1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static inline struct kmem_cache * 48 scsi_select_sense_cache(bool unchecked_isa_dma) 49 { 50 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 51 } 52 53 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 54 unsigned char *sense_buffer) 55 { 56 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 57 sense_buffer); 58 } 59 60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 61 gfp_t gfp_mask, int numa_node) 62 { 63 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 64 gfp_mask, numa_node); 65 } 66 67 int scsi_init_sense_cache(struct Scsi_Host *shost) 68 { 69 struct kmem_cache *cache; 70 int ret = 0; 71 72 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 73 if (cache) 74 return 0; 75 76 mutex_lock(&scsi_sense_cache_mutex); 77 if (shost->unchecked_isa_dma) { 78 scsi_sense_isadma_cache = 79 kmem_cache_create("scsi_sense_cache(DMA)", 80 SCSI_SENSE_BUFFERSIZE, 0, 81 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 82 if (!scsi_sense_isadma_cache) 83 ret = -ENOMEM; 84 } else { 85 scsi_sense_cache = 86 kmem_cache_create("scsi_sense_cache", 87 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL); 88 if (!scsi_sense_cache) 89 ret = -ENOMEM; 90 } 91 92 mutex_unlock(&scsi_sense_cache_mutex); 93 return ret; 94 } 95 96 /* 97 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 98 * not change behaviour from the previous unplug mechanism, experimentation 99 * may prove this needs changing. 100 */ 101 #define SCSI_QUEUE_DELAY 3 102 103 static void 104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 105 { 106 struct Scsi_Host *host = cmd->device->host; 107 struct scsi_device *device = cmd->device; 108 struct scsi_target *starget = scsi_target(device); 109 110 /* 111 * Set the appropriate busy bit for the device/host. 112 * 113 * If the host/device isn't busy, assume that something actually 114 * completed, and that we should be able to queue a command now. 115 * 116 * Note that the prior mid-layer assumption that any host could 117 * always queue at least one command is now broken. The mid-layer 118 * will implement a user specifiable stall (see 119 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 120 * if a command is requeued with no other commands outstanding 121 * either for the device or for the host. 122 */ 123 switch (reason) { 124 case SCSI_MLQUEUE_HOST_BUSY: 125 atomic_set(&host->host_blocked, host->max_host_blocked); 126 break; 127 case SCSI_MLQUEUE_DEVICE_BUSY: 128 case SCSI_MLQUEUE_EH_RETRY: 129 atomic_set(&device->device_blocked, 130 device->max_device_blocked); 131 break; 132 case SCSI_MLQUEUE_TARGET_BUSY: 133 atomic_set(&starget->target_blocked, 134 starget->max_target_blocked); 135 break; 136 } 137 } 138 139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 140 { 141 struct scsi_device *sdev = cmd->device; 142 143 blk_mq_requeue_request(cmd->request, true); 144 put_device(&sdev->sdev_gendev); 145 } 146 147 /** 148 * __scsi_queue_insert - private queue insertion 149 * @cmd: The SCSI command being requeued 150 * @reason: The reason for the requeue 151 * @unbusy: Whether the queue should be unbusied 152 * 153 * This is a private queue insertion. The public interface 154 * scsi_queue_insert() always assumes the queue should be unbusied 155 * because it's always called before the completion. This function is 156 * for a requeue after completion, which should only occur in this 157 * file. 158 */ 159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 160 { 161 struct scsi_device *device = cmd->device; 162 struct request_queue *q = device->request_queue; 163 unsigned long flags; 164 165 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 166 "Inserting command %p into mlqueue\n", cmd)); 167 168 scsi_set_blocked(cmd, reason); 169 170 /* 171 * Decrement the counters, since these commands are no longer 172 * active on the host/device. 173 */ 174 if (unbusy) 175 scsi_device_unbusy(device); 176 177 /* 178 * Requeue this command. It will go before all other commands 179 * that are already in the queue. Schedule requeue work under 180 * lock such that the kblockd_schedule_work() call happens 181 * before blk_cleanup_queue() finishes. 182 */ 183 cmd->result = 0; 184 if (q->mq_ops) { 185 scsi_mq_requeue_cmd(cmd); 186 return; 187 } 188 spin_lock_irqsave(q->queue_lock, flags); 189 blk_requeue_request(q, cmd->request); 190 kblockd_schedule_work(&device->requeue_work); 191 spin_unlock_irqrestore(q->queue_lock, flags); 192 } 193 194 /* 195 * Function: scsi_queue_insert() 196 * 197 * Purpose: Insert a command in the midlevel queue. 198 * 199 * Arguments: cmd - command that we are adding to queue. 200 * reason - why we are inserting command to queue. 201 * 202 * Lock status: Assumed that lock is not held upon entry. 203 * 204 * Returns: Nothing. 205 * 206 * Notes: We do this for one of two cases. Either the host is busy 207 * and it cannot accept any more commands for the time being, 208 * or the device returned QUEUE_FULL and can accept no more 209 * commands. 210 * Notes: This could be called either from an interrupt context or a 211 * normal process context. 212 */ 213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 214 { 215 __scsi_queue_insert(cmd, reason, 1); 216 } 217 218 219 /** 220 * scsi_execute - insert request and wait for the result 221 * @sdev: scsi device 222 * @cmd: scsi command 223 * @data_direction: data direction 224 * @buffer: data buffer 225 * @bufflen: len of buffer 226 * @sense: optional sense buffer 227 * @sshdr: optional decoded sense header 228 * @timeout: request timeout in seconds 229 * @retries: number of times to retry request 230 * @flags: flags for ->cmd_flags 231 * @rq_flags: flags for ->rq_flags 232 * @resid: optional residual length 233 * 234 * Returns the scsi_cmnd result field if a command was executed, or a negative 235 * Linux error code if we didn't get that far. 236 */ 237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 238 int data_direction, void *buffer, unsigned bufflen, 239 unsigned char *sense, struct scsi_sense_hdr *sshdr, 240 int timeout, int retries, u64 flags, req_flags_t rq_flags, 241 int *resid) 242 { 243 struct request *req; 244 struct scsi_request *rq; 245 int ret = DRIVER_ERROR << 24; 246 247 req = blk_get_request(sdev->request_queue, 248 data_direction == DMA_TO_DEVICE ? 249 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 250 if (IS_ERR(req)) 251 return ret; 252 rq = scsi_req(req); 253 254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 255 buffer, bufflen, __GFP_RECLAIM)) 256 goto out; 257 258 rq->cmd_len = COMMAND_SIZE(cmd[0]); 259 memcpy(rq->cmd, cmd, rq->cmd_len); 260 rq->retries = retries; 261 req->timeout = timeout; 262 req->cmd_flags |= flags; 263 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT; 264 265 /* 266 * head injection *required* here otherwise quiesce won't work 267 */ 268 blk_execute_rq(req->q, NULL, req, 1); 269 270 /* 271 * Some devices (USB mass-storage in particular) may transfer 272 * garbage data together with a residue indicating that the data 273 * is invalid. Prevent the garbage from being misinterpreted 274 * and prevent security leaks by zeroing out the excess data. 275 */ 276 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 277 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 278 279 if (resid) 280 *resid = rq->resid_len; 281 if (sense && rq->sense_len) 282 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 283 if (sshdr) 284 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 285 ret = rq->result; 286 out: 287 blk_put_request(req); 288 289 return ret; 290 } 291 EXPORT_SYMBOL(scsi_execute); 292 293 /* 294 * Function: scsi_init_cmd_errh() 295 * 296 * Purpose: Initialize cmd fields related to error handling. 297 * 298 * Arguments: cmd - command that is ready to be queued. 299 * 300 * Notes: This function has the job of initializing a number of 301 * fields related to error handling. Typically this will 302 * be called once for each command, as required. 303 */ 304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 305 { 306 cmd->serial_number = 0; 307 scsi_set_resid(cmd, 0); 308 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 309 if (cmd->cmd_len == 0) 310 cmd->cmd_len = scsi_command_size(cmd->cmnd); 311 } 312 313 void scsi_device_unbusy(struct scsi_device *sdev) 314 { 315 struct Scsi_Host *shost = sdev->host; 316 struct scsi_target *starget = scsi_target(sdev); 317 unsigned long flags; 318 319 atomic_dec(&shost->host_busy); 320 if (starget->can_queue > 0) 321 atomic_dec(&starget->target_busy); 322 323 if (unlikely(scsi_host_in_recovery(shost) && 324 (shost->host_failed || shost->host_eh_scheduled))) { 325 spin_lock_irqsave(shost->host_lock, flags); 326 scsi_eh_wakeup(shost); 327 spin_unlock_irqrestore(shost->host_lock, flags); 328 } 329 330 atomic_dec(&sdev->device_busy); 331 } 332 333 static void scsi_kick_queue(struct request_queue *q) 334 { 335 if (q->mq_ops) 336 blk_mq_start_hw_queues(q); 337 else 338 blk_run_queue(q); 339 } 340 341 /* 342 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 343 * and call blk_run_queue for all the scsi_devices on the target - 344 * including current_sdev first. 345 * 346 * Called with *no* scsi locks held. 347 */ 348 static void scsi_single_lun_run(struct scsi_device *current_sdev) 349 { 350 struct Scsi_Host *shost = current_sdev->host; 351 struct scsi_device *sdev, *tmp; 352 struct scsi_target *starget = scsi_target(current_sdev); 353 unsigned long flags; 354 355 spin_lock_irqsave(shost->host_lock, flags); 356 starget->starget_sdev_user = NULL; 357 spin_unlock_irqrestore(shost->host_lock, flags); 358 359 /* 360 * Call blk_run_queue for all LUNs on the target, starting with 361 * current_sdev. We race with others (to set starget_sdev_user), 362 * but in most cases, we will be first. Ideally, each LU on the 363 * target would get some limited time or requests on the target. 364 */ 365 scsi_kick_queue(current_sdev->request_queue); 366 367 spin_lock_irqsave(shost->host_lock, flags); 368 if (starget->starget_sdev_user) 369 goto out; 370 list_for_each_entry_safe(sdev, tmp, &starget->devices, 371 same_target_siblings) { 372 if (sdev == current_sdev) 373 continue; 374 if (scsi_device_get(sdev)) 375 continue; 376 377 spin_unlock_irqrestore(shost->host_lock, flags); 378 scsi_kick_queue(sdev->request_queue); 379 spin_lock_irqsave(shost->host_lock, flags); 380 381 scsi_device_put(sdev); 382 } 383 out: 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 } 386 387 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 388 { 389 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 390 return true; 391 if (atomic_read(&sdev->device_blocked) > 0) 392 return true; 393 return false; 394 } 395 396 static inline bool scsi_target_is_busy(struct scsi_target *starget) 397 { 398 if (starget->can_queue > 0) { 399 if (atomic_read(&starget->target_busy) >= starget->can_queue) 400 return true; 401 if (atomic_read(&starget->target_blocked) > 0) 402 return true; 403 } 404 return false; 405 } 406 407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 408 { 409 if (shost->can_queue > 0 && 410 atomic_read(&shost->host_busy) >= shost->can_queue) 411 return true; 412 if (atomic_read(&shost->host_blocked) > 0) 413 return true; 414 if (shost->host_self_blocked) 415 return true; 416 return false; 417 } 418 419 static void scsi_starved_list_run(struct Scsi_Host *shost) 420 { 421 LIST_HEAD(starved_list); 422 struct scsi_device *sdev; 423 unsigned long flags; 424 425 spin_lock_irqsave(shost->host_lock, flags); 426 list_splice_init(&shost->starved_list, &starved_list); 427 428 while (!list_empty(&starved_list)) { 429 struct request_queue *slq; 430 431 /* 432 * As long as shost is accepting commands and we have 433 * starved queues, call blk_run_queue. scsi_request_fn 434 * drops the queue_lock and can add us back to the 435 * starved_list. 436 * 437 * host_lock protects the starved_list and starved_entry. 438 * scsi_request_fn must get the host_lock before checking 439 * or modifying starved_list or starved_entry. 