xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision dd548cf9)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 
35 #include <trace/events/scsi.h>
36 
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39 
40 
41 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE		2
43 
44 struct scsi_host_sg_pool {
45 	size_t		size;
46 	char		*name;
47 	struct kmem_cache	*slab;
48 	mempool_t	*pool;
49 };
50 
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54 #endif
55 static struct scsi_host_sg_pool scsi_sg_pools[] = {
56 	SP(8),
57 	SP(16),
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
59 	SP(32),
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
61 	SP(64),
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
63 	SP(128),
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66 #endif
67 #endif
68 #endif
69 #endif
70 	SP(SCSI_MAX_SG_SEGMENTS)
71 };
72 #undef SP
73 
74 struct kmem_cache *scsi_sdb_cache;
75 
76 /*
77  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78  * not change behaviour from the previous unplug mechanism, experimentation
79  * may prove this needs changing.
80  */
81 #define SCSI_QUEUE_DELAY	3
82 
83 static void
84 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
85 {
86 	struct Scsi_Host *host = cmd->device->host;
87 	struct scsi_device *device = cmd->device;
88 	struct scsi_target *starget = scsi_target(device);
89 
90 	/*
91 	 * Set the appropriate busy bit for the device/host.
92 	 *
93 	 * If the host/device isn't busy, assume that something actually
94 	 * completed, and that we should be able to queue a command now.
95 	 *
96 	 * Note that the prior mid-layer assumption that any host could
97 	 * always queue at least one command is now broken.  The mid-layer
98 	 * will implement a user specifiable stall (see
99 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100 	 * if a command is requeued with no other commands outstanding
101 	 * either for the device or for the host.
102 	 */
103 	switch (reason) {
104 	case SCSI_MLQUEUE_HOST_BUSY:
105 		atomic_set(&host->host_blocked, host->max_host_blocked);
106 		break;
107 	case SCSI_MLQUEUE_DEVICE_BUSY:
108 	case SCSI_MLQUEUE_EH_RETRY:
109 		atomic_set(&device->device_blocked,
110 			   device->max_device_blocked);
111 		break;
112 	case SCSI_MLQUEUE_TARGET_BUSY:
113 		atomic_set(&starget->target_blocked,
114 			   starget->max_target_blocked);
115 		break;
116 	}
117 }
118 
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
120 {
121 	struct scsi_device *sdev = cmd->device;
122 	struct request_queue *q = cmd->request->q;
123 
124 	blk_mq_requeue_request(cmd->request);
125 	blk_mq_kick_requeue_list(q);
126 	put_device(&sdev->sdev_gendev);
127 }
128 
129 /**
130  * __scsi_queue_insert - private queue insertion
131  * @cmd: The SCSI command being requeued
132  * @reason:  The reason for the requeue
133  * @unbusy: Whether the queue should be unbusied
134  *
135  * This is a private queue insertion.  The public interface
136  * scsi_queue_insert() always assumes the queue should be unbusied
137  * because it's always called before the completion.  This function is
138  * for a requeue after completion, which should only occur in this
139  * file.
140  */
141 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
142 {
143 	struct scsi_device *device = cmd->device;
144 	struct request_queue *q = device->request_queue;
145 	unsigned long flags;
146 
147 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 		"Inserting command %p into mlqueue\n", cmd));
149 
150 	scsi_set_blocked(cmd, reason);
151 
152 	/*
153 	 * Decrement the counters, since these commands are no longer
154 	 * active on the host/device.
155 	 */
156 	if (unbusy)
157 		scsi_device_unbusy(device);
158 
159 	/*
160 	 * Requeue this command.  It will go before all other commands
161 	 * that are already in the queue. Schedule requeue work under
162 	 * lock such that the kblockd_schedule_work() call happens
163 	 * before blk_cleanup_queue() finishes.
164 	 */
165 	cmd->result = 0;
166 	if (q->mq_ops) {
167 		scsi_mq_requeue_cmd(cmd);
168 		return;
169 	}
170 	spin_lock_irqsave(q->queue_lock, flags);
171 	blk_requeue_request(q, cmd->request);
172 	kblockd_schedule_work(&device->requeue_work);
173 	spin_unlock_irqrestore(q->queue_lock, flags);
174 }
175 
176 /*
177  * Function:    scsi_queue_insert()
178  *
179  * Purpose:     Insert a command in the midlevel queue.
180  *
181  * Arguments:   cmd    - command that we are adding to queue.
182  *              reason - why we are inserting command to queue.
183  *
184  * Lock status: Assumed that lock is not held upon entry.
185  *
186  * Returns:     Nothing.
187  *
188  * Notes:       We do this for one of two cases.  Either the host is busy
189  *              and it cannot accept any more commands for the time being,
190  *              or the device returned QUEUE_FULL and can accept no more
191  *              commands.
192  * Notes:       This could be called either from an interrupt context or a
193  *              normal process context.
194  */
195 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
196 {
197 	__scsi_queue_insert(cmd, reason, 1);
198 }
199 /**
200  * scsi_execute - insert request and wait for the result
201  * @sdev:	scsi device
202  * @cmd:	scsi command
203  * @data_direction: data direction
204  * @buffer:	data buffer
205  * @bufflen:	len of buffer
206  * @sense:	optional sense buffer
207  * @timeout:	request timeout in seconds
208  * @retries:	number of times to retry request
209  * @flags:	or into request flags;
210  * @resid:	optional residual length
211  *
212  * returns the req->errors value which is the scsi_cmnd result
213  * field.
214  */
215 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216 		 int data_direction, void *buffer, unsigned bufflen,
217 		 unsigned char *sense, int timeout, int retries, u64 flags,
218 		 int *resid)
219 {
220 	struct request *req;
221 	int write = (data_direction == DMA_TO_DEVICE);
222 	int ret = DRIVER_ERROR << 24;
223 
224 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225 	if (IS_ERR(req))
226 		return ret;
227 	blk_rq_set_block_pc(req);
228 
229 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
230 					buffer, bufflen, __GFP_WAIT))
231 		goto out;
232 
233 	req->cmd_len = COMMAND_SIZE(cmd[0]);
234 	memcpy(req->cmd, cmd, req->cmd_len);
235 	req->sense = sense;
236 	req->sense_len = 0;
237 	req->retries = retries;
238 	req->timeout = timeout;
239 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
240 
241 	/*
242 	 * head injection *required* here otherwise quiesce won't work
243 	 */
244 	blk_execute_rq(req->q, NULL, req, 1);
245 
246 	/*
247 	 * Some devices (USB mass-storage in particular) may transfer
248 	 * garbage data together with a residue indicating that the data
249 	 * is invalid.  Prevent the garbage from being misinterpreted
250 	 * and prevent security leaks by zeroing out the excess data.
251 	 */
252 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
254 
255 	if (resid)
256 		*resid = req->resid_len;
257 	ret = req->errors;
258  out:
259 	blk_put_request(req);
260 
261 	return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute);
264 
265 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266 		     int data_direction, void *buffer, unsigned bufflen,
267 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
268 		     int *resid, u64 flags)
269 {
270 	char *sense = NULL;
271 	int result;
272 
273 	if (sshdr) {
274 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275 		if (!sense)
276 			return DRIVER_ERROR << 24;
277 	}
278 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279 			      sense, timeout, retries, flags, resid);
280 	if (sshdr)
281 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
282 
283 	kfree(sense);
284 	return result;
285 }
286 EXPORT_SYMBOL(scsi_execute_req_flags);
287 
288 /*
289  * Function:    scsi_init_cmd_errh()
290  *
291  * Purpose:     Initialize cmd fields related to error handling.
292  *
293  * Arguments:   cmd	- command that is ready to be queued.
294  *
295  * Notes:       This function has the job of initializing a number of
296  *              fields related to error handling.   Typically this will
297  *              be called once for each command, as required.
298  */
299 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
300 {
301 	cmd->serial_number = 0;
302 	scsi_set_resid(cmd, 0);
303 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304 	if (cmd->cmd_len == 0)
305 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
306 }
307 
308 void scsi_device_unbusy(struct scsi_device *sdev)
309 {
310 	struct Scsi_Host *shost = sdev->host;
311 	struct scsi_target *starget = scsi_target(sdev);
312 	unsigned long flags;
313 
314 	atomic_dec(&shost->host_busy);
315 	if (starget->can_queue > 0)
316 		atomic_dec(&starget->target_busy);
317 
318 	if (unlikely(scsi_host_in_recovery(shost) &&
319 		     (shost->host_failed || shost->host_eh_scheduled))) {
320 		spin_lock_irqsave(shost->host_lock, flags);
321 		scsi_eh_wakeup(shost);
322 		spin_unlock_irqrestore(shost->host_lock, flags);
323 	}
324 
325 	atomic_dec(&sdev->device_busy);
326 }
327 
328 static void scsi_kick_queue(struct request_queue *q)
329 {
330 	if (q->mq_ops)
331 		blk_mq_start_hw_queues(q);
332 	else
333 		blk_run_queue(q);
334 }
335 
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 	struct Scsi_Host *shost = current_sdev->host;
346 	struct scsi_device *sdev, *tmp;
347 	struct scsi_target *starget = scsi_target(current_sdev);
348 	unsigned long flags;
349 
350 	spin_lock_irqsave(shost->host_lock, flags);
351 	starget->starget_sdev_user = NULL;
352 	spin_unlock_irqrestore(shost->host_lock, flags);
353 
354 	/*
355 	 * Call blk_run_queue for all LUNs on the target, starting with
356 	 * current_sdev. We race with others (to set starget_sdev_user),
357 	 * but in most cases, we will be first. Ideally, each LU on the
358 	 * target would get some limited time or requests on the target.
359 	 */
360 	scsi_kick_queue(current_sdev->request_queue);
361 
362 	spin_lock_irqsave(shost->host_lock, flags);
363 	if (starget->starget_sdev_user)
364 		goto out;
365 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 			same_target_siblings) {
367 		if (sdev == current_sdev)
368 			continue;
369 		if (scsi_device_get(sdev))
370 			continue;
371 
372 		spin_unlock_irqrestore(shost->host_lock, flags);
373 		scsi_kick_queue(sdev->request_queue);
374 		spin_lock_irqsave(shost->host_lock, flags);
375 
376 		scsi_device_put(sdev);
377 	}
378  out:
379 	spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381 
382 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385 		return true;
386 	if (atomic_read(&sdev->device_blocked) > 0)
387 		return true;
388 	return false;
389 }
390 
391 static inline bool scsi_target_is_busy(struct scsi_target *starget)
392 {
393 	if (starget->can_queue > 0) {
394 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
395 			return true;
396 		if (atomic_read(&starget->target_blocked) > 0)
397 			return true;
398 	}
399 	return false;
400 }
401 
402 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404 	if (shost->can_queue > 0 &&
405 	    atomic_read(&shost->host_busy) >= shost->can_queue)
406 		return true;
407 	if (atomic_read(&shost->host_blocked) > 0)
408 		return true;
409 	if (shost->host_self_blocked)
410 		return true;
411 	return false;
412 }
413 
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 	LIST_HEAD(starved_list);
417 	struct scsi_device *sdev;
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(shost->host_lock, flags);
421 	list_splice_init(&shost->starved_list, &starved_list);
422 
423 	while (!list_empty(&starved_list)) {
424 		struct request_queue *slq;
425 
426 		/*
427 		 * As long as shost is accepting commands and we have
428 		 * starved queues, call blk_run_queue. scsi_request_fn
429 		 * drops the queue_lock and can add us back to the
430 		 * starved_list.
431 		 *
432 		 * host_lock protects the starved_list and starved_entry.
433 		 * scsi_request_fn must get the host_lock before checking
434 		 * or modifying starved_list or starved_entry.
