1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 blk_unprep_request(req); 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost = sdev->host; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 if (scsi_target(sdev)->single_lun) 408 scsi_single_lun_run(sdev); 409 410 spin_lock_irqsave(shost->host_lock, flags); 411 list_splice_init(&shost->starved_list, &starved_list); 412 413 while (!list_empty(&starved_list)) { 414 int flagset; 415 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 440 spin_lock(sdev->request_queue->queue_lock); 441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 442 !test_bit(QUEUE_FLAG_REENTER, 443 &sdev->request_queue->queue_flags); 444 if (flagset) 445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 446 __blk_run_queue(sdev->request_queue); 447 if (flagset) 448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 449 spin_unlock(sdev->request_queue->queue_lock); 450 451 spin_lock(shost->host_lock); 452 } 453 /* put any unprocessed entries back */ 454 list_splice(&starved_list, &shost->starved_list); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 457 blk_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 scsi_unprep_request(req); 485 blk_requeue_request(q, req); 486 spin_unlock_irqrestore(q->queue_lock, flags); 487 488 scsi_run_queue(q); 489 } 490 491 void scsi_next_command(struct scsi_cmnd *cmd) 492 { 493 struct scsi_device *sdev = cmd->device; 494 struct request_queue *q = sdev->request_queue; 495 496 /* need to hold a reference on the device before we let go of the cmd */ 497 get_device(&sdev->sdev_gendev); 498 499 scsi_put_command(cmd); 500 scsi_run_queue(q); 501 502 /* ok to remove device now */ 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 /* 671 * Function: scsi_io_completion() 672 * 673 * Purpose: Completion processing for block device I/O requests. 674 * 675 * Arguments: cmd - command that is finished. 676 * 677 * Lock status: Assumed that no lock is held upon entry. 678 * 679 * Returns: Nothing 680 * 681 * Notes: This function is matched in terms of capabilities to 682 * the function that created the scatter-gather list. 683 * In other words, if there are no bounce buffers 684 * (the normal case for most drivers), we don't need 685 * the logic to deal with cleaning up afterwards. 686 * 687 * We must call scsi_end_request(). This will finish off 688 * the specified number of sectors. If we are done, the 689 * command block will be released and the queue function 690 * will be goosed. If we are not done then we have to 691 * figure out what to do next: 692 * 693 * a) We can call scsi_requeue_command(). The request 694 * will be unprepared and put back on the queue. Then 695 * a new command will be created for it. This should 696 * be used if we made forward progress, or if we want 697 * to switch from READ(10) to READ(6) for example. 698 * 699 * b) We can call scsi_queue_insert(). The request will 700 * be put back on the queue and retried using the same 701 * command as before, possibly after a delay. 702 * 703 * c) We can call blk_end_request() with -EIO to fail 704 * the remainder of the request. 705 */ 706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 707 { 708 int result = cmd->result; 709 struct request_queue *q = cmd->device->request_queue; 710 struct request *req = cmd->request; 711 int error = 0; 712 struct scsi_sense_hdr sshdr; 713 int sense_valid = 0; 714 int sense_deferred = 0; 715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 716 ACTION_DELAYED_RETRY} action; 717 char *description = NULL; 718 719 if (result) { 720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 721 if (sense_valid) 722 sense_deferred = scsi_sense_is_deferred(&sshdr); 723 } 724 725 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 726 req->errors = result; 727 if (result) { 728 if (sense_valid && req->sense) { 729 /* 730 * SG_IO wants current and deferred errors 731 */ 732 int len = 8 + cmd->sense_buffer[7]; 733 734 if (len > SCSI_SENSE_BUFFERSIZE) 735 len = SCSI_SENSE_BUFFERSIZE; 736 memcpy(req->sense, cmd->sense_buffer, len); 737 req->sense_len = len; 738 } 739 if (!sense_deferred) 740 error = -EIO; 741 } 742 743 req->resid_len = scsi_get_resid(cmd); 744 745 if (scsi_bidi_cmnd(cmd)) { 746 /* 747 * Bidi commands Must be complete as a whole, 748 * both sides at once. 749 */ 750 req->next_rq->resid_len = scsi_in(cmd)->resid; 751 752 scsi_release_buffers(cmd); 753 blk_end_request_all(req, 0); 754 755 scsi_next_command(cmd); 756 return; 757 } 758 } 759 760 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 761 BUG_ON(blk_bidi_rq(req)); 762 763 /* 764 * Next deal with any sectors which we were able to correctly 765 * handle. 766 */ 767 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 768 "%d bytes done.\n", 769 blk_rq_sectors(req), good_bytes)); 770 771 /* 772 * Recovered errors need reporting, but they're always treated 773 * as success, so fiddle the result code here. For BLOCK_PC 774 * we already took a copy of the original into rq->errors which 775 * is what gets returned to the user 776 */ 777 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 778 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 779 * print since caller wants ATA registers. Only occurs on 780 * SCSI ATA PASS_THROUGH commands when CK_COND=1 781 */ 782 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 783 ; 784 else if (!(req->cmd_flags & REQ_QUIET)) 785 scsi_print_sense("", cmd); 786 result = 0; 787 /* BLOCK_PC may have set error */ 788 error = 0; 789 } 790 791 /* 792 * A number of bytes were successfully read. If there 793 * are leftovers and there is some kind of error 794 * (result != 0), retry the rest. 795 */ 796 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 797 return; 798 799 error = -EIO; 800 801 if (host_byte(result) == DID_RESET) { 802 /* Third party bus reset or reset for error recovery 803 * reasons. Just retry the command and see what 804 * happens. 805 */ 806 action = ACTION_RETRY; 807 } else if (sense_valid && !sense_deferred) { 808 switch (sshdr.sense_key) { 809 case UNIT_ATTENTION: 810 if (cmd->device->removable) { 811 /* Detected disc change. Set a bit 812 * and quietly refuse further access. 813 */ 814 cmd->device->changed = 1; 815 description = "Media Changed"; 816 action = ACTION_FAIL; 817 } else { 818 /* Must have been a power glitch, or a 819 * bus reset. Could not have been a 820 * media change, so we just retry the 821 * command and see what happens. 