440 */ 441 if (scsi_host_is_busy(shost)) 442 break; 443 444 sdev = list_entry(starved_list.next, 445 struct scsi_device, starved_entry); 446 list_del_init(&sdev->starved_entry); 447 if (scsi_target_is_busy(scsi_target(sdev))) { 448 list_move_tail(&sdev->starved_entry, 449 &shost->starved_list); 450 continue; 451 } 452 453 /* 454 * Once we drop the host lock, a racing scsi_remove_device() 455 * call may remove the sdev from the starved list and destroy 456 * it and the queue. Mitigate by taking a reference to the 457 * queue and never touching the sdev again after we drop the 458 * host lock. Note: if __scsi_remove_device() invokes 459 * blk_cleanup_queue() before the queue is run from this 460 * function then blk_run_queue() will return immediately since 461 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 462 */ 463 slq = sdev->request_queue; 464 if (!blk_get_queue(slq)) 465 continue; 466 spin_unlock_irqrestore(shost->host_lock, flags); 467 468 scsi_kick_queue(slq); 469 blk_put_queue(slq); 470 471 spin_lock_irqsave(shost->host_lock, flags); 472 } 473 /* put any unprocessed entries back */ 474 list_splice(&starved_list, &shost->starved_list); 475 spin_unlock_irqrestore(shost->host_lock, flags); 476 } 477 478 /* 479 * Function: scsi_run_queue() 480 * 481 * Purpose: Select a proper request queue to serve next 482 * 483 * Arguments: q - last request's queue 484 * 485 * Returns: Nothing 486 * 487 * Notes: The previous command was completely finished, start 488 * a new one if possible. 489 */ 490 static void scsi_run_queue(struct request_queue *q) 491 { 492 struct scsi_device *sdev = q->queuedata; 493 494 if (scsi_target(sdev)->single_lun) 495 scsi_single_lun_run(sdev); 496 if (!list_empty(&sdev->host->starved_list)) 497 scsi_starved_list_run(sdev->host); 498 499 if (q->mq_ops) 500 blk_mq_run_hw_queues(q, false); 501 else 502 blk_run_queue(q); 503 } 504 505 void scsi_requeue_run_queue(struct work_struct *work) 506 { 507 struct scsi_device *sdev; 508 struct request_queue *q; 509 510 sdev = container_of(work, struct scsi_device, requeue_work); 511 q = sdev->request_queue; 512 scsi_run_queue(q); 513 } 514 515 /* 516 * Function: scsi_requeue_command() 517 * 518 * Purpose: Handle post-processing of completed commands. 519 * 520 * Arguments: q - queue to operate on 521 * cmd - command that may need to be requeued. 522 * 523 * Returns: Nothing 524 * 525 * Notes: After command completion, there may be blocks left 526 * over which weren't finished by the previous command 527 * this can be for a number of reasons - the main one is 528 * I/O errors in the middle of the request, in which case 529 * we need to request the blocks that come after the bad 530 * sector. 531 * Notes: Upon return, cmd is a stale pointer. 532 */ 533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 534 { 535 struct scsi_device *sdev = cmd->device; 536 struct request *req = cmd->request; 537 unsigned long flags; 538 539 spin_lock_irqsave(q->queue_lock, flags); 540 blk_unprep_request(req); 541 req->special = NULL; 542 scsi_put_command(cmd); 543 blk_requeue_request(q, req); 544 spin_unlock_irqrestore(q->queue_lock, flags); 545 546 scsi_run_queue(q); 547 548 put_device(&sdev->sdev_gendev); 549 } 550 551 void scsi_run_host_queues(struct Scsi_Host *shost) 552 { 553 struct scsi_device *sdev; 554 555 shost_for_each_device(sdev, shost) 556 scsi_run_queue(sdev->request_queue); 557 } 558 559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 560 { 561 if (!blk_rq_is_passthrough(cmd->request)) { 562 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 563 564 if (drv->uninit_command) 565 drv->uninit_command(cmd); 566 } 567 } 568 569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 570 { 571 struct scsi_data_buffer *sdb; 572 573 if (cmd->sdb.table.nents) 574 sg_free_table_chained(&cmd->sdb.table, true); 575 if (cmd->request->next_rq) { 576 sdb = cmd->request->next_rq->special; 577 if (sdb) 578 sg_free_table_chained(&sdb->table, true); 579 } 580 if (scsi_prot_sg_count(cmd)) 581 sg_free_table_chained(&cmd->prot_sdb->table, true); 582 } 583 584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 585 { 586 scsi_mq_free_sgtables(cmd); 587 scsi_uninit_cmd(cmd); 588 scsi_del_cmd_from_list(cmd); 589 } 590 591 /* 592 * Function: scsi_release_buffers() 593 * 594 * Purpose: Free resources allocate for a scsi_command. 595 * 596 * Arguments: cmd - command that we are bailing. 597 * 598 * Lock status: Assumed that no lock is held upon entry. 599 * 600 * Returns: Nothing 601 * 602 * Notes: In the event that an upper level driver rejects a 603 * command, we must release resources allocated during 604 * the __init_io() function. Primarily this would involve 605 * the scatter-gather table. 606 */ 607 static void scsi_release_buffers(struct scsi_cmnd *cmd) 608 { 609 if (cmd->sdb.table.nents) 610 sg_free_table_chained(&cmd->sdb.table, false); 611 612 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 613 614 if (scsi_prot_sg_count(cmd)) 615 sg_free_table_chained(&cmd->prot_sdb->table, false); 616 } 617 618 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 619 { 620 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 621 622 sg_free_table_chained(&bidi_sdb->table, false); 623 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 624 cmd->request->next_rq->special = NULL; 625 } 626 627 static bool scsi_end_request(struct request *req, blk_status_t error, 628 unsigned int bytes, unsigned int bidi_bytes) 629 { 630 struct scsi_cmnd *cmd = req->special; 631 struct scsi_device *sdev = cmd->device; 632 struct request_queue *q = sdev->request_queue; 633 634 if (blk_update_request(req, error, bytes)) 635 return true; 636 637 /* Bidi request must be completed as a whole */ 638 if (unlikely(bidi_bytes) && 639 blk_update_request(req->next_rq, error, bidi_bytes)) 640 return true; 641 642 if (blk_queue_add_random(q)) 643 add_disk_randomness(req->rq_disk); 644 645 if (req->mq_ctx) { 646 /* 647 * In the MQ case the command gets freed by __blk_mq_end_request, 648 * so we have to do all cleanup that depends on it earlier. 649 * 650 * We also can't kick the queues from irq context, so we 651 * will have to defer it to a workqueue. 652 */ 653 scsi_mq_uninit_cmd(cmd); 654 655 __blk_mq_end_request(req, error); 656 657 if (scsi_target(sdev)->single_lun || 658 !list_empty(&sdev->host->starved_list)) 659 kblockd_schedule_work(&sdev->requeue_work); 660 else 661 blk_mq_run_hw_queues(q, true); 662 } else { 663 unsigned long flags; 664 665 if (bidi_bytes) 666 scsi_release_bidi_buffers(cmd); 667 scsi_release_buffers(cmd); 668 scsi_put_command(cmd); 669 670 spin_lock_irqsave(q->queue_lock, flags); 671 blk_finish_request(req, error); 672 spin_unlock_irqrestore(q->queue_lock, flags); 673 674 scsi_run_queue(q); 675 } 676 677 put_device(&sdev->sdev_gendev); 678 return false; 679 } 680 681 /** 682 * __scsi_error_from_host_byte - translate SCSI error code into errno 683 * @cmd: SCSI command (unused) 684 * @result: scsi error code 685 * 686 * Translate SCSI error code into block errors. 687 */ 688 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd, 689 int result) 690 { 691 switch (host_byte(result)) { 692 case DID_TRANSPORT_FAILFAST: 693 return BLK_STS_TRANSPORT; 694 case DID_TARGET_FAILURE: 695 set_host_byte(cmd, DID_OK); 696 return BLK_STS_TARGET; 697 case DID_NEXUS_FAILURE: 698 return BLK_STS_NEXUS; 699 case DID_ALLOC_FAILURE: 700 set_host_byte(cmd, DID_OK); 701 return BLK_STS_NOSPC; 702 case DID_MEDIUM_ERROR: 703 set_host_byte(cmd, DID_OK); 704 return BLK_STS_MEDIUM; 705 default: 706 return BLK_STS_IOERR; 707 } 708 } 709 710 /* 711 * Function: scsi_io_completion() 712 * 713 * Purpose: Completion processing for block device I/O requests. 714 * 715 * Arguments: cmd - command that is finished. 716 * 717 * Lock status: Assumed that no lock is held upon entry. 718 * 719 * Returns: Nothing 720 * 721 * Notes: We will finish off the specified number of sectors. If we 722 * are done, the command block will be released and the queue 723 * function will be goosed. If we are not done then we have to 724 * figure out what to do next: 725 * 726 * a) We can call scsi_requeue_command(). The request 727 * will be unprepared and put back on the queue. Then 728 * a new command will be created for it. This should 729 * be used if we made forward progress, or if we want 730 * to switch from READ(10) to READ(6) for example. 731 * 732 * b) We can call __scsi_queue_insert(). The request will 733 * be put back on the queue and retried using the same 734 * command as before, possibly after a delay. 735 * 736 * c) We can call scsi_end_request() with -EIO to fail 737 * the remainder of the request. 738 */ 739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 740 { 741 int result = cmd->result; 742 struct request_queue *q = cmd->device->request_queue; 743 struct request *req = cmd->request; 744 blk_status_t error = BLK_STS_OK; 745 struct scsi_sense_hdr sshdr; 746 bool sense_valid = false; 747 int sense_deferred = 0, level = 0; 748 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 749 ACTION_DELAYED_RETRY} action; 750 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 751 752 if (result) { 753 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 754 if (sense_valid) 755 sense_deferred = scsi_sense_is_deferred(&sshdr); 756 } 757 758 if (blk_rq_is_passthrough(req)) { 759 if (result) { 760 if (sense_valid) { 761 /* 762 * SG_IO wants current and deferred errors 763 */ 764 scsi_req(req)->sense_len = 765 min(8 + cmd->sense_buffer[7], 766 SCSI_SENSE_BUFFERSIZE); 767 } 768 if (!sense_deferred) 769 error = __scsi_error_from_host_byte(cmd, result); 770 } 771 /* 772 * __scsi_error_from_host_byte may have reset the host_byte 773 */ 774 scsi_req(req)->result = cmd->result; 775 scsi_req(req)->resid_len = scsi_get_resid(cmd); 776 777 if (scsi_bidi_cmnd(cmd)) { 778 /* 779 * Bidi commands Must be complete as a whole, 780 * both sides at once. 781 */ 782 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 783 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 784 blk_rq_bytes(req->next_rq))) 785 BUG(); 786 return; 787 } 788 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 789 /* 790 * Flush commands do not transfers any data, and thus cannot use 791 * good_bytes != blk_rq_bytes(req) as the signal for an error. 792 * This sets the error explicitly for the problem case. 793 */ 794 error = __scsi_error_from_host_byte(cmd, result); 795 } 796 797 /* no bidi support for !blk_rq_is_passthrough yet */ 798 BUG_ON(blk_bidi_rq(req)); 799 800 /* 801 * Next deal with any sectors which we were able to correctly 802 * handle. 803 */ 804 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 805 "%u sectors total, %d bytes done.\n", 806 blk_rq_sectors(req), good_bytes)); 807 808 /* 809 * Recovered errors need reporting, but they're always treated as 810 * success, so fiddle the result code here. For passthrough requests 811 * we already took a copy of the original into sreq->result which 812 * is what gets returned to the user 813 */ 814 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 815 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 816 * print since caller wants ATA registers. Only occurs on 817 * SCSI ATA PASS_THROUGH commands when CK_COND=1 818 */ 819 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 820 ; 821 else if (!(req->rq_flags & RQF_QUIET)) 822 scsi_print_sense(cmd); 823 result = 0; 824 /* for passthrough error may be set */ 825 error = BLK_STS_OK; 826 } 827 828 /* 829 * special case: failed zero length commands always need to 830 * drop down into the retry code. Otherwise, if we finished 831 * all bytes in the request we are done now. 832 */ 833 if (!(blk_rq_bytes(req) == 0 && error) && 834 !scsi_end_request(req, error, good_bytes, 0)) 835 return; 836 837 /* 838 * Kill remainder if no retrys. 839 */ 840 if (error && scsi_noretry_cmd(cmd)) { 841 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 842 BUG(); 843 return; 844 } 845 846 /* 847 * If there had been no error, but we have leftover bytes in the 848 * requeues just queue the command up again. 849 */ 850 if (result == 0) 851 goto requeue; 852 853 error = __scsi_error_from_host_byte(cmd, result); 854 855 if (host_byte(result) == DID_RESET) { 856 /* Third party bus reset or reset for error recovery 857 * reasons. Just retry the command and see what 858 * happens. 859 */ 860 action = ACTION_RETRY; 861 } else if (sense_valid && !sense_deferred) { 862 switch (sshdr.sense_key) { 863 case UNIT_ATTENTION: 864 if (cmd->device->removable) { 865 /* Detected disc change. Set a bit 866 * and quietly refuse further access. 