435 		 */
436 		if (scsi_host_is_busy(shost))
437 			break;
438 
439 		sdev = list_entry(starved_list.next,
440 				  struct scsi_device, starved_entry);
441 		list_del_init(&sdev->starved_entry);
442 		if (scsi_target_is_busy(scsi_target(sdev))) {
443 			list_move_tail(&sdev->starved_entry,
444 				       &shost->starved_list);
445 			continue;
446 		}
447 
448 		/*
449 		 * Once we drop the host lock, a racing scsi_remove_device()
450 		 * call may remove the sdev from the starved list and destroy
451 		 * it and the queue.  Mitigate by taking a reference to the
452 		 * queue and never touching the sdev again after we drop the
453 		 * host lock.  Note: if __scsi_remove_device() invokes
454 		 * blk_cleanup_queue() before the queue is run from this
455 		 * function then blk_run_queue() will return immediately since
456 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 		 */
458 		slq = sdev->request_queue;
459 		if (!blk_get_queue(slq))
460 			continue;
461 		spin_unlock_irqrestore(shost->host_lock, flags);
462 
463 		scsi_kick_queue(slq);
464 		blk_put_queue(slq);
465 
466 		spin_lock_irqsave(shost->host_lock, flags);
467 	}
468 	/* put any unprocessed entries back */
469 	list_splice(&starved_list, &shost->starved_list);
470 	spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472 
473 /*
474  * Function:   scsi_run_queue()
475  *
476  * Purpose:    Select a proper request queue to serve next
477  *
478  * Arguments:  q       - last request's queue
479  *
480  * Returns:     Nothing
481  *
482  * Notes:      The previous command was completely finished, start
483  *             a new one if possible.
484  */
485 static void scsi_run_queue(struct request_queue *q)
486 {
487 	struct scsi_device *sdev = q->queuedata;
488 
489 	if (scsi_target(sdev)->single_lun)
490 		scsi_single_lun_run(sdev);
491 	if (!list_empty(&sdev->host->starved_list))
492 		scsi_starved_list_run(sdev->host);
493 
494 	if (q->mq_ops)
495 		blk_mq_start_stopped_hw_queues(q, false);
496 	else
497 		blk_run_queue(q);
498 }
499 
500 void scsi_requeue_run_queue(struct work_struct *work)
501 {
502 	struct scsi_device *sdev;
503 	struct request_queue *q;
504 
505 	sdev = container_of(work, struct scsi_device, requeue_work);
506 	q = sdev->request_queue;
507 	scsi_run_queue(q);
508 }
509 
510 /*
511  * Function:	scsi_requeue_command()
512  *
513  * Purpose:	Handle post-processing of completed commands.
514  *
515  * Arguments:	q	- queue to operate on
516  *		cmd	- command that may need to be requeued.
517  *
518  * Returns:	Nothing
519  *
520  * Notes:	After command completion, there may be blocks left
521  *		over which weren't finished by the previous command
522  *		this can be for a number of reasons - the main one is
523  *		I/O errors in the middle of the request, in which case
524  *		we need to request the blocks that come after the bad
525  *		sector.
526  * Notes:	Upon return, cmd is a stale pointer.
527  */
528 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
529 {
530 	struct scsi_device *sdev = cmd->device;
531 	struct request *req = cmd->request;
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(q->queue_lock, flags);
535 	blk_unprep_request(req);
536 	req->special = NULL;
537 	scsi_put_command(cmd);
538 	blk_requeue_request(q, req);
539 	spin_unlock_irqrestore(q->queue_lock, flags);
540 
541 	scsi_run_queue(q);
542 
543 	put_device(&sdev->sdev_gendev);
544 }
545 
546 void scsi_run_host_queues(struct Scsi_Host *shost)
547 {
548 	struct scsi_device *sdev;
549 
550 	shost_for_each_device(sdev, shost)
551 		scsi_run_queue(sdev->request_queue);
552 }
553 
554 static inline unsigned int scsi_sgtable_index(unsigned short nents)
555 {
556 	unsigned int index;
557 
558 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
559 
560 	if (nents <= 8)
561 		index = 0;
562 	else
563 		index = get_count_order(nents) - 3;
564 
565 	return index;
566 }
567 
568 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
569 {
570 	struct scsi_host_sg_pool *sgp;
571 
572 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573 	mempool_free(sgl, sgp->pool);
574 }
575 
576 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
577 {
578 	struct scsi_host_sg_pool *sgp;
579 
580 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581 	return mempool_alloc(sgp->pool, gfp_mask);
582 }
583 
584 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
585 {
586 	if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
587 		return;
588 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
589 }
590 
591 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
592 {
593 	struct scatterlist *first_chunk = NULL;
594 	gfp_t gfp_mask = mq ? GFP_NOIO : GFP_ATOMIC;
595 	int ret;
596 
597 	BUG_ON(!nents);
598 
599 	if (mq) {
600 		if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 			sdb->table.nents = nents;
602 			sg_init_table(sdb->table.sgl, sdb->table.nents);
603 			return 0;
604 		}
605 		first_chunk = sdb->table.sgl;
606 	}
607 
608 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 			       first_chunk, gfp_mask, scsi_sg_alloc);
610 	if (unlikely(ret))
611 		scsi_free_sgtable(sdb, mq);
612 	return ret;
613 }
614 
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619 
620 		if (drv->uninit_command)
621 			drv->uninit_command(cmd);
622 	}
623 }
624 
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627 	if (cmd->sdb.table.nents)
628 		scsi_free_sgtable(&cmd->sdb, true);
629 	if (cmd->request->next_rq && cmd->request->next_rq->special)
630 		scsi_free_sgtable(cmd->request->next_rq->special, true);
631 	if (scsi_prot_sg_count(cmd))
632 		scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634 
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637 	struct scsi_device *sdev = cmd->device;
638 	struct Scsi_Host *shost = sdev->host;
639 	unsigned long flags;
640 
641 	scsi_mq_free_sgtables(cmd);
642 	scsi_uninit_cmd(cmd);
643 
644 	if (shost->use_cmd_list) {
645 		BUG_ON(list_empty(&cmd->list));
646 		spin_lock_irqsave(&sdev->list_lock, flags);
647 		list_del_init(&cmd->list);
648 		spin_unlock_irqrestore(&sdev->list_lock, flags);
649 	}
650 }
651 
652 /*
653  * Function:    scsi_release_buffers()
654  *
655  * Purpose:     Free resources allocate for a scsi_command.
656  *
657  * Arguments:   cmd	- command that we are bailing.
658  *
659  * Lock status: Assumed that no lock is held upon entry.
660  *
661  * Returns:     Nothing
662  *
663  * Notes:       In the event that an upper level driver rejects a
664  *		command, we must release resources allocated during
665  *		the __init_io() function.  Primarily this would involve
666  *		the scatter-gather table.
667  */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 	if (cmd->sdb.table.nents)
671 		scsi_free_sgtable(&cmd->sdb, false);
672 
673 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674 
675 	if (scsi_prot_sg_count(cmd))
676 		scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678 
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682 
683 	scsi_free_sgtable(bidi_sdb, false);
684 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 	cmd->request->next_rq->special = NULL;
686 }
687 
688 static bool scsi_end_request(struct request *req, int error,
689 		unsigned int bytes, unsigned int bidi_bytes)
690 {
691 	struct scsi_cmnd *cmd = req->special;
692 	struct scsi_device *sdev = cmd->device;
693 	struct request_queue *q = sdev->request_queue;
694 
695 	if (blk_update_request(req, error, bytes))
696 		return true;
697 
698 	/* Bidi request must be completed as a whole */
699 	if (unlikely(bidi_bytes) &&
700 	    blk_update_request(req->next_rq, error, bidi_bytes))
701 		return true;
702 
703 	if (blk_queue_add_random(q))
704 		add_disk_randomness(req->rq_disk);
705 
706 	if (req->mq_ctx) {
707 		/*
708 		 * In the MQ case the command gets freed by __blk_mq_end_request,
709 		 * so we have to do all cleanup that depends on it earlier.
710 		 *
711 		 * We also can't kick the queues from irq context, so we
712 		 * will have to defer it to a workqueue.
713 		 */
714 		scsi_mq_uninit_cmd(cmd);
715 
716 		__blk_mq_end_request(req, error);
717 
718 		if (scsi_target(sdev)->single_lun ||
719 		    !list_empty(&sdev->host->starved_list))
720 			kblockd_schedule_work(&sdev->requeue_work);
721 		else
722 			blk_mq_start_stopped_hw_queues(q, true);
723 	} else {
724 		unsigned long flags;
725 
726 		if (bidi_bytes)
727 			scsi_release_bidi_buffers(cmd);
728 
729 		spin_lock_irqsave(q->queue_lock, flags);
730 		blk_finish_request(req, error);
731 		spin_unlock_irqrestore(q->queue_lock, flags);
732 
733 		scsi_release_buffers(cmd);
734 
735 		scsi_put_command(cmd);
736 		scsi_run_queue(q);
737 	}
738 
739 	put_device(&sdev->sdev_gendev);
740 	return false;
741 }
742 
743 /**
744  * __scsi_error_from_host_byte - translate SCSI error code into errno
745  * @cmd:	SCSI command (unused)
746  * @result:	scsi error code
747  *
748  * Translate SCSI error code into standard UNIX errno.
749  * Return values:
750  * -ENOLINK	temporary transport failure
751  * -EREMOTEIO	permanent target failure, do not retry
752  * -EBADE	permanent nexus failure, retry on other path
753  * -ENOSPC	No write space available
754  * -ENODATA	Medium error
755  * -EIO		unspecified I/O error
756  */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759 	int error = 0;
760 
761 	switch(host_byte(result)) {
762 	case DID_TRANSPORT_FAILFAST:
763 		error = -ENOLINK;
764 		break;
765 	case DID_TARGET_FAILURE:
766 		set_host_byte(cmd, DID_OK);
767 		error = -EREMOTEIO;
768 		break;
769 	case DID_NEXUS_FAILURE:
770 		set_host_byte(cmd, DID_OK);
771 		error = -EBADE;
772 		break;
773 	case DID_ALLOC_FAILURE:
774 		set_host_byte(cmd, DID_OK);
775 		error = -ENOSPC;
776 		break;
777 	case DID_MEDIUM_ERROR:
778 		set_host_byte(cmd, DID_OK);
779 		error = -ENODATA;
780 		break;
781 	default:
782 		error = -EIO;
783 		break;
784 	}
785 
786 	return error;
787 }
788 
789 /*
790  * Function:    scsi_io_completion()
791  *
792  * Purpose:     Completion processing for block device I/O requests.
793  *
794  * Arguments:   cmd   - command that is finished.
795  *
796  * Lock status: Assumed that no lock is held upon entry.
797  *
798  * Returns:     Nothing
799  *
800  * Notes:       We will finish off the specified number of sectors.  If we
801  *		are done, the command block will be released and the queue
802  *		function will be goosed.  If we are not done then we have to
803  *		figure out what to do next:
804  *
805  *		a) We can call scsi_requeue_command().  The request
806  *		   will be unprepared and put back on the queue.  Then
807  *		   a new command will be created for it.  This should
808  *		   be used if we made forward progress, or if we want
809  *		   to switch from READ(10) to READ(6) for example.
810  *
811  *		b) We can call __scsi_queue_insert().  The request will
812  *		   be put back on the queue and retried using the same
813  *		   command as before, possibly after a delay.
814  *
815  *		c) We can call scsi_end_request() with -EIO to fail
816  *		   the remainder of the request.
817  */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 	int result = cmd->result;
821 	struct request_queue *q = cmd->device->request_queue;
822 	struct request *req = cmd->request;
823 	int error = 0;
824 	struct scsi_sense_hdr sshdr;
825 	bool sense_valid = false;
826 	int sense_deferred = 0, level = 0;
827 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 	      ACTION_DELAYED_RETRY} action;
829 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830 
831 	if (result) {
832 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 		if (sense_valid)
834 			sense_deferred = scsi_sense_is_deferred(&sshdr);
835 	}
836 
837 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 		if (result) {
839 			if (sense_valid && req->sense) {
840 				/*
841 				 * SG_IO wants current and deferred errors
842 				 */
843 				int len = 8 + cmd->sense_buffer[7];
844 
845 				if (len > SCSI_SENSE_BUFFERSIZE)
846 					len = SCSI_SENSE_BUFFERSIZE;
847 				memcpy(req->sense, cmd->sense_buffer,  len);
848 				req->sense_len = len;
849 			}
850 			if (!sense_deferred)
851 				error = __scsi_error_from_host_byte(cmd, result);
852 		}
853 		/*
854 		 * __scsi_error_from_host_byte may have reset the host_byte
855 		 */
856 		req->errors = cmd->result;
857 
858 		req->resid_len = scsi_get_resid(cmd);
859 
860 		if (scsi_bidi_cmnd(cmd)) {
861 			/*
862 			 * Bidi commands Must be complete as a whole,
863 			 * both sides at once.
