xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision d203c2d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59 
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61 
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67 
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 				   unsigned char *sense_buffer)
70 {
71 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 			sense_buffer);
73 }
74 
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 	gfp_t gfp_mask, int numa_node)
77 {
78 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 				     gfp_mask, numa_node);
80 }
81 
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 	struct kmem_cache *cache;
85 	int ret = 0;
86 
87 	mutex_lock(&scsi_sense_cache_mutex);
88 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89 	if (cache)
90 		goto exit;
91 
92 	if (shost->unchecked_isa_dma) {
93 		scsi_sense_isadma_cache =
94 			kmem_cache_create("scsi_sense_cache(DMA)",
95 				SCSI_SENSE_BUFFERSIZE, 0,
96 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 		if (!scsi_sense_isadma_cache)
98 			ret = -ENOMEM;
99 	} else {
100 		scsi_sense_cache =
101 			kmem_cache_create_usercopy("scsi_sense_cache",
102 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 				0, SCSI_SENSE_BUFFERSIZE, NULL);
104 		if (!scsi_sense_cache)
105 			ret = -ENOMEM;
106 	}
107  exit:
108 	mutex_unlock(&scsi_sense_cache_mutex);
109 	return ret;
110 }
111 
112 /*
113  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114  * not change behaviour from the previous unplug mechanism, experimentation
115  * may prove this needs changing.
116  */
117 #define SCSI_QUEUE_DELAY	3
118 
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct scsi_target *starget = scsi_target(device);
125 
126 	/*
127 	 * Set the appropriate busy bit for the device/host.
128 	 *
129 	 * If the host/device isn't busy, assume that something actually
130 	 * completed, and that we should be able to queue a command now.
131 	 *
132 	 * Note that the prior mid-layer assumption that any host could
133 	 * always queue at least one command is now broken.  The mid-layer
134 	 * will implement a user specifiable stall (see
135 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 	 * if a command is requeued with no other commands outstanding
137 	 * either for the device or for the host.
138 	 */
139 	switch (reason) {
140 	case SCSI_MLQUEUE_HOST_BUSY:
141 		atomic_set(&host->host_blocked, host->max_host_blocked);
142 		break;
143 	case SCSI_MLQUEUE_DEVICE_BUSY:
144 	case SCSI_MLQUEUE_EH_RETRY:
145 		atomic_set(&device->device_blocked,
146 			   device->max_device_blocked);
147 		break;
148 	case SCSI_MLQUEUE_TARGET_BUSY:
149 		atomic_set(&starget->target_blocked,
150 			   starget->max_target_blocked);
151 		break;
152 	}
153 }
154 
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 	if (cmd->request->rq_flags & RQF_DONTPREP) {
158 		cmd->request->rq_flags &= ~RQF_DONTPREP;
159 		scsi_mq_uninit_cmd(cmd);
160 	} else {
161 		WARN_ON_ONCE(true);
162 	}
163 	blk_mq_requeue_request(cmd->request, true);
164 }
165 
166 /**
167  * __scsi_queue_insert - private queue insertion
168  * @cmd: The SCSI command being requeued
169  * @reason:  The reason for the requeue
170  * @unbusy: Whether the queue should be unbusied
171  *
172  * This is a private queue insertion.  The public interface
173  * scsi_queue_insert() always assumes the queue should be unbusied
174  * because it's always called before the completion.  This function is
175  * for a requeue after completion, which should only occur in this
176  * file.
177  */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 	struct scsi_device *device = cmd->device;
181 
182 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 		"Inserting command %p into mlqueue\n", cmd));
184 
185 	scsi_set_blocked(cmd, reason);
186 
187 	/*
188 	 * Decrement the counters, since these commands are no longer
189 	 * active on the host/device.
190 	 */
191 	if (unbusy)
192 		scsi_device_unbusy(device, cmd);
193 
194 	/*
195 	 * Requeue this command.  It will go before all other commands
196 	 * that are already in the queue. Schedule requeue work under
197 	 * lock such that the kblockd_schedule_work() call happens
198 	 * before blk_cleanup_queue() finishes.
199 	 */
200 	cmd->result = 0;
201 
202 	blk_mq_requeue_request(cmd->request, true);
203 }
204 
205 /*
206  * Function:    scsi_queue_insert()
207  *
208  * Purpose:     Insert a command in the midlevel queue.
209  *
210  * Arguments:   cmd    - command that we are adding to queue.
211  *              reason - why we are inserting command to queue.
212  *
213  * Lock status: Assumed that lock is not held upon entry.
214  *
215  * Returns:     Nothing.
216  *
217  * Notes:       We do this for one of two cases.  Either the host is busy
218  *              and it cannot accept any more commands for the time being,
219  *              or the device returned QUEUE_FULL and can accept no more
220  *              commands.
221  * Notes:       This could be called either from an interrupt context or a
222  *              normal process context.
223  */
224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
225 {
226 	__scsi_queue_insert(cmd, reason, true);
227 }
228 
229 
230 /**
231  * __scsi_execute - insert request and wait for the result
232  * @sdev:	scsi device
233  * @cmd:	scsi command
234  * @data_direction: data direction
235  * @buffer:	data buffer
236  * @bufflen:	len of buffer
237  * @sense:	optional sense buffer
238  * @sshdr:	optional decoded sense header
239  * @timeout:	request timeout in seconds
240  * @retries:	number of times to retry request
241  * @flags:	flags for ->cmd_flags
242  * @rq_flags:	flags for ->rq_flags
243  * @resid:	optional residual length
244  *
245  * Returns the scsi_cmnd result field if a command was executed, or a negative
246  * Linux error code if we didn't get that far.
247  */
248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
249 		 int data_direction, void *buffer, unsigned bufflen,
250 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
251 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
252 		 int *resid)
253 {
254 	struct request *req;
255 	struct scsi_request *rq;
256 	int ret = DRIVER_ERROR << 24;
257 
258 	req = blk_get_request(sdev->request_queue,
259 			data_direction == DMA_TO_DEVICE ?
260 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
261 	if (IS_ERR(req))
262 		return ret;
263 	rq = scsi_req(req);
264 
265 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
266 					buffer, bufflen, GFP_NOIO))
267 		goto out;
268 
269 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
270 	memcpy(rq->cmd, cmd, rq->cmd_len);
271 	rq->retries = retries;
272 	req->timeout = timeout;
273 	req->cmd_flags |= flags;
274 	req->rq_flags |= rq_flags | RQF_QUIET;
275 
276 	/*
277 	 * head injection *required* here otherwise quiesce won't work
278 	 */
279 	blk_execute_rq(req->q, NULL, req, 1);
280 
281 	/*
282 	 * Some devices (USB mass-storage in particular) may transfer
283 	 * garbage data together with a residue indicating that the data
284 	 * is invalid.  Prevent the garbage from being misinterpreted
285 	 * and prevent security leaks by zeroing out the excess data.
286 	 */
287 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
288 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
289 
290 	if (resid)
291 		*resid = rq->resid_len;
292 	if (sense && rq->sense_len)
293 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
294 	if (sshdr)
295 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
296 	ret = rq->result;
297  out:
298 	blk_put_request(req);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL(__scsi_execute);
303 
304 /*
305  * Function:    scsi_init_cmd_errh()
306  *
307  * Purpose:     Initialize cmd fields related to error handling.
308  *
309  * Arguments:   cmd	- command that is ready to be queued.
310  *
311  * Notes:       This function has the job of initializing a number of
312  *              fields related to error handling.   Typically this will
313  *              be called once for each command, as required.
314  */
315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
316 {
317 	scsi_set_resid(cmd, 0);
318 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 	if (cmd->cmd_len == 0)
320 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322 
323 /*
324  * Wake up the error handler if necessary. Avoid as follows that the error
325  * handler is not woken up if host in-flight requests number ==
326  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
327  * with an RCU read lock in this function to ensure that this function in
328  * its entirety either finishes before scsi_eh_scmd_add() increases the
329  * host_failed counter or that it notices the shost state change made by
330  * scsi_eh_scmd_add().
331  */
332 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
333 {
334 	unsigned long flags;
335 
336 	rcu_read_lock();
337 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
338 	if (unlikely(scsi_host_in_recovery(shost))) {
339 		spin_lock_irqsave(shost->host_lock, flags);
340 		if (shost->host_failed || shost->host_eh_scheduled)
341 			scsi_eh_wakeup(shost);
342 		spin_unlock_irqrestore(shost->host_lock, flags);
343 	}
344 	rcu_read_unlock();
345 }
346 
347 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
348 {
349 	struct Scsi_Host *shost = sdev->host;
350 	struct scsi_target *starget = scsi_target(sdev);
351 
352 	scsi_dec_host_busy(shost, cmd);
353 
354 	if (starget->can_queue > 0)
355 		atomic_dec(&starget->target_busy);
356 
357 	atomic_dec(&sdev->device_busy);
358 }
359 
360 static void scsi_kick_queue(struct request_queue *q)
361 {
362 	blk_mq_run_hw_queues(q, false);
363 }
364 
365 /*
366  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
367  * and call blk_run_queue for all the scsi_devices on the target -
368  * including current_sdev first.
369  *
370  * Called with *no* scsi locks held.
371  */
372 static void scsi_single_lun_run(struct scsi_device *current_sdev)
373 {
374 	struct Scsi_Host *shost = current_sdev->host;
375 	struct scsi_device *sdev, *tmp;
376 	struct scsi_target *starget = scsi_target(current_sdev);
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(shost->host_lock, flags);
380 	starget->starget_sdev_user = NULL;
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 
383 	/*
384 	 * Call blk_run_queue for all LUNs on the target, starting with
385 	 * current_sdev. We race with others (to set starget_sdev_user),
386 	 * but in most cases, we will be first. Ideally, each LU on the
387 	 * target would get some limited time or requests on the target.
388 	 */
389 	scsi_kick_queue(current_sdev->request_queue);
390 
391 	spin_lock_irqsave(shost->host_lock, flags);
392 	if (starget->starget_sdev_user)
393 		goto out;
394 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
395 			same_target_siblings) {
396 		if (sdev == current_sdev)
397 			continue;
398 		if (scsi_device_get(sdev))
399 			continue;
400 
401 		spin_unlock_irqrestore(shost->host_lock, flags);
402 		scsi_kick_queue(sdev->request_queue);
403 		spin_lock_irqsave(shost->host_lock, flags);
404 
405 		scsi_device_put(sdev);
406 	}
407  out:
408 	spin_unlock_irqrestore(shost->host_lock, flags);
409 }
410 
411 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
412 {
413 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
414 		return true;
415 	if (atomic_read(&sdev->device_blocked) > 0)
416 		return true;
417 	return false;
418 }
419 
420 static inline bool scsi_target_is_busy(struct scsi_target *starget)
421 {
422 	if (starget->can_queue > 0) {
423 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
424 			return true;
425 		if (atomic_read(&starget->target_blocked) > 0)
426 			return true;
427 	}
428 	return false;
429 }
430 
431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
432 {
433 	if (atomic_read(&shost->host_blocked) > 0)
434 		return true;
435 	if (shost->host_self_blocked)
436 		return true;
437 	return false;
438 }
439 
440 static void scsi_starved_list_run(struct Scsi_Host *shost)
441 {
442 	LIST_HEAD(starved_list);
443 	struct scsi_device *sdev;
444 	unsigned long flags;
445 
446 	spin_lock_irqsave(shost->host_lock, flags);
447 	list_splice_init(&shost->starved_list, &starved_list);
448 
449 	while (!list_empty(&starved_list)) {
450 		struct request_queue *slq;
451 
452 		/*
453 		 * As long as shost is accepting commands and we have
454 		 * starved queues, call blk_run_queue. scsi_request_fn
455 		 * drops the queue_lock and can add us back to the
456 		 * starved_list.
457 		 *
458 		 * host_lock protects the starved_list and starved_entry.
459 		 * scsi_request_fn must get the host_lock before checking
460 		 * or modifying starved_list or starved_entry.
