1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 172 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 173 "Inserting command %p into mlqueue\n", cmd)); 174 175 scsi_set_blocked(cmd, reason); 176 177 /* 178 * Decrement the counters, since these commands are no longer 179 * active on the host/device. 180 */ 181 if (unbusy) 182 scsi_device_unbusy(device); 183 184 /* 185 * Requeue this command. It will go before all other commands 186 * that are already in the queue. Schedule requeue work under 187 * lock such that the kblockd_schedule_work() call happens 188 * before blk_cleanup_queue() finishes. 189 */ 190 cmd->result = 0; 191 192 /* 193 * Before a SCSI command is dispatched, 194 * get_device(&sdev->sdev_gendev) is called and the host, 195 * target and device busy counters are increased. Since 196 * requeuing a request causes these actions to be repeated and 197 * since scsi_device_unbusy() has already been called, 198 * put_device(&device->sdev_gendev) must still be called. Call 199 * put_device() after blk_mq_requeue_request() to avoid that 200 * removal of the SCSI device can start before requeueing has 201 * happened. 202 */ 203 blk_mq_requeue_request(cmd->request, true); 204 put_device(&device->sdev_gendev); 205 } 206 207 /* 208 * Function: scsi_queue_insert() 209 * 210 * Purpose: Insert a command in the midlevel queue. 211 * 212 * Arguments: cmd - command that we are adding to queue. 213 * reason - why we are inserting command to queue. 214 * 215 * Lock status: Assumed that lock is not held upon entry. 216 * 217 * Returns: Nothing. 218 * 219 * Notes: We do this for one of two cases. Either the host is busy 220 * and it cannot accept any more commands for the time being, 221 * or the device returned QUEUE_FULL and can accept no more 222 * commands. 223 * Notes: This could be called either from an interrupt context or a 224 * normal process context. 225 */ 226 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 227 { 228 __scsi_queue_insert(cmd, reason, true); 229 } 230 231 232 /** 233 * __scsi_execute - insert request and wait for the result 234 * @sdev: scsi device 235 * @cmd: scsi command 236 * @data_direction: data direction 237 * @buffer: data buffer 238 * @bufflen: len of buffer 239 * @sense: optional sense buffer 240 * @sshdr: optional decoded sense header 241 * @timeout: request timeout in seconds 242 * @retries: number of times to retry request 243 * @flags: flags for ->cmd_flags 244 * @rq_flags: flags for ->rq_flags 245 * @resid: optional residual length 246 * 247 * Returns the scsi_cmnd result field if a command was executed, or a negative 248 * Linux error code if we didn't get that far. 249 */ 250 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 251 int data_direction, void *buffer, unsigned bufflen, 252 unsigned char *sense, struct scsi_sense_hdr *sshdr, 253 int timeout, int retries, u64 flags, req_flags_t rq_flags, 254 int *resid) 255 { 256 struct request *req; 257 struct scsi_request *rq; 258 int ret = DRIVER_ERROR << 24; 259 260 req = blk_get_request(sdev->request_queue, 261 data_direction == DMA_TO_DEVICE ? 262 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 263 if (IS_ERR(req)) 264 return ret; 265 rq = scsi_req(req); 266 267 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 268 buffer, bufflen, GFP_NOIO)) 269 goto out; 270 271 rq->cmd_len = COMMAND_SIZE(cmd[0]); 272 memcpy(rq->cmd, cmd, rq->cmd_len); 273 rq->retries = retries; 274 req->timeout = timeout; 275 req->cmd_flags |= flags; 276 req->rq_flags |= rq_flags | RQF_QUIET; 277 278 /* 279 * head injection *required* here otherwise quiesce won't work 280 */ 281 blk_execute_rq(req->q, NULL, req, 1); 282 283 /* 284 * Some devices (USB mass-storage in particular) may transfer 285 * garbage data together with a residue indicating that the data 286 * is invalid. Prevent the garbage from being misinterpreted 287 * and prevent security leaks by zeroing out the excess data. 288 */ 289 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 290 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 291 292 if (resid) 293 *resid = rq->resid_len; 294 if (sense && rq->sense_len) 295 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 296 if (sshdr) 297 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 298 ret = rq->result; 299 out: 300 blk_put_request(req); 301 302 return ret; 303 } 304 EXPORT_SYMBOL(__scsi_execute); 305 306 /* 307 * Function: scsi_init_cmd_errh() 308 * 309 * Purpose: Initialize cmd fields related to error handling. 310 * 311 * Arguments: cmd - command that is ready to be queued. 312 * 313 * Notes: This function has the job of initializing a number of 314 * fields related to error handling. Typically this will 315 * be called once for each command, as required. 316 */ 317 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 318 { 319 cmd->serial_number = 0; 320 scsi_set_resid(cmd, 0); 321 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 322 if (cmd->cmd_len == 0) 323 cmd->cmd_len = scsi_command_size(cmd->cmnd); 324 } 325 326 /* 327 * Decrement the host_busy counter and wake up the error handler if necessary. 328 * Avoid as follows that the error handler is not woken up if shost->host_busy 329 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 330 * with an RCU read lock in this function to ensure that this function in its 331 * entirety either finishes before scsi_eh_scmd_add() increases the 332 * host_failed counter or that it notices the shost state change made by 333 * scsi_eh_scmd_add(). 334 */ 335 static void scsi_dec_host_busy(struct Scsi_Host *shost) 336 { 337 unsigned long flags; 338 339 rcu_read_lock(); 340 atomic_dec(&shost->host_busy); 341 if (unlikely(scsi_host_in_recovery(shost))) { 342 spin_lock_irqsave(shost->host_lock, flags); 343 if (shost->host_failed || shost->host_eh_scheduled) 344 scsi_eh_wakeup(shost); 345 spin_unlock_irqrestore(shost->host_lock, flags); 346 } 347 rcu_read_unlock(); 348 } 349 350 void scsi_device_unbusy(struct scsi_device *sdev) 351 { 352 struct Scsi_Host *shost = sdev->host; 353 struct scsi_target *starget = scsi_target(sdev); 354 355 scsi_dec_host_busy(shost); 356 357 if (starget->can_queue > 0) 358 atomic_dec(&starget->target_busy); 359 360 atomic_dec(&sdev->device_busy); 361 } 362 363 static void scsi_kick_queue(struct request_queue *q) 364 { 365 blk_mq_run_hw_queues(q, false); 366 } 367 368 /* 369 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 370 * and call blk_run_queue for all the scsi_devices on the target - 371 * including current_sdev first. 372 * 373 * Called with *no* scsi locks held. 374 */ 375 static void scsi_single_lun_run(struct scsi_device *current_sdev) 376 { 377 struct Scsi_Host *shost = current_sdev->host; 378 struct scsi_device *sdev, *tmp; 379 struct scsi_target *starget = scsi_target(current_sdev); 380 unsigned long flags; 381 382 spin_lock_irqsave(shost->host_lock, flags); 383 starget->starget_sdev_user = NULL; 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 386 /* 387 * Call blk_run_queue for all LUNs on the target, starting with 388 * current_sdev. We race with others (to set starget_sdev_user), 389 * but in most cases, we will be first. Ideally, each LU on the 390 * target would get some limited time or requests on the target. 