867 */ 868 cmd->device->changed = 1; 869 action = ACTION_FAIL; 870 } else { 871 /* Must have been a power glitch, or a 872 * bus reset. Could not have been a 873 * media change, so we just retry the 874 * command and see what happens. 875 */ 876 action = ACTION_RETRY; 877 } 878 break; 879 case ILLEGAL_REQUEST: 880 /* If we had an ILLEGAL REQUEST returned, then 881 * we may have performed an unsupported 882 * command. The only thing this should be 883 * would be a ten byte read where only a six 884 * byte read was supported. Also, on a system 885 * where READ CAPACITY failed, we may have 886 * read past the end of the disk. 887 */ 888 if ((cmd->device->use_10_for_rw && 889 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 890 (cmd->cmnd[0] == READ_10 || 891 cmd->cmnd[0] == WRITE_10)) { 892 /* This will issue a new 6-byte command. */ 893 cmd->device->use_10_for_rw = 0; 894 action = ACTION_REPREP; 895 } else if (sshdr.asc == 0x10) /* DIX */ { 896 action = ACTION_FAIL; 897 error = BLK_STS_PROTECTION; 898 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 899 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 900 action = ACTION_FAIL; 901 error = BLK_STS_TARGET; 902 } else 903 action = ACTION_FAIL; 904 break; 905 case ABORTED_COMMAND: 906 action = ACTION_FAIL; 907 if (sshdr.asc == 0x10) /* DIF */ 908 error = BLK_STS_PROTECTION; 909 break; 910 case NOT_READY: 911 /* If the device is in the process of becoming 912 * ready, or has a temporary blockage, retry. 913 */ 914 if (sshdr.asc == 0x04) { 915 switch (sshdr.ascq) { 916 case 0x01: /* becoming ready */ 917 case 0x04: /* format in progress */ 918 case 0x05: /* rebuild in progress */ 919 case 0x06: /* recalculation in progress */ 920 case 0x07: /* operation in progress */ 921 case 0x08: /* Long write in progress */ 922 case 0x09: /* self test in progress */ 923 case 0x14: /* space allocation in progress */ 924 action = ACTION_DELAYED_RETRY; 925 break; 926 default: 927 action = ACTION_FAIL; 928 break; 929 } 930 } else 931 action = ACTION_FAIL; 932 break; 933 case VOLUME_OVERFLOW: 934 /* See SSC3rXX or current. */ 935 action = ACTION_FAIL; 936 break; 937 default: 938 action = ACTION_FAIL; 939 break; 940 } 941 } else 942 action = ACTION_FAIL; 943 944 if (action != ACTION_FAIL && 945 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 946 action = ACTION_FAIL; 947 948 switch (action) { 949 case ACTION_FAIL: 950 /* Give up and fail the remainder of the request */ 951 if (!(req->rq_flags & RQF_QUIET)) { 952 static DEFINE_RATELIMIT_STATE(_rs, 953 DEFAULT_RATELIMIT_INTERVAL, 954 DEFAULT_RATELIMIT_BURST); 955 956 if (unlikely(scsi_logging_level)) 957 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 958 SCSI_LOG_MLCOMPLETE_BITS); 959 960 /* 961 * if logging is enabled the failure will be printed 962 * in scsi_log_completion(), so avoid duplicate messages 963 */ 964 if (!level && __ratelimit(&_rs)) { 965 scsi_print_result(cmd, NULL, FAILED); 966 if (driver_byte(result) & DRIVER_SENSE) 967 scsi_print_sense(cmd); 968 scsi_print_command(cmd); 969 } 970 } 971 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 972 return; 973 /*FALLTHRU*/ 974 case ACTION_REPREP: 975 requeue: 976 /* Unprep the request and put it back at the head of the queue. 977 * A new command will be prepared and issued. 978 */ 979 if (q->mq_ops) { 980 cmd->request->rq_flags &= ~RQF_DONTPREP; 981 scsi_mq_uninit_cmd(cmd); 982 scsi_mq_requeue_cmd(cmd); 983 } else { 984 scsi_release_buffers(cmd); 985 scsi_requeue_command(q, cmd); 986 } 987 break; 988 case ACTION_RETRY: 989 /* Retry the same command immediately */ 990 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 991 break; 992 case ACTION_DELAYED_RETRY: 993 /* Retry the same command after a delay */ 994 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 995 break; 996 } 997 } 998 999 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1000 { 1001 int count; 1002 1003 /* 1004 * If sg table allocation fails, requeue request later. 1005 */ 1006 if (unlikely(sg_alloc_table_chained(&sdb->table, 1007 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1008 return BLKPREP_DEFER; 1009 1010 /* 1011 * Next, walk the list, and fill in the addresses and sizes of 1012 * each segment. 1013 */ 1014 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1015 BUG_ON(count > sdb->table.nents); 1016 sdb->table.nents = count; 1017 sdb->length = blk_rq_payload_bytes(req); 1018 return BLKPREP_OK; 1019 } 1020 1021 /* 1022 * Function: scsi_init_io() 1023 * 1024 * Purpose: SCSI I/O initialize function. 1025 * 1026 * Arguments: cmd - Command descriptor we wish to initialize 1027 * 1028 * Returns: 0 on success 1029 * BLKPREP_DEFER if the failure is retryable 1030 * BLKPREP_KILL if the failure is fatal 1031 */ 1032 int scsi_init_io(struct scsi_cmnd *cmd) 1033 { 1034 struct scsi_device *sdev = cmd->device; 1035 struct request *rq = cmd->request; 1036 bool is_mq = (rq->mq_ctx != NULL); 1037 int error = BLKPREP_KILL; 1038 1039 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1040 goto err_exit; 1041 1042 error = scsi_init_sgtable(rq, &cmd->sdb); 1043 if (error) 1044 goto err_exit; 1045 1046 if (blk_bidi_rq(rq)) { 1047 if (!rq->q->mq_ops) { 1048 struct scsi_data_buffer *bidi_sdb = 1049 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1050 if (!bidi_sdb) { 1051 error = BLKPREP_DEFER; 1052 goto err_exit; 1053 } 1054 1055 rq->next_rq->special = bidi_sdb; 1056 } 1057 1058 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1059 if (error) 1060 goto err_exit; 1061 } 1062 1063 if (blk_integrity_rq(rq)) { 1064 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1065 int ivecs, count; 1066 1067 if (prot_sdb == NULL) { 1068 /* 1069 * This can happen if someone (e.g. multipath) 1070 * queues a command to a device on an adapter 1071 * that does not support DIX. 1072 */ 1073 WARN_ON_ONCE(1); 1074 error = BLKPREP_KILL; 1075 goto err_exit; 1076 } 1077 1078 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1079 1080 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1081 prot_sdb->table.sgl)) { 1082 error = BLKPREP_DEFER; 1083 goto err_exit; 1084 } 1085 1086 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1087 prot_sdb->table.sgl); 1088 BUG_ON(unlikely(count > ivecs)); 1089 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1090 1091 cmd->prot_sdb = prot_sdb; 1092 cmd->prot_sdb->table.nents = count; 1093 } 1094 1095 return BLKPREP_OK; 1096 err_exit: 1097 if (is_mq) { 1098 scsi_mq_free_sgtables(cmd); 1099 } else { 1100 scsi_release_buffers(cmd); 1101 cmd->request->special = NULL; 1102 scsi_put_command(cmd); 1103 put_device(&sdev->sdev_gendev); 1104 } 1105 return error; 1106 } 1107 EXPORT_SYMBOL(scsi_init_io); 1108 1109 /** 1110 * scsi_initialize_rq - initialize struct scsi_cmnd.req 1111 * 1112 * Called from inside blk_get_request(). 1113 */ 1114 void scsi_initialize_rq(struct request *rq) 1115 { 1116 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1117 1118 scsi_req_init(&cmd->req); 1119 } 1120 EXPORT_SYMBOL(scsi_initialize_rq); 1121 1122 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1123 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1124 { 1125 struct scsi_device *sdev = cmd->device; 1126 struct Scsi_Host *shost = sdev->host; 1127 unsigned long flags; 1128 1129 if (shost->use_cmd_list) { 1130 spin_lock_irqsave(&sdev->list_lock, flags); 1131 list_add_tail(&cmd->list, &sdev->cmd_list); 1132 spin_unlock_irqrestore(&sdev->list_lock, flags); 1133 } 1134 } 1135 1136 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1137 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1138 { 1139 struct scsi_device *sdev = cmd->device; 1140 struct Scsi_Host *shost = sdev->host; 1141 unsigned long flags; 1142 1143 if (shost->use_cmd_list) { 1144 spin_lock_irqsave(&sdev->list_lock, flags); 1145 BUG_ON(list_empty(&cmd->list)); 1146 list_del_init(&cmd->list); 1147 spin_unlock_irqrestore(&sdev->list_lock, flags); 1148 } 1149 } 1150 1151 /* Called after a request has been started. */ 1152 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1153 { 1154 void *buf = cmd->sense_buffer; 1155 void *prot = cmd->prot_sdb; 1156 unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA; 1157 1158 /* zero out the cmd, except for the embedded scsi_request */ 1159 memset((char *)cmd + sizeof(cmd->req), 0, 1160 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1161 1162 cmd->device = dev; 1163 cmd->sense_buffer = buf; 1164 cmd->prot_sdb = prot; 1165 cmd->flags = unchecked_isa_dma; 1166 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1167 cmd->jiffies_at_alloc = jiffies; 1168 1169 scsi_add_cmd_to_list(cmd); 1170 } 1171 1172 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1173 { 1174 struct scsi_cmnd *cmd = req->special; 1175 1176 /* 1177 * Passthrough requests may transfer data, in which case they must 1178 * a bio attached to them. Or they might contain a SCSI command 1179 * that does not transfer data, in which case they may optionally 1180 * submit a request without an attached bio. 1181 */ 1182 if (req->bio) { 1183 int ret = scsi_init_io(cmd); 1184 if (unlikely(ret)) 1185 return ret; 1186 } else { 1187 BUG_ON(blk_rq_bytes(req)); 1188 1189 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1190 } 1191 1192 cmd->cmd_len = scsi_req(req)->cmd_len; 1193 cmd->cmnd = scsi_req(req)->cmd; 1194 cmd->transfersize = blk_rq_bytes(req); 1195 cmd->allowed = scsi_req(req)->retries; 1196 return BLKPREP_OK; 1197 } 1198 1199 /* 1200 * Setup a normal block command. These are simple request from filesystems 1201 * that still need to be translated to SCSI CDBs from the ULD. 1202 */ 1203 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1204 { 1205 struct scsi_cmnd *cmd = req->special; 1206 1207 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1208 int ret = sdev->handler->prep_fn(sdev, req); 1209 if (ret != BLKPREP_OK) 1210 return ret; 1211 } 1212 1213 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1214 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1215 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1216 } 1217 1218 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1219 { 1220 struct scsi_cmnd *cmd = req->special; 1221 1222 if (!blk_rq_bytes(req)) 1223 cmd->sc_data_direction = DMA_NONE; 1224 else if (rq_data_dir(req) == WRITE) 1225 cmd->sc_data_direction = DMA_TO_DEVICE; 1226 else 1227 cmd->sc_data_direction = DMA_FROM_DEVICE; 1228 1229 if (blk_rq_is_scsi(req)) 1230 return scsi_setup_scsi_cmnd(sdev, req); 1231 else 1232 return scsi_setup_fs_cmnd(sdev, req); 1233 } 1234 1235 static int 1236 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1237 { 1238 int ret = BLKPREP_OK; 1239 1240 /* 1241 * If the device is not in running state we will reject some 1242 * or all commands. 1243 */ 1244 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1245 switch (sdev->sdev_state) { 1246 case SDEV_OFFLINE: 1247 case SDEV_TRANSPORT_OFFLINE: 1248 /* 1249 * If the device is offline we refuse to process any 1250 * commands. The device must be brought online 1251 * before trying any recovery commands. 1252 */ 1253 sdev_printk(KERN_ERR, sdev, 1254 "rejecting I/O to offline device\n"); 1255 ret = BLKPREP_KILL; 1256 break; 1257 case SDEV_DEL: 1258 /* 1259 * If the device is fully deleted, we refuse to 1260 * process any commands as well. 1261 */ 1262 sdev_printk(KERN_ERR, sdev, 1263 "rejecting I/O to dead device\n"); 1264 ret = BLKPREP_KILL; 1265 break; 1266 case SDEV_BLOCK: 1267 case SDEV_CREATED_BLOCK: 1268 ret = BLKPREP_DEFER; 1269 break; 1270 case SDEV_QUIESCE: 1271 /* 1272 * If the devices is blocked we defer normal commands. 1273 */ 1274 if (!(req->rq_flags & RQF_PREEMPT)) 1275 ret = BLKPREP_DEFER; 1276 break; 1277 default: 1278 /* 1279 * For any other not fully online state we only allow 1280 * special commands. In particular any user initiated 1281 * command is not allowed. 1282 */ 1283 if (!