1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 /* 79 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 80 * not change behaviour from the previous unplug mechanism, experimentation 81 * may prove this needs changing. 82 */ 83 #define SCSI_QUEUE_DELAY 3 84 85 static void 86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 87 { 88 struct Scsi_Host *host = cmd->device->host; 89 struct scsi_device *device = cmd->device; 90 struct scsi_target *starget = scsi_target(device); 91 92 /* 93 * Set the appropriate busy bit for the device/host. 94 * 95 * If the host/device isn't busy, assume that something actually 96 * completed, and that we should be able to queue a command now. 97 * 98 * Note that the prior mid-layer assumption that any host could 99 * always queue at least one command is now broken. The mid-layer 100 * will implement a user specifiable stall (see 101 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 102 * if a command is requeued with no other commands outstanding 103 * either for the device or for the host. 104 */ 105 switch (reason) { 106 case SCSI_MLQUEUE_HOST_BUSY: 107 atomic_set(&host->host_blocked, host->max_host_blocked); 108 break; 109 case SCSI_MLQUEUE_DEVICE_BUSY: 110 case SCSI_MLQUEUE_EH_RETRY: 111 atomic_set(&device->device_blocked, 112 device->max_device_blocked); 113 break; 114 case SCSI_MLQUEUE_TARGET_BUSY: 115 atomic_set(&starget->target_blocked, 116 starget->max_target_blocked); 117 break; 118 } 119 } 120 121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 122 { 123 struct request *rq = scsi_cmd_to_rq(cmd); 124 125 if (rq->rq_flags & RQF_DONTPREP) { 126 rq->rq_flags &= ~RQF_DONTPREP; 127 scsi_mq_uninit_cmd(cmd); 128 } else { 129 WARN_ON_ONCE(true); 130 } 131 blk_mq_requeue_request(rq, true); 132 } 133 134 /** 135 * __scsi_queue_insert - private queue insertion 136 * @cmd: The SCSI command being requeued 137 * @reason: The reason for the requeue 138 * @unbusy: Whether the queue should be unbusied 139 * 140 * This is a private queue insertion. The public interface 141 * scsi_queue_insert() always assumes the queue should be unbusied 142 * because it's always called before the completion. This function is 143 * for a requeue after completion, which should only occur in this 144 * file. 145 */ 146 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 147 { 148 struct scsi_device *device = cmd->device; 149 150 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 151 "Inserting command %p into mlqueue\n", cmd)); 152 153 scsi_set_blocked(cmd, reason); 154 155 /* 156 * Decrement the counters, since these commands are no longer 157 * active on the host/device. 158 */ 159 if (unbusy) 160 scsi_device_unbusy(device, cmd); 161 162 /* 163 * Requeue this command. It will go before all other commands 164 * that are already in the queue. Schedule requeue work under 165 * lock such that the kblockd_schedule_work() call happens 166 * before blk_cleanup_queue() finishes. 167 */ 168 cmd->result = 0; 169 170 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 171 } 172 173 /** 174 * scsi_queue_insert - Reinsert a command in the queue. 175 * @cmd: command that we are adding to queue. 176 * @reason: why we are inserting command to queue. 177 * 178 * We do this for one of two cases. Either the host is busy and it cannot accept 179 * any more commands for the time being, or the device returned QUEUE_FULL and 180 * can accept no more commands. 181 * 182 * Context: This could be called either from an interrupt context or a normal 183 * process context. 184 */ 185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 186 { 187 __scsi_queue_insert(cmd, reason, true); 188 } 189 190 191 /** 192 * __scsi_execute - insert request and wait for the result 193 * @sdev: scsi device 194 * @cmd: scsi command 195 * @data_direction: data direction 196 * @buffer: data buffer 197 * @bufflen: len of buffer 198 * @sense: optional sense buffer 199 * @sshdr: optional decoded sense header 200 * @timeout: request timeout in HZ 201 * @retries: number of times to retry request 202 * @flags: flags for ->cmd_flags 203 * @rq_flags: flags for ->rq_flags 204 * @resid: optional residual length 205 * 206 * Returns the scsi_cmnd result field if a command was executed, or a negative 207 * Linux error code if we didn't get that far. 208 */ 209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 210 int data_direction, void *buffer, unsigned bufflen, 211 unsigned char *sense, struct scsi_sense_hdr *sshdr, 212 int timeout, int retries, u64 flags, req_flags_t rq_flags, 213 int *resid) 214 { 215 struct request *req; 216 struct scsi_request *rq; 217 int ret; 218 219 req = scsi_alloc_request(sdev->request_queue, 220 data_direction == DMA_TO_DEVICE ? 221 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 222 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 223 if (IS_ERR(req)) 224 return PTR_ERR(req); 225 226 rq = scsi_req(req); 227 228 if (bufflen) { 229 ret = blk_rq_map_kern(sdev->request_queue, req, 230 buffer, bufflen, GFP_NOIO); 231 if (ret) 232 goto out; 233 } 234 rq->cmd_len = COMMAND_SIZE(cmd[0]); 235 memcpy(rq->cmd, cmd, rq->cmd_len); 236 rq->retries = retries; 237 req->timeout = timeout; 238 req->cmd_flags |= flags; 239 req->rq_flags |= rq_flags | RQF_QUIET; 240 241 /* 242 * head injection *required* here otherwise quiesce won't work 243 */ 244 blk_execute_rq(NULL, req, 1); 245 246 /* 247 * Some devices (USB mass-storage in particular) may transfer 248 * garbage data together with a residue indicating that the data 249 * is invalid. Prevent the garbage from being misinterpreted 250 * and prevent security leaks by zeroing out the excess data. 251 */ 252 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 253 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 254 255 if (resid) 256 *resid = rq->resid_len; 257 if (sense && rq->sense_len) 258 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 259 if (sshdr) 260 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 261 ret = rq->result; 262 out: 263 blk_mq_free_request(req); 264 265 return ret; 266 } 267 EXPORT_SYMBOL(__scsi_execute); 268 269 /* 270 * Wake up the error handler if necessary. Avoid as follows that the error 271 * handler is not woken up if host in-flight requests number == 272 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 273 * with an RCU read lock in this function to ensure that this function in 274 * its entirety either finishes before scsi_eh_scmd_add() increases the 275 * host_failed counter or that it notices the shost state change made by 276 * scsi_eh_scmd_add(). 277 */ 278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 279 { 280 unsigned long flags; 281 282 rcu_read_lock(); 283 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 284 if (unlikely(scsi_host_in_recovery(shost))) { 285 spin_lock_irqsave(shost->host_lock, flags); 286 if (shost->host_failed || shost->host_eh_scheduled) 287 scsi_eh_wakeup(shost); 288 spin_unlock_irqrestore(shost->host_lock, flags); 289 } 290 rcu_read_unlock(); 291 } 292 293 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 294 { 295 struct Scsi_Host *shost = sdev->host; 296 struct scsi_target *starget = scsi_target(sdev); 297 298 scsi_dec_host_busy(shost, cmd); 299 300 if (starget->can_queue > 0) 301 atomic_dec(&starget->target_busy); 302 303 sbitmap_put(&sdev->budget_map, cmd->budget_token); 304 cmd->budget_token = -1; 305 } 306 307 static void scsi_kick_queue(struct request_queue *q) 308 { 309 blk_mq_run_hw_queues(q, false); 310 } 311 312 /* 313 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 314 * and call blk_run_queue for all the scsi_devices on the target - 315 * including current_sdev first. 316 * 317 * Called with *no* scsi locks held. 318 */ 319 static void scsi_single_lun_run(struct scsi_device *current_sdev) 320 { 321 struct Scsi_Host *shost = current_sdev->host; 322 struct scsi_device *sdev, *tmp; 323 struct scsi_target *starget = scsi_target(current_sdev); 324 unsigned long flags; 325 326 spin_lock_irqsave(shost->host_lock, flags); 327 starget->starget_sdev_user = NULL; 328 spin_unlock_irqrestore(shost->host_lock, flags); 329 330 /* 331 * Call blk_run_queue for all LUNs on the target, starting with 332 * current_sdev. We race with others (to set starget_sdev_user), 333 * but in most cases, we will be first. Ideally, each LU on the 334 * target would get some limited time or requests on the target. 335 */ 336 scsi_kick_queue(current_sdev->request_queue); 337 338 spin_lock_irqsave(shost->host_lock, flags); 339 if (starget->starget_sdev_user) 340 goto out; 341 list_for_each_entry_safe(sdev, tmp, &starget->devices, 342 same_target_siblings) { 343 if (sdev == current_sdev) 344 continue; 345 if (scsi_device_get(sdev)) 346 continue; 347 348 spin_unlock_irqrestore(shost->host_lock, flags); 349 scsi_kick_queue(sdev->request_queue); 350 spin_lock_irqsave(shost->host_lock, flags); 351 352 scsi_device_put(sdev); 353 } 354 out: 355 spin_unlock_irqrestore(shost->host_lock, flags); 356 } 357 358 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 359 { 360 if (scsi_device_busy(sdev) >= sdev->queue_depth) 361 return true; 362 if (atomic_read(&sdev->device_blocked) > 0) 363 return true; 364 return false; 365 } 366 367 static inline bool scsi_target_is_busy(struct scsi_target *starget) 368 { 369 if (starget->can_queue > 0) { 370 if (atomic_read(&starget->target_busy) >= starget->can_queue) 371 return true; 372 if (atomic_read(&starget->target_blocked) > 0) 373 return true; 374 } 375 return false; 376 } 377 378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 379 { 380 if (atomic_read(&shost->host_blocked) > 0) 381 return true; 382 if (shost->host_self_blocked) 383 return true; 384 return false; 385 } 386 387 static void scsi_starved_list_run(struct Scsi_Host *shost) 388 { 389 LIST_HEAD(starved_list); 390 struct scsi_device *sdev; 391 unsigned long flags; 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 list_splice_init(&shost->starved_list, &starved_list); 395 396 while (!list_empty(&starved_list)) { 397 struct request_queue *slq; 398 399 /* 400 * As long as shost is accepting commands and we have 401 * starved queues, call blk_run_queue. scsi_request_fn 402 * drops the queue_lock and can add us back to the 403 * starved_list. 404 * 405 * host_lock protects the starved_list and starved_entry. 406 * scsi_request_fn must get the host_lock before checking 407 * or modifying starved_list or starved_entry. 408 */ 409 if (scsi_host_is_busy(shost)) 410 break; 411 412 sdev = list_entry(starved_list.next, 413 struct scsi_device, starved_entry); 414 list_del_init(&sdev->starved_entry); 415 if (scsi_target_is_busy(scsi_target(sdev))) { 416 list_move_tail(&sdev->starved_entry, 417 &shost->starved_list); 418 continue; 419 } 420 421 /* 422 * Once we drop the host lock, a racing scsi_remove_device() 423 * call may remove the sdev from the starved list and destroy 424 * it and the queue. Mitigate by taking a reference to the 425 * queue and never touching the sdev again after we drop the 426 * host lock. Note: if __scsi_remove_device() invokes 427 * blk_cleanup_queue() before the queue is run from this 428 * function then blk_run_queue() will return immediately since 429 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 430 */ 431 slq = sdev->request_queue; 432 if (!blk_get_queue(slq)) 433 continue; 434 spin_unlock_irqrestore(shost->host_lock, flags); 435 436 scsi_kick_queue(slq); 437 blk_put_queue(slq); 438 439 spin_lock_irqsave(shost->host_lock, flags); 440 } 441 /* put any unprocessed entries back */ 442 list_splice(&starved_list, &shost->starved_list); 443 spin_unlock_irqrestore(shost->host_lock, flags); 444 } 445 446 /** 447 * scsi_run_queue - Select a proper request queue to serve next. 448 * @q: last request's queue 449 * 450 * The previous command was completely finished, start a new one if possible. 