391 */ 392 scsi_kick_queue(current_sdev->request_queue); 393 394 spin_lock_irqsave(shost->host_lock, flags); 395 if (starget->starget_sdev_user) 396 goto out; 397 list_for_each_entry_safe(sdev, tmp, &starget->devices, 398 same_target_siblings) { 399 if (sdev == current_sdev) 400 continue; 401 if (scsi_device_get(sdev)) 402 continue; 403 404 spin_unlock_irqrestore(shost->host_lock, flags); 405 scsi_kick_queue(sdev->request_queue); 406 spin_lock_irqsave(shost->host_lock, flags); 407 408 scsi_device_put(sdev); 409 } 410 out: 411 spin_unlock_irqrestore(shost->host_lock, flags); 412 } 413 414 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 415 { 416 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 417 return true; 418 if (atomic_read(&sdev->device_blocked) > 0) 419 return true; 420 return false; 421 } 422 423 static inline bool scsi_target_is_busy(struct scsi_target *starget) 424 { 425 if (starget->can_queue > 0) { 426 if (atomic_read(&starget->target_busy) >= starget->can_queue) 427 return true; 428 if (atomic_read(&starget->target_blocked) > 0) 429 return true; 430 } 431 return false; 432 } 433 434 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 435 { 436 if (shost->can_queue > 0 && 437 atomic_read(&shost->host_busy) >= shost->can_queue) 438 return true; 439 if (atomic_read(&shost->host_blocked) > 0) 440 return true; 441 if (shost->host_self_blocked) 442 return true; 443 return false; 444 } 445 446 static void scsi_starved_list_run(struct Scsi_Host *shost) 447 { 448 LIST_HEAD(starved_list); 449 struct scsi_device *sdev; 450 unsigned long flags; 451 452 spin_lock_irqsave(shost->host_lock, flags); 453 list_splice_init(&shost->starved_list, &starved_list); 454 455 while (!list_empty(&starved_list)) { 456 struct request_queue *slq; 457 458 /* 459 * As long as shost is accepting commands and we have 460 * starved queues, call blk_run_queue. scsi_request_fn 461 * drops the queue_lock and can add us back to the 462 * starved_list. 463 * 464 * host_lock protects the starved_list and starved_entry. 465 * scsi_request_fn must get the host_lock before checking 466 * or modifying starved_list or starved_entry. 467 */ 468 if (scsi_host_is_busy(shost)) 469 break; 470 471 sdev = list_entry(starved_list.next, 472 struct scsi_device, starved_entry); 473 list_del_init(&sdev->starved_entry); 474 if (scsi_target_is_busy(scsi_target(sdev))) { 475 list_move_tail(&sdev->starved_entry, 476 &shost->starved_list); 477 continue; 478 } 479 480 /* 481 * Once we drop the host lock, a racing scsi_remove_device() 482 * call may remove the sdev from the starved list and destroy 483 * it and the queue. Mitigate by taking a reference to the 484 * queue and never touching the sdev again after we drop the 485 * host lock. Note: if __scsi_remove_device() invokes 486 * blk_cleanup_queue() before the queue is run from this 487 * function then blk_run_queue() will return immediately since 488 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 489 */ 490 slq = sdev->request_queue; 491 if (!blk_get_queue(slq)) 492 continue; 493 spin_unlock_irqrestore(shost->host_lock, flags); 494 495 scsi_kick_queue(slq); 496 blk_put_queue(slq); 497 498 spin_lock_irqsave(shost->host_lock, flags); 499 } 500 /* put any unprocessed entries back */ 501 list_splice(&starved_list, &shost->starved_list); 502 spin_unlock_irqrestore(shost->host_lock, flags); 503 } 504 505 /* 506 * Function: scsi_run_queue() 507 * 508 * Purpose: Select a proper request queue to serve next 509 * 510 * Arguments: q - last request's queue 511 * 512 * Returns: Nothing 513 * 514 * Notes: The previous command was completely finished, start 515 * a new one if possible. 516 */ 517 static void scsi_run_queue(struct request_queue *q) 518 { 519 struct scsi_device *sdev = q->queuedata; 520 521 if (scsi_target(sdev)->single_lun) 522 scsi_single_lun_run(sdev); 523 if (!list_empty(&sdev->host->starved_list)) 524 scsi_starved_list_run(sdev->host); 525 526 blk_mq_run_hw_queues(q, false); 527 } 528 529 void scsi_requeue_run_queue(struct work_struct *work) 530 { 531 struct scsi_device *sdev; 532 struct request_queue *q; 533 534 sdev = container_of(work, struct scsi_device, requeue_work); 535 q = sdev->request_queue; 536 scsi_run_queue(q); 537 } 538 539 void scsi_run_host_queues(struct Scsi_Host *shost) 540 { 541 struct scsi_device *sdev; 542 543 shost_for_each_device(sdev, shost) 544 scsi_run_queue(sdev->request_queue); 545 } 546 547 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 548 { 549 if (!blk_rq_is_passthrough(cmd->request)) { 550 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 551 552 if (drv->uninit_command) 553 drv->uninit_command(cmd); 554 } 555 } 556 557 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 558 { 559 struct scsi_data_buffer *sdb; 560 561 if (cmd->sdb.table.nents) 562 sg_free_table_chained(&cmd->sdb.table, true); 563 if (cmd->request->next_rq) { 564 sdb = cmd->request->next_rq->special; 565 if (sdb) 566 sg_free_table_chained(&sdb->table, true); 567 } 568 if (scsi_prot_sg_count(cmd)) 569 sg_free_table_chained(&cmd->prot_sdb->table, true); 570 } 571 572 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 573 { 574 scsi_mq_free_sgtables(cmd); 575 scsi_uninit_cmd(cmd); 576 scsi_del_cmd_from_list(cmd); 577 } 578 579 /* Returns false when no more bytes to process, true if there are more */ 580 static bool scsi_end_request(struct request *req, blk_status_t error, 581 unsigned int bytes, unsigned int bidi_bytes) 582 { 583 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 584 struct scsi_device *sdev = cmd->device; 585 struct request_queue *q = sdev->request_queue; 586 587 if (blk_update_request(req, error, bytes)) 588 return true; 589 590 /* Bidi request must be completed as a whole */ 591 if (unlikely(bidi_bytes) && 592 blk_update_request(req->next_rq, error, bidi_bytes)) 593 return true; 594 595 if (blk_queue_add_random(q)) 596 add_disk_randomness(req->rq_disk); 597 598 if (!blk_rq_is_scsi(req)) { 599 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 600 cmd->flags &= ~SCMD_INITIALIZED; 601 destroy_rcu_head(&cmd->rcu); 602 } 603 604 /* 605 * In the MQ case the command gets freed by __blk_mq_end_request, 606 * so we have to do all cleanup that depends on it earlier. 607 * 608 * We also can't kick the queues from irq context, so we 609 * will have to defer it to a workqueue. 610 */ 611 scsi_mq_uninit_cmd(cmd); 612 613 /* 614 * queue is still alive, so grab the ref for preventing it 615 * from being cleaned up during running queue. 616 */ 617 percpu_ref_get(&q->q_usage_counter); 618 619 __blk_mq_end_request(req, error); 620 621 if (scsi_target(sdev)->single_lun || 622 !list_empty(&sdev->host->starved_list)) 623 kblockd_schedule_work(&sdev->requeue_work); 624 else 625 blk_mq_run_hw_queues(q, true); 626 627 percpu_ref_put(&q->q_usage_counter); 628 put_device(&sdev->sdev_gendev); 629 return false; 630 } 631 632 /** 633 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 634 * @cmd: SCSI command 635 * @result: scsi error code 636 * 637 * Translate a SCSI result code into a blk_status_t value. May reset the host 638 * byte of @cmd->result. 639 */ 640 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 641 { 642 switch (host_byte(result)) { 643 case DID_OK: 644 /* 645 * Also check the other bytes than the status byte in result 646 * to handle the case when a SCSI LLD sets result to 647 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 648 */ 649 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 650 return BLK_STS_OK; 651 return BLK_STS_IOERR; 652 case DID_TRANSPORT_FAILFAST: 653 return BLK_STS_TRANSPORT; 654 case DID_TARGET_FAILURE: 655 set_host_byte(cmd, DID_OK); 656 return BLK_STS_TARGET; 657 case DID_NEXUS_FAILURE: 658 return BLK_STS_NEXUS; 659 case DID_ALLOC_FAILURE: 660 set_host_byte(cmd, DID_OK); 661 return BLK_STS_NOSPC; 662 case DID_MEDIUM_ERROR: 663 set_host_byte(cmd, DID_OK); 664 return BLK_STS_MEDIUM; 665 default: 666 return BLK_STS_IOERR; 667 } 668 } 669 670 /* Helper for scsi_io_completion() when "reprep" action required. */ 671 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 672 struct request_queue *q) 673 { 674 /* A new command will be prepared and issued. */ 675 scsi_mq_requeue_cmd(cmd); 676 } 677 678 /* Helper for scsi_io_completion() when special action required. */ 679 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 680 { 681 struct request_queue *q = cmd->device->request_queue; 682 struct request *req = cmd->request; 683 int level = 0; 684 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 685 ACTION_DELAYED_RETRY} action; 686 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 687 struct scsi_sense_hdr sshdr; 688 bool sense_valid; 689 bool sense_current = true; /* false implies "deferred sense" */ 690 blk_status_t blk_stat; 691 692 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 693 if (sense_valid) 694 sense_current = !scsi_sense_is_deferred(&sshdr); 695 696 blk_stat = scsi_result_to_blk_status(cmd, result); 697 698 if (host_byte(result) == DID_RESET) { 699 /* Third party bus reset or reset for error recovery 700 * reasons. Just retry the command and see what 701 * happens. 