864 			 */
865 			req->next_rq->resid_len = scsi_in(cmd)->resid;
866 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 					blk_rq_bytes(req->next_rq)))
868 				BUG();
869 			return;
870 		}
871 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872 		/*
873 		 * Certain non BLOCK_PC requests are commands that don't
874 		 * actually transfer anything (FLUSH), so cannot use
875 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 		 * This sets the error explicitly for the problem case.
877 		 */
878 		error = __scsi_error_from_host_byte(cmd, result);
879 	}
880 
881 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 	BUG_ON(blk_bidi_rq(req));
883 
884 	/*
885 	 * Next deal with any sectors which we were able to correctly
886 	 * handle.
887 	 */
888 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 		"%u sectors total, %d bytes done.\n",
890 		blk_rq_sectors(req), good_bytes));
891 
892 	/*
893 	 * Recovered errors need reporting, but they're always treated
894 	 * as success, so fiddle the result code here.  For BLOCK_PC
895 	 * we already took a copy of the original into rq->errors which
896 	 * is what gets returned to the user
897 	 */
898 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 		 * print since caller wants ATA registers. Only occurs on
901 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 		 */
903 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 			;
905 		else if (!(req->cmd_flags & REQ_QUIET))
906 			scsi_print_sense(cmd);
907 		result = 0;
908 		/* BLOCK_PC may have set error */
909 		error = 0;
910 	}
911 
912 	/*
913 	 * If we finished all bytes in the request we are done now.
914 	 */
915 	if (!scsi_end_request(req, error, good_bytes, 0))
916 		return;
917 
918 	/*
919 	 * Kill remainder if no retrys.
920 	 */
921 	if (error && scsi_noretry_cmd(cmd)) {
922 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
923 			BUG();
924 		return;
925 	}
926 
927 	/*
928 	 * If there had been no error, but we have leftover bytes in the
929 	 * requeues just queue the command up again.
930 	 */
931 	if (result == 0)
932 		goto requeue;
933 
934 	error = __scsi_error_from_host_byte(cmd, result);
935 
936 	if (host_byte(result) == DID_RESET) {
937 		/* Third party bus reset or reset for error recovery
938 		 * reasons.  Just retry the command and see what
939 		 * happens.
940 		 */
941 		action = ACTION_RETRY;
942 	} else if (sense_valid && !sense_deferred) {
943 		switch (sshdr.sense_key) {
944 		case UNIT_ATTENTION:
945 			if (cmd->device->removable) {
946 				/* Detected disc change.  Set a bit
947 				 * and quietly refuse further access.
948 				 */
949 				cmd->device->changed = 1;
950 				action = ACTION_FAIL;
951 			} else {
952 				/* Must have been a power glitch, or a
953 				 * bus reset.  Could not have been a
954 				 * media change, so we just retry the
955 				 * command and see what happens.
956 				 */
957 				action = ACTION_RETRY;
958 			}
959 			break;
960 		case ILLEGAL_REQUEST:
961 			/* If we had an ILLEGAL REQUEST returned, then
962 			 * we may have performed an unsupported
963 			 * command.  The only thing this should be
964 			 * would be a ten byte read where only a six
965 			 * byte read was supported.  Also, on a system
966 			 * where READ CAPACITY failed, we may have
967 			 * read past the end of the disk.
968 			 */
969 			if ((cmd->device->use_10_for_rw &&
970 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
971 			    (cmd->cmnd[0] == READ_10 ||
972 			     cmd->cmnd[0] == WRITE_10)) {
973 				/* This will issue a new 6-byte command. */
974 				cmd->device->use_10_for_rw = 0;
975 				action = ACTION_REPREP;
976 			} else if (sshdr.asc == 0x10) /* DIX */ {
977 				action = ACTION_FAIL;
978 				error = -EILSEQ;
979 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
980 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
981 				action = ACTION_FAIL;
982 				error = -EREMOTEIO;
983 			} else
984 				action = ACTION_FAIL;
985 			break;
986 		case ABORTED_COMMAND:
987 			action = ACTION_FAIL;
988 			if (sshdr.asc == 0x10) /* DIF */
989 				error = -EILSEQ;
990 			break;
991 		case NOT_READY:
992 			/* If the device is in the process of becoming
993 			 * ready, or has a temporary blockage, retry.
994 			 */
995 			if (sshdr.asc == 0x04) {
996 				switch (sshdr.ascq) {
997 				case 0x01: /* becoming ready */
998 				case 0x04: /* format in progress */
999 				case 0x05: /* rebuild in progress */
1000 				case 0x06: /* recalculation in progress */
1001 				case 0x07: /* operation in progress */
1002 				case 0x08: /* Long write in progress */
1003 				case 0x09: /* self test in progress */
1004 				case 0x14: /* space allocation in progress */
1005 					action = ACTION_DELAYED_RETRY;
1006 					break;
1007 				default:
1008 					action = ACTION_FAIL;
1009 					break;
1010 				}
1011 			} else
1012 				action = ACTION_FAIL;
1013 			break;
1014 		case VOLUME_OVERFLOW:
1015 			/* See SSC3rXX or current. */
1016 			action = ACTION_FAIL;
1017 			break;
1018 		default:
1019 			action = ACTION_FAIL;
1020 			break;
1021 		}
1022 	} else
1023 		action = ACTION_FAIL;
1024 
1025 	if (action != ACTION_FAIL &&
1026 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1027 		action = ACTION_FAIL;
1028 
1029 	switch (action) {
1030 	case ACTION_FAIL:
1031 		/* Give up and fail the remainder of the request */
1032 		if (!(req->cmd_flags & REQ_QUIET)) {
1033 			static DEFINE_RATELIMIT_STATE(_rs,
1034 					DEFAULT_RATELIMIT_INTERVAL,
1035 					DEFAULT_RATELIMIT_BURST);
1036 
1037 			if (unlikely(scsi_logging_level))
1038 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1039 						       SCSI_LOG_MLCOMPLETE_BITS);
1040 
1041 			/*
1042 			 * if logging is enabled the failure will be printed
1043 			 * in scsi_log_completion(), so avoid duplicate messages
1044 			 */
1045 			if (!level && __ratelimit(&_rs)) {
1046 				scsi_print_result(cmd, NULL, FAILED);
1047 				if (driver_byte(result) & DRIVER_SENSE)
1048 					scsi_print_sense(cmd);
1049 				scsi_print_command(cmd);
1050 			}
1051 		}
1052 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1053 			return;
1054 		/*FALLTHRU*/
1055 	case ACTION_REPREP:
1056 	requeue:
1057 		/* Unprep the request and put it back at the head of the queue.
1058 		 * A new command will be prepared and issued.
1059 		 */
1060 		if (q->mq_ops) {
1061 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1062 			scsi_mq_uninit_cmd(cmd);
1063 			scsi_mq_requeue_cmd(cmd);
1064 		} else {
1065 			scsi_release_buffers(cmd);
1066 			scsi_requeue_command(q, cmd);
1067 		}
1068 		break;
1069 	case ACTION_RETRY:
1070 		/* Retry the same command immediately */
1071 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1072 		break;
1073 	case ACTION_DELAYED_RETRY:
1074 		/* Retry the same command after a delay */
1075 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1076 		break;
1077 	}
1078 }
1079 
1080 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1081 {
1082 	int count;
1083 
1084 	/*
1085 	 * If sg table allocation fails, requeue request later.
1086 	 */
1087 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1088 					req->mq_ctx != NULL)))
1089 		return BLKPREP_DEFER;
1090 
1091 	/*
1092 	 * Next, walk the list, and fill in the addresses and sizes of
1093 	 * each segment.
1094 	 */
1095 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1096 	BUG_ON(count > sdb->table.nents);
1097 	sdb->table.nents = count;
1098 	sdb->length = blk_rq_bytes(req);
1099 	return BLKPREP_OK;
1100 }
1101 
1102 /*
1103  * Function:    scsi_init_io()
1104  *
1105  * Purpose:     SCSI I/O initialize function.
1106  *
1107  * Arguments:   cmd   - Command descriptor we wish to initialize
1108  *
1109  * Returns:     0 on success
1110  *		BLKPREP_DEFER if the failure is retryable
1111  *		BLKPREP_KILL if the failure is fatal
1112  */
1113 int scsi_init_io(struct scsi_cmnd *cmd)
1114 {
1115 	struct scsi_device *sdev = cmd->device;
1116 	struct request *rq = cmd->request;
1117 	bool is_mq = (rq->mq_ctx != NULL);
1118 	int error;
1119 
1120 	BUG_ON(!rq->nr_phys_segments);
1121 
1122 	error = scsi_init_sgtable(rq, &cmd->sdb);
1123 	if (error)
1124 		goto err_exit;
1125 
1126 	if (blk_bidi_rq(rq)) {
1127 		if (!rq->q->mq_ops) {
1128 			struct scsi_data_buffer *bidi_sdb =
1129 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1130 			if (!bidi_sdb) {
1131 				error = BLKPREP_DEFER;
1132 				goto err_exit;
1133 			}
1134 
1135 			rq->next_rq->special = bidi_sdb;
1136 		}
1137 
1138 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1139 		if (error)
1140 			goto err_exit;
1141 	}
1142 
1143 	if (blk_integrity_rq(rq)) {
1144 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1145 		int ivecs, count;
1146 
1147 		BUG_ON(prot_sdb == NULL);
1148 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1149 
1150 		if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1151 			error = BLKPREP_DEFER;
1152 			goto err_exit;
1153 		}
1154 
1155 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1156 						prot_sdb->table.sgl);
1157 		BUG_ON(unlikely(count > ivecs));
1158 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1159 
1160 		cmd->prot_sdb = prot_sdb;
1161 		cmd->prot_sdb->table.nents = count;
1162 	}
1163 
1164 	return BLKPREP_OK;
1165 err_exit:
1166 	if (is_mq) {
1167 		scsi_mq_free_sgtables(cmd);
1168 	} else {
1169 		scsi_release_buffers(cmd);
1170 		cmd->request->special = NULL;
1171 		scsi_put_command(cmd);
1172 		put_device(&sdev->sdev_gendev);
1173 	}
1174 	return error;
1175 }
1176 EXPORT_SYMBOL(scsi_init_io);
1177 
1178 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1179 		struct request *req)
1180 {
1181 	struct scsi_cmnd *cmd;
1182 
1183 	if (!req->special) {
1184 		/* Bail if we can't get a reference to the device */
1185 		if (!get_device(&sdev->sdev_gendev))
1186 			return NULL;
1187 
1188 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1189 		if (unlikely(!cmd)) {
1190 			put_device(&sdev->sdev_gendev);
1191 			return NULL;
1192 		}
1193 		req->special = cmd;
1194 	} else {
1195 		cmd = req->special;
1196 	}
1197 
1198 	/* pull a tag out of the request if we have one */
1199 	cmd->tag = req->tag;
1200 	cmd->request = req;
1201 
1202 	cmd->cmnd = req->cmd;
1203 	cmd->prot_op = SCSI_PROT_NORMAL;
1204 
1205 	return cmd;
1206 }
1207 
1208 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1209 {
1210 	struct scsi_cmnd *cmd = req->special;
1211 
1212 	/*
1213 	 * BLOCK_PC requests may transfer data, in which case they must
1214 	 * a bio attached to them.  Or they might contain a SCSI command
1215 	 * that does not transfer data, in which case they may optionally
1216 	 * submit a request without an attached bio.