(req->rq_flags & RQF_PREEMPT)) 1284 ret = BLKPREP_KILL; 1285 break; 1286 } 1287 } 1288 return ret; 1289 } 1290 1291 static int 1292 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1293 { 1294 struct scsi_device *sdev = q->queuedata; 1295 1296 switch (ret) { 1297 case BLKPREP_KILL: 1298 case BLKPREP_INVALID: 1299 scsi_req(req)->result = DID_NO_CONNECT << 16; 1300 /* release the command and kill it */ 1301 if (req->special) { 1302 struct scsi_cmnd *cmd = req->special; 1303 scsi_release_buffers(cmd); 1304 scsi_put_command(cmd); 1305 put_device(&sdev->sdev_gendev); 1306 req->special = NULL; 1307 } 1308 break; 1309 case BLKPREP_DEFER: 1310 /* 1311 * If we defer, the blk_peek_request() returns NULL, but the 1312 * queue must be restarted, so we schedule a callback to happen 1313 * shortly. 1314 */ 1315 if (atomic_read(&sdev->device_busy) == 0) 1316 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1317 break; 1318 default: 1319 req->rq_flags |= RQF_DONTPREP; 1320 } 1321 1322 return ret; 1323 } 1324 1325 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1326 { 1327 struct scsi_device *sdev = q->queuedata; 1328 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1329 int ret; 1330 1331 ret = scsi_prep_state_check(sdev, req); 1332 if (ret != BLKPREP_OK) 1333 goto out; 1334 1335 if (!req->special) { 1336 /* Bail if we can't get a reference to the device */ 1337 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1338 ret = BLKPREP_DEFER; 1339 goto out; 1340 } 1341 1342 scsi_init_command(sdev, cmd); 1343 req->special = cmd; 1344 } 1345 1346 cmd->tag = req->tag; 1347 cmd->request = req; 1348 cmd->prot_op = SCSI_PROT_NORMAL; 1349 1350 ret = scsi_setup_cmnd(sdev, req); 1351 out: 1352 return scsi_prep_return(q, req, ret); 1353 } 1354 1355 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1356 { 1357 scsi_uninit_cmd(req->special); 1358 } 1359 1360 /* 1361 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1362 * return 0. 1363 * 1364 * Called with the queue_lock held. 1365 */ 1366 static inline int scsi_dev_queue_ready(struct request_queue *q, 1367 struct scsi_device *sdev) 1368 { 1369 unsigned int busy; 1370 1371 busy = atomic_inc_return(&sdev->device_busy) - 1; 1372 if (atomic_read(&sdev->device_blocked)) { 1373 if (busy) 1374 goto out_dec; 1375 1376 /* 1377 * unblock after device_blocked iterates to zero 1378 */ 1379 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1380 /* 1381 * For the MQ case we take care of this in the caller. 1382 */ 1383 if (!q->mq_ops) 1384 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1385 goto out_dec; 1386 } 1387 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1388 "unblocking device at zero depth\n")); 1389 } 1390 1391 if (busy >= sdev->queue_depth) 1392 goto out_dec; 1393 1394 return 1; 1395 out_dec: 1396 atomic_dec(&sdev->device_busy); 1397 return 0; 1398 } 1399 1400 /* 1401 * scsi_target_queue_ready: checks if there we can send commands to target 1402 * @sdev: scsi device on starget to check. 1403 */ 1404 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1405 struct scsi_device *sdev) 1406 { 1407 struct scsi_target *starget = scsi_target(sdev); 1408 unsigned int busy; 1409 1410 if (starget->single_lun) { 1411 spin_lock_irq(shost->host_lock); 1412 if (starget->starget_sdev_user && 1413 starget->starget_sdev_user != sdev) { 1414 spin_unlock_irq(shost->host_lock); 1415 return 0; 1416 } 1417 starget->starget_sdev_user = sdev; 1418 spin_unlock_irq(shost->host_lock); 1419 } 1420 1421 if (starget->can_queue <= 0) 1422 return 1; 1423 1424 busy = atomic_inc_return(&starget->target_busy) - 1; 1425 if (atomic_read(&starget->target_blocked) > 0) { 1426 if (busy) 1427 goto starved; 1428 1429 /* 1430 * unblock after target_blocked iterates to zero 1431 */ 1432 if (atomic_dec_return(&starget->target_blocked) > 0) 1433 goto out_dec; 1434 1435 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1436 "unblocking target at zero depth\n")); 1437 } 1438 1439 if (busy >= starget->can_queue) 1440 goto starved; 1441 1442 return 1; 1443 1444 starved: 1445 spin_lock_irq(shost->host_lock); 1446 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1447 spin_unlock_irq(shost->host_lock); 1448 out_dec: 1449 if (starget->can_queue > 0) 1450 atomic_dec(&starget->target_busy); 1451 return 0; 1452 } 1453 1454 /* 1455 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1456 * return 0. We must end up running the queue again whenever 0 is 1457 * returned, else IO can hang. 1458 */ 1459 static inline int scsi_host_queue_ready(struct request_queue *q, 1460 struct Scsi_Host *shost, 1461 struct scsi_device *sdev) 1462 { 1463 unsigned int busy; 1464 1465 if (scsi_host_in_recovery(shost)) 1466 return 0; 1467 1468 busy = atomic_inc_return(&shost->host_busy) - 1; 1469 if (atomic_read(&shost->host_blocked) > 0) { 1470 if (busy) 1471 goto starved; 1472 1473 /* 1474 * unblock after host_blocked iterates to zero 1475 */ 1476 if (atomic_dec_return(&shost->host_blocked) > 0) 1477 goto out_dec; 1478 1479 SCSI_LOG_MLQUEUE(3, 1480 shost_printk(KERN_INFO, shost, 1481 "unblocking host at zero depth\n")); 1482 } 1483 1484 if (shost->can_queue > 0 && busy >= shost->can_queue) 1485 goto starved; 1486 if (shost->host_self_blocked) 1487 goto starved; 1488 1489 /* We're OK to process the command, so we can't be starved */ 1490 if (!list_empty(&sdev->starved_entry)) { 1491 spin_lock_irq(shost->host_lock); 1492 if (!list_empty(&sdev->starved_entry)) 1493 list_del_init(&sdev->starved_entry); 1494 spin_unlock_irq(shost->host_lock); 1495 } 1496 1497 return 1; 1498 1499 starved: 1500 spin_lock_irq(shost->host_lock); 1501 if (list_empty(&sdev->starved_entry)) 1502 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1503 spin_unlock_irq(shost->host_lock); 1504 out_dec: 1505 atomic_dec(&shost->host_busy); 1506 return 0; 1507 } 1508 1509 /* 1510 * Busy state exporting function for request stacking drivers. 1511 * 1512 * For efficiency, no lock is taken to check the busy state of 1513 * shost/starget/sdev, since the returned value is not guaranteed and 1514 * may be changed after request stacking drivers call the function, 1515 * regardless of taking lock or not. 1516 * 1517 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1518 * needs to return 'not busy'. Otherwise, request stacking drivers 1519 * may hold requests forever. 1520 */ 1521 static int scsi_lld_busy(struct request_queue *q) 1522 { 1523 struct scsi_device *sdev = q->queuedata; 1524 struct Scsi_Host *shost; 1525 1526 if (blk_queue_dying(q)) 1527 return 0; 1528 1529 shost = sdev->host; 1530 1531 /* 1532 * Ignore host/starget busy state. 1533 * Since block layer does not have a concept of fairness across 1534 * multiple queues, congestion of host/starget needs to be handled 1535 * in SCSI layer. 1536 */ 1537 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1538 return 1; 1539 1540 return 0; 1541 } 1542 1543 /* 1544 * Kill a request for a dead device 1545 */ 1546 static void scsi_kill_request(struct request *req, struct request_queue *q) 1547 { 1548 struct scsi_cmnd *cmd = req->special; 1549 struct scsi_device *sdev; 1550 struct scsi_target *starget; 1551 struct Scsi_Host *shost; 1552 1553 blk_start_request(req); 1554 1555 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1556 1557 sdev = cmd->device; 1558 starget = scsi_target(sdev); 1559 shost = sdev->host; 1560 scsi_init_cmd_errh(cmd); 1561 cmd->result = DID_NO_CONNECT << 16; 1562 atomic_inc(&cmd->device->iorequest_cnt); 1563 1564 /* 1565 * SCSI request completion path will do scsi_device_unbusy(), 1566 * bump busy counts. To bump the counters, we need to dance 1567 * with the locks as normal issue path does. 1568 */ 1569 atomic_inc(&sdev->device_busy); 1570 atomic_inc(&shost->host_busy); 1571 if (starget->can_queue > 0) 1572 atomic_inc(&starget->target_busy); 1573 1574 blk_complete_request(req); 1575 } 1576 1577 static void scsi_softirq_done(struct request *rq) 1578 { 1579 struct scsi_cmnd *cmd = rq->special; 1580 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1581 int disposition; 1582 1583 INIT_LIST_HEAD(&cmd->eh_entry); 1584 1585 atomic_inc(&cmd->device->iodone_cnt); 1586 if (cmd->result) 1587 atomic_inc(&cmd->device->ioerr_cnt); 1588 1589 disposition = scsi_decide_disposition(cmd); 1590 if (disposition != SUCCESS && 1591 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1592 sdev_printk(KERN_ERR, cmd->device, 1593 "timing out command, waited %lus\n", 1594 wait_for/HZ); 1595 disposition = SUCCESS; 1596 } 1597 1598 scsi_log_completion(cmd, disposition); 1599 1600 switch (disposition) { 1601 case SUCCESS: 1602 scsi_finish_command(cmd); 1603 break; 1604 case NEEDS_RETRY: 1605 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1606 break; 1607 case ADD_TO_MLQUEUE: 1608 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1609 break; 1610 default: 1611 scsi_eh_scmd_add(cmd); 1612 break; 1613 } 1614 } 1615 1616 /** 1617 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1618 * @cmd: command block we are dispatching. 1619 * 1620 * Return: nonzero return request was rejected and device's queue needs to be 1621 * plugged. 1622 */ 1623 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1624 { 1625 struct Scsi_Host *host = cmd->device->host; 1626 int rtn = 0; 1627 1628 atomic_inc(&cmd->device->iorequest_cnt); 1629 1630 /* check if the device is still usable */ 1631 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1632 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1633 * returns an immediate error upwards, and signals 1634 * that the device is no longer present */ 1635 cmd->result = DID_NO_CONNECT << 16; 1636 goto done; 1637 } 1638 1639 /* Check to see if the scsi lld made this device blocked. */ 1640 if (unlikely(scsi_device_blocked(cmd->device))) { 1641 /* 1642 * in blocked state, the command is just put back on 1643 * the device queue. The suspend state has already 1644 * blocked the queue so future requests should not 1645 * occur until the device transitions out of the 1646 * suspend state. 1647 */ 1648 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1649 "queuecommand : device blocked\n")); 1650 return SCSI_MLQUEUE_DEVICE_BUSY; 1651 } 1652 1653 /* Store the LUN value in cmnd, if needed. */ 1654 if (cmd->device->lun_in_cdb) 1655 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1656 (cmd->device->lun << 5 & 0xe0); 1657 1658 scsi_log_send(cmd); 1659 1660 /* 1661 * Before we queue this command, check if the command 1662 * length exceeds what the host adapter can handle. 1663 */ 1664 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1665 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1666 "queuecommand : command too long. " 1667 "cdb_size=%d host->max_cmd_len=%d\n", 1668 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1669 cmd->result = (DID_ABORT << 16); 1670 goto done; 1671 } 1672 1673 if (unlikely(host->shost_state == SHOST_DEL)) { 1674 cmd->result = (DID_NO_CONNECT << 16); 1675 goto done; 1676 1677 } 1678 1679 trace_scsi_dispatch_cmd_start(cmd); 1680 rtn = host->hostt->queuecommand(host, cmd); 1681 if (rtn) { 1682 trace_scsi_dispatch_cmd_error(cmd, rtn); 1683 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1684 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1685 rtn = SCSI_MLQUEUE_HOST_BUSY; 1686 1687 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1688 "queuecommand : request rejected\n")); 1689 } 1690 1691 return rtn; 1692 done: 1693 cmd->scsi_done(cmd); 1694 return 0; 1695 } 1696 1697 /** 1698 * scsi_done - Invoke completion on finished SCSI command. 1699 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1700 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1701 * 1702 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1703 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1704 * calls blk_complete_request() for further processing. 1705 * 1706 * This function is interrupt context safe. 1707 */ 1708 static void scsi_done(struct scsi_cmnd *cmd) 1709 { 1710 trace_scsi_dispatch_cmd_done(cmd); 1711 blk_complete_request(cmd->request); 1712 } 1713 1714 /* 1715 * Function: scsi_request_fn() 1716 * 1717 * Purpose: Main strategy routine for SCSI. 1718 * 1719 * Arguments: q - Pointer to actual queue. 1720 * 1721 * Returns: Nothing 1722 * 1723 * Lock status: IO request lock assumed to be held when called. 1724 */ 1725 static void scsi_request_fn(struct request_queue *q) 1726 __releases(q->queue_lock) 1727 __acquires(q->queue_lock) 1728 { 1729 struct scsi_device *sdev = q->queuedata; 1730 struct Scsi_Host *shost; 1731 struct scsi_cmnd *cmd; 1732 struct request *req; 1733 1734 /* 1735 * To start with, we keep looping until the queue is empty, or until 1736 * the host is no longer able to accept any more requests. 