702 */ 703 action = ACTION_RETRY; 704 } else if (sense_valid && sense_current) { 705 switch (sshdr.sense_key) { 706 case UNIT_ATTENTION: 707 if (cmd->device->removable) { 708 /* Detected disc change. Set a bit 709 * and quietly refuse further access. 710 */ 711 cmd->device->changed = 1; 712 action = ACTION_FAIL; 713 } else { 714 /* Must have been a power glitch, or a 715 * bus reset. Could not have been a 716 * media change, so we just retry the 717 * command and see what happens. 718 */ 719 action = ACTION_RETRY; 720 } 721 break; 722 case ILLEGAL_REQUEST: 723 /* If we had an ILLEGAL REQUEST returned, then 724 * we may have performed an unsupported 725 * command. The only thing this should be 726 * would be a ten byte read where only a six 727 * byte read was supported. Also, on a system 728 * where READ CAPACITY failed, we may have 729 * read past the end of the disk. 730 */ 731 if ((cmd->device->use_10_for_rw && 732 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 733 (cmd->cmnd[0] == READ_10 || 734 cmd->cmnd[0] == WRITE_10)) { 735 /* This will issue a new 6-byte command. */ 736 cmd->device->use_10_for_rw = 0; 737 action = ACTION_REPREP; 738 } else if (sshdr.asc == 0x10) /* DIX */ { 739 action = ACTION_FAIL; 740 blk_stat = BLK_STS_PROTECTION; 741 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 742 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 743 action = ACTION_FAIL; 744 blk_stat = BLK_STS_TARGET; 745 } else 746 action = ACTION_FAIL; 747 break; 748 case ABORTED_COMMAND: 749 action = ACTION_FAIL; 750 if (sshdr.asc == 0x10) /* DIF */ 751 blk_stat = BLK_STS_PROTECTION; 752 break; 753 case NOT_READY: 754 /* If the device is in the process of becoming 755 * ready, or has a temporary blockage, retry. 756 */ 757 if (sshdr.asc == 0x04) { 758 switch (sshdr.ascq) { 759 case 0x01: /* becoming ready */ 760 case 0x04: /* format in progress */ 761 case 0x05: /* rebuild in progress */ 762 case 0x06: /* recalculation in progress */ 763 case 0x07: /* operation in progress */ 764 case 0x08: /* Long write in progress */ 765 case 0x09: /* self test in progress */ 766 case 0x14: /* space allocation in progress */ 767 case 0x1a: /* start stop unit in progress */ 768 case 0x1b: /* sanitize in progress */ 769 case 0x1d: /* configuration in progress */ 770 case 0x24: /* depopulation in progress */ 771 action = ACTION_DELAYED_RETRY; 772 break; 773 default: 774 action = ACTION_FAIL; 775 break; 776 } 777 } else 778 action = ACTION_FAIL; 779 break; 780 case VOLUME_OVERFLOW: 781 /* See SSC3rXX or current. */ 782 action = ACTION_FAIL; 783 break; 784 default: 785 action = ACTION_FAIL; 786 break; 787 } 788 } else 789 action = ACTION_FAIL; 790 791 if (action != ACTION_FAIL && 792 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 793 action = ACTION_FAIL; 794 795 switch (action) { 796 case ACTION_FAIL: 797 /* Give up and fail the remainder of the request */ 798 if (!(req->rq_flags & RQF_QUIET)) { 799 static DEFINE_RATELIMIT_STATE(_rs, 800 DEFAULT_RATELIMIT_INTERVAL, 801 DEFAULT_RATELIMIT_BURST); 802 803 if (unlikely(scsi_logging_level)) 804 level = 805 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 806 SCSI_LOG_MLCOMPLETE_BITS); 807 808 /* 809 * if logging is enabled the failure will be printed 810 * in scsi_log_completion(), so avoid duplicate messages 811 */ 812 if (!level && __ratelimit(&_rs)) { 813 scsi_print_result(cmd, NULL, FAILED); 814 if (driver_byte(result) == DRIVER_SENSE) 815 scsi_print_sense(cmd); 816 scsi_print_command(cmd); 817 } 818 } 819 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0)) 820 return; 821 /*FALLTHRU*/ 822 case ACTION_REPREP: 823 scsi_io_completion_reprep(cmd, q); 824 break; 825 case ACTION_RETRY: 826 /* Retry the same command immediately */ 827 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 828 break; 829 case ACTION_DELAYED_RETRY: 830 /* Retry the same command after a delay */ 831 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 832 break; 833 } 834 } 835 836 /* 837 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 838 * new result that may suppress further error checking. Also modifies 839 * *blk_statp in some cases. 840 */ 841 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 842 blk_status_t *blk_statp) 843 { 844 bool sense_valid; 845 bool sense_current = true; /* false implies "deferred sense" */ 846 struct request *req = cmd->request; 847 struct scsi_sense_hdr sshdr; 848 849 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 850 if (sense_valid) 851 sense_current = !scsi_sense_is_deferred(&sshdr); 852 853 if (blk_rq_is_passthrough(req)) { 854 if (sense_valid) { 855 /* 856 * SG_IO wants current and deferred errors 857 */ 858 scsi_req(req)->sense_len = 859 min(8 + cmd->sense_buffer[7], 860 SCSI_SENSE_BUFFERSIZE); 861 } 862 if (sense_current) 863 *blk_statp = scsi_result_to_blk_status(cmd, result); 864 } else if (blk_rq_bytes(req) == 0 && sense_current) { 865 /* 866 * Flush commands do not transfers any data, and thus cannot use 867 * good_bytes != blk_rq_bytes(req) as the signal for an error. 868 * This sets *blk_statp explicitly for the problem case. 869 */ 870 *blk_statp = scsi_result_to_blk_status(cmd, result); 871 } 872 /* 873 * Recovered errors need reporting, but they're always treated as 874 * success, so fiddle the result code here. For passthrough requests 875 * we already took a copy of the original into sreq->result which 876 * is what gets returned to the user 877 */ 878 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 879 bool do_print = true; 880 /* 881 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 882 * skip print since caller wants ATA registers. Only occurs 883 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 884 */ 885 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 886 do_print = false; 887 else if (req->rq_flags & RQF_QUIET) 888 do_print = false; 889 if (do_print) 890 scsi_print_sense(cmd); 891 result = 0; 892 /* for passthrough, *blk_statp may be set */ 893 *blk_statp = BLK_STS_OK; 894 } 895 /* 896 * Another corner case: the SCSI status byte is non-zero but 'good'. 897 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 898 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 899 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 900 * intermediate statuses (both obsolete in SAM-4) as good. 901 */ 902 if (status_byte(result) && scsi_status_is_good(result)) { 903 result = 0; 904 *blk_statp = BLK_STS_OK; 905 } 906 return result; 907 } 908 909 /* 910 * Function: scsi_io_completion() 911 * 912 * Purpose: Completion processing for block device I/O requests. 913 * 914 * Arguments: cmd - command that is finished. 915 * 916 * Lock status: Assumed that no lock is held upon entry. 917 * 918 * Returns: Nothing 919 * 920 * Notes: We will finish off the specified number of sectors. If we 921 * are done, the command block will be released and the queue 922 * function will be goosed. If we are not done then we have to 923 * figure out what to do next: 924 * 925 * a) We can call scsi_requeue_command(). The request 926 * will be unprepared and put back on the queue. Then 927 * a new command will be created for it. This should 928 * be used if we made forward progress, or if we want 929 * to switch from READ(10) to READ(6) for example. 930 * 931 * b) We can call __scsi_queue_insert(). The request will 932 * be put back on the queue and retried using the same 933 * command as before, possibly after a delay. 934 * 935 * c) We can call scsi_end_request() with blk_stat other than 936 * BLK_STS_OK, to fail the remainder of the request. 