1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static inline struct kmem_cache * 48 scsi_select_sense_cache(struct Scsi_Host *shost) 49 { 50 return shost->unchecked_isa_dma ? 51 scsi_sense_isadma_cache : scsi_sense_cache; 52 } 53 54 static void scsi_free_sense_buffer(struct Scsi_Host *shost, 55 unsigned char *sense_buffer) 56 { 57 kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer); 58 } 59 60 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost, 61 gfp_t gfp_mask, int numa_node) 62 { 63 return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask, 64 numa_node); 65 } 66 67 int scsi_init_sense_cache(struct Scsi_Host *shost) 68 { 69 struct kmem_cache *cache; 70 int ret = 0; 71 72 cache = scsi_select_sense_cache(shost); 73 if (cache) 74 return 0; 75 76 mutex_lock(&scsi_sense_cache_mutex); 77 if (shost->unchecked_isa_dma) { 78 scsi_sense_isadma_cache = 79 kmem_cache_create("scsi_sense_cache(DMA)", 80 SCSI_SENSE_BUFFERSIZE, 0, 81 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 82 if (!scsi_sense_isadma_cache) 83 ret = -ENOMEM; 84 } else { 85 scsi_sense_cache = 86 kmem_cache_create("scsi_sense_cache", 87 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL); 88 if (!scsi_sense_cache) 89 ret = -ENOMEM; 90 } 91 92 mutex_unlock(&scsi_sense_cache_mutex); 93 return ret; 94 } 95 96 /* 97 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 98 * not change behaviour from the previous unplug mechanism, experimentation 99 * may prove this needs changing. 100 */ 101 #define SCSI_QUEUE_DELAY 3 102 103 static void 104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 105 { 106 struct Scsi_Host *host = cmd->device->host; 107 struct scsi_device *device = cmd->device; 108 struct scsi_target *starget = scsi_target(device); 109 110 /* 111 * Set the appropriate busy bit for the device/host. 112 * 113 * If the host/device isn't busy, assume that something actually 114 * completed, and that we should be able to queue a command now. 115 * 116 * Note that the prior mid-layer assumption that any host could 117 * always queue at least one command is now broken. The mid-layer 118 * will implement a user specifiable stall (see 119 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 120 * if a command is requeued with no other commands outstanding 121 * either for the device or for the host. 122 */ 123 switch (reason) { 124 case SCSI_MLQUEUE_HOST_BUSY: 125 atomic_set(&host->host_blocked, host->max_host_blocked); 126 break; 127 case SCSI_MLQUEUE_DEVICE_BUSY: 128 case SCSI_MLQUEUE_EH_RETRY: 129 atomic_set(&device->device_blocked, 130 device->max_device_blocked); 131 break; 132 case SCSI_MLQUEUE_TARGET_BUSY: 133 atomic_set(&starget->target_blocked, 134 starget->max_target_blocked); 135 break; 136 } 137 } 138 139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 140 { 141 struct scsi_device *sdev = cmd->device; 142 143 blk_mq_requeue_request(cmd->request, true); 144 put_device(&sdev->sdev_gendev); 145 } 146 147 /** 148 * __scsi_queue_insert - private queue insertion 149 * @cmd: The SCSI command being requeued 150 * @reason: The reason for the requeue 151 * @unbusy: Whether the queue should be unbusied 152 * 153 * This is a private queue insertion. The public interface 154 * scsi_queue_insert() always assumes the queue should be unbusied 155 * because it's always called before the completion. This function is 156 * for a requeue after completion, which should only occur in this 157 * file. 158 */ 159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 160 { 161 struct scsi_device *device = cmd->device; 162 struct request_queue *q = device->request_queue; 163 unsigned long flags; 164 165 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 166 "Inserting command %p into mlqueue\n", cmd)); 167 168 scsi_set_blocked(cmd, reason); 169 170 /* 171 * Decrement the counters, since these commands are no longer 172 * active on the host/device. 173 */ 174 if (unbusy) 175 scsi_device_unbusy(device); 176 177 /* 178 * Requeue this command. It will go before all other commands 179 * that are already in the queue. Schedule requeue work under 180 * lock such that the kblockd_schedule_work() call happens 181 * before blk_cleanup_queue() finishes. 182 */ 183 cmd->result = 0; 184 if (q->mq_ops) { 185 scsi_mq_requeue_cmd(cmd); 186 return; 187 } 188 spin_lock_irqsave(q->queue_lock, flags); 189 blk_requeue_request(q, cmd->request); 190 kblockd_schedule_work(&device->requeue_work); 191 spin_unlock_irqrestore(q->queue_lock, flags); 192 } 193 194 /* 195 * Function: scsi_queue_insert() 196 * 197 * Purpose: Insert a command in the midlevel queue. 198 * 199 * Arguments: cmd - command that we are adding to queue. 200 * reason - why we are inserting command to queue. 201 * 202 * Lock status: Assumed that lock is not held upon entry. 203 * 204 * Returns: Nothing. 205 * 206 * Notes: We do this for one of two cases. Either the host is busy 207 * and it cannot accept any more commands for the time being, 208 * or the device returned QUEUE_FULL and can accept no more 209 * commands. 210 * Notes: This could be called either from an interrupt context or a 211 * normal process context. 212 */ 213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 214 { 215 __scsi_queue_insert(cmd, reason, 1); 216 } 217 218 219 /** 220 * scsi_execute - insert request and wait for the result 221 * @sdev: scsi device 222 * @cmd: scsi command 223 * @data_direction: data direction 224 * @buffer: data buffer 225 * @bufflen: len of buffer 226 * @sense: optional sense buffer 227 * @sshdr: optional decoded sense header 228 * @timeout: request timeout in seconds 229 * @retries: number of times to retry request 230 * @flags: flags for ->cmd_flags 231 * @rq_flags: flags for ->rq_flags 232 * @resid: optional residual length 233 * 234 * Returns the scsi_cmnd result field if a command was executed, or a negative 235 * Linux error code if we didn't get that far. 236 */ 237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 238 int data_direction, void *buffer, unsigned bufflen, 239 unsigned char *sense, struct scsi_sense_hdr *sshdr, 240 int timeout, int retries, u64 flags, req_flags_t rq_flags, 241 int *resid) 242 { 243 struct request *req; 244 struct scsi_request *rq; 245 int ret = DRIVER_ERROR << 24; 246 247 req = blk_get_request(sdev->request_queue, 248 data_direction == DMA_TO_DEVICE ? 249 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 250 if (IS_ERR(req)) 251 return ret; 252 rq = scsi_req(req); 253 scsi_req_init(req); 254 255 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 256 buffer, bufflen, __GFP_RECLAIM)) 257 goto out; 258 259 rq->cmd_len = COMMAND_SIZE(cmd[0]); 260 memcpy(rq->cmd, cmd, rq->cmd_len); 261 rq->retries = retries; 262 req->timeout = timeout; 263 req->cmd_flags |= flags; 264 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT; 265 266 /* 267 * head injection *required* here otherwise quiesce won't work 268 */ 269 blk_execute_rq(req->q, NULL, req, 1); 270 271 /* 272 * Some devices (USB mass-storage in particular) may transfer 273 * garbage data together with a residue indicating that the data 274 * is invalid. Prevent the garbage from being misinterpreted 275 * and prevent security leaks by zeroing out the excess data. 276 */ 277 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 278 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 279 280 if (resid) 281 *resid = rq->resid_len; 282 if (sense && rq->sense_len) 283 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 284 if (sshdr) 285 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 286 ret = rq->result; 287 out: 288 blk_put_request(req); 289 290 return ret; 291 } 292 EXPORT_SYMBOL(scsi_execute); 293 294 /* 295 * Function: scsi_init_cmd_errh() 296 * 297 * Purpose: Initialize cmd fields related to error handling. 298 * 299 * Arguments: cmd - command that is ready to be queued. 300 * 301 * Notes: This function has the job of initializing a number of 302 * fields related to error handling. Typically this will 303 * be called once for each command, as required. 304 */ 305 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 306 { 307 cmd->serial_number = 0; 308 scsi_set_resid(cmd, 0); 309 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 310 if (cmd->cmd_len == 0) 311 cmd->cmd_len = scsi_command_size(cmd->cmnd); 312 } 313 314 void scsi_device_unbusy(struct scsi_device *sdev) 315 { 316 struct Scsi_Host *shost = sdev->host; 317 struct scsi_target *starget = scsi_target(sdev); 318 unsigned long flags; 319 320 atomic_dec(&shost->host_busy); 321 if (starget->can_queue > 0) 322 atomic_dec(&starget->target_busy); 323 324 if (unlikely(scsi_host_in_recovery(shost) && 325 (shost->host_failed || shost->host_eh_scheduled))) { 326 spin_lock_irqsave(shost->host_lock, flags); 327 scsi_eh_wakeup(shost); 328 spin_unlock_irqrestore(shost->host_lock, flags); 329 } 330 331 atomic_dec(&sdev->device_busy); 332 } 333 334 static void scsi_kick_queue(struct request_queue *q) 335 { 336 if (q->mq_ops) 337 blk_mq_start_hw_queues(q); 338 else 339 blk_run_queue(q); 340 } 341 342 /* 343 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 344 * and call blk_run_queue for all the scsi_devices on the target - 345 * including current_sdev first. 346 * 347 * Called with *no* scsi locks held. 348 */ 349 static void scsi_single_lun_run(struct scsi_device *current_sdev) 350 { 351 struct Scsi_Host *shost = current_sdev->host; 352 struct scsi_device *sdev, *tmp; 353 struct scsi_target *starget = scsi_target(current_sdev); 354 unsigned long flags; 355 356 spin_lock_irqsave(shost->host_lock, flags); 357 starget->starget_sdev_user = NULL; 358 spin_unlock_irqrestore(shost->host_lock, flags); 359 360 /* 361 * Call blk_run_queue for all LUNs on the target, starting with 362 * current_sdev. We race with others (to set starget_sdev_user), 363 * but in most cases, we will be first. Ideally, each LU on the 364 * target would get some limited time or requests on the target. 365 */ 366 scsi_kick_queue(current_sdev->request_queue); 367 368 spin_lock_irqsave(shost->host_lock, flags); 369 if (starget->starget_sdev_user) 370 goto out; 371 list_for_each_entry_safe(sdev, tmp, &starget->devices, 372 same_target_siblings) { 373 if (sdev == current_sdev) 374 continue; 375 if (scsi_device_get(sdev)) 376 continue; 377 378 spin_unlock_irqrestore(shost->host_lock, flags); 379 scsi_kick_queue(sdev->request_queue); 380 spin_lock_irqsave(shost->host_lock, flags); 381 382 scsi_device_put(sdev); 383 } 384 out: 385 spin_unlock_irqrestore(shost->host_lock, flags); 386 } 387 388 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 389 { 390 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 391 return true; 392 if (atomic_read(&sdev->device_blocked) > 0) 393 return true; 394 return false; 395 } 396 397 static inline bool scsi_target_is_busy(struct scsi_target *starget) 398 { 399 if (starget->can_queue > 0) { 400 if (atomic_read(&starget->target_busy) >= starget->can_queue) 401 return true; 402 if (atomic_read(&starget->target_blocked) > 0) 403 return true; 404 } 405 return false; 406 } 407 408 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 409 { 410 if (shost->can_queue > 0 && 411 atomic_read(&shost->host_busy) >= shost->can_queue) 412 return true; 413 if (atomic_read(&shost->host_blocked) > 0) 414 return true; 415 if (shost->host_self_blocked) 416 return true; 417 return false; 418 } 419 420 static void scsi_starved_list_run(struct Scsi_Host *shost) 421 { 422 LIST_HEAD(starved_list); 423 struct scsi_device *sdev; 424 unsigned long flags; 425 426 spin_lock_irqsave(shost->host_lock, flags); 427 list_splice_init(&shost->starved_list, &starved_list); 428 429 while (!list_empty(&starved_list)) { 430 struct request_queue *slq; 431 432 /* 433 * As long as shost is accepting commands and we have 434 * starved queues, call blk_run_queue. scsi_request_fn 435 * drops the queue_lock and can add us back to the 436 * starved_list. 437 * 438 * host_lock protects the starved_list and starved_entry. 