822 */ 823 action = ACTION_RETRY; 824 } 825 break; 826 case ILLEGAL_REQUEST: 827 /* If we had an ILLEGAL REQUEST returned, then 828 * we may have performed an unsupported 829 * command. The only thing this should be 830 * would be a ten byte read where only a six 831 * byte read was supported. Also, on a system 832 * where READ CAPACITY failed, we may have 833 * read past the end of the disk. 834 */ 835 if ((cmd->device->use_10_for_rw && 836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 837 (cmd->cmnd[0] == READ_10 || 838 cmd->cmnd[0] == WRITE_10)) { 839 /* This will issue a new 6-byte command. */ 840 cmd->device->use_10_for_rw = 0; 841 action = ACTION_REPREP; 842 } else if (sshdr.asc == 0x10) /* DIX */ { 843 description = "Host Data Integrity Failure"; 844 action = ACTION_FAIL; 845 error = -EILSEQ; 846 } else 847 action = ACTION_FAIL; 848 break; 849 case ABORTED_COMMAND: 850 action = ACTION_FAIL; 851 if (sshdr.asc == 0x10) { /* DIF */ 852 description = "Target Data Integrity Failure"; 853 error = -EILSEQ; 854 } 855 break; 856 case NOT_READY: 857 /* If the device is in the process of becoming 858 * ready, or has a temporary blockage, retry. 859 */ 860 if (sshdr.asc == 0x04) { 861 switch (sshdr.ascq) { 862 case 0x01: /* becoming ready */ 863 case 0x04: /* format in progress */ 864 case 0x05: /* rebuild in progress */ 865 case 0x06: /* recalculation in progress */ 866 case 0x07: /* operation in progress */ 867 case 0x08: /* Long write in progress */ 868 case 0x09: /* self test in progress */ 869 case 0x14: /* space allocation in progress */ 870 action = ACTION_DELAYED_RETRY; 871 break; 872 default: 873 description = "Device not ready"; 874 action = ACTION_FAIL; 875 break; 876 } 877 } else { 878 description = "Device not ready"; 879 action = ACTION_FAIL; 880 } 881 break; 882 case VOLUME_OVERFLOW: 883 /* See SSC3rXX or current. */ 884 action = ACTION_FAIL; 885 break; 886 default: 887 description = "Unhandled sense code"; 888 action = ACTION_FAIL; 889 break; 890 } 891 } else { 892 description = "Unhandled error code"; 893 action = ACTION_FAIL; 894 } 895 896 switch (action) { 897 case ACTION_FAIL: 898 /* Give up and fail the remainder of the request */ 899 scsi_release_buffers(cmd); 900 if (!(req->cmd_flags & REQ_QUIET)) { 901 if (description) 902 scmd_printk(KERN_INFO, cmd, "%s\n", 903 description); 904 scsi_print_result(cmd); 905 if (driver_byte(result) & DRIVER_SENSE) 906 scsi_print_sense("", cmd); 907 scsi_print_command(cmd); 908 } 909 if (blk_end_request_err(req, error)) 910 scsi_requeue_command(q, cmd); 911 else 912 scsi_next_command(cmd); 913 break; 914 case ACTION_REPREP: 915 /* Unprep the request and put it back at the head of the queue. 916 * A new command will be prepared and issued. 917 */ 918 scsi_release_buffers(cmd); 919 scsi_requeue_command(q, cmd); 920 break; 921 case ACTION_RETRY: 922 /* Retry the same command immediately */ 923 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 924 break; 925 case ACTION_DELAYED_RETRY: 926 /* Retry the same command after a delay */ 927 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 928 break; 929 } 930 } 931 932 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 933 gfp_t gfp_mask) 934 { 935 int count; 936 937 /* 938 * If sg table allocation fails, requeue request later. 939 */ 940 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 941 gfp_mask))) { 942 return BLKPREP_DEFER; 943 } 944 945 req->buffer = NULL; 946 947 /* 948 * Next, walk the list, and fill in the addresses and sizes of 949 * each segment. 950 */ 951 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 952 BUG_ON(count > sdb->table.nents); 953 sdb->table.nents = count; 954 sdb->length = blk_rq_bytes(req); 955 return BLKPREP_OK; 956 } 957 958 /* 959 * Function: scsi_init_io() 960 * 961 * Purpose: SCSI I/O initialize function. 962 * 963 * Arguments: cmd - Command descriptor we wish to initialize 964 * 965 * Returns: 0 on success 966 * BLKPREP_DEFER if the failure is retryable 967 * BLKPREP_KILL if the failure is fatal 968 */ 969 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 970 { 971 struct request *rq = cmd->request; 972 973 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 974 if (error) 975 goto err_exit; 976 977 if (blk_bidi_rq(rq)) { 978 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 979 scsi_sdb_cache, GFP_ATOMIC); 980 if (!bidi_sdb) { 981 error = BLKPREP_DEFER; 982 goto err_exit; 983 } 984 985 rq->next_rq->special = bidi_sdb; 986 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 987 if (error) 988 goto err_exit; 989 } 990 991 if (blk_integrity_rq(rq)) { 992 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 993 int ivecs, count; 994 995 BUG_ON(prot_sdb == NULL); 996 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 997 998 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 999 error = BLKPREP_DEFER; 1000 goto err_exit; 1001 } 1002 1003 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1004 prot_sdb->table.sgl); 1005 BUG_ON(unlikely(count > ivecs)); 1006 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1007 1008 cmd->prot_sdb = prot_sdb; 1009 cmd->prot_sdb->table.nents = count; 1010 } 1011 1012 return BLKPREP_OK ; 1013 1014 err_exit: 1015 scsi_release_buffers(cmd); 1016 cmd->request->special = NULL; 1017 scsi_put_command(cmd); 1018 return error; 1019 } 1020 EXPORT_SYMBOL(scsi_init_io); 1021 1022 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1023 struct request *req) 1024 { 1025 struct scsi_cmnd *cmd; 1026 1027 if (!req->special) { 1028 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1029 if (unlikely(!cmd)) 1030 return NULL; 1031 req->special = cmd; 1032 } else { 1033 cmd = req->special; 1034 } 1035 1036 /* pull a tag out of the request if we have one */ 1037 cmd->tag = req->tag; 1038 cmd->request = req; 1039 1040 cmd->cmnd = req->cmd; 1041 1042 return cmd; 1043 } 1044 1045 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1046 { 1047 struct scsi_cmnd *cmd; 1048 int ret = scsi_prep_state_check(sdev, req); 1049 1050 if (ret != BLKPREP_OK) 1051 return ret; 1052 1053 cmd = scsi_get_cmd_from_req(sdev, req); 1054 if (unlikely(!cmd)) 1055 return BLKPREP_DEFER; 1056 1057 /* 1058 * BLOCK_PC requests may transfer data, in which case they must 1059 * a bio attached to them. Or they might contain a SCSI command 1060 * that does not transfer data, in which case they may optionally 1061 * submit a request without an attached bio. 1062 */ 1063 if (req->bio) { 1064 int ret; 1065 1066 BUG_ON(!req->nr_phys_segments); 1067 1068 ret = scsi_init_io(cmd, GFP_ATOMIC); 1069 if (unlikely(ret)) 1070 return ret; 1071 } else { 1072 BUG_ON(blk_rq_bytes(req)); 1073 1074 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1075 req->buffer = NULL; 1076 } 1077 1078 cmd->cmd_len = req->cmd_len; 1079 if (!blk_rq_bytes(req)) 1080 cmd->sc_data_direction = DMA_NONE; 1081 else if (rq_data_dir(req) == WRITE) 1082 cmd->sc_data_direction = DMA_TO_DEVICE; 1083 else 1084 cmd->sc_data_direction = DMA_FROM_DEVICE; 1085 1086 cmd->transfersize = blk_rq_bytes(req); 1087 cmd->allowed = req->retries; 1088 return BLKPREP_OK; 1089 } 1090 