xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59 
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61 
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67 
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 				   unsigned char *sense_buffer)
70 {
71 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 			sense_buffer);
73 }
74 
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 	gfp_t gfp_mask, int numa_node)
77 {
78 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 				     gfp_mask, numa_node);
80 }
81 
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 	struct kmem_cache *cache;
85 	int ret = 0;
86 
87 	mutex_lock(&scsi_sense_cache_mutex);
88 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89 	if (cache)
90 		goto exit;
91 
92 	if (shost->unchecked_isa_dma) {
93 		scsi_sense_isadma_cache =
94 			kmem_cache_create("scsi_sense_cache(DMA)",
95 				SCSI_SENSE_BUFFERSIZE, 0,
96 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 		if (!scsi_sense_isadma_cache)
98 			ret = -ENOMEM;
99 	} else {
100 		scsi_sense_cache =
101 			kmem_cache_create_usercopy("scsi_sense_cache",
102 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 				0, SCSI_SENSE_BUFFERSIZE, NULL);
104 		if (!scsi_sense_cache)
105 			ret = -ENOMEM;
106 	}
107  exit:
108 	mutex_unlock(&scsi_sense_cache_mutex);
109 	return ret;
110 }
111 
112 /*
113  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114  * not change behaviour from the previous unplug mechanism, experimentation
115  * may prove this needs changing.
116  */
117 #define SCSI_QUEUE_DELAY	3
118 
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct scsi_target *starget = scsi_target(device);
125 
126 	/*
127 	 * Set the appropriate busy bit for the device/host.
128 	 *
129 	 * If the host/device isn't busy, assume that something actually
130 	 * completed, and that we should be able to queue a command now.
131 	 *
132 	 * Note that the prior mid-layer assumption that any host could
133 	 * always queue at least one command is now broken.  The mid-layer
134 	 * will implement a user specifiable stall (see
135 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 	 * if a command is requeued with no other commands outstanding
137 	 * either for the device or for the host.
138 	 */
139 	switch (reason) {
140 	case SCSI_MLQUEUE_HOST_BUSY:
141 		atomic_set(&host->host_blocked, host->max_host_blocked);
142 		break;
143 	case SCSI_MLQUEUE_DEVICE_BUSY:
144 	case SCSI_MLQUEUE_EH_RETRY:
145 		atomic_set(&device->device_blocked,
146 			   device->max_device_blocked);
147 		break;
148 	case SCSI_MLQUEUE_TARGET_BUSY:
149 		atomic_set(&starget->target_blocked,
150 			   starget->max_target_blocked);
151 		break;
152 	}
153 }
154 
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 	if (cmd->request->rq_flags & RQF_DONTPREP) {
158 		cmd->request->rq_flags &= ~RQF_DONTPREP;
159 		scsi_mq_uninit_cmd(cmd);
160 	} else {
161 		WARN_ON_ONCE(true);
162 	}
163 	blk_mq_requeue_request(cmd->request, true);
164 }
165 
166 /**
167  * __scsi_queue_insert - private queue insertion
168  * @cmd: The SCSI command being requeued
169  * @reason:  The reason for the requeue
170  * @unbusy: Whether the queue should be unbusied
171  *
172  * This is a private queue insertion.  The public interface
173  * scsi_queue_insert() always assumes the queue should be unbusied
174  * because it's always called before the completion.  This function is
175  * for a requeue after completion, which should only occur in this
176  * file.
177  */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 	struct scsi_device *device = cmd->device;
181 
182 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 		"Inserting command %p into mlqueue\n", cmd));
184 
185 	scsi_set_blocked(cmd, reason);
186 
187 	/*
188 	 * Decrement the counters, since these commands are no longer
189 	 * active on the host/device.
190 	 */
191 	if (unbusy)
192 		scsi_device_unbusy(device, cmd);
193 
194 	/*
195 	 * Requeue this command.  It will go before all other commands
196 	 * that are already in the queue. Schedule requeue work under
197 	 * lock such that the kblockd_schedule_work() call happens
198 	 * before blk_cleanup_queue() finishes.
199 	 */
200 	cmd->result = 0;
201 
202 	blk_mq_requeue_request(cmd->request, true);
203 }
204 
205 /*
206  * Function:    scsi_queue_insert()
207  *
208  * Purpose:     Insert a command in the midlevel queue.
209  *
210  * Arguments:   cmd    - command that we are adding to queue.
211  *              reason - why we are inserting command to queue.
212  *
213  * Lock status: Assumed that lock is not held upon entry.
214  *
215  * Returns:     Nothing.
216  *
217  * Notes:       We do this for one of two cases.  Either the host is busy
218  *              and it cannot accept any more commands for the time being,
219  *              or the device returned QUEUE_FULL and can accept no more
220  *              commands.
221  * Notes:       This could be called either from an interrupt context or a
222  *              normal process context.
223  */
224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
225 {
226 	__scsi_queue_insert(cmd, reason, true);
227 }
228 
229 
230 /**
231  * __scsi_execute - insert request and wait for the result
232  * @sdev:	scsi device
233  * @cmd:	scsi command
234  * @data_direction: data direction
235  * @buffer:	data buffer
236  * @bufflen:	len of buffer
237  * @sense:	optional sense buffer
238  * @sshdr:	optional decoded sense header
239  * @timeout:	request timeout in seconds
240  * @retries:	number of times to retry request
241  * @flags:	flags for ->cmd_flags
242  * @rq_flags:	flags for ->rq_flags
243  * @resid:	optional residual length
244  *
245  * Returns the scsi_cmnd result field if a command was executed, or a negative
246  * Linux error code if we didn't get that far.
247  */
248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
249 		 int data_direction, void *buffer, unsigned bufflen,
250 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
251 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
252 		 int *resid)
253 {
254 	struct request *req;
255 	struct scsi_request *rq;
256 	int ret = DRIVER_ERROR << 24;
257 
258 	req = blk_get_request(sdev->request_queue,
259 			data_direction == DMA_TO_DEVICE ?
260 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
261 	if (IS_ERR(req))
262 		return ret;
263 	rq = scsi_req(req);
264 
265 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
266 					buffer, bufflen, GFP_NOIO))
267 		goto out;
268 
269 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
270 	memcpy(rq->cmd, cmd, rq->cmd_len);
271 	rq->retries = retries;
272 	req->timeout = timeout;
273 	req->cmd_flags |= flags;
274 	req->rq_flags |= rq_flags | RQF_QUIET;
275 
276 	/*
277 	 * head injection *required* here otherwise quiesce won't work
278 	 */
279 	blk_execute_rq(req->q, NULL, req, 1);
280 
281 	/*
282 	 * Some devices (USB mass-storage in particular) may transfer
283 	 * garbage data together with a residue indicating that the data
284 	 * is invalid.  Prevent the garbage from being misinterpreted
285 	 * and prevent security leaks by zeroing out the excess data.
286 	 */
287 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
288 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
289 
290 	if (resid)
291 		*resid = rq->resid_len;
292 	if (sense && rq->sense_len)
293 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
294 	if (sshdr)
295 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
296 	ret = rq->result;
297  out:
298 	blk_put_request(req);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL(__scsi_execute);
303 
304 /*
305  * Function:    scsi_init_cmd_errh()
306  *
307  * Purpose:     Initialize cmd fields related to error handling.
308  *
309  * Arguments:   cmd	- command that is ready to be queued.
310  *
311  * Notes:       This function has the job of initializing a number of
312  *              fields related to error handling.   Typically this will
313  *              be called once for each command, as required.
314  */
315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
316 {
317 	scsi_set_resid(cmd, 0);
318 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 	if (cmd->cmd_len == 0)
320 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322 
323 /*
324  * Wake up the error handler if necessary. Avoid as follows that the error
325  * handler is not woken up if host in-flight requests number ==
326  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
327  * with an RCU read lock in this function to ensure that this function in
328  * its entirety either finishes before scsi_eh_scmd_add() increases the
329  * host_failed counter or that it notices the shost state change made by
330  * scsi_eh_scmd_add().
331  */
332 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
333 {
334 	unsigned long flags;
335 
336 	rcu_read_lock();
337 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
338 	if (unlikely(scsi_host_in_recovery(shost))) {
339 		spin_lock_irqsave(shost->host_lock, flags);
340 		if (shost->host_failed || shost->host_eh_scheduled)
341 			scsi_eh_wakeup(shost);
342 		spin_unlock_irqrestore(shost->host_lock, flags);
343 	}
344 	rcu_read_unlock();
345 }
346 
347 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
348 {
349 	struct Scsi_Host *shost = sdev->host;
350 	struct scsi_target *starget = scsi_target(sdev);
351 
352 	scsi_dec_host_busy(shost, cmd);
353 
354 	if (starget->can_queue > 0)
355 		atomic_dec(&starget->target_busy);
356 
357 	atomic_dec(&sdev->device_busy);
358 }
359 
360 static void scsi_kick_queue(struct request_queue *q)
361 {
362 	blk_mq_run_hw_queues(q, false);
363 }
364 
365 /*
366  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
367  * and call blk_run_queue for all the scsi_devices on the target -
368  * including current_sdev first.
369  *
370  * Called with *no* scsi locks held.
371  */
372 static void scsi_single_lun_run(struct scsi_device *current_sdev)
373 {
374 	struct Scsi_Host *shost = current_sdev->host;
375 	struct scsi_device *sdev, *tmp;
376 	struct scsi_target *starget = scsi_target(current_sdev);
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(shost->host_lock, flags);
380 	starget->starget_sdev_user = NULL;
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 
383 	/*
384 	 * Call blk_run_queue for all LUNs on the target, starting with
385 	 * current_sdev. We race with others (to set starget_sdev_user),
386 	 * but in most cases, we will be first. Ideally, each LU on the
387 	 * target would get some limited time or requests on the target.
388 	 */
389 	scsi_kick_queue(current_sdev->request_queue);
390 
391 	spin_lock_irqsave(shost->host_lock, flags);
392 	if (starget->starget_sdev_user)
393 		goto out;
394 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
395 			same_target_siblings) {
396 		if (sdev == current_sdev)
397 			continue;
398 		if (scsi_device_get(sdev))
399 			continue;
400 
401 		spin_unlock_irqrestore(shost->host_lock, flags);
402 		scsi_kick_queue(sdev->request_queue);
403 		spin_lock_irqsave(shost->host_lock, flags);
404 
405 		scsi_device_put(sdev);
406 	}
407  out:
408 	spin_unlock_irqrestore(shost->host_lock, flags);
409 }
410 
411 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
412 {
413 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
414 		return true;
415 	if (atomic_read(&sdev->device_blocked) > 0)
416 		return true;
417 	return false;
418 }
419 
420 static inline bool scsi_target_is_busy(struct scsi_target *starget)
421 {
422 	if (starget->can_queue > 0) {
423 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
424 			return true;
425 		if (atomic_read(&starget->target_blocked) > 0)
426 			return true;
427 	}
428 	return false;
429 }
430 
431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
432 {
433 	if (atomic_read(&shost->host_blocked) > 0)
434 		return true;
435 	if (shost->host_self_blocked)
436 		return true;
437 	return false;
438 }
439 
440 static void scsi_starved_list_run(struct Scsi_Host *shost)
441 {
442 	LIST_HEAD(starved_list);
443 	struct scsi_device *sdev;
444 	unsigned long flags;
445 
446 	spin_lock_irqsave(shost->host_lock, flags);
447 	list_splice_init(&shost->starved_list, &starved_list);
448 
449 	while (!list_empty(&starved_list)) {
450 		struct request_queue *slq;
451 
452 		/*
453 		 * As long as shost is accepting commands and we have
454 		 * starved queues, call blk_run_queue. scsi_request_fn
455 		 * drops the queue_lock and can add us back to the
456 		 * starved_list.
457 		 *
458 		 * host_lock protects the starved_list and starved_entry.
459 		 * scsi_request_fn must get the host_lock before checking
460 		 * or modifying starved_list or starved_entry.