439 * scsi_request_fn must get the host_lock before checking 440 * or modifying starved_list or starved_entry. 441 */ 442 if (scsi_host_is_busy(shost)) 443 break; 444 445 sdev = list_entry(starved_list.next, 446 struct scsi_device, starved_entry); 447 list_del_init(&sdev->starved_entry); 448 if (scsi_target_is_busy(scsi_target(sdev))) { 449 list_move_tail(&sdev->starved_entry, 450 &shost->starved_list); 451 continue; 452 } 453 454 /* 455 * Once we drop the host lock, a racing scsi_remove_device() 456 * call may remove the sdev from the starved list and destroy 457 * it and the queue. Mitigate by taking a reference to the 458 * queue and never touching the sdev again after we drop the 459 * host lock. Note: if __scsi_remove_device() invokes 460 * blk_cleanup_queue() before the queue is run from this 461 * function then blk_run_queue() will return immediately since 462 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 463 */ 464 slq = sdev->request_queue; 465 if (!blk_get_queue(slq)) 466 continue; 467 spin_unlock_irqrestore(shost->host_lock, flags); 468 469 scsi_kick_queue(slq); 470 blk_put_queue(slq); 471 472 spin_lock_irqsave(shost->host_lock, flags); 473 } 474 /* put any unprocessed entries back */ 475 list_splice(&starved_list, &shost->starved_list); 476 spin_unlock_irqrestore(shost->host_lock, flags); 477 } 478 479 /* 480 * Function: scsi_run_queue() 481 * 482 * Purpose: Select a proper request queue to serve next 483 * 484 * Arguments: q - last request's queue 485 * 486 * Returns: Nothing 487 * 488 * Notes: The previous command was completely finished, start 489 * a new one if possible. 490 */ 491 static void scsi_run_queue(struct request_queue *q) 492 { 493 struct scsi_device *sdev = q->queuedata; 494 495 if (scsi_target(sdev)->single_lun) 496 scsi_single_lun_run(sdev); 497 if (!list_empty(&sdev->host->starved_list)) 498 scsi_starved_list_run(sdev->host); 499 500 if (q->mq_ops) 501 blk_mq_run_hw_queues(q, false); 502 else 503 blk_run_queue(q); 504 } 505 506 void scsi_requeue_run_queue(struct work_struct *work) 507 { 508 struct scsi_device *sdev; 509 struct request_queue *q; 510 511 sdev = container_of(work, struct scsi_device, requeue_work); 512 q = sdev->request_queue; 513 scsi_run_queue(q); 514 } 515 516 /* 517 * Function: scsi_requeue_command() 518 * 519 * Purpose: Handle post-processing of completed commands. 520 * 521 * Arguments: q - queue to operate on 522 * cmd - command that may need to be requeued. 523 * 524 * Returns: Nothing 525 * 526 * Notes: After command completion, there may be blocks left 527 * over which weren't finished by the previous command 528 * this can be for a number of reasons - the main one is 529 * I/O errors in the middle of the request, in which case 530 * we need to request the blocks that come after the bad 531 * sector. 532 * Notes: Upon return, cmd is a stale pointer. 533 */ 534 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 535 { 536 struct scsi_device *sdev = cmd->device; 537 struct request *req = cmd->request; 538 unsigned long flags; 539 540 spin_lock_irqsave(q->queue_lock, flags); 541 blk_unprep_request(req); 542 req->special = NULL; 543 scsi_put_command(cmd); 544 blk_requeue_request(q, req); 545 spin_unlock_irqrestore(q->queue_lock, flags); 546 547 scsi_run_queue(q); 548 549 put_device(&sdev->sdev_gendev); 550 } 551 552 void scsi_run_host_queues(struct Scsi_Host *shost) 553 { 554 struct scsi_device *sdev; 555 556 shost_for_each_device(sdev, shost) 557 scsi_run_queue(sdev->request_queue); 558 } 559 560 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 561 { 562 if (!blk_rq_is_passthrough(cmd->request)) { 563 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 564 565 if (drv->uninit_command) 566 drv->uninit_command(cmd); 567 } 568 } 569 570 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 571 { 572 struct scsi_data_buffer *sdb; 573 574 if (cmd->sdb.table.nents) 575 sg_free_table_chained(&cmd->sdb.table, true); 576 if (cmd->request->next_rq) { 577 sdb = cmd->request->next_rq->special; 578 if (sdb) 579 sg_free_table_chained(&sdb->table, true); 580 } 581 if (scsi_prot_sg_count(cmd)) 582 sg_free_table_chained(&cmd->prot_sdb->table, true); 583 } 584 585 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 586 { 587 struct scsi_device *sdev = cmd->device; 588 struct Scsi_Host *shost = sdev->host; 589 unsigned long flags; 590 591 scsi_mq_free_sgtables(cmd); 592 scsi_uninit_cmd(cmd); 593 594 if (shost->use_cmd_list) { 595 BUG_ON(list_empty(&cmd->list)); 596 spin_lock_irqsave(&sdev->list_lock, flags); 597 list_del_init(&cmd->list); 598 spin_unlock_irqrestore(&sdev->list_lock, flags); 599 } 600 } 601 602 /* 603 * Function: scsi_release_buffers() 604 * 605 * Purpose: Free resources allocate for a scsi_command. 606 * 607 * Arguments: cmd - command that we are bailing. 608 * 609 * Lock status: Assumed that no lock is held upon entry. 610 * 611 * Returns: Nothing 612 * 613 * Notes: In the event that an upper level driver rejects a 614 * command, we must release resources allocated during 615 * the __init_io() function. Primarily this would involve 616 * the scatter-gather table. 617 */ 618 static void scsi_release_buffers(struct scsi_cmnd *cmd) 619 { 620 if (cmd->sdb.table.nents) 621 sg_free_table_chained(&cmd->sdb.table, false); 622 623 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 624 625 if (scsi_prot_sg_count(cmd)) 626 sg_free_table_chained(&cmd->prot_sdb->table, false); 627 } 628 629 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 630 { 631 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 632 633 sg_free_table_chained(&bidi_sdb->table, false); 634 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 635 cmd->request->next_rq->special = NULL; 636 } 637 638 static bool scsi_end_request(struct request *req, int error, 639 unsigned int bytes, unsigned int bidi_bytes) 640 { 641 struct scsi_cmnd *cmd = req->special; 642 struct scsi_device *sdev = cmd->device; 643 struct request_queue *q = sdev->request_queue; 644 645 if (blk_update_request(req, error, bytes)) 646 return true; 647 648 /* Bidi request must be completed as a whole */ 649 if (unlikely(bidi_bytes) && 650 blk_update_request(req->next_rq, error, bidi_bytes)) 651 return true; 652 653 if (blk_queue_add_random(q)) 654 add_disk_randomness(req->rq_disk); 655 656 if (req->mq_ctx) { 657 /* 658 * In the MQ case the command gets freed by __blk_mq_end_request, 659 * so we have to do all cleanup that depends on it earlier. 660 * 661 * We also can't kick the queues from irq context, so we 662 * will have to defer it to a workqueue. 663 */ 664 scsi_mq_uninit_cmd(cmd); 665 666 __blk_mq_end_request(req, error); 667 668 if (scsi_target(sdev)->single_lun || 669 !list_empty(&sdev->host->starved_list)) 670 kblockd_schedule_work(&sdev->requeue_work); 671 else 672 blk_mq_run_hw_queues(q, true); 673 } else { 674 unsigned long flags; 675 676 if (bidi_bytes) 677 scsi_release_bidi_buffers(cmd); 678 scsi_release_buffers(cmd); 679 scsi_put_command(cmd); 680 681 spin_lock_irqsave(q->queue_lock, flags); 682 blk_finish_request(req, error); 683 spin_unlock_irqrestore(q->queue_lock, flags); 684 685 scsi_run_queue(q); 686 } 687 688 put_device(&sdev->sdev_gendev); 689 return false; 690 } 691 692 /** 693 * __scsi_error_from_host_byte - translate SCSI error code into errno 694 * @cmd: SCSI command (unused) 695 * @result: scsi error code 696 * 697 * Translate SCSI error code into standard UNIX errno. 698 * Return values: 699 * -ENOLINK temporary transport failure 700 * -EREMOTEIO permanent target failure, do not retry 701 * -EBADE permanent nexus failure, retry on other path 702 * -ENOSPC No write space available 703 * -ENODATA Medium error 704 * -EIO unspecified I/O error 705 */ 706 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 707 { 708 int error = 0; 709 710 switch(host_byte(result)) { 711 case DID_TRANSPORT_FAILFAST: 712 error = -ENOLINK; 713 break; 714 case DID_TARGET_FAILURE: 715 set_host_byte(cmd, DID_OK); 716 error = -EREMOTEIO; 717 break; 718 case DID_NEXUS_FAILURE: 719 set_host_byte(cmd, DID_OK); 720 error = -EBADE; 721 break; 722 case DID_ALLOC_FAILURE: 723 set_host_byte(cmd, DID_OK); 724 error = -ENOSPC; 725 break; 726 case DID_MEDIUM_ERROR: 727 set_host_byte(cmd, DID_OK); 728 error = -ENODATA; 729 break; 730 default: 731 error = -EIO; 732 break; 733 } 734 735 return error; 736 } 737 738 /* 739 * Function: scsi_io_completion() 740 * 741 * Purpose: Completion processing for block device I/O requests. 742 * 743 * Arguments: cmd - command that is finished. 744 * 745 * Lock status: Assumed that no lock is held upon entry. 746 * 747 * Returns: Nothing 748 * 749 * Notes: We will finish off the specified number of sectors. If we 750 * are done, the command block will be released and the queue 751 * function will be goosed. If we are not done then we have to 752 * figure out what to do next: 753 * 754 * a) We can call scsi_requeue_command(). The request 755 * will be unprepared and put back on the queue. Then 756 * a new command will be created for it. This should 757 * be used if we made forward progress, or if we want 758 * to switch from READ(10) to READ(6) for example. 759 * 760 * b) We can call __scsi_queue_insert(). The request will 761 * be put back on the queue and retried using the same 762 * command as before, possibly after a delay. 763 * 764 * c) We can call scsi_end_request() with -EIO to fail 765 * the remainder of the request. 766 */ 767 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 768 { 769 int result = cmd->result; 770 struct request_queue *q = cmd->device->request_queue; 771 struct request *req = cmd->request; 772 int error = 0; 773 struct scsi_sense_hdr sshdr; 774 bool sense_valid = false; 775 int sense_deferred = 0, level = 0; 776 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 777 ACTION_DELAYED_RETRY} action; 778 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 779 780 if (result) { 781 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 782 if (sense_valid) 783 sense_deferred = scsi_sense_is_deferred(&sshdr); 784 } 785 786 if (blk_rq_is_passthrough(req)) { 787 if (result) { 788 if (sense_valid) { 789 /* 790 * SG_IO wants current and deferred errors 791 */ 792 scsi_req(req)->sense_len = 793 min(8 + cmd->sense_buffer[7], 794 SCSI_SENSE_BUFFERSIZE); 795 } 796 if (!sense_deferred) 797 error = __scsi_error_from_host_byte(cmd, result); 798 } 799 /* 800 * __scsi_error_from_host_byte may have reset the host_byte 801 */ 802 scsi_req(req)->result = cmd->result; 803 scsi_req(req)->resid_len = scsi_get_resid(cmd); 804 805 if (scsi_bidi_cmnd(cmd)) { 806 /* 807 * Bidi commands Must be complete as a whole, 808 * both sides at once. 809 */ 810 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 811 if (scsi_end_request(req, 0, blk_rq_bytes(req), 812 blk_rq_bytes(req->next_rq))) 813 BUG(); 814 return; 815 } 816 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 817 /* 818 * Flush commands do not transfers any data, and thus cannot use 819 * good_bytes != blk_rq_bytes(req) as the signal for an error. 820 * This sets the error explicitly for the problem case. 821 */ 822 error = __scsi_error_from_host_byte(cmd, result); 823 } 824 825 /* no bidi support for !blk_rq_is_passthrough yet */ 826 BUG_ON(blk_bidi_rq(req)); 827 828 /* 829 * Next deal with any sectors which we were able to correctly 830 * handle. 831 */ 832 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 833 "%u sectors total, %d bytes done.\n", 834 blk_rq_sectors(req), good_bytes)); 835 836 /* 837 * Recovered errors need reporting, but they're always treated as 838 * success, so fiddle the result code here. For passthrough requests 839 * we already took a copy of the original into sreq->result which 840 * is what gets returned to the user 841 */ 842 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 843 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 844 * print since caller wants ATA registers. Only occurs on 845 * SCSI ATA PASS_THROUGH commands when CK_COND=1 846 */ 847 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 848 ; 849 else if (!