937 */ 938 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 939 { 940 int result = cmd->result; 941 struct request_queue *q = cmd->device->request_queue; 942 struct request *req = cmd->request; 943 blk_status_t blk_stat = BLK_STS_OK; 944 945 if (unlikely(result)) /* a nz result may or may not be an error */ 946 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 947 948 if (unlikely(blk_rq_is_passthrough(req))) { 949 /* 950 * scsi_result_to_blk_status may have reset the host_byte 951 */ 952 scsi_req(req)->result = cmd->result; 953 scsi_req(req)->resid_len = scsi_get_resid(cmd); 954 955 if (unlikely(scsi_bidi_cmnd(cmd))) { 956 /* 957 * Bidi commands Must be complete as a whole, 958 * both sides at once. 959 */ 960 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 961 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 962 blk_rq_bytes(req->next_rq))) 963 WARN_ONCE(true, 964 "Bidi command with remaining bytes"); 965 return; 966 } 967 } 968 969 /* no bidi support yet, other than in pass-through */ 970 if (unlikely(blk_bidi_rq(req))) { 971 WARN_ONCE(true, "Only support bidi command in passthrough"); 972 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n"); 973 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req), 974 blk_rq_bytes(req->next_rq))) 975 WARN_ONCE(true, "Bidi command with remaining bytes"); 976 return; 977 } 978 979 /* 980 * Next deal with any sectors which we were able to correctly 981 * handle. 982 */ 983 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 984 "%u sectors total, %d bytes done.\n", 985 blk_rq_sectors(req), good_bytes)); 986 987 /* 988 * Next deal with any sectors which we were able to correctly 989 * handle. Failed, zero length commands always need to drop down 990 * to retry code. Fast path should return in this block. 991 */ 992 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 993 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0))) 994 return; /* no bytes remaining */ 995 } 996 997 /* Kill remainder if no retries. */ 998 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 999 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0)) 1000 WARN_ONCE(true, 1001 "Bytes remaining after failed, no-retry command"); 1002 return; 1003 } 1004 1005 /* 1006 * If there had been no error, but we have leftover bytes in the 1007 * requeues just queue the command up again. 1008 */ 1009 if (likely(result == 0)) 1010 scsi_io_completion_reprep(cmd, q); 1011 else 1012 scsi_io_completion_action(cmd, result); 1013 } 1014 1015 static blk_status_t scsi_init_sgtable(struct request *req, 1016 struct scsi_data_buffer *sdb) 1017 { 1018 int count; 1019 1020 /* 1021 * If sg table allocation fails, requeue request later. 1022 */ 1023 if (unlikely(sg_alloc_table_chained(&sdb->table, 1024 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1025 return BLK_STS_RESOURCE; 1026 1027 /* 1028 * Next, walk the list, and fill in the addresses and sizes of 1029 * each segment. 1030 */ 1031 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1032 BUG_ON(count > sdb->table.nents); 1033 sdb->table.nents = count; 1034 sdb->length = blk_rq_payload_bytes(req); 1035 return BLK_STS_OK; 1036 } 1037 1038 /* 1039 * Function: scsi_init_io() 1040 * 1041 * Purpose: SCSI I/O initialize function. 1042 * 1043 * Arguments: cmd - Command descriptor we wish to initialize 1044 * 1045 * Returns: BLK_STS_OK on success 1046 * BLK_STS_RESOURCE if the failure is retryable 1047 * BLK_STS_IOERR if the failure is fatal 1048 */ 1049 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1050 { 1051 struct request *rq = cmd->request; 1052 blk_status_t ret; 1053 1054 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1055 return BLK_STS_IOERR; 1056 1057 ret = scsi_init_sgtable(rq, &cmd->sdb); 1058 if (ret) 1059 return ret; 1060 1061 if (blk_bidi_rq(rq)) { 1062 ret = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1063 if (ret) 1064 goto out_free_sgtables; 1065 } 1066 1067 if (blk_integrity_rq(rq)) { 1068 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1069 int ivecs, count; 1070 1071 if (WARN_ON_ONCE(!prot_sdb)) { 1072 /* 1073 * This can happen if someone (e.g. multipath) 1074 * queues a command to a device on an adapter 1075 * that does not support DIX. 1076 */ 1077 ret = BLK_STS_IOERR; 1078 goto out_free_sgtables; 1079 } 1080 1081 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1082 1083 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1084 prot_sdb->table.sgl)) { 1085 ret = BLK_STS_RESOURCE; 1086 goto out_free_sgtables; 1087 } 1088 1089 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1090 prot_sdb->table.sgl); 1091 BUG_ON(count > ivecs); 1092 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1093 1094 cmd->prot_sdb = prot_sdb; 1095 cmd->prot_sdb->table.nents = count; 1096 } 1097 1098 return BLK_STS_OK; 1099 out_free_sgtables: 1100 scsi_mq_free_sgtables(cmd); 1101 return ret; 1102 } 1103 EXPORT_SYMBOL(scsi_init_io); 1104 1105 /** 1106 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1107 * @rq: Request associated with the SCSI command to be initialized. 1108 * 1109 * This function initializes the members of struct scsi_cmnd that must be 1110 * initialized before request processing starts and that won't be 1111 * reinitialized if a SCSI command is requeued. 1112 * 1113 * Called from inside blk_get_request() for pass-through requests and from 1114 * inside scsi_init_command() for filesystem requests. 1115 */ 1116 static void scsi_initialize_rq(struct request *rq) 1117 { 1118 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1119 1120 scsi_req_init(&cmd->req); 1121 init_rcu_head(&cmd->rcu); 1122 cmd->jiffies_at_alloc = jiffies; 1123 cmd->retries = 0; 1124 } 1125 1126 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1127 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1128 { 1129 struct scsi_device *sdev = cmd->device; 1130 struct Scsi_Host *shost = sdev->host; 1131 unsigned long flags; 1132 1133 if (shost->use_cmd_list) { 1134 spin_lock_irqsave(&sdev->list_lock, flags); 1135 list_add_tail(&cmd->list, &sdev->cmd_list); 1136 spin_unlock_irqrestore(&sdev->list_lock, flags); 1137 } 1138 } 1139 1140 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1141 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1142 { 1143 struct scsi_device *sdev = cmd->device; 1144 struct Scsi_Host *shost = sdev->host; 1145 unsigned long flags; 1146 1147 if (shost->use_cmd_list) { 1148 spin_lock_irqsave(&sdev->list_lock, flags); 1149 BUG_ON(list_empty(&cmd->list)); 1150 list_del_init(&cmd->list); 1151 spin_unlock_irqrestore(&sdev->list_lock, flags); 1152 } 1153 } 1154 1155 /* Called after a request has been started. */ 1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1157 { 1158 void *buf = cmd->sense_buffer; 1159 void *prot = cmd->prot_sdb; 1160 struct request *rq = blk_mq_rq_from_pdu(cmd); 1161 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1162 unsigned long jiffies_at_alloc; 1163 int retries; 1164 1165 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1166 flags |= SCMD_INITIALIZED; 1167 scsi_initialize_rq(rq); 1168 } 1169 1170 jiffies_at_alloc = cmd->jiffies_at_alloc; 1171 retries = cmd->retries; 1172 /* zero out the cmd, except for the embedded scsi_request */ 1173 memset((char *)cmd + sizeof(cmd->req), 0, 1174 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1175 1176 cmd->device = dev; 1177 cmd->sense_buffer = buf; 1178 cmd->prot_sdb = prot; 1179 cmd->flags = flags; 1180 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1181 cmd->jiffies_at_alloc = jiffies_at_alloc; 1182 cmd->retries = retries; 1183 1184 scsi_add_cmd_to_list(cmd); 1185 } 1186 1187 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1188 struct request *req) 1189 { 1190 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1191 1192 /* 1193 * Passthrough requests may transfer data, in which case they must 1194 * a bio attached to them. Or they might contain a SCSI command 1195 * that does not transfer data, in which case they may optionally 1196 * submit a request without an attached bio. 1197 */ 1198 if (req->bio) { 1199 blk_status_t ret = scsi_init_io(cmd); 1200 if (unlikely(ret != BLK_STS_OK)) 1201 return ret; 1202 } else { 1203 BUG_ON(blk_rq_bytes(req)); 1204 1205 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1206 } 1207 1208 cmd->cmd_len = scsi_req(req)->cmd_len; 1209 cmd->cmnd = scsi_req(req)->cmd; 1210 cmd->transfersize = blk_rq_bytes(req); 1211 cmd->allowed = scsi_req(req)->retries; 1212 return BLK_STS_OK; 1213 } 1214 1215 /* 1216 * Setup a normal block command. These are simple request