461 		 */
462 		if (scsi_host_is_busy(shost))
463 			break;
464 
465 		sdev = list_entry(starved_list.next,
466 				  struct scsi_device, starved_entry);
467 		list_del_init(&sdev->starved_entry);
468 		if (scsi_target_is_busy(scsi_target(sdev))) {
469 			list_move_tail(&sdev->starved_entry,
470 				       &shost->starved_list);
471 			continue;
472 		}
473 
474 		/*
475 		 * Once we drop the host lock, a racing scsi_remove_device()
476 		 * call may remove the sdev from the starved list and destroy
477 		 * it and the queue.  Mitigate by taking a reference to the
478 		 * queue and never touching the sdev again after we drop the
479 		 * host lock.  Note: if __scsi_remove_device() invokes
480 		 * blk_cleanup_queue() before the queue is run from this
481 		 * function then blk_run_queue() will return immediately since
482 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
483 		 */
484 		slq = sdev->request_queue;
485 		if (!blk_get_queue(slq))
486 			continue;
487 		spin_unlock_irqrestore(shost->host_lock, flags);
488 
489 		scsi_kick_queue(slq);
490 		blk_put_queue(slq);
491 
492 		spin_lock_irqsave(shost->host_lock, flags);
493 	}
494 	/* put any unprocessed entries back */
495 	list_splice(&starved_list, &shost->starved_list);
496 	spin_unlock_irqrestore(shost->host_lock, flags);
497 }
498 
499 /*
500  * Function:   scsi_run_queue()
501  *
502  * Purpose:    Select a proper request queue to serve next
503  *
504  * Arguments:  q       - last request's queue
505  *
506  * Returns:     Nothing
507  *
508  * Notes:      The previous command was completely finished, start
509  *             a new one if possible.
510  */
511 static void scsi_run_queue(struct request_queue *q)
512 {
513 	struct scsi_device *sdev = q->queuedata;
514 
515 	if (scsi_target(sdev)->single_lun)
516 		scsi_single_lun_run(sdev);
517 	if (!list_empty(&sdev->host->starved_list))
518 		scsi_starved_list_run(sdev->host);
519 
520 	blk_mq_run_hw_queues(q, false);
521 }
522 
523 void scsi_requeue_run_queue(struct work_struct *work)
524 {
525 	struct scsi_device *sdev;
526 	struct request_queue *q;
527 
528 	sdev = container_of(work, struct scsi_device, requeue_work);
529 	q = sdev->request_queue;
530 	scsi_run_queue(q);
531 }
532 
533 void scsi_run_host_queues(struct Scsi_Host *shost)
534 {
535 	struct scsi_device *sdev;
536 
537 	shost_for_each_device(sdev, shost)
538 		scsi_run_queue(sdev->request_queue);
539 }
540 
541 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
542 {
543 	if (!blk_rq_is_passthrough(cmd->request)) {
544 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
545 
546 		if (drv->uninit_command)
547 			drv->uninit_command(cmd);
548 	}
549 }
550 
551 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
552 {
553 	if (cmd->sdb.table.nents)
554 		sg_free_table_chained(&cmd->sdb.table,
555 				SCSI_INLINE_SG_CNT);
556 	if (scsi_prot_sg_count(cmd))
557 		sg_free_table_chained(&cmd->prot_sdb->table,
558 				SCSI_INLINE_PROT_SG_CNT);
559 }
560 
561 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
562 {
563 	scsi_mq_free_sgtables(cmd);
564 	scsi_uninit_cmd(cmd);
565 }
566 
567 /* Returns false when no more bytes to process, true if there are more */
568 static bool scsi_end_request(struct request *req, blk_status_t error,
569 		unsigned int bytes)
570 {
571 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
572 	struct scsi_device *sdev = cmd->device;
573 	struct request_queue *q = sdev->request_queue;
574 
575 	if (blk_update_request(req, error, bytes))
576 		return true;
577 
578 	if (blk_queue_add_random(q))
579 		add_disk_randomness(req->rq_disk);
580 
581 	if (!blk_rq_is_scsi(req)) {
582 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
583 		cmd->flags &= ~SCMD_INITIALIZED;
584 	}
585 
586 	/*
587 	 * Calling rcu_barrier() is not necessary here because the
588 	 * SCSI error handler guarantees that the function called by
589 	 * call_rcu() has been called before scsi_end_request() is
590 	 * called.
591 	 */
592 	destroy_rcu_head(&cmd->rcu);
593 
594 	/*
595 	 * In the MQ case the command gets freed by __blk_mq_end_request,
596 	 * so we have to do all cleanup that depends on it earlier.
597 	 *
598 	 * We also can't kick the queues from irq context, so we
599 	 * will have to defer it to a workqueue.
600 	 */
601 	scsi_mq_uninit_cmd(cmd);
602 
603 	/*
604 	 * queue is still alive, so grab the ref for preventing it
605 	 * from being cleaned up during running queue.
606 	 */
607 	percpu_ref_get(&q->q_usage_counter);
608 
609 	__blk_mq_end_request(req, error);
610 
611 	if (scsi_target(sdev)->single_lun ||
612 	    !list_empty(&sdev->host->starved_list))
613 		kblockd_schedule_work(&sdev->requeue_work);
614 	else
615 		blk_mq_run_hw_queues(q, true);
616 
617 	percpu_ref_put(&q->q_usage_counter);
618 	return false;
619 }
620 
621 /**
622  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
623  * @cmd:	SCSI command
624  * @result:	scsi error code
625  *
626  * Translate a SCSI result code into a blk_status_t value. May reset the host
627  * byte of @cmd->result.
628  */
629 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
630 {
631 	switch (host_byte(result)) {
632 	case DID_OK:
633 		/*
634 		 * Also check the other bytes than the status byte in result
635 		 * to handle the case when a SCSI LLD sets result to
636 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
637 		 */
638 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
639 			return BLK_STS_OK;
640 		return BLK_STS_IOERR;
641 	case DID_TRANSPORT_FAILFAST:
642 		return BLK_STS_TRANSPORT;
643 	case DID_TARGET_FAILURE:
644 		set_host_byte(cmd, DID_OK);
645 		return BLK_STS_TARGET;
646 	case DID_NEXUS_FAILURE:
647 		set_host_byte(cmd, DID_OK);
648 		return BLK_STS_NEXUS;
649 	case DID_ALLOC_FAILURE:
650 		set_host_byte(cmd, DID_OK);
651 		return BLK_STS_NOSPC;
652 	case DID_MEDIUM_ERROR:
653 		set_host_byte(cmd, DID_OK);
654 		return BLK_STS_MEDIUM;
655 	default:
656 		return BLK_STS_IOERR;
657 	}
658 }
659 
660 /* Helper for scsi_io_completion() when "reprep" action required. */
661 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
662 				      struct request_queue *q)
663 {
664 	/* A new command will be prepared and issued. */
665 	scsi_mq_requeue_cmd(cmd);
666 }
667 
668 /* Helper for scsi_io_completion() when special action required. */
669 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
670 {
671 	struct request_queue *q = cmd->device->request_queue;
672 	struct request *req = cmd->request;
673 	int level = 0;
674 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
675 	      ACTION_DELAYED_RETRY} action;
676 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
677 	struct scsi_sense_hdr sshdr;
678 	bool sense_valid;
679 	bool sense_current = true;      /* false implies "deferred sense" */
680 	blk_status_t blk_stat;
681 
682 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
683 	if (sense_valid)
684 		sense_current = !scsi_sense_is_deferred(&sshdr);
685 
686 	blk_stat = scsi_result_to_blk_status(cmd, result);
687 
688 	if (host_byte(result) == DID_RESET) {
689 		/* Third party bus reset or reset for error recovery
690 		 * reasons.  Just retry the command and see what
691 		 * happens.
692 		 */
693 		action = ACTION_RETRY;
694 	} else if (sense_valid && sense_current) {
695 		switch (sshdr.sense_key) {
696 		case UNIT_ATTENTION:
697 			if (cmd->device->removable) {
698 				/* Detected disc change.  Set a bit
699 				 * and quietly refuse further access.
700 				 */
701 				cmd->device->changed = 1;
702 				action = ACTION_FAIL;
703 			} else {
704 				/* Must have been a power glitch, or a
705 				 * bus reset.  Could not have been a
706 				 * media change, so we just retry the
707 				 * command and see what happens.
708 				 */
709 				action = ACTION_RETRY;
710 			}
711 			break;
712 		case ILLEGAL_REQUEST:
713 			/* If we had an ILLEGAL REQUEST returned, then
714 			 * we may have performed an unsupported
715 			 * command.  The only thing this should be
716 			 * would be a ten byte read where only a six
717 			 * byte read was supported.  Also, on a system
718 			 * where READ CAPACITY failed, we may have
719 			 * read past the end of the disk.
720 			 */
721 			if ((cmd->device->use_10_for_rw &&
722 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
723 			    (cmd->cmnd[0] == READ_10 ||
724 			     cmd->cmnd[0] == WRITE_10)) {
725 				/* This will issue a new 6-byte command. */
726 				cmd->device->use_10_for_rw = 0;
727 				action = ACTION_REPREP;
728 			} else if (sshdr.asc == 0x10) /* DIX */ {
729 				action = ACTION_FAIL;
730 				blk_stat = BLK_STS_PROTECTION;
731 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
732 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
733 				action = ACTION_FAIL;
734 				blk_stat = BLK_STS_TARGET;
735 			} else
736 				action = ACTION_FAIL;
737 			break;
738 		case ABORTED_COMMAND:
739 			action = ACTION_FAIL;
740 			if (sshdr.asc == 0x10) /* DIF */
741 				blk_stat = BLK_STS_PROTECTION;
742 			break;
743 		case NOT_READY:
744 			/* If the device is in the process of becoming
745 			 * ready, or has a temporary blockage, retry.
746 			 */
747 			if (sshdr.asc == 0x04) {
748 				switch (sshdr.ascq) {
749 				case 0x01: /* becoming ready */
750 				case 0x04: /* format in progress */
751 				case 0x05: /* rebuild in progress */
752 				case 0x06: /* recalculation in progress */
753 				case 0x07: /* operation in progress */
754 				case 0x08: /* Long write in progress */
755 				case 0x09: /* self test in progress */
756 				case 0x14: /* space allocation in progress */
757 				case 0x1a: /* start stop unit in progress */
758 				case 0x1b: /* sanitize in progress */
759 				case 0x1d: /* configuration in progress */
760 				case 0x24: /* depopulation in progress */
761 					action = ACTION_DELAYED_RETRY;
762 					break;
763 				default:
764 					action = ACTION_FAIL;
765 					break;
766 				}
767 			} else
768 				action = ACTION_FAIL;
769 			break;
770 		case VOLUME_OVERFLOW:
771 			/* See SSC3rXX or current. */
772 			action = ACTION_FAIL;
773 			break;
774 		default:
775 			action = ACTION_FAIL;
776 			break;
777 		}
778 	} else
779 		action = ACTION_FAIL;
780 
781 	if (action != ACTION_FAIL &&
782 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
783 		action = ACTION_FAIL;
784 
785 	switch (action) {
786 	case ACTION_FAIL:
787 		/* Give up and fail the remainder of the request */
788 		if (!(req->rq_flags & RQF_QUIET)) {
789 			static DEFINE_RATELIMIT_STATE(_rs,
790 					DEFAULT_RATELIMIT_INTERVAL,
791 					DEFAULT_RATELIMIT_BURST);
792 
793 			if (unlikely(scsi_logging_level))
794 				level =
795 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
796 						    SCSI_LOG_MLCOMPLETE_BITS);
797 
798 			/*
799 			 * if logging is enabled the failure will be printed
800 			 * in scsi_log_completion(), so avoid duplicate messages
801 			 */
802 			if (!level && __ratelimit(&_rs)) {
803 				scsi_print_result(cmd, NULL, FAILED);
804 				if (driver_byte(result) == DRIVER_SENSE)
805 					scsi_print_sense(cmd);
806 				scsi_print_command(cmd);
807 			}
808 		}
809 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
810 			return;
811 		/*FALLTHRU*/
812 	case ACTION_REPREP:
813 		scsi_io_completion_reprep(cmd, q);
814 		break;
815 	case ACTION_RETRY:
816 		/* Retry the same command immediately */
817 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
818 		break;
819 	case ACTION_DELAYED_RETRY:
820 		/* Retry the same command after a delay */
821 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
822 		break;
823 	}
824 }
825 
826 /*
827  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
828  * new result that may suppress further error checking. Also modifies
829  * *blk_statp in some cases.