461 		 */
462 		if (scsi_host_is_busy(shost))
463 			break;
464 
465 		sdev = list_entry(starved_list.next,
466 				  struct scsi_device, starved_entry);
467 		list_del_init(&sdev->starved_entry);
468 		if (scsi_target_is_busy(scsi_target(sdev))) {
469 			list_move_tail(&sdev->starved_entry,
470 				       &shost->starved_list);
471 			continue;
472 		}
473 
474 		/*
475 		 * Once we drop the host lock, a racing scsi_remove_device()
476 		 * call may remove the sdev from the starved list and destroy
477 		 * it and the queue.  Mitigate by taking a reference to the
478 		 * queue and never touching the sdev again after we drop the
479 		 * host lock.  Note: if __scsi_remove_device() invokes
480 		 * blk_cleanup_queue() before the queue is run from this
481 		 * function then blk_run_queue() will return immediately since
482 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
483 		 */
484 		slq = sdev->request_queue;
485 		if (!blk_get_queue(slq))
486 			continue;
487 		spin_unlock_irqrestore(shost->host_lock, flags);
488 
489 		scsi_kick_queue(slq);
490 		blk_put_queue(slq);
491 
492 		spin_lock_irqsave(shost->host_lock, flags);
493 	}
494 	/* put any unprocessed entries back */
495 	list_splice(&starved_list, &shost->starved_list);
496 	spin_unlock_irqrestore(shost->host_lock, flags);
497 }
498 
499 /*
500  * Function:   scsi_run_queue()
501  *
502  * Purpose:    Select a proper request queue to serve next
503  *
504  * Arguments:  q       - last request's queue
505  *
506  * Returns:     Nothing
507  *
508  * Notes:      The previous command was completely finished, start
509  *             a new one if possible.
510  */
511 static void scsi_run_queue(struct request_queue *q)
512 {
513 	struct scsi_device *sdev = q->queuedata;
514 
515 	if (scsi_target(sdev)->single_lun)
516 		scsi_single_lun_run(sdev);
517 	if (!list_empty(&sdev->host->starved_list))
518 		scsi_starved_list_run(sdev->host);
519 
520 	blk_mq_run_hw_queues(q, false);
521 }
522 
523 void scsi_requeue_run_queue(struct work_struct *work)
524 {
525 	struct scsi_device *sdev;
526 	struct request_queue *q;
527 
528 	sdev = container_of(work, struct scsi_device, requeue_work);
529 	q = sdev->request_queue;
530 	scsi_run_queue(q);
531 }
532 
533 void scsi_run_host_queues(struct Scsi_Host *shost)
534 {
535 	struct scsi_device *sdev;
536 
537 	shost_for_each_device(sdev, shost)
538 		scsi_run_queue(sdev->request_queue);
539 }
540 
541 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
542 {
543 	if (!blk_rq_is_passthrough(cmd->request)) {
544 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
545 
546 		if (drv->uninit_command)
547 			drv->uninit_command(cmd);
548 	}
549 }
550 
551 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
552 {
553 	if (cmd->sdb.table.nents)
554 		sg_free_table_chained(&cmd->sdb.table,
555 				SCSI_INLINE_SG_CNT);
556 	if (scsi_prot_sg_count(cmd))
557 		sg_free_table_chained(&cmd->prot_sdb->table,
558 				SCSI_INLINE_PROT_SG_CNT);
559 }
560 
561 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
562 {
563 	scsi_mq_free_sgtables(cmd);
564 	scsi_uninit_cmd(cmd);
565 	scsi_del_cmd_from_list(cmd);
566 }
567 
568 /* Returns false when no more bytes to process, true if there are more */
569 static bool scsi_end_request(struct request *req, blk_status_t error,
570 		unsigned int bytes)
571 {
572 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
573 	struct scsi_device *sdev = cmd->device;
574 	struct request_queue *q = sdev->request_queue;
575 
576 	if (blk_update_request(req, error, bytes))
577 		return true;
578 
579 	if (blk_queue_add_random(q))
580 		add_disk_randomness(req->rq_disk);
581 
582 	if (!blk_rq_is_scsi(req)) {
583 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
584 		cmd->flags &= ~SCMD_INITIALIZED;
585 	}
586 
587 	/*
588 	 * Calling rcu_barrier() is not necessary here because the
589 	 * SCSI error handler guarantees that the function called by
590 	 * call_rcu() has been called before scsi_end_request() is
591 	 * called.
592 	 */
593 	destroy_rcu_head(&cmd->rcu);
594 
595 	/*
596 	 * In the MQ case the command gets freed by __blk_mq_end_request,
597 	 * so we have to do all cleanup that depends on it earlier.
598 	 *
599 	 * We also can't kick the queues from irq context, so we
600 	 * will have to defer it to a workqueue.
601 	 */
602 	scsi_mq_uninit_cmd(cmd);
603 
604 	/*
605 	 * queue is still alive, so grab the ref for preventing it
606 	 * from being cleaned up during running queue.
607 	 */
608 	percpu_ref_get(&q->q_usage_counter);
609 
610 	__blk_mq_end_request(req, error);
611 
612 	if (scsi_target(sdev)->single_lun ||
613 	    !list_empty(&sdev->host->starved_list))
614 		kblockd_schedule_work(&sdev->requeue_work);
615 	else
616 		blk_mq_run_hw_queues(q, true);
617 
618 	percpu_ref_put(&q->q_usage_counter);
619 	return false;
620 }
621 
622 /**
623  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
624  * @cmd:	SCSI command
625  * @result:	scsi error code
626  *
627  * Translate a SCSI result code into a blk_status_t value. May reset the host
628  * byte of @cmd->result.
629  */
630 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
631 {
632 	switch (host_byte(result)) {
633 	case DID_OK:
634 		/*
635 		 * Also check the other bytes than the status byte in result
636 		 * to handle the case when a SCSI LLD sets result to
637 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
638 		 */
639 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
640 			return BLK_STS_OK;
641 		return BLK_STS_IOERR;
642 	case DID_TRANSPORT_FAILFAST:
643 		return BLK_STS_TRANSPORT;
644 	case DID_TARGET_FAILURE:
645 		set_host_byte(cmd, DID_OK);
646 		return BLK_STS_TARGET;
647 	case DID_NEXUS_FAILURE:
648 		set_host_byte(cmd, DID_OK);
649 		return BLK_STS_NEXUS;
650 	case DID_ALLOC_FAILURE:
651 		set_host_byte(cmd, DID_OK);
652 		return BLK_STS_NOSPC;
653 	case DID_MEDIUM_ERROR:
654 		set_host_byte(cmd, DID_OK);
655 		return BLK_STS_MEDIUM;
656 	default:
657 		return BLK_STS_IOERR;
658 	}
659 }
660 
661 /* Helper for scsi_io_completion() when "reprep" action required. */
662 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
663 				      struct request_queue *q)
664 {
665 	/* A new command will be prepared and issued. */
666 	scsi_mq_requeue_cmd(cmd);
667 }
668 
669 /* Helper for scsi_io_completion() when special action required. */
670 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
671 {
672 	struct request_queue *q = cmd->device->request_queue;
673 	struct request *req = cmd->request;
674 	int level = 0;
675 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
676 	      ACTION_DELAYED_RETRY} action;
677 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
678 	struct scsi_sense_hdr sshdr;
679 	bool sense_valid;
680 	bool sense_current = true;      /* false implies "deferred sense" */
681 	blk_status_t blk_stat;
682 
683 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
684 	if (sense_valid)
685 		sense_current = !scsi_sense_is_deferred(&sshdr);
686 
687 	blk_stat = scsi_result_to_blk_status(cmd, result);
688 
689 	if (host_byte(result) == DID_RESET) {
690 		/* Third party bus reset or reset for error recovery
691 		 * reasons.  Just retry the command and see what
692 		 * happens.
693 		 */
694 		action = ACTION_RETRY;
695 	} else if (sense_valid && sense_current) {
696 		switch (sshdr.sense_key) {
697 		case UNIT_ATTENTION:
698 			if (cmd->device->removable) {
699 				/* Detected disc change.  Set a bit
700 				 * and quietly refuse further access.
701 				 */
702 				cmd->device->changed = 1;
703 				action = ACTION_FAIL;
704 			} else {
705 				/* Must have been a power glitch, or a
706 				 * bus reset.  Could not have been a
707 				 * media change, so we just retry the
708 				 * command and see what happens.
709 				 */
710 				action = ACTION_RETRY;
711 			}
712 			break;
713 		case ILLEGAL_REQUEST:
714 			/* If we had an ILLEGAL REQUEST returned, then
715 			 * we may have performed an unsupported
716 			 * command.  The only thing this should be
717 			 * would be a ten byte read where only a six
718 			 * byte read was supported.  Also, on a system
719 			 * where READ CAPACITY failed, we may have
720 			 * read past the end of the disk.
721 			 */
722 			if ((cmd->device->use_10_for_rw &&
723 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
724 			    (cmd->cmnd[0] == READ_10 ||
725 			     cmd->cmnd[0] == WRITE_10)) {
726 				/* This will issue a new 6-byte command. */
727 				cmd->device->use_10_for_rw = 0;
728 				action = ACTION_REPREP;
729 			} else if (sshdr.asc == 0x10) /* DIX */ {
730 				action = ACTION_FAIL;
731 				blk_stat = BLK_STS_PROTECTION;
732 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
733 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
734 				action = ACTION_FAIL;
735 				blk_stat = BLK_STS_TARGET;
736 			} else
737 				action = ACTION_FAIL;
738 			break;
739 		case ABORTED_COMMAND:
740 			action = ACTION_FAIL;
741 			if (sshdr.asc == 0x10) /* DIF */
742 				blk_stat = BLK_STS_PROTECTION;
743 			break;
744 		case NOT_READY:
745 			/* If the device is in the process of becoming
746 			 * ready, or has a temporary blockage, retry.
747 			 */
748 			if (sshdr.asc == 0x04) {
749 				switch (sshdr.ascq) {
750 				case 0x01: /* becoming ready */
751 				case 0x04: /* format in progress */
752 				case 0x05: /* rebuild in progress */
753 				case 0x06: /* recalculation in progress */
754 				case 0x07: /* operation in progress */
755 				case 0x08: /* Long write in progress */
756 				case 0x09: /* self test in progress */
757 				case 0x14: /* space allocation in progress */
758 				case 0x1a: /* start stop unit in progress */
759 				case 0x1b: /* sanitize in progress */
760 				case 0x1d: /* configuration in progress */
761 				case 0x24: /* depopulation in progress */
762 					action = ACTION_DELAYED_RETRY;
763 					break;
764 				default:
765 					action = ACTION_FAIL;
766 					break;
767 				}
768 			} else
769 				action = ACTION_FAIL;
770 			break;
771 		case VOLUME_OVERFLOW:
772 			/* See SSC3rXX or current. */
773 			action = ACTION_FAIL;
774 			break;
775 		default:
776 			action = ACTION_FAIL;
777 			break;
778 		}
779 	} else
780 		action = ACTION_FAIL;
781 
782 	if (action != ACTION_FAIL &&
783 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
784 		action = ACTION_FAIL;
785 
786 	switch (action) {
787 	case ACTION_FAIL:
788 		/* Give up and fail the remainder of the request */
789 		if (!(req->rq_flags & RQF_QUIET)) {
790 			static DEFINE_RATELIMIT_STATE(_rs,
791 					DEFAULT_RATELIMIT_INTERVAL,
792 					DEFAULT_RATELIMIT_BURST);
793 
794 			if (unlikely(scsi_logging_level))
795 				level =
796 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
797 						    SCSI_LOG_MLCOMPLETE_BITS);
798 
799 			/*
800 			 * if logging is enabled the failure will be printed
801 			 * in scsi_log_completion(), so avoid duplicate messages
802 			 */
803 			if (!level && __ratelimit(&_rs)) {
804 				scsi_print_result(cmd, NULL, FAILED);
805 				if (driver_byte(result) == DRIVER_SENSE)
806 					scsi_print_sense(cmd);
807 				scsi_print_command(cmd);
808 			}
809 		}
810 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
811 			return;
812 		/*FALLTHRU*/
813 	case ACTION_REPREP:
814 		scsi_io_completion_reprep(cmd, q);
815 		break;
816 	case ACTION_RETRY:
817 		/* Retry the same command immediately */
818 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
819 		break;
820 	case ACTION_DELAYED_RETRY:
821 		/* Retry the same command after a delay */
822 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
823 		break;
824 	}
825 }
826 
827 /*
828  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
829  * new result that may suppress further error checking. Also modifies
830  * *blk_statp in some cases.