1217 	 */
1218 	if (req->bio) {
1219 		int ret = scsi_init_io(cmd);
1220 		if (unlikely(ret))
1221 			return ret;
1222 	} else {
1223 		BUG_ON(blk_rq_bytes(req));
1224 
1225 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1226 	}
1227 
1228 	cmd->cmd_len = req->cmd_len;
1229 	cmd->transfersize = blk_rq_bytes(req);
1230 	cmd->allowed = req->retries;
1231 	return BLKPREP_OK;
1232 }
1233 
1234 /*
1235  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1236  * that still need to be translated to SCSI CDBs from the ULD.
1237  */
1238 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1239 {
1240 	struct scsi_cmnd *cmd = req->special;
1241 
1242 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1243 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1244 		int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1245 		if (ret != BLKPREP_OK)
1246 			return ret;
1247 	}
1248 
1249 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1250 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1251 }
1252 
1253 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 	struct scsi_cmnd *cmd = req->special;
1256 
1257 	if (!blk_rq_bytes(req))
1258 		cmd->sc_data_direction = DMA_NONE;
1259 	else if (rq_data_dir(req) == WRITE)
1260 		cmd->sc_data_direction = DMA_TO_DEVICE;
1261 	else
1262 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1263 
1264 	switch (req->cmd_type) {
1265 	case REQ_TYPE_FS:
1266 		return scsi_setup_fs_cmnd(sdev, req);
1267 	case REQ_TYPE_BLOCK_PC:
1268 		return scsi_setup_blk_pc_cmnd(sdev, req);
1269 	default:
1270 		return BLKPREP_KILL;
1271 	}
1272 }
1273 
1274 static int
1275 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1276 {
1277 	int ret = BLKPREP_OK;
1278 
1279 	/*
1280 	 * If the device is not in running state we will reject some
1281 	 * or all commands.
1282 	 */
1283 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1284 		switch (sdev->sdev_state) {
1285 		case SDEV_OFFLINE:
1286 		case SDEV_TRANSPORT_OFFLINE:
1287 			/*
1288 			 * If the device is offline we refuse to process any
1289 			 * commands.  The device must be brought online
1290 			 * before trying any recovery commands.
1291 			 */
1292 			sdev_printk(KERN_ERR, sdev,
1293 				    "rejecting I/O to offline device\n");
1294 			ret = BLKPREP_KILL;
1295 			break;
1296 		case SDEV_DEL:
1297 			/*
1298 			 * If the device is fully deleted, we refuse to
1299 			 * process any commands as well.
1300 			 */
1301 			sdev_printk(KERN_ERR, sdev,
1302 				    "rejecting I/O to dead device\n");
1303 			ret = BLKPREP_KILL;
1304 			break;
1305 		case SDEV_QUIESCE:
1306 		case SDEV_BLOCK:
1307 		case SDEV_CREATED_BLOCK:
1308 			/*
1309 			 * If the devices is blocked we defer normal commands.
1310 			 */
1311 			if (!(req->cmd_flags & REQ_PREEMPT))
1312 				ret = BLKPREP_DEFER;
1313 			break;
1314 		default:
1315 			/*
1316 			 * For any other not fully online state we only allow
1317 			 * special commands.  In particular any user initiated
1318 			 * command is not allowed.
1319 			 */
1320 			if (!(req->cmd_flags & REQ_PREEMPT))
1321 				ret = BLKPREP_KILL;
1322 			break;
1323 		}
1324 	}
1325 	return ret;
1326 }
1327 
1328 static int
1329 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1330 {
1331 	struct scsi_device *sdev = q->queuedata;
1332 
1333 	switch (ret) {
1334 	case BLKPREP_KILL:
1335 		req->errors = DID_NO_CONNECT << 16;
1336 		/* release the command and kill it */
1337 		if (req->special) {
1338 			struct scsi_cmnd *cmd = req->special;
1339 			scsi_release_buffers(cmd);
1340 			scsi_put_command(cmd);
1341 			put_device(&sdev->sdev_gendev);
1342 			req->special = NULL;
1343 		}
1344 		break;
1345 	case BLKPREP_DEFER:
1346 		/*
1347 		 * If we defer, the blk_peek_request() returns NULL, but the
1348 		 * queue must be restarted, so we schedule a callback to happen
1349 		 * shortly.
1350 		 */
1351 		if (atomic_read(&sdev->device_busy) == 0)
1352 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1353 		break;
1354 	default:
1355 		req->cmd_flags |= REQ_DONTPREP;
1356 	}
1357 
1358 	return ret;
1359 }
1360 
1361 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1362 {
1363 	struct scsi_device *sdev = q->queuedata;
1364 	struct scsi_cmnd *cmd;
1365 	int ret;
1366 
1367 	ret = scsi_prep_state_check(sdev, req);
1368 	if (ret != BLKPREP_OK)
1369 		goto out;
1370 
1371 	cmd = scsi_get_cmd_from_req(sdev, req);
1372 	if (unlikely(!cmd)) {
1373 		ret = BLKPREP_DEFER;
1374 		goto out;
1375 	}
1376 
1377 	ret = scsi_setup_cmnd(sdev, req);
1378 out:
1379 	return scsi_prep_return(q, req, ret);
1380 }
1381 
1382 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1383 {
1384 	scsi_uninit_cmd(req->special);
1385 }
1386 
1387 /*
1388  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1389  * return 0.
1390  *
1391  * Called with the queue_lock held.
1392  */
1393 static inline int scsi_dev_queue_ready(struct request_queue *q,
1394 				  struct scsi_device *sdev)
1395 {
1396 	unsigned int busy;
1397 
1398 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1399 	if (atomic_read(&sdev->device_blocked)) {
1400 		if (busy)
1401 			goto out_dec;
1402 
1403 		/*
1404 		 * unblock after device_blocked iterates to zero
1405 		 */
1406 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1407 			/*
1408 			 * For the MQ case we take care of this in the caller.
1409 			 */
1410 			if (!q->mq_ops)
1411 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1412 			goto out_dec;
1413 		}
1414 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1415 				   "unblocking device at zero depth\n"));
1416 	}
1417 
1418 	if (busy >= sdev->queue_depth)
1419 		goto out_dec;
1420 
1421 	return 1;
1422 out_dec:
1423 	atomic_dec(&sdev->device_busy);
1424 	return 0;
1425 }
1426 
1427 /*
1428  * scsi_target_queue_ready: checks if there we can send commands to target
1429  * @sdev: scsi device on starget to check.
1430  */
1431 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1432 					   struct scsi_device *sdev)
1433 {
1434 	struct scsi_target *starget = scsi_target(sdev);
1435 	unsigned int busy;
1436 
1437 	if (starget->single_lun) {
1438 		spin_lock_irq(shost->host_lock);
1439 		if (starget->starget_sdev_user &&
1440 		    starget->starget_sdev_user != sdev) {
1441 			spin_unlock_irq(shost->host_lock);
1442 			return 0;
1443 		}
1444 		starget->starget_sdev_user = sdev;
1445 		spin_unlock_irq(shost->host_lock);
1446 	}
1447 
1448 	if (starget->can_queue <= 0)
1449 		return 1;
1450 
1451 	busy = atomic_inc_return(&starget->target_busy) - 1;
1452 	if (atomic_read(&starget->target_blocked) > 0) {
1453 		if (busy)
1454 			goto starved;
1455 
1456 		/*
1457 		 * unblock after target_blocked iterates to zero
1458 		 */
1459 		if (atomic_dec_return(&starget->target_blocked) > 0)
1460 			goto out_dec;
1461 
1462 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1463 				 "unblocking target at zero depth\n"));
1464 	}
1465 
1466 	if (busy >= starget->can_queue)
1467 		goto starved;
1468 
1469 	return 1;
1470 
1471 starved:
1472 	spin_lock_irq(shost->host_lock);
1473 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1474 	spin_unlock_irq(shost->host_lock);
1475 out_dec:
1476 	if (starget->can_queue > 0)
1477 		atomic_dec(&starget->target_busy);
1478 	return 0;
1479 }
1480 
1481 /*
1482  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1483  * return 0. We must end up running the queue again whenever 0 is
1484  * returned, else IO can hang.
1485  */
1486 static inline int scsi_host_queue_ready(struct request_queue *q,
1487 				   struct Scsi_Host *shost,
1488 				   struct scsi_device *sdev)
1489 {
1490 	unsigned int busy;
1491 
1492 	if (scsi_host_in_recovery(shost))
1493 		return 0;
1494 
1495 	busy = atomic_inc_return(&shost->host_busy) - 1;
1496 	if (atomic_read(&shost->host_blocked) > 0) {
1497 		if (busy)
1498 			goto starved;
1499 
1500 		/*
1501 		 * unblock after host_blocked iterates to zero
1502 		 */
1503 		if (atomic_dec_return(&shost->host_blocked) > 0)
1504 			goto out_dec;
1505 
1506 		SCSI_LOG_MLQUEUE(3,
1507 			shost_printk(KERN_INFO, shost,
1508 				     "unblocking host at zero depth\n"));
1509 	}
1510 
1511 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1512 		goto starved;
1513 	if (shost->host_self_blocked)
1514 		goto starved;
1515 
1516 	/* We're OK to process the command, so we can't be starved */
1517 	if (!list_empty(&sdev->starved_entry)) {
1518 		spin_lock_irq(shost->host_lock);
1519 		if (!list_empty(&sdev->starved_entry))
1520 			list_del_init(&sdev->starved_entry);
1521 		spin_unlock_irq(shost->host_lock);
1522 	}
1523 
1524 	return 1;
1525 
1526 starved:
1527 	spin_lock_irq(shost->host_lock);
1528 	if (list_empty(&sdev->starved_entry))
1529 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1530 	spin_unlock_irq(shost->host_lock);
1531 out_dec:
1532 	atomic_dec(&shost->host_busy);
1533 	return 0;
1534 }
1535 
1536 /*
1537  * Busy state exporting function for request stacking drivers.
1538  *
1539  * For efficiency, no lock is taken to check the busy state of
1540  * shost/starget/sdev, since the returned value is not guaranteed and
1541  * may be changed after request stacking drivers call the function,
1542  * regardless of taking lock or not.
1543  *
1544  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1545  * needs to return 'not busy'. Otherwise, request stacking drivers
1546  * may hold requests forever.
1547  */
1548 static int scsi_lld_busy(struct request_queue *q)
1549 {
1550 	struct scsi_device *sdev = q->queuedata;
1551 	struct Scsi_Host *shost;
1552 
1553 	if (blk_queue_dying(q))
1554 		return 0;
1555 
1556 	shost = sdev->host;
1557 
1558 	/*
1559 	 * Ignore host/starget busy state.
1560 	 * Since block layer does not have a concept of fairness across
1561 	 * multiple queues, congestion of host/starget needs to be handled
1562 	 * in SCSI layer.
1563 	 */
1564 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1565 		return 1;
1566 
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Kill a request for a dead device
1572  */
1573 static void scsi_kill_request(struct request *req, struct request_queue *q)
1574 {
1575 	struct scsi_cmnd *cmd = req->special;
1576 	struct scsi_device *sdev;
1577 	struct scsi_target *starget;
1578 	struct Scsi_Host *shost;
1579 
1580 	blk_start_request(req);
1581 
1582 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1583 
1584 	sdev = cmd->device;
1585 	starget = scsi_target(sdev);
1586 	shost = sdev->host;
1587 	scsi_init_cmd_errh(cmd);
1588 	cmd->result = DID_NO_CONNECT << 16;
1589 	atomic_inc(&cmd->device->iorequest_cnt);
1590 
1591 	/*
1592 	 * SCSI request completion path will do scsi_device_unbusy(),
1593 	 * bump busy counts.  To bump the counters, we need to dance
1594 	 * with the locks as normal issue path does.