830  */
831 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
832 					blk_status_t *blk_statp)
833 {
834 	bool sense_valid;
835 	bool sense_current = true;	/* false implies "deferred sense" */
836 	struct request *req = cmd->request;
837 	struct scsi_sense_hdr sshdr;
838 
839 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
840 	if (sense_valid)
841 		sense_current = !scsi_sense_is_deferred(&sshdr);
842 
843 	if (blk_rq_is_passthrough(req)) {
844 		if (sense_valid) {
845 			/*
846 			 * SG_IO wants current and deferred errors
847 			 */
848 			scsi_req(req)->sense_len =
849 				min(8 + cmd->sense_buffer[7],
850 				    SCSI_SENSE_BUFFERSIZE);
851 		}
852 		if (sense_current)
853 			*blk_statp = scsi_result_to_blk_status(cmd, result);
854 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
855 		/*
856 		 * Flush commands do not transfers any data, and thus cannot use
857 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
858 		 * This sets *blk_statp explicitly for the problem case.
859 		 */
860 		*blk_statp = scsi_result_to_blk_status(cmd, result);
861 	}
862 	/*
863 	 * Recovered errors need reporting, but they're always treated as
864 	 * success, so fiddle the result code here.  For passthrough requests
865 	 * we already took a copy of the original into sreq->result which
866 	 * is what gets returned to the user
867 	 */
868 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
869 		bool do_print = true;
870 		/*
871 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
872 		 * skip print since caller wants ATA registers. Only occurs
873 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
874 		 */
875 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
876 			do_print = false;
877 		else if (req->rq_flags & RQF_QUIET)
878 			do_print = false;
879 		if (do_print)
880 			scsi_print_sense(cmd);
881 		result = 0;
882 		/* for passthrough, *blk_statp may be set */
883 		*blk_statp = BLK_STS_OK;
884 	}
885 	/*
886 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
887 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
888 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
889 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
890 	 * intermediate statuses (both obsolete in SAM-4) as good.
891 	 */
892 	if (status_byte(result) && scsi_status_is_good(result)) {
893 		result = 0;
894 		*blk_statp = BLK_STS_OK;
895 	}
896 	return result;
897 }
898 
899 /*
900  * Function:    scsi_io_completion()
901  *
902  * Purpose:     Completion processing for block device I/O requests.
903  *
904  * Arguments:   cmd   - command that is finished.
905  *
906  * Lock status: Assumed that no lock is held upon entry.
907  *
908  * Returns:     Nothing
909  *
910  * Notes:       We will finish off the specified number of sectors.  If we
911  *		are done, the command block will be released and the queue
912  *		function will be goosed.  If we are not done then we have to
913  *		figure out what to do next:
914  *
915  *		a) We can call scsi_requeue_command().  The request
916  *		   will be unprepared and put back on the queue.  Then
917  *		   a new command will be created for it.  This should
918  *		   be used if we made forward progress, or if we want
919  *		   to switch from READ(10) to READ(6) for example.
920  *
921  *		b) We can call __scsi_queue_insert().  The request will
922  *		   be put back on the queue and retried using the same
923  *		   command as before, possibly after a delay.
924  *
925  *		c) We can call scsi_end_request() with blk_stat other than
926  *		   BLK_STS_OK, to fail the remainder of the request.
927  */
928 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
929 {
930 	int result = cmd->result;
931 	struct request_queue *q = cmd->device->request_queue;
932 	struct request *req = cmd->request;
933 	blk_status_t blk_stat = BLK_STS_OK;
934 
935 	if (unlikely(result))	/* a nz result may or may not be an error */
936 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
937 
938 	if (unlikely(blk_rq_is_passthrough(req))) {
939 		/*
940 		 * scsi_result_to_blk_status may have reset the host_byte
941 		 */
942 		scsi_req(req)->result = cmd->result;
943 	}
944 
945 	/*
946 	 * Next deal with any sectors which we were able to correctly
947 	 * handle.
948 	 */
949 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
950 		"%u sectors total, %d bytes done.\n",
951 		blk_rq_sectors(req), good_bytes));
952 
953 	/*
954 	 * Next deal with any sectors which we were able to correctly
955 	 * handle. Failed, zero length commands always need to drop down
956 	 * to retry code. Fast path should return in this block.
957 	 */
958 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
959 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
960 			return; /* no bytes remaining */
961 	}
962 
963 	/* Kill remainder if no retries. */
964 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
965 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
966 			WARN_ONCE(true,
967 			    "Bytes remaining after failed, no-retry command");
968 		return;
969 	}
970 
971 	/*
972 	 * If there had been no error, but we have leftover bytes in the
973 	 * requeues just queue the command up again.
974 	 */
975 	if (likely(result == 0))
976 		scsi_io_completion_reprep(cmd, q);
977 	else
978 		scsi_io_completion_action(cmd, result);
979 }
980 
981 static blk_status_t scsi_init_sgtable(struct request *req,
982 		struct scsi_data_buffer *sdb)
983 {
984 	int count;
985 
986 	/*
987 	 * If sg table allocation fails, requeue request later.
988 	 */
989 	if (unlikely(sg_alloc_table_chained(&sdb->table,
990 			blk_rq_nr_phys_segments(req), sdb->table.sgl,
991 			SCSI_INLINE_SG_CNT)))
992 		return BLK_STS_RESOURCE;
993 
994 	/*
995 	 * Next, walk the list, and fill in the addresses and sizes of
996 	 * each segment.
997 	 */
998 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
999 	BUG_ON(count > sdb->table.nents);
1000 	sdb->table.nents = count;
1001 	sdb->length = blk_rq_payload_bytes(req);
1002 	return BLK_STS_OK;
1003 }
1004 
1005 /*
1006  * Function:    scsi_init_io()
1007  *
1008  * Purpose:     SCSI I/O initialize function.
1009  *
1010  * Arguments:   cmd   - Command descriptor we wish to initialize
1011  *
1012  * Returns:     BLK_STS_OK on success
1013  *		BLK_STS_RESOURCE if the failure is retryable
1014  *		BLK_STS_IOERR if the failure is fatal
1015  */
1016 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1017 {
1018 	struct request *rq = cmd->request;
1019 	blk_status_t ret;
1020 
1021 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1022 		return BLK_STS_IOERR;
1023 
1024 	ret = scsi_init_sgtable(rq, &cmd->sdb);
1025 	if (ret)
1026 		return ret;
1027 
1028 	if (blk_integrity_rq(rq)) {
1029 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1030 		int ivecs, count;
1031 
1032 		if (WARN_ON_ONCE(!prot_sdb)) {
1033 			/*
1034 			 * This can happen if someone (e.g. multipath)
1035 			 * queues a command to a device on an adapter
1036 			 * that does not support DIX.
1037 			 */
1038 			ret = BLK_STS_IOERR;
1039 			goto out_free_sgtables;
1040 		}
1041 
1042 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1043 
1044 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1045 				prot_sdb->table.sgl,
1046 				SCSI_INLINE_PROT_SG_CNT)) {
1047 			ret = BLK_STS_RESOURCE;
1048 			goto out_free_sgtables;
1049 		}
1050 
1051 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1052 						prot_sdb->table.sgl);
1053 		BUG_ON(count > ivecs);
1054 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1055 
1056 		cmd->prot_sdb = prot_sdb;
1057 		cmd->prot_sdb->table.nents = count;
1058 	}
1059 
1060 	return BLK_STS_OK;
1061 out_free_sgtables:
1062 	scsi_mq_free_sgtables(cmd);
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL(scsi_init_io);
1066 
1067 /**
1068  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1069  * @rq: Request associated with the SCSI command to be initialized.
1070  *
1071  * This function initializes the members of struct scsi_cmnd that must be
1072  * initialized before request processing starts and that won't be
1073  * reinitialized if a SCSI command is requeued.
1074  *
1075  * Called from inside blk_get_request() for pass-through requests and from
1076  * inside scsi_init_command() for filesystem requests.
1077  */
1078 static void scsi_initialize_rq(struct request *rq)
1079 {
1080 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1081 
1082 	scsi_req_init(&cmd->req);
1083 	init_rcu_head(&cmd->rcu);
1084 	cmd->jiffies_at_alloc = jiffies;
1085 	cmd->retries = 0;
1086 }
1087 
1088 /*
1089  * Only called when the request isn't completed by SCSI, and not freed by
1090  * SCSI
1091  */
1092 static void scsi_cleanup_rq(struct request *rq)
1093 {
1094 	if (rq->rq_flags & RQF_DONTPREP) {
1095 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1096 		rq->rq_flags &= ~RQF_DONTPREP;
1097 	}
1098 }
1099 
1100 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1101 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1102 {
1103 	void *buf = cmd->sense_buffer;
1104 	void *prot = cmd->prot_sdb;
1105 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1106 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1107 	unsigned long jiffies_at_alloc;
1108 	int retries, to_clear;
1109 	bool in_flight;
1110 
1111 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1112 		flags |= SCMD_INITIALIZED;
1113 		scsi_initialize_rq(rq);
1114 	}
1115 
1116 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1117 	retries = cmd->retries;
1118 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1119 	/*
1120 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1121 	 * the driver-private command data if the LLD does not supply a
1122 	 * function to initialize that data.
1123 	 */
1124 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1125 	if (!dev->host->hostt->init_cmd_priv)
1126 		to_clear += dev->host->hostt->cmd_size;
1127 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1128 
1129 	cmd->device = dev;
1130 	cmd->sense_buffer = buf;
1131 	cmd->prot_sdb = prot;
1132 	cmd->flags = flags;
1133 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1134 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1135 	cmd->retries = retries;
1136 	if (in_flight)
1137 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1138 
1139 }
1140 
1141 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1142 		struct request *req)
1143 {
1144 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1145 
1146 	/*
1147 	 * Passthrough requests may transfer data, in which case they must
1148 	 * a bio attached to them.  Or they might contain a SCSI command
1149 	 * that does not transfer data, in which case they may optionally
1150 	 * submit a request without an attached bio.
1151 	 */
1152 	if (req->bio) {
1153 		blk_status_t ret = scsi_init_io(cmd);
1154 		if (unlikely(ret != BLK_STS_OK))
1155 			return ret;
1156 	} else {
1157 		BUG_ON(blk_rq_bytes(req));
1158 
1159 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1160 	}
1161 
1162 	cmd->cmd_len = scsi_req(req)->cmd_len;
1163 	cmd->cmnd = scsi_req(req)->cmd;
1164 	cmd->transfersize = blk_rq_bytes(req);
1165 	cmd->allowed = scsi_req(req)->retries;
1166 	return BLK_STS_OK;
1167 }
1168 
1169 /*
1170  * Setup a normal block command.  These are simple request from filesystems
1171  * that still need to be translated to SCSI CDBs from the ULD.
1172  */
1173 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1174 		struct request *req)
1175 {
1176 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1177 
1178 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1179 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1180 		if (ret != BLK_STS_OK)
1181 			return ret;
1182 	}
1183 
1184 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1185 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1186 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1187 }
1188 
1189 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1190 		struct request *req)
1191 {
1192 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1193 
1194 	if (!blk_rq_bytes(req))
1195 		cmd->sc_data_direction = DMA_NONE;
1196 	else if (rq_data_dir(req) == WRITE)
1197 		cmd->sc_data_direction = DMA_TO_DEVICE;
1198 	else
1199 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1200 
1201 	if (blk_rq_is_scsi(req))
1202 		return scsi_setup_scsi_cmnd(sdev, req);
1203 	else
1204 		return scsi_setup_fs_cmnd(sdev, req);
1205 }
1206 
1207 static blk_status_t
1208 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210 	switch (sdev->sdev_state) {
1211 	case SDEV_OFFLINE:
1212 	case SDEV_TRANSPORT_OFFLINE:
1213 		/*
1214 		 * If the device is offline we refuse to process any
1215 		 * commands.  The device must be brought online
1216 		 * before trying any recovery commands.