1737 */ 1738 shost = sdev->host; 1739 for (;;) { 1740 int rtn; 1741 /* 1742 * get next queueable request. We do this early to make sure 1743 * that the request is fully prepared even if we cannot 1744 * accept it. 1745 */ 1746 req = blk_peek_request(q); 1747 if (!req) 1748 break; 1749 1750 if (unlikely(!scsi_device_online(sdev))) { 1751 sdev_printk(KERN_ERR, sdev, 1752 "rejecting I/O to offline device\n"); 1753 scsi_kill_request(req, q); 1754 continue; 1755 } 1756 1757 if (!scsi_dev_queue_ready(q, sdev)) 1758 break; 1759 1760 /* 1761 * Remove the request from the request list. 1762 */ 1763 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1764 blk_start_request(req); 1765 1766 spin_unlock_irq(q->queue_lock); 1767 cmd = req->special; 1768 if (unlikely(cmd == NULL)) { 1769 printk(KERN_CRIT "impossible request in %s.\n" 1770 "please mail a stack trace to " 1771 "linux-scsi@vger.kernel.org\n", 1772 __func__); 1773 blk_dump_rq_flags(req, "foo"); 1774 BUG(); 1775 } 1776 1777 /* 1778 * We hit this when the driver is using a host wide 1779 * tag map. For device level tag maps the queue_depth check 1780 * in the device ready fn would prevent us from trying 1781 * to allocate a tag. Since the map is a shared host resource 1782 * we add the dev to the starved list so it eventually gets 1783 * a run when a tag is freed. 1784 */ 1785 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1786 spin_lock_irq(shost->host_lock); 1787 if (list_empty(&sdev->starved_entry)) 1788 list_add_tail(&sdev->starved_entry, 1789 &shost->starved_list); 1790 spin_unlock_irq(shost->host_lock); 1791 goto not_ready; 1792 } 1793 1794 if (!scsi_target_queue_ready(shost, sdev)) 1795 goto not_ready; 1796 1797 if (!scsi_host_queue_ready(q, shost, sdev)) 1798 goto host_not_ready; 1799 1800 if (sdev->simple_tags) 1801 cmd->flags |= SCMD_TAGGED; 1802 else 1803 cmd->flags &= ~SCMD_TAGGED; 1804 1805 /* 1806 * Finally, initialize any error handling parameters, and set up 1807 * the timers for timeouts. 1808 */ 1809 scsi_init_cmd_errh(cmd); 1810 1811 /* 1812 * Dispatch the command to the low-level driver. 1813 */ 1814 cmd->scsi_done = scsi_done; 1815 rtn = scsi_dispatch_cmd(cmd); 1816 if (rtn) { 1817 scsi_queue_insert(cmd, rtn); 1818 spin_lock_irq(q->queue_lock); 1819 goto out_delay; 1820 } 1821 spin_lock_irq(q->queue_lock); 1822 } 1823 1824 return; 1825 1826 host_not_ready: 1827 if (scsi_target(sdev)->can_queue > 0) 1828 atomic_dec(&scsi_target(sdev)->target_busy); 1829 not_ready: 1830 /* 1831 * lock q, handle tag, requeue req, and decrement device_busy. We 1832 * must return with queue_lock held. 1833 * 1834 * Decrementing device_busy without checking it is OK, as all such 1835 * cases (host limits or settings) should run the queue at some 1836 * later time. 1837 */ 1838 spin_lock_irq(q->queue_lock); 1839 blk_requeue_request(q, req); 1840 atomic_dec(&sdev->device_busy); 1841 out_delay: 1842 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1843 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1844 } 1845 1846 static inline blk_status_t prep_to_mq(int ret) 1847 { 1848 switch (ret) { 1849 case BLKPREP_OK: 1850 return BLK_STS_OK; 1851 case BLKPREP_DEFER: 1852 return BLK_STS_RESOURCE; 1853 default: 1854 return BLK_STS_IOERR; 1855 } 1856 } 1857 1858 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1859 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1860 { 1861 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1862 sizeof(struct scatterlist); 1863 } 1864 1865 static int scsi_mq_prep_fn(struct request *req) 1866 { 1867 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1868 struct scsi_device *sdev = req->q->queuedata; 1869 struct Scsi_Host *shost = sdev->host; 1870 struct scatterlist *sg; 1871 1872 scsi_init_command(sdev, cmd); 1873 1874 req->special = cmd; 1875 1876 cmd->request = req; 1877 1878 cmd->tag = req->tag; 1879 cmd->prot_op = SCSI_PROT_NORMAL; 1880 1881 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1882 cmd->sdb.table.sgl = sg; 1883 1884 if (scsi_host_get_prot(shost)) { 1885 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1886 1887 cmd->prot_sdb->table.sgl = 1888 (struct scatterlist *)(cmd->prot_sdb + 1); 1889 } 1890 1891 if (blk_bidi_rq(req)) { 1892 struct request *next_rq = req->next_rq; 1893 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1894 1895 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1896 bidi_sdb->table.sgl = 1897 (struct scatterlist *)(bidi_sdb + 1); 1898 1899 next_rq->special = bidi_sdb; 1900 } 1901 1902 blk_mq_start_request(req); 1903 1904 return scsi_setup_cmnd(sdev, req); 1905 } 1906 1907 static void scsi_mq_done(struct scsi_cmnd *cmd) 1908 { 1909 trace_scsi_dispatch_cmd_done(cmd); 1910 blk_mq_complete_request(cmd->request); 1911 } 1912 1913 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1914 const struct blk_mq_queue_data *bd) 1915 { 1916 struct request *req = bd->rq; 1917 struct request_queue *q = req->q; 1918 struct scsi_device *sdev = q->queuedata; 1919 struct Scsi_Host *shost = sdev->host; 1920 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1921 blk_status_t ret; 1922 int reason; 1923 1924 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 1925 if (ret != BLK_STS_OK) 1926 goto out; 1927 1928 ret = BLK_STS_RESOURCE; 1929 if (!get_device(&sdev->sdev_gendev)) 1930 goto out; 1931 1932 if (!scsi_dev_queue_ready(q, sdev)) 1933 goto out_put_device; 1934 if (!scsi_target_queue_ready(shost, sdev)) 1935 goto out_dec_device_busy; 1936 if (!scsi_host_queue_ready(q, shost, sdev)) 1937 goto out_dec_target_busy; 1938 1939 if (!(req->rq_flags & RQF_DONTPREP)) { 1940 ret = prep_to_mq(scsi_mq_prep_fn(req)); 1941 if (ret != BLK_STS_OK) 1942 goto out_dec_host_busy; 1943 req->rq_flags |= RQF_DONTPREP; 1944 } else { 1945 blk_mq_start_request(req); 1946 } 1947 1948 if (sdev->simple_tags) 1949 cmd->flags |= SCMD_TAGGED; 1950 else 1951 cmd->flags &= ~SCMD_TAGGED; 1952 1953 scsi_init_cmd_errh(cmd); 1954 cmd->scsi_done = scsi_mq_done; 1955 1956 reason = scsi_dispatch_cmd(cmd); 1957 if (reason) { 1958 scsi_set_blocked(cmd, reason); 1959 ret = BLK_STS_RESOURCE; 1960 goto out_dec_host_busy; 1961 } 1962 1963 return BLK_STS_OK; 1964 1965 out_dec_host_busy: 1966 atomic_dec(&shost->host_busy); 1967 out_dec_target_busy: 1968 if (scsi_target(sdev)->can_queue > 0) 1969 atomic_dec(&scsi_target(sdev)->target_busy); 1970 out_dec_device_busy: 1971 atomic_dec(&sdev->device_busy); 1972 out_put_device: 1973 put_device(&sdev->sdev_gendev); 1974 out: 1975 switch (ret) { 1976 case BLK_STS_OK: 1977 break; 1978 case BLK_STS_RESOURCE: 1979 if (atomic_read(&sdev->device_busy) == 0 && 1980 !scsi_device_blocked(sdev)) 1981 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1982 break; 1983 default: 1984 /* 1985 * Make sure to release all allocated ressources when 1986 * we hit an error, as we will never see this command 1987 * again. 1988 */ 1989 if (req->rq_flags & RQF_DONTPREP) 1990 scsi_mq_uninit_cmd(cmd); 1991 break; 1992 } 1993 return ret; 1994 } 1995 1996 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1997 bool reserved) 1998 { 1999 if (reserved) 2000 return BLK_EH_RESET_TIMER; 2001 return scsi_times_out(req); 2002 } 2003 2004 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq, 2005 unsigned int hctx_idx, unsigned int numa_node) 2006 { 2007 struct Scsi_Host *shost = set->driver_data; 2008 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2009 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2010 struct scatterlist *sg; 2011 2012 if (unchecked_isa_dma) 2013 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2014 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2015 GFP_KERNEL, numa_node); 2016 if (!cmd->sense_buffer) 2017 return -ENOMEM; 2018 cmd->req.sense = cmd->sense_buffer; 2019 2020 if (scsi_host_get_prot(shost)) { 2021 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2022 shost->hostt->cmd_size; 2023 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2024 } 2025 2026 return 0; 2027 } 2028 2029 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2030 unsigned int hctx_idx) 2031 { 2032 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2033 2034 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2035 cmd->sense_buffer); 2036 } 2037 2038 static int scsi_map_queues(struct blk_mq_tag_set *set) 2039 { 2040 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2041 2042 if (shost->hostt->map_queues) 2043 return shost->hostt->map_queues(shost); 2044 return blk_mq_map_queues(set); 2045 } 2046 2047 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2048 { 2049 struct device *host_dev; 2050 u64 bounce_limit = 0xffffffff; 2051 2052 if (shost->unchecked_isa_dma) 2053 return BLK_BOUNCE_ISA; 2054 /* 2055 * Platforms with virtual-DMA translation 2056 * hardware have no practical limit. 2057 */ 2058 if (!PCI_DMA_BUS_IS_PHYS) 2059 return BLK_BOUNCE_ANY; 2060 2061 host_dev = scsi_get_device(shost); 2062 if (host_dev && host_dev->dma_mask) 2063 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2064 2065 return bounce_limit; 2066 } 2067 2068 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2069 { 2070 struct device *dev = shost->dma_dev; 2071 2072 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2073 2074 /* 2075 * this limit is imposed by hardware restrictions 2076 */ 2077 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2078 SG_MAX_SEGMENTS)); 2079 2080 if (scsi_host_prot_dma(shost)) { 2081 shost->sg_prot_tablesize = 2082 min_not_zero(shost->sg_prot_tablesize, 2083 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2084 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2085 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2086 } 2087 2088 blk_queue_max_hw_sectors(q, shost->max_sectors); 2089 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2090 blk_queue_segment_boundary(q, shost->dma_boundary); 2091 dma_set_seg_boundary(dev, shost->dma_boundary); 2092 2093 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2094 2095 if (!shost->use_clustering) 2096 q->limits.cluster = 0; 2097 2098 /* 2099 * set a reasonable default alignment on word boundaries: the 2100 * host and device may alter it using 2101 * blk_queue_update_dma_alignment() later. 2102 */ 2103 blk_queue_dma_alignment(q, 0x03); 2104 } 2105 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2106 2107 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp) 2108 { 2109 struct Scsi_Host *shost = q->rq_alloc_data; 2110 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2111 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2112 2113 memset(cmd, 0, sizeof(*cmd)); 2114 2115 if (unchecked_isa_dma) 2116 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2117 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2118 NUMA_NO_NODE); 2119 if (!cmd->sense_buffer) 2120 goto fail; 2121 cmd->req.sense = cmd->sense_buffer; 2122 2123 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2124 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2125 if (!cmd->prot_sdb) 2126 goto fail_free_sense; 2127 } 2128 2129 return 0; 2130 2131 fail_free_sense: 2132 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2133 fail: 2134 return -ENOMEM; 2135 } 2136 2137 static void scsi_exit_rq(struct request_queue *q, struct request *rq) 2138 { 2139 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2140 2141 if (cmd->prot_sdb) 2142 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2143 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2144 cmd->sense_buffer); 2145 } 2146 2147 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 2148 { 2149 struct Scsi_Host *shost = sdev->host; 2150 struct request_queue *q; 2151 2152 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2153 if (!q) 2154 return NULL; 2155 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2156 q->rq_alloc_data = shost; 2157 q->request_fn = scsi_request_fn; 2158 q->init_rq_fn = scsi_init_rq; 2159 q->exit_rq_fn = scsi_exit_rq; 2160 q->initialize_rq_fn = scsi_initialize_rq; 2161 2162 if (blk_init_allocated_queue(q) < 0) { 2163 blk_cleanup_queue(q); 2164 return NULL; 2165 } 2166 2167 __scsi_init_queue(shost, q); 2168 blk_queue_prep_rq(q, scsi_prep_fn); 