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1091 1092 /* 1093 * Setup a REQ_TYPE_FS command. These are simple read/write request 1094 * from filesystems that still need to be translated to SCSI CDBs from 1095 * the ULD. 1096 */ 1097 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1098 { 1099 struct scsi_cmnd *cmd; 1100 int ret = scsi_prep_state_check(sdev, req); 1101 1102 if (ret != BLKPREP_OK) 1103 return ret; 1104 1105 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1106 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1107 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1108 if (ret != BLKPREP_OK) 1109 return ret; 1110 } 1111 1112 /* 1113 * Filesystem requests must transfer data. 1114 */ 1115 BUG_ON(!req->nr_phys_segments); 1116 1117 cmd = scsi_get_cmd_from_req(sdev, req); 1118 if (unlikely(!cmd)) 1119 return BLKPREP_DEFER; 1120 1121 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1122 return scsi_init_io(cmd, GFP_ATOMIC); 1123 } 1124 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1125 1126 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1127 { 1128 int ret = BLKPREP_OK; 1129 1130 /* 1131 * If the device is not in running state we will reject some 1132 * or all commands. 1133 */ 1134 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1135 switch (sdev->sdev_state) { 1136 case SDEV_OFFLINE: 1137 /* 1138 * If the device is offline we refuse to process any 1139 * commands. The device must be brought online 1140 * before trying any recovery commands. 1141 */ 1142 sdev_printk(KERN_ERR, sdev, 1143 "rejecting I/O to offline device\n"); 1144 ret = BLKPREP_KILL; 1145 break; 1146 case SDEV_DEL: 1147 /* 1148 * If the device is fully deleted, we refuse to 1149 * process any commands as well. 1150 */ 1151 sdev_printk(KERN_ERR, sdev, 1152 "rejecting I/O to dead device\n"); 1153 ret = BLKPREP_KILL; 1154 break; 1155 case SDEV_QUIESCE: 1156 case SDEV_BLOCK: 1157 case SDEV_CREATED_BLOCK: 1158 /* 1159 * If the devices is blocked we defer normal commands. 1160 */ 1161 if (!(req->cmd_flags & REQ_PREEMPT)) 1162 ret = BLKPREP_DEFER; 1163 break; 1164 default: 1165 /* 1166 * For any other not fully online state we only allow 1167 * special commands. In particular any user initiated 1168 * command is not allowed. 1169 */ 1170 if (!(req->cmd_flags & REQ_PREEMPT)) 1171 ret = BLKPREP_KILL; 1172 break; 1173 } 1174 } 1175 return ret; 1176 } 1177 EXPORT_SYMBOL(scsi_prep_state_check); 1178 1179 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1180 { 1181 struct scsi_device *sdev = q->queuedata; 1182 1183 switch (ret) { 1184 case BLKPREP_KILL: 1185 req->errors = DID_NO_CONNECT << 16; 1186 /* release the command and kill it */ 1187 if (req->special) { 1188 struct scsi_cmnd *cmd = req->special; 1189 scsi_release_buffers(cmd); 1190 scsi_put_command(cmd); 1191 req->special = NULL; 1192 } 1193 break; 1194 case BLKPREP_DEFER: 1195 /* 1196 * If we defer, the blk_peek_request() returns NULL, but the 1197 * queue must be restarted, so we plug here if no returning 1198 * command will automatically do that. 1199 */ 1200 if (sdev->device_busy == 0) 1201 blk_plug_device(q); 1202 break; 1203 default: 1204 req->cmd_flags |= REQ_DONTPREP; 1205 } 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(scsi_prep_return); 1210 1211 int scsi_prep_fn(struct request_queue *q, struct request *req) 1212 { 1213 struct scsi_device *sdev = q->queuedata; 1214 int ret = BLKPREP_KILL; 1215 1216 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1217 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1218 return scsi_prep_return(q, req, ret); 1219 } 1220 EXPORT_SYMBOL(scsi_prep_fn); 1221 1222 /* 1223 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1224 * return 0. 1225 * 1226 * Called with the queue_lock held. 1227 */ 1228 static inline int scsi_dev_queue_ready(struct request_queue *q, 1229 struct scsi_device *sdev) 1230 { 1231 if (sdev->device_busy == 0 && sdev->device_blocked) { 1232 /* 1233 * unblock after device_blocked iterates to zero 1234 */ 1235 if (--sdev->device_blocked == 0) { 1236 SCSI_LOG_MLQUEUE(3, 1237 sdev_printk(KERN_INFO, sdev, 1238 "unblocking device at zero depth\n")); 1239 } else { 1240 blk_plug_device(q); 1241 return 0; 1242 } 1243 } 1244 if (scsi_device_is_busy(sdev)) 1245 return 0; 1246 1247 return 1; 1248 } 1249 1250 1251 /* 1252 * scsi_target_queue_ready: checks if there we can send commands to target 1253 * @sdev: scsi device on starget to check. 1254 * 1255 * Called with the host lock held. 1256 */ 1257 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1258 struct scsi_device *sdev) 1259 { 1260 struct scsi_target *starget = scsi_target(sdev); 1261 1262 if (starget->single_lun) { 1263 if (starget->starget_sdev_user && 1264 starget->starget_sdev_user != sdev) 1265 return 0; 1266 starget->starget_sdev_user = sdev; 1267 } 1268 1269 if (starget->target_busy == 0 && starget->target_blocked) { 1270 /* 1271 * unblock after target_blocked iterates to zero 1272 */ 1273 if (--starget->target_blocked == 0) { 1274 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1275 "unblocking target at zero depth\n")); 1276 } else 1277 return 0; 1278 } 1279 1280 if (scsi_target_is_busy(starget)) { 1281 if (list_empty(&sdev->starved_entry)) 1282 list_add_tail(&sdev->starved_entry, 1283 &shost->starved_list); 1284 return 0; 1285 } 1286 1287 /* We're OK to process the command, so we can't be starved */ 1288 if (!list_empty(&sdev->starved_entry)) 1289 list_del_init(&sdev->starved_entry); 1290 return 1; 1291 } 1292 1293 /* 1294 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1295 * return 0. We must end up running the queue again whenever 0 is 1296 * returned, else IO can hang. 1297 * 1298 * Called with host_lock held. 1299 */ 1300 static inline int scsi_host_queue_ready(struct request_queue *q, 1301 struct Scsi_Host *shost, 1302 struct scsi_device *sdev) 1303 { 1304 if (scsi_host_in_recovery(shost)) 1305 return 0; 1306 if (shost->host_busy == 0 && shost->host_blocked) { 1307 /* 1308 * unblock after host_blocked iterates to zero 1309 */ 1310 if (--shost->host_blocked == 0) { 1311 SCSI_LOG_MLQUEUE(3, 1312 printk("scsi%d unblocking host at zero depth\n", 1313 shost->host_no)); 1314 } else { 1315 return 0; 1316 } 1317 } 1318 if (scsi_host_is_busy(shost)) { 1319 if (list_empty(&sdev->starved_entry)) 1320 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1321 return 0; 1322 } 1323 1324 /* We're OK to process the command, so we can't be starved */ 1325 if (!list_empty(&sdev->starved_entry)) 1326 list_del_init(&sdev->starved_entry); 1327 1328 return 1; 1329 } 1330 1331 /* 1332 * Busy state exporting function for request stacking drivers. 