1217 		 */
1218 		if (!sdev->offline_already) {
1219 			sdev->offline_already = true;
1220 			sdev_printk(KERN_ERR, sdev,
1221 				    "rejecting I/O to offline device\n");
1222 		}
1223 		return BLK_STS_IOERR;
1224 	case SDEV_DEL:
1225 		/*
1226 		 * If the device is fully deleted, we refuse to
1227 		 * process any commands as well.
1228 		 */
1229 		sdev_printk(KERN_ERR, sdev,
1230 			    "rejecting I/O to dead device\n");
1231 		return BLK_STS_IOERR;
1232 	case SDEV_BLOCK:
1233 	case SDEV_CREATED_BLOCK:
1234 		return BLK_STS_RESOURCE;
1235 	case SDEV_QUIESCE:
1236 		/*
1237 		 * If the devices is blocked we defer normal commands.
1238 		 */
1239 		if (req && !(req->rq_flags & RQF_PREEMPT))
1240 			return BLK_STS_RESOURCE;
1241 		return BLK_STS_OK;
1242 	default:
1243 		/*
1244 		 * For any other not fully online state we only allow
1245 		 * special commands.  In particular any user initiated
1246 		 * command is not allowed.
1247 		 */
1248 		if (req && !(req->rq_flags & RQF_PREEMPT))
1249 			return BLK_STS_IOERR;
1250 		return BLK_STS_OK;
1251 	}
1252 }
1253 
1254 /*
1255  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1256  * return 0.
1257  *
1258  * Called with the queue_lock held.
1259  */
1260 static inline int scsi_dev_queue_ready(struct request_queue *q,
1261 				  struct scsi_device *sdev)
1262 {
1263 	unsigned int busy;
1264 
1265 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1266 	if (atomic_read(&sdev->device_blocked)) {
1267 		if (busy)
1268 			goto out_dec;
1269 
1270 		/*
1271 		 * unblock after device_blocked iterates to zero
1272 		 */
1273 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1274 			goto out_dec;
1275 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1276 				   "unblocking device at zero depth\n"));
1277 	}
1278 
1279 	if (busy >= sdev->queue_depth)
1280 		goto out_dec;
1281 
1282 	return 1;
1283 out_dec:
1284 	atomic_dec(&sdev->device_busy);
1285 	return 0;
1286 }
1287 
1288 /*
1289  * scsi_target_queue_ready: checks if there we can send commands to target
1290  * @sdev: scsi device on starget to check.
1291  */
1292 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1293 					   struct scsi_device *sdev)
1294 {
1295 	struct scsi_target *starget = scsi_target(sdev);
1296 	unsigned int busy;
1297 
1298 	if (starget->single_lun) {
1299 		spin_lock_irq(shost->host_lock);
1300 		if (starget->starget_sdev_user &&
1301 		    starget->starget_sdev_user != sdev) {
1302 			spin_unlock_irq(shost->host_lock);
1303 			return 0;
1304 		}
1305 		starget->starget_sdev_user = sdev;
1306 		spin_unlock_irq(shost->host_lock);
1307 	}
1308 
1309 	if (starget->can_queue <= 0)
1310 		return 1;
1311 
1312 	busy = atomic_inc_return(&starget->target_busy) - 1;
1313 	if (atomic_read(&starget->target_blocked) > 0) {
1314 		if (busy)
1315 			goto starved;
1316 
1317 		/*
1318 		 * unblock after target_blocked iterates to zero
1319 		 */
1320 		if (atomic_dec_return(&starget->target_blocked) > 0)
1321 			goto out_dec;
1322 
1323 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1324 				 "unblocking target at zero depth\n"));
1325 	}
1326 
1327 	if (busy >= starget->can_queue)
1328 		goto starved;
1329 
1330 	return 1;
1331 
1332 starved:
1333 	spin_lock_irq(shost->host_lock);
1334 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1335 	spin_unlock_irq(shost->host_lock);
1336 out_dec:
1337 	if (starget->can_queue > 0)
1338 		atomic_dec(&starget->target_busy);
1339 	return 0;
1340 }
1341 
1342 /*
1343  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1344  * return 0. We must end up running the queue again whenever 0 is
1345  * returned, else IO can hang.
1346  */
1347 static inline int scsi_host_queue_ready(struct request_queue *q,
1348 				   struct Scsi_Host *shost,
1349 				   struct scsi_device *sdev,
1350 				   struct scsi_cmnd *cmd)
1351 {
1352 	if (scsi_host_in_recovery(shost))
1353 		return 0;
1354 
1355 	if (atomic_read(&shost->host_blocked) > 0) {
1356 		if (scsi_host_busy(shost) > 0)
1357 			goto starved;
1358 
1359 		/*
1360 		 * unblock after host_blocked iterates to zero
1361 		 */
1362 		if (atomic_dec_return(&shost->host_blocked) > 0)
1363 			goto out_dec;
1364 
1365 		SCSI_LOG_MLQUEUE(3,
1366 			shost_printk(KERN_INFO, shost,
1367 				     "unblocking host at zero depth\n"));
1368 	}
1369 
1370 	if (shost->host_self_blocked)
1371 		goto starved;
1372 
1373 	/* We're OK to process the command, so we can't be starved */
1374 	if (!list_empty(&sdev->starved_entry)) {
1375 		spin_lock_irq(shost->host_lock);
1376 		if (!list_empty(&sdev->starved_entry))
1377 			list_del_init(&sdev->starved_entry);
1378 		spin_unlock_irq(shost->host_lock);
1379 	}
1380 
1381 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1382 
1383 	return 1;
1384 
1385 starved:
1386 	spin_lock_irq(shost->host_lock);
1387 	if (list_empty(&sdev->starved_entry))
1388 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1389 	spin_unlock_irq(shost->host_lock);
1390 out_dec:
1391 	scsi_dec_host_busy(shost, cmd);
1392 	return 0;
1393 }
1394 
1395 /*
1396  * Busy state exporting function for request stacking drivers.
1397  *
1398  * For efficiency, no lock is taken to check the busy state of
1399  * shost/starget/sdev, since the returned value is not guaranteed and
1400  * may be changed after request stacking drivers call the function,
1401  * regardless of taking lock or not.
1402  *
1403  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1404  * needs to return 'not busy'. Otherwise, request stacking drivers
1405  * may hold requests forever.
1406  */
1407 static bool scsi_mq_lld_busy(struct request_queue *q)
1408 {
1409 	struct scsi_device *sdev = q->queuedata;
1410 	struct Scsi_Host *shost;
1411 
1412 	if (blk_queue_dying(q))
1413 		return false;
1414 
1415 	shost = sdev->host;
1416 
1417 	/*
1418 	 * Ignore host/starget busy state.
1419 	 * Since block layer does not have a concept of fairness across
1420 	 * multiple queues, congestion of host/starget needs to be handled
1421 	 * in SCSI layer.
1422 	 */
1423 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1424 		return true;
1425 
1426 	return false;
1427 }
1428 
1429 static void scsi_softirq_done(struct request *rq)
1430 {
1431 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1432 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1433 	int disposition;
1434 
1435 	INIT_LIST_HEAD(&cmd->eh_entry);
1436 
1437 	atomic_inc(&cmd->device->iodone_cnt);
1438 	if (cmd->result)
1439 		atomic_inc(&cmd->device->ioerr_cnt);
1440 
1441 	disposition = scsi_decide_disposition(cmd);
1442 	if (disposition != SUCCESS &&
1443 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1444 		scmd_printk(KERN_ERR, cmd,
1445 			    "timing out command, waited %lus\n",
1446 			    wait_for/HZ);
1447 		disposition = SUCCESS;
1448 	}
1449 
1450 	scsi_log_completion(cmd, disposition);
1451 
1452 	switch (disposition) {
1453 		case SUCCESS:
1454 			scsi_finish_command(cmd);
1455 			break;
1456 		case NEEDS_RETRY:
1457 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1458 			break;
1459 		case ADD_TO_MLQUEUE:
1460 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1461 			break;
1462 		default:
1463 			scsi_eh_scmd_add(cmd);
1464 			break;
1465 	}
1466 }
1467 
1468 /**
1469  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1470  * @cmd: command block we are dispatching.
1471  *
1472  * Return: nonzero return request was rejected and device's queue needs to be
1473  * plugged.
1474  */
1475 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1476 {
1477 	struct Scsi_Host *host = cmd->device->host;
1478 	int rtn = 0;
1479 
1480 	atomic_inc(&cmd->device->iorequest_cnt);
1481 
1482 	/* check if the device is still usable */
1483 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1484 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1485 		 * returns an immediate error upwards, and signals
1486 		 * that the device is no longer present */
1487 		cmd->result = DID_NO_CONNECT << 16;
1488 		goto done;
1489 	}
1490 
1491 	/* Check to see if the scsi lld made this device blocked. */
1492 	if (unlikely(scsi_device_blocked(cmd->device))) {
1493 		/*
1494 		 * in blocked state, the command is just put back on
1495 		 * the device queue.  The suspend state has already
1496 		 * blocked the queue so future requests should not
1497 		 * occur until the device transitions out of the
1498 		 * suspend state.
1499 		 */
1500 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1501 			"queuecommand : device blocked\n"));
1502 		return SCSI_MLQUEUE_DEVICE_BUSY;
1503 	}
1504 
1505 	/* Store the LUN value in cmnd, if needed. */
1506 	if (cmd->device->lun_in_cdb)
1507 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1508 			       (cmd->device->lun << 5 & 0xe0);
1509 
1510 	scsi_log_send(cmd);
1511 
1512 	/*
1513 	 * Before we queue this command, check if the command
1514 	 * length exceeds what the host adapter can handle.
1515 	 */
1516 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1517 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518 			       "queuecommand : command too long. "
1519 			       "cdb_size=%d host->max_cmd_len=%d\n",
1520 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1521 		cmd->result = (DID_ABORT << 16);
1522 		goto done;
1523 	}
1524 
1525 	if (unlikely(host->shost_state == SHOST_DEL)) {
1526 		cmd->result = (DID_NO_CONNECT << 16);
1527 		goto done;
1528 
1529 	}
1530 
1531 	trace_scsi_dispatch_cmd_start(cmd);
1532 	rtn = host->hostt->queuecommand(host, cmd);
1533 	if (rtn) {
1534 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1535 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1536 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1537 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1538 
1539 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1540 			"queuecommand : request rejected\n"));
1541 	}
1542 
1543 	return rtn;
1544  done:
1545 	cmd->scsi_done(cmd);
1546 	return 0;
1547 }
1548 
1549 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1550 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1551 {
1552 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1553 		sizeof(struct scatterlist);
1554 }
1555 
1556 static blk_status_t scsi_mq_prep_fn(struct request *req)
1557 {
1558 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1559 	struct scsi_device *sdev = req->q->queuedata;
1560 	struct Scsi_Host *shost = sdev->host;
1561 	struct scatterlist *sg;
1562 
1563 	scsi_init_command(sdev, cmd);
1564 
1565 	cmd->request = req;
1566 	cmd->tag = req->tag;
1567 	cmd->prot_op = SCSI_PROT_NORMAL;
1568 
1569 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1570 	cmd->sdb.table.sgl = sg;
1571 
1572 	if (scsi_host_get_prot(shost)) {
1573 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1574 
1575 		cmd->prot_sdb->table.sgl =
1576 			(struct scatterlist *)(cmd->prot_sdb + 1);
1577 	}
1578 
1579 	blk_mq_start_request(req);
1580 
1581 	return scsi_setup_cmnd(sdev, req);
1582 }
1583 
1584 static void scsi_mq_done(struct scsi_cmnd *cmd)
1585 {
1586 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1587 		return;
1588 	trace_scsi_dispatch_cmd_done(cmd);
1589 
1590 	/*
1591 	 * If the block layer didn't complete the request due to a timeout
1592 	 * injection, scsi must clear its internal completed state so that the
1593 	 * timeout handler will see it needs to escalate its own error
1594 	 * recovery.