(req->rq_flags & RQF_QUIET)) 850 scsi_print_sense(cmd); 851 result = 0; 852 /* for passthrough error may be set */ 853 error = 0; 854 } 855 856 /* 857 * special case: failed zero length commands always need to 858 * drop down into the retry code. Otherwise, if we finished 859 * all bytes in the request we are done now. 860 */ 861 if (!(blk_rq_bytes(req) == 0 && error) && 862 !scsi_end_request(req, error, good_bytes, 0)) 863 return; 864 865 /* 866 * Kill remainder if no retrys. 867 */ 868 if (error && scsi_noretry_cmd(cmd)) { 869 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 870 BUG(); 871 return; 872 } 873 874 /* 875 * If there had been no error, but we have leftover bytes in the 876 * requeues just queue the command up again. 877 */ 878 if (result == 0) 879 goto requeue; 880 881 error = __scsi_error_from_host_byte(cmd, result); 882 883 if (host_byte(result) == DID_RESET) { 884 /* Third party bus reset or reset for error recovery 885 * reasons. Just retry the command and see what 886 * happens. 887 */ 888 action = ACTION_RETRY; 889 } else if (sense_valid && !sense_deferred) { 890 switch (sshdr.sense_key) { 891 case UNIT_ATTENTION: 892 if (cmd->device->removable) { 893 /* Detected disc change. Set a bit 894 * and quietly refuse further access. 895 */ 896 cmd->device->changed = 1; 897 action = ACTION_FAIL; 898 } else { 899 /* Must have been a power glitch, or a 900 * bus reset. Could not have been a 901 * media change, so we just retry the 902 * command and see what happens. 903 */ 904 action = ACTION_RETRY; 905 } 906 break; 907 case ILLEGAL_REQUEST: 908 /* If we had an ILLEGAL REQUEST returned, then 909 * we may have performed an unsupported 910 * command. The only thing this should be 911 * would be a ten byte read where only a six 912 * byte read was supported. Also, on a system 913 * where READ CAPACITY failed, we may have 914 * read past the end of the disk. 915 */ 916 if ((cmd->device->use_10_for_rw && 917 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 918 (cmd->cmnd[0] == READ_10 || 919 cmd->cmnd[0] == WRITE_10)) { 920 /* This will issue a new 6-byte command. */ 921 cmd->device->use_10_for_rw = 0; 922 action = ACTION_REPREP; 923 } else if (sshdr.asc == 0x10) /* DIX */ { 924 action = ACTION_FAIL; 925 error = -EILSEQ; 926 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 927 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 928 action = ACTION_FAIL; 929 error = -EREMOTEIO; 930 } else 931 action = ACTION_FAIL; 932 break; 933 case ABORTED_COMMAND: 934 action = ACTION_FAIL; 935 if (sshdr.asc == 0x10) /* DIF */ 936 error = -EILSEQ; 937 break; 938 case NOT_READY: 939 /* If the device is in the process of becoming 940 * ready, or has a temporary blockage, retry. 941 */ 942 if (sshdr.asc == 0x04) { 943 switch (sshdr.ascq) { 944 case 0x01: /* becoming ready */ 945 case 0x04: /* format in progress */ 946 case 0x05: /* rebuild in progress */ 947 case 0x06: /* recalculation in progress */ 948 case 0x07: /* operation in progress */ 949 case 0x08: /* Long write in progress */ 950 case 0x09: /* self test in progress */ 951 case 0x14: /* space allocation in progress */ 952 action = ACTION_DELAYED_RETRY; 953 break; 954 default: 955 action = ACTION_FAIL; 956 break; 957 } 958 } else 959 action = ACTION_FAIL; 960 break; 961 case VOLUME_OVERFLOW: 962 /* See SSC3rXX or current. */ 963 action = ACTION_FAIL; 964 break; 965 default: 966 action = ACTION_FAIL; 967 break; 968 } 969 } else 970 action = ACTION_FAIL; 971 972 if (action != ACTION_FAIL && 973 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 974 action = ACTION_FAIL; 975 976 switch (action) { 977 case ACTION_FAIL: 978 /* Give up and fail the remainder of the request */ 979 if (!(req->rq_flags & RQF_QUIET)) { 980 static DEFINE_RATELIMIT_STATE(_rs, 981 DEFAULT_RATELIMIT_INTERVAL, 982 DEFAULT_RATELIMIT_BURST); 983 984 if (unlikely(scsi_logging_level)) 985 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 986 SCSI_LOG_MLCOMPLETE_BITS); 987 988 /* 989 * if logging is enabled the failure will be printed 990 * in scsi_log_completion(), so avoid duplicate messages 991 */ 992 if (!level && __ratelimit(&_rs)) { 993 scsi_print_result(cmd, NULL, FAILED); 994 if (driver_byte(result) & DRIVER_SENSE) 995 scsi_print_sense(cmd); 996 scsi_print_command(cmd); 997 } 998 } 999 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 1000 return; 1001 /*FALLTHRU*/ 1002 case ACTION_REPREP: 1003 requeue: 1004 /* Unprep the request and put it back at the head of the queue. 1005 * A new command will be prepared and issued. 1006 */ 1007 if (q->mq_ops) { 1008 cmd->request->rq_flags &= ~RQF_DONTPREP; 1009 scsi_mq_uninit_cmd(cmd); 1010 scsi_mq_requeue_cmd(cmd); 1011 } else { 1012 scsi_release_buffers(cmd); 1013 scsi_requeue_command(q, cmd); 1014 } 1015 break; 1016 case ACTION_RETRY: 1017 /* Retry the same command immediately */ 1018 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1019 break; 1020 case ACTION_DELAYED_RETRY: 1021 /* Retry the same command after a delay */ 1022 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1023 break; 1024 } 1025 } 1026 1027 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1028 { 1029 int count; 1030 1031 /* 1032 * If sg table allocation fails, requeue request later. 1033 */ 1034 if (unlikely(sg_alloc_table_chained(&sdb->table, 1035 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1036 return BLKPREP_DEFER; 1037 1038 /* 1039 * Next, walk the list, and fill in the addresses and sizes of 1040 * each segment. 1041 */ 1042 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1043 BUG_ON(count > sdb->table.nents); 1044 sdb->table.nents = count; 1045 sdb->length = blk_rq_payload_bytes(req); 1046 return BLKPREP_OK; 1047 } 1048 1049 /* 1050 * Function: scsi_init_io() 1051 * 1052 * Purpose: SCSI I/O initialize function. 1053 * 1054 * Arguments: cmd - Command descriptor we wish to initialize 1055 * 1056 * Returns: 0 on success 1057 * BLKPREP_DEFER if the failure is retryable 1058 * BLKPREP_KILL if the failure is fatal 1059 */ 1060 int scsi_init_io(struct scsi_cmnd *cmd) 1061 { 1062 struct scsi_device *sdev = cmd->device; 1063 struct request *rq = cmd->request; 1064 bool is_mq = (rq->mq_ctx != NULL); 1065 int error = BLKPREP_KILL; 1066 1067 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1068 goto err_exit; 1069 1070 error = scsi_init_sgtable(rq, &cmd->sdb); 1071 if (error) 1072 goto err_exit; 1073 1074 if (blk_bidi_rq(rq)) { 1075 if (!rq->q->mq_ops) { 1076 struct scsi_data_buffer *bidi_sdb = 1077 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1078 if (!bidi_sdb) { 1079 error = BLKPREP_DEFER; 1080 goto err_exit; 1081 } 1082 1083 rq->next_rq->special = bidi_sdb; 1084 } 1085 1086 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1087 if (error) 1088 goto err_exit; 1089 } 1090 1091 if (blk_integrity_rq(rq)) { 1092 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1093 int ivecs, count; 1094 1095 if (prot_sdb == NULL) { 1096 /* 1097 * This can happen if someone (e.g. multipath) 1098 * queues a command to a device on an adapter 1099 * that does not support DIX. 1100 */ 1101 WARN_ON_ONCE(1); 1102 error = BLKPREP_KILL; 1103 goto err_exit; 1104 } 1105 1106 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1107 1108 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1109 prot_sdb->table.sgl)) { 1110 error = BLKPREP_DEFER; 1111 goto err_exit; 1112 } 1113 1114 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1115 prot_sdb->table.sgl); 1116 BUG_ON(unlikely(count > ivecs)); 1117 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1118 1119 cmd->prot_sdb = prot_sdb; 1120 cmd->prot_sdb->table.nents = count; 1121 } 1122 1123 return BLKPREP_OK; 1124 err_exit: 1125 if (is_mq) { 1126 scsi_mq_free_sgtables(cmd); 1127 } else { 1128 scsi_release_buffers(cmd); 1129 cmd->request->special = NULL; 1130 scsi_put_command(cmd); 1131 put_device(&sdev->sdev_gendev); 1132 } 1133 return error; 1134 } 1135 EXPORT_SYMBOL(scsi_init_io); 1136 1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1138 { 1139 void *buf = cmd->sense_buffer; 1140 void *prot = cmd->prot_sdb; 1141 unsigned long flags; 1142 1143 /* zero out the cmd, except for the embedded scsi_request */ 1144 memset((char *)cmd + sizeof(cmd->req), 0, 1145 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1146 1147 cmd->device = dev; 1148 cmd->sense_buffer = buf; 1149 cmd->prot_sdb = prot; 1150 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1151 cmd->jiffies_at_alloc = jiffies; 1152 1153 spin_lock_irqsave(&dev->list_lock, flags); 1154 list_add_tail(&cmd->list, &dev->cmd_list); 1155 spin_unlock_irqrestore(&dev->list_lock, flags); 1156 } 1157 1158 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1159 { 1160 struct scsi_cmnd *cmd = req->special; 1161 1162 /* 1163 * Passthrough requests may transfer data, in which case they must 1164 * a bio attached to them. Or they might contain a SCSI command 1165 * that does not transfer data, in which case they may optionally 1166 * submit a request without an attached bio. 1167 */ 1168 if (req->bio) { 1169 int ret = scsi_init_io(cmd); 1170 if (unlikely(ret)) 1171 return ret; 1172 } else { 1173 BUG_ON(blk_rq_bytes(req)); 1174 1175 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1176 } 1177 1178 cmd->cmd_len = scsi_req(req)->cmd_len; 1179 cmd->cmnd = scsi_req(req)->cmd; 1180 cmd->transfersize = blk_rq_bytes(req); 1181 cmd->allowed = scsi_req(req)->retries; 1182 return BLKPREP_OK; 1183 } 1184 1185 /* 1186 * Setup a normal block command. These are simple request from filesystems 1187 * that still need to be translated to SCSI CDBs from the ULD. 1188 */ 1189 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1190 { 1191 struct scsi_cmnd *cmd = req->special; 1192 1193 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1194 int ret = sdev->handler->prep_fn(sdev, req); 1195 if (ret != BLKPREP_OK) 1196 return ret; 1197 } 1198 1199 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1200 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1201 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1202 } 1203 1204 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1205 { 1206 struct scsi_cmnd *cmd = req->special; 1207 1208 if (!blk_rq_bytes(req)) 1209 cmd->sc_data_direction = DMA_NONE; 1210 else if (rq_data_dir(req) == WRITE) 1211 cmd->sc_data_direction = DMA_TO_DEVICE; 1212 else 1213 cmd->sc_data_direction = DMA_FROM_DEVICE; 1214 1215 if (blk_rq_is_scsi(req)) 1216 return scsi_setup_scsi_cmnd(sdev, req); 1217 else 1218 return scsi_setup_fs_cmnd(sdev, req); 1219 } 1220 1221 static int 1222 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1223 { 1224 int ret = BLKPREP_OK; 1225 1226 /* 1227 * If the device is not in running state we will reject some 1228 * or all commands. 1229 */ 1230 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1231 switch (sdev->sdev_state) { 1232 case SDEV_OFFLINE: 1233 case SDEV_TRANSPORT_OFFLINE: 1234 /* 1235 * If the device is offline we refuse to process any 1236 * commands. The device must be brought online 1237 * before trying any recovery commands. 1238 */ 1239 sdev_printk(KERN_ERR, sdev, 1240 "rejecting I/O to offline device\n"); 1241 ret = BLKPREP_KILL; 1242 break; 1243 case SDEV_DEL: 1244 /* 1245 * If the device is fully deleted, we refuse to 1246 * process any commands as well. 1247 */ 1248 sdev_printk(KERN_ERR, sdev, 1249 "rejecting I/O to dead device\n"); 1250 ret = BLKPREP_KILL; 1251 break; 1252 case SDEV_BLOCK: 1253 case SDEV_CREATED_BLOCK: 1254 ret = BLKPREP_DEFER; 1255 break; 1256 case SDEV_QUIESCE: 1257 /* 1258 * If the devices is blocked we defer normal commands. 1259 */ 1260 if (!(req->rq_flags & RQF_PREEMPT)) 1261 ret = BLKPREP_DEFER; 1262 break; 1263 default: 1264 /* 1265 * For any other not fully online state we only allow 1266 * special commands. In particular any user initiated 1267 * command is not allowed. 