1333 * 1334 * For efficiency, no lock is taken to check the busy state of 1335 * shost/starget/sdev, since the returned value is not guaranteed and 1336 * may be changed after request stacking drivers call the function, 1337 * regardless of taking lock or not. 1338 * 1339 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1340 * (e.g. !sdev), scsi needs to return 'not busy'. 1341 * Otherwise, request stacking drivers may hold requests forever. 1342 */ 1343 static int scsi_lld_busy(struct request_queue *q) 1344 { 1345 struct scsi_device *sdev = q->queuedata; 1346 struct Scsi_Host *shost; 1347 struct scsi_target *starget; 1348 1349 if (!sdev) 1350 return 0; 1351 1352 shost = sdev->host; 1353 starget = scsi_target(sdev); 1354 1355 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1356 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1357 return 1; 1358 1359 return 0; 1360 } 1361 1362 /* 1363 * Kill a request for a dead device 1364 */ 1365 static void scsi_kill_request(struct request *req, struct request_queue *q) 1366 { 1367 struct scsi_cmnd *cmd = req->special; 1368 struct scsi_device *sdev; 1369 struct scsi_target *starget; 1370 struct Scsi_Host *shost; 1371 1372 blk_start_request(req); 1373 1374 sdev = cmd->device; 1375 starget = scsi_target(sdev); 1376 shost = sdev->host; 1377 scsi_init_cmd_errh(cmd); 1378 cmd->result = DID_NO_CONNECT << 16; 1379 atomic_inc(&cmd->device->iorequest_cnt); 1380 1381 /* 1382 * SCSI request completion path will do scsi_device_unbusy(), 1383 * bump busy counts. To bump the counters, we need to dance 1384 * with the locks as normal issue path does. 1385 */ 1386 sdev->device_busy++; 1387 spin_unlock(sdev->request_queue->queue_lock); 1388 spin_lock(shost->host_lock); 1389 shost->host_busy++; 1390 starget->target_busy++; 1391 spin_unlock(shost->host_lock); 1392 spin_lock(sdev->request_queue->queue_lock); 1393 1394 blk_complete_request(req); 1395 } 1396 1397 static void scsi_softirq_done(struct request *rq) 1398 { 1399 struct scsi_cmnd *cmd = rq->special; 1400 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1401 int disposition; 1402 1403 INIT_LIST_HEAD(&cmd->eh_entry); 1404 1405 atomic_inc(&cmd->device->iodone_cnt); 1406 if (cmd->result) 1407 atomic_inc(&cmd->device->ioerr_cnt); 1408 1409 disposition = scsi_decide_disposition(cmd); 1410 if (disposition != SUCCESS && 1411 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1412 sdev_printk(KERN_ERR, cmd->device, 1413 "timing out command, waited %lus\n", 1414 wait_for/HZ); 1415 disposition = SUCCESS; 1416 } 1417 1418 scsi_log_completion(cmd, disposition); 1419 1420 switch (disposition) { 1421 case SUCCESS: 1422 scsi_finish_command(cmd); 1423 break; 1424 case NEEDS_RETRY: 1425 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1426 break; 1427 case ADD_TO_MLQUEUE: 1428 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1429 break; 1430 default: 1431 if (!scsi_eh_scmd_add(cmd, 0)) 1432 scsi_finish_command(cmd); 1433 } 1434 } 1435 1436 /* 1437 * Function: scsi_request_fn() 1438 * 1439 * Purpose: Main strategy routine for SCSI. 1440 * 1441 * Arguments: q - Pointer to actual queue. 1442 * 1443 * Returns: Nothing 1444 * 1445 * Lock status: IO request lock assumed to be held when called. 1446 */ 1447 static void scsi_request_fn(struct request_queue *q) 1448 { 1449 struct scsi_device *sdev = q->queuedata; 1450 struct Scsi_Host *shost; 1451 struct scsi_cmnd *cmd; 1452 struct request *req; 1453 1454 if (!sdev) { 1455 printk("scsi: killing requests for dead queue\n"); 1456 while ((req = blk_peek_request(q)) != NULL) 1457 scsi_kill_request(req, q); 1458 return; 1459 } 1460 1461 if(!get_device(&sdev->sdev_gendev)) 1462 /* We must be tearing the block queue down already */ 1463 return; 1464 1465 /* 1466 * To start with, we keep looping until the queue is empty, or until 1467 * the host is no longer able to accept any more requests. 1468 */ 1469 shost = sdev->host; 1470 while (!blk_queue_plugged(q)) { 1471 int rtn; 1472 /* 1473 * get next queueable request. We do this early to make sure 1474 * that the request is fully prepared even if we cannot 1475 * accept it. 1476 */ 1477 req = blk_peek_request(q); 1478 if (!req || !scsi_dev_queue_ready(q, sdev)) 1479 break; 1480 1481 if (unlikely(!scsi_device_online(sdev))) { 1482 sdev_printk(KERN_ERR, sdev, 1483 "rejecting I/O to offline device\n"); 1484 scsi_kill_request(req, q); 1485 continue; 1486 } 1487 1488 1489 /* 1490 * Remove the request from the request list. 1491 */ 1492 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1493 blk_start_request(req); 1494 sdev->device_busy++; 1495 1496 spin_unlock(q->queue_lock); 1497 cmd = req->special; 1498 if (unlikely(cmd == NULL)) { 1499 printk(KERN_CRIT "impossible request in %s.\n" 1500 "please mail a stack trace to " 1501 "linux-scsi@vger.kernel.org\n", 1502 __func__); 1503 blk_dump_rq_flags(req, "foo"); 1504 BUG(); 1505 } 1506 spin_lock(shost->host_lock); 1507 1508 /* 1509 * We hit this when the driver is using a host wide 1510 * tag map. For device level tag maps the queue_depth check 1511 * in the device ready fn would prevent us from trying 1512 * to allocate a tag. Since the map is a shared host resource 1513 * we add the dev to the starved list so it eventually gets 1514 * a run when a tag is freed. 1515 */ 1516 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1517 if (list_empty(&sdev->starved_entry)) 1518 list_add_tail(&sdev->starved_entry, 1519 &shost->starved_list); 1520 goto not_ready; 1521 } 1522 1523 if (!scsi_target_queue_ready(shost, sdev)) 1524 goto not_ready; 1525 1526 if (!scsi_host_queue_ready(q, shost, sdev)) 1527 goto not_ready; 1528 1529 scsi_target(sdev)->target_busy++; 1530 shost->host_busy++; 1531 1532 /* 1533 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1534 * take the lock again. 1535 */ 1536 spin_unlock_irq(shost->host_lock); 1537 1538 /* 1539 * Finally, initialize any error handling parameters, and set up 1540 * the timers for timeouts. 1541 */ 1542 scsi_init_cmd_errh(cmd); 1543 1544 /* 1545 * Dispatch the command to the low-level driver. 1546 */ 1547 rtn = scsi_dispatch_cmd(cmd); 1548 spin_lock_irq(q->queue_lock); 1549 if(rtn) { 1550 /* we're refusing the command; because of 1551 * the way locks get dropped, we need to 1552 * check here if plugging is required */ 1553 if(sdev->device_busy == 0) 1554 blk_plug_device(q); 1555 1556 break; 1557 } 1558 } 1559 1560 goto out; 1561 1562 not_ready: 1563 spin_unlock_irq(shost->host_lock); 1564 1565 /* 1566 * lock q, handle tag, requeue req, and decrement device_busy. We 1567 * must return with queue_lock held. 1568 * 1569 * Decrementing device_busy without checking it is OK, as all such 1570 * cases (host limits or settings) should run the queue at some 1571 * later time. 1572 */ 1573 spin_lock_irq(q->queue_lock); 1574 blk_requeue_request(q, req); 1575 sdev->device_busy--; 1576 if(sdev->device_busy == 0) 1577 blk_plug_device(q); 1578 out: 1579 /* must be careful here...if we trigger the ->remove() function 1580 * we cannot be holding the q lock */ 1581 spin_unlock_irq(q->queue_lock); 1582 put_device(&sdev->sdev_gendev); 1583 spin_lock_irq(q->queue_lock); 1584 } 1585 1586 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1587 { 1588 struct device *host_dev; 1589 u64 bounce_limit = 0xffffffff; 1590 1591 if (shost->unchecked_isa_dma) 1592 return BLK_BOUNCE_ISA; 1593 /* 1594 * Platforms with virtual-DMA translation 1595 * hardware have no practical limit. 