1595 	 */
1596 	atomic_inc(&sdev->device_busy);
1597 	atomic_inc(&shost->host_busy);
1598 	if (starget->can_queue > 0)
1599 		atomic_inc(&starget->target_busy);
1600 
1601 	blk_complete_request(req);
1602 }
1603 
1604 static void scsi_softirq_done(struct request *rq)
1605 {
1606 	struct scsi_cmnd *cmd = rq->special;
1607 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1608 	int disposition;
1609 
1610 	INIT_LIST_HEAD(&cmd->eh_entry);
1611 
1612 	atomic_inc(&cmd->device->iodone_cnt);
1613 	if (cmd->result)
1614 		atomic_inc(&cmd->device->ioerr_cnt);
1615 
1616 	disposition = scsi_decide_disposition(cmd);
1617 	if (disposition != SUCCESS &&
1618 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1619 		sdev_printk(KERN_ERR, cmd->device,
1620 			    "timing out command, waited %lus\n",
1621 			    wait_for/HZ);
1622 		disposition = SUCCESS;
1623 	}
1624 
1625 	scsi_log_completion(cmd, disposition);
1626 
1627 	switch (disposition) {
1628 		case SUCCESS:
1629 			scsi_finish_command(cmd);
1630 			break;
1631 		case NEEDS_RETRY:
1632 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1633 			break;
1634 		case ADD_TO_MLQUEUE:
1635 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1636 			break;
1637 		default:
1638 			if (!scsi_eh_scmd_add(cmd, 0))
1639 				scsi_finish_command(cmd);
1640 	}
1641 }
1642 
1643 /**
1644  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1645  * @cmd: command block we are dispatching.
1646  *
1647  * Return: nonzero return request was rejected and device's queue needs to be
1648  * plugged.
1649  */
1650 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1651 {
1652 	struct Scsi_Host *host = cmd->device->host;
1653 	int rtn = 0;
1654 
1655 	atomic_inc(&cmd->device->iorequest_cnt);
1656 
1657 	/* check if the device is still usable */
1658 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1659 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1660 		 * returns an immediate error upwards, and signals
1661 		 * that the device is no longer present */
1662 		cmd->result = DID_NO_CONNECT << 16;
1663 		goto done;
1664 	}
1665 
1666 	/* Check to see if the scsi lld made this device blocked. */
1667 	if (unlikely(scsi_device_blocked(cmd->device))) {
1668 		/*
1669 		 * in blocked state, the command is just put back on
1670 		 * the device queue.  The suspend state has already
1671 		 * blocked the queue so future requests should not
1672 		 * occur until the device transitions out of the
1673 		 * suspend state.
1674 		 */
1675 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1676 			"queuecommand : device blocked\n"));
1677 		return SCSI_MLQUEUE_DEVICE_BUSY;
1678 	}
1679 
1680 	/* Store the LUN value in cmnd, if needed. */
1681 	if (cmd->device->lun_in_cdb)
1682 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1683 			       (cmd->device->lun << 5 & 0xe0);
1684 
1685 	scsi_log_send(cmd);
1686 
1687 	/*
1688 	 * Before we queue this command, check if the command
1689 	 * length exceeds what the host adapter can handle.
1690 	 */
1691 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1692 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1693 			       "queuecommand : command too long. "
1694 			       "cdb_size=%d host->max_cmd_len=%d\n",
1695 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1696 		cmd->result = (DID_ABORT << 16);
1697 		goto done;
1698 	}
1699 
1700 	if (unlikely(host->shost_state == SHOST_DEL)) {
1701 		cmd->result = (DID_NO_CONNECT << 16);
1702 		goto done;
1703 
1704 	}
1705 
1706 	trace_scsi_dispatch_cmd_start(cmd);
1707 	rtn = host->hostt->queuecommand(host, cmd);
1708 	if (rtn) {
1709 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1710 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1711 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1712 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1713 
1714 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1715 			"queuecommand : request rejected\n"));
1716 	}
1717 
1718 	return rtn;
1719  done:
1720 	cmd->scsi_done(cmd);
1721 	return 0;
1722 }
1723 
1724 /**
1725  * scsi_done - Invoke completion on finished SCSI command.
1726  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1727  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1728  *
1729  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1730  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1731  * calls blk_complete_request() for further processing.
1732  *
1733  * This function is interrupt context safe.
1734  */
1735 static void scsi_done(struct scsi_cmnd *cmd)
1736 {
1737 	trace_scsi_dispatch_cmd_done(cmd);
1738 	blk_complete_request(cmd->request);
1739 }
1740 
1741 /*
1742  * Function:    scsi_request_fn()
1743  *
1744  * Purpose:     Main strategy routine for SCSI.
1745  *
1746  * Arguments:   q       - Pointer to actual queue.
1747  *
1748  * Returns:     Nothing
1749  *
1750  * Lock status: IO request lock assumed to be held when called.
1751  */
1752 static void scsi_request_fn(struct request_queue *q)
1753 	__releases(q->queue_lock)
1754 	__acquires(q->queue_lock)
1755 {
1756 	struct scsi_device *sdev = q->queuedata;
1757 	struct Scsi_Host *shost;
1758 	struct scsi_cmnd *cmd;
1759 	struct request *req;
1760 
1761 	/*
1762 	 * To start with, we keep looping until the queue is empty, or until
1763 	 * the host is no longer able to accept any more requests.
1764 	 */
1765 	shost = sdev->host;
1766 	for (;;) {
1767 		int rtn;
1768 		/*
1769 		 * get next queueable request.  We do this early to make sure
1770 		 * that the request is fully prepared even if we cannot
1771 		 * accept it.
1772 		 */
1773 		req = blk_peek_request(q);
1774 		if (!req)
1775 			break;
1776 
1777 		if (unlikely(!scsi_device_online(sdev))) {
1778 			sdev_printk(KERN_ERR, sdev,
1779 				    "rejecting I/O to offline device\n");
1780 			scsi_kill_request(req, q);
1781 			continue;
1782 		}
1783 
1784 		if (!scsi_dev_queue_ready(q, sdev))
1785 			break;
1786 
1787 		/*
1788 		 * Remove the request from the request list.
1789 		 */
1790 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1791 			blk_start_request(req);
1792 
1793 		spin_unlock_irq(q->queue_lock);
1794 		cmd = req->special;
1795 		if (unlikely(cmd == NULL)) {
1796 			printk(KERN_CRIT "impossible request in %s.\n"
1797 					 "please mail a stack trace to "
1798 					 "linux-scsi@vger.kernel.org\n",
1799 					 __func__);
1800 			blk_dump_rq_flags(req, "foo");
1801 			BUG();
1802 		}
1803 
1804 		/*
1805 		 * We hit this when the driver is using a host wide
1806 		 * tag map. For device level tag maps the queue_depth check
1807 		 * in the device ready fn would prevent us from trying
1808 		 * to allocate a tag. Since the map is a shared host resource
1809 		 * we add the dev to the starved list so it eventually gets
1810 		 * a run when a tag is freed.
1811 		 */
1812 		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1813 			spin_lock_irq(shost->host_lock);
1814 			if (list_empty(&sdev->starved_entry))
1815 				list_add_tail(&sdev->starved_entry,
1816 					      &shost->starved_list);
1817 			spin_unlock_irq(shost->host_lock);
1818 			goto not_ready;
1819 		}
1820 
1821 		if (!scsi_target_queue_ready(shost, sdev))
1822 			goto not_ready;
1823 
1824 		if (!scsi_host_queue_ready(q, shost, sdev))
1825 			goto host_not_ready;
1826 
1827 		if (sdev->simple_tags)
1828 			cmd->flags |= SCMD_TAGGED;
1829 		else
1830 			cmd->flags &= ~SCMD_TAGGED;
1831 
1832 		/*
1833 		 * Finally, initialize any error handling parameters, and set up
1834 		 * the timers for timeouts.
1835 		 */
1836 		scsi_init_cmd_errh(cmd);
1837 
1838 		/*
1839 		 * Dispatch the command to the low-level driver.
1840 		 */
1841 		cmd->scsi_done = scsi_done;
1842 		rtn = scsi_dispatch_cmd(cmd);
1843 		if (rtn) {
1844 			scsi_queue_insert(cmd, rtn);
1845 			spin_lock_irq(q->queue_lock);
1846 			goto out_delay;
1847 		}
1848 		spin_lock_irq(q->queue_lock);
1849 	}
1850 
1851 	return;
1852 
1853  host_not_ready:
1854 	if (scsi_target(sdev)->can_queue > 0)
1855 		atomic_dec(&scsi_target(sdev)->target_busy);
1856  not_ready:
1857 	/*
1858 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1859 	 * must return with queue_lock held.
1860 	 *
1861 	 * Decrementing device_busy without checking it is OK, as all such
1862 	 * cases (host limits or settings) should run the queue at some
1863 	 * later time.
1864 	 */
1865 	spin_lock_irq(q->queue_lock);
1866 	blk_requeue_request(q, req);
1867 	atomic_dec(&sdev->device_busy);
1868 out_delay:
1869 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1870 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1871 }
1872 
1873 static inline int prep_to_mq(int ret)
1874 {
1875 	switch (ret) {
1876 	case BLKPREP_OK:
1877 		return 0;
1878 	case BLKPREP_DEFER:
1879 		return BLK_MQ_RQ_QUEUE_BUSY;
1880 	default:
1881 		return BLK_MQ_RQ_QUEUE_ERROR;
1882 	}
1883 }
1884 
1885 static int scsi_mq_prep_fn(struct request *req)
1886 {
1887 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1888 	struct scsi_device *sdev = req->q->queuedata;
1889 	struct Scsi_Host *shost = sdev->host;
1890 	unsigned char *sense_buf = cmd->sense_buffer;
1891 	struct scatterlist *sg;
1892 
1893 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1894 
1895 	req->special = cmd;
1896 
1897 	cmd->request = req;
1898 	cmd->device = sdev;
1899 	cmd->sense_buffer = sense_buf;
1900 
1901 	cmd->tag = req->tag;
1902 
1903 	cmd->cmnd = req->cmd;
1904 	cmd->prot_op = SCSI_PROT_NORMAL;
1905 
1906 	INIT_LIST_HEAD(&cmd->list);
1907 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1908 	cmd->jiffies_at_alloc = jiffies;
1909 
1910 	if (shost->use_cmd_list) {
1911 		spin_lock_irq(&sdev->list_lock);
1912 		list_add_tail(&cmd->list, &sdev->cmd_list);
1913 		spin_unlock_irq(&sdev->list_lock);
1914 	}
1915 
1916 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1917 	cmd->sdb.table.sgl = sg;
1918 
1919 	if (scsi_host_get_prot(shost)) {
1920 		cmd->prot_sdb = (void *)sg +
1921 			min_t(unsigned int,
1922 			      shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1923 			sizeof(struct scatterlist);
1924 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1925 
1926 		cmd->prot_sdb->table.sgl =
1927 			(struct scatterlist *)(cmd->prot_sdb + 1);
1928 	}
1929 
1930 	if (blk_bidi_rq(req)) {
1931 		struct request *next_rq = req->next_rq;
1932 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1933 
1934 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1935 		bidi_sdb->table.sgl =
1936 			(struct scatterlist *)(bidi_sdb + 1);
1937 
1938 		next_rq->special = bidi_sdb;
1939 	}
1940 
1941 	blk_mq_start_request(req);
1942 
1943 	return scsi_setup_cmnd(sdev, req);
1944 }
1945 
1946 static void scsi_mq_done(struct scsi_cmnd *cmd)
1947 {
1948 	trace_scsi_dispatch_cmd_done(cmd);
1949 	blk_mq_complete_request(cmd->request);
1950 }
1951 
1952 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1953 			 const struct blk_mq_queue_data *bd)
1954 {
1955 	struct request *req = bd->rq;
1956 	struct request_queue *q = req->q;
1957 	struct scsi_device *sdev = q->queuedata;
1958 	struct Scsi_Host *shost = sdev->host;
1959 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1960 	int ret;
1961 	int reason;
1962 
1963 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1964 	if (ret)
1965 		goto out;
1966 
1967 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1968 	if (!get_device(&sdev->sdev_gendev))
1969 		goto out;
1970 
1971 	if (!scsi_dev_queue_ready(q, sdev))
1972 		goto out_put_device;
1973 	if (!scsi_target_queue_ready(shost, sdev))
1974 		goto out_dec_device_busy;
1975 	if (!scsi_host_queue_ready(q, shost, sdev))
1976 		goto out_dec_target_busy;
1977 
1978 
1979 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1980 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1981 		if (ret)
1982 			goto out_dec_host_busy;
1983 		req->cmd_flags |= REQ_DONTPREP;
1984 	} else {
1985 		blk_mq_start_request(req);
1986 	}
1987 
1988 	if (sdev->simple_tags)
1989 		cmd->flags |= SCMD_TAGGED;
1990 	else
1991 		cmd->flags &= ~SCMD_TAGGED;
1992 
1993 	scsi_init_cmd_errh(cmd);
1994 	cmd->scsi_done = scsi_mq_done;
1995 
1996 	reason = scsi_dispatch_cmd(cmd);
1997 	if (reason) {
1998 		scsi_set_blocked(cmd, reason);
1999 		ret = BLK_MQ_RQ_QUEUE_BUSY;
2000 		goto out_dec_host_busy;
2001 	}
2002 
2003 	return BLK_MQ_RQ_QUEUE_OK;
2004 
2005 out_dec_host_busy:
2006 	atomic_dec(&shost->host_busy);
2007 out_dec_target_busy:
2008 	if (scsi_target(sdev)->can_queue > 0)
2009 		atomic_dec(&scsi_target(sdev)->target_busy);
2010 out_dec_device_busy:
2011 	atomic_dec(&sdev->device_busy);
2012 out_put_device:
2013 	put_device(&sdev->sdev_gendev);
2014 out:
2015 	switch (ret) {
2016 	case BLK_MQ_RQ_QUEUE_BUSY:
2017 		blk_mq_stop_hw_queue(hctx);
2018 		if (atomic_read(&sdev->device_busy) == 0 &&
2019 		    !scsi_device_blocked(sdev))
2020 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2021 		break;
2022 	case BLK_MQ_RQ_QUEUE_ERROR:
2023 		/*
2024 		 * Make sure to release all allocated ressources when
2025 		 * we hit an error, as we will never see this command
2026 		 * again.