831  */
832 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
833 					blk_status_t *blk_statp)
834 {
835 	bool sense_valid;
836 	bool sense_current = true;	/* false implies "deferred sense" */
837 	struct request *req = cmd->request;
838 	struct scsi_sense_hdr sshdr;
839 
840 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
841 	if (sense_valid)
842 		sense_current = !scsi_sense_is_deferred(&sshdr);
843 
844 	if (blk_rq_is_passthrough(req)) {
845 		if (sense_valid) {
846 			/*
847 			 * SG_IO wants current and deferred errors
848 			 */
849 			scsi_req(req)->sense_len =
850 				min(8 + cmd->sense_buffer[7],
851 				    SCSI_SENSE_BUFFERSIZE);
852 		}
853 		if (sense_current)
854 			*blk_statp = scsi_result_to_blk_status(cmd, result);
855 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
856 		/*
857 		 * Flush commands do not transfers any data, and thus cannot use
858 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
859 		 * This sets *blk_statp explicitly for the problem case.
860 		 */
861 		*blk_statp = scsi_result_to_blk_status(cmd, result);
862 	}
863 	/*
864 	 * Recovered errors need reporting, but they're always treated as
865 	 * success, so fiddle the result code here.  For passthrough requests
866 	 * we already took a copy of the original into sreq->result which
867 	 * is what gets returned to the user
868 	 */
869 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
870 		bool do_print = true;
871 		/*
872 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
873 		 * skip print since caller wants ATA registers. Only occurs
874 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
875 		 */
876 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
877 			do_print = false;
878 		else if (req->rq_flags & RQF_QUIET)
879 			do_print = false;
880 		if (do_print)
881 			scsi_print_sense(cmd);
882 		result = 0;
883 		/* for passthrough, *blk_statp may be set */
884 		*blk_statp = BLK_STS_OK;
885 	}
886 	/*
887 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
888 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
889 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
890 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
891 	 * intermediate statuses (both obsolete in SAM-4) as good.
892 	 */
893 	if (status_byte(result) && scsi_status_is_good(result)) {
894 		result = 0;
895 		*blk_statp = BLK_STS_OK;
896 	}
897 	return result;
898 }
899 
900 /*
901  * Function:    scsi_io_completion()
902  *
903  * Purpose:     Completion processing for block device I/O requests.
904  *
905  * Arguments:   cmd   - command that is finished.
906  *
907  * Lock status: Assumed that no lock is held upon entry.
908  *
909  * Returns:     Nothing
910  *
911  * Notes:       We will finish off the specified number of sectors.  If we
912  *		are done, the command block will be released and the queue
913  *		function will be goosed.  If we are not done then we have to
914  *		figure out what to do next:
915  *
916  *		a) We can call scsi_requeue_command().  The request
917  *		   will be unprepared and put back on the queue.  Then
918  *		   a new command will be created for it.  This should
919  *		   be used if we made forward progress, or if we want
920  *		   to switch from READ(10) to READ(6) for example.
921  *
922  *		b) We can call __scsi_queue_insert().  The request will
923  *		   be put back on the queue and retried using the same
924  *		   command as before, possibly after a delay.
925  *
926  *		c) We can call scsi_end_request() with blk_stat other than
927  *		   BLK_STS_OK, to fail the remainder of the request.
928  */
929 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
930 {
931 	int result = cmd->result;
932 	struct request_queue *q = cmd->device->request_queue;
933 	struct request *req = cmd->request;
934 	blk_status_t blk_stat = BLK_STS_OK;
935 
936 	if (unlikely(result))	/* a nz result may or may not be an error */
937 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
938 
939 	if (unlikely(blk_rq_is_passthrough(req))) {
940 		/*
941 		 * scsi_result_to_blk_status may have reset the host_byte
942 		 */
943 		scsi_req(req)->result = cmd->result;
944 	}
945 
946 	/*
947 	 * Next deal with any sectors which we were able to correctly
948 	 * handle.
949 	 */
950 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
951 		"%u sectors total, %d bytes done.\n",
952 		blk_rq_sectors(req), good_bytes));
953 
954 	/*
955 	 * Next deal with any sectors which we were able to correctly
956 	 * handle. Failed, zero length commands always need to drop down
957 	 * to retry code. Fast path should return in this block.
958 	 */
959 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
960 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
961 			return; /* no bytes remaining */
962 	}
963 
964 	/* Kill remainder if no retries. */
965 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
966 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
967 			WARN_ONCE(true,
968 			    "Bytes remaining after failed, no-retry command");
969 		return;
970 	}
971 
972 	/*
973 	 * If there had been no error, but we have leftover bytes in the
974 	 * requeues just queue the command up again.
975 	 */
976 	if (likely(result == 0))
977 		scsi_io_completion_reprep(cmd, q);
978 	else
979 		scsi_io_completion_action(cmd, result);
980 }
981 
982 static blk_status_t scsi_init_sgtable(struct request *req,
983 		struct scsi_data_buffer *sdb)
984 {
985 	int count;
986 
987 	/*
988 	 * If sg table allocation fails, requeue request later.
989 	 */
990 	if (unlikely(sg_alloc_table_chained(&sdb->table,
991 			blk_rq_nr_phys_segments(req), sdb->table.sgl,
992 			SCSI_INLINE_SG_CNT)))
993 		return BLK_STS_RESOURCE;
994 
995 	/*
996 	 * Next, walk the list, and fill in the addresses and sizes of
997 	 * each segment.
998 	 */
999 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1000 	BUG_ON(count > sdb->table.nents);
1001 	sdb->table.nents = count;
1002 	sdb->length = blk_rq_payload_bytes(req);
1003 	return BLK_STS_OK;
1004 }
1005 
1006 /*
1007  * Function:    scsi_init_io()
1008  *
1009  * Purpose:     SCSI I/O initialize function.
1010  *
1011  * Arguments:   cmd   - Command descriptor we wish to initialize
1012  *
1013  * Returns:     BLK_STS_OK on success
1014  *		BLK_STS_RESOURCE if the failure is retryable
1015  *		BLK_STS_IOERR if the failure is fatal
1016  */
1017 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1018 {
1019 	struct request *rq = cmd->request;
1020 	blk_status_t ret;
1021 
1022 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1023 		return BLK_STS_IOERR;
1024 
1025 	ret = scsi_init_sgtable(rq, &cmd->sdb);
1026 	if (ret)
1027 		return ret;
1028 
1029 	if (blk_integrity_rq(rq)) {
1030 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1031 		int ivecs, count;
1032 
1033 		if (WARN_ON_ONCE(!prot_sdb)) {
1034 			/*
1035 			 * This can happen if someone (e.g. multipath)
1036 			 * queues a command to a device on an adapter
1037 			 * that does not support DIX.
1038 			 */
1039 			ret = BLK_STS_IOERR;
1040 			goto out_free_sgtables;
1041 		}
1042 
1043 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1044 
1045 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1046 				prot_sdb->table.sgl,
1047 				SCSI_INLINE_PROT_SG_CNT)) {
1048 			ret = BLK_STS_RESOURCE;
1049 			goto out_free_sgtables;
1050 		}
1051 
1052 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1053 						prot_sdb->table.sgl);
1054 		BUG_ON(count > ivecs);
1055 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1056 
1057 		cmd->prot_sdb = prot_sdb;
1058 		cmd->prot_sdb->table.nents = count;
1059 	}
1060 
1061 	return BLK_STS_OK;
1062 out_free_sgtables:
1063 	scsi_mq_free_sgtables(cmd);
1064 	return ret;
1065 }
1066 EXPORT_SYMBOL(scsi_init_io);
1067 
1068 /**
1069  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1070  * @rq: Request associated with the SCSI command to be initialized.
1071  *
1072  * This function initializes the members of struct scsi_cmnd that must be
1073  * initialized before request processing starts and that won't be
1074  * reinitialized if a SCSI command is requeued.
1075  *
1076  * Called from inside blk_get_request() for pass-through requests and from
1077  * inside scsi_init_command() for filesystem requests.
1078  */
1079 static void scsi_initialize_rq(struct request *rq)
1080 {
1081 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1082 
1083 	scsi_req_init(&cmd->req);
1084 	init_rcu_head(&cmd->rcu);
1085 	cmd->jiffies_at_alloc = jiffies;
1086 	cmd->retries = 0;
1087 }
1088 
1089 /*
1090  * Only called when the request isn't completed by SCSI, and not freed by
1091  * SCSI
1092  */
1093 static void scsi_cleanup_rq(struct request *rq)
1094 {
1095 	if (rq->rq_flags & RQF_DONTPREP) {
1096 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1097 		rq->rq_flags &= ~RQF_DONTPREP;
1098 	}
1099 }
1100 
1101 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1102 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1103 {
1104 	struct scsi_device *sdev = cmd->device;
1105 	struct Scsi_Host *shost = sdev->host;
1106 	unsigned long flags;
1107 
1108 	if (shost->use_cmd_list) {
1109 		spin_lock_irqsave(&sdev->list_lock, flags);
1110 		list_add_tail(&cmd->list, &sdev->cmd_list);
1111 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1112 	}
1113 }
1114 
1115 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1116 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1117 {
1118 	struct scsi_device *sdev = cmd->device;
1119 	struct Scsi_Host *shost = sdev->host;
1120 	unsigned long flags;
1121 
1122 	if (shost->use_cmd_list) {
1123 		spin_lock_irqsave(&sdev->list_lock, flags);
1124 		BUG_ON(list_empty(&cmd->list));
1125 		list_del_init(&cmd->list);
1126 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1127 	}
1128 }
1129 
1130 /* Called after a request has been started. */
1131 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1132 {
1133 	void *buf = cmd->sense_buffer;
1134 	void *prot = cmd->prot_sdb;
1135 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1136 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1137 	unsigned long jiffies_at_alloc;
1138 	int retries;
1139 	bool in_flight;
1140 
1141 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1142 		flags |= SCMD_INITIALIZED;
1143 		scsi_initialize_rq(rq);
1144 	}
1145 
1146 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1147 	retries = cmd->retries;
1148 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1149 	/* zero out the cmd, except for the embedded scsi_request */
1150 	memset((char *)cmd + sizeof(cmd->req), 0,
1151 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1152 
1153 	cmd->device = dev;
1154 	cmd->sense_buffer = buf;
1155 	cmd->prot_sdb = prot;
1156 	cmd->flags = flags;
1157 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1158 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1159 	cmd->retries = retries;
1160 	if (in_flight)
1161 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1162 
1163 	scsi_add_cmd_to_list(cmd);
1164 }
1165 
1166 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1167 		struct request *req)
1168 {
1169 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1170 
1171 	/*
1172 	 * Passthrough requests may transfer data, in which case they must
1173 	 * a bio attached to them.  Or they might contain a SCSI command
1174 	 * that does not transfer data, in which case they may optionally
1175 	 * submit a request without an attached bio.
1176 	 */
1177 	if (req->bio) {
1178 		blk_status_t ret = scsi_init_io(cmd);
1179 		if (unlikely(ret != BLK_STS_OK))
1180 			return ret;
1181 	} else {
1182 		BUG_ON(blk_rq_bytes(req));
1183 
1184 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1185 	}
1186 
1187 	cmd->cmd_len = scsi_req(req)->cmd_len;
1188 	cmd->cmnd = scsi_req(req)->cmd;
1189 	cmd->transfersize = blk_rq_bytes(req);
1190 	cmd->allowed = scsi_req(req)->retries;
1191 	return BLK_STS_OK;
1192 }
1193 
1194 /*
1195  * Setup a normal block command.  These are simple request from filesystems
1196  * that still need to be translated to SCSI CDBs from the ULD.