1596 */ 1597 if (!PCI_DMA_BUS_IS_PHYS) 1598 return BLK_BOUNCE_ANY; 1599 1600 host_dev = scsi_get_device(shost); 1601 if (host_dev && host_dev->dma_mask) 1602 bounce_limit = *host_dev->dma_mask; 1603 1604 return bounce_limit; 1605 } 1606 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1607 1608 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1609 request_fn_proc *request_fn) 1610 { 1611 struct request_queue *q; 1612 struct device *dev = shost->shost_gendev.parent; 1613 1614 q = blk_init_queue(request_fn, NULL); 1615 if (!q) 1616 return NULL; 1617 1618 /* 1619 * this limit is imposed by hardware restrictions 1620 */ 1621 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1622 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1623 1624 if (scsi_host_prot_dma(shost)) { 1625 shost->sg_prot_tablesize = 1626 min_not_zero(shost->sg_prot_tablesize, 1627 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1628 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1629 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1630 } 1631 1632 blk_queue_max_hw_sectors(q, shost->max_sectors); 1633 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1634 blk_queue_segment_boundary(q, shost->dma_boundary); 1635 dma_set_seg_boundary(dev, shost->dma_boundary); 1636 1637 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1638 1639 if (!shost->use_clustering) 1640 q->limits.cluster = 0; 1641 1642 /* 1643 * set a reasonable default alignment on word boundaries: the 1644 * host and device may alter it using 1645 * blk_queue_update_dma_alignment() later. 1646 */ 1647 blk_queue_dma_alignment(q, 0x03); 1648 1649 return q; 1650 } 1651 EXPORT_SYMBOL(__scsi_alloc_queue); 1652 1653 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1654 { 1655 struct request_queue *q; 1656 1657 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1658 if (!q) 1659 return NULL; 1660 1661 blk_queue_prep_rq(q, scsi_prep_fn); 1662 blk_queue_softirq_done(q, scsi_softirq_done); 1663 blk_queue_rq_timed_out(q, scsi_times_out); 1664 blk_queue_lld_busy(q, scsi_lld_busy); 1665 return q; 1666 } 1667 1668 void scsi_free_queue(struct request_queue *q) 1669 { 1670 blk_cleanup_queue(q); 1671 } 1672 1673 /* 1674 * Function: scsi_block_requests() 1675 * 1676 * Purpose: Utility function used by low-level drivers to prevent further 1677 * commands from being queued to the device. 1678 * 1679 * Arguments: shost - Host in question 1680 * 1681 * Returns: Nothing 1682 * 1683 * Lock status: No locks are assumed held. 1684 * 1685 * Notes: There is no timer nor any other means by which the requests 1686 * get unblocked other than the low-level driver calling 1687 * scsi_unblock_requests(). 1688 */ 1689 void scsi_block_requests(struct Scsi_Host *shost) 1690 { 1691 shost->host_self_blocked = 1; 1692 } 1693 EXPORT_SYMBOL(scsi_block_requests); 1694 1695 /* 1696 * Function: scsi_unblock_requests() 1697 * 1698 * Purpose: Utility function used by low-level drivers to allow further 1699 * commands from being queued to the device. 1700 * 1701 * Arguments: shost - Host in question 1702 * 1703 * Returns: Nothing 1704 * 1705 * Lock status: No locks are assumed held. 1706 * 1707 * Notes: There is no timer nor any other means by which the requests 1708 * get unblocked other than the low-level driver calling 1709 * scsi_unblock_requests(). 1710 * 1711 * This is done as an API function so that changes to the 1712 * internals of the scsi mid-layer won't require wholesale 1713 * changes to drivers that use this feature. 1714 */ 1715 void scsi_unblock_requests(struct Scsi_Host *shost) 1716 { 1717 shost->host_self_blocked = 0; 1718 scsi_run_host_queues(shost); 1719 } 1720 EXPORT_SYMBOL(scsi_unblock_requests); 1721 1722 int __init scsi_init_queue(void) 1723 { 1724 int i; 1725 1726 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1727 sizeof(struct scsi_data_buffer), 1728 0, 0, NULL); 1729 if (!scsi_sdb_cache) { 1730 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1731 return -ENOMEM; 1732 } 1733 1734 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1735 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1736 int size = sgp->size * sizeof(struct scatterlist); 1737 1738 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1739 SLAB_HWCACHE_ALIGN, NULL); 1740 if (!sgp->slab) { 1741 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1742 sgp->name); 1743 goto cleanup_sdb; 1744 } 1745 1746 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1747 sgp->slab); 1748 if (!sgp->pool) { 1749 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1750 sgp->name); 1751 goto cleanup_sdb; 1752 } 1753 } 1754 1755 return 0; 1756 1757 cleanup_sdb: 1758 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1759 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1760 if (sgp->pool) 1761 mempool_destroy(sgp->pool); 1762 if (sgp->slab) 1763 kmem_cache_destroy(sgp->slab); 1764 } 1765 kmem_cache_destroy(scsi_sdb_cache); 1766 1767 return -ENOMEM; 1768 } 1769 1770 void scsi_exit_queue(void) 1771 { 1772 int i; 1773 1774 kmem_cache_destroy(scsi_sdb_cache); 1775 1776 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1777 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1778 mempool_destroy(sgp->pool); 1779 kmem_cache_destroy(sgp->slab); 1780 } 1781 } 1782 1783 /** 1784 * scsi_mode_select - issue a mode select 1785 * @sdev: SCSI device to be queried 1786 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1787 * @sp: Save page bit (0 == don't save, 1 == save) 1788 * @modepage: mode page being requested 1789 * @buffer: request buffer (may not be smaller than eight bytes) 1790 * @len: length of request buffer. 1791 * @timeout: command timeout 1792 * @retries: number of retries before failing 1793 * @data: returns a structure abstracting the mode header data 1794 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1795 * must be SCSI_SENSE_BUFFERSIZE big. 1796 * 1797 * Returns zero if successful; negative error number or scsi 1798 * status on error 1799 * 1800 */ 1801 int 1802 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1803 unsigned char *buffer, int len, int timeout, int retries, 1804 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1805 { 1806 unsigned char cmd[10]; 1807 unsigned char *real_buffer; 1808 int ret; 1809 1810 memset(cmd, 0, sizeof(cmd)); 1811 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1812 1813 if (sdev->use_10_for_ms) { 1814 if (len > 65535) 1815 return -EINVAL; 1816 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1817 if (!real_buffer) 1818 return -ENOMEM; 1819 memcpy(real_buffer + 8, buffer, len); 1820 len += 8; 1821 real_buffer[0] = 0; 1822 real_buffer[1] = 0; 1823 real_buffer[2] = data->medium_type; 1824 real_buffer[3] = data->device_specific; 1825 real_buffer[4] = data->longlba ? 