	@sdev:	scsi device to quiesce.
2286  *
2287  *	This works by trying to transition to the SDEV_QUIESCE state
2288  *	(which must be a legal transition).  When the device is in this
2289  *	state, only special requests will be accepted, all others will
2290  *	be deferred.  Since special requests may also be requeued requests,
2291  *	a successful return doesn't guarantee the device will be
2292  *	totally quiescent.
2293  *
2294  *	Must be called with user context, may sleep.
2295  *
2296  *	Returns zero if unsuccessful or an error if not.
2297  */
2298 int
2299 scsi_device_quiesce(struct scsi_device *sdev)
2300 {
2301 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2302 	if (err)
2303 		return err;
2304 
2305 	scsi_run_queue(sdev->request_queue);
2306 	while (sdev->device_busy) {
2307 		msleep_interruptible(200);
2308 		scsi_run_queue(sdev->request_queue);
2309 	}
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL(scsi_device_quiesce);
2313 
2314 /**
2315  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2316  *	@sdev:	scsi device to resume.
2317  *
2318  *	Moves the device from quiesced back to running and restarts the
2319  *	queues.
2320  *
2321  *	Must be called with user context, may sleep.
2322  */
2323 void
2324 scsi_device_resume(struct scsi_device *sdev)
2325 {
2326 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2327 		return;
2328 	scsi_run_queue(sdev->request_queue);
2329 }
2330 EXPORT_SYMBOL(scsi_device_resume);
2331 
2332 static void
2333 device_quiesce_fn(struct scsi_device *sdev, void *data)
2334 {
2335 	scsi_device_quiesce(sdev);
2336 }
2337 
2338 void
2339 scsi_target_quiesce(struct scsi_target *starget)
2340 {
2341 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2342 }
2343 EXPORT_SYMBOL(scsi_target_quiesce);
2344 
2345 static void
2346 device_resume_fn(struct scsi_device *sdev, void *data)
2347 {
2348 	scsi_device_resume(sdev);
2349 }
2350 
2351 void
2352 scsi_target_resume(struct scsi_target *starget)
2353 {
2354 	starget_for_each_device(starget, NULL, device_resume_fn);
2355 }
2356 EXPORT_SYMBOL(scsi_target_resume);
2357 
2358 /**
2359  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2360  * @sdev:	device to block
2361  *
2362  * Block request made by scsi lld's to temporarily stop all
2363  * scsi commands on the specified device.  Called from interrupt
2364  * or normal process context.
2365  *
2366  * Returns zero if successful or error if not
2367  *
2368  * Notes:
2369  *	This routine transitions the device to the SDEV_BLOCK state
2370  *	(which must be a legal transition).  When the device is in this
2371  *	state, all commands are deferred until the scsi lld reenables
2372  *	the device with scsi_device_unblock or device_block_tmo fires.
2373  *	This routine assumes the host_lock is held on entry.
2374  */
2375 int
2376 scsi_internal_device_block(struct scsi_device *sdev)
2377 {
2378 	struct request_queue *q = sdev->request_queue;
2379 	unsigned long flags;
2380 	int err = 0;
2381 
2382 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2383 	if (err) {
2384 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2385 
2386 		if (err)
2387 			return err;
2388 	}
2389 
2390 	/*
2391 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2392 	 * block layer from calling the midlayer with this device's
2393 	 * request queue.
2394 	 */
2395 	spin_lock_irqsave(q->queue_lock, flags);
2396 	blk_stop_queue(q);
2397 	spin_unlock_irqrestore(q->queue_lock, flags);
2398 
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2402 
2403 /**
2404  * scsi_internal_device_unblock - resume a device after a block request
2405  * @sdev:	device to resume
2406  *
2407  * Called by scsi lld's or the midlayer to restart the device queue
2408  * for the previously suspended scsi device.  Called from interrupt or
2409  * normal process context.
2410  *
2411  * Returns zero if successful or error if not.
2412  *
2413  * Notes:
2414  *	This routine transitions the device to the SDEV_RUNNING state
2415  *	(which must be a legal transition) allowing the midlayer to
2416  *	goose the queue for this device.  This routine assumes the
2417  *	host_lock is held upon entry.