1595 	 */
1596 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1597 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1598 }
1599 
1600 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1601 {
1602 	struct request_queue *q = hctx->queue;
1603 	struct scsi_device *sdev = q->queuedata;
1604 
1605 	atomic_dec(&sdev->device_busy);
1606 }
1607 
1608 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1609 {
1610 	struct request_queue *q = hctx->queue;
1611 	struct scsi_device *sdev = q->queuedata;
1612 
1613 	if (scsi_dev_queue_ready(q, sdev))
1614 		return true;
1615 
1616 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1617 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1618 	return false;
1619 }
1620 
1621 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1622 			 const struct blk_mq_queue_data *bd)
1623 {
1624 	struct request *req = bd->rq;
1625 	struct request_queue *q = req->q;
1626 	struct scsi_device *sdev = q->queuedata;
1627 	struct Scsi_Host *shost = sdev->host;
1628 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1629 	blk_status_t ret;
1630 	int reason;
1631 
1632 	/*
1633 	 * If the device is not in running state we will reject some or all
1634 	 * commands.
1635 	 */
1636 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1637 		ret = scsi_prep_state_check(sdev, req);
1638 		if (ret != BLK_STS_OK)
1639 			goto out_put_budget;
1640 	}
1641 
1642 	ret = BLK_STS_RESOURCE;
1643 	if (!scsi_target_queue_ready(shost, sdev))
1644 		goto out_put_budget;
1645 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1646 		goto out_dec_target_busy;
1647 
1648 	if (!(req->rq_flags & RQF_DONTPREP)) {
1649 		ret = scsi_mq_prep_fn(req);
1650 		if (ret != BLK_STS_OK)
1651 			goto out_dec_host_busy;
1652 		req->rq_flags |= RQF_DONTPREP;
1653 	} else {
1654 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1655 		blk_mq_start_request(req);
1656 	}
1657 
1658 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1659 	if (sdev->simple_tags)
1660 		cmd->flags |= SCMD_TAGGED;
1661 	if (bd->last)
1662 		cmd->flags |= SCMD_LAST;
1663 
1664 	scsi_init_cmd_errh(cmd);
1665 	cmd->scsi_done = scsi_mq_done;
1666 
1667 	reason = scsi_dispatch_cmd(cmd);
1668 	if (reason) {
1669 		scsi_set_blocked(cmd, reason);
1670 		ret = BLK_STS_RESOURCE;
1671 		goto out_dec_host_busy;
1672 	}
1673 
1674 	return BLK_STS_OK;
1675 
1676 out_dec_host_busy:
1677 	scsi_dec_host_busy(shost, cmd);
1678 out_dec_target_busy:
1679 	if (scsi_target(sdev)->can_queue > 0)
1680 		atomic_dec(&scsi_target(sdev)->target_busy);
1681 out_put_budget:
1682 	scsi_mq_put_budget(hctx);
1683 	switch (ret) {
1684 	case BLK_STS_OK:
1685 		break;
1686 	case BLK_STS_RESOURCE:
1687 		if (atomic_read(&sdev->device_busy) ||
1688 		    scsi_device_blocked(sdev))
1689 			ret = BLK_STS_DEV_RESOURCE;
1690 		break;
1691 	default:
1692 		if (unlikely(!scsi_device_online(sdev)))
1693 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1694 		else
1695 			scsi_req(req)->result = DID_ERROR << 16;
1696 		/*
1697 		 * Make sure to release all allocated resources when
1698 		 * we hit an error, as we will never see this command
1699 		 * again.
1700 		 */
1701 		if (req->rq_flags & RQF_DONTPREP)
1702 			scsi_mq_uninit_cmd(cmd);
1703 		break;
1704 	}
1705 	return ret;
1706 }
1707 
1708 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1709 		bool reserved)
1710 {
1711 	if (reserved)
1712 		return BLK_EH_RESET_TIMER;
1713 	return scsi_times_out(req);
1714 }
1715 
1716 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1717 				unsigned int hctx_idx, unsigned int numa_node)
1718 {
1719 	struct Scsi_Host *shost = set->driver_data;
1720 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1721 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1722 	struct scatterlist *sg;
1723 	int ret = 0;
1724 
1725 	if (unchecked_isa_dma)
1726 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1727 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1728 						    GFP_KERNEL, numa_node);
1729 	if (!cmd->sense_buffer)
1730 		return -ENOMEM;
1731 	cmd->req.sense = cmd->sense_buffer;
1732 
1733 	if (scsi_host_get_prot(shost)) {
1734 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1735 			shost->hostt->cmd_size;
1736 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1737 	}
1738 
1739 	if (shost->hostt->init_cmd_priv) {
1740 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1741 		if (ret < 0)
1742 			scsi_free_sense_buffer(unchecked_isa_dma,
1743 					       cmd->sense_buffer);
1744 	}
1745 
1746 	return ret;
1747 }
1748 
1749 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1750 				 unsigned int hctx_idx)
1751 {
1752 	struct Scsi_Host *shost = set->driver_data;
1753 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1754 
1755 	if (shost->hostt->exit_cmd_priv)
1756 		shost->hostt->exit_cmd_priv(shost, cmd);
1757 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1758 			       cmd->sense_buffer);
1759 }
1760 
1761 static int scsi_map_queues(struct blk_mq_tag_set *set)
1762 {
1763 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1764 
1765 	if (shost->hostt->map_queues)
1766 		return shost->hostt->map_queues(shost);
1767 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1768 }
1769 
1770 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1771 {
1772 	struct device *dev = shost->dma_dev;
1773 
1774 	/*
1775 	 * this limit is imposed by hardware restrictions
1776 	 */
1777 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1778 					SG_MAX_SEGMENTS));
1779 
1780 	if (scsi_host_prot_dma(shost)) {
1781 		shost->sg_prot_tablesize =
1782 			min_not_zero(shost->sg_prot_tablesize,
1783 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1784 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1785 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1786 	}
1787 
1788 	if (dev->dma_mask) {
1789 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1790 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1791 	}
1792 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1793 	if (shost->unchecked_isa_dma)
1794 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1795 	blk_queue_segment_boundary(q, shost->dma_boundary);
1796 	dma_set_seg_boundary(dev, shost->dma_boundary);
1797 
1798 	blk_queue_max_segment_size(q, shost->max_segment_size);
1799 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1800 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1801 
1802 	/*
1803 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1804 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1805 	 * which is set by the platform.
1806 	 *
1807 	 * Devices that require a bigger alignment can increase it later.
1808 	 */
1809 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1810 }
1811 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1812 
1813 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1814 	.get_budget	= scsi_mq_get_budget,
1815 	.put_budget	= scsi_mq_put_budget,
1816 	.queue_rq	= scsi_queue_rq,
1817 	.complete	= scsi_softirq_done,
1818 	.timeout	= scsi_timeout,
1819 #ifdef CONFIG_BLK_DEBUG_FS
1820 	.show_rq	= scsi_show_rq,
1821 #endif
1822 	.init_request	= scsi_mq_init_request,
1823 	.exit_request	= scsi_mq_exit_request,
1824 	.initialize_rq_fn = scsi_initialize_rq,
1825 	.cleanup_rq	= scsi_cleanup_rq,
1826 	.busy		= scsi_mq_lld_busy,
1827 	.map_queues	= scsi_map_queues,
1828 };
1829 
1830 
1831 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1832 {
1833 	struct request_queue *q = hctx->queue;
1834 	struct scsi_device *sdev = q->queuedata;
1835 	struct Scsi_Host *shost = sdev->host;
1836 
1837 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1838 }
1839 
1840 static const struct blk_mq_ops scsi_mq_ops = {
1841 	.get_budget	= scsi_mq_get_budget,
1842 	.put_budget	= scsi_mq_put_budget,
1843 	.queue_rq	= scsi_queue_rq,
1844 	.commit_rqs	= scsi_commit_rqs,
1845 	.complete	= scsi_softirq_done,
1846 	.timeout	= scsi_timeout,
1847 #ifdef CONFIG_BLK_DEBUG_FS
1848 	.show_rq	= scsi_show_rq,
1849 #endif
1850 	.init_request	= scsi_mq_init_request,
1851 	.exit_request	= scsi_mq_exit_request,
1852 	.initialize_rq_fn = scsi_initialize_rq,
1853 	.cleanup_rq	= scsi_cleanup_rq,
1854 	.busy		= scsi_mq_lld_busy,
1855 	.map_queues	= scsi_map_queues,
1856 };
1857 
1858 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1859 {
1860 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1861 	if (IS_ERR(sdev->request_queue))
1862 		return NULL;
1863 
1864 	sdev->request_queue->queuedata = sdev;
1865 	__scsi_init_queue(sdev->host, sdev->request_queue);
1866 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1867 	return sdev->request_queue;
1868 }
1869 
1870 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1871 {
1872 	unsigned int cmd_size, sgl_size;
1873 
1874 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1875 				scsi_mq_inline_sgl_size(shost));
1876 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1877 	if (scsi_host_get_prot(shost))
1878 		cmd_size += sizeof(struct scsi_data_buffer) +
1879 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1880 
1881 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1882 	if (shost->hostt->commit_rqs)
1883 		shost->tag_set.ops = &scsi_mq_ops;
1884 	else
1885 		shost->tag_set.ops = &scsi_mq_ops_no_commit;
1886 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1887 	shost->tag_set.queue_depth = shost->can_queue;
1888 	shost->tag_set.cmd_size = cmd_size;
1889 	shost->tag_set.numa_node = NUMA_NO_NODE;
1890 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1891 	shost->tag_set.flags |=
1892 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1893 	shost->tag_set.driver_data = shost;
1894 
1895 	return blk_mq_alloc_tag_set(&shost->tag_set);
1896 }
1897 
1898 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1899 {
1900 	blk_mq_free_tag_set(&shost->tag_set);
1901 }
1902 
1903 /**
1904  * scsi_device_from_queue - return sdev associated with a request_queue
1905  * @q: The request queue to return the sdev from
1906  *
1907  * Return the sdev associated with a request queue or NULL if the
1908  * request_queue does not reference a SCSI device.
1909  */
1910 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1911 {
1912 	struct scsi_device *sdev = NULL;
1913 
1914 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1915 	    q->mq_ops == &scsi_mq_ops)
1916 		sdev = q->queuedata;
1917 	if (!sdev || !get_device(&sdev->sdev_gendev))
1918 		sdev = NULL;
1919 
1920 	return sdev;
1921 }
1922 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1923 
1924 /*
1925  * Function:    scsi_block_requests()
1926  *
1927  * Purpose:     Utility function used by low-level drivers to prevent further
1928  *		commands from being queued to the device.
1929  *
1930  * Arguments:   shost       - Host in question
1931  *
1932  * Returns:     Nothing
1933  *
1934  * Lock status: No locks are assumed held.
1935  *
1936  * Notes:       There is no timer nor any other means by which the requests
1937  *		get unblocked other than the low-level driver calling
1938  *		scsi_unblock_requests().
1939  */
1940 void scsi_block_requests(struct Scsi_Host *shost)
1941 {
1942 	shost->host_self_blocked = 1;
1943 }
1944 EXPORT_SYMBOL(scsi_block_requests);
1945 
1946 /*
1947  * Function:    scsi_unblock_requests()
1948  *
1949  * Purpose:     Utility function used by low-level drivers to allow further
1950  *		commands from being queued to the device.
1951  *
1952  * Arguments:   shost       - Host in question
1953  *
1954  * Returns:     Nothing
1955  *
1956  * Lock status: No locks are assumed held.
1957  *
1958  * Notes:       There is no timer nor any other means by which the requests
1959  *		get unblocked other than the low-level driver calling
1960  *		scsi_unblock_requests().
1961  *
1962  *		This is done as an API function so that changes to the
1963  *		internals of the scsi mid-layer won't require wholesale
1964  *		changes to drivers that use this feature.