0x01 : 0; 1826 real_buffer[5] = 0; 1827 real_buffer[6] = data->block_descriptor_length >> 8; 1828 real_buffer[7] = data->block_descriptor_length; 1829 1830 cmd[0] = MODE_SELECT_10; 1831 cmd[7] = len >> 8; 1832 cmd[8] = len; 1833 } else { 1834 if (len > 255 || data->block_descriptor_length > 255 || 1835 data->longlba) 1836 return -EINVAL; 1837 1838 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1839 if (!real_buffer) 1840 return -ENOMEM; 1841 memcpy(real_buffer + 4, buffer, len); 1842 len += 4; 1843 real_buffer[0] = 0; 1844 real_buffer[1] = data->medium_type; 1845 real_buffer[2] = data->device_specific; 1846 real_buffer[3] = data->block_descriptor_length; 1847 1848 1849 cmd[0] = MODE_SELECT; 1850 cmd[4] = len; 1851 } 1852 1853 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1854 sshdr, timeout, retries, NULL); 1855 kfree(real_buffer); 1856 return ret; 1857 } 1858 EXPORT_SYMBOL_GPL(scsi_mode_select); 1859 1860 /** 1861 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1862 * @sdev: SCSI device to be queried 1863 * @dbd: set if mode sense will allow block descriptors to be returned 1864 * @modepage: mode page being requested 1865 * @buffer: request buffer (may not be smaller than eight bytes) 1866 * @len: length of request buffer. 1867 * @timeout: command timeout 1868 * @retries: number of retries before failing 1869 * @data: returns a structure abstracting the mode header data 1870 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1871 * must be SCSI_SENSE_BUFFERSIZE big. 1872 * 1873 * Returns zero if unsuccessful, or the header offset (either 4 1874 * or 8 depending on whether a six or ten byte command was 1875 * issued) if successful. 1876 */ 1877 int 1878 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1879 unsigned char *buffer, int len, int timeout, int retries, 1880 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1881 { 1882 unsigned char cmd[12]; 1883 int use_10_for_ms; 1884 int header_length; 1885 int result; 1886 struct scsi_sense_hdr my_sshdr; 1887 1888 memset(data, 0, sizeof(*data)); 1889 memset(&cmd[0], 0, 12); 1890 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1891 cmd[2] = modepage; 1892 1893 /* caller might not be interested in sense, but we need it */ 1894 if (!sshdr) 1895 sshdr = &my_sshdr; 1896 1897 retry: 1898 use_10_for_ms = sdev->use_10_for_ms; 1899 1900 if (use_10_for_ms) { 1901 if (len < 8) 1902 len = 8; 1903 1904 cmd[0] = MODE_SENSE_10; 1905 cmd[8] = len; 1906 header_length = 8; 1907 } else { 1908 if (len < 4) 1909 len = 4; 1910 1911 cmd[0] = MODE_SENSE; 1912 cmd[4] = len; 1913 header_length = 4; 1914 } 1915 1916 memset(buffer, 0, len); 1917 1918 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1919 sshdr, timeout, retries, NULL); 1920 1921 /* This code looks awful: what it's doing is making sure an 1922 * ILLEGAL REQUEST sense return identifies the actual command 1923 * byte as the problem. MODE_SENSE commands can return 1924 * ILLEGAL REQUEST if the code page isn't supported */ 1925 1926 if (use_10_for_ms && !scsi_status_is_good(result) && 1927 (driver_byte(result) & DRIVER_SENSE)) { 1928 if (scsi_sense_valid(sshdr)) { 1929 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1930 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1931 /* 1932 * Invalid command operation code 1933 */ 1934 sdev->use_10_for_ms = 0; 1935 goto retry; 1936 } 1937 } 1938 } 1939 1940 if(scsi_status_is_good(result)) { 1941 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1942 (modepage == 6 || modepage == 8))) { 1943 /* Initio breakage? */ 1944 header_length = 0; 1945 data->length = 13; 1946 data->medium_type = 0; 1947 data->device_specific = 0; 1948 data->longlba = 0; 1949 data->block_descriptor_length = 0; 1950 } else if(use_10_for_ms) { 1951 data->length = buffer[0]*256 + buffer[1] + 2; 1952 data->medium_type = buffer[2]; 1953 data->device_specific = buffer[3]; 1954 data->longlba = buffer[4] & 0x01; 1955 data->block_descriptor_length = buffer[6]*256 1956 + buffer[7]; 1957 } else { 1958 data->length = buffer[0] + 1; 1959 data->medium_type = buffer[1]; 1960 data->device_specific = buffer[2]; 1961 data->block_descriptor_length = buffer[3]; 1962 } 1963 data->header_length = header_length; 1964 } 1965 1966 return result; 1967 } 1968 EXPORT_SYMBOL(scsi_mode_sense); 1969 1970 /** 1971 * scsi_test_unit_ready - test if unit is ready 1972 * @sdev: scsi device to change the state of. 1973 * @timeout: command timeout 1974 * @retries: number of retries before failing 1975 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1976 * returning sense. Make sure that this is cleared before passing 1977 * in. 1978 * 1979 * Returns zero if unsuccessful or an error if TUR failed. For 1980 * removable media, UNIT_ATTENTION sets ->changed flag. 1981 **/ 1982 int 1983 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 1984 struct scsi_sense_hdr *sshdr_external) 1985 { 1986 char cmd[] = { 1987 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1988 }; 1989 struct scsi_sense_hdr *sshdr; 1990 int result; 1991 1992 if (!sshdr_external) 1993 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1994 else 1995 sshdr = sshdr_external; 1996 1997 /* try to eat the UNIT_ATTENTION if there are enough retries */ 1998 do { 1999 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2000 timeout, retries, NULL); 2001 if (sdev->removable && scsi_sense_valid(sshdr) && 2002 sshdr->sense_key == UNIT_ATTENTION) 2003 sdev->changed = 1; 2004 } while (scsi_sense_valid(sshdr) && 2005 sshdr->sense_key == UNIT_ATTENTION && --retries); 2006 2007 if (!sshdr_external) 2008 kfree(sshdr); 2009 return result; 2010 } 2011 EXPORT_SYMBOL(scsi_test_unit_ready); 2012 2013 /** 2014 * scsi_device_set_state - Take the given device through the device state model. 2015 * @sdev: scsi device to change the state of. 2016 * @state: state to change to. 2017 * 2018 * Returns zero if unsuccessful or an error if the requested 2019 * transition is illegal. 