1268 */ 1269 if (!(req->rq_flags & RQF_PREEMPT)) 1270 ret = BLKPREP_KILL; 1271 break; 1272 } 1273 } 1274 return ret; 1275 } 1276 1277 static int 1278 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1279 { 1280 struct scsi_device *sdev = q->queuedata; 1281 1282 switch (ret) { 1283 case BLKPREP_KILL: 1284 case BLKPREP_INVALID: 1285 scsi_req(req)->result = DID_NO_CONNECT << 16; 1286 /* release the command and kill it */ 1287 if (req->special) { 1288 struct scsi_cmnd *cmd = req->special; 1289 scsi_release_buffers(cmd); 1290 scsi_put_command(cmd); 1291 put_device(&sdev->sdev_gendev); 1292 req->special = NULL; 1293 } 1294 break; 1295 case BLKPREP_DEFER: 1296 /* 1297 * If we defer, the blk_peek_request() returns NULL, but the 1298 * queue must be restarted, so we schedule a callback to happen 1299 * shortly. 1300 */ 1301 if (atomic_read(&sdev->device_busy) == 0) 1302 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1303 break; 1304 default: 1305 req->rq_flags |= RQF_DONTPREP; 1306 } 1307 1308 return ret; 1309 } 1310 1311 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1312 { 1313 struct scsi_device *sdev = q->queuedata; 1314 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1315 int ret; 1316 1317 ret = scsi_prep_state_check(sdev, req); 1318 if (ret != BLKPREP_OK) 1319 goto out; 1320 1321 if (!req->special) { 1322 /* Bail if we can't get a reference to the device */ 1323 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1324 ret = BLKPREP_DEFER; 1325 goto out; 1326 } 1327 1328 scsi_init_command(sdev, cmd); 1329 req->special = cmd; 1330 } 1331 1332 cmd->tag = req->tag; 1333 cmd->request = req; 1334 cmd->prot_op = SCSI_PROT_NORMAL; 1335 1336 ret = scsi_setup_cmnd(sdev, req); 1337 out: 1338 return scsi_prep_return(q, req, ret); 1339 } 1340 1341 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1342 { 1343 scsi_uninit_cmd(req->special); 1344 } 1345 1346 /* 1347 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1348 * return 0. 1349 * 1350 * Called with the queue_lock held. 1351 */ 1352 static inline int scsi_dev_queue_ready(struct request_queue *q, 1353 struct scsi_device *sdev) 1354 { 1355 unsigned int busy; 1356 1357 busy = atomic_inc_return(&sdev->device_busy) - 1; 1358 if (atomic_read(&sdev->device_blocked)) { 1359 if (busy) 1360 goto out_dec; 1361 1362 /* 1363 * unblock after device_blocked iterates to zero 1364 */ 1365 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1366 /* 1367 * For the MQ case we take care of this in the caller. 1368 */ 1369 if (!q->mq_ops) 1370 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1371 goto out_dec; 1372 } 1373 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1374 "unblocking device at zero depth\n")); 1375 } 1376 1377 if (busy >= sdev->queue_depth) 1378 goto out_dec; 1379 1380 return 1; 1381 out_dec: 1382 atomic_dec(&sdev->device_busy); 1383 return 0; 1384 } 1385 1386 /* 1387 * scsi_target_queue_ready: checks if there we can send commands to target 1388 * @sdev: scsi device on starget to check. 1389 */ 1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1391 struct scsi_device *sdev) 1392 { 1393 struct scsi_target *starget = scsi_target(sdev); 1394 unsigned int busy; 1395 1396 if (starget->single_lun) { 1397 spin_lock_irq(shost->host_lock); 1398 if (starget->starget_sdev_user && 1399 starget->starget_sdev_user != sdev) { 1400 spin_unlock_irq(shost->host_lock); 1401 return 0; 1402 } 1403 starget->starget_sdev_user = sdev; 1404 spin_unlock_irq(shost->host_lock); 1405 } 1406 1407 if (starget->can_queue <= 0) 1408 return 1; 1409 1410 busy = atomic_inc_return(&starget->target_busy) - 1; 1411 if (atomic_read(&starget->target_blocked) > 0) { 1412 if (busy) 1413 goto starved; 1414 1415 /* 1416 * unblock after target_blocked iterates to zero 1417 */ 1418 if (atomic_dec_return(&starget->target_blocked) > 0) 1419 goto out_dec; 1420 1421 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1422 "unblocking target at zero depth\n")); 1423 } 1424 1425 if (busy >= starget->can_queue) 1426 goto starved; 1427 1428 return 1; 1429 1430 starved: 1431 spin_lock_irq(shost->host_lock); 1432 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1433 spin_unlock_irq(shost->host_lock); 1434 out_dec: 1435 if (starget->can_queue > 0) 1436 atomic_dec(&starget->target_busy); 1437 return 0; 1438 } 1439 1440 /* 1441 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1442 * return 0. We must end up running the queue again whenever 0 is 1443 * returned, else IO can hang. 1444 */ 1445 static inline int scsi_host_queue_ready(struct request_queue *q, 1446 struct Scsi_Host *shost, 1447 struct scsi_device *sdev) 1448 { 1449 unsigned int busy; 1450 1451 if (scsi_host_in_recovery(shost)) 1452 return 0; 1453 1454 busy = atomic_inc_return(&shost->host_busy) - 1; 1455 if (atomic_read(&shost->host_blocked) > 0) { 1456 if (busy) 1457 goto starved; 1458 1459 /* 1460 * unblock after host_blocked iterates to zero 1461 */ 1462 if (atomic_dec_return(&shost->host_blocked) > 0) 1463 goto out_dec; 1464 1465 SCSI_LOG_MLQUEUE(3, 1466 shost_printk(KERN_INFO, shost, 1467 "unblocking host at zero depth\n")); 1468 } 1469 1470 if (shost->can_queue > 0 && busy >= shost->can_queue) 1471 goto starved; 1472 if (shost->host_self_blocked) 1473 goto starved; 1474 1475 /* We're OK to process the command, so we can't be starved */ 1476 if (!list_empty(&sdev->starved_entry)) { 1477 spin_lock_irq(shost->host_lock); 1478 if (!list_empty(&sdev->starved_entry)) 1479 list_del_init(&sdev->starved_entry); 1480 spin_unlock_irq(shost->host_lock); 1481 } 1482 1483 return 1; 1484 1485 starved: 1486 spin_lock_irq(shost->host_lock); 1487 if (list_empty(&sdev->starved_entry)) 1488 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1489 spin_unlock_irq(shost->host_lock); 1490 out_dec: 1491 atomic_dec(&shost->host_busy); 1492 return 0; 1493 } 1494 1495 /* 1496 * Busy state exporting function for request stacking drivers. 1497 * 1498 * For efficiency, no lock is taken to check the busy state of 1499 * shost/starget/sdev, since the returned value is not guaranteed and 1500 * may be changed after request stacking drivers call the function, 1501 * regardless of taking lock or not. 1502 * 1503 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1504 * needs to return 'not busy'. Otherwise, request stacking drivers 1505 * may hold requests forever. 1506 */ 1507 static int scsi_lld_busy(struct request_queue *q) 1508 { 1509 struct scsi_device *sdev = q->queuedata; 1510 struct Scsi_Host *shost; 1511 1512 if (blk_queue_dying(q)) 1513 return 0; 1514 1515 shost = sdev->host; 1516 1517 /* 1518 * Ignore host/starget busy state. 1519 * Since block layer does not have a concept of fairness across 1520 * multiple queues, congestion of host/starget needs to be handled 1521 * in SCSI layer. 1522 */ 1523 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1524 return 1; 1525 1526 return 0; 1527 } 1528 1529 /* 1530 * Kill a request for a dead device 1531 */ 1532 static void scsi_kill_request(struct request *req, struct request_queue *q) 1533 { 1534 struct scsi_cmnd *cmd = req->special; 1535 struct scsi_device *sdev; 1536 struct scsi_target *starget; 1537 struct Scsi_Host *shost; 1538 1539 blk_start_request(req); 1540 1541 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1542 1543 sdev = cmd->device; 1544 starget = scsi_target(sdev); 1545 shost = sdev->host; 1546 scsi_init_cmd_errh(cmd); 1547 cmd->result = DID_NO_CONNECT << 16; 1548 atomic_inc(&cmd->device->iorequest_cnt); 1549 1550 /* 1551 * SCSI request completion path will do scsi_device_unbusy(), 1552 * bump busy counts. To bump the counters, we need to dance 1553 * with the locks as normal issue path does. 1554 */ 1555 atomic_inc(&sdev->device_busy); 1556 atomic_inc(&shost->host_busy); 1557 if (starget->can_queue > 0) 1558 atomic_inc(&starget->target_busy); 1559 1560 blk_complete_request(req); 1561 } 1562 1563 static void scsi_softirq_done(struct request *rq) 1564 { 1565 struct scsi_cmnd *cmd = rq->special; 1566 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1567 int disposition; 1568 1569 INIT_LIST_HEAD(&cmd->eh_entry); 1570 1571 atomic_inc(&cmd->device->iodone_cnt); 1572 if (cmd->result) 1573 atomic_inc(&cmd->device->ioerr_cnt); 1574 1575 disposition = scsi_decide_disposition(cmd); 1576 if (disposition != SUCCESS && 1577 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1578 sdev_printk(KERN_ERR, cmd->device, 1579 "timing out command, waited %lus\n", 1580 wait_for/HZ); 1581 disposition = SUCCESS; 1582 } 1583 1584 scsi_log_completion(cmd, disposition); 1585 1586 switch (disposition) { 1587 case SUCCESS: 1588 scsi_finish_command(cmd); 1589 break; 1590 case NEEDS_RETRY: 1591 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1592 break; 1593 case ADD_TO_MLQUEUE: 1594 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1595 break; 1596 default: 1597 scsi_eh_scmd_add(cmd); 1598 break; 1599 } 1600 } 1601 1602 /** 1603 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1604 * @cmd: command block we are dispatching. 1605 * 1606 * Return: nonzero return request was rejected and device's queue needs to be 1607 * plugged. 1608 */ 1609 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1610 { 1611 struct Scsi_Host *host = cmd->device->host; 1612 int rtn = 0; 1613 1614 atomic_inc(&cmd->device->iorequest_cnt); 1615 1616 /* check if the device is still usable */ 1617 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1618 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1619 * returns an immediate error upwards, and signals 1620 * that the device is no longer present */ 1621 cmd->result = DID_NO_CONNECT << 16; 1622 goto done; 1623 } 1624 1625 /* Check to see if the scsi lld made this device blocked. */ 1626 if (unlikely(scsi_device_blocked(cmd->device))) { 1627 /* 1628 * in blocked state, the command is just put back on 1629 * the device queue. The suspend state has already 1630 * blocked the queue so future requests should not 1631 * occur until the device transitions out of the 1632 * suspend state. 1633 */ 1634 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1635 "queuecommand : device blocked\n")); 1636 return SCSI_MLQUEUE_DEVICE_BUSY; 1637 } 1638 1639 /* Store the LUN value in cmnd, if needed. */ 1640 if (cmd->device->lun_in_cdb) 1641 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1642 (cmd->device->lun << 5 & 0xe0); 1643 1644 scsi_log_send(cmd); 1645 1646 /* 1647 * Before we queue this command, check if the command 1648 * length exceeds what the host adapter can handle. 1649 */ 1650 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1651 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1652 "queuecommand : command too long. " 1653 "cdb_size=%d host->max_cmd_len=%d\n", 1654 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1655 cmd->result = (DID_ABORT << 16); 1656 goto done; 1657 } 1658 1659 if (unlikely(host->shost_state == SHOST_DEL)) { 1660 cmd->result = (DID_NO_CONNECT << 16); 1661 goto done; 1662 1663 } 1664 1665 trace_scsi_dispatch_cmd_start(cmd); 1666 rtn = host->hostt->queuecommand(host, cmd); 1667 if (rtn) { 1668 trace_scsi_dispatch_cmd_error(cmd, rtn); 1669 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1670 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1671 rtn = SCSI_MLQUEUE_HOST_BUSY; 1672 1673 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1674 "queuecommand : request rejected\n")); 1675 } 1676 1677 return rtn; 1678 done: 1679 cmd->scsi_done(cmd); 1680 return 0; 1681 } 1682 1683 /** 1684 * scsi_done - Invoke completion on finished SCSI command. 1685 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1686 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1687 * 1688 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1689 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1690 * calls blk_complete_request() for further processing. 