1197  */
1198 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1199 		struct request *req)
1200 {
1201 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1202 
1203 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1204 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1205 		if (ret != BLK_STS_OK)
1206 			return ret;
1207 	}
1208 
1209 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1210 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1211 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1212 }
1213 
1214 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1215 		struct request *req)
1216 {
1217 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1218 
1219 	if (!blk_rq_bytes(req))
1220 		cmd->sc_data_direction = DMA_NONE;
1221 	else if (rq_data_dir(req) == WRITE)
1222 		cmd->sc_data_direction = DMA_TO_DEVICE;
1223 	else
1224 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1225 
1226 	if (blk_rq_is_scsi(req))
1227 		return scsi_setup_scsi_cmnd(sdev, req);
1228 	else
1229 		return scsi_setup_fs_cmnd(sdev, req);
1230 }
1231 
1232 static blk_status_t
1233 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1234 {
1235 	switch (sdev->sdev_state) {
1236 	case SDEV_OFFLINE:
1237 	case SDEV_TRANSPORT_OFFLINE:
1238 		/*
1239 		 * If the device is offline we refuse to process any
1240 		 * commands.  The device must be brought online
1241 		 * before trying any recovery commands.
1242 		 */
1243 		sdev_printk(KERN_ERR, sdev,
1244 			    "rejecting I/O to offline device\n");
1245 		return BLK_STS_IOERR;
1246 	case SDEV_DEL:
1247 		/*
1248 		 * If the device is fully deleted, we refuse to
1249 		 * process any commands as well.
1250 		 */
1251 		sdev_printk(KERN_ERR, sdev,
1252 			    "rejecting I/O to dead device\n");
1253 		return BLK_STS_IOERR;
1254 	case SDEV_BLOCK:
1255 	case SDEV_CREATED_BLOCK:
1256 		return BLK_STS_RESOURCE;
1257 	case SDEV_QUIESCE:
1258 		/*
1259 		 * If the devices is blocked we defer normal commands.
1260 		 */
1261 		if (req && !(req->rq_flags & RQF_PREEMPT))
1262 			return BLK_STS_RESOURCE;
1263 		return BLK_STS_OK;
1264 	default:
1265 		/*
1266 		 * For any other not fully online state we only allow
1267 		 * special commands.  In particular any user initiated
1268 		 * command is not allowed.
1269 		 */
1270 		if (req && !(req->rq_flags & RQF_PREEMPT))
1271 			return BLK_STS_IOERR;
1272 		return BLK_STS_OK;
1273 	}
1274 }
1275 
1276 /*
1277  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1278  * return 0.
1279  *
1280  * Called with the queue_lock held.
1281  */
1282 static inline int scsi_dev_queue_ready(struct request_queue *q,
1283 				  struct scsi_device *sdev)
1284 {
1285 	unsigned int busy;
1286 
1287 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1288 	if (atomic_read(&sdev->device_blocked)) {
1289 		if (busy)
1290 			goto out_dec;
1291 
1292 		/*
1293 		 * unblock after device_blocked iterates to zero
1294 		 */
1295 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1296 			goto out_dec;
1297 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1298 				   "unblocking device at zero depth\n"));
1299 	}
1300 
1301 	if (busy >= sdev->queue_depth)
1302 		goto out_dec;
1303 
1304 	return 1;
1305 out_dec:
1306 	atomic_dec(&sdev->device_busy);
1307 	return 0;
1308 }
1309 
1310 /*
1311  * scsi_target_queue_ready: checks if there we can send commands to target
1312  * @sdev: scsi device on starget to check.
1313  */
1314 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1315 					   struct scsi_device *sdev)
1316 {
1317 	struct scsi_target *starget = scsi_target(sdev);
1318 	unsigned int busy;
1319 
1320 	if (starget->single_lun) {
1321 		spin_lock_irq(shost->host_lock);
1322 		if (starget->starget_sdev_user &&
1323 		    starget->starget_sdev_user != sdev) {
1324 			spin_unlock_irq(shost->host_lock);
1325 			return 0;
1326 		}
1327 		starget->starget_sdev_user = sdev;
1328 		spin_unlock_irq(shost->host_lock);
1329 	}
1330 
1331 	if (starget->can_queue <= 0)
1332 		return 1;
1333 
1334 	busy = atomic_inc_return(&starget->target_busy) - 1;
1335 	if (atomic_read(&starget->target_blocked) > 0) {
1336 		if (busy)
1337 			goto starved;
1338 
1339 		/*
1340 		 * unblock after target_blocked iterates to zero
1341 		 */
1342 		if (atomic_dec_return(&starget->target_blocked) > 0)
1343 			goto out_dec;
1344 
1345 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1346 				 "unblocking target at zero depth\n"));
1347 	}
1348 
1349 	if (busy >= starget->can_queue)
1350 		goto starved;
1351 
1352 	return 1;
1353 
1354 starved:
1355 	spin_lock_irq(shost->host_lock);
1356 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1357 	spin_unlock_irq(shost->host_lock);
1358 out_dec:
1359 	if (starget->can_queue > 0)
1360 		atomic_dec(&starget->target_busy);
1361 	return 0;
1362 }
1363 
1364 /*
1365  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1366  * return 0. We must end up running the queue again whenever 0 is
1367  * returned, else IO can hang.
1368  */
1369 static inline int scsi_host_queue_ready(struct request_queue *q,
1370 				   struct Scsi_Host *shost,
1371 				   struct scsi_device *sdev,
1372 				   struct scsi_cmnd *cmd)
1373 {
1374 	if (scsi_host_in_recovery(shost))
1375 		return 0;
1376 
1377 	if (atomic_read(&shost->host_blocked) > 0) {
1378 		if (scsi_host_busy(shost) > 0)
1379 			goto starved;
1380 
1381 		/*
1382 		 * unblock after host_blocked iterates to zero
1383 		 */
1384 		if (atomic_dec_return(&shost->host_blocked) > 0)
1385 			goto out_dec;
1386 
1387 		SCSI_LOG_MLQUEUE(3,
1388 			shost_printk(KERN_INFO, shost,
1389 				     "unblocking host at zero depth\n"));
1390 	}
1391 
1392 	if (shost->host_self_blocked)
1393 		goto starved;
1394 
1395 	/* We're OK to process the command, so we can't be starved */
1396 	if (!list_empty(&sdev->starved_entry)) {
1397 		spin_lock_irq(shost->host_lock);
1398 		if (!list_empty(&sdev->starved_entry))
1399 			list_del_init(&sdev->starved_entry);
1400 		spin_unlock_irq(shost->host_lock);
1401 	}
1402 
1403 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1404 
1405 	return 1;
1406 
1407 starved:
1408 	spin_lock_irq(shost->host_lock);
1409 	if (list_empty(&sdev->starved_entry))
1410 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1411 	spin_unlock_irq(shost->host_lock);
1412 out_dec:
1413 	scsi_dec_host_busy(shost, cmd);
1414 	return 0;
1415 }
1416 
1417 /*
1418  * Busy state exporting function for request stacking drivers.
1419  *
1420  * For efficiency, no lock is taken to check the busy state of
1421  * shost/starget/sdev, since the returned value is not guaranteed and
1422  * may be changed after request stacking drivers call the function,
1423  * regardless of taking lock or not.
1424  *
1425  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1426  * needs to return 'not busy'. Otherwise, request stacking drivers
1427  * may hold requests forever.
1428  */
1429 static bool scsi_mq_lld_busy(struct request_queue *q)
1430 {
1431 	struct scsi_device *sdev = q->queuedata;
1432 	struct Scsi_Host *shost;
1433 
1434 	if (blk_queue_dying(q))
1435 		return false;
1436 
1437 	shost = sdev->host;
1438 
1439 	/*
1440 	 * Ignore host/starget busy state.
1441 	 * Since block layer does not have a concept of fairness across
1442 	 * multiple queues, congestion of host/starget needs to be handled
1443 	 * in SCSI layer.
1444 	 */
1445 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1446 		return true;
1447 
1448 	return false;
1449 }
1450 
1451 static void scsi_softirq_done(struct request *rq)
1452 {
1453 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1454 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1455 	int disposition;
1456 
1457 	INIT_LIST_HEAD(&cmd->eh_entry);
1458 
1459 	atomic_inc(&cmd->device->iodone_cnt);
1460 	if (cmd->result)
1461 		atomic_inc(&cmd->device->ioerr_cnt);
1462 
1463 	disposition = scsi_decide_disposition(cmd);
1464 	if (disposition != SUCCESS &&
1465 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1466 		scmd_printk(KERN_ERR, cmd,
1467 			    "timing out command, waited %lus\n",
1468 			    wait_for/HZ);
1469 		disposition = SUCCESS;
1470 	}
1471 
1472 	scsi_log_completion(cmd, disposition);
1473 
1474 	switch (disposition) {
1475 		case SUCCESS:
1476 			scsi_finish_command(cmd);
1477 			break;
1478 		case NEEDS_RETRY:
1479 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1480 			break;
1481 		case ADD_TO_MLQUEUE:
1482 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1483 			break;
1484 		default:
1485 			scsi_eh_scmd_add(cmd);
1486 			break;
1487 	}
1488 }
1489 
1490 /**
1491  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1492  * @cmd: command block we are dispatching.
1493  *
1494  * Return: nonzero return request was rejected and device's queue needs to be
1495  * plugged.
1496  */
1497 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1498 {
1499 	struct Scsi_Host *host = cmd->device->host;
1500 	int rtn = 0;
1501 
1502 	atomic_inc(&cmd->device->iorequest_cnt);
1503 
1504 	/* check if the device is still usable */
1505 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1506 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1507 		 * returns an immediate error upwards, and signals
1508 		 * that the device is no longer present */
1509 		cmd->result = DID_NO_CONNECT << 16;
1510 		goto done;
1511 	}
1512 
1513 	/* Check to see if the scsi lld made this device blocked. */
1514 	if (unlikely(scsi_device_blocked(cmd->device))) {
1515 		/*
1516 		 * in blocked state, the command is just put back on
1517 		 * the device queue.  The suspend state has already
1518 		 * blocked the queue so future requests should not
1519 		 * occur until the device transitions out of the
1520 		 * suspend state.
1521 		 */
1522 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1523 			"queuecommand : device blocked\n"));
1524 		return SCSI_MLQUEUE_DEVICE_BUSY;
1525 	}
1526 
1527 	/* Store the LUN value in cmnd, if needed. */
1528 	if (cmd->device->lun_in_cdb)
1529 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1530 			       (cmd->device->lun << 5 & 0xe0);
1531 
1532 	scsi_log_send(cmd);
1533 
1534 	/*
1535 	 * Before we queue this command, check if the command
1536 	 * length exceeds what the host adapter can handle.
1537 	 */
1538 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1539 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1540 			       "queuecommand : command too long. "
1541 			       "cdb_size=%d host->max_cmd_len=%d\n",
1542 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1543 		cmd->result = (DID_ABORT << 16);
1544 		goto done;
1545 	}
1546 
1547 	if (unlikely(host->shost_state == SHOST_DEL)) {
1548 		cmd->result = (DID_NO_CONNECT << 16);
1549 		goto done;
1550 
1551 	}
1552 
1553 	trace_scsi_dispatch_cmd_start(cmd);
1554 	rtn = host->hostt->queuecommand(host, cmd);
1555 	if (rtn) {
1556 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1557 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1558 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1559 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1560 
1561 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1562 			"queuecommand : request rejected\n"));
1563 	}
1564 
1565 	return rtn;
1566  done:
1567 	cmd->scsi_done(cmd);
1568 	return 0;
1569 }
1570 
1571 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1572 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1573 {
1574 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1575 		sizeof(struct scatterlist);
1576 }
1577 
1578 static blk_status_t scsi_mq_prep_fn(struct request *req)
1579 {
1580 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1581 	struct scsi_device *sdev = req->q->queuedata;
1582 	struct Scsi_Host *shost = sdev->host;
1583 	struct scatterlist *sg;
1584 
1585 	scsi_init_command(sdev, cmd);
1586 
1587 	cmd->request = req;
1588 	cmd->tag = req->tag;
1589 	cmd->prot_op = SCSI_PROT_NORMAL;
1590 
1591 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1592 	cmd->sdb.table.sgl = sg;
1593 
1594 	if (scsi_host_get_prot(shost)) {
1595 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1596 
1597 		cmd->prot_sdb->table.sgl =
1598 			(struct scatterlist *)(cmd->prot_sdb + 1);
1599 	}
1600 
1601 	blk_mq_start_request(req);
1602 
1603 	return scsi_setup_cmnd(sdev, req);
1604 }
1605 
1606 static void scsi_mq_done(struct scsi_cmnd *cmd)
1607 {
1608 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1609 		return;
1610 	trace_scsi_dispatch_cmd_done(cmd);
1611 
1612 	/*
1613 	 * If the block layer didn't complete the request due to a timeout
1614 	 * injection, scsi must clear its internal completed state so that the
1615 	 * timeout handler will see it needs to escalate its own error
1616 	 * recovery.