2020 */ 2021 int 2022 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2023 { 2024 enum scsi_device_state oldstate = sdev->sdev_state; 2025 2026 if (state == oldstate) 2027 return 0; 2028 2029 switch (state) { 2030 case SDEV_CREATED: 2031 switch (oldstate) { 2032 case SDEV_CREATED_BLOCK: 2033 break; 2034 default: 2035 goto illegal; 2036 } 2037 break; 2038 2039 case SDEV_RUNNING: 2040 switch (oldstate) { 2041 case SDEV_CREATED: 2042 case SDEV_OFFLINE: 2043 case SDEV_QUIESCE: 2044 case SDEV_BLOCK: 2045 break; 2046 default: 2047 goto illegal; 2048 } 2049 break; 2050 2051 case SDEV_QUIESCE: 2052 switch (oldstate) { 2053 case SDEV_RUNNING: 2054 case SDEV_OFFLINE: 2055 break; 2056 default: 2057 goto illegal; 2058 } 2059 break; 2060 2061 case SDEV_OFFLINE: 2062 switch (oldstate) { 2063 case SDEV_CREATED: 2064 case SDEV_RUNNING: 2065 case SDEV_QUIESCE: 2066 case SDEV_BLOCK: 2067 break; 2068 default: 2069 goto illegal; 2070 } 2071 break; 2072 2073 case SDEV_BLOCK: 2074 switch (oldstate) { 2075 case SDEV_RUNNING: 2076 case SDEV_CREATED_BLOCK: 2077 break; 2078 default: 2079 goto illegal; 2080 } 2081 break; 2082 2083 case SDEV_CREATED_BLOCK: 2084 switch (oldstate) { 2085 case SDEV_CREATED: 2086 break; 2087 default: 2088 goto illegal; 2089 } 2090 break; 2091 2092 case SDEV_CANCEL: 2093 switch (oldstate) { 2094 case SDEV_CREATED: 2095 case SDEV_RUNNING: 2096 case SDEV_QUIESCE: 2097 case SDEV_OFFLINE: 2098 case SDEV_BLOCK: 2099 break; 2100 default: 2101 goto illegal; 2102 } 2103 break; 2104 2105 case SDEV_DEL: 2106 switch (oldstate) { 2107 case SDEV_CREATED: 2108 case SDEV_RUNNING: 2109 case SDEV_OFFLINE: 2110 case SDEV_CANCEL: 2111 break; 2112 default: 2113 goto illegal; 2114 } 2115 break; 2116 2117 } 2118 sdev->sdev_state = state; 2119 return 0; 2120 2121 illegal: 2122 SCSI_LOG_ERROR_RECOVERY(1, 2123 sdev_printk(KERN_ERR, sdev, 2124 "Illegal state transition %s->%s\n", 2125 scsi_device_state_name(oldstate), 2126 scsi_device_state_name(state)) 2127 ); 2128 return -EINVAL; 2129 } 2130 EXPORT_SYMBOL(scsi_device_set_state); 2131 2132 /** 2133 * sdev_evt_emit - emit a single SCSI device uevent 2134 * @sdev: associated SCSI device 2135 * @evt: event to emit 2136 * 2137 * Send a single uevent (scsi_event) to the associated scsi_device. 2138 */ 2139 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2140 { 2141 int idx = 0; 2142 char *envp[3]; 2143 2144 switch (evt->evt_type) { 2145 case SDEV_EVT_MEDIA_CHANGE: 2146 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2147 break; 2148 2149 default: 2150 /* do nothing */ 2151 break; 2152 } 2153 2154 envp[idx++] = NULL; 2155 2156 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2157 } 2158 2159 /** 2160 * sdev_evt_thread - send a uevent for each scsi event 2161 * @work: work struct for scsi_device 2162 * 2163 * Dispatch queued events to their associated scsi_device kobjects 2164 * as uevents. 2165 */ 2166 void scsi_evt_thread(struct work_struct *work) 2167 { 2168 struct scsi_device *sdev; 2169 LIST_HEAD(event_list); 2170 2171 sdev = container_of(work, struct scsi_device, event_work); 2172 2173 while (1) { 2174 struct scsi_event *evt; 2175 struct list_head *this, *tmp; 2176 unsigned long flags; 2177 2178 spin_lock_irqsave(&sdev->list_lock, flags); 2179 list_splice_init(&sdev->event_list, &event_list); 2180 spin_unlock_irqrestore(&sdev->list_lock, flags); 2181 2182 if (list_empty(&event_list)) 2183 break; 2184 2185 list_for_each_safe(this, tmp, &event_list) { 2186 evt = list_entry(this, struct scsi_event, node); 2187 list_del(&evt->node); 2188 scsi_evt_emit(sdev, evt); 2189 kfree(evt); 2190 } 2191 } 2192 } 2193 2194 /** 2195 * sdev_evt_send - send asserted event to uevent thread 2196 * @sdev: scsi_device event occurred on 2197 * @evt: event to send 2198 * 2199 * Assert scsi device event asynchronously. 2200 */ 2201 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2202 { 2203 unsigned long flags; 2204 2205 #if 0 2206 /* FIXME: currently this check eliminates all media change events 2207 * for polled devices. Need to update to discriminate between AN 2208 * and polled events */ 2209 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2210 kfree(evt); 2211 return; 2212 } 2213 #endif 2214 2215 spin_lock_irqsave(&sdev->list_lock, flags); 2216 list_add_tail(&evt->node, &sdev->event_list); 2217 schedule_work(&sdev->event_work); 2218 spin_unlock_irqrestore(&sdev->list_lock, flags); 2219 } 2220 EXPORT_SYMBOL_GPL(sdev_evt_send); 2221 2222 /** 2223 * sdev_evt_alloc - allocate a new scsi event 2224 * @evt_type: type of event to allocate 2225 * @gfpflags: GFP flags for allocation 2226 * 2227 * Allocates and returns a new scsi_event. 2228 */ 2229 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2230 gfp_t gfpflags) 2231 { 2232 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2233 if (!evt) 2234 return NULL; 2235 2236 evt->evt_type = evt_type; 2237 INIT_LIST_HEAD(&evt->node); 2238 2239 /* evt_type-specific initialization, if any */ 2240 switch (evt_type) { 2241 case SDEV_EVT_MEDIA_CHANGE: 2242 default: 2243 /* do nothing */ 2244 break; 2245 } 2246 2247 return evt; 2248 } 2249 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2250 2251 /** 2252 * sdev_evt_send_simple - send asserted event to uevent thread 2253 * @sdev: scsi_device event occurred on 2254 * @evt_type: type of event to send 2255 * @gfpflags: GFP flags for allocation 2256 * 2257 * Assert scsi device event asynchronously, given an event type. 2258 */ 2259 void sdev_evt_send_simple(struct scsi_device *sdev, 2260 enum scsi_device_event evt_type, gfp_t gfpflags) 2261 { 2262 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2263 if (!evt) { 2264 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2265 evt_type); 2266 return; 2267 } 2268 2269 sdev_evt_send(sdev, evt); 2270 } 2271 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2272 2273 /** 2274 * scsi_device_quiesce - Block user issued commands. 2275 * @sdev: scsi device to quiesce. 2276 * 2277 * This works by trying to transition to the SDEV_QUIESCE state 2278 * (which must be a legal transition). When the device is in this 2279 * state, only special requests will be accepted, all others will 2280 * be deferred. Since special requests may also be requeued requests, 2281 * a successful return doesn't guarantee the device will be 2282 * totally quiescent. 2283 * 2284 * Must be called with user context, may sleep. 2285 * 2286 * Returns zero if unsuccessful or an error if not. 2287 */ 2288 int 2289 scsi_device_quiesce(struct scsi_device *sdev) 2290 { 2291 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2292 if (err) 2293 return err; 2294 2295 scsi_run_queue(sdev->request_queue); 2296 while (sdev->device_busy) { 2297 msleep_interruptible(200); 2298 scsi_run_queue(sdev->request_queue); 2299 } 2300 return 0; 2301 } 2302 EXPORT_SYMBOL(scsi_device_quiesce); 2303 2304 /** 2305 * scsi_device_resume - Restart user issued commands to a quiesced device. 2306 * @sdev: scsi device to resume. 2307 * 2308 * Moves the device from quiesced back to running and restarts the 2309 * queues. 2310 * 2311 * Must be called with user context, may sleep. 