2027 		 */
2028 		if (req->cmd_flags & REQ_DONTPREP)
2029 			scsi_mq_uninit_cmd(cmd);
2030 		break;
2031 	default:
2032 		break;
2033 	}
2034 	return ret;
2035 }
2036 
2037 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2038 		bool reserved)
2039 {
2040 	if (reserved)
2041 		return BLK_EH_RESET_TIMER;
2042 	return scsi_times_out(req);
2043 }
2044 
2045 static int scsi_init_request(void *data, struct request *rq,
2046 		unsigned int hctx_idx, unsigned int request_idx,
2047 		unsigned int numa_node)
2048 {
2049 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2050 
2051 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2052 			numa_node);
2053 	if (!cmd->sense_buffer)
2054 		return -ENOMEM;
2055 	return 0;
2056 }
2057 
2058 static void scsi_exit_request(void *data, struct request *rq,
2059 		unsigned int hctx_idx, unsigned int request_idx)
2060 {
2061 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2062 
2063 	kfree(cmd->sense_buffer);
2064 }
2065 
2066 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2067 {
2068 	struct device *host_dev;
2069 	u64 bounce_limit = 0xffffffff;
2070 
2071 	if (shost->unchecked_isa_dma)
2072 		return BLK_BOUNCE_ISA;
2073 	/*
2074 	 * Platforms with virtual-DMA translation
2075 	 * hardware have no practical limit.
2076 	 */
2077 	if (!PCI_DMA_BUS_IS_PHYS)
2078 		return BLK_BOUNCE_ANY;
2079 
2080 	host_dev = scsi_get_device(shost);
2081 	if (host_dev && host_dev->dma_mask)
2082 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2083 
2084 	return bounce_limit;
2085 }
2086 
2087 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2088 {
2089 	struct device *dev = shost->dma_dev;
2090 
2091 	/*
2092 	 * this limit is imposed by hardware restrictions
2093 	 */
2094 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2095 					SCSI_MAX_SG_CHAIN_SEGMENTS));
2096 
2097 	if (scsi_host_prot_dma(shost)) {
2098 		shost->sg_prot_tablesize =
2099 			min_not_zero(shost->sg_prot_tablesize,
2100 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2101 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2102 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2103 	}
2104 
2105 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2106 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2107 	blk_queue_segment_boundary(q, shost->dma_boundary);
2108 	dma_set_seg_boundary(dev, shost->dma_boundary);
2109 
2110 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2111 
2112 	if (!shost->use_clustering)
2113 		q->limits.cluster = 0;
2114 
2115 	/*
2116 	 * set a reasonable default alignment on word boundaries: the
2117 	 * host and device may alter it using
2118 	 * blk_queue_update_dma_alignment() later.
2119 	 */
2120 	blk_queue_dma_alignment(q, 0x03);
2121 }
2122 
2123 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2124 					 request_fn_proc *request_fn)
2125 {
2126 	struct request_queue *q;
2127 
2128 	q = blk_init_queue(request_fn, NULL);
2129 	if (!q)
2130 		return NULL;
2131 	__scsi_init_queue(shost, q);
2132 	return q;
2133 }
2134 EXPORT_SYMBOL(__scsi_alloc_queue);
2135 
2136 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2137 {
2138 	struct request_queue *q;
2139 
2140 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2141 	if (!q)
2142 		return NULL;
2143 
2144 	blk_queue_prep_rq(q, scsi_prep_fn);
2145 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2146 	blk_queue_softirq_done(q, scsi_softirq_done);
2147 	blk_queue_rq_timed_out(q, scsi_times_out);
2148 	blk_queue_lld_busy(q, scsi_lld_busy);
2149 	return q;
2150 }
2151 
2152 static struct blk_mq_ops scsi_mq_ops = {
2153 	.map_queue	= blk_mq_map_queue,
2154 	.queue_rq	= scsi_queue_rq,
2155 	.complete	= scsi_softirq_done,
2156 	.timeout	= scsi_timeout,
2157 	.init_request	= scsi_init_request,
2158 	.exit_request	= scsi_exit_request,
2159 };
2160 
2161 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2162 {
2163 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2164 	if (IS_ERR(sdev->request_queue))
2165 		return NULL;
2166 
2167 	sdev->request_queue->queuedata = sdev;
2168 	__scsi_init_queue(sdev->host, sdev->request_queue);
2169 	return sdev->request_queue;
2170 }
2171 
2172 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2173 {
2174 	unsigned int cmd_size, sgl_size, tbl_size;
2175 
2176 	tbl_size = shost->sg_tablesize;
2177 	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2178 		tbl_size = SCSI_MAX_SG_SEGMENTS;
2179 	sgl_size = tbl_size * sizeof(struct scatterlist);
2180 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2181 	if (scsi_host_get_prot(shost))
2182 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2183 
2184 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2185 	shost->tag_set.ops = &scsi_mq_ops;
2186 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2187 	shost->tag_set.queue_depth = shost->can_queue;
2188 	shost->tag_set.cmd_size = cmd_size;
2189 	shost->tag_set.numa_node = NUMA_NO_NODE;
2190 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2191 	shost->tag_set.driver_data = shost;
2192 
2193 	return blk_mq_alloc_tag_set(&shost->tag_set);
2194 }
2195 
2196 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2197 {
2198 	blk_mq_free_tag_set(&shost->tag_set);
2199 }
2200 
2201 /*
2202  * Function:    scsi_block_requests()
2203  *
2204  * Purpose:     Utility function used by low-level drivers to prevent further
2205  *		commands from being queued to the device.
2206  *
2207  * Arguments:   shost       - Host in question
2208  *
2209  * Returns:     Nothing
2210  *
2211  * Lock status: No locks are assumed held.
2212  *
2213  * Notes:       There is no timer nor any other means by which the requests
2214  *		get unblocked other than the low-level driver calling
2215  *		scsi_unblock_requests().
2216  */
2217 void scsi_block_requests(struct Scsi_Host *shost)
2218 {
2219 	shost->host_self_blocked = 1;
2220 }
2221 EXPORT_SYMBOL(scsi_block_requests);
2222 
2223 /*
2224  * Function:    scsi_unblock_requests()
2225  *
2226  * Purpose:     Utility function used by low-level drivers to allow further
2227  *		commands from being queued to the device.
2228  *
2229  * Arguments:   shost       - Host in question
2230  *
2231  * Returns:     Nothing
2232  *
2233  * Lock status: No locks are assumed held.
2234  *
2235  * Notes:       There is no timer nor any other means by which the requests
2236  *		get unblocked other than the low-level driver calling
2237  *		scsi_unblock_requests().
2238  *
2239  *		This is done as an API function so that changes to the
2240  *		internals of the scsi mid-layer won't require wholesale
2241  *		changes to drivers that use this feature.
2242  */
2243 void scsi_unblock_requests(struct Scsi_Host *shost)
2244 {
2245 	shost->host_self_blocked = 0;
2246 	scsi_run_host_queues(shost);
2247 }
2248 EXPORT_SYMBOL(scsi_unblock_requests);
2249 
2250 int __init scsi_init_queue(void)
2251 {
2252 	int i;
2253 
2254 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2255 					   sizeof(struct scsi_data_buffer),
2256 					   0, 0, NULL);
2257 	if (!scsi_sdb_cache) {
2258 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2259 		return -ENOMEM;
2260 	}
2261 
2262 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2263 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2264 		int size = sgp->size * sizeof(struct scatterlist);
2265 
2266 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2267 				SLAB_HWCACHE_ALIGN, NULL);
2268 		if (!sgp->slab) {
2269 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2270 					sgp->name);
2271 			goto cleanup_sdb;
2272 		}
2273 
2274 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2275 						     sgp->slab);
2276 		if (!sgp->pool) {
2277 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2278 					sgp->name);
2279 			goto cleanup_sdb;
2280 		}
2281 	}
2282 
2283 	return 0;
2284 
2285 cleanup_sdb:
2286 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2287 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2288 		if (sgp->pool)
2289 			mempool_destroy(sgp->pool);
2290 		if (sgp->slab)
2291 			kmem_cache_destroy(sgp->slab);
2292 	}
2293 	kmem_cache_destroy(scsi_sdb_cache);
2294 
2295 	return -ENOMEM;
2296 }
2297 
2298 void scsi_exit_queue(void)
2299 {
2300 	int i;
2301 
2302 	kmem_cache_destroy(scsi_sdb_cache);
2303 
2304 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2305 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2306 		mempool_destroy(sgp->pool);
2307 		kmem_cache_destroy(sgp->slab);
2308 	}
2309 }
2310 
2311 /**
2312  *	scsi_mode_select - issue a mode select
2313  *	@sdev:	SCSI device to be queried
2314  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2315  *	@sp:	Save page bit (0 == don't save, 1 == save)
2316  *	@modepage: mode page being requested
2317  *	@buffer: request buffer (may not be smaller than eight bytes)
2318  *	@len:	length of request buffer.
2319  *	@timeout: command timeout
2320  *	@retries: number of retries before failing
2321  *	@data: returns a structure abstracting the mode header data
2322  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2323  *		must be SCSI_SENSE_BUFFERSIZE big.