451 */ 452 static void scsi_run_queue(struct request_queue *q) 453 { 454 struct scsi_device *sdev = q->queuedata; 455 456 if (scsi_target(sdev)->single_lun) 457 scsi_single_lun_run(sdev); 458 if (!list_empty(&sdev->host->starved_list)) 459 scsi_starved_list_run(sdev->host); 460 461 blk_mq_run_hw_queues(q, false); 462 } 463 464 void scsi_requeue_run_queue(struct work_struct *work) 465 { 466 struct scsi_device *sdev; 467 struct request_queue *q; 468 469 sdev = container_of(work, struct scsi_device, requeue_work); 470 q = sdev->request_queue; 471 scsi_run_queue(q); 472 } 473 474 void scsi_run_host_queues(struct Scsi_Host *shost) 475 { 476 struct scsi_device *sdev; 477 478 shost_for_each_device(sdev, shost) 479 scsi_run_queue(sdev->request_queue); 480 } 481 482 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 483 { 484 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 485 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 486 487 if (drv->uninit_command) 488 drv->uninit_command(cmd); 489 } 490 } 491 492 void scsi_free_sgtables(struct scsi_cmnd *cmd) 493 { 494 if (cmd->sdb.table.nents) 495 sg_free_table_chained(&cmd->sdb.table, 496 SCSI_INLINE_SG_CNT); 497 if (scsi_prot_sg_count(cmd)) 498 sg_free_table_chained(&cmd->prot_sdb->table, 499 SCSI_INLINE_PROT_SG_CNT); 500 } 501 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 502 503 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 504 { 505 scsi_free_sgtables(cmd); 506 scsi_uninit_cmd(cmd); 507 } 508 509 static void scsi_run_queue_async(struct scsi_device *sdev) 510 { 511 if (scsi_target(sdev)->single_lun || 512 !list_empty(&sdev->host->starved_list)) { 513 kblockd_schedule_work(&sdev->requeue_work); 514 } else { 515 /* 516 * smp_mb() present in sbitmap_queue_clear() or implied in 517 * .end_io is for ordering writing .device_busy in 518 * scsi_device_unbusy() and reading sdev->restarts. 519 */ 520 int old = atomic_read(&sdev->restarts); 521 522 /* 523 * ->restarts has to be kept as non-zero if new budget 524 * contention occurs. 525 * 526 * No need to run queue when either another re-run 527 * queue wins in updating ->restarts or a new budget 528 * contention occurs. 529 */ 530 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 531 blk_mq_run_hw_queues(sdev->request_queue, true); 532 } 533 } 534 535 /* Returns false when no more bytes to process, true if there are more */ 536 static bool scsi_end_request(struct request *req, blk_status_t error, 537 unsigned int bytes) 538 { 539 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 540 struct scsi_device *sdev = cmd->device; 541 struct request_queue *q = sdev->request_queue; 542 543 if (blk_update_request(req, error, bytes)) 544 return true; 545 546 if (blk_queue_add_random(q)) 547 add_disk_randomness(req->rq_disk); 548 549 if (!blk_rq_is_passthrough(req)) { 550 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 551 cmd->flags &= ~SCMD_INITIALIZED; 552 } 553 554 /* 555 * Calling rcu_barrier() is not necessary here because the 556 * SCSI error handler guarantees that the function called by 557 * call_rcu() has been called before scsi_end_request() is 558 * called. 559 */ 560 destroy_rcu_head(&cmd->rcu); 561 562 /* 563 * In the MQ case the command gets freed by __blk_mq_end_request, 564 * so we have to do all cleanup that depends on it earlier. 565 * 566 * We also can't kick the queues from irq context, so we 567 * will have to defer it to a workqueue. 568 */ 569 scsi_mq_uninit_cmd(cmd); 570 571 /* 572 * queue is still alive, so grab the ref for preventing it 573 * from being cleaned up during running queue. 574 */ 575 percpu_ref_get(&q->q_usage_counter); 576 577 __blk_mq_end_request(req, error); 578 579 scsi_run_queue_async(sdev); 580 581 percpu_ref_put(&q->q_usage_counter); 582 return false; 583 } 584 585 /** 586 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 587 * @cmd: SCSI command 588 * @result: scsi error code 589 * 590 * Translate a SCSI result code into a blk_status_t value. May reset the host 591 * byte of @cmd->result. 592 */ 593 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 594 { 595 switch (host_byte(result)) { 596 case DID_OK: 597 if (scsi_status_is_good(result)) 598 return BLK_STS_OK; 599 return BLK_STS_IOERR; 600 case DID_TRANSPORT_FAILFAST: 601 case DID_TRANSPORT_MARGINAL: 602 return BLK_STS_TRANSPORT; 603 case DID_TARGET_FAILURE: 604 set_host_byte(cmd, DID_OK); 605 return BLK_STS_TARGET; 606 case DID_NEXUS_FAILURE: 607 set_host_byte(cmd, DID_OK); 608 return BLK_STS_NEXUS; 609 case DID_ALLOC_FAILURE: 610 set_host_byte(cmd, DID_OK); 611 return BLK_STS_NOSPC; 612 case DID_MEDIUM_ERROR: 613 set_host_byte(cmd, DID_OK); 614 return BLK_STS_MEDIUM; 615 default: 616 return BLK_STS_IOERR; 617 } 618 } 619 620 /* Helper for scsi_io_completion() when "reprep" action required. */ 621 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 622 struct request_queue *q) 623 { 624 /* A new command will be prepared and issued. */ 625 scsi_mq_requeue_cmd(cmd); 626 } 627 628 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 629 { 630 struct request *req = scsi_cmd_to_rq(cmd); 631 unsigned long wait_for; 632 633 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 634 return false; 635 636 wait_for = (cmd->allowed + 1) * req->timeout; 637 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 638 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 639 wait_for/HZ); 640 return true; 641 } 642 return false; 643 } 644 645 /* Helper for scsi_io_completion() when special action required. */ 646 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 647 { 648 struct request_queue *q = cmd->device->request_queue; 649 struct request *req = scsi_cmd_to_rq(cmd); 650 int level = 0; 651 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 652 ACTION_DELAYED_RETRY} action; 653 struct scsi_sense_hdr sshdr; 654 bool sense_valid; 655 bool sense_current = true; /* false implies "deferred sense" */ 656 blk_status_t blk_stat; 657 658 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 659 if (sense_valid) 660 sense_current = !scsi_sense_is_deferred(&sshdr); 661 662 blk_stat = scsi_result_to_blk_status(cmd, result); 663 664 if (host_byte(result) == DID_RESET) { 665 /* Third party bus reset or reset for error recovery 666 * reasons. Just retry the command and see what 667 * happens. 668 */ 669 action = ACTION_RETRY; 670 } else if (sense_valid && sense_current) { 671 switch (sshdr.sense_key) { 672 case UNIT_ATTENTION: 673 if (cmd->device->removable) { 674 /* Detected disc change. Set a bit 675 * and quietly refuse further access. 676 */ 677 cmd->device->changed = 1; 678 action = ACTION_FAIL; 679 } else { 680 /* Must have been a power glitch, or a 681 * bus reset. Could not have been a 682 * media change, so we just retry the 683 * command and see what happens. 684 */ 685 action = ACTION_RETRY; 686 } 687 break; 688 case ILLEGAL_REQUEST: 689 /* If we had an ILLEGAL REQUEST returned, then 690 * we may have performed an unsupported 691 * command. The only thing this should be 692 * would be a ten byte read where only a six 693 * byte read was supported. Also, on a system 694 * where READ CAPACITY failed, we may have 695 * read past the end of the disk. 696 */ 697 if ((cmd->device->use_10_for_rw && 698 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 699 (cmd->cmnd[0] == READ_10 || 700 cmd->cmnd[0] == WRITE_10)) { 701 /* This will issue a new 6-byte command. */ 702 cmd->device->use_10_for_rw = 0; 703 action = ACTION_REPREP; 704 } else if (sshdr.asc == 0x10) /* DIX */ { 705 action = ACTION_FAIL; 706 blk_stat = BLK_STS_PROTECTION; 707 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 708 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 709 action = ACTION_FAIL; 710 blk_stat = BLK_STS_TARGET; 711 } else 712 action = ACTION_FAIL; 713 break; 714 case ABORTED_COMMAND: 715 action = ACTION_FAIL; 716 if (sshdr.asc == 0x10) /* DIF */ 717 blk_stat = BLK_STS_PROTECTION; 718 break; 719 case NOT_READY: 720 /* If the device is in the process of becoming 721 * ready, or has a temporary blockage, retry. 722 */ 723 if (sshdr.asc == 0x04) { 724 switch (sshdr.ascq) { 725 case 0x01: /* becoming ready */ 726 case 0x04: /* format in progress */ 727 case 0x05: /* rebuild in progress */ 728 case 0x06: /* recalculation in progress */ 729 case 0x07: /* operation in progress */ 730 case 0x08: /* Long write in progress */ 731 case 0x09: /* self test in progress */ 732 case 0x11: /* notify (enable spinup) required */ 733 case 0x14: /* space allocation in progress */ 734 case 0x1a: /* start stop unit in progress */ 735 case 0x1b: /* sanitize in progress */ 736 case 0x1d: /* configuration in progress */ 737 case 0x24: /* depopulation in progress */ 738 action = ACTION_DELAYED_RETRY; 739 break; 740 case 0x0a: /* ALUA state transition */ 741 blk_stat = BLK_STS_AGAIN; 742 fallthrough; 743 default: 744 action = ACTION_FAIL; 745 break; 746 } 747 } else 748 action = ACTION_FAIL; 749 break; 750 case VOLUME_OVERFLOW: 751 /* See SSC3rXX or current. */ 752 action = ACTION_FAIL; 753 break; 754 case DATA_PROTECT: 755 action = ACTION_FAIL; 756 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 757 (sshdr.asc == 0x55 && 758 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 759 /* Insufficient zone resources */ 760 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 761 } 762 break; 763 default: 764 action = ACTION_FAIL; 765 break; 766 } 767 } else 768 action = ACTION_FAIL; 769 770 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 771 action = ACTION_FAIL; 772 773 switch (action) { 774 case ACTION_FAIL: 775 /* Give up and fail the remainder of the request */ 776 if (!(req->rq_flags & RQF_QUIET)) { 777 static DEFINE_RATELIMIT_STATE(_rs, 778 DEFAULT_RATELIMIT_INTERVAL, 779 DEFAULT_RATELIMIT_BURST); 780 781 if (unlikely(scsi_logging_level)) 782 level = 783 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 784 SCSI_LOG_MLCOMPLETE_BITS); 785 786 /* 787 * if logging is enabled the failure will be printed 788 * in scsi_log_completion(), so avoid duplicate messages 789 */ 790 if (!level && __ratelimit(&_rs)) { 791 scsi_print_result(cmd, NULL, FAILED); 792 if (sense_valid) 793 scsi_print_sense(cmd); 794 scsi_print_command(cmd); 795 } 796 } 797 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 798 return; 799 fallthrough; 800 case ACTION_REPREP: 801 scsi_io_completion_reprep(cmd, q); 802 break; 803 case ACTION_RETRY: 804 /* Retry the same command immediately */ 805 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 806 break; 807 case ACTION_DELAYED_RETRY: 808 /* Retry the same command after a delay */ 809 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 810 break; 811 } 812 } 813 814 /* 815 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 816 * new result that may suppress further error checking. Also modifies 817 * *blk_statp in some cases. 818 */ 819 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 820 blk_status_t *blk_statp) 821 { 822 bool sense_valid; 823 bool sense_current = true; /* false implies "deferred sense" */ 824 struct request *req = scsi_cmd_to_rq(cmd); 825 struct scsi_sense_hdr sshdr; 826 827 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 828 if (sense_valid) 829 sense_current = !scsi_sense_is_deferred(&sshdr); 830 831 if (blk_rq_is_passthrough(req)) { 832 if (sense_valid) { 833 /* 834 * SG_IO wants current and deferred errors 835 */ 836 scsi_req(req)->sense_len = 837 min(8 + cmd->sense_buffer[7], 838 SCSI_SENSE_BUFFERSIZE); 839 } 840 if (sense_current) 841 *blk_statp = scsi_result_to_blk_status(cmd, result); 842 } else if (blk_rq_bytes(req) == 0 && sense_current) { 843 /* 844 * Flush commands do not transfers any data, and thus cannot use 845 * good_bytes != blk_rq_bytes(req) as the signal for an error. 