2312 */ 2313 void 2314 scsi_device_resume(struct scsi_device *sdev) 2315 { 2316 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2317 return; 2318 scsi_run_queue(sdev->request_queue); 2319 } 2320 EXPORT_SYMBOL(scsi_device_resume); 2321 2322 static void 2323 device_quiesce_fn(struct scsi_device *sdev, void *data) 2324 { 2325 scsi_device_quiesce(sdev); 2326 } 2327 2328 void 2329 scsi_target_quiesce(struct scsi_target *starget) 2330 { 2331 starget_for_each_device(starget, NULL, device_quiesce_fn); 2332 } 2333 EXPORT_SYMBOL(scsi_target_quiesce); 2334 2335 static void 2336 device_resume_fn(struct scsi_device *sdev, void *data) 2337 { 2338 scsi_device_resume(sdev); 2339 } 2340 2341 void 2342 scsi_target_resume(struct scsi_target *starget) 2343 { 2344 starget_for_each_device(starget, NULL, device_resume_fn); 2345 } 2346 EXPORT_SYMBOL(scsi_target_resume); 2347 2348 /** 2349 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2350 * @sdev: device to block 2351 * 2352 * Block request made by scsi lld's to temporarily stop all 2353 * scsi commands on the specified device. Called from interrupt 2354 * or normal process context. 2355 * 2356 * Returns zero if successful or error if not 2357 * 2358 * Notes: 2359 * This routine transitions the device to the SDEV_BLOCK state 2360 * (which must be a legal transition). When the device is in this 2361 * state, all commands are deferred until the scsi lld reenables 2362 * the device with scsi_device_unblock or device_block_tmo fires. 2363 * This routine assumes the host_lock is held on entry. 2364 */ 2365 int 2366 scsi_internal_device_block(struct scsi_device *sdev) 2367 { 2368 struct request_queue *q = sdev->request_queue; 2369 unsigned long flags; 2370 int err = 0; 2371 2372 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2373 if (err) { 2374 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2375 2376 if (err) 2377 return err; 2378 } 2379 2380 /* 2381 * The device has transitioned to SDEV_BLOCK. Stop the 2382 * block layer from calling the midlayer with this device's 2383 * request queue. 2384 */ 2385 spin_lock_irqsave(q->queue_lock, flags); 2386 blk_stop_queue(q); 2387 spin_unlock_irqrestore(q->queue_lock, flags); 2388 2389 return 0; 2390 } 2391 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2392 2393 /** 2394 * scsi_internal_device_unblock - resume a device after a block request 2395 * @sdev: device to resume 2396 * 2397 * Called by scsi lld's or the midlayer to restart the device queue 2398 * for the previously suspended scsi device. Called from interrupt or 2399 * normal process context. 2400 * 2401 * Returns zero if successful or error if not. 2402 * 2403 * Notes: 2404 * This routine transitions the device to the SDEV_RUNNING state 2405 * (which must be a legal transition) allowing the midlayer to 2406 * goose the queue for this device. This routine assumes the 2407 * host_lock is held upon entry. 2408 */ 2409 int 2410 scsi_internal_device_unblock(struct scsi_device *sdev) 2411 { 2412 struct request_queue *q = sdev->request_queue; 2413 unsigned long flags; 2414 2415 /* 2416 * Try to transition the scsi device to SDEV_RUNNING 2417 * and goose the device queue if successful. 2418 */ 2419 if (sdev->sdev_state == SDEV_BLOCK) 2420 sdev->sdev_state = SDEV_RUNNING; 2421 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2422 sdev->sdev_state = SDEV_CREATED; 2423 else if (sdev->sdev_state != SDEV_CANCEL && 2424 sdev->sdev_state != SDEV_OFFLINE) 2425 return -EINVAL; 2426 2427 spin_lock_irqsave(q->queue_lock, flags); 2428 blk_start_queue(q); 2429 spin_unlock_irqrestore(q->queue_lock, flags); 2430 2431 return 0; 2432 } 2433 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2434 2435 static void 2436 device_block(struct scsi_device *sdev, void *data) 2437 { 2438 scsi_internal_device_block(sdev); 2439 } 2440 2441 static int 2442 target_block(struct device *dev, void *data) 2443 { 2444 if (scsi_is_target_device(dev)) 2445 starget_for_each_device(to_scsi_target(dev), NULL, 2446 device_block); 2447 return 0; 2448 } 2449 2450 void 2451 scsi_target_block(struct device *dev) 2452 { 2453 if (scsi_is_target_device(dev)) 2454 starget_for_each_device(to_scsi_target(dev), NULL, 2455 device_block); 2456 else 2457 device_for_each_child(dev, NULL, target_block); 2458 } 2459 EXPORT_SYMBOL_GPL(scsi_target_block); 2460 2461 static void 2462 device_unblock(struct scsi_device *sdev, void *data) 2463 { 2464 scsi_internal_device_unblock(sdev); 2465 } 2466 2467 static int 2468 target_unblock(struct device *dev, void *data) 2469 { 2470 if (scsi_is_target_device(dev)) 2471 starget_for_each_device(to_scsi_target(dev), NULL, 2472 device_unblock); 2473 return 0; 2474 } 2475 2476 void 2477 scsi_target_unblock(struct device *dev) 2478 { 2479 if (scsi_is_target_device(dev)) 2480 starget_for_each_device(to_scsi_target(dev), NULL, 2481 device_unblock); 2482 else 2483 device_for_each_child(dev, NULL, target_unblock); 2484 } 2485 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2486 2487 /** 2488 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2489 * @sgl: scatter-gather list 2490 * @sg_count: number of segments in sg 2491 * @offset: offset in bytes into sg, on return offset into the mapped area 2492 * @len: bytes to map, on return number of bytes mapped 2493 * 2494 * Returns virtual address of the start of the mapped page 2495 */ 2496 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2497 size_t *offset, size_t *len) 2498 { 2499 int i; 2500 size_t sg_len = 0, len_complete = 0; 2501 struct scatterlist *sg; 2502 struct page *page; 2503 2504 WARN_ON(!irqs_disabled()); 2505 2506 for_each_sg(sgl, sg, sg_count, i) { 2507 len_complete = sg_len; /* Complete sg-entries */ 2508 sg_len += sg->length; 2509 if (sg_len > *offset) 2510 break; 2511 } 2512 2513 if (unlikely(i == sg_count)) { 2514 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2515 "elements %d\n", 2516 __func__, sg_len, *offset, sg_count); 2517 WARN_ON(1); 2518 return NULL; 2519 } 2520 2521 /* Offset starting from the beginning of first page in this sg-entry */ 2522 *offset = *offset - len_complete + sg->offset; 2523 2524 /* Assumption: contiguous pages can be accessed as "page + i" */ 2525 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2526 *offset &= ~PAGE_MASK; 2527 2528 /* Bytes in this sg-entry from *offset to the end of the page */ 2529 sg_len = PAGE_SIZE - *offset; 2530 if (*len > sg_len) 2531 *len = sg_len; 2532 2533 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2534 } 2535 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2536 2537 /** 2538 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2539 * @virt: virtual address to be unmapped 2540 */ 2541 void scsi_kunmap_atomic_sg(void *virt) 2542 { 2543 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2544 } 2545 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2546