1965  */
1966 void scsi_unblock_requests(struct Scsi_Host *shost)
1967 {
1968 	shost->host_self_blocked = 0;
1969 	scsi_run_host_queues(shost);
1970 }
1971 EXPORT_SYMBOL(scsi_unblock_requests);
1972 
1973 int __init scsi_init_queue(void)
1974 {
1975 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1976 					   sizeof(struct scsi_data_buffer),
1977 					   0, 0, NULL);
1978 	if (!scsi_sdb_cache) {
1979 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1980 		return -ENOMEM;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 void scsi_exit_queue(void)
1987 {
1988 	kmem_cache_destroy(scsi_sense_cache);
1989 	kmem_cache_destroy(scsi_sense_isadma_cache);
1990 	kmem_cache_destroy(scsi_sdb_cache);
1991 }
1992 
1993 /**
1994  *	scsi_mode_select - issue a mode select
1995  *	@sdev:	SCSI device to be queried
1996  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1997  *	@sp:	Save page bit (0 == don't save, 1 == save)
1998  *	@modepage: mode page being requested
1999  *	@buffer: request buffer (may not be smaller than eight bytes)
2000  *	@len:	length of request buffer.
2001  *	@timeout: command timeout
2002  *	@retries: number of retries before failing
2003  *	@data: returns a structure abstracting the mode header data
2004  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2005  *		must be SCSI_SENSE_BUFFERSIZE big.
2006  *
2007  *	Returns zero if successful; negative error number or scsi
2008  *	status on error
2009  *
2010  */
2011 int
2012 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2013 		 unsigned char *buffer, int len, int timeout, int retries,
2014 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2015 {
2016 	unsigned char cmd[10];
2017 	unsigned char *real_buffer;
2018 	int ret;
2019 
2020 	memset(cmd, 0, sizeof(cmd));
2021 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2022 
2023 	if (sdev->use_10_for_ms) {
2024 		if (len > 65535)
2025 			return -EINVAL;
2026 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2027 		if (!real_buffer)
2028 			return -ENOMEM;
2029 		memcpy(real_buffer + 8, buffer, len);
2030 		len += 8;
2031 		real_buffer[0] = 0;
2032 		real_buffer[1] = 0;
2033 		real_buffer[2] = data->medium_type;
2034 		real_buffer[3] = data->device_specific;
2035 		real_buffer[4] = data->longlba ? 0x01 : 0;
2036 		real_buffer[5] = 0;
2037 		real_buffer[6] = data->block_descriptor_length >> 8;
2038 		real_buffer[7] = data->block_descriptor_length;
2039 
2040 		cmd[0] = MODE_SELECT_10;
2041 		cmd[7] = len >> 8;
2042 		cmd[8] = len;
2043 	} else {
2044 		if (len > 255 || data->block_descriptor_length > 255 ||
2045 		    data->longlba)
2046 			return -EINVAL;
2047 
2048 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2049 		if (!real_buffer)
2050 			return -ENOMEM;
2051 		memcpy(real_buffer + 4, buffer, len);
2052 		len += 4;
2053 		real_buffer[0] = 0;
2054 		real_buffer[1] = data->medium_type;
2055 		real_buffer[2] = data->device_specific;
2056 		real_buffer[3] = data->block_descriptor_length;
2057 
2058 
2059 		cmd[0] = MODE_SELECT;
2060 		cmd[4] = len;
2061 	}
2062 
2063 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2064 			       sshdr, timeout, retries, NULL);
2065 	kfree(real_buffer);
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(scsi_mode_select);
2069 
2070 /**
2071  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2072  *	@sdev:	SCSI device to be queried
2073  *	@dbd:	set if mode sense will allow block descriptors to be returned
2074  *	@modepage: mode page being requested
2075  *	@buffer: request buffer (may not be smaller than eight bytes)
2076  *	@len:	length of request buffer.
2077  *	@timeout: command timeout
2078  *	@retries: number of retries before failing
2079  *	@data: returns a structure abstracting the mode header data
2080  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2081  *		must be SCSI_SENSE_BUFFERSIZE big.
2082  *
2083  *	Returns zero if unsuccessful, or the header offset (either 4
2084  *	or 8 depending on whether a six or ten byte command was
2085  *	issued) if successful.
2086  */
2087 int
2088 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2089 		  unsigned char *buffer, int len, int timeout, int retries,
2090 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2091 {
2092 	unsigned char cmd[12];
2093 	int use_10_for_ms;
2094 	int header_length;
2095 	int result, retry_count = retries;
2096 	struct scsi_sense_hdr my_sshdr;
2097 
2098 	memset(data, 0, sizeof(*data));
2099 	memset(&cmd[0], 0, 12);
2100 
2101 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2102 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2103 	cmd[2] = modepage;
2104 
2105 	/* caller might not be interested in sense, but we need it */
2106 	if (!sshdr)
2107 		sshdr = &my_sshdr;
2108 
2109  retry:
2110 	use_10_for_ms = sdev->use_10_for_ms;
2111 
2112 	if (use_10_for_ms) {
2113 		if (len < 8)
2114 			len = 8;
2115 
2116 		cmd[0] = MODE_SENSE_10;
2117 		cmd[8] = len;
2118 		header_length = 8;
2119 	} else {
2120 		if (len < 4)
2121 			len = 4;
2122 
2123 		cmd[0] = MODE_SENSE;
2124 		cmd[4] = len;
2125 		header_length = 4;
2126 	}
2127 
2128 	memset(buffer, 0, len);
2129 
2130 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2131 				  sshdr, timeout, retries, NULL);
2132 
2133 	/* This code looks awful: what it's doing is making sure an
2134 	 * ILLEGAL REQUEST sense return identifies the actual command
2135 	 * byte as the problem.  MODE_SENSE commands can return
2136 	 * ILLEGAL REQUEST if the code page isn't supported */
2137 
2138 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2139 	    driver_byte(result) == DRIVER_SENSE) {
2140 		if (scsi_sense_valid(sshdr)) {
2141 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2142 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2143 				/*
2144 				 * Invalid command operation code
2145 				 */
2146 				sdev->use_10_for_ms = 0;
2147 				goto retry;
2148 			}
2149 		}
2150 	}
2151 
2152 	if(scsi_status_is_good(result)) {
2153 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2154 			     (modepage == 6 || modepage == 8))) {
2155 			/* Initio breakage? */
2156 			header_length = 0;
2157 			data->length = 13;
2158 			data->medium_type = 0;
2159 			data->device_specific = 0;
2160 			data->longlba = 0;
2161 			data->block_descriptor_length = 0;
2162 		} else if(use_10_for_ms) {
2163 			data->length = buffer[0]*256 + buffer[1] + 2;
2164 			data->medium_type = buffer[2];
2165 			data->device_specific = buffer[3];
2166 			data->longlba = buffer[4] & 0x01;
2167 			data->block_descriptor_length = buffer[6]*256
2168 				+ buffer[7];
2169 		} else {
2170 			data->length = buffer[0] + 1;
2171 			data->medium_type = buffer[1];
2172 			data->device_specific = buffer[2];
2173 			data->block_descriptor_length = buffer[3];
2174 		}
2175 		data->header_length = header_length;
2176 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2177 		   scsi_sense_valid(sshdr) &&
2178 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2179 		retry_count--;
2180 		goto retry;
2181 	}
2182 
2183 	return result;
2184 }
2185 EXPORT_SYMBOL(scsi_mode_sense);
2186 
2187 /**
2188  *	scsi_test_unit_ready - test if unit is ready
2189  *	@sdev:	scsi device to change the state of.
2190  *	@timeout: command timeout
2191  *	@retries: number of retries before failing
2192  *	@sshdr: outpout pointer for decoded sense information.
2193  *
2194  *	Returns zero if unsuccessful or an error if TUR failed.  For
2195  *	removable media, UNIT_ATTENTION sets ->changed flag.
2196  **/
2197 int
2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2199 		     struct scsi_sense_hdr *sshdr)
2200 {
2201 	char cmd[] = {
2202 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2203 	};
2204 	int result;
2205 
2206 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2207 	do {
2208 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2209 					  timeout, 1, NULL);
2210 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2211 		    sshdr->sense_key == UNIT_ATTENTION)
2212 			sdev->changed = 1;
2213 	} while (scsi_sense_valid(sshdr) &&
2214 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2215 
2216 	return result;
2217 }
2218 EXPORT_SYMBOL(scsi_test_unit_ready);
2219 
2220 /**
2221  *	scsi_device_set_state - Take the given device through the device state model.
2222  *	@sdev:	scsi device to change the state of.
2223  *	@state:	state to change to.
2224  *
2225  *	Returns zero if successful or an error if the requested
2226  *	transition is illegal.
2227  */
2228 int
2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2230 {
2231 	enum scsi_device_state oldstate = sdev->sdev_state;
2232 
2233 	if (state == oldstate)
2234 		return 0;
2235 
2236 	switch (state) {
2237 	case SDEV_CREATED:
2238 		switch (oldstate) {
2239 		case SDEV_CREATED_BLOCK:
2240 			break;
2241 		default:
2242 			goto illegal;
2243 		}
2244 		break;
2245 
2246 	case SDEV_RUNNING:
2247 		switch (oldstate) {
2248 		case SDEV_CREATED:
2249 		case SDEV_OFFLINE:
2250 		case SDEV_TRANSPORT_OFFLINE:
2251 		case SDEV_QUIESCE:
2252 		case SDEV_BLOCK:
2253 			break;
2254 		default:
2255 			goto illegal;
2256 		}
2257 		break;
2258 
2259 	case SDEV_QUIESCE:
2260 		switch (oldstate) {
2261 		case SDEV_RUNNING:
2262 		case SDEV_OFFLINE:
2263 		case SDEV_TRANSPORT_OFFLINE:
2264 			break;
2265 		default:
2266 			goto illegal;
2267 		}
2268 		break;
2269 
2270 	case SDEV_OFFLINE:
2271 	case SDEV_TRANSPORT_OFFLINE:
2272 		switch (oldstate) {
2273 		case SDEV_CREATED:
2274 		case SDEV_RUNNING:
2275 		case SDEV_QUIESCE:
2276 		case SDEV_BLOCK:
2277 			break;
2278 		default:
2279 			goto illegal;
2280 		}
2281 		break;
2282 
2283 	case SDEV_BLOCK:
2284 		switch (oldstate) {
2285 		case SDEV_RUNNING:
2286 		case SDEV_CREATED_BLOCK:
2287 		case SDEV_OFFLINE:
2288 			break;
2289 		default:
2290 			goto illegal;
2291 		}
2292 		break;
2293 
2294 	case SDEV_CREATED_BLOCK:
2295 		switch (oldstate) {
2296 		case SDEV_CREATED:
2297 			break;
2298 		default:
2299 			goto illegal;
2300 		}
2301 		break;
2302 
2303 	case SDEV_CANCEL:
2304 		switch (oldstate) {
2305 		case SDEV_CREATED:
2306 		case SDEV_RUNNING:
2307 		case SDEV_QUIESCE:
2308 		case SDEV_OFFLINE:
2309 		case SDEV_TRANSPORT_OFFLINE:
2310 			break;
2311 		default:
2312 			goto illegal;
2313 		}
2314 		break;
2315 
2316 	case SDEV_DEL:
2317 		switch (oldstate) {
2318 		case SDEV_CREATED:
2319 		case SDEV_RUNNING:
2320 		case SDEV_OFFLINE:
2321 		case SDEV_TRANSPORT_OFFLINE:
2322 		case SDEV_CANCEL:
2323 		case SDEV_BLOCK:
2324 		case SDEV_CREATED_BLOCK:
2325 			break;
2326 		default:
2327 			goto illegal;
2328 		}
2329 		break;
2330 
2331 	}
2332 	sdev->offline_already = false;
2333 	sdev->sdev_state = state;
2334 	return 0;
2335 
2336  illegal:
2337 	SCSI_LOG_ERROR_RECOVERY(1,
2338 				sdev_printk(KERN_ERR, sdev,
2339 					    "Illegal state transition %s->%s",
2340 					    scsi_device_state_name(oldstate),
2341 					    scsi_device_state_name(state))
2342 				);
2343 	return -EINVAL;
2344 }
2345 EXPORT_SYMBOL(scsi_device_set_state);
2346 
2347 /**
2348  * 	sdev_evt_emit - emit a single SCSI device uevent
2349  *	@sdev: associated SCSI device
2350  *	@evt: event to emit
2351  *
2352  *	Send a single uevent (scsi_event) to the associated scsi_device.