846 * This sets *blk_statp explicitly for the problem case. 847 */ 848 *blk_statp = scsi_result_to_blk_status(cmd, result); 849 } 850 /* 851 * Recovered errors need reporting, but they're always treated as 852 * success, so fiddle the result code here. For passthrough requests 853 * we already took a copy of the original into sreq->result which 854 * is what gets returned to the user 855 */ 856 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 857 bool do_print = true; 858 /* 859 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 860 * skip print since caller wants ATA registers. Only occurs 861 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 862 */ 863 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 864 do_print = false; 865 else if (req->rq_flags & RQF_QUIET) 866 do_print = false; 867 if (do_print) 868 scsi_print_sense(cmd); 869 result = 0; 870 /* for passthrough, *blk_statp may be set */ 871 *blk_statp = BLK_STS_OK; 872 } 873 /* 874 * Another corner case: the SCSI status byte is non-zero but 'good'. 875 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 876 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 877 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 878 * intermediate statuses (both obsolete in SAM-4) as good. 879 */ 880 if ((result & 0xff) && scsi_status_is_good(result)) { 881 result = 0; 882 *blk_statp = BLK_STS_OK; 883 } 884 return result; 885 } 886 887 /** 888 * scsi_io_completion - Completion processing for SCSI commands. 889 * @cmd: command that is finished. 890 * @good_bytes: number of processed bytes. 891 * 892 * We will finish off the specified number of sectors. If we are done, the 893 * command block will be released and the queue function will be goosed. If we 894 * are not done then we have to figure out what to do next: 895 * 896 * a) We can call scsi_io_completion_reprep(). The request will be 897 * unprepared and put back on the queue. Then a new command will 898 * be created for it. This should be used if we made forward 899 * progress, or if we want to switch from READ(10) to READ(6) for 900 * example. 901 * 902 * b) We can call scsi_io_completion_action(). The request will be 903 * put back on the queue and retried using the same command as 904 * before, possibly after a delay. 905 * 906 * c) We can call scsi_end_request() with blk_stat other than 907 * BLK_STS_OK, to fail the remainder of the request. 908 */ 909 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 910 { 911 int result = cmd->result; 912 struct request_queue *q = cmd->device->request_queue; 913 struct request *req = scsi_cmd_to_rq(cmd); 914 blk_status_t blk_stat = BLK_STS_OK; 915 916 if (unlikely(result)) /* a nz result may or may not be an error */ 917 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 918 919 if (unlikely(blk_rq_is_passthrough(req))) { 920 /* 921 * scsi_result_to_blk_status may have reset the host_byte 922 */ 923 scsi_req(req)->result = cmd->result; 924 } 925 926 /* 927 * Next deal with any sectors which we were able to correctly 928 * handle. 929 */ 930 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 931 "%u sectors total, %d bytes done.\n", 932 blk_rq_sectors(req), good_bytes)); 933 934 /* 935 * Failed, zero length commands always need to drop down 936 * to retry code. Fast path should return in this block. 937 */ 938 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 939 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 940 return; /* no bytes remaining */ 941 } 942 943 /* Kill remainder if no retries. */ 944 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 945 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 946 WARN_ONCE(true, 947 "Bytes remaining after failed, no-retry command"); 948 return; 949 } 950 951 /* 952 * If there had been no error, but we have leftover bytes in the 953 * request just queue the command up again. 954 */ 955 if (likely(result == 0)) 956 scsi_io_completion_reprep(cmd, q); 957 else 958 scsi_io_completion_action(cmd, result); 959 } 960 961 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 962 struct request *rq) 963 { 964 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 965 !op_is_write(req_op(rq)) && 966 sdev->host->hostt->dma_need_drain(rq); 967 } 968 969 /** 970 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 971 * @cmd: SCSI command data structure to initialize. 972 * 973 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 974 * for @cmd. 975 * 976 * Returns: 977 * * BLK_STS_OK - on success 978 * * BLK_STS_RESOURCE - if the failure is retryable 979 * * BLK_STS_IOERR - if the failure is fatal 980 */ 981 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 982 { 983 struct scsi_device *sdev = cmd->device; 984 struct request *rq = scsi_cmd_to_rq(cmd); 985 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 986 struct scatterlist *last_sg = NULL; 987 blk_status_t ret; 988 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 989 int count; 990 991 if (WARN_ON_ONCE(!nr_segs)) 992 return BLK_STS_IOERR; 993 994 /* 995 * Make sure there is space for the drain. The driver must adjust 996 * max_hw_segments to be prepared for this. 997 */ 998 if (need_drain) 999 nr_segs++; 1000 1001 /* 1002 * If sg table allocation fails, requeue request later. 1003 */ 1004 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1005 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1006 return BLK_STS_RESOURCE; 1007 1008 /* 1009 * Next, walk the list, and fill in the addresses and sizes of 1010 * each segment. 1011 */ 1012 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1013 1014 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1015 unsigned int pad_len = 1016 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1017 1018 last_sg->length += pad_len; 1019 cmd->extra_len += pad_len; 1020 } 1021 1022 if (need_drain) { 1023 sg_unmark_end(last_sg); 1024 last_sg = sg_next(last_sg); 1025 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1026 sg_mark_end(last_sg); 1027 1028 cmd->extra_len += sdev->dma_drain_len; 1029 count++; 1030 } 1031 1032 BUG_ON(count > cmd->sdb.table.nents); 1033 cmd->sdb.table.nents = count; 1034 cmd->sdb.length = blk_rq_payload_bytes(rq); 1035 1036 if (blk_integrity_rq(rq)) { 1037 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1038 int ivecs; 1039 1040 if (WARN_ON_ONCE(!prot_sdb)) { 1041 /* 1042 * This can happen if someone (e.g. multipath) 1043 * queues a command to a device on an adapter 1044 * that does not support DIX. 1045 */ 1046 ret = BLK_STS_IOERR; 1047 goto out_free_sgtables; 1048 } 1049 1050 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1051 1052 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1053 prot_sdb->table.sgl, 1054 SCSI_INLINE_PROT_SG_CNT)) { 1055 ret = BLK_STS_RESOURCE; 1056 goto out_free_sgtables; 1057 } 1058 1059 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1060 prot_sdb->table.sgl); 1061 BUG_ON(count > ivecs); 1062 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1063 1064 cmd->prot_sdb = prot_sdb; 1065 cmd->prot_sdb->table.nents = count; 1066 } 1067 1068 return BLK_STS_OK; 1069 out_free_sgtables: 1070 scsi_free_sgtables(cmd); 1071 return ret; 1072 } 1073 EXPORT_SYMBOL(scsi_alloc_sgtables); 1074 1075 /** 1076 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1077 * @rq: Request associated with the SCSI command to be initialized. 1078 * 1079 * This function initializes the members of struct scsi_cmnd that must be 1080 * initialized before request processing starts and that won't be 1081 * reinitialized if a SCSI command is requeued. 1082 */ 1083 static void scsi_initialize_rq(struct request *rq) 1084 { 1085 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1086 struct scsi_request *req = &cmd->req; 1087 1088 memset(req->__cmd, 0, sizeof(req->__cmd)); 1089 req->cmd = req->__cmd; 1090 req->cmd_len = BLK_MAX_CDB; 1091 req->sense_len = 0; 1092 1093 init_rcu_head(&cmd->rcu); 1094 cmd->jiffies_at_alloc = jiffies; 1095 cmd->retries = 0; 1096 } 1097 1098 struct request *scsi_alloc_request(struct request_queue *q, 1099 unsigned int op, blk_mq_req_flags_t flags) 1100 { 1101 struct request *rq; 1102 1103 rq = blk_mq_alloc_request(q, op, flags); 1104 if (!IS_ERR(rq)) 1105 scsi_initialize_rq(rq); 1106 return rq; 1107 } 1108 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1109 1110 /* 1111 * Only called when the request isn't completed by SCSI, and not freed by 1112 * SCSI 1113 */ 1114 static void scsi_cleanup_rq(struct request *rq) 1115 { 1116 if (rq->rq_flags & RQF_DONTPREP) { 1117 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1118 rq->rq_flags &= ~RQF_DONTPREP; 1119 } 1120 } 1121 1122 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1123 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1124 { 1125 void *buf = cmd->sense_buffer; 1126 void *prot = cmd->prot_sdb; 1127 struct request *rq = scsi_cmd_to_rq(cmd); 1128 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1129 unsigned long jiffies_at_alloc; 1130 int retries, to_clear; 1131 bool in_flight; 1132 int budget_token = cmd->budget_token; 1133 1134 if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) { 1135 flags |= SCMD_INITIALIZED; 1136 scsi_initialize_rq(rq); 1137 } 1138 1139 jiffies_at_alloc = cmd->jiffies_at_alloc; 1140 retries = cmd->retries; 1141 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1142 /* 1143 * Zero out the cmd, except for the embedded scsi_request. Only clear 1144 * the driver-private command data if the LLD does not supply a 1145 * function to initialize that data. 1146 */ 1147 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1148 if (!dev->host->hostt->init_cmd_priv) 1149 to_clear += dev->host->hostt->cmd_size; 1150 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1151 1152 cmd->device = dev; 1153 cmd->sense_buffer = buf; 1154 cmd->prot_sdb = prot; 1155 cmd->flags = flags; 1156 INIT_LIST_HEAD(&cmd->eh_entry); 1157 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1158 cmd->jiffies_at_alloc = jiffies_at_alloc; 1159 cmd->retries = retries; 1160 if (in_flight) 1161 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1162 cmd->budget_token = budget_token; 1163 1164 } 1165 1166 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1167 struct request *req) 1168 { 1169 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1170 1171 /* 1172 * Passthrough requests may transfer data, in which case they must 1173 * a bio attached to them. Or they might contain a SCSI command 1174 * that does not transfer data, in which case they may optionally 1175 * submit a request without an attached bio. 1176 */ 1177 if (req->bio) { 1178 blk_status_t ret = scsi_alloc_sgtables(cmd); 1179 if (unlikely(ret != BLK_STS_OK)) 1180 return ret; 1181 } else { 1182 BUG_ON(blk_rq_bytes(req)); 1183 1184 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1185 } 1186 1187 cmd->cmd_len = scsi_req(req)->cmd_len; 1188 cmd->cmnd = scsi_req(req)->cmd; 1189 cmd->transfersize = blk_rq_bytes(req); 1190 cmd->allowed = scsi_req(req)->retries; 1191 return BLK_STS_OK; 1192 } 1193 1194 static blk_status_t 1195 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1196 { 1197 switch (sdev->sdev_state) { 1198 case SDEV_CREATED: 1199 return BLK_STS_OK; 1200 case SDEV_OFFLINE: 1201 case SDEV_TRANSPORT_OFFLINE: 1202 /* 1203 * If the device is offline we refuse to process any 1204 * commands. The device must be brought online 1205 * before trying any recovery commands. 1206 */ 1207 if (!sdev->offline_already) { 1208 sdev->offline_already = true; 1209 sdev_printk(KERN_ERR, sdev, 1210 "rejecting I/O to offline device\n"); 1211 } 1212 return BLK_STS_IOERR; 1213 case SDEV_DEL: 1214 /* 1215 * If the device is fully deleted, we refuse to 1216 * process any commands as well. 1217 */ 1218 sdev_printk(KERN_ERR, sdev, 1219 "rejecting I/O to dead device\n"); 1220 return BLK_STS_IOERR; 1221 case SDEV_BLOCK: 1222 case SDEV_CREATED_BLOCK: 1223 return BLK_STS_RESOURCE; 1224 case SDEV_QUIESCE: 1225 /* 1226 * If the device is blocked we only accept power management 1227 * commands. 