2169 blk_queue_unprep_rq(q, scsi_unprep_fn); 2170 blk_queue_softirq_done(q, scsi_softirq_done); 2171 blk_queue_rq_timed_out(q, scsi_times_out); 2172 blk_queue_lld_busy(q, scsi_lld_busy); 2173 return q; 2174 } 2175 2176 static const struct blk_mq_ops scsi_mq_ops = { 2177 .queue_rq = scsi_queue_rq, 2178 .complete = scsi_softirq_done, 2179 .timeout = scsi_timeout, 2180 #ifdef CONFIG_BLK_DEBUG_FS 2181 .show_rq = scsi_show_rq, 2182 #endif 2183 .init_request = scsi_init_request, 2184 .exit_request = scsi_exit_request, 2185 .initialize_rq_fn = scsi_initialize_rq, 2186 .map_queues = scsi_map_queues, 2187 }; 2188 2189 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2190 { 2191 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2192 if (IS_ERR(sdev->request_queue)) 2193 return NULL; 2194 2195 sdev->request_queue->queuedata = sdev; 2196 __scsi_init_queue(sdev->host, sdev->request_queue); 2197 return sdev->request_queue; 2198 } 2199 2200 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2201 { 2202 unsigned int cmd_size, sgl_size; 2203 2204 sgl_size = scsi_mq_sgl_size(shost); 2205 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2206 if (scsi_host_get_prot(shost)) 2207 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2208 2209 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2210 shost->tag_set.ops = &scsi_mq_ops; 2211 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2212 shost->tag_set.queue_depth = shost->can_queue; 2213 shost->tag_set.cmd_size = cmd_size; 2214 shost->tag_set.numa_node = NUMA_NO_NODE; 2215 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2216 shost->tag_set.flags |= 2217 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2218 shost->tag_set.driver_data = shost; 2219 2220 return blk_mq_alloc_tag_set(&shost->tag_set); 2221 } 2222 2223 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2224 { 2225 blk_mq_free_tag_set(&shost->tag_set); 2226 } 2227 2228 /** 2229 * scsi_device_from_queue - return sdev associated with a request_queue 2230 * @q: The request queue to return the sdev from 2231 * 2232 * Return the sdev associated with a request queue or NULL if the 2233 * request_queue does not reference a SCSI device. 2234 */ 2235 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2236 { 2237 struct scsi_device *sdev = NULL; 2238 2239 if (q->mq_ops) { 2240 if (q->mq_ops == &scsi_mq_ops) 2241 sdev = q->queuedata; 2242 } else if (q->request_fn == scsi_request_fn) 2243 sdev = q->queuedata; 2244 if (!sdev || !get_device(&sdev->sdev_gendev)) 2245 sdev = NULL; 2246 2247 return sdev; 2248 } 2249 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2250 2251 /* 2252 * Function: scsi_block_requests() 2253 * 2254 * Purpose: Utility function used by low-level drivers to prevent further 2255 * commands from being queued to the device. 2256 * 2257 * Arguments: shost - Host in question 2258 * 2259 * Returns: Nothing 2260 * 2261 * Lock status: No locks are assumed held. 2262 * 2263 * Notes: There is no timer nor any other means by which the requests 2264 * get unblocked other than the low-level driver calling 2265 * scsi_unblock_requests(). 2266 */ 2267 void scsi_block_requests(struct Scsi_Host *shost) 2268 { 2269 shost->host_self_blocked = 1; 2270 } 2271 EXPORT_SYMBOL(scsi_block_requests); 2272 2273 /* 2274 * Function: scsi_unblock_requests() 2275 * 2276 * Purpose: Utility function used by low-level drivers to allow further 2277 * commands from being queued to the device. 2278 * 2279 * Arguments: shost - Host in question 2280 * 2281 * Returns: Nothing 2282 * 2283 * Lock status: No locks are assumed held. 2284 * 2285 * Notes: There is no timer nor any other means by which the requests 2286 * get unblocked other than the low-level driver calling 2287 * scsi_unblock_requests(). 2288 * 2289 * This is done as an API function so that changes to the 2290 * internals of the scsi mid-layer won't require wholesale 2291 * changes to drivers that use this feature. 2292 */ 2293 void scsi_unblock_requests(struct Scsi_Host *shost) 2294 { 2295 shost->host_self_blocked = 0; 2296 scsi_run_host_queues(shost); 2297 } 2298 EXPORT_SYMBOL(scsi_unblock_requests); 2299 2300 int __init scsi_init_queue(void) 2301 { 2302 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2303 sizeof(struct scsi_data_buffer), 2304 0, 0, NULL); 2305 if (!scsi_sdb_cache) { 2306 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2307 return -ENOMEM; 2308 } 2309 2310 return 0; 2311 } 2312 2313 void scsi_exit_queue(void) 2314 { 2315 kmem_cache_destroy(scsi_sense_cache); 2316 kmem_cache_destroy(scsi_sense_isadma_cache); 2317 kmem_cache_destroy(scsi_sdb_cache); 2318 } 2319 2320 /** 2321 * scsi_mode_select - issue a mode select 2322 * @sdev: SCSI device to be queried 2323 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2324 * @sp: Save page bit (0 == don't save, 1 == save) 2325 * @modepage: mode page being requested 2326 * @buffer: request buffer (may not be smaller than eight bytes) 2327 * @len: length of request buffer. 2328 * @timeout: command timeout 2329 * @retries: number of retries before failing 2330 * @data: returns a structure abstracting the mode header data 2331 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2332 * must be SCSI_SENSE_BUFFERSIZE big. 2333 * 2334 * Returns zero if successful; negative error number or scsi 2335 * status on error 2336 * 2337 */ 2338 int 2339 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2340 unsigned char *buffer, int len, int timeout, int retries, 2341 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2342 { 2343 unsigned char cmd[10]; 2344 unsigned char *real_buffer; 2345 int ret; 2346 2347 memset(cmd, 0, sizeof(cmd)); 2348 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2349 2350 if (sdev->use_10_for_ms) { 2351 if (len > 65535) 2352 return -EINVAL; 2353 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2354 if (!real_buffer) 2355 return -ENOMEM; 2356 memcpy(real_buffer + 8, buffer, len); 2357 len += 8; 2358 real_buffer[0] = 0; 2359 real_buffer[1] = 0; 2360 real_buffer[2] = data->medium_type; 2361 real_buffer[3] = data->device_specific; 2362 real_buffer[4] = data->longlba ? 0x01 : 0; 2363 real_buffer[5] = 0; 2364 real_buffer[6] = data->block_descriptor_length >> 8; 2365 real_buffer[7] = data->block_descriptor_length; 2366 2367 cmd[0] = MODE_SELECT_10; 2368 cmd[7] = len >> 8; 2369 cmd[8] = len; 2370 } else { 2371 if (len > 255 || data->block_descriptor_length > 255 || 2372 data->longlba) 2373 return -EINVAL; 2374 2375 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2376 if (!real_buffer) 2377 return -ENOMEM; 2378 memcpy(real_buffer + 4, buffer, len); 2379 len += 4; 2380 real_buffer[0] = 0; 2381 real_buffer[1] = data->medium_type; 2382 real_buffer[2] = data->device_specific; 2383 real_buffer[3] = data->block_descriptor_length; 2384 2385 2386 cmd[0] = MODE_SELECT; 2387 cmd[4] = len; 2388 } 2389 2390 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2391 sshdr, timeout, retries, NULL); 2392 kfree(real_buffer); 2393 return ret; 2394 } 2395 EXPORT_SYMBOL_GPL(scsi_mode_select); 2396 2397 /** 2398 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2399 * @sdev: SCSI device to be queried 2400 * @dbd: set if mode sense will allow block descriptors to be returned 2401 * @modepage: mode page being requested 2402 * @buffer: request buffer (may not be smaller than eight bytes) 2403 * @len: length of request buffer. 2404 * @timeout: command timeout 2405 * @retries: number of retries before failing 2406 * @data: returns a structure abstracting the mode header data 2407 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2408 * must be SCSI_SENSE_BUFFERSIZE big. 2409 * 2410 * Returns zero if unsuccessful, or the header offset (either 4 2411 * or 8 depending on whether a six or ten byte command was 2412 * issued) if successful. 2413 */ 2414 int 2415 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2416 unsigned char *buffer, int len, int timeout, int retries, 2417 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2418 { 2419 unsigned char cmd[12]; 2420 int use_10_for_ms; 2421 int header_length; 2422 int result, retry_count = retries; 2423 struct scsi_sense_hdr my_sshdr; 2424 2425 memset(data, 0, sizeof(*data)); 2426 memset(&cmd[0], 0, 12); 2427 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2428 cmd[2] = modepage; 2429 2430 /* caller might not be interested in sense, but we need it */ 2431 if (!sshdr) 2432 sshdr = &my_sshdr; 2433 2434 retry: 2435 use_10_for_ms = sdev->use_10_for_ms; 2436 2437 if (use_10_for_ms) { 2438 if (len < 8) 2439 len = 8; 2440 2441 cmd[0] = MODE_SENSE_10; 2442 cmd[8] = len; 2443 header_length = 8; 2444 } else { 2445 if (len < 4) 2446 len = 4; 2447 2448 cmd[0] = MODE_SENSE; 2449 cmd[4] = len; 2450 header_length = 4; 2451 } 2452 2453 memset(buffer, 0, len); 2454 2455 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2456 sshdr, timeout, retries, NULL); 2457 2458 /* This code looks awful: what it's doing is making sure an 2459 * ILLEGAL REQUEST sense return identifies the actual command 2460 * byte as the problem. MODE_SENSE commands can return 2461 * ILLEGAL REQUEST if the code page isn't supported */ 2462 2463 if (use_10_for_ms && !scsi_status_is_good(result) && 2464 (driver_byte(result) & DRIVER_SENSE)) { 2465 if (scsi_sense_valid(sshdr)) { 2466 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2467 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2468 /* 2469 * Invalid command operation code 2470 */ 2471 sdev->use_10_for_ms = 0; 2472 goto retry; 2473 } 2474 } 2475 } 2476 2477 if(scsi_status_is_good(result)) { 2478 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2479 (modepage == 6 || modepage == 8))) { 2480 /* Initio breakage? */ 2481 header_length = 0; 2482 data->length = 13; 2483 data->medium_type = 0; 2484 data->device_specific = 0; 2485 data->longlba = 0; 2486 data->block_descriptor_length = 0; 2487 } else if(use_10_for_ms) { 2488 data->length = buffer[0]*256 + buffer[1] + 2; 2489 data->medium_type = buffer[2]; 2490 data->device_specific = buffer[3]; 2491 data->longlba = buffer[4] & 0x01; 2492 data->block_descriptor_length = buffer[6]*256 2493 + buffer[7]; 2494 } else { 2495 data->length = buffer[0] + 1; 2496 data->medium_type = buffer[1]; 2497 data->device_specific = buffer[2]; 2498 data->block_descriptor_length = buffer[3]; 2499 } 2500 data->header_length = header_length; 2501 } else if ((status_byte(result) == CHECK_CONDITION) && 2502 scsi_sense_valid(sshdr) && 2503 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2504 retry_count--; 2505 goto retry; 2506 } 2507 2508 return result; 2509 } 2510 EXPORT_SYMBOL(scsi_mode_sense); 2511 2512 /** 2513 * scsi_test_unit_ready - test if unit is ready 2514 * @sdev: scsi device to change the state of. 2515 * @timeout: command timeout 2516 * @retries: number of retries before failing 2517 * @sshdr: outpout pointer for decoded sense information. 2518 * 2519 * Returns zero if unsuccessful or an error if TUR failed. For 2520 * removable media, UNIT_ATTENTION sets ->changed flag. 2521 **/ 2522 int 2523 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2524 struct scsi_sense_hdr *sshdr) 2525 { 2526 char cmd[] = { 2527 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2528 }; 2529 int result; 2530 2531 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2532 do { 2533 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2534 timeout, retries, NULL); 2535 if (sdev->removable && scsi_sense_valid(sshdr) && 2536 sshdr->sense_key == UNIT_ATTENTION) 2537 sdev->changed = 1; 2538 } while (scsi_sense_valid(sshdr) && 2539 sshdr->sense_key == UNIT_ATTENTION && --retries); 2540 2541 return result; 2542 } 2543 EXPORT_SYMBOL(scsi_test_unit_ready); 2544 2545 /** 2546 * scsi_device_set_state - Take the given device through the device state model. 2547 * @sdev: scsi device to change the state of. 2548 * @state: state to change to. 2549 * 2550 * Returns zero if unsuccessful or an error if the requested 2551 * transition is illegal. 