1691 * 1692 * This function is interrupt context safe. 1693 */ 1694 static void scsi_done(struct scsi_cmnd *cmd) 1695 { 1696 trace_scsi_dispatch_cmd_done(cmd); 1697 blk_complete_request(cmd->request); 1698 } 1699 1700 /* 1701 * Function: scsi_request_fn() 1702 * 1703 * Purpose: Main strategy routine for SCSI. 1704 * 1705 * Arguments: q - Pointer to actual queue. 1706 * 1707 * Returns: Nothing 1708 * 1709 * Lock status: IO request lock assumed to be held when called. 1710 */ 1711 static void scsi_request_fn(struct request_queue *q) 1712 __releases(q->queue_lock) 1713 __acquires(q->queue_lock) 1714 { 1715 struct scsi_device *sdev = q->queuedata; 1716 struct Scsi_Host *shost; 1717 struct scsi_cmnd *cmd; 1718 struct request *req; 1719 1720 /* 1721 * To start with, we keep looping until the queue is empty, or until 1722 * the host is no longer able to accept any more requests. 1723 */ 1724 shost = sdev->host; 1725 for (;;) { 1726 int rtn; 1727 /* 1728 * get next queueable request. We do this early to make sure 1729 * that the request is fully prepared even if we cannot 1730 * accept it. 1731 */ 1732 req = blk_peek_request(q); 1733 if (!req) 1734 break; 1735 1736 if (unlikely(!scsi_device_online(sdev))) { 1737 sdev_printk(KERN_ERR, sdev, 1738 "rejecting I/O to offline device\n"); 1739 scsi_kill_request(req, q); 1740 continue; 1741 } 1742 1743 if (!scsi_dev_queue_ready(q, sdev)) 1744 break; 1745 1746 /* 1747 * Remove the request from the request list. 1748 */ 1749 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1750 blk_start_request(req); 1751 1752 spin_unlock_irq(q->queue_lock); 1753 cmd = req->special; 1754 if (unlikely(cmd == NULL)) { 1755 printk(KERN_CRIT "impossible request in %s.\n" 1756 "please mail a stack trace to " 1757 "linux-scsi@vger.kernel.org\n", 1758 __func__); 1759 blk_dump_rq_flags(req, "foo"); 1760 BUG(); 1761 } 1762 1763 /* 1764 * We hit this when the driver is using a host wide 1765 * tag map. For device level tag maps the queue_depth check 1766 * in the device ready fn would prevent us from trying 1767 * to allocate a tag. Since the map is a shared host resource 1768 * we add the dev to the starved list so it eventually gets 1769 * a run when a tag is freed. 1770 */ 1771 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1772 spin_lock_irq(shost->host_lock); 1773 if (list_empty(&sdev->starved_entry)) 1774 list_add_tail(&sdev->starved_entry, 1775 &shost->starved_list); 1776 spin_unlock_irq(shost->host_lock); 1777 goto not_ready; 1778 } 1779 1780 if (!scsi_target_queue_ready(shost, sdev)) 1781 goto not_ready; 1782 1783 if (!scsi_host_queue_ready(q, shost, sdev)) 1784 goto host_not_ready; 1785 1786 if (sdev->simple_tags) 1787 cmd->flags |= SCMD_TAGGED; 1788 else 1789 cmd->flags &= ~SCMD_TAGGED; 1790 1791 /* 1792 * Finally, initialize any error handling parameters, and set up 1793 * the timers for timeouts. 1794 */ 1795 scsi_init_cmd_errh(cmd); 1796 1797 /* 1798 * Dispatch the command to the low-level driver. 1799 */ 1800 cmd->scsi_done = scsi_done; 1801 rtn = scsi_dispatch_cmd(cmd); 1802 if (rtn) { 1803 scsi_queue_insert(cmd, rtn); 1804 spin_lock_irq(q->queue_lock); 1805 goto out_delay; 1806 } 1807 spin_lock_irq(q->queue_lock); 1808 } 1809 1810 return; 1811 1812 host_not_ready: 1813 if (scsi_target(sdev)->can_queue > 0) 1814 atomic_dec(&scsi_target(sdev)->target_busy); 1815 not_ready: 1816 /* 1817 * lock q, handle tag, requeue req, and decrement device_busy. We 1818 * must return with queue_lock held. 1819 * 1820 * Decrementing device_busy without checking it is OK, as all such 1821 * cases (host limits or settings) should run the queue at some 1822 * later time. 1823 */ 1824 spin_lock_irq(q->queue_lock); 1825 blk_requeue_request(q, req); 1826 atomic_dec(&sdev->device_busy); 1827 out_delay: 1828 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1829 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1830 } 1831 1832 static inline int prep_to_mq(int ret) 1833 { 1834 switch (ret) { 1835 case BLKPREP_OK: 1836 return BLK_MQ_RQ_QUEUE_OK; 1837 case BLKPREP_DEFER: 1838 return BLK_MQ_RQ_QUEUE_BUSY; 1839 default: 1840 return BLK_MQ_RQ_QUEUE_ERROR; 1841 } 1842 } 1843 1844 static int scsi_mq_prep_fn(struct request *req) 1845 { 1846 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1847 struct scsi_device *sdev = req->q->queuedata; 1848 struct Scsi_Host *shost = sdev->host; 1849 unsigned char *sense_buf = cmd->sense_buffer; 1850 struct scatterlist *sg; 1851 1852 /* zero out the cmd, except for the embedded scsi_request */ 1853 memset((char *)cmd + sizeof(cmd->req), 0, 1854 sizeof(*cmd) - sizeof(cmd->req)); 1855 1856 req->special = cmd; 1857 1858 cmd->request = req; 1859 cmd->device = sdev; 1860 cmd->sense_buffer = sense_buf; 1861 1862 cmd->tag = req->tag; 1863 1864 cmd->prot_op = SCSI_PROT_NORMAL; 1865 1866 INIT_LIST_HEAD(&cmd->list); 1867 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1868 cmd->jiffies_at_alloc = jiffies; 1869 1870 if (shost->use_cmd_list) { 1871 spin_lock_irq(&sdev->list_lock); 1872 list_add_tail(&cmd->list, &sdev->cmd_list); 1873 spin_unlock_irq(&sdev->list_lock); 1874 } 1875 1876 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1877 cmd->sdb.table.sgl = sg; 1878 1879 if (scsi_host_get_prot(shost)) { 1880 cmd->prot_sdb = (void *)sg + 1881 min_t(unsigned int, 1882 shost->sg_tablesize, SG_CHUNK_SIZE) * 1883 sizeof(struct scatterlist); 1884 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1885 1886 cmd->prot_sdb->table.sgl = 1887 (struct scatterlist *)(cmd->prot_sdb + 1); 1888 } 1889 1890 if (blk_bidi_rq(req)) { 1891 struct request *next_rq = req->next_rq; 1892 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1893 1894 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1895 bidi_sdb->table.sgl = 1896 (struct scatterlist *)(bidi_sdb + 1); 1897 1898 next_rq->special = bidi_sdb; 1899 } 1900 1901 blk_mq_start_request(req); 1902 1903 return scsi_setup_cmnd(sdev, req); 1904 } 1905 1906 static void scsi_mq_done(struct scsi_cmnd *cmd) 1907 { 1908 trace_scsi_dispatch_cmd_done(cmd); 1909 blk_mq_complete_request(cmd->request); 1910 } 1911 1912 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1913 const struct blk_mq_queue_data *bd) 1914 { 1915 struct request *req = bd->rq; 1916 struct request_queue *q = req->q; 1917 struct scsi_device *sdev = q->queuedata; 1918 struct Scsi_Host *shost = sdev->host; 1919 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1920 int ret; 1921 int reason; 1922 1923 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 1924 if (ret != BLK_MQ_RQ_QUEUE_OK) 1925 goto out; 1926 1927 ret = BLK_MQ_RQ_QUEUE_BUSY; 1928 if (!get_device(&sdev->sdev_gendev)) 1929 goto out; 1930 1931 if (!scsi_dev_queue_ready(q, sdev)) 1932 goto out_put_device; 1933 if (!scsi_target_queue_ready(shost, sdev)) 1934 goto out_dec_device_busy; 1935 if (!scsi_host_queue_ready(q, shost, sdev)) 1936 goto out_dec_target_busy; 1937 1938 if (!(req->rq_flags & RQF_DONTPREP)) { 1939 ret = prep_to_mq(scsi_mq_prep_fn(req)); 1940 if (ret != BLK_MQ_RQ_QUEUE_OK) 1941 goto out_dec_host_busy; 1942 req->rq_flags |= RQF_DONTPREP; 1943 } else { 1944 blk_mq_start_request(req); 1945 } 1946 1947 if (sdev->simple_tags) 1948 cmd->flags |= SCMD_TAGGED; 1949 else 1950 cmd->flags &= ~SCMD_TAGGED; 1951 1952 scsi_init_cmd_errh(cmd); 1953 cmd->scsi_done = scsi_mq_done; 1954 1955 reason = scsi_dispatch_cmd(cmd); 1956 if (reason) { 1957 scsi_set_blocked(cmd, reason); 1958 ret = BLK_MQ_RQ_QUEUE_BUSY; 1959 goto out_dec_host_busy; 1960 } 1961 1962 return BLK_MQ_RQ_QUEUE_OK; 1963 1964 out_dec_host_busy: 1965 atomic_dec(&shost->host_busy); 1966 out_dec_target_busy: 1967 if (scsi_target(sdev)->can_queue > 0) 1968 atomic_dec(&scsi_target(sdev)->target_busy); 1969 out_dec_device_busy: 1970 atomic_dec(&sdev->device_busy); 1971 out_put_device: 1972 put_device(&sdev->sdev_gendev); 1973 out: 1974 switch (ret) { 1975 case BLK_MQ_RQ_QUEUE_BUSY: 1976 if (atomic_read(&sdev->device_busy) == 0 && 1977 !scsi_device_blocked(sdev)) 1978 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1979 break; 1980 case BLK_MQ_RQ_QUEUE_ERROR: 1981 /* 1982 * Make sure to release all allocated ressources when 1983 * we hit an error, as we will never see this command 1984 * again. 1985 */ 1986 if (req->rq_flags & RQF_DONTPREP) 1987 scsi_mq_uninit_cmd(cmd); 1988 break; 1989 default: 1990 break; 1991 } 1992 return ret; 1993 } 1994 1995 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1996 bool reserved) 1997 { 1998 if (reserved) 1999 return BLK_EH_RESET_TIMER; 2000 return scsi_times_out(req); 2001 } 2002 2003 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq, 2004 unsigned int hctx_idx, unsigned int numa_node) 2005 { 2006 struct Scsi_Host *shost = set->driver_data; 2007 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2008 2009 cmd->sense_buffer = 2010 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node); 2011 if (!cmd->sense_buffer) 2012 return -ENOMEM; 2013 cmd->req.sense = cmd->sense_buffer; 2014 return 0; 2015 } 2016 2017 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2018 unsigned int hctx_idx) 2019 { 2020 struct Scsi_Host *shost = set->driver_data; 2021 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2022 2023 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2024 } 2025 2026 static int scsi_map_queues(struct blk_mq_tag_set *set) 2027 { 2028 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2029 2030 if (shost->hostt->map_queues) 2031 return shost->hostt->map_queues(shost); 2032 return blk_mq_map_queues(set); 2033 } 2034 2035 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2036 { 2037 struct device *host_dev; 2038 u64 bounce_limit = 0xffffffff; 2039 2040 if (shost->unchecked_isa_dma) 2041 return BLK_BOUNCE_ISA; 2042 /* 2043 * Platforms with virtual-DMA translation 2044 * hardware have no practical limit. 2045 */ 2046 if (!PCI_DMA_BUS_IS_PHYS) 2047 return BLK_BOUNCE_ANY; 2048 2049 host_dev = scsi_get_device(shost); 2050 if (host_dev && host_dev->dma_mask) 2051 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2052 2053 return bounce_limit; 2054 } 2055 2056 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2057 { 2058 struct device *dev = shost->dma_dev; 2059 2060 /* 2061 * this limit is imposed by hardware restrictions 2062 */ 2063 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2064 SG_MAX_SEGMENTS)); 2065 2066 if (scsi_host_prot_dma(shost)) { 2067 shost->sg_prot_tablesize = 2068 min_not_zero(shost->sg_prot_tablesize, 2069 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2070 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2071 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2072 } 2073 2074 blk_queue_max_hw_sectors(q, shost->max_sectors); 2075 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2076 blk_queue_segment_boundary(q, shost->dma_boundary); 2077 dma_set_seg_boundary(dev, shost->dma_boundary); 2078 2079 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2080 2081 if (!shost->use_clustering) 2082 q->limits.cluster = 0; 2083 2084 /* 2085 * set a reasonable default alignment on word boundaries: the 2086 * host and device may alter it using 2087 * blk_queue_update_dma_alignment() later. 