1228 */ 1229 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1230 return BLK_STS_RESOURCE; 1231 return BLK_STS_OK; 1232 default: 1233 /* 1234 * For any other not fully online state we only allow 1235 * power management commands. 1236 */ 1237 if (req && !(req->rq_flags & RQF_PM)) 1238 return BLK_STS_IOERR; 1239 return BLK_STS_OK; 1240 } 1241 } 1242 1243 /* 1244 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1245 * and return the token else return -1. 1246 */ 1247 static inline int scsi_dev_queue_ready(struct request_queue *q, 1248 struct scsi_device *sdev) 1249 { 1250 int token; 1251 1252 token = sbitmap_get(&sdev->budget_map); 1253 if (atomic_read(&sdev->device_blocked)) { 1254 if (token < 0) 1255 goto out; 1256 1257 if (scsi_device_busy(sdev) > 1) 1258 goto out_dec; 1259 1260 /* 1261 * unblock after device_blocked iterates to zero 1262 */ 1263 if (atomic_dec_return(&sdev->device_blocked) > 0) 1264 goto out_dec; 1265 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1266 "unblocking device at zero depth\n")); 1267 } 1268 1269 return token; 1270 out_dec: 1271 if (token >= 0) 1272 sbitmap_put(&sdev->budget_map, token); 1273 out: 1274 return -1; 1275 } 1276 1277 /* 1278 * scsi_target_queue_ready: checks if there we can send commands to target 1279 * @sdev: scsi device on starget to check. 1280 */ 1281 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1282 struct scsi_device *sdev) 1283 { 1284 struct scsi_target *starget = scsi_target(sdev); 1285 unsigned int busy; 1286 1287 if (starget->single_lun) { 1288 spin_lock_irq(shost->host_lock); 1289 if (starget->starget_sdev_user && 1290 starget->starget_sdev_user != sdev) { 1291 spin_unlock_irq(shost->host_lock); 1292 return 0; 1293 } 1294 starget->starget_sdev_user = sdev; 1295 spin_unlock_irq(shost->host_lock); 1296 } 1297 1298 if (starget->can_queue <= 0) 1299 return 1; 1300 1301 busy = atomic_inc_return(&starget->target_busy) - 1; 1302 if (atomic_read(&starget->target_blocked) > 0) { 1303 if (busy) 1304 goto starved; 1305 1306 /* 1307 * unblock after target_blocked iterates to zero 1308 */ 1309 if (atomic_dec_return(&starget->target_blocked) > 0) 1310 goto out_dec; 1311 1312 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1313 "unblocking target at zero depth\n")); 1314 } 1315 1316 if (busy >= starget->can_queue) 1317 goto starved; 1318 1319 return 1; 1320 1321 starved: 1322 spin_lock_irq(shost->host_lock); 1323 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1324 spin_unlock_irq(shost->host_lock); 1325 out_dec: 1326 if (starget->can_queue > 0) 1327 atomic_dec(&starget->target_busy); 1328 return 0; 1329 } 1330 1331 /* 1332 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1333 * return 0. We must end up running the queue again whenever 0 is 1334 * returned, else IO can hang. 1335 */ 1336 static inline int scsi_host_queue_ready(struct request_queue *q, 1337 struct Scsi_Host *shost, 1338 struct scsi_device *sdev, 1339 struct scsi_cmnd *cmd) 1340 { 1341 if (scsi_host_in_recovery(shost)) 1342 return 0; 1343 1344 if (atomic_read(&shost->host_blocked) > 0) { 1345 if (scsi_host_busy(shost) > 0) 1346 goto starved; 1347 1348 /* 1349 * unblock after host_blocked iterates to zero 1350 */ 1351 if (atomic_dec_return(&shost->host_blocked) > 0) 1352 goto out_dec; 1353 1354 SCSI_LOG_MLQUEUE(3, 1355 shost_printk(KERN_INFO, shost, 1356 "unblocking host at zero depth\n")); 1357 } 1358 1359 if (shost->host_self_blocked) 1360 goto starved; 1361 1362 /* We're OK to process the command, so we can't be starved */ 1363 if (!list_empty(&sdev->starved_entry)) { 1364 spin_lock_irq(shost->host_lock); 1365 if (!list_empty(&sdev->starved_entry)) 1366 list_del_init(&sdev->starved_entry); 1367 spin_unlock_irq(shost->host_lock); 1368 } 1369 1370 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1371 1372 return 1; 1373 1374 starved: 1375 spin_lock_irq(shost->host_lock); 1376 if (list_empty(&sdev->starved_entry)) 1377 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1378 spin_unlock_irq(shost->host_lock); 1379 out_dec: 1380 scsi_dec_host_busy(shost, cmd); 1381 return 0; 1382 } 1383 1384 /* 1385 * Busy state exporting function for request stacking drivers. 1386 * 1387 * For efficiency, no lock is taken to check the busy state of 1388 * shost/starget/sdev, since the returned value is not guaranteed and 1389 * may be changed after request stacking drivers call the function, 1390 * regardless of taking lock or not. 1391 * 1392 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1393 * needs to return 'not busy'. Otherwise, request stacking drivers 1394 * may hold requests forever. 1395 */ 1396 static bool scsi_mq_lld_busy(struct request_queue *q) 1397 { 1398 struct scsi_device *sdev = q->queuedata; 1399 struct Scsi_Host *shost; 1400 1401 if (blk_queue_dying(q)) 1402 return false; 1403 1404 shost = sdev->host; 1405 1406 /* 1407 * Ignore host/starget busy state. 1408 * Since block layer does not have a concept of fairness across 1409 * multiple queues, congestion of host/starget needs to be handled 1410 * in SCSI layer. 1411 */ 1412 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1413 return true; 1414 1415 return false; 1416 } 1417 1418 /* 1419 * Block layer request completion callback. May be called from interrupt 1420 * context. 1421 */ 1422 static void scsi_complete(struct request *rq) 1423 { 1424 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1425 enum scsi_disposition disposition; 1426 1427 INIT_LIST_HEAD(&cmd->eh_entry); 1428 1429 atomic_inc(&cmd->device->iodone_cnt); 1430 if (cmd->result) 1431 atomic_inc(&cmd->device->ioerr_cnt); 1432 1433 disposition = scsi_decide_disposition(cmd); 1434 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1435 disposition = SUCCESS; 1436 1437 scsi_log_completion(cmd, disposition); 1438 1439 switch (disposition) { 1440 case SUCCESS: 1441 scsi_finish_command(cmd); 1442 break; 1443 case NEEDS_RETRY: 1444 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1445 break; 1446 case ADD_TO_MLQUEUE: 1447 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1448 break; 1449 default: 1450 scsi_eh_scmd_add(cmd); 1451 break; 1452 } 1453 } 1454 1455 /** 1456 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1457 * @cmd: command block we are dispatching. 1458 * 1459 * Return: nonzero return request was rejected and device's queue needs to be 1460 * plugged. 1461 */ 1462 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1463 { 1464 struct Scsi_Host *host = cmd->device->host; 1465 int rtn = 0; 1466 1467 atomic_inc(&cmd->device->iorequest_cnt); 1468 1469 /* check if the device is still usable */ 1470 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1471 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1472 * returns an immediate error upwards, and signals 1473 * that the device is no longer present */ 1474 cmd->result = DID_NO_CONNECT << 16; 1475 goto done; 1476 } 1477 1478 /* Check to see if the scsi lld made this device blocked. */ 1479 if (unlikely(scsi_device_blocked(cmd->device))) { 1480 /* 1481 * in blocked state, the command is just put back on 1482 * the device queue. The suspend state has already 1483 * blocked the queue so future requests should not 1484 * occur until the device transitions out of the 1485 * suspend state. 1486 */ 1487 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1488 "queuecommand : device blocked\n")); 1489 return SCSI_MLQUEUE_DEVICE_BUSY; 1490 } 1491 1492 /* Store the LUN value in cmnd, if needed. */ 1493 if (cmd->device->lun_in_cdb) 1494 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1495 (cmd->device->lun << 5 & 0xe0); 1496 1497 scsi_log_send(cmd); 1498 1499 /* 1500 * Before we queue this command, check if the command 1501 * length exceeds what the host adapter can handle. 1502 */ 1503 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1504 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1505 "queuecommand : command too long. " 1506 "cdb_size=%d host->max_cmd_len=%d\n", 1507 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1508 cmd->result = (DID_ABORT << 16); 1509 goto done; 1510 } 1511 1512 if (unlikely(host->shost_state == SHOST_DEL)) { 1513 cmd->result = (DID_NO_CONNECT << 16); 1514 goto done; 1515 1516 } 1517 1518 trace_scsi_dispatch_cmd_start(cmd); 1519 rtn = host->hostt->queuecommand(host, cmd); 1520 if (rtn) { 1521 trace_scsi_dispatch_cmd_error(cmd, rtn); 1522 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1523 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1524 rtn = SCSI_MLQUEUE_HOST_BUSY; 1525 1526 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1527 "queuecommand : request rejected\n")); 1528 } 1529 1530 return rtn; 1531 done: 1532 scsi_done(cmd); 1533 return 0; 1534 } 1535 1536 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1537 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1538 { 1539 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1540 sizeof(struct scatterlist); 1541 } 1542 1543 static blk_status_t scsi_prepare_cmd(struct request *req) 1544 { 1545 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1546 struct scsi_device *sdev = req->q->queuedata; 1547 struct Scsi_Host *shost = sdev->host; 1548 struct scatterlist *sg; 1549 1550 scsi_init_command(sdev, cmd); 1551 1552 cmd->prot_op = SCSI_PROT_NORMAL; 1553 if (blk_rq_bytes(req)) 1554 cmd->sc_data_direction = rq_dma_dir(req); 1555 else 1556 cmd->sc_data_direction = DMA_NONE; 1557 1558 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1559 cmd->sdb.table.sgl = sg; 1560 1561 if (scsi_host_get_prot(shost)) { 1562 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1563 1564 cmd->prot_sdb->table.sgl = 1565 (struct scatterlist *)(cmd->prot_sdb + 1); 1566 } 1567 1568 /* 1569 * Special handling for passthrough commands, which don't go to the ULP 1570 * at all: 1571 */ 1572 if (blk_rq_is_passthrough(req)) 1573 return scsi_setup_scsi_cmnd(sdev, req); 1574 1575 if (sdev->handler && sdev->handler->prep_fn) { 1576 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1577 1578 if (ret != BLK_STS_OK) 1579 return ret; 1580 } 1581 1582 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1583 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1584 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1585 } 1586 1587 void scsi_done(struct scsi_cmnd *cmd) 1588 { 1589 switch (cmd->submitter) { 1590 case SUBMITTED_BY_BLOCK_LAYER: 1591 break; 1592 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1593 return scsi_eh_done(cmd); 1594 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1595 return; 1596 } 1597 1598 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1599 return; 1600 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1601 return; 1602 trace_scsi_dispatch_cmd_done(cmd); 1603 blk_mq_complete_request(scsi_cmd_to_rq(cmd)); 1604 } 1605 EXPORT_SYMBOL(scsi_done); 1606 1607 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1608 { 1609 struct scsi_device *sdev = q->queuedata; 1610 1611 sbitmap_put(&sdev->budget_map, budget_token); 1612 } 1613 1614 static int scsi_mq_get_budget(struct request_queue *q) 1615 { 1616 struct scsi_device *sdev = q->queuedata; 1617 int token = scsi_dev_queue_ready(q, sdev); 1618 1619 if (token >= 0) 1620 return token; 1621 1622 atomic_inc(&sdev->restarts); 1623 1624 /* 1625 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1626 * .restarts must be incremented before .device_busy is read because the 1627 * code in scsi_run_queue_async() depends on the order of these operations. 