2324  *
2325  *	Returns zero if successful; negative error number or scsi
2326  *	status on error
2327  *
2328  */
2329 int
2330 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2331 		 unsigned char *buffer, int len, int timeout, int retries,
2332 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2333 {
2334 	unsigned char cmd[10];
2335 	unsigned char *real_buffer;
2336 	int ret;
2337 
2338 	memset(cmd, 0, sizeof(cmd));
2339 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2340 
2341 	if (sdev->use_10_for_ms) {
2342 		if (len > 65535)
2343 			return -EINVAL;
2344 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2345 		if (!real_buffer)
2346 			return -ENOMEM;
2347 		memcpy(real_buffer + 8, buffer, len);
2348 		len += 8;
2349 		real_buffer[0] = 0;
2350 		real_buffer[1] = 0;
2351 		real_buffer[2] = data->medium_type;
2352 		real_buffer[3] = data->device_specific;
2353 		real_buffer[4] = data->longlba ? 0x01 : 0;
2354 		real_buffer[5] = 0;
2355 		real_buffer[6] = data->block_descriptor_length >> 8;
2356 		real_buffer[7] = data->block_descriptor_length;
2357 
2358 		cmd[0] = MODE_SELECT_10;
2359 		cmd[7] = len >> 8;
2360 		cmd[8] = len;
2361 	} else {
2362 		if (len > 255 || data->block_descriptor_length > 255 ||
2363 		    data->longlba)
2364 			return -EINVAL;
2365 
2366 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2367 		if (!real_buffer)
2368 			return -ENOMEM;
2369 		memcpy(real_buffer + 4, buffer, len);
2370 		len += 4;
2371 		real_buffer[0] = 0;
2372 		real_buffer[1] = data->medium_type;
2373 		real_buffer[2] = data->device_specific;
2374 		real_buffer[3] = data->block_descriptor_length;
2375 
2376 
2377 		cmd[0] = MODE_SELECT;
2378 		cmd[4] = len;
2379 	}
2380 
2381 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2382 			       sshdr, timeout, retries, NULL);
2383 	kfree(real_buffer);
2384 	return ret;
2385 }
2386 EXPORT_SYMBOL_GPL(scsi_mode_select);
2387 
2388 /**
2389  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2390  *	@sdev:	SCSI device to be queried
2391  *	@dbd:	set if mode sense will allow block descriptors to be returned
2392  *	@modepage: mode page being requested
2393  *	@buffer: request buffer (may not be smaller than eight bytes)
2394  *	@len:	length of request buffer.
2395  *	@timeout: command timeout
2396  *	@retries: number of retries before failing
2397  *	@data: returns a structure abstracting the mode header data
2398  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2399  *		must be SCSI_SENSE_BUFFERSIZE big.
2400  *
2401  *	Returns zero if unsuccessful, or the header offset (either 4
2402  *	or 8 depending on whether a six or ten byte command was
2403  *	issued) if successful.
2404  */
2405 int
2406 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2407 		  unsigned char *buffer, int len, int timeout, int retries,
2408 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2409 {
2410 	unsigned char cmd[12];
2411 	int use_10_for_ms;
2412 	int header_length;
2413 	int result;
2414 	struct scsi_sense_hdr my_sshdr;
2415 
2416 	memset(data, 0, sizeof(*data));
2417 	memset(&cmd[0], 0, 12);
2418 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2419 	cmd[2] = modepage;
2420 
2421 	/* caller might not be interested in sense, but we need it */
2422 	if (!sshdr)
2423 		sshdr = &my_sshdr;
2424 
2425  retry:
2426 	use_10_for_ms = sdev->use_10_for_ms;
2427 
2428 	if (use_10_for_ms) {
2429 		if (len < 8)
2430 			len = 8;
2431 
2432 		cmd[0] = MODE_SENSE_10;
2433 		cmd[8] = len;
2434 		header_length = 8;
2435 	} else {
2436 		if (len < 4)
2437 			len = 4;
2438 
2439 		cmd[0] = MODE_SENSE;
2440 		cmd[4] = len;
2441 		header_length = 4;
2442 	}
2443 
2444 	memset(buffer, 0, len);
2445 
2446 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2447 				  sshdr, timeout, retries, NULL);
2448 
2449 	/* This code looks awful: what it's doing is making sure an
2450 	 * ILLEGAL REQUEST sense return identifies the actual command
2451 	 * byte as the problem.  MODE_SENSE commands can return
2452 	 * ILLEGAL REQUEST if the code page isn't supported */
2453 
2454 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2455 	    (driver_byte(result) & DRIVER_SENSE)) {
2456 		if (scsi_sense_valid(sshdr)) {
2457 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2458 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2459 				/*
2460 				 * Invalid command operation code
2461 				 */
2462 				sdev->use_10_for_ms = 0;
2463 				goto retry;
2464 			}
2465 		}
2466 	}
2467 
2468 	if(scsi_status_is_good(result)) {
2469 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2470 			     (modepage == 6 || modepage == 8))) {
2471 			/* Initio breakage? */
2472 			header_length = 0;
2473 			data->length = 13;
2474 			data->medium_type = 0;
2475 			data->device_specific = 0;
2476 			data->longlba = 0;
2477 			data->block_descriptor_length = 0;
2478 		} else if(use_10_for_ms) {
2479 			data->length = buffer[0]*256 + buffer[1] + 2;
2480 			data->medium_type = buffer[2];
2481 			data->device_specific = buffer[3];
2482 			data->longlba = buffer[4] & 0x01;
2483 			data->block_descriptor_length = buffer[6]*256
2484 				+ buffer[7];
2485 		} else {
2486 			data->length = buffer[0] + 1;
2487 			data->medium_type = buffer[1];
2488 			data->device_specific = buffer[2];
2489 			data->block_descriptor_length = buffer[3];
2490 		}
2491 		data->header_length = header_length;
2492 	}
2493 
2494 	return result;
2495 }
2496 EXPORT_SYMBOL(scsi_mode_sense);
2497 
2498 /**
2499  *	scsi_test_unit_ready - test if unit is ready
2500  *	@sdev:	scsi device to change the state of.
2501  *	@timeout: command timeout
2502  *	@retries: number of retries before failing
2503  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2504  *		returning sense. Make sure that this is cleared before passing
2505  *		in.
2506  *
2507  *	Returns zero if unsuccessful or an error if TUR failed.  For
2508  *	removable media, UNIT_ATTENTION sets ->changed flag.
2509  **/
2510 int
2511 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2512 		     struct scsi_sense_hdr *sshdr_external)
2513 {
2514 	char cmd[] = {
2515 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2516 	};
2517 	struct scsi_sense_hdr *sshdr;
2518 	int result;
2519 
2520 	if (!sshdr_external)
2521 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2522 	else
2523 		sshdr = sshdr_external;
2524 
2525 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2526 	do {
2527 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2528 					  timeout, retries, NULL);
2529 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2530 		    sshdr->sense_key == UNIT_ATTENTION)
2531 			sdev->changed = 1;
2532 	} while (scsi_sense_valid(sshdr) &&
2533 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2534 
2535 	if (!sshdr_external)
2536 		kfree(sshdr);
2537 	return result;
2538 }
2539 EXPORT_SYMBOL(scsi_test_unit_ready);
2540 
2541 /**
2542  *	scsi_device_set_state - Take the given device through the device state model.
2543  *	@sdev:	scsi device to change the state of.
2544  *	@state:	state to change to.
2545  *
2546  *	Returns zero if unsuccessful or an error if the requested
2547  *	transition is illegal.
2548  */
2549 int
2550 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2551 {
2552 	enum scsi_device_state oldstate = sdev->sdev_state;
2553 
2554 	if (state == oldstate)
2555 		return 0;
2556 
2557 	switch (state) {
2558 	case SDEV_CREATED:
2559 		switch (oldstate) {
2560 		case SDEV_CREATED_BLOCK:
2561 			break;
2562 		default:
2563 			goto illegal;
2564 		}
2565 		break;
2566 
2567 	case SDEV_RUNNING:
2568 		switch (oldstate) {
2569 		case SDEV_CREATED:
2570 		case SDEV_OFFLINE:
2571 		case SDEV_TRANSPORT_OFFLINE:
2572 		case SDEV_QUIESCE:
2573 		case SDEV_BLOCK:
2574 			break;
2575 		default:
2576 			goto illegal;
2577 		}
2578 		break;
2579 
2580 	case SDEV_QUIESCE:
2581 		switch (oldstate) {
2582 		case SDEV_RUNNING:
2583 		case SDEV_OFFLINE:
2584 		case SDEV_TRANSPORT_OFFLINE:
2585 			break;
2586 		default:
2587 			goto illegal;
2588 		}
2589 		break;
2590 
2591 	case SDEV_OFFLINE:
2592 	case SDEV_TRANSPORT_OFFLINE:
2593 		switch (oldstate) {
2594 		case SDEV_CREATED:
2595 		case SDEV_RUNNING:
2596 		case SDEV_QUIESCE:
2597 		case SDEV_BLOCK:
2598 			break;
2599 		default:
2600 			goto illegal;
2601 		}
2602 		break;
2603 
2604 	case SDEV_BLOCK:
2605 		switch (oldstate) {
2606 		case SDEV_RUNNING:
2607 		case SDEV_CREATED_BLOCK:
2608 			break;
2609 		default:
2610 			goto illegal;
2611 		}
2612 		break;
2613 
2614 	case SDEV_CREATED_BLOCK:
2615 		switch (oldstate) {
2616 		case SDEV_CREATED:
2617 			break;
2618 		default:
2619 			goto illegal;
2620 		}
2621 		break;
2622 
2623 	case SDEV_CANCEL:
2624 		switch (oldstate) {
2625 		case SDEV_CREATED:
2626 		case SDEV_RUNNING:
2627 		case SDEV_QUIESCE:
2628 		case SDEV_OFFLINE:
2629 		case SDEV_TRANSPORT_OFFLINE:
2630 		case SDEV_BLOCK:
2631 			break;
2632 		default:
2633 			goto illegal;
2634 		}
2635 		break;
2636 
2637 	case SDEV_DEL:
2638 		switch (oldstate) {
2639 		case SDEV_CREATED:
2640 		case SDEV_RUNNING:
2641 		case SDEV_OFFLINE:
2642 		case SDEV_TRANSPORT_OFFLINE:
2643 		case SDEV_CANCEL:
2644 		case SDEV_CREATED_BLOCK:
2645 			break;
2646 		default:
2647 			goto illegal;
2648 		}
2649 		break;
2650 
2651 	}
2652 	sdev->sdev_state = state;
2653 	return 0;
2654 
2655  illegal:
2656 	SCSI_LOG_ERROR_RECOVERY(1,
2657 				sdev_printk(KERN_ERR, sdev,
2658 					    "Illegal state transition %s->%s",
2659 					    scsi_device_state_name(oldstate),
2660 					    scsi_device_state_name(state))
2661 				);
2662 	return -EINVAL;
2663 }
2664 EXPORT_SYMBOL(scsi_device_set_state);
2665 
2666 /**
2667  * 	sdev_evt_emit - emit a single SCSI device uevent
2668  *	@sdev: associated SCSI device
2669  *	@evt: event to emit
2670  *
2671  *	Send a single uevent (scsi_event) to the associated scsi_device.
2672  */
2673 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2674 {
2675 	int idx = 0;
2676 	char *envp[3];
2677 
2678 	switch (evt->evt_type) {
2679 	case SDEV_EVT_MEDIA_CHANGE:
2680 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2681 		break;
2682 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2683 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2684 		break;
2685 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2686 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2687 		break;
2688 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2689 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2690 		break;
2691 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2692 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2693 		break;
2694 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2695 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2696 		break;
2697 	default:
2698 		/* do nothing */
2699 		break;
2700 	}
2701 
2702 	envp[idx++] = NULL;
2703 
2704 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2705 }
2706 
2707 /**
2708  * 	sdev_evt_thread - send a uevent for each scsi event
2709  *	@work: work struct for scsi_device
2710  *
2711  *	Dispatch queued events to their associated scsi_device kobjects
2712  *	as uevents.
2713  */
2714 void scsi_evt_thread(struct work_struct *work)
2715 {
2716 	struct scsi_device *sdev;
2717 	enum scsi_device_event evt_type;
2718 	LIST_HEAD(event_list);
2719 
2720 	sdev = container_of(work, struct scsi_device, event_work);
2721 
2722 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2723 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2724 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2725 
2726 	while (1) {
2727 		struct scsi_event *evt;
2728 		struct list_head *this, *tmp;
2729 		unsigned long flags;
2730 
2731 		spin_lock_irqsave(&sdev->list_lock, flags);
2732 		list_splice_init(&sdev->event_list, &event_list);
2733 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2734 
2735 		if (list_empty(&event_list))
2736 			break;
2737 
2738 		list_for_each_safe(this, tmp, &event_list) {
2739 			evt = list_entry(this, struct scsi_event, node);
2740 			list_del(&evt->node);
2741 			scsi_evt_emit(sdev, evt);
2742 			kfree(evt);
2743 		}
2744 	}
2745 }
2746 
2747 /**
2748  * 	sdev_evt_send - send asserted event to uevent thread
2749  *	@sdev: scsi_device event occurred on
2750  *	@evt: event to send
2751  *
2752  *	Assert scsi device event asynchronously.