from filesystems 1217 * that still need to be translated to SCSI CDBs from the ULD. 1218 */ 1219 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1220 struct request *req) 1221 { 1222 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1223 1224 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1225 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1226 if (ret != BLK_STS_OK) 1227 return ret; 1228 } 1229 1230 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1231 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1232 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1233 } 1234 1235 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1236 struct request *req) 1237 { 1238 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1239 1240 if (!blk_rq_bytes(req)) 1241 cmd->sc_data_direction = DMA_NONE; 1242 else if (rq_data_dir(req) == WRITE) 1243 cmd->sc_data_direction = DMA_TO_DEVICE; 1244 else 1245 cmd->sc_data_direction = DMA_FROM_DEVICE; 1246 1247 if (blk_rq_is_scsi(req)) 1248 return scsi_setup_scsi_cmnd(sdev, req); 1249 else 1250 return scsi_setup_fs_cmnd(sdev, req); 1251 } 1252 1253 static blk_status_t 1254 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1255 { 1256 switch (sdev->sdev_state) { 1257 case SDEV_OFFLINE: 1258 case SDEV_TRANSPORT_OFFLINE: 1259 /* 1260 * If the device is offline we refuse to process any 1261 * commands. The device must be brought online 1262 * before trying any recovery commands. 1263 */ 1264 sdev_printk(KERN_ERR, sdev, 1265 "rejecting I/O to offline device\n"); 1266 return BLK_STS_IOERR; 1267 case SDEV_DEL: 1268 /* 1269 * If the device is fully deleted, we refuse to 1270 * process any commands as well. 1271 */ 1272 sdev_printk(KERN_ERR, sdev, 1273 "rejecting I/O to dead device\n"); 1274 return BLK_STS_IOERR; 1275 case SDEV_BLOCK: 1276 case SDEV_CREATED_BLOCK: 1277 return BLK_STS_RESOURCE; 1278 case SDEV_QUIESCE: 1279 /* 1280 * If the devices is blocked we defer normal commands. 1281 */ 1282 if (req && !(req->rq_flags & RQF_PREEMPT)) 1283 return BLK_STS_RESOURCE; 1284 return BLK_STS_OK; 1285 default: 1286 /* 1287 * For any other not fully online state we only allow 1288 * special commands. In particular any user initiated 1289 * command is not allowed. 1290 */ 1291 if (req && !(req->rq_flags & RQF_PREEMPT)) 1292 return BLK_STS_IOERR; 1293 return BLK_STS_OK; 1294 } 1295 } 1296 1297 /* 1298 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1299 * return 0. 1300 * 1301 * Called with the queue_lock held. 1302 */ 1303 static inline int scsi_dev_queue_ready(struct request_queue *q, 1304 struct scsi_device *sdev) 1305 { 1306 unsigned int busy; 1307 1308 busy = atomic_inc_return(&sdev->device_busy) - 1; 1309 if (atomic_read(&sdev->device_blocked)) { 1310 if (busy) 1311 goto out_dec; 1312 1313 /* 1314 * unblock after device_blocked iterates to zero 1315 */ 1316 if (atomic_dec_return(&sdev->device_blocked) > 0) 1317 goto out_dec; 1318 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1319 "unblocking device at zero depth\n")); 1320 } 1321 1322 if (busy >= sdev->queue_depth) 1323 goto out_dec; 1324 1325 return 1; 1326 out_dec: 1327 atomic_dec(&sdev->device_busy); 1328 return 0; 1329 } 1330 1331 /* 1332 * scsi_target_queue_ready: checks if there we can send commands to target 1333 * @sdev: scsi device on starget to check. 1334 */ 1335 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1336 struct scsi_device *sdev) 1337 { 1338 struct scsi_target *starget = scsi_target(sdev); 1339 unsigned int busy; 1340 1341 if (starget->single_lun) { 1342 spin_lock_irq(shost->host_lock); 1343 if (starget->starget_sdev_user && 1344 starget->starget_sdev_user != sdev) { 1345 spin_unlock_irq(shost->host_lock); 1346 return 0; 1347 } 1348 starget->starget_sdev_user = sdev; 1349 spin_unlock_irq(shost->host_lock); 1350 } 1351 1352 if (starget->can_queue <= 0) 1353 return 1; 1354 1355 busy = atomic_inc_return(&starget->target_busy) - 1; 1356 if (atomic_read(&starget->target_blocked) > 0) { 1357 if (busy) 1358 goto starved; 1359 1360 /* 1361 * unblock after target_blocked iterates to zero 1362 */ 1363 if (atomic_dec_return(&starget->target_blocked) > 0) 1364 goto out_dec; 1365 1366 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1367 "unblocking target at zero depth\n")); 1368 } 1369 1370 if (busy >= starget->can_queue) 1371 goto starved; 1372 1373 return 1; 1374 1375 starved: 1376 spin_lock_irq(shost->host_lock); 1377 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1378 spin_unlock_irq(shost->host_lock); 1379 out_dec: 1380 if (starget->can_queue > 0) 1381 atomic_dec(&starget->target_busy); 1382 return 0; 1383 } 1384 1385 /* 1386 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1387 * return 0. We must end up running the queue again whenever 0 is 1388 * returned, else IO can hang. 1389 */ 1390 static inline int scsi_host_queue_ready(struct request_queue *q, 1391 struct Scsi_Host *shost, 1392 struct scsi_device *sdev) 1393 { 1394 unsigned int busy; 1395 1396 if (scsi_host_in_recovery(shost)) 1397 return 0; 1398 1399 busy = atomic_inc_return(&shost->host_busy) - 1; 1400 if (atomic_read(&shost->host_blocked) > 0) { 1401 if (busy) 1402 goto starved; 1403 1404 /* 1405 * unblock after host_blocked iterates to zero 1406 */ 1407 if (atomic_dec_return(&shost->host_blocked) > 0) 1408 goto out_dec; 1409 1410 SCSI_LOG_MLQUEUE(3, 1411 shost_printk(KERN_INFO, shost, 1412 "unblocking host at zero depth\n")); 1413 } 1414 1415 if (shost->can_queue > 0 && busy >= shost->can_queue) 1416 goto starved; 1417 if (shost->host_self_blocked) 1418 goto starved; 1419 1420 /* We're OK to process the command, so we can't be starved */ 1421 if (!list_empty(&sdev->starved_entry)) { 1422 spin_lock_irq(shost->host_lock); 1423 if (!list_empty(&sdev->starved_entry)) 1424 list_del_init(&sdev->starved_entry); 1425 spin_unlock_irq(shost->host_lock); 1426 } 1427 1428 return 1; 1429 1430 starved: 1431 spin_lock_irq(shost->host_lock); 1432 if (list_empty(&sdev->starved_entry)) 1433 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1434 spin_unlock_irq(shost->host_lock); 1435 out_dec: 1436 scsi_dec_host_busy(shost); 1437 return 0; 1438 } 1439 1440 /* 1441 * Busy state exporting function for request stacking drivers. 1442 * 1443 * For efficiency, no lock is taken to check the busy state of 1444 * shost/starget/sdev, since the returned value is not guaranteed and 1445 * may be changed after request stacking drivers call the function, 1446 * regardless of taking lock or not. 1447 * 1448 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1449 * needs to return 'not busy'. Otherwise, request stacking drivers 1450 * may hold requests forever. 1451 */ 1452 static bool scsi_mq_lld_busy(struct request_queue *q) 1453 { 1454 struct scsi_device *sdev = q->queuedata; 1455 struct Scsi_Host *shost; 1456 1457 if (blk_queue_dying(q)) 1458 return false; 1459 1460 shost = sdev->host; 1461 1462 /* 1463 * Ignore host/starget busy state. 1464 * Since block layer does not have a concept of fairness across 1465 * multiple queues, congestion of host/starget needs to be handled 1466 * in SCSI layer. 1467 */ 1468 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1469 return true; 1470 1471 return false; 1472 } 1473 1474 static void scsi_softirq_done(struct request *rq) 1475 { 1476 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1477 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1478 int disposition; 1479 1480 INIT_LIST_HEAD(&cmd->eh_entry); 1481 1482 atomic_inc(&cmd->device->iodone_cnt); 1483 if (cmd->result) 1484 atomic_inc(&cmd->device->ioerr_cnt); 1485 1486 disposition = scsi_decide_disposition(cmd); 1487 if (disposition != SUCCESS && 1488 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1489 sdev_printk(KERN_ERR, cmd->device, 1490 "timing out command, waited %lus\n", 1491 wait_for/HZ); 1492 disposition = SUCCESS; 1493 } 1494 1495 scsi_log_completion(cmd, disposition); 1496 1497 switch (disposition) { 1498 case SUCCESS: 1499 scsi_finish_command(cmd); 1500 break; 1501 case NEEDS_RETRY: 1502 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1503 break; 1504 case ADD_TO_MLQUEUE: 1505 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1506 break; 1507 default: 1508 scsi_eh_scmd_add(cmd); 1509 break; 1510 } 1511 } 1512 1513 /** 1514 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1515 * @cmd: command block we are dispatching. 