1628 */ 1629 smp_mb__after_atomic(); 1630 1631 /* 1632 * If all in-flight requests originated from this LUN are completed 1633 * before reading .device_busy, sdev->device_busy will be observed as 1634 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1635 * soon. Otherwise, completion of one of these requests will observe 1636 * the .restarts flag, and the request queue will be run for handling 1637 * this request, see scsi_end_request(). 1638 */ 1639 if (unlikely(scsi_device_busy(sdev) == 0 && 1640 !scsi_device_blocked(sdev))) 1641 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1642 return -1; 1643 } 1644 1645 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1646 { 1647 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1648 1649 cmd->budget_token = token; 1650 } 1651 1652 static int scsi_mq_get_rq_budget_token(struct request *req) 1653 { 1654 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1655 1656 return cmd->budget_token; 1657 } 1658 1659 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1660 const struct blk_mq_queue_data *bd) 1661 { 1662 struct request *req = bd->rq; 1663 struct request_queue *q = req->q; 1664 struct scsi_device *sdev = q->queuedata; 1665 struct Scsi_Host *shost = sdev->host; 1666 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1667 blk_status_t ret; 1668 int reason; 1669 1670 WARN_ON_ONCE(cmd->budget_token < 0); 1671 1672 /* 1673 * If the device is not in running state we will reject some or all 1674 * commands. 1675 */ 1676 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1677 ret = scsi_device_state_check(sdev, req); 1678 if (ret != BLK_STS_OK) 1679 goto out_put_budget; 1680 } 1681 1682 ret = BLK_STS_RESOURCE; 1683 if (!scsi_target_queue_ready(shost, sdev)) 1684 goto out_put_budget; 1685 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1686 goto out_dec_target_busy; 1687 1688 if (!(req->rq_flags & RQF_DONTPREP)) { 1689 ret = scsi_prepare_cmd(req); 1690 if (ret != BLK_STS_OK) 1691 goto out_dec_host_busy; 1692 req->rq_flags |= RQF_DONTPREP; 1693 } else { 1694 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1695 } 1696 1697 cmd->flags &= SCMD_PRESERVED_FLAGS; 1698 if (sdev->simple_tags) 1699 cmd->flags |= SCMD_TAGGED; 1700 if (bd->last) 1701 cmd->flags |= SCMD_LAST; 1702 1703 scsi_set_resid(cmd, 0); 1704 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1705 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1706 1707 blk_mq_start_request(req); 1708 reason = scsi_dispatch_cmd(cmd); 1709 if (reason) { 1710 scsi_set_blocked(cmd, reason); 1711 ret = BLK_STS_RESOURCE; 1712 goto out_dec_host_busy; 1713 } 1714 1715 return BLK_STS_OK; 1716 1717 out_dec_host_busy: 1718 scsi_dec_host_busy(shost, cmd); 1719 out_dec_target_busy: 1720 if (scsi_target(sdev)->can_queue > 0) 1721 atomic_dec(&scsi_target(sdev)->target_busy); 1722 out_put_budget: 1723 scsi_mq_put_budget(q, cmd->budget_token); 1724 cmd->budget_token = -1; 1725 switch (ret) { 1726 case BLK_STS_OK: 1727 break; 1728 case BLK_STS_RESOURCE: 1729 case BLK_STS_ZONE_RESOURCE: 1730 if (scsi_device_blocked(sdev)) 1731 ret = BLK_STS_DEV_RESOURCE; 1732 break; 1733 case BLK_STS_AGAIN: 1734 scsi_req(req)->result = DID_BUS_BUSY << 16; 1735 if (req->rq_flags & RQF_DONTPREP) 1736 scsi_mq_uninit_cmd(cmd); 1737 break; 1738 default: 1739 if (unlikely(!scsi_device_online(sdev))) 1740 scsi_req(req)->result = DID_NO_CONNECT << 16; 1741 else 1742 scsi_req(req)->result = DID_ERROR << 16; 1743 /* 1744 * Make sure to release all allocated resources when 1745 * we hit an error, as we will never see this command 1746 * again. 1747 */ 1748 if (req->rq_flags & RQF_DONTPREP) 1749 scsi_mq_uninit_cmd(cmd); 1750 scsi_run_queue_async(sdev); 1751 break; 1752 } 1753 return ret; 1754 } 1755 1756 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1757 bool reserved) 1758 { 1759 if (reserved) 1760 return BLK_EH_RESET_TIMER; 1761 return scsi_times_out(req); 1762 } 1763 1764 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1765 unsigned int hctx_idx, unsigned int numa_node) 1766 { 1767 struct Scsi_Host *shost = set->driver_data; 1768 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1769 struct scatterlist *sg; 1770 int ret = 0; 1771 1772 cmd->sense_buffer = 1773 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1774 if (!cmd->sense_buffer) 1775 return -ENOMEM; 1776 cmd->req.sense = cmd->sense_buffer; 1777 1778 if (scsi_host_get_prot(shost)) { 1779 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1780 shost->hostt->cmd_size; 1781 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1782 } 1783 1784 if (shost->hostt->init_cmd_priv) { 1785 ret = shost->hostt->init_cmd_priv(shost, cmd); 1786 if (ret < 0) 1787 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1788 } 1789 1790 return ret; 1791 } 1792 1793 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1794 unsigned int hctx_idx) 1795 { 1796 struct Scsi_Host *shost = set->driver_data; 1797 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1798 1799 if (shost->hostt->exit_cmd_priv) 1800 shost->hostt->exit_cmd_priv(shost, cmd); 1801 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1802 } 1803 1804 1805 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1806 { 1807 struct Scsi_Host *shost = hctx->driver_data; 1808 1809 if (shost->hostt->mq_poll) 1810 return shost->hostt->mq_poll(shost, hctx->queue_num); 1811 1812 return 0; 1813 } 1814 1815 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1816 unsigned int hctx_idx) 1817 { 1818 struct Scsi_Host *shost = data; 1819 1820 hctx->driver_data = shost; 1821 return 0; 1822 } 1823 1824 static int scsi_map_queues(struct blk_mq_tag_set *set) 1825 { 1826 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1827 1828 if (shost->hostt->map_queues) 1829 return shost->hostt->map_queues(shost); 1830 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1831 } 1832 1833 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1834 { 1835 struct device *dev = shost->dma_dev; 1836 1837 /* 1838 * this limit is imposed by hardware restrictions 1839 */ 1840 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1841 SG_MAX_SEGMENTS)); 1842 1843 if (scsi_host_prot_dma(shost)) { 1844 shost->sg_prot_tablesize = 1845 min_not_zero(shost->sg_prot_tablesize, 1846 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1847 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1848 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1849 } 1850 1851 if (dev->dma_mask) { 1852 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1853 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1854 } 1855 blk_queue_max_hw_sectors(q, shost->max_sectors); 1856 blk_queue_segment_boundary(q, shost->dma_boundary); 1857 dma_set_seg_boundary(dev, shost->dma_boundary); 1858 1859 blk_queue_max_segment_size(q, shost->max_segment_size); 1860 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1861 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1862 1863 /* 1864 * Set a reasonable default alignment: The larger of 32-byte (dword), 1865 * which is a common minimum for HBAs, and the minimum DMA alignment, 1866 * which is set by the platform. 1867 * 1868 * Devices that require a bigger alignment can increase it later. 1869 */ 1870 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1871 } 1872 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1873 1874 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1875 .get_budget = scsi_mq_get_budget, 1876 .put_budget = scsi_mq_put_budget, 1877 .queue_rq = scsi_queue_rq, 1878 .complete = scsi_complete, 1879 .timeout = scsi_timeout, 1880 #ifdef CONFIG_BLK_DEBUG_FS 1881 .show_rq = scsi_show_rq, 1882 #endif 1883 .init_request = scsi_mq_init_request, 1884 .exit_request = scsi_mq_exit_request, 1885 .cleanup_rq = scsi_cleanup_rq, 1886 .busy = scsi_mq_lld_busy, 1887 .map_queues = scsi_map_queues, 1888 .init_hctx = scsi_init_hctx, 1889 .poll = scsi_mq_poll, 1890 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1891 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1892 }; 1893 1894 1895 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1896 { 1897 struct Scsi_Host *shost = hctx->driver_data; 1898 1899 shost->hostt->commit_rqs(shost, hctx->queue_num); 1900 } 1901 1902 static const struct blk_mq_ops scsi_mq_ops = { 1903 .get_budget = scsi_mq_get_budget, 1904 .put_budget = scsi_mq_put_budget, 1905 .queue_rq = scsi_queue_rq, 1906 .commit_rqs = scsi_commit_rqs, 1907 .complete = scsi_complete, 1908 .timeout = scsi_timeout, 1909 #ifdef CONFIG_BLK_DEBUG_FS 1910 .show_rq = scsi_show_rq, 1911 #endif 1912 .init_request = scsi_mq_init_request, 1913 .exit_request = scsi_mq_exit_request, 1914 .cleanup_rq = scsi_cleanup_rq, 1915 .busy = scsi_mq_lld_busy, 1916 .map_queues = scsi_map_queues, 1917 .init_hctx = scsi_init_hctx, 1918 .poll = scsi_mq_poll, 1919 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1920 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1921 }; 1922 1923 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1924 { 1925 unsigned int cmd_size, sgl_size; 1926 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1927 1928 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1929 scsi_mq_inline_sgl_size(shost)); 1930 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1931 if (scsi_host_get_prot(shost)) 1932 cmd_size += sizeof(struct scsi_data_buffer) + 1933 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1934 1935 memset(tag_set, 0, sizeof(*tag_set)); 1936 if (shost->hostt->commit_rqs) 1937 tag_set->ops = &scsi_mq_ops; 1938 else 1939 tag_set->ops = &scsi_mq_ops_no_commit; 1940 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1941 tag_set->nr_maps = shost->nr_maps ? : 1; 1942 tag_set->queue_depth = shost->can_queue; 1943 tag_set->cmd_size = cmd_size; 1944 tag_set->numa_node = NUMA_NO_NODE; 1945 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1946 tag_set->flags |= 1947 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1948 tag_set->driver_data = shost; 1949 if (shost->host_tagset) 1950 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1951 1952 return blk_mq_alloc_tag_set(tag_set); 1953 } 1954 1955 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1956 { 1957 blk_mq_free_tag_set(&shost->tag_set); 1958 } 1959 1960 /** 1961 * scsi_device_from_queue - return sdev associated with a request_queue 1962 * @q: The request queue to return the sdev from 1963 * 1964 * Return the sdev associated with a request queue or NULL if the 1965 * request_queue does not reference a SCSI device. 1966 */ 1967 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1968 { 1969 struct scsi_device *sdev = NULL; 1970 1971 if (q->mq_ops == &scsi_mq_ops_no_commit || 1972 q->mq_ops == &scsi_mq_ops) 1973 sdev = q->queuedata; 1974 if (!sdev || !get_device(&sdev->sdev_gendev)) 1975 sdev = NULL; 1976 1977 return sdev; 1978 } 1979 /* 1980 * pktcdvd should have been integrated into the SCSI layers, but for historical 1981 * reasons like the old IDE driver it isn't. This export allows it to safely 1982 * probe if a given device is a SCSI one and only attach to that. 1983 */ 1984 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 1985 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1986 #endif 1987 1988 /** 1989 * scsi_block_requests - Utility function used by low-level drivers to prevent 1990 * further commands from being queued to the device. 1991 * @shost: host in question 1992 * 1993 * There is no timer nor any other means by which the requests get unblocked 1994 * other than the low-level driver calling scsi_unblock_requests(). 1995 */ 1996 void scsi_block_requests(struct Scsi_Host *shost) 1997 { 1998 shost->host_self_blocked = 1; 1999 } 2000 EXPORT_SYMBOL(scsi_block_requests); 2001 2002 /** 2003 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2004 * further commands to be queued to the device. 2005 * @shost: host in question 2006 * 2007 * There is no timer nor any other means by which the requests get unblocked 2008 * other than the low-level driver calling scsi_unblock_requests(). This is done 2009 * as an API function so that changes to the internals of the scsi mid-layer 2010 * won't require wholesale changes to drivers that use this feature. 