2418  */
2419 int
2420 scsi_internal_device_unblock(struct scsi_device *sdev)
2421 {
2422 	struct request_queue *q = sdev->request_queue;
2423 	unsigned long flags;
2424 
2425 	/*
2426 	 * Try to transition the scsi device to SDEV_RUNNING
2427 	 * and goose the device queue if successful.
2428 	 */
2429 	if (sdev->sdev_state == SDEV_BLOCK)
2430 		sdev->sdev_state = SDEV_RUNNING;
2431 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2432 		sdev->sdev_state = SDEV_CREATED;
2433 	else
2434 		return -EINVAL;
2435 
2436 	spin_lock_irqsave(q->queue_lock, flags);
2437 	blk_start_queue(q);
2438 	spin_unlock_irqrestore(q->queue_lock, flags);
2439 
2440 	return 0;
2441 }
2442 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2443 
2444 static void
2445 device_block(struct scsi_device *sdev, void *data)
2446 {
2447 	scsi_internal_device_block(sdev);
2448 }
2449 
2450 static int
2451 target_block(struct device *dev, void *data)
2452 {
2453 	if (scsi_is_target_device(dev))
2454 		starget_for_each_device(to_scsi_target(dev), NULL,
2455 					device_block);
2456 	return 0;
2457 }
2458 
2459 void
2460 scsi_target_block(struct device *dev)
2461 {
2462 	if (scsi_is_target_device(dev))
2463 		starget_for_each_device(to_scsi_target(dev), NULL,
2464 					device_block);
2465 	else
2466 		device_for_each_child(dev, NULL, target_block);
2467 }
2468 EXPORT_SYMBOL_GPL(scsi_target_block);
2469 
2470 static void
2471 device_unblock(struct scsi_device *sdev, void *data)
2472 {
2473 	scsi_internal_device_unblock(sdev);
2474 }
2475 
2476 static int
2477 target_unblock(struct device *dev, void *data)
2478 {
2479 	if (scsi_is_target_device(dev))
2480 		starget_for_each_device(to_scsi_target(dev), NULL,
2481 					device_unblock);
2482 	return 0;
2483 }
2484 
2485 void
2486 scsi_target_unblock(struct device *dev)
2487 {
2488 	if (scsi_is_target_device(dev))
2489 		starget_for_each_device(to_scsi_target(dev), NULL,
2490 					device_unblock);
2491 	else
2492 		device_for_each_child(dev, NULL, target_unblock);
2493 }
2494 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2495 
2496 /**
2497  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2498  * @sgl:	scatter-gather list
2499  * @sg_count:	number of segments in sg
2500  * @offset:	offset in bytes into sg, on return offset into the mapped area
2501  * @len:	bytes to map, on return number of bytes mapped
2502  *
2503  * Returns virtual address of the start of the mapped page
2504  */
2505 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2506 			  size_t *offset, size_t *len)
2507 {
2508 	int i;
2509 	size_t sg_len = 0, len_complete = 0;
2510 	struct scatterlist *sg;
2511 	struct page *page;
2512 
2513 	WARN_ON(!irqs_disabled());
2514 
2515 	for_each_sg(sgl, sg, sg_count, i) {
2516 		len_complete = sg_len; /* Complete sg-entries */
2517 		sg_len += sg->length;
2518 		if (sg_len > *offset)
2519 			break;
2520 	}
2521 
2522 	if (unlikely(i == sg_count)) {
2523 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2524 			"elements %d\n",
2525 		       __func__, sg_len, *offset, sg_count);
2526 		WARN_ON(1);
2527 		return NULL;
2528 	}
2529 
2530 	/* Offset starting from the beginning of first page in this sg-entry */
2531 	*offset = *offset - len_complete + sg->offset;
2532 
2533 	/* Assumption: contiguous pages can be accessed as "page + i" */
2534 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2535 	*offset &= ~PAGE_MASK;
2536 
2537 	/* Bytes in this sg-entry from *offset to the end of the page */
2538 	sg_len = PAGE_SIZE - *offset;
2539 	if (*len > sg_len)
2540 		*len = sg_len;
2541 
2542 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2543 }
2544 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2545 
2546 /**
2547  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2548  * @virt:	virtual address to be unmapped
2549  */
2550 void scsi_kunmap_atomic_sg(void *virt)
2551 {
2552 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2553 }
2554 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2555