1516 * 1517 * Return: nonzero return request was rejected and device's queue needs to be 1518 * plugged. 1519 */ 1520 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1521 { 1522 struct Scsi_Host *host = cmd->device->host; 1523 int rtn = 0; 1524 1525 atomic_inc(&cmd->device->iorequest_cnt); 1526 1527 /* check if the device is still usable */ 1528 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1529 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1530 * returns an immediate error upwards, and signals 1531 * that the device is no longer present */ 1532 cmd->result = DID_NO_CONNECT << 16; 1533 goto done; 1534 } 1535 1536 /* Check to see if the scsi lld made this device blocked. */ 1537 if (unlikely(scsi_device_blocked(cmd->device))) { 1538 /* 1539 * in blocked state, the command is just put back on 1540 * the device queue. The suspend state has already 1541 * blocked the queue so future requests should not 1542 * occur until the device transitions out of the 1543 * suspend state. 1544 */ 1545 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1546 "queuecommand : device blocked\n")); 1547 return SCSI_MLQUEUE_DEVICE_BUSY; 1548 } 1549 1550 /* Store the LUN value in cmnd, if needed. */ 1551 if (cmd->device->lun_in_cdb) 1552 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1553 (cmd->device->lun << 5 & 0xe0); 1554 1555 scsi_log_send(cmd); 1556 1557 /* 1558 * Before we queue this command, check if the command 1559 * length exceeds what the host adapter can handle. 1560 */ 1561 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1562 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1563 "queuecommand : command too long. " 1564 "cdb_size=%d host->max_cmd_len=%d\n", 1565 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1566 cmd->result = (DID_ABORT << 16); 1567 goto done; 1568 } 1569 1570 if (unlikely(host->shost_state == SHOST_DEL)) { 1571 cmd->result = (DID_NO_CONNECT << 16); 1572 goto done; 1573 1574 } 1575 1576 trace_scsi_dispatch_cmd_start(cmd); 1577 rtn = host->hostt->queuecommand(host, cmd); 1578 if (rtn) { 1579 trace_scsi_dispatch_cmd_error(cmd, rtn); 1580 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1581 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1582 rtn = SCSI_MLQUEUE_HOST_BUSY; 1583 1584 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1585 "queuecommand : request rejected\n")); 1586 } 1587 1588 return rtn; 1589 done: 1590 cmd->scsi_done(cmd); 1591 return 0; 1592 } 1593 1594 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1595 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1596 { 1597 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1598 sizeof(struct scatterlist); 1599 } 1600 1601 static blk_status_t scsi_mq_prep_fn(struct request *req) 1602 { 1603 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1604 struct scsi_device *sdev = req->q->queuedata; 1605 struct Scsi_Host *shost = sdev->host; 1606 struct scatterlist *sg; 1607 1608 scsi_init_command(sdev, cmd); 1609 1610 req->special = cmd; 1611 1612 cmd->request = req; 1613 1614 cmd->tag = req->tag; 1615 cmd->prot_op = SCSI_PROT_NORMAL; 1616 1617 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1618 cmd->sdb.table.sgl = sg; 1619 1620 if (scsi_host_get_prot(shost)) { 1621 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1622 1623 cmd->prot_sdb->table.sgl = 1624 (struct scatterlist *)(cmd->prot_sdb + 1); 1625 } 1626 1627 if (blk_bidi_rq(req)) { 1628 struct request *next_rq = req->next_rq; 1629 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1630 1631 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1632 bidi_sdb->table.sgl = 1633 (struct scatterlist *)(bidi_sdb + 1); 1634 1635 next_rq->special = bidi_sdb; 1636 } 1637 1638 blk_mq_start_request(req); 1639 1640 return scsi_setup_cmnd(sdev, req); 1641 } 1642 1643 static void scsi_mq_done(struct scsi_cmnd *cmd) 1644 { 1645 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1646 return; 1647 trace_scsi_dispatch_cmd_done(cmd); 1648 1649 /* 1650 * If the block layer didn't complete the request due to a timeout 1651 * injection, scsi must clear its internal completed state so that the 1652 * timeout handler will see it needs to escalate its own error 1653 * recovery. 1654 */ 1655 if (unlikely(!blk_mq_complete_request(cmd->request))) 1656 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1657 } 1658 1659 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1660 { 1661 struct request_queue *q = hctx->queue; 1662 struct scsi_device *sdev = q->queuedata; 1663 1664 atomic_dec(&sdev->device_busy); 1665 put_device(&sdev->sdev_gendev); 1666 } 1667 1668 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1669 { 1670 struct request_queue *q = hctx->queue; 1671 struct scsi_device *sdev = q->queuedata; 1672 1673 if (!get_device(&sdev->sdev_gendev)) 1674 goto out; 1675 if (!scsi_dev_queue_ready(q, sdev)) 1676 goto out_put_device; 1677 1678 return true; 1679 1680 out_put_device: 1681 put_device(&sdev->sdev_gendev); 1682 out: 1683 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1684 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1685 return false; 1686 } 1687 1688 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1689 const struct blk_mq_queue_data *bd) 1690 { 1691 struct request *req = bd->rq; 1692 struct request_queue *q = req->q; 1693 struct scsi_device *sdev = q->queuedata; 1694 struct Scsi_Host *shost = sdev->host; 1695 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1696 blk_status_t ret; 1697 int reason; 1698 1699 /* 1700 * If the device is not in running state we will reject some or all 1701 * commands. 1702 */ 1703 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1704 ret = scsi_prep_state_check(sdev, req); 1705 if (ret != BLK_STS_OK) 1706 goto out_put_budget; 1707 } 1708 1709 ret = BLK_STS_RESOURCE; 1710 if (!scsi_target_queue_ready(shost, sdev)) 1711 goto out_put_budget; 1712 if (!scsi_host_queue_ready(q, shost, sdev)) 1713 goto out_dec_target_busy; 1714 1715 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1716 if (!(req->rq_flags & RQF_DONTPREP)) { 1717 ret = scsi_mq_prep_fn(req); 1718 if (ret != BLK_STS_OK) 1719 goto out_dec_host_busy; 1720 req->rq_flags |= RQF_DONTPREP; 1721 } else { 1722 blk_mq_start_request(req); 1723 } 1724 1725 if (sdev->simple_tags) 1726 cmd->flags |= SCMD_TAGGED; 1727 else 1728 cmd->flags &= ~SCMD_TAGGED; 1729 1730 scsi_init_cmd_errh(cmd); 1731 cmd->scsi_done = scsi_mq_done; 1732 1733 reason = scsi_dispatch_cmd(cmd); 1734 if (reason) { 1735 scsi_set_blocked(cmd, reason); 1736 ret = BLK_STS_RESOURCE; 1737 goto out_dec_host_busy; 1738 } 1739 1740 return BLK_STS_OK; 1741 1742 out_dec_host_busy: 1743 scsi_dec_host_busy(shost); 1744 out_dec_target_busy: 1745 if (scsi_target(sdev)->can_queue > 0) 1746 atomic_dec(&scsi_target(sdev)->target_busy); 1747 out_put_budget: 1748 scsi_mq_put_budget(hctx); 1749 switch (ret) { 1750 case BLK_STS_OK: 1751 break; 1752 case BLK_STS_RESOURCE: 1753 if (atomic_read(&sdev->device_busy) || 1754 scsi_device_blocked(sdev)) 1755 ret = BLK_STS_DEV_RESOURCE; 1756 break; 1757 default: 1758 /* 1759 * Make sure to release all allocated ressources when 1760 * we hit an error, as we will never see this command 1761 * again. 