2353  */
2354 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2355 {
2356 	int idx = 0;
2357 	char *envp[3];
2358 
2359 	switch (evt->evt_type) {
2360 	case SDEV_EVT_MEDIA_CHANGE:
2361 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2362 		break;
2363 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2364 		scsi_rescan_device(&sdev->sdev_gendev);
2365 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2366 		break;
2367 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2368 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2369 		break;
2370 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2371 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2372 		break;
2373 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2374 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2375 		break;
2376 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2377 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2378 		break;
2379 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2380 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2381 		break;
2382 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2383 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2384 		break;
2385 	default:
2386 		/* do nothing */
2387 		break;
2388 	}
2389 
2390 	envp[idx++] = NULL;
2391 
2392 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2393 }
2394 
2395 /**
2396  * 	sdev_evt_thread - send a uevent for each scsi event
2397  *	@work: work struct for scsi_device
2398  *
2399  *	Dispatch queued events to their associated scsi_device kobjects
2400  *	as uevents.
2401  */
2402 void scsi_evt_thread(struct work_struct *work)
2403 {
2404 	struct scsi_device *sdev;
2405 	enum scsi_device_event evt_type;
2406 	LIST_HEAD(event_list);
2407 
2408 	sdev = container_of(work, struct scsi_device, event_work);
2409 
2410 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2411 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2412 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2413 
2414 	while (1) {
2415 		struct scsi_event *evt;
2416 		struct list_head *this, *tmp;
2417 		unsigned long flags;
2418 
2419 		spin_lock_irqsave(&sdev->list_lock, flags);
2420 		list_splice_init(&sdev->event_list, &event_list);
2421 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2422 
2423 		if (list_empty(&event_list))
2424 			break;
2425 
2426 		list_for_each_safe(this, tmp, &event_list) {
2427 			evt = list_entry(this, struct scsi_event, node);
2428 			list_del(&evt->node);
2429 			scsi_evt_emit(sdev, evt);
2430 			kfree(evt);
2431 		}
2432 	}
2433 }
2434 
2435 /**
2436  * 	sdev_evt_send - send asserted event to uevent thread
2437  *	@sdev: scsi_device event occurred on
2438  *	@evt: event to send
2439  *
2440  *	Assert scsi device event asynchronously.
2441  */
2442 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444 	unsigned long flags;
2445 
2446 #if 0
2447 	/* FIXME: currently this check eliminates all media change events
2448 	 * for polled devices.  Need to update to discriminate between AN
2449 	 * and polled events */
2450 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2451 		kfree(evt);
2452 		return;
2453 	}
2454 #endif
2455 
2456 	spin_lock_irqsave(&sdev->list_lock, flags);
2457 	list_add_tail(&evt->node, &sdev->event_list);
2458 	schedule_work(&sdev->event_work);
2459 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2460 }
2461 EXPORT_SYMBOL_GPL(sdev_evt_send);
2462 
2463 /**
2464  * 	sdev_evt_alloc - allocate a new scsi event
2465  *	@evt_type: type of event to allocate
2466  *	@gfpflags: GFP flags for allocation
2467  *
2468  *	Allocates and returns a new scsi_event.
2469  */
2470 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2471 				  gfp_t gfpflags)
2472 {
2473 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2474 	if (!evt)
2475 		return NULL;
2476 
2477 	evt->evt_type = evt_type;
2478 	INIT_LIST_HEAD(&evt->node);
2479 
2480 	/* evt_type-specific initialization, if any */
2481 	switch (evt_type) {
2482 	case SDEV_EVT_MEDIA_CHANGE:
2483 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2484 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2485 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2486 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2487 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2488 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2489 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2490 	default:
2491 		/* do nothing */
2492 		break;
2493 	}
2494 
2495 	return evt;
2496 }
2497 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2498 
2499 /**
2500  * 	sdev_evt_send_simple - send asserted event to uevent thread
2501  *	@sdev: scsi_device event occurred on
2502  *	@evt_type: type of event to send
2503  *	@gfpflags: GFP flags for allocation
2504  *
2505  *	Assert scsi device event asynchronously, given an event type.
2506  */
2507 void sdev_evt_send_simple(struct scsi_device *sdev,
2508 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2509 {
2510 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2511 	if (!evt) {
2512 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2513 			    evt_type);
2514 		return;
2515 	}
2516 
2517 	sdev_evt_send(sdev, evt);
2518 }
2519 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2520 
2521 /**
2522  *	scsi_device_quiesce - Block user issued commands.
2523  *	@sdev:	scsi device to quiesce.
2524  *
2525  *	This works by trying to transition to the SDEV_QUIESCE state
2526  *	(which must be a legal transition).  When the device is in this
2527  *	state, only special requests will be accepted, all others will
2528  *	be deferred.  Since special requests may also be requeued requests,
2529  *	a successful return doesn't guarantee the device will be
2530  *	totally quiescent.
2531  *
2532  *	Must be called with user context, may sleep.
2533  *
2534  *	Returns zero if unsuccessful or an error if not.
2535  */
2536 int
2537 scsi_device_quiesce(struct scsi_device *sdev)
2538 {
2539 	struct request_queue *q = sdev->request_queue;
2540 	int err;
2541 
2542 	/*
2543 	 * It is allowed to call scsi_device_quiesce() multiple times from
2544 	 * the same context but concurrent scsi_device_quiesce() calls are
2545 	 * not allowed.
2546 	 */
2547 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2548 
2549 	if (sdev->quiesced_by == current)
2550 		return 0;
2551 
2552 	blk_set_pm_only(q);
2553 
2554 	blk_mq_freeze_queue(q);
2555 	/*
2556 	 * Ensure that the effect of blk_set_pm_only() will be visible
2557 	 * for percpu_ref_tryget() callers that occur after the queue
2558 	 * unfreeze even if the queue was already frozen before this function
2559 	 * was called. See also https://lwn.net/Articles/573497/.
2560 	 */
2561 	synchronize_rcu();
2562 	blk_mq_unfreeze_queue(q);
2563 
2564 	mutex_lock(&sdev->state_mutex);
2565 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2566 	if (err == 0)
2567 		sdev->quiesced_by = current;
2568 	else
2569 		blk_clear_pm_only(q);
2570 	mutex_unlock(&sdev->state_mutex);
2571 
2572 	return err;
2573 }
2574 EXPORT_SYMBOL(scsi_device_quiesce);
2575 
2576 /**
2577  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2578  *	@sdev:	scsi device to resume.
2579  *
2580  *	Moves the device from quiesced back to running and restarts the
2581  *	queues.
2582  *
2583  *	Must be called with user context, may sleep.
2584  */
2585 void scsi_device_resume(struct scsi_device *sdev)
2586 {
2587 	/* check if the device state was mutated prior to resume, and if
2588 	 * so assume the state is being managed elsewhere (for example
2589 	 * device deleted during suspend)
2590 	 */
2591 	mutex_lock(&sdev->state_mutex);
2592 	if (sdev->quiesced_by) {
2593 		sdev->quiesced_by = NULL;
2594 		blk_clear_pm_only(sdev->request_queue);
2595 	}
2596 	if (sdev->sdev_state == SDEV_QUIESCE)
2597 		scsi_device_set_state(sdev, SDEV_RUNNING);
2598 	mutex_unlock(&sdev->state_mutex);
2599 }
2600 EXPORT_SYMBOL(scsi_device_resume);
2601 
2602 static void
2603 device_quiesce_fn(struct scsi_device *sdev, void *data)
2604 {
2605 	scsi_device_quiesce(sdev);
2606 }
2607 
2608 void
2609 scsi_target_quiesce(struct scsi_target *starget)
2610 {
2611 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2612 }
2613 EXPORT_SYMBOL(scsi_target_quiesce);
2614 
2615 static void
2616 device_resume_fn(struct scsi_device *sdev, void *data)
2617 {
2618 	scsi_device_resume(sdev);
2619 }
2620 
2621 void
2622 scsi_target_resume(struct scsi_target *starget)
2623 {
2624 	starget_for_each_device(starget, NULL, device_resume_fn);
2625 }
2626 EXPORT_SYMBOL(scsi_target_resume);
2627 
2628 /**
2629  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2630  * @sdev: device to block
2631  *
2632  * Pause SCSI command processing on the specified device. Does not sleep.
2633  *
2634  * Returns zero if successful or a negative error code upon failure.
2635  *
2636  * Notes:
2637  * This routine transitions the device to the SDEV_BLOCK state (which must be
2638  * a legal transition). When the device is in this state, command processing
2639  * is paused until the device leaves the SDEV_BLOCK state. See also
2640  * scsi_internal_device_unblock_nowait().
2641  */
2642 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2643 {
2644 	struct request_queue *q = sdev->request_queue;
2645 	int err = 0;
2646 
2647 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2648 	if (err) {
2649 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2650 
2651 		if (err)
2652 			return err;
2653 	}
2654 
2655 	/*
2656 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2657 	 * block layer from calling the midlayer with this device's
2658 	 * request queue.
2659 	 */
2660 	blk_mq_quiesce_queue_nowait(q);
2661 	return 0;
2662 }
2663 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2664 
2665 /**
2666  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2667  * @sdev: device to block
2668  *
2669  * Pause SCSI command processing on the specified device and wait until all
2670  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2671  *
2672  * Returns zero if successful or a negative error code upon failure.
2673  *
2674  * Note:
2675  * This routine transitions the device to the SDEV_BLOCK state (which must be
2676  * a legal transition). When the device is in this state, command processing
2677  * is paused until the device leaves the SDEV_BLOCK state. See also
2678  * scsi_internal_device_unblock().
2679  */
2680 static int scsi_internal_device_block(struct scsi_device *sdev)
2681 {
2682 	struct request_queue *q = sdev->request_queue;
2683 	int err;
2684 
2685 	mutex_lock(&sdev->state_mutex);
2686 	err = scsi_internal_device_block_nowait(sdev);
2687 	if (err == 0)
2688 		blk_mq_quiesce_queue(q);
2689 	mutex_unlock(&sdev->state_mutex);
2690 
2691 	return err;
2692 }
2693 
2694 void scsi_start_queue(struct scsi_device *sdev)
2695 {
2696 	struct request_queue *q = sdev->request_queue;
2697 
2698 	blk_mq_unquiesce_queue(q);
2699 }
2700 
2701 /**
2702  * scsi_internal_device_unblock_nowait - resume a device after a block request
2703  * @sdev:	device to resume
2704  * @new_state:	state to set the device to after unblocking
2705  *
2706  * Restart the device queue for a previously suspended SCSI device. Does not
2707  * sleep.
2708  *
2709  * Returns zero if successful or a negative error code upon failure.
2710  *
2711  * Notes:
2712  * This routine transitions the device to the SDEV_RUNNING state or to one of
2713  * the offline states (which must be a legal transition) allowing the midlayer
2714  * to goose the queue for this device.
2715  */
2716 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2717 					enum scsi_device_state new_state)
2718 {
2719 	switch (new_state) {
2720 	case SDEV_RUNNING:
2721 	case SDEV_TRANSPORT_OFFLINE:
2722 		break;
2723 	default:
2724 		return -EINVAL;
2725 	}
2726 
2727 	/*
2728 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2729 	 * offlined states and goose the device queue if successful.
2730 	 */
2731 	switch (sdev->sdev_state) {
2732 	case SDEV_BLOCK:
2733 	case SDEV_TRANSPORT_OFFLINE:
2734 		sdev->sdev_state = new_state;
2735 		break;
2736 	case SDEV_CREATED_BLOCK:
2737 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2738 		    new_state == SDEV_OFFLINE)
2739 			sdev->sdev_state = new_state;
2740 		else
2741 			sdev->sdev_state = SDEV_CREATED;
2742 		break;
2743 	case SDEV_CANCEL:
2744 	case SDEV_OFFLINE:
2745 		break;
2746 	default:
2747 		return -EINVAL;
2748 	}
2749 	scsi_start_queue(sdev);
2750 
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2754 
2755 /**
2756  * scsi_internal_device_unblock - resume a device after a block request
2757  * @sdev:	device to resume
2758  * @new_state:	state to set the device to after unblocking
2759  *
2760  * Restart the device queue for a previously suspended SCSI device. May sleep.
2761  *
2762  * Returns zero if successful or a negative error code upon failure.