2088 */ 2089 blk_queue_dma_alignment(q, 0x03); 2090 } 2091 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2092 2093 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp) 2094 { 2095 struct Scsi_Host *shost = q->rq_alloc_data; 2096 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2097 2098 memset(cmd, 0, sizeof(*cmd)); 2099 2100 cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE); 2101 if (!cmd->sense_buffer) 2102 goto fail; 2103 cmd->req.sense = cmd->sense_buffer; 2104 2105 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2106 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2107 if (!cmd->prot_sdb) 2108 goto fail_free_sense; 2109 } 2110 2111 return 0; 2112 2113 fail_free_sense: 2114 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2115 fail: 2116 return -ENOMEM; 2117 } 2118 2119 static void scsi_exit_rq(struct request_queue *q, struct request *rq) 2120 { 2121 struct Scsi_Host *shost = q->rq_alloc_data; 2122 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2123 2124 if (cmd->prot_sdb) 2125 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2126 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2127 } 2128 2129 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 2130 { 2131 struct Scsi_Host *shost = sdev->host; 2132 struct request_queue *q; 2133 2134 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2135 if (!q) 2136 return NULL; 2137 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2138 q->rq_alloc_data = shost; 2139 q->request_fn = scsi_request_fn; 2140 q->init_rq_fn = scsi_init_rq; 2141 q->exit_rq_fn = scsi_exit_rq; 2142 2143 if (blk_init_allocated_queue(q) < 0) { 2144 blk_cleanup_queue(q); 2145 return NULL; 2146 } 2147 2148 __scsi_init_queue(shost, q); 2149 blk_queue_prep_rq(q, scsi_prep_fn); 2150 blk_queue_unprep_rq(q, scsi_unprep_fn); 2151 blk_queue_softirq_done(q, scsi_softirq_done); 2152 blk_queue_rq_timed_out(q, scsi_times_out); 2153 blk_queue_lld_busy(q, scsi_lld_busy); 2154 return q; 2155 } 2156 2157 static const struct blk_mq_ops scsi_mq_ops = { 2158 .queue_rq = scsi_queue_rq, 2159 .complete = scsi_softirq_done, 2160 .timeout = scsi_timeout, 2161 #ifdef CONFIG_BLK_DEBUG_FS 2162 .show_rq = scsi_show_rq, 2163 #endif 2164 .init_request = scsi_init_request, 2165 .exit_request = scsi_exit_request, 2166 .map_queues = scsi_map_queues, 2167 }; 2168 2169 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2170 { 2171 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2172 if (IS_ERR(sdev->request_queue)) 2173 return NULL; 2174 2175 sdev->request_queue->queuedata = sdev; 2176 __scsi_init_queue(sdev->host, sdev->request_queue); 2177 return sdev->request_queue; 2178 } 2179 2180 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2181 { 2182 unsigned int cmd_size, sgl_size, tbl_size; 2183 2184 tbl_size = shost->sg_tablesize; 2185 if (tbl_size > SG_CHUNK_SIZE) 2186 tbl_size = SG_CHUNK_SIZE; 2187 sgl_size = tbl_size * sizeof(struct scatterlist); 2188 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2189 if (scsi_host_get_prot(shost)) 2190 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2191 2192 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2193 shost->tag_set.ops = &scsi_mq_ops; 2194 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2195 shost->tag_set.queue_depth = shost->can_queue; 2196 shost->tag_set.cmd_size = cmd_size; 2197 shost->tag_set.numa_node = NUMA_NO_NODE; 2198 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2199 shost->tag_set.flags |= 2200 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2201 shost->tag_set.driver_data = shost; 2202 2203 return blk_mq_alloc_tag_set(&shost->tag_set); 2204 } 2205 2206 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2207 { 2208 blk_mq_free_tag_set(&shost->tag_set); 2209 } 2210 2211 /** 2212 * scsi_device_from_queue - return sdev associated with a request_queue 2213 * @q: The request queue to return the sdev from 2214 * 2215 * Return the sdev associated with a request queue or NULL if the 2216 * request_queue does not reference a SCSI device. 2217 */ 2218 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2219 { 2220 struct scsi_device *sdev = NULL; 2221 2222 if (q->mq_ops) { 2223 if (q->mq_ops == &scsi_mq_ops) 2224 sdev = q->queuedata; 2225 } else if (q->request_fn == scsi_request_fn) 2226 sdev = q->queuedata; 2227 if (!sdev || !get_device(&sdev->sdev_gendev)) 2228 sdev = NULL; 2229 2230 return sdev; 2231 } 2232 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2233 2234 /* 2235 * Function: scsi_block_requests() 2236 * 2237 * Purpose: Utility function used by low-level drivers to prevent further 2238 * commands from being queued to the device. 2239 * 2240 * Arguments: shost - Host in question 2241 * 2242 * Returns: Nothing 2243 * 2244 * Lock status: No locks are assumed held. 2245 * 2246 * Notes: There is no timer nor any other means by which the requests 2247 * get unblocked other than the low-level driver calling 2248 * scsi_unblock_requests(). 2249 */ 2250 void scsi_block_requests(struct Scsi_Host *shost) 2251 { 2252 shost->host_self_blocked = 1; 2253 } 2254 EXPORT_SYMBOL(scsi_block_requests); 2255 2256 /* 2257 * Function: scsi_unblock_requests() 2258 * 2259 * Purpose: Utility function used by low-level drivers to allow further 2260 * commands from being queued to the device. 2261 * 2262 * Arguments: shost - Host in question 2263 * 2264 * Returns: Nothing 2265 * 2266 * Lock status: No locks are assumed held. 2267 * 2268 * Notes: There is no timer nor any other means by which the requests 2269 * get unblocked other than the low-level driver calling 2270 * scsi_unblock_requests(). 2271 * 2272 * This is done as an API function so that changes to the 2273 * internals of the scsi mid-layer won't require wholesale 2274 * changes to drivers that use this feature. 2275 */ 2276 void scsi_unblock_requests(struct Scsi_Host *shost) 2277 { 2278 shost->host_self_blocked = 0; 2279 scsi_run_host_queues(shost); 2280 } 2281 EXPORT_SYMBOL(scsi_unblock_requests); 2282 2283 int __init scsi_init_queue(void) 2284 { 2285 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2286 sizeof(struct scsi_data_buffer), 2287 0, 0, NULL); 2288 if (!scsi_sdb_cache) { 2289 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2290 return -ENOMEM; 2291 } 2292 2293 return 0; 2294 } 2295 2296 void scsi_exit_queue(void) 2297 { 2298 kmem_cache_destroy(scsi_sense_cache); 2299 kmem_cache_destroy(scsi_sense_isadma_cache); 2300 kmem_cache_destroy(scsi_sdb_cache); 2301 } 2302 2303 /** 2304 * scsi_mode_select - issue a mode select 2305 * @sdev: SCSI device to be queried 2306 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2307 * @sp: Save page bit (0 == don't save, 1 == save) 2308 * @modepage: mode page being requested 2309 * @buffer: request buffer (may not be smaller than eight bytes) 2310 * @len: length of request buffer. 2311 * @timeout: command timeout 2312 * @retries: number of retries before failing 2313 * @data: returns a structure abstracting the mode header data 2314 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2315 * must be SCSI_SENSE_BUFFERSIZE big. 2316 * 2317 * Returns zero if successful; negative error number or scsi 2318 * status on error 2319 * 2320 */ 2321 int 2322 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2323 unsigned char *buffer, int len, int timeout, int retries, 2324 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2325 { 2326 unsigned char cmd[10]; 2327 unsigned char *real_buffer; 2328 int ret; 2329 2330 memset(cmd, 0, sizeof(cmd)); 2331 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2332 2333 if (sdev->use_10_for_ms) { 2334 if (len > 65535) 2335 return -EINVAL; 2336 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2337 if (!real_buffer) 2338 return -ENOMEM; 2339 memcpy(real_buffer + 8, buffer, len); 2340 len += 8; 2341 real_buffer[0] = 0; 2342 real_buffer[1] = 0; 2343 real_buffer[2] = data->medium_type; 2344 real_buffer[3] = data->device_specific; 2345 real_buffer[4] = data->longlba ? 0x01 : 0; 2346 real_buffer[5] = 0; 2347 real_buffer[6] = data->block_descriptor_length >> 8; 2348 real_buffer[7] = data->block_descriptor_length; 2349 2350 cmd[0] = MODE_SELECT_10; 2351 cmd[7] = len >> 8; 2352 cmd[8] = len; 2353 } else { 2354 if (len > 255 || data->block_descriptor_length > 255 || 2355 data->longlba) 2356 return -EINVAL; 2357 2358 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2359 if (!real_buffer) 2360 return -ENOMEM; 2361 memcpy(real_buffer + 4, buffer, len); 2362 len += 4; 2363 real_buffer[0] = 0; 2364 real_buffer[1] = data->medium_type; 2365 real_buffer[2] = data->device_specific; 2366 real_buffer[3] = data->block_descriptor_length; 2367 2368 2369 cmd[0] = MODE_SELECT; 2370 cmd[4] = len; 2371 } 2372 2373 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2374 sshdr, timeout, retries, NULL); 2375 kfree(real_buffer); 2376 return ret; 2377 } 2378 EXPORT_SYMBOL_GPL(scsi_mode_select); 2379 2380 /** 2381 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2382 * @sdev: SCSI device to be queried 2383 * @dbd: set if mode sense will allow block descriptors to be returned 2384 * @modepage: mode page being requested 2385 * @buffer: request buffer (may not be smaller than eight bytes) 2386 * @len: length of request buffer. 2387 * @timeout: command timeout 2388 * @retries: number of retries before failing 2389 * @data: returns a structure abstracting the mode header data 2390 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2391 * must be SCSI_SENSE_BUFFERSIZE big. 2392 * 2393 * Returns zero if unsuccessful, or the header offset (either 4 2394 * or 8 depending on whether a six or ten byte command was 2395 * issued) if successful. 2396 */ 2397 int 2398 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2399 unsigned char *buffer, int len, int timeout, int retries, 2400 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2401 { 2402 unsigned char cmd[12]; 2403 int use_10_for_ms; 2404 int header_length; 2405 int result, retry_count = retries; 2406 struct scsi_sense_hdr my_sshdr; 2407 2408 memset(data, 0, sizeof(*data)); 2409 memset(&cmd[0], 0, 12); 2410 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2411 cmd[2] = modepage; 2412 2413 /* caller might not be interested in sense, but we need it */ 2414 if (!sshdr) 2415 sshdr = &my_sshdr; 2416 2417 retry: 2418 use_10_for_ms = sdev->use_10_for_ms; 2419 2420 if (use_10_for_ms) { 2421 if (len < 8) 2422 len = 8; 2423 2424 cmd[0] = MODE_SENSE_10; 2425 cmd[8] = len; 2426 header_length = 8; 2427 } else { 2428 if (len < 4) 2429 len = 4; 2430 2431 cmd[0] = MODE_SENSE; 2432 cmd[4] = len; 2433 header_length = 4; 2434 } 2435 2436 memset(buffer, 0, len); 2437 2438 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2439 sshdr, timeout, retries, NULL); 2440 2441 /* This code looks awful: what it's doing is making sure an 2442 * ILLEGAL REQUEST sense return identifies the actual command 2443 * byte as the problem. MODE_SENSE commands can return 2444 * ILLEGAL REQUEST if the code page isn't supported */ 2445 2446 if (use_10_for_ms && !scsi_status_is_good(result) && 2447 (driver_byte(result) & DRIVER_SENSE)) { 2448 if (scsi_sense_valid(sshdr)) { 2449 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2450 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2451 /* 2452 * Invalid command operation code 2453 */ 2454 sdev->use_10_for_ms = 0; 2455 goto retry; 2456 } 2457 } 2458 } 2459 2460 if(scsi_status_is_good(result)) { 2461 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2462 (modepage == 6 || modepage == 8))) { 2463 /* Initio breakage? */ 2464 header_length = 0; 2465 data->length = 13; 2466 data->medium_type = 0; 2467 data->device_specific = 0; 2468 data->longlba = 0; 2469 data->block_descriptor_length = 0; 2470 } else if(use_10_for_ms) { 2471 data->length = buffer[0]*256 + buffer[1] + 2; 2472 data->medium_type = buffer[2]; 2473 data->device_specific = buffer[3]; 2474 data->longlba = buffer[4] & 0x01; 2475 data->block_descriptor_length = buffer[6]*256 2476 + buffer[7]; 2477 } else { 2478 data->length = buffer[0] + 1; 2479 data->medium_type = buffer[1]; 2480 data->device_specific = buffer[2]; 2481 data->block_descriptor_length = buffer[3]; 2482 } 2483 data->header_length = header_length; 2484 } else if ((status_byte(result) == CHECK_CONDITION) && 2485 scsi_sense_valid(sshdr) && 2486 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2487 retry_count--; 2488 goto retry; 2489 } 2490 2491 return result; 2492 } 2493 EXPORT_SYMBOL(scsi_mode_sense); 2494 2495 /** 2496 * scsi_test_unit_ready - test if unit is ready 2497 * @sdev: scsi device to change the state of. 2498 * @timeout: command timeout 2499 * @retries: number of retries before failing 2500 * @sshdr: outpout pointer for decoded sense information. 