1617 	 */
1618 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1619 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1620 }
1621 
1622 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1623 {
1624 	struct request_queue *q = hctx->queue;
1625 	struct scsi_device *sdev = q->queuedata;
1626 
1627 	atomic_dec(&sdev->device_busy);
1628 }
1629 
1630 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1631 {
1632 	struct request_queue *q = hctx->queue;
1633 	struct scsi_device *sdev = q->queuedata;
1634 
1635 	if (scsi_dev_queue_ready(q, sdev))
1636 		return true;
1637 
1638 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1639 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1640 	return false;
1641 }
1642 
1643 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1644 			 const struct blk_mq_queue_data *bd)
1645 {
1646 	struct request *req = bd->rq;
1647 	struct request_queue *q = req->q;
1648 	struct scsi_device *sdev = q->queuedata;
1649 	struct Scsi_Host *shost = sdev->host;
1650 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1651 	blk_status_t ret;
1652 	int reason;
1653 
1654 	/*
1655 	 * If the device is not in running state we will reject some or all
1656 	 * commands.
1657 	 */
1658 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1659 		ret = scsi_prep_state_check(sdev, req);
1660 		if (ret != BLK_STS_OK)
1661 			goto out_put_budget;
1662 	}
1663 
1664 	ret = BLK_STS_RESOURCE;
1665 	if (!scsi_target_queue_ready(shost, sdev))
1666 		goto out_put_budget;
1667 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1668 		goto out_dec_target_busy;
1669 
1670 	if (!(req->rq_flags & RQF_DONTPREP)) {
1671 		ret = scsi_mq_prep_fn(req);
1672 		if (ret != BLK_STS_OK)
1673 			goto out_dec_host_busy;
1674 		req->rq_flags |= RQF_DONTPREP;
1675 	} else {
1676 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1677 		blk_mq_start_request(req);
1678 	}
1679 
1680 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1681 	if (sdev->simple_tags)
1682 		cmd->flags |= SCMD_TAGGED;
1683 	if (bd->last)
1684 		cmd->flags |= SCMD_LAST;
1685 
1686 	scsi_init_cmd_errh(cmd);
1687 	cmd->scsi_done = scsi_mq_done;
1688 
1689 	reason = scsi_dispatch_cmd(cmd);
1690 	if (reason) {
1691 		scsi_set_blocked(cmd, reason);
1692 		ret = BLK_STS_RESOURCE;
1693 		goto out_dec_host_busy;
1694 	}
1695 
1696 	return BLK_STS_OK;
1697 
1698 out_dec_host_busy:
1699 	scsi_dec_host_busy(shost, cmd);
1700 out_dec_target_busy:
1701 	if (scsi_target(sdev)->can_queue > 0)
1702 		atomic_dec(&scsi_target(sdev)->target_busy);
1703 out_put_budget:
1704 	scsi_mq_put_budget(hctx);
1705 	switch (ret) {
1706 	case BLK_STS_OK:
1707 		break;
1708 	case BLK_STS_RESOURCE:
1709 		if (atomic_read(&sdev->device_busy) ||
1710 		    scsi_device_blocked(sdev))
1711 			ret = BLK_STS_DEV_RESOURCE;
1712 		break;
1713 	default:
1714 		if (unlikely(!scsi_device_online(sdev)))
1715 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1716 		else
1717 			scsi_req(req)->result = DID_ERROR << 16;
1718 		/*
1719 		 * Make sure to release all allocated resources when
1720 		 * we hit an error, as we will never see this command
1721 		 * again.
1722 		 */
1723 		if (req->rq_flags & RQF_DONTPREP)
1724 			scsi_mq_uninit_cmd(cmd);
1725 		break;
1726 	}
1727 	return ret;
1728 }
1729 
1730 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1731 		bool reserved)
1732 {
1733 	if (reserved)
1734 		return BLK_EH_RESET_TIMER;
1735 	return scsi_times_out(req);
1736 }
1737 
1738 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1739 				unsigned int hctx_idx, unsigned int numa_node)
1740 {
1741 	struct Scsi_Host *shost = set->driver_data;
1742 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1743 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1744 	struct scatterlist *sg;
1745 
1746 	if (unchecked_isa_dma)
1747 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1748 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1749 						    GFP_KERNEL, numa_node);
1750 	if (!cmd->sense_buffer)
1751 		return -ENOMEM;
1752 	cmd->req.sense = cmd->sense_buffer;
1753 
1754 	if (scsi_host_get_prot(shost)) {
1755 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1756 			shost->hostt->cmd_size;
1757 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1764 				 unsigned int hctx_idx)
1765 {
1766 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1767 
1768 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1769 			       cmd->sense_buffer);
1770 }
1771 
1772 static int scsi_map_queues(struct blk_mq_tag_set *set)
1773 {
1774 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1775 
1776 	if (shost->hostt->map_queues)
1777 		return shost->hostt->map_queues(shost);
1778 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1779 }
1780 
1781 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1782 {
1783 	struct device *dev = shost->dma_dev;
1784 
1785 	/*
1786 	 * this limit is imposed by hardware restrictions
1787 	 */
1788 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1789 					SG_MAX_SEGMENTS));
1790 
1791 	if (scsi_host_prot_dma(shost)) {
1792 		shost->sg_prot_tablesize =
1793 			min_not_zero(shost->sg_prot_tablesize,
1794 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1795 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1796 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1797 	}
1798 
1799 	if (dev->dma_mask) {
1800 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1801 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1802 	}
1803 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1804 	if (shost->unchecked_isa_dma)
1805 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1806 	blk_queue_segment_boundary(q, shost->dma_boundary);
1807 	dma_set_seg_boundary(dev, shost->dma_boundary);
1808 
1809 	blk_queue_max_segment_size(q, shost->max_segment_size);
1810 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1811 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1812 
1813 	/*
1814 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1815 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1816 	 * which is set by the platform.
1817 	 *
1818 	 * Devices that require a bigger alignment can increase it later.
1819 	 */
1820 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1821 }
1822 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1823 
1824 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1825 	.get_budget	= scsi_mq_get_budget,
1826 	.put_budget	= scsi_mq_put_budget,
1827 	.queue_rq	= scsi_queue_rq,
1828 	.complete	= scsi_softirq_done,
1829 	.timeout	= scsi_timeout,
1830 #ifdef CONFIG_BLK_DEBUG_FS
1831 	.show_rq	= scsi_show_rq,
1832 #endif
1833 	.init_request	= scsi_mq_init_request,
1834 	.exit_request	= scsi_mq_exit_request,
1835 	.initialize_rq_fn = scsi_initialize_rq,
1836 	.cleanup_rq	= scsi_cleanup_rq,
1837 	.busy		= scsi_mq_lld_busy,
1838 	.map_queues	= scsi_map_queues,
1839 };
1840 
1841 
1842 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1843 {
1844 	struct request_queue *q = hctx->queue;
1845 	struct scsi_device *sdev = q->queuedata;
1846 	struct Scsi_Host *shost = sdev->host;
1847 
1848 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1849 }
1850 
1851 static const struct blk_mq_ops scsi_mq_ops = {
1852 	.get_budget	= scsi_mq_get_budget,
1853 	.put_budget	= scsi_mq_put_budget,
1854 	.queue_rq	= scsi_queue_rq,
1855 	.commit_rqs	= scsi_commit_rqs,
1856 	.complete	= scsi_softirq_done,
1857 	.timeout	= scsi_timeout,
1858 #ifdef CONFIG_BLK_DEBUG_FS
1859 	.show_rq	= scsi_show_rq,
1860 #endif
1861 	.init_request	= scsi_mq_init_request,
1862 	.exit_request	= scsi_mq_exit_request,
1863 	.initialize_rq_fn = scsi_initialize_rq,
1864 	.cleanup_rq	= scsi_cleanup_rq,
1865 	.busy		= scsi_mq_lld_busy,
1866 	.map_queues	= scsi_map_queues,
1867 };
1868 
1869 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1870 {
1871 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1872 	if (IS_ERR(sdev->request_queue))
1873 		return NULL;
1874 
1875 	sdev->request_queue->queuedata = sdev;
1876 	__scsi_init_queue(sdev->host, sdev->request_queue);
1877 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1878 	return sdev->request_queue;
1879 }
1880 
1881 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1882 {
1883 	unsigned int cmd_size, sgl_size;
1884 
1885 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1886 				scsi_mq_inline_sgl_size(shost));
1887 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1888 	if (scsi_host_get_prot(shost))
1889 		cmd_size += sizeof(struct scsi_data_buffer) +
1890 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1891 
1892 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1893 	if (shost->hostt->commit_rqs)
1894 		shost->tag_set.ops = &scsi_mq_ops;
1895 	else
1896 		shost->tag_set.ops = &scsi_mq_ops_no_commit;
1897 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1898 	shost->tag_set.queue_depth = shost->can_queue;
1899 	shost->tag_set.cmd_size = cmd_size;
1900 	shost->tag_set.numa_node = NUMA_NO_NODE;
1901 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1902 	shost->tag_set.flags |=
1903 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1904 	shost->tag_set.driver_data = shost;
1905 
1906 	return blk_mq_alloc_tag_set(&shost->tag_set);
1907 }
1908 
1909 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1910 {
1911 	blk_mq_free_tag_set(&shost->tag_set);
1912 }
1913 
1914 /**
1915  * scsi_device_from_queue - return sdev associated with a request_queue
1916  * @q: The request queue to return the sdev from
1917  *
1918  * Return the sdev associated with a request queue or NULL if the
1919  * request_queue does not reference a SCSI device.
1920  */
1921 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1922 {
1923 	struct scsi_device *sdev = NULL;
1924 
1925 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1926 	    q->mq_ops == &scsi_mq_ops)
1927 		sdev = q->queuedata;
1928 	if (!sdev || !get_device(&sdev->sdev_gendev))
1929 		sdev = NULL;
1930 
1931 	return sdev;
1932 }
1933 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1934 
1935 /*
1936  * Function:    scsi_block_requests()
1937  *
1938  * Purpose:     Utility function used by low-level drivers to prevent further
1939  *		commands from being queued to the device.
1940  *
1941  * Arguments:   shost       - Host in question
1942  *
1943  * Returns:     Nothing
1944  *
1945  * Lock status: No locks are assumed held.
1946  *
1947  * Notes:       There is no timer nor any other means by which the requests
1948  *		get unblocked other than the low-level driver calling
1949  *		scsi_unblock_requests().
1950  */
1951 void scsi_block_requests(struct Scsi_Host *shost)
1952 {
1953 	shost->host_self_blocked = 1;
1954 }
1955 EXPORT_SYMBOL(scsi_block_requests);
1956 
1957 /*
1958  * Function:    scsi_unblock_requests()
1959  *
1960  * Purpose:     Utility function used by low-level drivers to allow further
1961  *		commands from being queued to the device.
1962  *
1963  * Arguments:   shost       - Host in question
1964  *
1965  * Returns:     Nothing
1966  *
1967  * Lock status: No locks are assumed held.
1968  *
1969  * Notes:       There is no timer nor any other means by which the requests
1970  *		get unblocked other than the low-level driver calling
1971  *		scsi_unblock_requests().
1972  *
1973  *		This is done as an API function so that changes to the
1974  *		internals of the scsi mid-layer won't require wholesale
1975  *		changes to drivers that use this feature.