2552 */ 2553 int 2554 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2555 { 2556 enum scsi_device_state oldstate = sdev->sdev_state; 2557 2558 if (state == oldstate) 2559 return 0; 2560 2561 switch (state) { 2562 case SDEV_CREATED: 2563 switch (oldstate) { 2564 case SDEV_CREATED_BLOCK: 2565 break; 2566 default: 2567 goto illegal; 2568 } 2569 break; 2570 2571 case SDEV_RUNNING: 2572 switch (oldstate) { 2573 case SDEV_CREATED: 2574 case SDEV_OFFLINE: 2575 case SDEV_TRANSPORT_OFFLINE: 2576 case SDEV_QUIESCE: 2577 case SDEV_BLOCK: 2578 break; 2579 default: 2580 goto illegal; 2581 } 2582 break; 2583 2584 case SDEV_QUIESCE: 2585 switch (oldstate) { 2586 case SDEV_RUNNING: 2587 case SDEV_OFFLINE: 2588 case SDEV_TRANSPORT_OFFLINE: 2589 break; 2590 default: 2591 goto illegal; 2592 } 2593 break; 2594 2595 case SDEV_OFFLINE: 2596 case SDEV_TRANSPORT_OFFLINE: 2597 switch (oldstate) { 2598 case SDEV_CREATED: 2599 case SDEV_RUNNING: 2600 case SDEV_QUIESCE: 2601 case SDEV_BLOCK: 2602 break; 2603 default: 2604 goto illegal; 2605 } 2606 break; 2607 2608 case SDEV_BLOCK: 2609 switch (oldstate) { 2610 case SDEV_RUNNING: 2611 case SDEV_CREATED_BLOCK: 2612 break; 2613 default: 2614 goto illegal; 2615 } 2616 break; 2617 2618 case SDEV_CREATED_BLOCK: 2619 switch (oldstate) { 2620 case SDEV_CREATED: 2621 break; 2622 default: 2623 goto illegal; 2624 } 2625 break; 2626 2627 case SDEV_CANCEL: 2628 switch (oldstate) { 2629 case SDEV_CREATED: 2630 case SDEV_RUNNING: 2631 case SDEV_QUIESCE: 2632 case SDEV_OFFLINE: 2633 case SDEV_TRANSPORT_OFFLINE: 2634 break; 2635 default: 2636 goto illegal; 2637 } 2638 break; 2639 2640 case SDEV_DEL: 2641 switch (oldstate) { 2642 case SDEV_CREATED: 2643 case SDEV_RUNNING: 2644 case SDEV_OFFLINE: 2645 case SDEV_TRANSPORT_OFFLINE: 2646 case SDEV_CANCEL: 2647 case SDEV_BLOCK: 2648 case SDEV_CREATED_BLOCK: 2649 break; 2650 default: 2651 goto illegal; 2652 } 2653 break; 2654 2655 } 2656 sdev->sdev_state = state; 2657 return 0; 2658 2659 illegal: 2660 SCSI_LOG_ERROR_RECOVERY(1, 2661 sdev_printk(KERN_ERR, sdev, 2662 "Illegal state transition %s->%s", 2663 scsi_device_state_name(oldstate), 2664 scsi_device_state_name(state)) 2665 ); 2666 return -EINVAL; 2667 } 2668 EXPORT_SYMBOL(scsi_device_set_state); 2669 2670 /** 2671 * sdev_evt_emit - emit a single SCSI device uevent 2672 * @sdev: associated SCSI device 2673 * @evt: event to emit 2674 * 2675 * Send a single uevent (scsi_event) to the associated scsi_device. 2676 */ 2677 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2678 { 2679 int idx = 0; 2680 char *envp[3]; 2681 2682 switch (evt->evt_type) { 2683 case SDEV_EVT_MEDIA_CHANGE: 2684 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2685 break; 2686 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2687 scsi_rescan_device(&sdev->sdev_gendev); 2688 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2689 break; 2690 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2691 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2692 break; 2693 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2694 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2695 break; 2696 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2697 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2698 break; 2699 case SDEV_EVT_LUN_CHANGE_REPORTED: 2700 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2701 break; 2702 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2703 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2704 break; 2705 default: 2706 /* do nothing */ 2707 break; 2708 } 2709 2710 envp[idx++] = NULL; 2711 2712 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2713 } 2714 2715 /** 2716 * sdev_evt_thread - send a uevent for each scsi event 2717 * @work: work struct for scsi_device 2718 * 2719 * Dispatch queued events to their associated scsi_device kobjects 2720 * as uevents. 2721 */ 2722 void scsi_evt_thread(struct work_struct *work) 2723 { 2724 struct scsi_device *sdev; 2725 enum scsi_device_event evt_type; 2726 LIST_HEAD(event_list); 2727 2728 sdev = container_of(work, struct scsi_device, event_work); 2729 2730 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2731 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2732 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2733 2734 while (1) { 2735 struct scsi_event *evt; 2736 struct list_head *this, *tmp; 2737 unsigned long flags; 2738 2739 spin_lock_irqsave(&sdev->list_lock, flags); 2740 list_splice_init(&sdev->event_list, &event_list); 2741 spin_unlock_irqrestore(&sdev->list_lock, flags); 2742 2743 if (list_empty(&event_list)) 2744 break; 2745 2746 list_for_each_safe(this, tmp, &event_list) { 2747 evt = list_entry(this, struct scsi_event, node); 2748 list_del(&evt->node); 2749 scsi_evt_emit(sdev, evt); 2750 kfree(evt); 2751 } 2752 } 2753 } 2754 2755 /** 2756 * sdev_evt_send - send asserted event to uevent thread 2757 * @sdev: scsi_device event occurred on 2758 * @evt: event to send 2759 * 2760 * Assert scsi device event asynchronously. 2761 */ 2762 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2763 { 2764 unsigned long flags; 2765 2766 #if 0 2767 /* FIXME: currently this check eliminates all media change events 2768 * for polled devices. Need to update to discriminate between AN 2769 * and polled events */ 2770 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2771 kfree(evt); 2772 return; 2773 } 2774 #endif 2775 2776 spin_lock_irqsave(&sdev->list_lock, flags); 2777 list_add_tail(&evt->node, &sdev->event_list); 2778 schedule_work(&sdev->event_work); 2779 spin_unlock_irqrestore(&sdev->list_lock, flags); 2780 } 2781 EXPORT_SYMBOL_GPL(sdev_evt_send); 2782 2783 /** 2784 * sdev_evt_alloc - allocate a new scsi event 2785 * @evt_type: type of event to allocate 2786 * @gfpflags: GFP flags for allocation 2787 * 2788 * Allocates and returns a new scsi_event. 2789 */ 2790 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2791 gfp_t gfpflags) 2792 { 2793 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2794 if (!evt) 2795 return NULL; 2796 2797 evt->evt_type = evt_type; 2798 INIT_LIST_HEAD(&evt->node); 2799 2800 /* evt_type-specific initialization, if any */ 2801 switch (evt_type) { 2802 case SDEV_EVT_MEDIA_CHANGE: 2803 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2804 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2805 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2806 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2807 case SDEV_EVT_LUN_CHANGE_REPORTED: 2808 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2809 default: 2810 /* do nothing */ 2811 break; 2812 } 2813 2814 return evt; 2815 } 2816 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2817 2818 /** 2819 * sdev_evt_send_simple - send asserted event to uevent thread 2820 * @sdev: scsi_device event occurred on 2821 * @evt_type: type of event to send 2822 * @gfpflags: GFP flags for allocation 2823 * 2824 * Assert scsi device event asynchronously, given an event type. 2825 */ 2826 void sdev_evt_send_simple(struct scsi_device *sdev, 2827 enum scsi_device_event evt_type, gfp_t gfpflags) 2828 { 2829 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2830 if (!evt) { 2831 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2832 evt_type); 2833 return; 2834 } 2835 2836 sdev_evt_send(sdev, evt); 2837 } 2838 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2839 2840 /** 2841 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2842 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2843 */ 2844 static int scsi_request_fn_active(struct scsi_device *sdev) 2845 { 2846 struct request_queue *q = sdev->request_queue; 2847 int request_fn_active; 2848 2849 WARN_ON_ONCE(sdev->host->use_blk_mq); 2850 2851 spin_lock_irq(q->queue_lock); 2852 request_fn_active = q->request_fn_active; 2853 spin_unlock_irq(q->queue_lock); 2854 2855 return request_fn_active; 2856 } 2857 2858 /** 2859 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2860 * @sdev: SCSI device pointer. 2861 * 2862 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2863 * invoked from scsi_request_fn() have finished. 2864 */ 2865 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2866 { 2867 WARN_ON_ONCE(sdev->host->use_blk_mq); 2868 2869 while (scsi_request_fn_active(sdev)) 2870 msleep(20); 2871 } 2872 2873 /** 2874 * scsi_device_quiesce - Block user issued commands. 2875 * @sdev: scsi device to quiesce. 2876 * 2877 * This works by trying to transition to the SDEV_QUIESCE state 2878 * (which must be a legal transition). When the device is in this 2879 * state, only special requests will be accepted, all others will 2880 * be deferred. Since special requests may also be requeued requests, 2881 * a successful return doesn't guarantee the device will be 2882 * totally quiescent. 2883 * 2884 * Must be called with user context, may sleep. 2885 * 2886 * Returns zero if unsuccessful or an error if not. 2887 */ 2888 int 2889 scsi_device_quiesce(struct scsi_device *sdev) 2890 { 2891 int err; 2892 2893 mutex_lock(&sdev->state_mutex); 2894 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2895 mutex_unlock(&sdev->state_mutex); 2896 2897 if (err) 2898 return err; 2899 2900 scsi_run_queue(sdev->request_queue); 2901 while (atomic_read(&sdev->device_busy)) { 2902 msleep_interruptible(200); 2903 scsi_run_queue(sdev->request_queue); 2904 } 2905 return 0; 2906 } 2907 EXPORT_SYMBOL(scsi_device_quiesce); 2908 2909 /** 2910 * scsi_device_resume - Restart user issued commands to a quiesced device. 2911 * @sdev: scsi device to resume. 2912 * 2913 * Moves the device from quiesced back to running and restarts the 2914 * queues. 2915 * 2916 * Must be called with user context, may sleep. 2917 */ 2918 void scsi_device_resume(struct scsi_device *sdev) 2919 { 2920 /* check if the device state was mutated prior to resume, and if 2921 * so assume the state is being managed elsewhere (for example 2922 * device deleted during suspend) 2923 */ 2924 mutex_lock(&sdev->state_mutex); 2925 if (sdev->sdev_state == SDEV_QUIESCE && 2926 scsi_device_set_state(sdev, SDEV_RUNNING) == 0) 2927 scsi_run_queue(sdev->request_queue); 2928 mutex_unlock(&sdev->state_mutex); 2929 } 2930 EXPORT_SYMBOL(scsi_device_resume); 2931 2932 static void 2933 device_quiesce_fn(struct scsi_device *sdev, void *data) 2934 { 2935 scsi_device_quiesce(sdev); 2936 } 2937 2938 void 2939 scsi_target_quiesce(struct scsi_target *starget) 2940 { 2941 starget_for_each_device(starget, NULL, device_quiesce_fn); 2942 } 2943 EXPORT_SYMBOL(scsi_target_quiesce); 2944 2945 static void 2946 device_resume_fn(struct scsi_device *sdev, void *data) 2947 { 2948 scsi_device_resume(sdev); 2949 } 2950 2951 void 2952 scsi_target_resume(struct scsi_target *starget) 2953 { 2954 starget_for_each_device(starget, NULL, device_resume_fn); 2955 } 2956 EXPORT_SYMBOL(scsi_target_resume); 2957 2958 /** 2959 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2960 * @sdev: device to block 2961 * 2962 * Pause SCSI command processing on the specified device. Does not sleep. 2963 * 2964 * Returns zero if successful or a negative error code upon failure. 2965 * 2966 * Notes: 2967 * This routine transitions the device to the SDEV_BLOCK state (which must be 2968 * a legal transition). When the device is in this state, command processing 2969 * is paused until the device leaves the SDEV_BLOCK state. See also 2970 * scsi_internal_device_unblock_nowait(). 2971 */ 2972 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2973 { 2974 struct request_queue *q = sdev->request_queue; 2975 unsigned long flags; 2976 int err = 0; 2977 2978 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2979 if (err) { 2980 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2981 2982 if (err) 2983 return err; 2984 } 2985 2986 /* 2987 * The device has transitioned to SDEV_BLOCK. Stop the 2988 * block layer from calling the midlayer with this device's 2989 * request queue. 2990 */ 2991 if (q->mq_ops) { 2992 blk_mq_quiesce_queue_nowait(q); 2993 } else { 2994 spin_lock_irqsave(q->queue_lock, flags); 2995 blk_stop_queue(q); 2996 spin_unlock_irqrestore(q->queue_lock, flags); 2997 } 2998 2999 return 0; 3000 } 3001 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3002 3003 /** 3004 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3005 * @sdev: device to block 3006 * 3007 * Pause SCSI command processing on the specified device and wait until all 3008 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3009 * 3010 * Returns zero if successful or a negative error code upon failure. 