2763  *
2764  * Notes:
2765  * This routine transitions the device to the SDEV_RUNNING state or to one of
2766  * the offline states (which must be a legal transition) allowing the midlayer
2767  * to goose the queue for this device.
2768  */
2769 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2770 					enum scsi_device_state new_state)
2771 {
2772 	int ret;
2773 
2774 	mutex_lock(&sdev->state_mutex);
2775 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2776 	mutex_unlock(&sdev->state_mutex);
2777 
2778 	return ret;
2779 }
2780 
2781 static void
2782 device_block(struct scsi_device *sdev, void *data)
2783 {
2784 	int ret;
2785 
2786 	ret = scsi_internal_device_block(sdev);
2787 
2788 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2789 		  dev_name(&sdev->sdev_gendev), ret);
2790 }
2791 
2792 static int
2793 target_block(struct device *dev, void *data)
2794 {
2795 	if (scsi_is_target_device(dev))
2796 		starget_for_each_device(to_scsi_target(dev), NULL,
2797 					device_block);
2798 	return 0;
2799 }
2800 
2801 void
2802 scsi_target_block(struct device *dev)
2803 {
2804 	if (scsi_is_target_device(dev))
2805 		starget_for_each_device(to_scsi_target(dev), NULL,
2806 					device_block);
2807 	else
2808 		device_for_each_child(dev, NULL, target_block);
2809 }
2810 EXPORT_SYMBOL_GPL(scsi_target_block);
2811 
2812 static void
2813 device_unblock(struct scsi_device *sdev, void *data)
2814 {
2815 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2816 }
2817 
2818 static int
2819 target_unblock(struct device *dev, void *data)
2820 {
2821 	if (scsi_is_target_device(dev))
2822 		starget_for_each_device(to_scsi_target(dev), data,
2823 					device_unblock);
2824 	return 0;
2825 }
2826 
2827 void
2828 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2829 {
2830 	if (scsi_is_target_device(dev))
2831 		starget_for_each_device(to_scsi_target(dev), &new_state,
2832 					device_unblock);
2833 	else
2834 		device_for_each_child(dev, &new_state, target_unblock);
2835 }
2836 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2837 
2838 int
2839 scsi_host_block(struct Scsi_Host *shost)
2840 {
2841 	struct scsi_device *sdev;
2842 	int ret = 0;
2843 
2844 	shost_for_each_device(sdev, shost) {
2845 		ret = scsi_internal_device_block(sdev);
2846 		if (ret)
2847 			break;
2848 	}
2849 	return ret;
2850 }
2851 EXPORT_SYMBOL_GPL(scsi_host_block);
2852 
2853 int
2854 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2855 {
2856 	struct scsi_device *sdev;
2857 	int ret = 0;
2858 
2859 	shost_for_each_device(sdev, shost) {
2860 		ret = scsi_internal_device_unblock(sdev, new_state);
2861 		if (ret)
2862 			break;
2863 	}
2864 	return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2867 
2868 /**
2869  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2870  * @sgl:	scatter-gather list
2871  * @sg_count:	number of segments in sg
2872  * @offset:	offset in bytes into sg, on return offset into the mapped area
2873  * @len:	bytes to map, on return number of bytes mapped
2874  *
2875  * Returns virtual address of the start of the mapped page
2876  */
2877 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2878 			  size_t *offset, size_t *len)
2879 {
2880 	int i;
2881 	size_t sg_len = 0, len_complete = 0;
2882 	struct scatterlist *sg;
2883 	struct page *page;
2884 
2885 	WARN_ON(!irqs_disabled());
2886 
2887 	for_each_sg(sgl, sg, sg_count, i) {
2888 		len_complete = sg_len; /* Complete sg-entries */
2889 		sg_len += sg->length;
2890 		if (sg_len > *offset)
2891 			break;
2892 	}
2893 
2894 	if (unlikely(i == sg_count)) {
2895 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2896 			"elements %d\n",
2897 		       __func__, sg_len, *offset, sg_count);
2898 		WARN_ON(1);
2899 		return NULL;
2900 	}
2901 
2902 	/* Offset starting from the beginning of first page in this sg-entry */
2903 	*offset = *offset - len_complete + sg->offset;
2904 
2905 	/* Assumption: contiguous pages can be accessed as "page + i" */
2906 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2907 	*offset &= ~PAGE_MASK;
2908 
2909 	/* Bytes in this sg-entry from *offset to the end of the page */
2910 	sg_len = PAGE_SIZE - *offset;
2911 	if (*len > sg_len)
2912 		*len = sg_len;
2913 
2914 	return kmap_atomic(page);
2915 }
2916 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2917 
2918 /**
2919  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2920  * @virt:	virtual address to be unmapped
2921  */
2922 void scsi_kunmap_atomic_sg(void *virt)
2923 {
2924 	kunmap_atomic(virt);
2925 }
2926 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2927 
2928 void sdev_disable_disk_events(struct scsi_device *sdev)
2929 {
2930 	atomic_inc(&sdev->disk_events_disable_depth);
2931 }
2932 EXPORT_SYMBOL(sdev_disable_disk_events);
2933 
2934 void sdev_enable_disk_events(struct scsi_device *sdev)
2935 {
2936 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2937 		return;
2938 	atomic_dec(&sdev->disk_events_disable_depth);
2939 }
2940 EXPORT_SYMBOL(sdev_enable_disk_events);
2941 
2942 /**
2943  * scsi_vpd_lun_id - return a unique device identification
2944  * @sdev: SCSI device
2945  * @id:   buffer for the identification
2946  * @id_len:  length of the buffer
2947  *
2948  * Copies a unique device identification into @id based
2949  * on the information in the VPD page 0x83 of the device.
2950  * The string will be formatted as a SCSI name string.
2951  *
2952  * Returns the length of the identification or error on failure.
2953  * If the identifier is longer than the supplied buffer the actual
2954  * identifier length is returned and the buffer is not zero-padded.
2955  */
2956 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2957 {
2958 	u8 cur_id_type = 0xff;
2959 	u8 cur_id_size = 0;
2960 	const unsigned char *d, *cur_id_str;
2961 	const struct scsi_vpd *vpd_pg83;
2962 	int id_size = -EINVAL;
2963 
2964 	rcu_read_lock();
2965 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2966 	if (!vpd_pg83) {
2967 		rcu_read_unlock();
2968 		return -ENXIO;
2969 	}
2970 
2971 	/*
2972 	 * Look for the correct descriptor.
2973 	 * Order of preference for lun descriptor:
2974 	 * - SCSI name string
2975 	 * - NAA IEEE Registered Extended
2976 	 * - EUI-64 based 16-byte
2977 	 * - EUI-64 based 12-byte
2978 	 * - NAA IEEE Registered
2979 	 * - NAA IEEE Extended
2980 	 * - T10 Vendor ID
2981 	 * as longer descriptors reduce the likelyhood
2982 	 * of identification clashes.
2983 	 */
2984 
2985 	/* The id string must be at least 20 bytes + terminating NULL byte */
2986 	if (id_len < 21) {
2987 		rcu_read_unlock();
2988 		return -EINVAL;
2989 	}
2990 
2991 	memset(id, 0, id_len);
2992 	d = vpd_pg83->data + 4;
2993 	while (d < vpd_pg83->data + vpd_pg83->len) {
2994 		/* Skip designators not referring to the LUN */
2995 		if ((d[1] & 0x30) != 0x00)
2996 			goto next_desig;
2997 
2998 		switch (d[1] & 0xf) {
2999 		case 0x1:
3000 			/* T10 Vendor ID */
3001 			if (cur_id_size > d[3])
3002 				break;
3003 			/* Prefer anything */
3004 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3005 				break;
3006 			cur_id_size = d[3];
3007 			if (cur_id_size + 4 > id_len)
3008 				cur_id_size = id_len - 4;
3009 			cur_id_str = d + 4;
3010 			cur_id_type = d[1] & 0xf;
3011 			id_size = snprintf(id, id_len, "t10.%*pE",
3012 					   cur_id_size, cur_id_str);
3013 			break;
3014 		case 0x2:
3015 			/* EUI-64 */
3016 			if (cur_id_size > d[3])
3017 				break;
3018 			/* Prefer NAA IEEE Registered Extended */
3019 			if (cur_id_type == 0x3 &&
3020 			    cur_id_size == d[3])
3021 				break;
3022 			cur_id_size = d[3];
3023 			cur_id_str = d + 4;
3024 			cur_id_type = d[1] & 0xf;
3025 			switch (cur_id_size) {
3026 			case 8:
3027 				id_size = snprintf(id, id_len,
3028 						   "eui.%8phN",
3029 						   cur_id_str);
3030 				break;
3031 			case 12:
3032 				id_size = snprintf(id, id_len,
3033 						   "eui.%12phN",
3034 						   cur_id_str);
3035 				break;
3036 			case 16:
3037 				id_size = snprintf(id, id_len,
3038 						   "eui.%16phN",
3039 						   cur_id_str);
3040 				break;
3041 			default:
3042 				cur_id_size = 0;
3043 				break;
3044 			}
3045 			break;
3046 		case 0x3:
3047 			/* NAA */
3048 			if (cur_id_size > d[3])
3049 				break;
3050 			cur_id_size = d[3];
3051 			cur_id_str = d + 4;
3052 			cur_id_type = d[1] & 0xf;
3053 			switch (cur_id_size) {
3054 			case 8:
3055 				id_size = snprintf(id, id_len,
3056 						   "naa.%8phN",
3057 						   cur_id_str);
3058 				break;
3059 			case 16:
3060 				id_size = snprintf(id, id_len,
3061 						   "naa.%16phN",
3062 						   cur_id_str);
3063 				break;
3064 			default:
3065 				cur_id_size = 0;
3066 				break;
3067 			}
3068 			break;
3069 		case 0x8:
3070 			/* SCSI name string */
3071 			if (cur_id_size + 4 > d[3])
3072 				break;
3073 			/* Prefer others for truncated descriptor */
3074 			if (cur_id_size && d[3] > id_len)
3075 				break;
3076 			cur_id_size = id_size = d[3];
3077 			cur_id_str = d + 4;
3078 			cur_id_type = d[1] & 0xf;
3079 			if (cur_id_size >= id_len)
3080 				cur_id_size = id_len - 1;
3081 			memcpy(id, cur_id_str, cur_id_size);
3082 			/* Decrease priority for truncated descriptor */
3083 			if (cur_id_size != id_size)
3084 				cur_id_size = 6;
3085 			break;
3086 		default:
3087 			break;
3088 		}
3089 next_desig:
3090 		d += d[3] + 4;
3091 	}
3092 	rcu_read_unlock();
3093 
3094 	return id_size;
3095 }
3096 EXPORT_SYMBOL(scsi_vpd_lun_id);
3097 
3098 /*
3099  * scsi_vpd_tpg_id - return a target port group identifier
3100  * @sdev: SCSI device
3101  *
3102  * Returns the Target Port Group identifier from the information
3103  * froom VPD page 0x83 of the device.
3104  *
3105  * Returns the identifier or error on failure.
3106  */
3107 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3108 {
3109 	const unsigned char *d;
3110 	const struct scsi_vpd *vpd_pg83;
3111 	int group_id = -EAGAIN, rel_port = -1;
3112 
3113 	rcu_read_lock();
3114 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3115 	if (!vpd_pg83) {
3116 		rcu_read_unlock();
3117 		return -ENXIO;
3118 	}
3119 
3120 	d = vpd_pg83->data + 4;
3121 	while (d < vpd_pg83->data + vpd_pg83->len) {
3122 		switch (d[1] & 0xf) {
3123 		case 0x4:
3124 			/* Relative target port */
3125 			rel_port = get_unaligned_be16(&d[6]);
3126 			break;
3127 		case 0x5:
3128 			/* Target port group */
3129 			group_id = get_unaligned_be16(&d[6]);
3130 			break;
3131 		default:
3132 			break;
3133 		}
3134 		d += d[3] + 4;
3135 	}
3136 	rcu_read_unlock();
3137 
3138 	if (group_id >= 0 && rel_id && rel_port != -1)
3139 		*rel_id = rel_port;
3140 
3141 	return group_id;
3142 }
3143 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3144