1762 */ 1763 if (req->rq_flags & RQF_DONTPREP) 1764 scsi_mq_uninit_cmd(cmd); 1765 break; 1766 } 1767 return ret; 1768 } 1769 1770 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1771 bool reserved) 1772 { 1773 if (reserved) 1774 return BLK_EH_RESET_TIMER; 1775 return scsi_times_out(req); 1776 } 1777 1778 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1779 unsigned int hctx_idx, unsigned int numa_node) 1780 { 1781 struct Scsi_Host *shost = set->driver_data; 1782 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1783 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1784 struct scatterlist *sg; 1785 1786 if (unchecked_isa_dma) 1787 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1788 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1789 GFP_KERNEL, numa_node); 1790 if (!cmd->sense_buffer) 1791 return -ENOMEM; 1792 cmd->req.sense = cmd->sense_buffer; 1793 1794 if (scsi_host_get_prot(shost)) { 1795 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1796 shost->hostt->cmd_size; 1797 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 1798 } 1799 1800 return 0; 1801 } 1802 1803 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1804 unsigned int hctx_idx) 1805 { 1806 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1807 1808 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1809 cmd->sense_buffer); 1810 } 1811 1812 static int scsi_map_queues(struct blk_mq_tag_set *set) 1813 { 1814 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1815 1816 if (shost->hostt->map_queues) 1817 return shost->hostt->map_queues(shost); 1818 return blk_mq_map_queues(&set->map[0]); 1819 } 1820 1821 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1822 { 1823 struct device *dev = shost->dma_dev; 1824 1825 /* 1826 * this limit is imposed by hardware restrictions 1827 */ 1828 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1829 SG_MAX_SEGMENTS)); 1830 1831 if (scsi_host_prot_dma(shost)) { 1832 shost->sg_prot_tablesize = 1833 min_not_zero(shost->sg_prot_tablesize, 1834 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1835 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1836 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1837 } 1838 1839 blk_queue_max_hw_sectors(q, shost->max_sectors); 1840 if (shost->unchecked_isa_dma) 1841 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1842 blk_queue_segment_boundary(q, shost->dma_boundary); 1843 dma_set_seg_boundary(dev, shost->dma_boundary); 1844 1845 blk_queue_max_segment_size(q, 1846 min(shost->max_segment_size, dma_get_max_seg_size(dev))); 1847 1848 /* 1849 * Set a reasonable default alignment: The larger of 32-byte (dword), 1850 * which is a common minimum for HBAs, and the minimum DMA alignment, 1851 * which is set by the platform. 1852 * 1853 * Devices that require a bigger alignment can increase it later. 1854 */ 1855 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1856 } 1857 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1858 1859 static const struct blk_mq_ops scsi_mq_ops = { 1860 .get_budget = scsi_mq_get_budget, 1861 .put_budget = scsi_mq_put_budget, 1862 .queue_rq = scsi_queue_rq, 1863 .complete = scsi_softirq_done, 1864 .timeout = scsi_timeout, 1865 #ifdef CONFIG_BLK_DEBUG_FS 1866 .show_rq = scsi_show_rq, 1867 #endif 1868 .init_request = scsi_mq_init_request, 1869 .exit_request = scsi_mq_exit_request, 1870 .initialize_rq_fn = scsi_initialize_rq, 1871 .busy = scsi_mq_lld_busy, 1872 .map_queues = scsi_map_queues, 1873 }; 1874 1875 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1876 { 1877 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1878 if (IS_ERR(sdev->request_queue)) 1879 return NULL; 1880 1881 sdev->request_queue->queuedata = sdev; 1882 __scsi_init_queue(sdev->host, sdev->request_queue); 1883 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1884 return sdev->request_queue; 1885 } 1886 1887 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1888 { 1889 unsigned int cmd_size, sgl_size; 1890 1891 sgl_size = scsi_mq_sgl_size(shost); 1892 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1893 if (scsi_host_get_prot(shost)) 1894 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 1895 1896 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1897 shost->tag_set.ops = &scsi_mq_ops; 1898 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1899 shost->tag_set.queue_depth = shost->can_queue; 1900 shost->tag_set.cmd_size = cmd_size; 1901 shost->tag_set.numa_node = NUMA_NO_NODE; 1902 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1903 shost->tag_set.flags |= 1904 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1905 shost->tag_set.driver_data = shost; 1906 1907 return blk_mq_alloc_tag_set(&shost->tag_set); 1908 } 1909 1910 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1911 { 1912 blk_mq_free_tag_set(&shost->tag_set); 1913 } 1914 1915 /** 1916 * scsi_device_from_queue - return sdev associated with a request_queue 1917 * @q: The request queue to return the sdev from 1918 * 1919 * Return the sdev associated with a request queue or NULL if the 1920 * request_queue does not reference a SCSI device. 1921 */ 1922 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1923 { 1924 struct scsi_device *sdev = NULL; 1925 1926 if (q->mq_ops == &scsi_mq_ops) 1927 sdev = q->queuedata; 1928 if (!sdev || !get_device(&sdev->sdev_gendev)) 1929 sdev = NULL; 1930 1931 return sdev; 1932 } 1933 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1934 1935 /* 1936 * Function: scsi_block_requests() 1937 * 1938 * Purpose: Utility function used by low-level drivers to prevent further 1939 * commands from being queued to the device. 1940 * 1941 * Arguments: shost - Host in question 1942 * 1943 * Returns: Nothing 1944 * 1945 * Lock status: No locks are assumed held. 1946 * 1947 * Notes: There is no timer nor any other means by which the requests 1948 * get unblocked other than the low-level driver calling 1949 * scsi_unblock_requests(). 1950 */ 1951 void scsi_block_requests(struct Scsi_Host *shost) 1952 { 1953 shost->host_self_blocked = 1; 1954 } 1955 EXPORT_SYMBOL(scsi_block_requests); 1956 1957 /* 1958 * Function: scsi_unblock_requests() 1959 * 1960 * Purpose: Utility function used by low-level drivers to allow further 1961 * commands from being queued to the device. 1962 * 1963 * Arguments: shost - Host in question 1964 * 1965 * Returns: Nothing 1966 * 1967 * Lock status: No locks are assumed held. 1968 * 1969 * Notes: There is no timer nor any other means by which the requests 1970 * get unblocked other than the low-level driver calling 1971 * scsi_unblock_requests(). 1972 * 1973 * This is done as an API function so that changes to the 1974 * internals of the scsi mid-layer won't require wholesale 1975 * changes to drivers that use this feature. 1976 */ 1977 void scsi_unblock_requests(struct Scsi_Host *shost) 1978 { 1979 shost->host_self_blocked = 0; 1980 scsi_run_host_queues(shost); 1981 } 1982 EXPORT_SYMBOL(scsi_unblock_requests); 1983 1984 int __init scsi_init_queue(void) 1985 { 1986 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1987 sizeof(struct scsi_data_buffer), 1988 0, 0, NULL); 1989 if (!scsi_sdb_cache) { 1990 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1991 return -ENOMEM; 1992 } 1993 1994 return 0; 1995 } 1996 1997 void scsi_exit_queue(void) 1998 { 1999 kmem_cache_destroy(scsi_sense_cache); 2000 kmem_cache_destroy(scsi_sense_isadma_cache); 2001 kmem_cache_destroy(scsi_sdb_cache); 2002 } 2003 2004 /** 2005 * scsi_mode_select - issue a mode select 2006 * @sdev: SCSI device to be queried 2007 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2008 * @sp: Save page bit (0 == don't save, 1 == save) 2009 * @modepage: mode page being requested 2010 * @buffer: request buffer (may not be smaller than eight bytes) 2011 * @len: length of request buffer. 2012 * @timeout: command timeout 2013 * @retries: number of retries before failing 2014 * @data: returns a structure abstracting the mode header data 2015 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2016 * must be SCSI_SENSE_BUFFERSIZE big. 2017 * 2018 * Returns zero if successful; negative error number or scsi 2019 * status on error 2020 * 2021 */ 2022 int 2023 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2024 unsigned char *buffer, int len, int timeout, int retries, 2025 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2026 { 2027 unsigned char cmd[10]; 2028 unsigned char *real_buffer; 2029 int ret; 2030 2031 memset(cmd, 0, sizeof(cmd)); 2032 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2033 2034 if (sdev->use_10_for_ms) { 2035 if (len > 65535) 2036 return -EINVAL; 2037 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2038 if (!real_buffer) 2039 return -ENOMEM; 2040 memcpy(real_buffer + 8, buffer, len); 2041 len += 8; 2042 real_buffer[0] = 0; 2043 real_buffer[1] = 0; 2044 real_buffer[2] = data->medium_type; 2045 real_buffer[3] = data->device_specific; 2046 real_buffer[4] = data->longlba ? 