2011 */ 2012 void scsi_unblock_requests(struct Scsi_Host *shost) 2013 { 2014 shost->host_self_blocked = 0; 2015 scsi_run_host_queues(shost); 2016 } 2017 EXPORT_SYMBOL(scsi_unblock_requests); 2018 2019 void scsi_exit_queue(void) 2020 { 2021 kmem_cache_destroy(scsi_sense_cache); 2022 } 2023 2024 /** 2025 * scsi_mode_select - issue a mode select 2026 * @sdev: SCSI device to be queried 2027 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2028 * @sp: Save page bit (0 == don't save, 1 == save) 2029 * @modepage: mode page being requested 2030 * @buffer: request buffer (may not be smaller than eight bytes) 2031 * @len: length of request buffer. 2032 * @timeout: command timeout 2033 * @retries: number of retries before failing 2034 * @data: returns a structure abstracting the mode header data 2035 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2036 * must be SCSI_SENSE_BUFFERSIZE big. 2037 * 2038 * Returns zero if successful; negative error number or scsi 2039 * status on error 2040 * 2041 */ 2042 int 2043 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2044 unsigned char *buffer, int len, int timeout, int retries, 2045 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2046 { 2047 unsigned char cmd[10]; 2048 unsigned char *real_buffer; 2049 int ret; 2050 2051 memset(cmd, 0, sizeof(cmd)); 2052 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2053 2054 /* 2055 * Use MODE SELECT(10) if the device asked for it or if the mode page 2056 * and the mode select header cannot fit within the maximumm 255 bytes 2057 * of the MODE SELECT(6) command. 2058 */ 2059 if (sdev->use_10_for_ms || 2060 len + 4 > 255 || 2061 data->block_descriptor_length > 255) { 2062 if (len > 65535 - 8) 2063 return -EINVAL; 2064 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2065 if (!real_buffer) 2066 return -ENOMEM; 2067 memcpy(real_buffer + 8, buffer, len); 2068 len += 8; 2069 real_buffer[0] = 0; 2070 real_buffer[1] = 0; 2071 real_buffer[2] = data->medium_type; 2072 real_buffer[3] = data->device_specific; 2073 real_buffer[4] = data->longlba ? 0x01 : 0; 2074 real_buffer[5] = 0; 2075 put_unaligned_be16(data->block_descriptor_length, 2076 &real_buffer[6]); 2077 2078 cmd[0] = MODE_SELECT_10; 2079 put_unaligned_be16(len, &cmd[7]); 2080 } else { 2081 if (data->longlba) 2082 return -EINVAL; 2083 2084 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2085 if (!real_buffer) 2086 return -ENOMEM; 2087 memcpy(real_buffer + 4, buffer, len); 2088 len += 4; 2089 real_buffer[0] = 0; 2090 real_buffer[1] = data->medium_type; 2091 real_buffer[2] = data->device_specific; 2092 real_buffer[3] = data->block_descriptor_length; 2093 2094 cmd[0] = MODE_SELECT; 2095 cmd[4] = len; 2096 } 2097 2098 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2099 sshdr, timeout, retries, NULL); 2100 kfree(real_buffer); 2101 return ret; 2102 } 2103 EXPORT_SYMBOL_GPL(scsi_mode_select); 2104 2105 /** 2106 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2107 * @sdev: SCSI device to be queried 2108 * @dbd: set to prevent mode sense from returning block descriptors 2109 * @modepage: mode page being requested 2110 * @buffer: request buffer (may not be smaller than eight bytes) 2111 * @len: length of request buffer. 2112 * @timeout: command timeout 2113 * @retries: number of retries before failing 2114 * @data: returns a structure abstracting the mode header data 2115 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2116 * must be SCSI_SENSE_BUFFERSIZE big. 2117 * 2118 * Returns zero if successful, or a negative error number on failure 2119 */ 2120 int 2121 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2122 unsigned char *buffer, int len, int timeout, int retries, 2123 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2124 { 2125 unsigned char cmd[12]; 2126 int use_10_for_ms; 2127 int header_length; 2128 int result, retry_count = retries; 2129 struct scsi_sense_hdr my_sshdr; 2130 2131 memset(data, 0, sizeof(*data)); 2132 memset(&cmd[0], 0, 12); 2133 2134 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2135 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2136 cmd[2] = modepage; 2137 2138 /* caller might not be interested in sense, but we need it */ 2139 if (!sshdr) 2140 sshdr = &my_sshdr; 2141 2142 retry: 2143 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2144 2145 if (use_10_for_ms) { 2146 if (len < 8 || len > 65535) 2147 return -EINVAL; 2148 2149 cmd[0] = MODE_SENSE_10; 2150 put_unaligned_be16(len, &cmd[7]); 2151 header_length = 8; 2152 } else { 2153 if (len < 4) 2154 return -EINVAL; 2155 2156 cmd[0] = MODE_SENSE; 2157 cmd[4] = len; 2158 header_length = 4; 2159 } 2160 2161 memset(buffer, 0, len); 2162 2163 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2164 sshdr, timeout, retries, NULL); 2165 if (result < 0) 2166 return result; 2167 2168 /* This code looks awful: what it's doing is making sure an 2169 * ILLEGAL REQUEST sense return identifies the actual command 2170 * byte as the problem. MODE_SENSE commands can return 2171 * ILLEGAL REQUEST if the code page isn't supported */ 2172 2173 if (!scsi_status_is_good(result)) { 2174 if (scsi_sense_valid(sshdr)) { 2175 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2176 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2177 /* 2178 * Invalid command operation code: retry using 2179 * MODE SENSE(6) if this was a MODE SENSE(10) 2180 * request, except if the request mode page is 2181 * too large for MODE SENSE single byte 2182 * allocation length field. 2183 */ 2184 if (use_10_for_ms) { 2185 if (len > 255) 2186 return -EIO; 2187 sdev->use_10_for_ms = 0; 2188 goto retry; 2189 } 2190 } 2191 if (scsi_status_is_check_condition(result) && 2192 sshdr->sense_key == UNIT_ATTENTION && 2193 retry_count) { 2194 retry_count--; 2195 goto retry; 2196 } 2197 } 2198 return -EIO; 2199 } 2200 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2201 (modepage == 6 || modepage == 8))) { 2202 /* Initio breakage? */ 2203 header_length = 0; 2204 data->length = 13; 2205 data->medium_type = 0; 2206 data->device_specific = 0; 2207 data->longlba = 0; 2208 data->block_descriptor_length = 0; 2209 } else if (use_10_for_ms) { 2210 data->length = get_unaligned_be16(&buffer[0]) + 2; 2211 data->medium_type = buffer[2]; 2212 data->device_specific = buffer[3]; 2213 data->longlba = buffer[4] & 0x01; 2214 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2215 } else { 2216 data->length = buffer[0] + 1; 2217 data->medium_type = buffer[1]; 2218 data->device_specific = buffer[2]; 2219 data->block_descriptor_length = buffer[3]; 2220 } 2221 data->header_length = header_length; 2222 2223 return 0; 2224 } 2225 EXPORT_SYMBOL(scsi_mode_sense); 2226 2227 /** 2228 * scsi_test_unit_ready - test if unit is ready 2229 * @sdev: scsi device to change the state of. 2230 * @timeout: command timeout 2231 * @retries: number of retries before failing 2232 * @sshdr: outpout pointer for decoded sense information. 2233 * 2234 * Returns zero if unsuccessful or an error if TUR failed. For 2235 * removable media, UNIT_ATTENTION sets ->changed flag. 2236 **/ 2237 int 2238 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2239 struct scsi_sense_hdr *sshdr) 2240 { 2241 char cmd[] = { 2242 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2243 }; 2244 int result; 2245 2246 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2247 do { 2248 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2249 timeout, 1, NULL); 2250 if (sdev->removable && scsi_sense_valid(sshdr) && 2251 sshdr->sense_key == UNIT_ATTENTION) 2252 sdev->changed = 1; 2253 } while (scsi_sense_valid(sshdr) && 2254 sshdr->sense_key == UNIT_ATTENTION && --retries); 2255 2256 return result; 2257 } 2258 EXPORT_SYMBOL(scsi_test_unit_ready); 2259 2260 /** 2261 * scsi_device_set_state - Take the given device through the device state model. 2262 * @sdev: scsi device to change the state of. 2263 * @state: state to change to. 2264 * 2265 * Returns zero if successful or an error if the requested 2266 * transition is illegal. 2267 */ 2268 int 2269 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2270 { 2271 enum scsi_device_state oldstate = sdev->sdev_state; 2272 2273 if (state == oldstate) 2274 return 0; 2275 2276 switch (state) { 2277 case SDEV_CREATED: 2278 switch (oldstate) { 2279 case SDEV_CREATED_BLOCK: 2280 break; 2281 default: 2282 goto illegal; 2283 } 2284 break; 2285 2286 case SDEV_RUNNING: 2287 switch (oldstate) { 2288 case SDEV_CREATED: 2289 case SDEV_OFFLINE: 2290 case SDEV_TRANSPORT_OFFLINE: 2291 case SDEV_QUIESCE: 2292 case SDEV_BLOCK: 2293 break; 2294 default: 2295 goto illegal; 2296 } 2297 break; 2298 2299 case SDEV_QUIESCE: 2300 switch (oldstate) { 2301 case SDEV_RUNNING: 2302 case SDEV_OFFLINE: 2303 case SDEV_TRANSPORT_OFFLINE: 2304 break; 2305 default: 2306 goto illegal; 2307 } 2308 break; 2309 2310 case SDEV_OFFLINE: 2311 case SDEV_TRANSPORT_OFFLINE: 2312 switch (oldstate) { 2313 case SDEV_CREATED: 2314 case SDEV_RUNNING: 2315 case SDEV_QUIESCE: 2316 case SDEV_BLOCK: 2317 break; 2318 default: 2319 goto illegal; 2320 } 2321 break; 2322 2323 case SDEV_BLOCK: 2324 switch (oldstate) { 2325 case SDEV_RUNNING: 2326 case SDEV_CREATED_BLOCK: 2327 case SDEV_QUIESCE: 2328 case SDEV_OFFLINE: 2329 break; 2330 default: 2331 goto illegal; 2332 } 2333 break; 2334 2335 case SDEV_CREATED_BLOCK: 2336 switch (oldstate) { 2337 case SDEV_CREATED: 2338 break; 2339 default: 2340 goto illegal; 2341 } 2342 break; 2343 2344 case SDEV_CANCEL: 2345 switch (oldstate) { 2346 case SDEV_CREATED: 2347 case SDEV_RUNNING: 2348 case SDEV_QUIESCE: 2349 case SDEV_OFFLINE: 2350 case SDEV_TRANSPORT_OFFLINE: 2351 break; 2352 default: 2353 goto illegal; 2354 } 2355 break; 2356 2357 case SDEV_DEL: 2358 switch (oldstate) { 2359 case SDEV_CREATED: 2360 case SDEV_RUNNING: 2361 case SDEV_OFFLINE: 2362 case SDEV_TRANSPORT_OFFLINE: 2363 case SDEV_CANCEL: 2364 case SDEV_BLOCK: 2365 case SDEV_CREATED_BLOCK: 2366 break; 2367 default: 2368 goto illegal; 2369 } 2370 break; 2371 2372 } 2373 sdev->offline_already = false; 2374 sdev->sdev_state = state; 2375 return 0; 2376 2377 illegal: 2378 SCSI_LOG_ERROR_RECOVERY(1, 2379 sdev_printk(KERN_ERR, sdev, 2380 "Illegal state transition %s->%s", 2381 scsi_device_state_name(oldstate), 2382 scsi_device_state_name(state)) 2383 ); 2384 return -EINVAL; 2385 } 2386 EXPORT_SYMBOL(scsi_device_set_state); 2387 2388 /** 2389 * scsi_evt_emit - emit a single SCSI device uevent 2390 * @sdev: associated SCSI device 2391 * @evt: event to emit 2392 * 2393 * Send a single uevent (scsi_event) to the associated scsi_device. 2394 */ 2395 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2396 { 2397 int idx = 0; 2398 char *envp[3]; 2399 2400 switch (evt->evt_type) { 2401 case SDEV_EVT_MEDIA_CHANGE: 2402 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2403 break; 2404 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2405 scsi_rescan_device(&sdev->sdev_gendev); 2406 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2407 break; 2408 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2409 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2410 break; 2411 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2412 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2413 break; 2414 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2415 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2416 break; 2417 case SDEV_EVT_LUN_CHANGE_REPORTED: 2418 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2419 break; 2420 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2421 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2422 break; 2423 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2424 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2425 break; 2426 default: 2427 /* do nothing */ 2428 break; 2429 } 2430 2431 envp[idx++] = NULL; 2432 2433 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2434 } 2435 2436 /** 2437 * scsi_evt_thread - send a uevent for each scsi event 2438 * @work: work struct for scsi_device 2439 * 2440 * Dispatch queued events to their associated scsi_device kobjects 2441 * as uevents. 