2501 * 2502 * Returns zero if unsuccessful or an error if TUR failed. For 2503 * removable media, UNIT_ATTENTION sets ->changed flag. 2504 **/ 2505 int 2506 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2507 struct scsi_sense_hdr *sshdr) 2508 { 2509 char cmd[] = { 2510 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2511 }; 2512 int result; 2513 2514 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2515 do { 2516 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2517 timeout, retries, NULL); 2518 if (sdev->removable && scsi_sense_valid(sshdr) && 2519 sshdr->sense_key == UNIT_ATTENTION) 2520 sdev->changed = 1; 2521 } while (scsi_sense_valid(sshdr) && 2522 sshdr->sense_key == UNIT_ATTENTION && --retries); 2523 2524 return result; 2525 } 2526 EXPORT_SYMBOL(scsi_test_unit_ready); 2527 2528 /** 2529 * scsi_device_set_state - Take the given device through the device state model. 2530 * @sdev: scsi device to change the state of. 2531 * @state: state to change to. 2532 * 2533 * Returns zero if unsuccessful or an error if the requested 2534 * transition is illegal. 2535 */ 2536 int 2537 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2538 { 2539 enum scsi_device_state oldstate = sdev->sdev_state; 2540 2541 if (state == oldstate) 2542 return 0; 2543 2544 switch (state) { 2545 case SDEV_CREATED: 2546 switch (oldstate) { 2547 case SDEV_CREATED_BLOCK: 2548 break; 2549 default: 2550 goto illegal; 2551 } 2552 break; 2553 2554 case SDEV_RUNNING: 2555 switch (oldstate) { 2556 case SDEV_CREATED: 2557 case SDEV_OFFLINE: 2558 case SDEV_TRANSPORT_OFFLINE: 2559 case SDEV_QUIESCE: 2560 case SDEV_BLOCK: 2561 break; 2562 default: 2563 goto illegal; 2564 } 2565 break; 2566 2567 case SDEV_QUIESCE: 2568 switch (oldstate) { 2569 case SDEV_RUNNING: 2570 case SDEV_OFFLINE: 2571 case SDEV_TRANSPORT_OFFLINE: 2572 break; 2573 default: 2574 goto illegal; 2575 } 2576 break; 2577 2578 case SDEV_OFFLINE: 2579 case SDEV_TRANSPORT_OFFLINE: 2580 switch (oldstate) { 2581 case SDEV_CREATED: 2582 case SDEV_RUNNING: 2583 case SDEV_QUIESCE: 2584 case SDEV_BLOCK: 2585 break; 2586 default: 2587 goto illegal; 2588 } 2589 break; 2590 2591 case SDEV_BLOCK: 2592 switch (oldstate) { 2593 case SDEV_RUNNING: 2594 case SDEV_CREATED_BLOCK: 2595 break; 2596 default: 2597 goto illegal; 2598 } 2599 break; 2600 2601 case SDEV_CREATED_BLOCK: 2602 switch (oldstate) { 2603 case SDEV_CREATED: 2604 break; 2605 default: 2606 goto illegal; 2607 } 2608 break; 2609 2610 case SDEV_CANCEL: 2611 switch (oldstate) { 2612 case SDEV_CREATED: 2613 case SDEV_RUNNING: 2614 case SDEV_QUIESCE: 2615 case SDEV_OFFLINE: 2616 case SDEV_TRANSPORT_OFFLINE: 2617 case SDEV_BLOCK: 2618 break; 2619 default: 2620 goto illegal; 2621 } 2622 break; 2623 2624 case SDEV_DEL: 2625 switch (oldstate) { 2626 case SDEV_CREATED: 2627 case SDEV_RUNNING: 2628 case SDEV_OFFLINE: 2629 case SDEV_TRANSPORT_OFFLINE: 2630 case SDEV_CANCEL: 2631 case SDEV_CREATED_BLOCK: 2632 break; 2633 default: 2634 goto illegal; 2635 } 2636 break; 2637 2638 } 2639 sdev->sdev_state = state; 2640 return 0; 2641 2642 illegal: 2643 SCSI_LOG_ERROR_RECOVERY(1, 2644 sdev_printk(KERN_ERR, sdev, 2645 "Illegal state transition %s->%s", 2646 scsi_device_state_name(oldstate), 2647 scsi_device_state_name(state)) 2648 ); 2649 return -EINVAL; 2650 } 2651 EXPORT_SYMBOL(scsi_device_set_state); 2652 2653 /** 2654 * sdev_evt_emit - emit a single SCSI device uevent 2655 * @sdev: associated SCSI device 2656 * @evt: event to emit 2657 * 2658 * Send a single uevent (scsi_event) to the associated scsi_device. 2659 */ 2660 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2661 { 2662 int idx = 0; 2663 char *envp[3]; 2664 2665 switch (evt->evt_type) { 2666 case SDEV_EVT_MEDIA_CHANGE: 2667 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2668 break; 2669 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2670 scsi_rescan_device(&sdev->sdev_gendev); 2671 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2672 break; 2673 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2674 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2675 break; 2676 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2677 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2678 break; 2679 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2680 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2681 break; 2682 case SDEV_EVT_LUN_CHANGE_REPORTED: 2683 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2684 break; 2685 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2686 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2687 break; 2688 default: 2689 /* do nothing */ 2690 break; 2691 } 2692 2693 envp[idx++] = NULL; 2694 2695 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2696 } 2697 2698 /** 2699 * sdev_evt_thread - send a uevent for each scsi event 2700 * @work: work struct for scsi_device 2701 * 2702 * Dispatch queued events to their associated scsi_device kobjects 2703 * as uevents. 2704 */ 2705 void scsi_evt_thread(struct work_struct *work) 2706 { 2707 struct scsi_device *sdev; 2708 enum scsi_device_event evt_type; 2709 LIST_HEAD(event_list); 2710 2711 sdev = container_of(work, struct scsi_device, event_work); 2712 2713 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2714 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2715 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2716 2717 while (1) { 2718 struct scsi_event *evt; 2719 struct list_head *this, *tmp; 2720 unsigned long flags; 2721 2722 spin_lock_irqsave(&sdev->list_lock, flags); 2723 list_splice_init(&sdev->event_list, &event_list); 2724 spin_unlock_irqrestore(&sdev->list_lock, flags); 2725 2726 if (list_empty(&event_list)) 2727 break; 2728 2729 list_for_each_safe(this, tmp, &event_list) { 2730 evt = list_entry(this, struct scsi_event, node); 2731 list_del(&evt->node); 2732 scsi_evt_emit(sdev, evt); 2733 kfree(evt); 2734 } 2735 } 2736 } 2737 2738 /** 2739 * sdev_evt_send - send asserted event to uevent thread 2740 * @sdev: scsi_device event occurred on 2741 * @evt: event to send 2742 * 2743 * Assert scsi device event asynchronously. 2744 */ 2745 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2746 { 2747 unsigned long flags; 2748 2749 #if 0 2750 /* FIXME: currently this check eliminates all media change events 2751 * for polled devices. Need to update to discriminate between AN 2752 * and polled events */ 2753 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2754 kfree(evt); 2755 return; 2756 } 2757 #endif 2758 2759 spin_lock_irqsave(&sdev->list_lock, flags); 2760 list_add_tail(&evt->node, &sdev->event_list); 2761 schedule_work(&sdev->event_work); 2762 spin_unlock_irqrestore(&sdev->list_lock, flags); 2763 } 2764 EXPORT_SYMBOL_GPL(sdev_evt_send); 2765 2766 /** 2767 * sdev_evt_alloc - allocate a new scsi event 2768 * @evt_type: type of event to allocate 2769 * @gfpflags: GFP flags for allocation 2770 * 2771 * Allocates and returns a new scsi_event. 2772 */ 2773 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2774 gfp_t gfpflags) 2775 { 2776 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2777 if (!evt) 2778 return NULL; 2779 2780 evt->evt_type = evt_type; 2781 INIT_LIST_HEAD(&evt->node); 2782 2783 /* evt_type-specific initialization, if any */ 2784 switch (evt_type) { 2785 case SDEV_EVT_MEDIA_CHANGE: 2786 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2787 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2788 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2789 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2790 case SDEV_EVT_LUN_CHANGE_REPORTED: 2791 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2792 default: 2793 /* do nothing */ 2794 break; 2795 } 2796 2797 return evt; 2798 } 2799 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2800 2801 /** 2802 * sdev_evt_send_simple - send asserted event to uevent thread 2803 * @sdev: scsi_device event occurred on 2804 * @evt_type: type of event to send 2805 * @gfpflags: GFP flags for allocation 2806 * 2807 * Assert scsi device event asynchronously, given an event type. 2808 */ 2809 void sdev_evt_send_simple(struct scsi_device *sdev, 2810 enum scsi_device_event evt_type, gfp_t gfpflags) 2811 { 2812 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2813 if (!evt) { 2814 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2815 evt_type); 2816 return; 2817 } 2818 2819 sdev_evt_send(sdev, evt); 2820 } 2821 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2822 2823 /** 2824 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2825 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2826 */ 2827 static int scsi_request_fn_active(struct scsi_device *sdev) 2828 { 2829 struct request_queue *q = sdev->request_queue; 2830 int request_fn_active; 2831 2832 WARN_ON_ONCE(sdev->host->use_blk_mq); 2833 2834 spin_lock_irq(q->queue_lock); 2835 request_fn_active = q->request_fn_active; 2836 spin_unlock_irq(q->queue_lock); 2837 2838 return request_fn_active; 2839 } 2840 2841 /** 2842 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2843 * @sdev: SCSI device pointer. 2844 * 2845 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2846 * invoked from scsi_request_fn() have finished. 2847 */ 2848 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2849 { 2850 WARN_ON_ONCE(sdev->host->use_blk_mq); 2851 2852 while (scsi_request_fn_active(sdev)) 2853 msleep(20); 2854 } 2855 2856 /** 2857 * scsi_device_quiesce - Block user issued commands. 2858 * @sdev: scsi device to quiesce. 2859 * 2860 * This works by trying to transition to the SDEV_QUIESCE state 2861 * (which must be a legal transition). When the device is in this 2862 * state, only special requests will be accepted, all others will 2863 * be deferred. Since special requests may also be requeued requests, 2864 * a successful return doesn't guarantee the device will be 2865 * totally quiescent. 2866 * 2867 * Must be called with user context, may sleep. 2868 * 2869 * Returns zero if unsuccessful or an error if not. 2870 */ 2871 int 2872 scsi_device_quiesce(struct scsi_device *sdev) 2873 { 2874 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2875 if (err) 2876 return err; 2877 2878 scsi_run_queue(sdev->request_queue); 2879 while (atomic_read(&sdev->device_busy)) { 2880 msleep_interruptible(200); 2881 scsi_run_queue(sdev->request_queue); 2882 } 2883 return 0; 2884 } 2885 EXPORT_SYMBOL(scsi_device_quiesce); 2886 2887 /** 2888 * scsi_device_resume - Restart user issued commands to a quiesced device. 2889 * @sdev: scsi device to resume. 2890 * 2891 * Moves the device from quiesced back to running and restarts the 2892 * queues. 2893 * 2894 * Must be called with user context, may sleep. 2895 */ 2896 void scsi_device_resume(struct scsi_device *sdev) 2897 { 2898 /* check if the device state was mutated prior to resume, and if 2899 * so assume the state is being managed elsewhere (for example 2900 * device deleted during suspend) 2901 */ 2902 if (sdev->sdev_state != SDEV_QUIESCE || 2903 scsi_device_set_state(sdev, SDEV_RUNNING)) 2904 return; 2905 scsi_run_queue(sdev->request_queue); 2906 } 2907 EXPORT_SYMBOL(scsi_device_resume); 2908 2909 static void 2910 device_quiesce_fn(struct scsi_device *sdev, void *data) 2911 { 2912 scsi_device_quiesce(sdev); 2913 } 2914 2915 void 2916 scsi_target_quiesce(struct scsi_target *starget) 2917 { 2918 starget_for_each_device(starget, NULL, device_quiesce_fn); 2919 } 2920 EXPORT_SYMBOL(scsi_target_quiesce); 2921 2922 static void 2923 device_resume_fn(struct scsi_device *sdev, void *data) 2924 { 2925 scsi_device_resume(sdev); 2926 } 2927 2928 void 2929 scsi_target_resume(struct scsi_target *starget) 2930 { 2931 starget_for_each_device(starget, NULL, device_resume_fn); 2932 } 2933 EXPORT_SYMBOL(scsi_target_resume); 2934 2935 /** 2936 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2937 * @sdev: device to block 2938 * @wait: Whether or not to wait until ongoing .queuecommand() / 2939 * .queue_rq() calls have finished. 2940 * 2941 * Block request made by scsi lld's to temporarily stop all 2942 * scsi commands on the specified device. May sleep. 