1976  */
1977 void scsi_unblock_requests(struct Scsi_Host *shost)
1978 {
1979 	shost->host_self_blocked = 0;
1980 	scsi_run_host_queues(shost);
1981 }
1982 EXPORT_SYMBOL(scsi_unblock_requests);
1983 
1984 int __init scsi_init_queue(void)
1985 {
1986 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1987 					   sizeof(struct scsi_data_buffer),
1988 					   0, 0, NULL);
1989 	if (!scsi_sdb_cache) {
1990 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1991 		return -ENOMEM;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 void scsi_exit_queue(void)
1998 {
1999 	kmem_cache_destroy(scsi_sense_cache);
2000 	kmem_cache_destroy(scsi_sense_isadma_cache);
2001 	kmem_cache_destroy(scsi_sdb_cache);
2002 }
2003 
2004 /**
2005  *	scsi_mode_select - issue a mode select
2006  *	@sdev:	SCSI device to be queried
2007  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2008  *	@sp:	Save page bit (0 == don't save, 1 == save)
2009  *	@modepage: mode page being requested
2010  *	@buffer: request buffer (may not be smaller than eight bytes)
2011  *	@len:	length of request buffer.
2012  *	@timeout: command timeout
2013  *	@retries: number of retries before failing
2014  *	@data: returns a structure abstracting the mode header data
2015  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2016  *		must be SCSI_SENSE_BUFFERSIZE big.
2017  *
2018  *	Returns zero if successful; negative error number or scsi
2019  *	status on error
2020  *
2021  */
2022 int
2023 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2024 		 unsigned char *buffer, int len, int timeout, int retries,
2025 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2026 {
2027 	unsigned char cmd[10];
2028 	unsigned char *real_buffer;
2029 	int ret;
2030 
2031 	memset(cmd, 0, sizeof(cmd));
2032 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2033 
2034 	if (sdev->use_10_for_ms) {
2035 		if (len > 65535)
2036 			return -EINVAL;
2037 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2038 		if (!real_buffer)
2039 			return -ENOMEM;
2040 		memcpy(real_buffer + 8, buffer, len);
2041 		len += 8;
2042 		real_buffer[0] = 0;
2043 		real_buffer[1] = 0;
2044 		real_buffer[2] = data->medium_type;
2045 		real_buffer[3] = data->device_specific;
2046 		real_buffer[4] = data->longlba ? 0x01 : 0;
2047 		real_buffer[5] = 0;
2048 		real_buffer[6] = data->block_descriptor_length >> 8;
2049 		real_buffer[7] = data->block_descriptor_length;
2050 
2051 		cmd[0] = MODE_SELECT_10;
2052 		cmd[7] = len >> 8;
2053 		cmd[8] = len;
2054 	} else {
2055 		if (len > 255 || data->block_descriptor_length > 255 ||
2056 		    data->longlba)
2057 			return -EINVAL;
2058 
2059 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2060 		if (!real_buffer)
2061 			return -ENOMEM;
2062 		memcpy(real_buffer + 4, buffer, len);
2063 		len += 4;
2064 		real_buffer[0] = 0;
2065 		real_buffer[1] = data->medium_type;
2066 		real_buffer[2] = data->device_specific;
2067 		real_buffer[3] = data->block_descriptor_length;
2068 
2069 
2070 		cmd[0] = MODE_SELECT;
2071 		cmd[4] = len;
2072 	}
2073 
2074 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2075 			       sshdr, timeout, retries, NULL);
2076 	kfree(real_buffer);
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL_GPL(scsi_mode_select);
2080 
2081 /**
2082  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2083  *	@sdev:	SCSI device to be queried
2084  *	@dbd:	set if mode sense will allow block descriptors to be returned
2085  *	@modepage: mode page being requested
2086  *	@buffer: request buffer (may not be smaller than eight bytes)
2087  *	@len:	length of request buffer.
2088  *	@timeout: command timeout
2089  *	@retries: number of retries before failing
2090  *	@data: returns a structure abstracting the mode header data
2091  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2092  *		must be SCSI_SENSE_BUFFERSIZE big.
2093  *
2094  *	Returns zero if unsuccessful, or the header offset (either 4
2095  *	or 8 depending on whether a six or ten byte command was
2096  *	issued) if successful.
2097  */
2098 int
2099 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2100 		  unsigned char *buffer, int len, int timeout, int retries,
2101 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2102 {
2103 	unsigned char cmd[12];
2104 	int use_10_for_ms;
2105 	int header_length;
2106 	int result, retry_count = retries;
2107 	struct scsi_sense_hdr my_sshdr;
2108 
2109 	memset(data, 0, sizeof(*data));
2110 	memset(&cmd[0], 0, 12);
2111 
2112 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2113 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2114 	cmd[2] = modepage;
2115 
2116 	/* caller might not be interested in sense, but we need it */
2117 	if (!sshdr)
2118 		sshdr = &my_sshdr;
2119 
2120  retry:
2121 	use_10_for_ms = sdev->use_10_for_ms;
2122 
2123 	if (use_10_for_ms) {
2124 		if (len < 8)
2125 			len = 8;
2126 
2127 		cmd[0] = MODE_SENSE_10;
2128 		cmd[8] = len;
2129 		header_length = 8;
2130 	} else {
2131 		if (len < 4)
2132 			len = 4;
2133 
2134 		cmd[0] = MODE_SENSE;
2135 		cmd[4] = len;
2136 		header_length = 4;
2137 	}
2138 
2139 	memset(buffer, 0, len);
2140 
2141 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2142 				  sshdr, timeout, retries, NULL);
2143 
2144 	/* This code looks awful: what it's doing is making sure an
2145 	 * ILLEGAL REQUEST sense return identifies the actual command
2146 	 * byte as the problem.  MODE_SENSE commands can return
2147 	 * ILLEGAL REQUEST if the code page isn't supported */
2148 
2149 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2150 	    driver_byte(result) == DRIVER_SENSE) {
2151 		if (scsi_sense_valid(sshdr)) {
2152 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2153 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2154 				/*
2155 				 * Invalid command operation code
2156 				 */
2157 				sdev->use_10_for_ms = 0;
2158 				goto retry;
2159 			}
2160 		}
2161 	}
2162 
2163 	if(scsi_status_is_good(result)) {
2164 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2165 			     (modepage == 6 || modepage == 8))) {
2166 			/* Initio breakage? */
2167 			header_length = 0;
2168 			data->length = 13;
2169 			data->medium_type = 0;
2170 			data->device_specific = 0;
2171 			data->longlba = 0;
2172 			data->block_descriptor_length = 0;
2173 		} else if(use_10_for_ms) {
2174 			data->length = buffer[0]*256 + buffer[1] + 2;
2175 			data->medium_type = buffer[2];
2176 			data->device_specific = buffer[3];
2177 			data->longlba = buffer[4] & 0x01;
2178 			data->block_descriptor_length = buffer[6]*256
2179 				+ buffer[7];
2180 		} else {
2181 			data->length = buffer[0] + 1;
2182 			data->medium_type = buffer[1];
2183 			data->device_specific = buffer[2];
2184 			data->block_descriptor_length = buffer[3];
2185 		}
2186 		data->header_length = header_length;
2187 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2188 		   scsi_sense_valid(sshdr) &&
2189 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2190 		retry_count--;
2191 		goto retry;
2192 	}
2193 
2194 	return result;
2195 }
2196 EXPORT_SYMBOL(scsi_mode_sense);
2197 
2198 /**
2199  *	scsi_test_unit_ready - test if unit is ready
2200  *	@sdev:	scsi device to change the state of.
2201  *	@timeout: command timeout
2202  *	@retries: number of retries before failing
2203  *	@sshdr: outpout pointer for decoded sense information.
2204  *
2205  *	Returns zero if unsuccessful or an error if TUR failed.  For
2206  *	removable media, UNIT_ATTENTION sets ->changed flag.
2207  **/
2208 int
2209 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2210 		     struct scsi_sense_hdr *sshdr)
2211 {
2212 	char cmd[] = {
2213 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2214 	};
2215 	int result;
2216 
2217 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2218 	do {
2219 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2220 					  timeout, 1, NULL);
2221 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2222 		    sshdr->sense_key == UNIT_ATTENTION)
2223 			sdev->changed = 1;
2224 	} while (scsi_sense_valid(sshdr) &&
2225 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2226 
2227 	return result;
2228 }
2229 EXPORT_SYMBOL(scsi_test_unit_ready);
2230 
2231 /**
2232  *	scsi_device_set_state - Take the given device through the device state model.
2233  *	@sdev:	scsi device to change the state of.
2234  *	@state:	state to change to.
2235  *
2236  *	Returns zero if successful or an error if the requested
2237  *	transition is illegal.
2238  */
2239 int
2240 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2241 {
2242 	enum scsi_device_state oldstate = sdev->sdev_state;
2243 
2244 	if (state == oldstate)
2245 		return 0;
2246 
2247 	switch (state) {
2248 	case SDEV_CREATED:
2249 		switch (oldstate) {
2250 		case SDEV_CREATED_BLOCK:
2251 			break;
2252 		default:
2253 			goto illegal;
2254 		}
2255 		break;
2256 
2257 	case SDEV_RUNNING:
2258 		switch (oldstate) {
2259 		case SDEV_CREATED:
2260 		case SDEV_OFFLINE:
2261 		case SDEV_TRANSPORT_OFFLINE:
2262 		case SDEV_QUIESCE:
2263 		case SDEV_BLOCK:
2264 			break;
2265 		default:
2266 			goto illegal;
2267 		}
2268 		break;
2269 
2270 	case SDEV_QUIESCE:
2271 		switch (oldstate) {
2272 		case SDEV_RUNNING:
2273 		case SDEV_OFFLINE:
2274 		case SDEV_TRANSPORT_OFFLINE:
2275 			break;
2276 		default:
2277 			goto illegal;
2278 		}
2279 		break;
2280 
2281 	case SDEV_OFFLINE:
2282 	case SDEV_TRANSPORT_OFFLINE:
2283 		switch (oldstate) {
2284 		case SDEV_CREATED:
2285 		case SDEV_RUNNING:
2286 		case SDEV_QUIESCE:
2287 		case SDEV_BLOCK:
2288 			break;
2289 		default:
2290 			goto illegal;
2291 		}
2292 		break;
2293 
2294 	case SDEV_BLOCK:
2295 		switch (oldstate) {
2296 		case SDEV_RUNNING:
2297 		case SDEV_CREATED_BLOCK:
2298 		case SDEV_OFFLINE:
2299 			break;
2300 		default:
2301 			goto illegal;
2302 		}
2303 		break;
2304 
2305 	case SDEV_CREATED_BLOCK:
2306 		switch (oldstate) {
2307 		case SDEV_CREATED:
2308 			break;
2309 		default:
2310 			goto illegal;
2311 		}
2312 		break;
2313 
2314 	case SDEV_CANCEL:
2315 		switch (oldstate) {
2316 		case SDEV_CREATED:
2317 		case SDEV_RUNNING:
2318 		case SDEV_QUIESCE:
2319 		case SDEV_OFFLINE:
2320 		case SDEV_TRANSPORT_OFFLINE:
2321 			break;
2322 		default:
2323 			goto illegal;
2324 		}
2325 		break;
2326 
2327 	case SDEV_DEL:
2328 		switch (oldstate) {
2329 		case SDEV_CREATED:
2330 		case SDEV_RUNNING:
2331 		case SDEV_OFFLINE:
2332 		case SDEV_TRANSPORT_OFFLINE:
2333 		case SDEV_CANCEL:
2334 		case SDEV_BLOCK:
2335 		case SDEV_CREATED_BLOCK:
2336 			break;
2337 		default:
2338 			goto illegal;
2339 		}
2340 		break;
2341 
2342 	}
2343 	sdev->sdev_state = state;
2344 	return 0;
2345 
2346  illegal:
2347 	SCSI_LOG_ERROR_RECOVERY(1,
2348 				sdev_printk(KERN_ERR, sdev,
2349 					    "Illegal state transition %s->%s",
2350 					    scsi_device_state_name(oldstate),
2351 					    scsi_device_state_name(state))
2352 				);
2353 	return -EINVAL;
2354 }
2355 EXPORT_SYMBOL(scsi_device_set_state);
2356 
2357 /**
2358  * 	sdev_evt_emit - emit a single SCSI device uevent
2359  *	@sdev: associated SCSI device
2360  *	@evt: event to emit
2361  *
2362  *	Send a single uevent (scsi_event) to the associated scsi_device.