3011 * 3012 * Note: 3013 * This routine transitions the device to the SDEV_BLOCK state (which must be 3014 * a legal transition). When the device is in this state, command processing 3015 * is paused until the device leaves the SDEV_BLOCK state. See also 3016 * scsi_internal_device_unblock(). 3017 * 3018 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3019 * scsi_internal_device_block() has blocked a SCSI device and also 3020 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3021 */ 3022 static int scsi_internal_device_block(struct scsi_device *sdev) 3023 { 3024 struct request_queue *q = sdev->request_queue; 3025 int err; 3026 3027 mutex_lock(&sdev->state_mutex); 3028 err = scsi_internal_device_block_nowait(sdev); 3029 if (err == 0) { 3030 if (q->mq_ops) 3031 blk_mq_quiesce_queue(q); 3032 else 3033 scsi_wait_for_queuecommand(sdev); 3034 } 3035 mutex_unlock(&sdev->state_mutex); 3036 3037 return err; 3038 } 3039 3040 void scsi_start_queue(struct scsi_device *sdev) 3041 { 3042 struct request_queue *q = sdev->request_queue; 3043 unsigned long flags; 3044 3045 if (q->mq_ops) { 3046 blk_mq_unquiesce_queue(q); 3047 } else { 3048 spin_lock_irqsave(q->queue_lock, flags); 3049 blk_start_queue(q); 3050 spin_unlock_irqrestore(q->queue_lock, flags); 3051 } 3052 } 3053 3054 /** 3055 * scsi_internal_device_unblock_nowait - resume a device after a block request 3056 * @sdev: device to resume 3057 * @new_state: state to set the device to after unblocking 3058 * 3059 * Restart the device queue for a previously suspended SCSI device. Does not 3060 * sleep. 3061 * 3062 * Returns zero if successful or a negative error code upon failure. 3063 * 3064 * Notes: 3065 * This routine transitions the device to the SDEV_RUNNING state or to one of 3066 * the offline states (which must be a legal transition) allowing the midlayer 3067 * to goose the queue for this device. 3068 */ 3069 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3070 enum scsi_device_state new_state) 3071 { 3072 /* 3073 * Try to transition the scsi device to SDEV_RUNNING or one of the 3074 * offlined states and goose the device queue if successful. 3075 */ 3076 if ((sdev->sdev_state == SDEV_BLOCK) || 3077 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 3078 sdev->sdev_state = new_state; 3079 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 3080 if (new_state == SDEV_TRANSPORT_OFFLINE || 3081 new_state == SDEV_OFFLINE) 3082 sdev->sdev_state = new_state; 3083 else 3084 sdev->sdev_state = SDEV_CREATED; 3085 } else if (sdev->sdev_state != SDEV_CANCEL && 3086 sdev->sdev_state != SDEV_OFFLINE) 3087 return -EINVAL; 3088 3089 scsi_start_queue(sdev); 3090 3091 return 0; 3092 } 3093 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3094 3095 /** 3096 * scsi_internal_device_unblock - resume a device after a block request 3097 * @sdev: device to resume 3098 * @new_state: state to set the device to after unblocking 3099 * 3100 * Restart the device queue for a previously suspended SCSI device. May sleep. 3101 * 3102 * Returns zero if successful or a negative error code upon failure. 3103 * 3104 * Notes: 3105 * This routine transitions the device to the SDEV_RUNNING state or to one of 3106 * the offline states (which must be a legal transition) allowing the midlayer 3107 * to goose the queue for this device. 3108 */ 3109 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3110 enum scsi_device_state new_state) 3111 { 3112 int ret; 3113 3114 mutex_lock(&sdev->state_mutex); 3115 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3116 mutex_unlock(&sdev->state_mutex); 3117 3118 return ret; 3119 } 3120 3121 static void 3122 device_block(struct scsi_device *sdev, void *data) 3123 { 3124 scsi_internal_device_block(sdev); 3125 } 3126 3127 static int 3128 target_block(struct device *dev, void *data) 3129 { 3130 if (scsi_is_target_device(dev)) 3131 starget_for_each_device(to_scsi_target(dev), NULL, 3132 device_block); 3133 return 0; 3134 } 3135 3136 void 3137 scsi_target_block(struct device *dev) 3138 { 3139 if (scsi_is_target_device(dev)) 3140 starget_for_each_device(to_scsi_target(dev), NULL, 3141 device_block); 3142 else 3143 device_for_each_child(dev, NULL, target_block); 3144 } 3145 EXPORT_SYMBOL_GPL(scsi_target_block); 3146 3147 static void 3148 device_unblock(struct scsi_device *sdev, void *data) 3149 { 3150 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3151 } 3152 3153 static int 3154 target_unblock(struct device *dev, void *data) 3155 { 3156 if (scsi_is_target_device(dev)) 3157 starget_for_each_device(to_scsi_target(dev), data, 3158 device_unblock); 3159 return 0; 3160 } 3161 3162 void 3163 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3164 { 3165 if (scsi_is_target_device(dev)) 3166 starget_for_each_device(to_scsi_target(dev), &new_state, 3167 device_unblock); 3168 else 3169 device_for_each_child(dev, &new_state, target_unblock); 3170 } 3171 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3172 3173 /** 3174 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3175 * @sgl: scatter-gather list 3176 * @sg_count: number of segments in sg 3177 * @offset: offset in bytes into sg, on return offset into the mapped area 3178 * @len: bytes to map, on return number of bytes mapped 3179 * 3180 * Returns virtual address of the start of the mapped page 3181 */ 3182 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3183 size_t *offset, size_t *len) 3184 { 3185 int i; 3186 size_t sg_len = 0, len_complete = 0; 3187 struct scatterlist *sg; 3188 struct page *page; 3189 3190 WARN_ON(!irqs_disabled()); 3191 3192 for_each_sg(sgl, sg, sg_count, i) { 3193 len_complete = sg_len; /* Complete sg-entries */ 3194 sg_len += sg->length; 3195 if (sg_len > *offset) 3196 break; 3197 } 3198 3199 if (unlikely(i == sg_count)) { 3200 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3201 "elements %d\n", 3202 __func__, sg_len, *offset, sg_count); 3203 WARN_ON(1); 3204 return NULL; 3205 } 3206 3207 /* Offset starting from the beginning of first page in this sg-entry */ 3208 *offset = *offset - len_complete + sg->offset; 3209 3210 /* Assumption: contiguous pages can be accessed as "page + i" */ 3211 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3212 *offset &= ~PAGE_MASK; 3213 3214 /* Bytes in this sg-entry from *offset to the end of the page */ 3215 sg_len = PAGE_SIZE - *offset; 3216 if (*len > sg_len) 3217 *len = sg_len; 3218 3219 return kmap_atomic(page); 3220 } 3221 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3222 3223 /** 3224 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3225 * @virt: virtual address to be unmapped 3226 */ 3227 void scsi_kunmap_atomic_sg(void *virt) 3228 { 3229 kunmap_atomic(virt); 3230 } 3231 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3232 3233 void sdev_disable_disk_events(struct scsi_device *sdev) 3234 { 3235 atomic_inc(&sdev->disk_events_disable_depth); 3236 } 3237 EXPORT_SYMBOL(sdev_disable_disk_events); 3238 3239 void sdev_enable_disk_events(struct scsi_device *sdev) 3240 { 3241 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3242 return; 3243 atomic_dec(&sdev->disk_events_disable_depth); 3244 } 3245 EXPORT_SYMBOL(sdev_enable_disk_events); 3246 3247 /** 3248 * scsi_vpd_lun_id - return a unique device identification 3249 * @sdev: SCSI device 3250 * @id: buffer for the identification 3251 * @id_len: length of the buffer 3252 * 3253 * Copies a unique device identification into @id based 3254 * on the information in the VPD page 0x83 of the device. 3255 * The string will be formatted as a SCSI name string. 3256 * 3257 * Returns the length of the identification or error on failure. 3258 * If the identifier is longer than the supplied buffer the actual 3259 * identifier length is returned and the buffer is not zero-padded. 3260 */ 3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3262 { 3263 u8 cur_id_type = 0xff; 3264 u8 cur_id_size = 0; 3265 unsigned char *d, *cur_id_str; 3266 unsigned char __rcu *vpd_pg83; 3267 int id_size = -EINVAL; 3268 3269 rcu_read_lock(); 3270 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3271 if (!vpd_pg83) { 3272 rcu_read_unlock(); 3273 return -ENXIO; 3274 } 3275 3276 /* 3277 * Look for the correct descriptor. 3278 * Order of preference for lun descriptor: 3279 * - SCSI name string 3280 * - NAA IEEE Registered Extended 3281 * - EUI-64 based 16-byte 3282 * - EUI-64 based 12-byte 3283 * - NAA IEEE Registered 3284 * - NAA IEEE Extended 3285 * - T10 Vendor ID 3286 * as longer descriptors reduce the likelyhood 3287 * of identification clashes. 3288 */ 3289 3290 /* The id string must be at least 20 bytes + terminating NULL byte */ 3291 if (id_len < 21) { 3292 rcu_read_unlock(); 3293 return -EINVAL; 3294 } 3295 3296 memset(id, 0, id_len); 3297 d = vpd_pg83 + 4; 3298 while (d < vpd_pg83 + sdev->vpd_pg83_len) { 3299 /* Skip designators not referring to the LUN */ 3300 if ((d[1] & 0x30) != 0x00) 3301 goto next_desig; 3302 3303 switch (d[1] & 0xf) { 3304 case 0x1: 3305 /* T10 Vendor ID */ 3306 if (cur_id_size > d[3]) 3307 break; 3308 /* Prefer anything */ 3309 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3310 break; 3311 cur_id_size = d[3]; 3312 if (cur_id_size + 4 > id_len) 3313 cur_id_size = id_len - 4; 3314 cur_id_str = d + 4; 3315 cur_id_type = d[1] & 0xf; 3316 id_size = snprintf(id, id_len, "t10.%*pE", 3317 cur_id_size, cur_id_str); 3318 break; 3319 case 0x2: 3320 /* EUI-64 */ 3321 if (cur_id_size > d[3]) 3322 break; 3323 /* Prefer NAA IEEE Registered Extended */ 3324 if (cur_id_type == 0x3 && 3325 cur_id_size == d[3]) 3326 break; 3327 cur_id_size = d[3]; 3328 cur_id_str = d + 4; 3329 cur_id_type = d[1] & 0xf; 3330 switch (cur_id_size) { 3331 case 8: 3332 id_size = snprintf(id, id_len, 3333 "eui.%8phN", 3334 cur_id_str); 3335 break; 3336 case 12: 3337 id_size = snprintf(id, id_len, 3338 "eui.%12phN", 3339 cur_id_str); 3340 break; 3341 case 16: 3342 id_size = snprintf(id, id_len, 3343 "eui.%16phN", 3344 cur_id_str); 3345 break; 3346 default: 3347 cur_id_size = 0; 3348 break; 3349 } 3350 break; 3351 case 0x3: 3352 /* NAA */ 3353 if (cur_id_size > d[3]) 3354 break; 3355 cur_id_size = d[3]; 3356 cur_id_str = d + 4; 3357 cur_id_type = d[1] & 0xf; 3358 switch (cur_id_size) { 3359 case 8: 3360 id_size = snprintf(id, id_len, 3361 "naa.%8phN", 3362 cur_id_str); 3363 break; 3364 case 16: 3365 id_size = snprintf(id, id_len, 3366 "naa.%16phN", 3367 cur_id_str); 3368 break; 3369 default: 3370 cur_id_size = 0; 3371 break; 3372 } 3373 break; 3374 case 0x8: 3375 /* SCSI name string */ 3376 if (cur_id_size + 4 > d[3]) 3377 break; 3378 /* Prefer others for truncated descriptor */ 3379 if (cur_id_size && d[3] > id_len) 3380 break; 3381 cur_id_size = id_size = d[3]; 3382 cur_id_str = d + 4; 3383 cur_id_type = d[1] & 0xf; 3384 if (cur_id_size >= id_len) 3385 cur_id_size = id_len - 1; 3386 memcpy(id, cur_id_str, cur_id_size); 3387 /* Decrease priority for truncated descriptor */ 3388 if (cur_id_size != id_size) 3389 cur_id_size = 6; 3390 break; 3391 default: 3392 break; 3393 } 3394 next_desig: 3395 d += d[3] + 4; 3396 } 3397 rcu_read_unlock(); 3398 3399 return id_size; 3400 } 3401 EXPORT_SYMBOL(scsi_vpd_lun_id); 3402 3403 /* 3404 * scsi_vpd_tpg_id - return a target port group identifier 3405 * @sdev: SCSI device 3406 * 3407 * Returns the Target Port Group identifier from the information 3408 * froom VPD page 0x83 of the device. 3409 * 3410 * Returns the identifier or error on failure. 3411 */ 3412 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3413 { 3414 unsigned char *d; 3415 unsigned char __rcu *vpd_pg83; 3416 int group_id = -EAGAIN, rel_port = -1; 3417 3418 rcu_read_lock(); 3419 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3420 if (!vpd_pg83) { 3421 rcu_read_unlock(); 3422 return -ENXIO; 3423 } 3424 3425 d = sdev->vpd_pg83 + 4; 3426 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) { 3427 switch (d[1] & 0xf) { 3428 case 0x4: 3429 /* Relative target port */ 3430 rel_port = get_unaligned_be16(&d[6]); 3431 break; 3432 case 0x5: 3433 /* Target port group */ 3434 group_id = get_unaligned_be16(&d[6]); 3435 break; 3436 default: 3437 break; 3438 } 3439 d += d[3] + 4; 3440 } 3441 rcu_read_unlock(); 3442 3443 if (group_id >= 0 && rel_id && rel_port != -1) 3444 *rel_id = rel_port; 3445 3446 return group_id; 3447 } 3448 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3449