2442 */ 2443 void scsi_evt_thread(struct work_struct *work) 2444 { 2445 struct scsi_device *sdev; 2446 enum scsi_device_event evt_type; 2447 LIST_HEAD(event_list); 2448 2449 sdev = container_of(work, struct scsi_device, event_work); 2450 2451 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2452 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2453 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2454 2455 while (1) { 2456 struct scsi_event *evt; 2457 struct list_head *this, *tmp; 2458 unsigned long flags; 2459 2460 spin_lock_irqsave(&sdev->list_lock, flags); 2461 list_splice_init(&sdev->event_list, &event_list); 2462 spin_unlock_irqrestore(&sdev->list_lock, flags); 2463 2464 if (list_empty(&event_list)) 2465 break; 2466 2467 list_for_each_safe(this, tmp, &event_list) { 2468 evt = list_entry(this, struct scsi_event, node); 2469 list_del(&evt->node); 2470 scsi_evt_emit(sdev, evt); 2471 kfree(evt); 2472 } 2473 } 2474 } 2475 2476 /** 2477 * sdev_evt_send - send asserted event to uevent thread 2478 * @sdev: scsi_device event occurred on 2479 * @evt: event to send 2480 * 2481 * Assert scsi device event asynchronously. 2482 */ 2483 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2484 { 2485 unsigned long flags; 2486 2487 #if 0 2488 /* FIXME: currently this check eliminates all media change events 2489 * for polled devices. Need to update to discriminate between AN 2490 * and polled events */ 2491 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2492 kfree(evt); 2493 return; 2494 } 2495 #endif 2496 2497 spin_lock_irqsave(&sdev->list_lock, flags); 2498 list_add_tail(&evt->node, &sdev->event_list); 2499 schedule_work(&sdev->event_work); 2500 spin_unlock_irqrestore(&sdev->list_lock, flags); 2501 } 2502 EXPORT_SYMBOL_GPL(sdev_evt_send); 2503 2504 /** 2505 * sdev_evt_alloc - allocate a new scsi event 2506 * @evt_type: type of event to allocate 2507 * @gfpflags: GFP flags for allocation 2508 * 2509 * Allocates and returns a new scsi_event. 2510 */ 2511 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2512 gfp_t gfpflags) 2513 { 2514 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2515 if (!evt) 2516 return NULL; 2517 2518 evt->evt_type = evt_type; 2519 INIT_LIST_HEAD(&evt->node); 2520 2521 /* evt_type-specific initialization, if any */ 2522 switch (evt_type) { 2523 case SDEV_EVT_MEDIA_CHANGE: 2524 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2525 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2526 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2527 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2528 case SDEV_EVT_LUN_CHANGE_REPORTED: 2529 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2530 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2531 default: 2532 /* do nothing */ 2533 break; 2534 } 2535 2536 return evt; 2537 } 2538 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2539 2540 /** 2541 * sdev_evt_send_simple - send asserted event to uevent thread 2542 * @sdev: scsi_device event occurred on 2543 * @evt_type: type of event to send 2544 * @gfpflags: GFP flags for allocation 2545 * 2546 * Assert scsi device event asynchronously, given an event type. 2547 */ 2548 void sdev_evt_send_simple(struct scsi_device *sdev, 2549 enum scsi_device_event evt_type, gfp_t gfpflags) 2550 { 2551 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2552 if (!evt) { 2553 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2554 evt_type); 2555 return; 2556 } 2557 2558 sdev_evt_send(sdev, evt); 2559 } 2560 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2561 2562 /** 2563 * scsi_device_quiesce - Block all commands except power management. 2564 * @sdev: scsi device to quiesce. 2565 * 2566 * This works by trying to transition to the SDEV_QUIESCE state 2567 * (which must be a legal transition). When the device is in this 2568 * state, only power management requests will be accepted, all others will 2569 * be deferred. 2570 * 2571 * Must be called with user context, may sleep. 2572 * 2573 * Returns zero if unsuccessful or an error if not. 2574 */ 2575 int 2576 scsi_device_quiesce(struct scsi_device *sdev) 2577 { 2578 struct request_queue *q = sdev->request_queue; 2579 int err; 2580 2581 /* 2582 * It is allowed to call scsi_device_quiesce() multiple times from 2583 * the same context but concurrent scsi_device_quiesce() calls are 2584 * not allowed. 2585 */ 2586 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2587 2588 if (sdev->quiesced_by == current) 2589 return 0; 2590 2591 blk_set_pm_only(q); 2592 2593 blk_mq_freeze_queue(q); 2594 /* 2595 * Ensure that the effect of blk_set_pm_only() will be visible 2596 * for percpu_ref_tryget() callers that occur after the queue 2597 * unfreeze even if the queue was already frozen before this function 2598 * was called. See also https://lwn.net/Articles/573497/. 2599 */ 2600 synchronize_rcu(); 2601 blk_mq_unfreeze_queue(q); 2602 2603 mutex_lock(&sdev->state_mutex); 2604 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2605 if (err == 0) 2606 sdev->quiesced_by = current; 2607 else 2608 blk_clear_pm_only(q); 2609 mutex_unlock(&sdev->state_mutex); 2610 2611 return err; 2612 } 2613 EXPORT_SYMBOL(scsi_device_quiesce); 2614 2615 /** 2616 * scsi_device_resume - Restart user issued commands to a quiesced device. 2617 * @sdev: scsi device to resume. 2618 * 2619 * Moves the device from quiesced back to running and restarts the 2620 * queues. 2621 * 2622 * Must be called with user context, may sleep. 2623 */ 2624 void scsi_device_resume(struct scsi_device *sdev) 2625 { 2626 /* check if the device state was mutated prior to resume, and if 2627 * so assume the state is being managed elsewhere (for example 2628 * device deleted during suspend) 2629 */ 2630 mutex_lock(&sdev->state_mutex); 2631 if (sdev->sdev_state == SDEV_QUIESCE) 2632 scsi_device_set_state(sdev, SDEV_RUNNING); 2633 if (sdev->quiesced_by) { 2634 sdev->quiesced_by = NULL; 2635 blk_clear_pm_only(sdev->request_queue); 2636 } 2637 mutex_unlock(&sdev->state_mutex); 2638 } 2639 EXPORT_SYMBOL(scsi_device_resume); 2640 2641 static void 2642 device_quiesce_fn(struct scsi_device *sdev, void *data) 2643 { 2644 scsi_device_quiesce(sdev); 2645 } 2646 2647 void 2648 scsi_target_quiesce(struct scsi_target *starget) 2649 { 2650 starget_for_each_device(starget, NULL, device_quiesce_fn); 2651 } 2652 EXPORT_SYMBOL(scsi_target_quiesce); 2653 2654 static void 2655 device_resume_fn(struct scsi_device *sdev, void *data) 2656 { 2657 scsi_device_resume(sdev); 2658 } 2659 2660 void 2661 scsi_target_resume(struct scsi_target *starget) 2662 { 2663 starget_for_each_device(starget, NULL, device_resume_fn); 2664 } 2665 EXPORT_SYMBOL(scsi_target_resume); 2666 2667 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2668 { 2669 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2670 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2671 2672 return 0; 2673 } 2674 2675 void scsi_start_queue(struct scsi_device *sdev) 2676 { 2677 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2678 blk_mq_unquiesce_queue(sdev->request_queue); 2679 } 2680 2681 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait) 2682 { 2683 /* 2684 * The atomic variable of ->queue_stopped covers that 2685 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2686 * 2687 * However, we still need to wait until quiesce is done 2688 * in case that queue has been stopped. 2689 */ 2690 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) { 2691 if (nowait) 2692 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2693 else 2694 blk_mq_quiesce_queue(sdev->request_queue); 2695 } else { 2696 if (!nowait) 2697 blk_mq_wait_quiesce_done(sdev->request_queue); 2698 } 2699 } 2700 2701 /** 2702 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2703 * @sdev: device to block 2704 * 2705 * Pause SCSI command processing on the specified device. Does not sleep. 2706 * 2707 * Returns zero if successful or a negative error code upon failure. 2708 * 2709 * Notes: 2710 * This routine transitions the device to the SDEV_BLOCK state (which must be 2711 * a legal transition). When the device is in this state, command processing 2712 * is paused until the device leaves the SDEV_BLOCK state. See also 2713 * scsi_internal_device_unblock_nowait(). 2714 */ 2715 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2716 { 2717 int ret = __scsi_internal_device_block_nowait(sdev); 2718 2719 /* 2720 * The device has transitioned to SDEV_BLOCK. Stop the 2721 * block layer from calling the midlayer with this device's 2722 * request queue. 2723 */ 2724 if (!ret) 2725 scsi_stop_queue(sdev, true); 2726 return ret; 2727 } 2728 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2729 2730 /** 2731 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2732 * @sdev: device to block 2733 * 2734 * Pause SCSI command processing on the specified device and wait until all 2735 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2736 * 2737 * Returns zero if successful or a negative error code upon failure. 2738 * 2739 * Note: 2740 * This routine transitions the device to the SDEV_BLOCK state (which must be 2741 * a legal transition). When the device is in this state, command processing 2742 * is paused until the device leaves the SDEV_BLOCK state. See also 2743 * scsi_internal_device_unblock(). 2744 */ 2745 static int scsi_internal_device_block(struct scsi_device *sdev) 2746 { 2747 int err; 2748 2749 mutex_lock(&sdev->state_mutex); 2750 err = __scsi_internal_device_block_nowait(sdev); 2751 if (err == 0) 2752 scsi_stop_queue(sdev, false); 2753 mutex_unlock(&sdev->state_mutex); 2754 2755 return err; 2756 } 2757 2758 /** 2759 * scsi_internal_device_unblock_nowait - resume a device after a block request 2760 * @sdev: device to resume 2761 * @new_state: state to set the device to after unblocking 2762 * 2763 * Restart the device queue for a previously suspended SCSI device. Does not 2764 * sleep. 2765 * 2766 * Returns zero if successful or a negative error code upon failure. 2767 * 2768 * Notes: 2769 * This routine transitions the device to the SDEV_RUNNING state or to one of 2770 * the offline states (which must be a legal transition) allowing the midlayer 2771 * to goose the queue for this device. 2772 */ 2773 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2774 enum scsi_device_state new_state) 2775 { 2776 switch (new_state) { 2777 case SDEV_RUNNING: 2778 case SDEV_TRANSPORT_OFFLINE: 2779 break; 2780 default: 2781 return -EINVAL; 2782 } 2783 2784 /* 2785 * Try to transition the scsi device to SDEV_RUNNING or one of the 2786 * offlined states and goose the device queue if successful. 2787 */ 2788 switch (sdev->sdev_state) { 2789 case SDEV_BLOCK: 2790 case SDEV_TRANSPORT_OFFLINE: 2791 sdev->sdev_state = new_state; 2792 break; 2793 case SDEV_CREATED_BLOCK: 2794 if (new_state == SDEV_TRANSPORT_OFFLINE || 2795 new_state == SDEV_OFFLINE) 2796 sdev->sdev_state = new_state; 2797 else 2798 sdev->sdev_state = SDEV_CREATED; 2799 break; 2800 case SDEV_CANCEL: 2801 case SDEV_OFFLINE: 2802 break; 2803 default: 2804 return -EINVAL; 2805 } 2806 scsi_start_queue(sdev); 2807 2808 return 0; 2809 } 2810 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2811 2812 /** 2813 * scsi_internal_device_unblock - resume a device after a block request 2814 * @sdev: device to resume 2815 * @new_state: state to set the device to after unblocking 2816 * 2817 * Restart the device queue for a previously suspended SCSI device. May sleep. 