2363  */
2364 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2365 {
2366 	int idx = 0;
2367 	char *envp[3];
2368 
2369 	switch (evt->evt_type) {
2370 	case SDEV_EVT_MEDIA_CHANGE:
2371 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2372 		break;
2373 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2374 		scsi_rescan_device(&sdev->sdev_gendev);
2375 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2376 		break;
2377 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2378 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2379 		break;
2380 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2381 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2382 		break;
2383 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2384 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2385 		break;
2386 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2387 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2388 		break;
2389 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2390 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2391 		break;
2392 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2393 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2394 		break;
2395 	default:
2396 		/* do nothing */
2397 		break;
2398 	}
2399 
2400 	envp[idx++] = NULL;
2401 
2402 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2403 }
2404 
2405 /**
2406  * 	sdev_evt_thread - send a uevent for each scsi event
2407  *	@work: work struct for scsi_device
2408  *
2409  *	Dispatch queued events to their associated scsi_device kobjects
2410  *	as uevents.
2411  */
2412 void scsi_evt_thread(struct work_struct *work)
2413 {
2414 	struct scsi_device *sdev;
2415 	enum scsi_device_event evt_type;
2416 	LIST_HEAD(event_list);
2417 
2418 	sdev = container_of(work, struct scsi_device, event_work);
2419 
2420 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2421 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2422 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2423 
2424 	while (1) {
2425 		struct scsi_event *evt;
2426 		struct list_head *this, *tmp;
2427 		unsigned long flags;
2428 
2429 		spin_lock_irqsave(&sdev->list_lock, flags);
2430 		list_splice_init(&sdev->event_list, &event_list);
2431 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2432 
2433 		if (list_empty(&event_list))
2434 			break;
2435 
2436 		list_for_each_safe(this, tmp, &event_list) {
2437 			evt = list_entry(this, struct scsi_event, node);
2438 			list_del(&evt->node);
2439 			scsi_evt_emit(sdev, evt);
2440 			kfree(evt);
2441 		}
2442 	}
2443 }
2444 
2445 /**
2446  * 	sdev_evt_send - send asserted event to uevent thread
2447  *	@sdev: scsi_device event occurred on
2448  *	@evt: event to send
2449  *
2450  *	Assert scsi device event asynchronously.
2451  */
2452 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2453 {
2454 	unsigned long flags;
2455 
2456 #if 0
2457 	/* FIXME: currently this check eliminates all media change events
2458 	 * for polled devices.  Need to update to discriminate between AN
2459 	 * and polled events */
2460 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2461 		kfree(evt);
2462 		return;
2463 	}
2464 #endif
2465 
2466 	spin_lock_irqsave(&sdev->list_lock, flags);
2467 	list_add_tail(&evt->node, &sdev->event_list);
2468 	schedule_work(&sdev->event_work);
2469 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2470 }
2471 EXPORT_SYMBOL_GPL(sdev_evt_send);
2472 
2473 /**
2474  * 	sdev_evt_alloc - allocate a new scsi event
2475  *	@evt_type: type of event to allocate
2476  *	@gfpflags: GFP flags for allocation
2477  *
2478  *	Allocates and returns a new scsi_event.
2479  */
2480 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2481 				  gfp_t gfpflags)
2482 {
2483 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2484 	if (!evt)
2485 		return NULL;
2486 
2487 	evt->evt_type = evt_type;
2488 	INIT_LIST_HEAD(&evt->node);
2489 
2490 	/* evt_type-specific initialization, if any */
2491 	switch (evt_type) {
2492 	case SDEV_EVT_MEDIA_CHANGE:
2493 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2494 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2495 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2496 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2497 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2498 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2499 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2500 	default:
2501 		/* do nothing */
2502 		break;
2503 	}
2504 
2505 	return evt;
2506 }
2507 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2508 
2509 /**
2510  * 	sdev_evt_send_simple - send asserted event to uevent thread
2511  *	@sdev: scsi_device event occurred on
2512  *	@evt_type: type of event to send
2513  *	@gfpflags: GFP flags for allocation
2514  *
2515  *	Assert scsi device event asynchronously, given an event type.
2516  */
2517 void sdev_evt_send_simple(struct scsi_device *sdev,
2518 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2519 {
2520 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2521 	if (!evt) {
2522 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2523 			    evt_type);
2524 		return;
2525 	}
2526 
2527 	sdev_evt_send(sdev, evt);
2528 }
2529 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2530 
2531 /**
2532  *	scsi_device_quiesce - Block user issued commands.
2533  *	@sdev:	scsi device to quiesce.
2534  *
2535  *	This works by trying to transition to the SDEV_QUIESCE state
2536  *	(which must be a legal transition).  When the device is in this
2537  *	state, only special requests will be accepted, all others will
2538  *	be deferred.  Since special requests may also be requeued requests,
2539  *	a successful return doesn't guarantee the device will be
2540  *	totally quiescent.
2541  *
2542  *	Must be called with user context, may sleep.
2543  *
2544  *	Returns zero if unsuccessful or an error if not.
2545  */
2546 int
2547 scsi_device_quiesce(struct scsi_device *sdev)
2548 {
2549 	struct request_queue *q = sdev->request_queue;
2550 	int err;
2551 
2552 	/*
2553 	 * It is allowed to call scsi_device_quiesce() multiple times from
2554 	 * the same context but concurrent scsi_device_quiesce() calls are
2555 	 * not allowed.
2556 	 */
2557 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2558 
2559 	if (sdev->quiesced_by == current)
2560 		return 0;
2561 
2562 	blk_set_pm_only(q);
2563 
2564 	blk_mq_freeze_queue(q);
2565 	/*
2566 	 * Ensure that the effect of blk_set_pm_only() will be visible
2567 	 * for percpu_ref_tryget() callers that occur after the queue
2568 	 * unfreeze even if the queue was already frozen before this function
2569 	 * was called. See also https://lwn.net/Articles/573497/.
2570 	 */
2571 	synchronize_rcu();
2572 	blk_mq_unfreeze_queue(q);
2573 
2574 	mutex_lock(&sdev->state_mutex);
2575 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2576 	if (err == 0)
2577 		sdev->quiesced_by = current;
2578 	else
2579 		blk_clear_pm_only(q);
2580 	mutex_unlock(&sdev->state_mutex);
2581 
2582 	return err;
2583 }
2584 EXPORT_SYMBOL(scsi_device_quiesce);
2585 
2586 /**
2587  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2588  *	@sdev:	scsi device to resume.
2589  *
2590  *	Moves the device from quiesced back to running and restarts the
2591  *	queues.
2592  *
2593  *	Must be called with user context, may sleep.
2594  */
2595 void scsi_device_resume(struct scsi_device *sdev)
2596 {
2597 	/* check if the device state was mutated prior to resume, and if
2598 	 * so assume the state is being managed elsewhere (for example
2599 	 * device deleted during suspend)
2600 	 */
2601 	mutex_lock(&sdev->state_mutex);
2602 	if (sdev->quiesced_by) {
2603 		sdev->quiesced_by = NULL;
2604 		blk_clear_pm_only(sdev->request_queue);
2605 	}
2606 	if (sdev->sdev_state == SDEV_QUIESCE)
2607 		scsi_device_set_state(sdev, SDEV_RUNNING);
2608 	mutex_unlock(&sdev->state_mutex);
2609 }
2610 EXPORT_SYMBOL(scsi_device_resume);
2611 
2612 static void
2613 device_quiesce_fn(struct scsi_device *sdev, void *data)
2614 {
2615 	scsi_device_quiesce(sdev);
2616 }
2617 
2618 void
2619 scsi_target_quiesce(struct scsi_target *starget)
2620 {
2621 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2622 }
2623 EXPORT_SYMBOL(scsi_target_quiesce);
2624 
2625 static void
2626 device_resume_fn(struct scsi_device *sdev, void *data)
2627 {
2628 	scsi_device_resume(sdev);
2629 }
2630 
2631 void
2632 scsi_target_resume(struct scsi_target *starget)
2633 {
2634 	starget_for_each_device(starget, NULL, device_resume_fn);
2635 }
2636 EXPORT_SYMBOL(scsi_target_resume);
2637 
2638 /**
2639  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2640  * @sdev: device to block
2641  *
2642  * Pause SCSI command processing on the specified device. Does not sleep.
2643  *
2644  * Returns zero if successful or a negative error code upon failure.
2645  *
2646  * Notes:
2647  * This routine transitions the device to the SDEV_BLOCK state (which must be
2648  * a legal transition). When the device is in this state, command processing
2649  * is paused until the device leaves the SDEV_BLOCK state. See also
2650  * scsi_internal_device_unblock_nowait().
2651  */
2652 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2653 {
2654 	struct request_queue *q = sdev->request_queue;
2655 	int err = 0;
2656 
2657 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2658 	if (err) {
2659 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2660 
2661 		if (err)
2662 			return err;
2663 	}
2664 
2665 	/*
2666 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2667 	 * block layer from calling the midlayer with this device's
2668 	 * request queue.
2669 	 */
2670 	blk_mq_quiesce_queue_nowait(q);
2671 	return 0;
2672 }
2673 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2674 
2675 /**
2676  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2677  * @sdev: device to block
2678  *
2679  * Pause SCSI command processing on the specified device and wait until all
2680  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2681  *
2682  * Returns zero if successful or a negative error code upon failure.
2683  *
2684  * Note:
2685  * This routine transitions the device to the SDEV_BLOCK state (which must be
2686  * a legal transition). When the device is in this state, command processing
2687  * is paused until the device leaves the SDEV_BLOCK state. See also
2688  * scsi_internal_device_unblock().
2689  */
2690 static int scsi_internal_device_block(struct scsi_device *sdev)
2691 {
2692 	struct request_queue *q = sdev->request_queue;
2693 	int err;
2694 
2695 	mutex_lock(&sdev->state_mutex);
2696 	err = scsi_internal_device_block_nowait(sdev);
2697 	if (err == 0)
2698 		blk_mq_quiesce_queue(q);
2699 	mutex_unlock(&sdev->state_mutex);
2700 
2701 	return err;
2702 }
2703 
2704 void scsi_start_queue(struct scsi_device *sdev)
2705 {
2706 	struct request_queue *q = sdev->request_queue;
2707 
2708 	blk_mq_unquiesce_queue(q);
2709 }
2710 
2711 /**
2712  * scsi_internal_device_unblock_nowait - resume a device after a block request
2713  * @sdev:	device to resume
2714  * @new_state:	state to set the device to after unblocking
2715  *
2716  * Restart the device queue for a previously suspended SCSI device. Does not
2717  * sleep.
2718  *
2719  * Returns zero if successful or a negative error code upon failure.
2720  *
2721  * Notes:
2722  * This routine transitions the device to the SDEV_RUNNING state or to one of
2723  * the offline states (which must be a legal transition) allowing the midlayer
2724  * to goose the queue for this device.
2725  */
2726 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2727 					enum scsi_device_state new_state)
2728 {
2729 	switch (new_state) {
2730 	case SDEV_RUNNING:
2731 	case SDEV_TRANSPORT_OFFLINE:
2732 		break;
2733 	default:
2734 		return -EINVAL;
2735 	}
2736 
2737 	/*
2738 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2739 	 * offlined states and goose the device queue if successful.