2753  */
2754 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2755 {
2756 	unsigned long flags;
2757 
2758 #if 0
2759 	/* FIXME: currently this check eliminates all media change events
2760 	 * for polled devices.  Need to update to discriminate between AN
2761 	 * and polled events */
2762 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2763 		kfree(evt);
2764 		return;
2765 	}
2766 #endif
2767 
2768 	spin_lock_irqsave(&sdev->list_lock, flags);
2769 	list_add_tail(&evt->node, &sdev->event_list);
2770 	schedule_work(&sdev->event_work);
2771 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2772 }
2773 EXPORT_SYMBOL_GPL(sdev_evt_send);
2774 
2775 /**
2776  * 	sdev_evt_alloc - allocate a new scsi event
2777  *	@evt_type: type of event to allocate
2778  *	@gfpflags: GFP flags for allocation
2779  *
2780  *	Allocates and returns a new scsi_event.
2781  */
2782 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2783 				  gfp_t gfpflags)
2784 {
2785 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2786 	if (!evt)
2787 		return NULL;
2788 
2789 	evt->evt_type = evt_type;
2790 	INIT_LIST_HEAD(&evt->node);
2791 
2792 	/* evt_type-specific initialization, if any */
2793 	switch (evt_type) {
2794 	case SDEV_EVT_MEDIA_CHANGE:
2795 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2796 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2797 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2798 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2799 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2800 	default:
2801 		/* do nothing */
2802 		break;
2803 	}
2804 
2805 	return evt;
2806 }
2807 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2808 
2809 /**
2810  * 	sdev_evt_send_simple - send asserted event to uevent thread
2811  *	@sdev: scsi_device event occurred on
2812  *	@evt_type: type of event to send
2813  *	@gfpflags: GFP flags for allocation
2814  *
2815  *	Assert scsi device event asynchronously, given an event type.
2816  */
2817 void sdev_evt_send_simple(struct scsi_device *sdev,
2818 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2819 {
2820 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2821 	if (!evt) {
2822 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2823 			    evt_type);
2824 		return;
2825 	}
2826 
2827 	sdev_evt_send(sdev, evt);
2828 }
2829 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2830 
2831 /**
2832  *	scsi_device_quiesce - Block user issued commands.
2833  *	@sdev:	scsi device to quiesce.
2834  *
2835  *	This works by trying to transition to the SDEV_QUIESCE state
2836  *	(which must be a legal transition).  When the device is in this
2837  *	state, only special requests will be accepted, all others will
2838  *	be deferred.  Since special requests may also be requeued requests,
2839  *	a successful return doesn't guarantee the device will be
2840  *	totally quiescent.
2841  *
2842  *	Must be called with user context, may sleep.
2843  *
2844  *	Returns zero if unsuccessful or an error if not.
2845  */
2846 int
2847 scsi_device_quiesce(struct scsi_device *sdev)
2848 {
2849 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2850 	if (err)
2851 		return err;
2852 
2853 	scsi_run_queue(sdev->request_queue);
2854 	while (atomic_read(&sdev->device_busy)) {
2855 		msleep_interruptible(200);
2856 		scsi_run_queue(sdev->request_queue);
2857 	}
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(scsi_device_quiesce);
2861 
2862 /**
2863  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2864  *	@sdev:	scsi device to resume.
2865  *
2866  *	Moves the device from quiesced back to running and restarts the
2867  *	queues.
2868  *
2869  *	Must be called with user context, may sleep.
2870  */
2871 void scsi_device_resume(struct scsi_device *sdev)
2872 {
2873 	/* check if the device state was mutated prior to resume, and if
2874 	 * so assume the state is being managed elsewhere (for example
2875 	 * device deleted during suspend)
2876 	 */
2877 	if (sdev->sdev_state != SDEV_QUIESCE ||
2878 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2879 		return;
2880 	scsi_run_queue(sdev->request_queue);
2881 }
2882 EXPORT_SYMBOL(scsi_device_resume);
2883 
2884 static void
2885 device_quiesce_fn(struct scsi_device *sdev, void *data)
2886 {
2887 	scsi_device_quiesce(sdev);
2888 }
2889 
2890 void
2891 scsi_target_quiesce(struct scsi_target *starget)
2892 {
2893 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2894 }
2895 EXPORT_SYMBOL(scsi_target_quiesce);
2896 
2897 static void
2898 device_resume_fn(struct scsi_device *sdev, void *data)
2899 {
2900 	scsi_device_resume(sdev);
2901 }
2902 
2903 void
2904 scsi_target_resume(struct scsi_target *starget)
2905 {
2906 	starget_for_each_device(starget, NULL, device_resume_fn);
2907 }
2908 EXPORT_SYMBOL(scsi_target_resume);
2909 
2910 /**
2911  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2912  * @sdev:	device to block
2913  *
2914  * Block request made by scsi lld's to temporarily stop all
2915  * scsi commands on the specified device.  Called from interrupt
2916  * or normal process context.
2917  *
2918  * Returns zero if successful or error if not
2919  *
2920  * Notes:
2921  *	This routine transitions the device to the SDEV_BLOCK state
2922  *	(which must be a legal transition).  When the device is in this
2923  *	state, all commands are deferred until the scsi lld reenables
2924  *	the device with scsi_device_unblock or device_block_tmo fires.
2925  */
2926 int
2927 scsi_internal_device_block(struct scsi_device *sdev)
2928 {
2929 	struct request_queue *q = sdev->request_queue;
2930 	unsigned long flags;
2931 	int err = 0;
2932 
2933 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2934 	if (err) {
2935 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2936 
2937 		if (err)
2938 			return err;
2939 	}
2940 
2941 	/*
2942 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2943 	 * block layer from calling the midlayer with this device's
2944 	 * request queue.
2945 	 */
2946 	if (q->mq_ops) {
2947 		blk_mq_stop_hw_queues(q);
2948 	} else {
2949 		spin_lock_irqsave(q->queue_lock, flags);
2950 		blk_stop_queue(q);
2951 		spin_unlock_irqrestore(q->queue_lock, flags);
2952 	}
2953 
2954 	return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2957 
2958 /**
2959  * scsi_internal_device_unblock - resume a device after a block request
2960  * @sdev:	device to resume
2961  * @new_state:	state to set devices to after unblocking
2962  *
2963  * Called by scsi lld's or the midlayer to restart the device queue
2964  * for the previously suspended scsi device.  Called from interrupt or
2965  * normal process context.
2966  *
2967  * Returns zero if successful or error if not.
2968  *
2969  * Notes:
2970  *	This routine transitions the device to the SDEV_RUNNING state
2971  *	or to one of the offline states (which must be a legal transition)
2972  *	allowing the midlayer to goose the queue for this device.
2973  */
2974 int
2975 scsi_internal_device_unblock(struct scsi_device *sdev,
2976 			     enum scsi_device_state new_state)
2977 {
2978 	struct request_queue *q = sdev->request_queue;
2979 	unsigned long flags;
2980 
2981 	/*
2982 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2983 	 * offlined states and goose the device queue if successful.
2984 	 */
2985 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2986 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2987 		sdev->sdev_state = new_state;
2988 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2989 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2990 		    new_state == SDEV_OFFLINE)
2991 			sdev->sdev_state = new_state;
2992 		else
2993 			sdev->sdev_state = SDEV_CREATED;
2994 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2995 		 sdev->sdev_state != SDEV_OFFLINE)
2996 		return -EINVAL;
2997 
2998 	if (q->mq_ops) {
2999 		blk_mq_start_stopped_hw_queues(q, false);
3000 	} else {
3001 		spin_lock_irqsave(q->queue_lock, flags);
3002 		blk_start_queue(q);
3003 		spin_unlock_irqrestore(q->queue_lock, flags);
3004 	}
3005 
3006 	return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3009 
3010 static void
3011 device_block(struct scsi_device *sdev, void *data)
3012 {
3013 	scsi_internal_device_block(sdev);
3014 }
3015 
3016 static int
3017 target_block(struct device *dev, void *data)
3018 {
3019 	if (scsi_is_target_device(dev))
3020 		starget_for_each_device(to_scsi_target(dev), NULL,
3021 					device_block);
3022 	return 0;
3023 }
3024 
3025 void
3026 scsi_target_block(struct device *dev)
3027 {
3028 	if (scsi_is_target_device(dev))
3029 		starget_for_each_device(to_scsi_target(dev), NULL,
3030 					device_block);
3031 	else
3032 		device_for_each_child(dev, NULL, target_block);
3033 }
3034 EXPORT_SYMBOL_GPL(scsi_target_block);
3035 
3036 static void
3037 device_unblock(struct scsi_device *sdev, void *data)
3038 {
3039 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3040 }
3041 
3042 static int
3043 target_unblock(struct device *dev, void *data)
3044 {
3045 	if (scsi_is_target_device(dev))
3046 		starget_for_each_device(to_scsi_target(dev), data,
3047 					device_unblock);
3048 	return 0;
3049 }
3050 
3051 void
3052 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3053 {
3054 	if (scsi_is_target_device(dev))
3055 		starget_for_each_device(to_scsi_target(dev), &new_state,
3056 					device_unblock);
3057 	else
3058 		device_for_each_child(dev, &new_state, target_unblock);
3059 }
3060 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3061 
3062 /**
3063  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3064  * @sgl:	scatter-gather list
3065  * @sg_count:	number of segments in sg
3066  * @offset:	offset in bytes into sg, on return offset into the mapped area
3067  * @len:	bytes to map, on return number of bytes mapped
3068  *
3069  * Returns virtual address of the start of the mapped page
3070  */
3071 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3072 			  size_t *offset, size_t *len)
3073 {
3074 	int i;
3075 	size_t sg_len = 0, len_complete = 0;
3076 	struct scatterlist *sg;
3077 	struct page *page;
3078 
3079 	WARN_ON(!irqs_disabled());
3080 
3081 	for_each_sg(sgl, sg, sg_count, i) {
3082 		len_complete = sg_len; /* Complete sg-entries */
3083 		sg_len += sg->length;
3084 		if (sg_len > *offset)
3085 			break;
3086 	}
3087 
3088 	if (unlikely(i == sg_count)) {
3089 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3090 			"elements %d\n",
3091 		       __func__, sg_len, *offset, sg_count);
3092 		WARN_ON(1);
3093 		return NULL;
3094 	}
3095 
3096 	/* Offset starting from the beginning of first page in this sg-entry */
3097 	*offset = *offset - len_complete + sg->offset;
3098 
3099 	/* Assumption: contiguous pages can be accessed as "page + i" */
3100 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3101 	*offset &= ~PAGE_MASK;
3102 
3103 	/* Bytes in this sg-entry from *offset to the end of the page */
3104 	sg_len = PAGE_SIZE - *offset;
3105 	if (*len > sg_len)
3106 		*len = sg_len;
3107 
3108 	return kmap_atomic(page);
3109 }
3110 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3111 
3112 /**
3113  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3114  * @virt:	virtual address to be unmapped
3115  */
3116 void scsi_kunmap_atomic_sg(void *virt)
3117 {
3118 	kunmap_atomic(virt);
3119 }
3120 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3121 
3122 void sdev_disable_disk_events(struct scsi_device *sdev)
3123 {
3124 	atomic_inc(&sdev->disk_events_disable_depth);
3125 }
3126 EXPORT_SYMBOL(sdev_disable_disk_events);
3127 
3128 void sdev_enable_disk_events(struct scsi_device *sdev)
3129 {
3130 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3131 		return;
3132 	atomic_dec(&sdev->disk_events_disable_depth);
3133 }
3134 EXPORT_SYMBOL(sdev_enable_disk_events);
3135