2818 * 2819 * Returns zero if successful or a negative error code upon failure. 2820 * 2821 * Notes: 2822 * This routine transitions the device to the SDEV_RUNNING state or to one of 2823 * the offline states (which must be a legal transition) allowing the midlayer 2824 * to goose the queue for this device. 2825 */ 2826 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2827 enum scsi_device_state new_state) 2828 { 2829 int ret; 2830 2831 mutex_lock(&sdev->state_mutex); 2832 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2833 mutex_unlock(&sdev->state_mutex); 2834 2835 return ret; 2836 } 2837 2838 static void 2839 device_block(struct scsi_device *sdev, void *data) 2840 { 2841 int ret; 2842 2843 ret = scsi_internal_device_block(sdev); 2844 2845 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2846 dev_name(&sdev->sdev_gendev), ret); 2847 } 2848 2849 static int 2850 target_block(struct device *dev, void *data) 2851 { 2852 if (scsi_is_target_device(dev)) 2853 starget_for_each_device(to_scsi_target(dev), NULL, 2854 device_block); 2855 return 0; 2856 } 2857 2858 void 2859 scsi_target_block(struct device *dev) 2860 { 2861 if (scsi_is_target_device(dev)) 2862 starget_for_each_device(to_scsi_target(dev), NULL, 2863 device_block); 2864 else 2865 device_for_each_child(dev, NULL, target_block); 2866 } 2867 EXPORT_SYMBOL_GPL(scsi_target_block); 2868 2869 static void 2870 device_unblock(struct scsi_device *sdev, void *data) 2871 { 2872 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2873 } 2874 2875 static int 2876 target_unblock(struct device *dev, void *data) 2877 { 2878 if (scsi_is_target_device(dev)) 2879 starget_for_each_device(to_scsi_target(dev), data, 2880 device_unblock); 2881 return 0; 2882 } 2883 2884 void 2885 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2886 { 2887 if (scsi_is_target_device(dev)) 2888 starget_for_each_device(to_scsi_target(dev), &new_state, 2889 device_unblock); 2890 else 2891 device_for_each_child(dev, &new_state, target_unblock); 2892 } 2893 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2894 2895 int 2896 scsi_host_block(struct Scsi_Host *shost) 2897 { 2898 struct scsi_device *sdev; 2899 int ret = 0; 2900 2901 /* 2902 * Call scsi_internal_device_block_nowait so we can avoid 2903 * calling synchronize_rcu() for each LUN. 2904 */ 2905 shost_for_each_device(sdev, shost) { 2906 mutex_lock(&sdev->state_mutex); 2907 ret = scsi_internal_device_block_nowait(sdev); 2908 mutex_unlock(&sdev->state_mutex); 2909 if (ret) { 2910 scsi_device_put(sdev); 2911 break; 2912 } 2913 } 2914 2915 /* 2916 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2917 * calling synchronize_rcu() once is enough. 2918 */ 2919 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2920 2921 if (!ret) 2922 synchronize_rcu(); 2923 2924 return ret; 2925 } 2926 EXPORT_SYMBOL_GPL(scsi_host_block); 2927 2928 int 2929 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2930 { 2931 struct scsi_device *sdev; 2932 int ret = 0; 2933 2934 shost_for_each_device(sdev, shost) { 2935 ret = scsi_internal_device_unblock(sdev, new_state); 2936 if (ret) { 2937 scsi_device_put(sdev); 2938 break; 2939 } 2940 } 2941 return ret; 2942 } 2943 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2944 2945 /** 2946 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2947 * @sgl: scatter-gather list 2948 * @sg_count: number of segments in sg 2949 * @offset: offset in bytes into sg, on return offset into the mapped area 2950 * @len: bytes to map, on return number of bytes mapped 2951 * 2952 * Returns virtual address of the start of the mapped page 2953 */ 2954 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2955 size_t *offset, size_t *len) 2956 { 2957 int i; 2958 size_t sg_len = 0, len_complete = 0; 2959 struct scatterlist *sg; 2960 struct page *page; 2961 2962 WARN_ON(!irqs_disabled()); 2963 2964 for_each_sg(sgl, sg, sg_count, i) { 2965 len_complete = sg_len; /* Complete sg-entries */ 2966 sg_len += sg->length; 2967 if (sg_len > *offset) 2968 break; 2969 } 2970 2971 if (unlikely(i == sg_count)) { 2972 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2973 "elements %d\n", 2974 __func__, sg_len, *offset, sg_count); 2975 WARN_ON(1); 2976 return NULL; 2977 } 2978 2979 /* Offset starting from the beginning of first page in this sg-entry */ 2980 *offset = *offset - len_complete + sg->offset; 2981 2982 /* Assumption: contiguous pages can be accessed as "page + i" */ 2983 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2984 *offset &= ~PAGE_MASK; 2985 2986 /* Bytes in this sg-entry from *offset to the end of the page */ 2987 sg_len = PAGE_SIZE - *offset; 2988 if (*len > sg_len) 2989 *len = sg_len; 2990 2991 return kmap_atomic(page); 2992 } 2993 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2994 2995 /** 2996 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2997 * @virt: virtual address to be unmapped 2998 */ 2999 void scsi_kunmap_atomic_sg(void *virt) 3000 { 3001 kunmap_atomic(virt); 3002 } 3003 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3004 3005 void sdev_disable_disk_events(struct scsi_device *sdev) 3006 { 3007 atomic_inc(&sdev->disk_events_disable_depth); 3008 } 3009 EXPORT_SYMBOL(sdev_disable_disk_events); 3010 3011 void sdev_enable_disk_events(struct scsi_device *sdev) 3012 { 3013 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3014 return; 3015 atomic_dec(&sdev->disk_events_disable_depth); 3016 } 3017 EXPORT_SYMBOL(sdev_enable_disk_events); 3018 3019 static unsigned char designator_prio(const unsigned char *d) 3020 { 3021 if (d[1] & 0x30) 3022 /* not associated with LUN */ 3023 return 0; 3024 3025 if (d[3] == 0) 3026 /* invalid length */ 3027 return 0; 3028 3029 /* 3030 * Order of preference for lun descriptor: 3031 * - SCSI name string 3032 * - NAA IEEE Registered Extended 3033 * - EUI-64 based 16-byte 3034 * - EUI-64 based 12-byte 3035 * - NAA IEEE Registered 3036 * - NAA IEEE Extended 3037 * - EUI-64 based 8-byte 3038 * - SCSI name string (truncated) 3039 * - T10 Vendor ID 3040 * as longer descriptors reduce the likelyhood 3041 * of identification clashes. 3042 */ 3043 3044 switch (d[1] & 0xf) { 3045 case 8: 3046 /* SCSI name string, variable-length UTF-8 */ 3047 return 9; 3048 case 3: 3049 switch (d[4] >> 4) { 3050 case 6: 3051 /* NAA registered extended */ 3052 return 8; 3053 case 5: 3054 /* NAA registered */ 3055 return 5; 3056 case 4: 3057 /* NAA extended */ 3058 return 4; 3059 case 3: 3060 /* NAA locally assigned */ 3061 return 1; 3062 default: 3063 break; 3064 } 3065 break; 3066 case 2: 3067 switch (d[3]) { 3068 case 16: 3069 /* EUI64-based, 16 byte */ 3070 return 7; 3071 case 12: 3072 /* EUI64-based, 12 byte */ 3073 return 6; 3074 case 8: 3075 /* EUI64-based, 8 byte */ 3076 return 3; 3077 default: 3078 break; 3079 } 3080 break; 3081 case 1: 3082 /* T10 vendor ID */ 3083 return 1; 3084 default: 3085 break; 3086 } 3087 3088 return 0; 3089 } 3090 3091 /** 3092 * scsi_vpd_lun_id - return a unique device identification 3093 * @sdev: SCSI device 3094 * @id: buffer for the identification 3095 * @id_len: length of the buffer 3096 * 3097 * Copies a unique device identification into @id based 3098 * on the information in the VPD page 0x83 of the device. 3099 * The string will be formatted as a SCSI name string. 3100 * 3101 * Returns the length of the identification or error on failure. 3102 * If the identifier is longer than the supplied buffer the actual 3103 * identifier length is returned and the buffer is not zero-padded. 3104 */ 3105 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3106 { 3107 u8 cur_id_prio = 0; 3108 u8 cur_id_size = 0; 3109 const unsigned char *d, *cur_id_str; 3110 const struct scsi_vpd *vpd_pg83; 3111 int id_size = -EINVAL; 3112 3113 rcu_read_lock(); 3114 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3115 if (!vpd_pg83) { 3116 rcu_read_unlock(); 3117 return -ENXIO; 3118 } 3119 3120 /* The id string must be at least 20 bytes + terminating NULL byte */ 3121 if (id_len < 21) { 3122 rcu_read_unlock(); 3123 return -EINVAL; 3124 } 3125 3126 memset(id, 0, id_len); 3127 for (d = vpd_pg83->data + 4; 3128 d < vpd_pg83->data + vpd_pg83->len; 3129 d += d[3] + 4) { 3130 u8 prio = designator_prio(d); 3131 3132 if (prio == 0 || cur_id_prio > prio) 3133 continue; 3134 3135 switch (d[1] & 0xf) { 3136 case 0x1: 3137 /* T10 Vendor ID */ 3138 if (cur_id_size > d[3]) 3139 break; 3140 cur_id_prio = prio; 3141 cur_id_size = d[3]; 3142 if (cur_id_size + 4 > id_len) 3143 cur_id_size = id_len - 4; 3144 cur_id_str = d + 4; 3145 id_size = snprintf(id, id_len, "t10.%*pE", 3146 cur_id_size, cur_id_str); 3147 break; 3148 case 0x2: 3149 /* EUI-64 */ 3150 cur_id_prio = prio; 3151 cur_id_size = d[3]; 3152 cur_id_str = d + 4; 3153 switch (cur_id_size) { 3154 case 8: 3155 id_size = snprintf(id, id_len, 3156 "eui.%8phN", 3157 cur_id_str); 3158 break; 3159 case 12: 3160 id_size = snprintf(id, id_len, 3161 "eui.%12phN", 3162 cur_id_str); 3163 break; 3164 case 16: 3165 id_size = snprintf(id, id_len, 3166 "eui.%16phN", 3167 cur_id_str); 3168 break; 3169 default: 3170 break; 3171 } 3172 break; 3173 case 0x3: 3174 /* NAA */ 3175 cur_id_prio = prio; 3176 cur_id_size = d[3]; 3177 cur_id_str = d + 4; 3178 switch (cur_id_size) { 3179 case 8: 3180 id_size = snprintf(id, id_len, 3181 "naa.%8phN", 3182 cur_id_str); 3183 break; 3184 case 16: 3185 id_size = snprintf(id, id_len, 3186 "naa.%16phN", 3187 cur_id_str); 3188 break; 3189 default: 3190 break; 3191 } 3192 break; 3193 case 0x8: 3194 /* SCSI name string */ 3195 if (cur_id_size > d[3]) 3196 break; 3197 /* Prefer others for truncated descriptor */ 3198 if (d[3] > id_len) { 3199 prio = 2; 3200 if (cur_id_prio > prio) 3201 break; 3202 } 3203 cur_id_prio = prio; 3204 cur_id_size = id_size = d[3]; 3205 cur_id_str = d + 4; 3206 if (cur_id_size >= id_len) 3207 cur_id_size = id_len - 1; 3208 memcpy(id, cur_id_str, cur_id_size); 3209 break; 3210 default: 3211 break; 3212 } 3213 } 3214 rcu_read_unlock(); 3215 3216 return id_size; 3217 } 3218 EXPORT_SYMBOL(scsi_vpd_lun_id); 3219 3220 /* 3221 * scsi_vpd_tpg_id - return a target port group identifier 3222 * @sdev: SCSI device 3223 * 3224 * Returns the Target Port Group identifier from the information 3225 * froom VPD page 0x83 of the device. 3226 * 3227 * Returns the identifier or error on failure. 3228 */ 3229 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3230 { 3231 const unsigned char *d; 3232 const struct scsi_vpd *vpd_pg83; 3233 int group_id = -EAGAIN, rel_port = -1; 3234 3235 rcu_read_lock(); 3236 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3237 if (!vpd_pg83) { 3238 rcu_read_unlock(); 3239 return -ENXIO; 3240 } 3241 3242 d = vpd_pg83->data + 4; 3243 while (d < vpd_pg83->data + vpd_pg83->len) { 3244 switch (d[1] & 0xf) { 3245 case 0x4: 3246 /* Relative target port */ 3247 rel_port = get_unaligned_be16(&d[6]); 3248 break; 3249 case 0x5: 3250 /* Target port group */ 3251 group_id = get_unaligned_be16(&d[6]); 3252 break; 3253 default: 3254 break; 3255 } 3256 d += d[3] + 4; 3257 } 3258 rcu_read_unlock(); 3259 3260 if (group_id >= 0 && rel_id && rel_port != -1) 3261 *rel_id = rel_port; 3262 3263 return group_id; 3264 } 3265 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3266 3267 /** 3268 * scsi_build_sense - build sense data for a command 3269 * @scmd: scsi command for which the sense should be formatted 3270 * @desc: Sense format (non-zero == descriptor format, 3271 * 0 == fixed format) 3272 * @key: Sense key 3273 * @asc: Additional sense code 3274 * @ascq: Additional sense code qualifier 3275 * 3276 **/ 3277 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3278 { 3279 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3280 scmd->result = SAM_STAT_CHECK_CONDITION; 3281 } 3282 EXPORT_SYMBOL_GPL(scsi_build_sense); 3283