2943 * 2944 * Returns zero if successful or error if not 2945 * 2946 * Notes: 2947 * This routine transitions the device to the SDEV_BLOCK state 2948 * (which must be a legal transition). When the device is in this 2949 * state, all commands are deferred until the scsi lld reenables 2950 * the device with scsi_device_unblock or device_block_tmo fires. 2951 * 2952 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2953 * scsi_internal_device_block() has blocked a SCSI device and also 2954 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2955 */ 2956 int 2957 scsi_internal_device_block(struct scsi_device *sdev, bool wait) 2958 { 2959 struct request_queue *q = sdev->request_queue; 2960 unsigned long flags; 2961 int err = 0; 2962 2963 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2964 if (err) { 2965 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2966 2967 if (err) 2968 return err; 2969 } 2970 2971 /* 2972 * The device has transitioned to SDEV_BLOCK. Stop the 2973 * block layer from calling the midlayer with this device's 2974 * request queue. 2975 */ 2976 if (q->mq_ops) { 2977 if (wait) 2978 blk_mq_quiesce_queue(q); 2979 else 2980 blk_mq_stop_hw_queues(q); 2981 } else { 2982 spin_lock_irqsave(q->queue_lock, flags); 2983 blk_stop_queue(q); 2984 spin_unlock_irqrestore(q->queue_lock, flags); 2985 if (wait) 2986 scsi_wait_for_queuecommand(sdev); 2987 } 2988 2989 return 0; 2990 } 2991 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2992 2993 /** 2994 * scsi_internal_device_unblock - resume a device after a block request 2995 * @sdev: device to resume 2996 * @new_state: state to set devices to after unblocking 2997 * 2998 * Called by scsi lld's or the midlayer to restart the device queue 2999 * for the previously suspended scsi device. Called from interrupt or 3000 * normal process context. 3001 * 3002 * Returns zero if successful or error if not. 3003 * 3004 * Notes: 3005 * This routine transitions the device to the SDEV_RUNNING state 3006 * or to one of the offline states (which must be a legal transition) 3007 * allowing the midlayer to goose the queue for this device. 3008 */ 3009 int 3010 scsi_internal_device_unblock(struct scsi_device *sdev, 3011 enum scsi_device_state new_state) 3012 { 3013 struct request_queue *q = sdev->request_queue; 3014 unsigned long flags; 3015 3016 /* 3017 * Try to transition the scsi device to SDEV_RUNNING or one of the 3018 * offlined states and goose the device queue if successful. 3019 */ 3020 if ((sdev->sdev_state == SDEV_BLOCK) || 3021 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 3022 sdev->sdev_state = new_state; 3023 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 3024 if (new_state == SDEV_TRANSPORT_OFFLINE || 3025 new_state == SDEV_OFFLINE) 3026 sdev->sdev_state = new_state; 3027 else 3028 sdev->sdev_state = SDEV_CREATED; 3029 } else if (sdev->sdev_state != SDEV_CANCEL && 3030 sdev->sdev_state != SDEV_OFFLINE) 3031 return -EINVAL; 3032 3033 if (q->mq_ops) { 3034 blk_mq_start_stopped_hw_queues(q, false); 3035 } else { 3036 spin_lock_irqsave(q->queue_lock, flags); 3037 blk_start_queue(q); 3038 spin_unlock_irqrestore(q->queue_lock, flags); 3039 } 3040 3041 return 0; 3042 } 3043 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 3044 3045 static void 3046 device_block(struct scsi_device *sdev, void *data) 3047 { 3048 scsi_internal_device_block(sdev, true); 3049 } 3050 3051 static int 3052 target_block(struct device *dev, void *data) 3053 { 3054 if (scsi_is_target_device(dev)) 3055 starget_for_each_device(to_scsi_target(dev), NULL, 3056 device_block); 3057 return 0; 3058 } 3059 3060 void 3061 scsi_target_block(struct device *dev) 3062 { 3063 if (scsi_is_target_device(dev)) 3064 starget_for_each_device(to_scsi_target(dev), NULL, 3065 device_block); 3066 else 3067 device_for_each_child(dev, NULL, target_block); 3068 } 3069 EXPORT_SYMBOL_GPL(scsi_target_block); 3070 3071 static void 3072 device_unblock(struct scsi_device *sdev, void *data) 3073 { 3074 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3075 } 3076 3077 static int 3078 target_unblock(struct device *dev, void *data) 3079 { 3080 if (scsi_is_target_device(dev)) 3081 starget_for_each_device(to_scsi_target(dev), data, 3082 device_unblock); 3083 return 0; 3084 } 3085 3086 void 3087 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3088 { 3089 if (scsi_is_target_device(dev)) 3090 starget_for_each_device(to_scsi_target(dev), &new_state, 3091 device_unblock); 3092 else 3093 device_for_each_child(dev, &new_state, target_unblock); 3094 } 3095 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3096 3097 /** 3098 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3099 * @sgl: scatter-gather list 3100 * @sg_count: number of segments in sg 3101 * @offset: offset in bytes into sg, on return offset into the mapped area 3102 * @len: bytes to map, on return number of bytes mapped 3103 * 3104 * Returns virtual address of the start of the mapped page 3105 */ 3106 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3107 size_t *offset, size_t *len) 3108 { 3109 int i; 3110 size_t sg_len = 0, len_complete = 0; 3111 struct scatterlist *sg; 3112 struct page *page; 3113 3114 WARN_ON(!irqs_disabled()); 3115 3116 for_each_sg(sgl, sg, sg_count, i) { 3117 len_complete = sg_len; /* Complete sg-entries */ 3118 sg_len += sg->length; 3119 if (sg_len > *offset) 3120 break; 3121 } 3122 3123 if (unlikely(i == sg_count)) { 3124 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3125 "elements %d\n", 3126 __func__, sg_len, *offset, sg_count); 3127 WARN_ON(1); 3128 return NULL; 3129 } 3130 3131 /* Offset starting from the beginning of first page in this sg-entry */ 3132 *offset = *offset - len_complete + sg->offset; 3133 3134 /* Assumption: contiguous pages can be accessed as "page + i" */ 3135 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3136 *offset &= ~PAGE_MASK; 3137 3138 /* Bytes in this sg-entry from *offset to the end of the page */ 3139 sg_len = PAGE_SIZE - *offset; 3140 if (*len > sg_len) 3141 *len = sg_len; 3142 3143 return kmap_atomic(page); 3144 } 3145 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3146 3147 /** 3148 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3149 * @virt: virtual address to be unmapped 3150 */ 3151 void scsi_kunmap_atomic_sg(void *virt) 3152 { 3153 kunmap_atomic(virt); 3154 } 3155 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3156 3157 void sdev_disable_disk_events(struct scsi_device *sdev) 3158 { 3159 atomic_inc(&sdev->disk_events_disable_depth); 3160 } 3161 EXPORT_SYMBOL(sdev_disable_disk_events); 3162 3163 void sdev_enable_disk_events(struct scsi_device *sdev) 3164 { 3165 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3166 return; 3167 atomic_dec(&sdev->disk_events_disable_depth); 3168 } 3169 EXPORT_SYMBOL(sdev_enable_disk_events); 3170 3171 /** 3172 * scsi_vpd_lun_id - return a unique device identification 3173 * @sdev: SCSI device 3174 * @id: buffer for the identification 3175 * @id_len: length of the buffer 3176 * 3177 * Copies a unique device identification into @id based 3178 * on the information in the VPD page 0x83 of the device. 3179 * The string will be formatted as a SCSI name string. 3180 * 3181 * Returns the length of the identification or error on failure. 3182 * If the identifier is longer than the supplied buffer the actual 3183 * identifier length is returned and the buffer is not zero-padded. 3184 */ 3185 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3186 { 3187 u8 cur_id_type = 0xff; 3188 u8 cur_id_size = 0; 3189 unsigned char *d, *cur_id_str; 3190 unsigned char __rcu *vpd_pg83; 3191 int id_size = -EINVAL; 3192 3193 rcu_read_lock(); 3194 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3195 if (!vpd_pg83) { 3196 rcu_read_unlock(); 3197 return -ENXIO; 3198 } 3199 3200 /* 3201 * Look for the correct descriptor. 3202 * Order of preference for lun descriptor: 3203 * - SCSI name string 3204 * - NAA IEEE Registered Extended 3205 * - EUI-64 based 16-byte 3206 * - EUI-64 based 12-byte 3207 * - NAA IEEE Registered 3208 * - NAA IEEE Extended 3209 * - T10 Vendor ID 3210 * as longer descriptors reduce the likelyhood 3211 * of identification clashes. 3212 */ 3213 3214 /* The id string must be at least 20 bytes + terminating NULL byte */ 3215 if (id_len < 21) { 3216 rcu_read_unlock(); 3217 return -EINVAL; 3218 } 3219 3220 memset(id, 0, id_len); 3221 d = vpd_pg83 + 4; 3222 while (d < vpd_pg83 + sdev->vpd_pg83_len) { 3223 /* Skip designators not referring to the LUN */ 3224 if ((d[1] & 0x30) != 0x00) 3225 goto next_desig; 3226 3227 switch (d[1] & 0xf) { 3228 case 0x1: 3229 /* T10 Vendor ID */ 3230 if (cur_id_size > d[3]) 3231 break; 3232 /* Prefer anything */ 3233 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3234 break; 3235 cur_id_size = d[3]; 3236 if (cur_id_size + 4 > id_len) 3237 cur_id_size = id_len - 4; 3238 cur_id_str = d + 4; 3239 cur_id_type = d[1] & 0xf; 3240 id_size = snprintf(id, id_len, "t10.%*pE", 3241 cur_id_size, cur_id_str); 3242 break; 3243 case 0x2: 3244 /* EUI-64 */ 3245 if (cur_id_size > d[3]) 3246 break; 3247 /* Prefer NAA IEEE Registered Extended */ 3248 if (cur_id_type == 0x3 && 3249 cur_id_size == d[3]) 3250 break; 3251 cur_id_size = d[3]; 3252 cur_id_str = d + 4; 3253 cur_id_type = d[1] & 0xf; 3254 switch (cur_id_size) { 3255 case 8: 3256 id_size = snprintf(id, id_len, 3257 "eui.%8phN", 3258 cur_id_str); 3259 break; 3260 case 12: 3261 id_size = snprintf(id, id_len, 3262 "eui.%12phN", 3263 cur_id_str); 3264 break; 3265 case 16: 3266 id_size = snprintf(id, id_len, 3267 "eui.%16phN", 3268 cur_id_str); 3269 break; 3270 default: 3271 cur_id_size = 0; 3272 break; 3273 } 3274 break; 3275 case 0x3: 3276 /* NAA */ 3277 if (cur_id_size > d[3]) 3278 break; 3279 cur_id_size = d[3]; 3280 cur_id_str = d + 4; 3281 cur_id_type = d[1] & 0xf; 3282 switch (cur_id_size) { 3283 case 8: 3284 id_size = snprintf(id, id_len, 3285 "naa.%8phN", 3286 cur_id_str); 3287 break; 3288 case 16: 3289 id_size = snprintf(id, id_len, 3290 "naa.%16phN", 3291 cur_id_str); 3292 break; 3293 default: 3294 cur_id_size = 0; 3295 break; 3296 } 3297 break; 3298 case 0x8: 3299 /* SCSI name string */ 3300 if (cur_id_size + 4 > d[3]) 3301 break; 3302 /* Prefer others for truncated descriptor */ 3303 if (cur_id_size && d[3] > id_len) 3304 break; 3305 cur_id_size = id_size = d[3]; 3306 cur_id_str = d + 4; 3307 cur_id_type = d[1] & 0xf; 3308 if (cur_id_size >= id_len) 3309 cur_id_size = id_len - 1; 3310 memcpy(id, cur_id_str, cur_id_size); 3311 /* Decrease priority for truncated descriptor */ 3312 if (cur_id_size != id_size) 3313 cur_id_size = 6; 3314 break; 3315 default: 3316 break; 3317 } 3318 next_desig: 3319 d += d[3] + 4; 3320 } 3321 rcu_read_unlock(); 3322 3323 return id_size; 3324 } 3325 EXPORT_SYMBOL(scsi_vpd_lun_id); 3326 3327 /* 3328 * scsi_vpd_tpg_id - return a target port group identifier 3329 * @sdev: SCSI device 3330 * 3331 * Returns the Target Port Group identifier from the information 3332 * froom VPD page 0x83 of the device. 3333 * 3334 * Returns the identifier or error on failure. 3335 */ 3336 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3337 { 3338 unsigned char *d; 3339 unsigned char __rcu *vpd_pg83; 3340 int group_id = -EAGAIN, rel_port = -1; 3341 3342 rcu_read_lock(); 3343 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3344 if (!vpd_pg83) { 3345 rcu_read_unlock(); 3346 return -ENXIO; 3347 } 3348 3349 d = sdev->vpd_pg83 + 4; 3350 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) { 3351 switch (d[1] & 0xf) { 3352 case 0x4: 3353 /* Relative target port */ 3354 rel_port = get_unaligned_be16(&d[6]); 3355 break; 3356 case 0x5: 3357 /* Target port group */ 3358 group_id = get_unaligned_be16(&d[6]); 3359 break; 3360 default: 3361 break; 3362 } 3363 d += d[3] + 4; 3364 } 3365 rcu_read_unlock(); 3366 3367 if (group_id >= 0 && rel_id && rel_port != -1) 3368 *rel_id = rel_port; 3369 3370 return group_id; 3371 } 3372 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3373