2740 	 */
2741 	switch (sdev->sdev_state) {
2742 	case SDEV_BLOCK:
2743 	case SDEV_TRANSPORT_OFFLINE:
2744 		sdev->sdev_state = new_state;
2745 		break;
2746 	case SDEV_CREATED_BLOCK:
2747 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2748 		    new_state == SDEV_OFFLINE)
2749 			sdev->sdev_state = new_state;
2750 		else
2751 			sdev->sdev_state = SDEV_CREATED;
2752 		break;
2753 	case SDEV_CANCEL:
2754 	case SDEV_OFFLINE:
2755 		break;
2756 	default:
2757 		return -EINVAL;
2758 	}
2759 	scsi_start_queue(sdev);
2760 
2761 	return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2764 
2765 /**
2766  * scsi_internal_device_unblock - resume a device after a block request
2767  * @sdev:	device to resume
2768  * @new_state:	state to set the device to after unblocking
2769  *
2770  * Restart the device queue for a previously suspended SCSI device. May sleep.
2771  *
2772  * Returns zero if successful or a negative error code upon failure.
2773  *
2774  * Notes:
2775  * This routine transitions the device to the SDEV_RUNNING state or to one of
2776  * the offline states (which must be a legal transition) allowing the midlayer
2777  * to goose the queue for this device.
2778  */
2779 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2780 					enum scsi_device_state new_state)
2781 {
2782 	int ret;
2783 
2784 	mutex_lock(&sdev->state_mutex);
2785 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2786 	mutex_unlock(&sdev->state_mutex);
2787 
2788 	return ret;
2789 }
2790 
2791 static void
2792 device_block(struct scsi_device *sdev, void *data)
2793 {
2794 	int ret;
2795 
2796 	ret = scsi_internal_device_block(sdev);
2797 
2798 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2799 		  dev_name(&sdev->sdev_gendev), ret);
2800 }
2801 
2802 static int
2803 target_block(struct device *dev, void *data)
2804 {
2805 	if (scsi_is_target_device(dev))
2806 		starget_for_each_device(to_scsi_target(dev), NULL,
2807 					device_block);
2808 	return 0;
2809 }
2810 
2811 void
2812 scsi_target_block(struct device *dev)
2813 {
2814 	if (scsi_is_target_device(dev))
2815 		starget_for_each_device(to_scsi_target(dev), NULL,
2816 					device_block);
2817 	else
2818 		device_for_each_child(dev, NULL, target_block);
2819 }
2820 EXPORT_SYMBOL_GPL(scsi_target_block);
2821 
2822 static void
2823 device_unblock(struct scsi_device *sdev, void *data)
2824 {
2825 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2826 }
2827 
2828 static int
2829 target_unblock(struct device *dev, void *data)
2830 {
2831 	if (scsi_is_target_device(dev))
2832 		starget_for_each_device(to_scsi_target(dev), data,
2833 					device_unblock);
2834 	return 0;
2835 }
2836 
2837 void
2838 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2839 {
2840 	if (scsi_is_target_device(dev))
2841 		starget_for_each_device(to_scsi_target(dev), &new_state,
2842 					device_unblock);
2843 	else
2844 		device_for_each_child(dev, &new_state, target_unblock);
2845 }
2846 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2847 
2848 /**
2849  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2850  * @sgl:	scatter-gather list
2851  * @sg_count:	number of segments in sg
2852  * @offset:	offset in bytes into sg, on return offset into the mapped area
2853  * @len:	bytes to map, on return number of bytes mapped
2854  *
2855  * Returns virtual address of the start of the mapped page
2856  */
2857 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2858 			  size_t *offset, size_t *len)
2859 {
2860 	int i;
2861 	size_t sg_len = 0, len_complete = 0;
2862 	struct scatterlist *sg;
2863 	struct page *page;
2864 
2865 	WARN_ON(!irqs_disabled());
2866 
2867 	for_each_sg(sgl, sg, sg_count, i) {
2868 		len_complete = sg_len; /* Complete sg-entries */
2869 		sg_len += sg->length;
2870 		if (sg_len > *offset)
2871 			break;
2872 	}
2873 
2874 	if (unlikely(i == sg_count)) {
2875 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2876 			"elements %d\n",
2877 		       __func__, sg_len, *offset, sg_count);
2878 		WARN_ON(1);
2879 		return NULL;
2880 	}
2881 
2882 	/* Offset starting from the beginning of first page in this sg-entry */
2883 	*offset = *offset - len_complete + sg->offset;
2884 
2885 	/* Assumption: contiguous pages can be accessed as "page + i" */
2886 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2887 	*offset &= ~PAGE_MASK;
2888 
2889 	/* Bytes in this sg-entry from *offset to the end of the page */
2890 	sg_len = PAGE_SIZE - *offset;
2891 	if (*len > sg_len)
2892 		*len = sg_len;
2893 
2894 	return kmap_atomic(page);
2895 }
2896 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2897 
2898 /**
2899  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2900  * @virt:	virtual address to be unmapped
2901  */
2902 void scsi_kunmap_atomic_sg(void *virt)
2903 {
2904 	kunmap_atomic(virt);
2905 }
2906 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2907 
2908 void sdev_disable_disk_events(struct scsi_device *sdev)
2909 {
2910 	atomic_inc(&sdev->disk_events_disable_depth);
2911 }
2912 EXPORT_SYMBOL(sdev_disable_disk_events);
2913 
2914 void sdev_enable_disk_events(struct scsi_device *sdev)
2915 {
2916 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2917 		return;
2918 	atomic_dec(&sdev->disk_events_disable_depth);
2919 }
2920 EXPORT_SYMBOL(sdev_enable_disk_events);
2921 
2922 /**
2923  * scsi_vpd_lun_id - return a unique device identification
2924  * @sdev: SCSI device
2925  * @id:   buffer for the identification
2926  * @id_len:  length of the buffer
2927  *
2928  * Copies a unique device identification into @id based
2929  * on the information in the VPD page 0x83 of the device.
2930  * The string will be formatted as a SCSI name string.
2931  *
2932  * Returns the length of the identification or error on failure.
2933  * If the identifier is longer than the supplied buffer the actual
2934  * identifier length is returned and the buffer is not zero-padded.
2935  */
2936 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2937 {
2938 	u8 cur_id_type = 0xff;
2939 	u8 cur_id_size = 0;
2940 	const unsigned char *d, *cur_id_str;
2941 	const struct scsi_vpd *vpd_pg83;
2942 	int id_size = -EINVAL;
2943 
2944 	rcu_read_lock();
2945 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2946 	if (!vpd_pg83) {
2947 		rcu_read_unlock();
2948 		return -ENXIO;
2949 	}
2950 
2951 	/*
2952 	 * Look for the correct descriptor.
2953 	 * Order of preference for lun descriptor:
2954 	 * - SCSI name string
2955 	 * - NAA IEEE Registered Extended
2956 	 * - EUI-64 based 16-byte
2957 	 * - EUI-64 based 12-byte
2958 	 * - NAA IEEE Registered
2959 	 * - NAA IEEE Extended
2960 	 * - T10 Vendor ID
2961 	 * as longer descriptors reduce the likelyhood
2962 	 * of identification clashes.
2963 	 */
2964 
2965 	/* The id string must be at least 20 bytes + terminating NULL byte */
2966 	if (id_len < 21) {
2967 		rcu_read_unlock();
2968 		return -EINVAL;
2969 	}
2970 
2971 	memset(id, 0, id_len);
2972 	d = vpd_pg83->data + 4;
2973 	while (d < vpd_pg83->data + vpd_pg83->len) {
2974 		/* Skip designators not referring to the LUN */
2975 		if ((d[1] & 0x30) != 0x00)
2976 			goto next_desig;
2977 
2978 		switch (d[1] & 0xf) {
2979 		case 0x1:
2980 			/* T10 Vendor ID */
2981 			if (cur_id_size > d[3])
2982 				break;
2983 			/* Prefer anything */
2984 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2985 				break;
2986 			cur_id_size = d[3];
2987 			if (cur_id_size + 4 > id_len)
2988 				cur_id_size = id_len - 4;
2989 			cur_id_str = d + 4;
2990 			cur_id_type = d[1] & 0xf;
2991 			id_size = snprintf(id, id_len, "t10.%*pE",
2992 					   cur_id_size, cur_id_str);
2993 			break;
2994 		case 0x2:
2995 			/* EUI-64 */
2996 			if (cur_id_size > d[3])
2997 				break;
2998 			/* Prefer NAA IEEE Registered Extended */
2999 			if (cur_id_type == 0x3 &&
3000 			    cur_id_size == d[3])
3001 				break;
3002 			cur_id_size = d[3];
3003 			cur_id_str = d + 4;
3004 			cur_id_type = d[1] & 0xf;
3005 			switch (cur_id_size) {
3006 			case 8:
3007 				id_size = snprintf(id, id_len,
3008 						   "eui.%8phN",
3009 						   cur_id_str);
3010 				break;
3011 			case 12:
3012 				id_size = snprintf(id, id_len,
3013 						   "eui.%12phN",
3014 						   cur_id_str);
3015 				break;
3016 			case 16:
3017 				id_size = snprintf(id, id_len,
3018 						   "eui.%16phN",
3019 						   cur_id_str);
3020 				break;
3021 			default:
3022 				cur_id_size = 0;
3023 				break;
3024 			}
3025 			break;
3026 		case 0x3:
3027 			/* NAA */
3028 			if (cur_id_size > d[3])
3029 				break;
3030 			cur_id_size = d[3];
3031 			cur_id_str = d + 4;
3032 			cur_id_type = d[1] & 0xf;
3033 			switch (cur_id_size) {
3034 			case 8:
3035 				id_size = snprintf(id, id_len,
3036 						   "naa.%8phN",
3037 						   cur_id_str);
3038 				break;
3039 			case 16:
3040 				id_size = snprintf(id, id_len,
3041 						   "naa.%16phN",
3042 						   cur_id_str);
3043 				break;
3044 			default:
3045 				cur_id_size = 0;
3046 				break;
3047 			}
3048 			break;
3049 		case 0x8:
3050 			/* SCSI name string */
3051 			if (cur_id_size + 4 > d[3])
3052 				break;
3053 			/* Prefer others for truncated descriptor */
3054 			if (cur_id_size && d[3] > id_len)
3055 				break;
3056 			cur_id_size = id_size = d[3];
3057 			cur_id_str = d + 4;
3058 			cur_id_type = d[1] & 0xf;
3059 			if (cur_id_size >= id_len)
3060 				cur_id_size = id_len - 1;
3061 			memcpy(id, cur_id_str, cur_id_size);
3062 			/* Decrease priority for truncated descriptor */
3063 			if (cur_id_size != id_size)
3064 				cur_id_size = 6;
3065 			break;
3066 		default:
3067 			break;
3068 		}
3069 next_desig:
3070 		d += d[3] + 4;
3071 	}
3072 	rcu_read_unlock();
3073 
3074 	return id_size;
3075 }
3076 EXPORT_SYMBOL(scsi_vpd_lun_id);
3077 
3078 /*
3079  * scsi_vpd_tpg_id - return a target port group identifier
3080  * @sdev: SCSI device
3081  *
3082  * Returns the Target Port Group identifier from the information
3083  * froom VPD page 0x83 of the device.
3084  *
3085  * Returns the identifier or error on failure.
3086  */
3087 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3088 {
3089 	const unsigned char *d;
3090 	const struct scsi_vpd *vpd_pg83;
3091 	int group_id = -EAGAIN, rel_port = -1;
3092 
3093 	rcu_read_lock();
3094 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3095 	if (!vpd_pg83) {
3096 		rcu_read_unlock();
3097 		return -ENXIO;
3098 	}
3099 
3100 	d = vpd_pg83->data + 4;
3101 	while (d < vpd_pg83->data + vpd_pg83->len) {
3102 		switch (d[1] & 0xf) {
3103 		case 0x4:
3104 			/* Relative target port */
3105 			rel_port = get_unaligned_be16(&d[6]);
3106 			break;
3107 		case 0x5:
3108 			/* Target port group */
3109 			group_id = get_unaligned_be16(&d[6]);
3110 			break;
3111 		default:
3112 			break;
3113 		}
3114 		d += d[3] + 4;
3115 	}
3116 	rcu_read_unlock();
3117 
3118 	if (group_id >= 0 && rel_id && rel_port != -1)
3119 		*rel_id = rel_port;
3120 
3121 	return group_id;
3122 }
3123 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3124