0x01 : 0; 2047 real_buffer[5] = 0; 2048 real_buffer[6] = data->block_descriptor_length >> 8; 2049 real_buffer[7] = data->block_descriptor_length; 2050 2051 cmd[0] = MODE_SELECT_10; 2052 cmd[7] = len >> 8; 2053 cmd[8] = len; 2054 } else { 2055 if (len > 255 || data->block_descriptor_length > 255 || 2056 data->longlba) 2057 return -EINVAL; 2058 2059 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2060 if (!real_buffer) 2061 return -ENOMEM; 2062 memcpy(real_buffer + 4, buffer, len); 2063 len += 4; 2064 real_buffer[0] = 0; 2065 real_buffer[1] = data->medium_type; 2066 real_buffer[2] = data->device_specific; 2067 real_buffer[3] = data->block_descriptor_length; 2068 2069 2070 cmd[0] = MODE_SELECT; 2071 cmd[4] = len; 2072 } 2073 2074 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2075 sshdr, timeout, retries, NULL); 2076 kfree(real_buffer); 2077 return ret; 2078 } 2079 EXPORT_SYMBOL_GPL(scsi_mode_select); 2080 2081 /** 2082 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2083 * @sdev: SCSI device to be queried 2084 * @dbd: set if mode sense will allow block descriptors to be returned 2085 * @modepage: mode page being requested 2086 * @buffer: request buffer (may not be smaller than eight bytes) 2087 * @len: length of request buffer. 2088 * @timeout: command timeout 2089 * @retries: number of retries before failing 2090 * @data: returns a structure abstracting the mode header data 2091 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2092 * must be SCSI_SENSE_BUFFERSIZE big. 2093 * 2094 * Returns zero if unsuccessful, or the header offset (either 4 2095 * or 8 depending on whether a six or ten byte command was 2096 * issued) if successful. 2097 */ 2098 int 2099 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2100 unsigned char *buffer, int len, int timeout, int retries, 2101 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2102 { 2103 unsigned char cmd[12]; 2104 int use_10_for_ms; 2105 int header_length; 2106 int result, retry_count = retries; 2107 struct scsi_sense_hdr my_sshdr; 2108 2109 memset(data, 0, sizeof(*data)); 2110 memset(&cmd[0], 0, 12); 2111 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2112 cmd[2] = modepage; 2113 2114 /* caller might not be interested in sense, but we need it */ 2115 if (!sshdr) 2116 sshdr = &my_sshdr; 2117 2118 retry: 2119 use_10_for_ms = sdev->use_10_for_ms; 2120 2121 if (use_10_for_ms) { 2122 if (len < 8) 2123 len = 8; 2124 2125 cmd[0] = MODE_SENSE_10; 2126 cmd[8] = len; 2127 header_length = 8; 2128 } else { 2129 if (len < 4) 2130 len = 4; 2131 2132 cmd[0] = MODE_SENSE; 2133 cmd[4] = len; 2134 header_length = 4; 2135 } 2136 2137 memset(buffer, 0, len); 2138 2139 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2140 sshdr, timeout, retries, NULL); 2141 2142 /* This code looks awful: what it's doing is making sure an 2143 * ILLEGAL REQUEST sense return identifies the actual command 2144 * byte as the problem. MODE_SENSE commands can return 2145 * ILLEGAL REQUEST if the code page isn't supported */ 2146 2147 if (use_10_for_ms && !scsi_status_is_good(result) && 2148 driver_byte(result) == DRIVER_SENSE) { 2149 if (scsi_sense_valid(sshdr)) { 2150 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2151 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2152 /* 2153 * Invalid command operation code 2154 */ 2155 sdev->use_10_for_ms = 0; 2156 goto retry; 2157 } 2158 } 2159 } 2160 2161 if(scsi_status_is_good(result)) { 2162 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2163 (modepage == 6 || modepage == 8))) { 2164 /* Initio breakage? */ 2165 header_length = 0; 2166 data->length = 13; 2167 data->medium_type = 0; 2168 data->device_specific = 0; 2169 data->longlba = 0; 2170 data->block_descriptor_length = 0; 2171 } else if(use_10_for_ms) { 2172 data->length = buffer[0]*256 + buffer[1] + 2; 2173 data->medium_type = buffer[2]; 2174 data->device_specific = buffer[3]; 2175 data->longlba = buffer[4] & 0x01; 2176 data->block_descriptor_length = buffer[6]*256 2177 + buffer[7]; 2178 } else { 2179 data->length = buffer[0] + 1; 2180 data->medium_type = buffer[1]; 2181 data->device_specific = buffer[2]; 2182 data->block_descriptor_length = buffer[3]; 2183 } 2184 data->header_length = header_length; 2185 } else if ((status_byte(result) == CHECK_CONDITION) && 2186 scsi_sense_valid(sshdr) && 2187 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2188 retry_count--; 2189 goto retry; 2190 } 2191 2192 return result; 2193 } 2194 EXPORT_SYMBOL(scsi_mode_sense); 2195 2196 /** 2197 * scsi_test_unit_ready - test if unit is ready 2198 * @sdev: scsi device to change the state of. 2199 * @timeout: command timeout 2200 * @retries: number of retries before failing 2201 * @sshdr: outpout pointer for decoded sense information. 2202 * 2203 * Returns zero if unsuccessful or an error if TUR failed. For 2204 * removable media, UNIT_ATTENTION sets ->changed flag. 2205 **/ 2206 int 2207 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2208 struct scsi_sense_hdr *sshdr) 2209 { 2210 char cmd[] = { 2211 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2212 }; 2213 int result; 2214 2215 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2216 do { 2217 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2218 timeout, 1, NULL); 2219 if (sdev->removable && scsi_sense_valid(sshdr) && 2220 sshdr->sense_key == UNIT_ATTENTION) 2221 sdev->changed = 1; 2222 } while (scsi_sense_valid(sshdr) && 2223 sshdr->sense_key == UNIT_ATTENTION && --retries); 2224 2225 return result; 2226 } 2227 EXPORT_SYMBOL(scsi_test_unit_ready); 2228 2229 /** 2230 * scsi_device_set_state - Take the given device through the device state model. 2231 * @sdev: scsi device to change the state of. 2232 * @state: state to change to. 2233 * 2234 * Returns zero if successful or an error if the requested 2235 * transition is illegal. 2236 */ 2237 int 2238 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2239 { 2240 enum scsi_device_state oldstate = sdev->sdev_state; 2241 2242 if (state == oldstate) 2243 return 0; 2244 2245 switch (state) { 2246 case SDEV_CREATED: 2247 switch (oldstate) { 2248 case SDEV_CREATED_BLOCK: 2249 break; 2250 default: 2251 goto illegal; 2252 } 2253 break; 2254 2255 case SDEV_RUNNING: 2256 switch (oldstate) { 2257 case SDEV_CREATED: 2258 case SDEV_OFFLINE: 2259 case SDEV_TRANSPORT_OFFLINE: 2260 case SDEV_QUIESCE: 2261 case SDEV_BLOCK: 2262 break; 2263 default: 2264 goto illegal; 2265 } 2266 break; 2267 2268 case SDEV_QUIESCE: 2269 switch (oldstate) { 2270 case SDEV_RUNNING: 2271 case SDEV_OFFLINE: 2272 case SDEV_TRANSPORT_OFFLINE: 2273 break; 2274 default: 2275 goto illegal; 2276 } 2277 break; 2278 2279 case SDEV_OFFLINE: 2280 case SDEV_TRANSPORT_OFFLINE: 2281 switch (oldstate) { 2282 case SDEV_CREATED: 2283 case SDEV_RUNNING: 2284 case SDEV_QUIESCE: 2285 case SDEV_BLOCK: 2286 break; 2287 default: 2288 goto illegal; 2289 } 2290 break; 2291 2292 case SDEV_BLOCK: 2293 switch (oldstate) { 2294 case SDEV_RUNNING: 2295 case SDEV_CREATED_BLOCK: 2296 case SDEV_OFFLINE: 2297 break; 2298 default: 2299 goto illegal; 2300 } 2301 break; 2302 2303 case SDEV_CREATED_BLOCK: 2304 switch (oldstate) { 2305 case SDEV_CREATED: 2306 break; 2307 default: 2308 goto illegal; 2309 } 2310 break; 2311 2312 case SDEV_CANCEL: 2313 switch (oldstate) { 2314 case SDEV_CREATED: 2315 case SDEV_RUNNING: 2316 case SDEV_QUIESCE: 2317 case SDEV_OFFLINE: 2318 case SDEV_TRANSPORT_OFFLINE: 2319 break; 2320 default: 2321 goto illegal; 2322 } 2323 break; 2324 2325 case SDEV_DEL: 2326 switch (oldstate) { 2327 case SDEV_CREATED: 2328 case SDEV_RUNNING: 2329 case SDEV_OFFLINE: 2330 case SDEV_TRANSPORT_OFFLINE: 2331 case SDEV_CANCEL: 2332 case SDEV_BLOCK: 2333 case SDEV_CREATED_BLOCK: 2334 break; 2335 default: 2336 goto illegal; 2337 } 2338 break; 2339 2340 } 2341 sdev->sdev_state = state; 2342 return 0; 2343 2344 illegal: 2345 SCSI_LOG_ERROR_RECOVERY(1, 2346 sdev_printk(KERN_ERR, sdev, 2347 "Illegal state transition %s->%s", 2348 scsi_device_state_name(oldstate), 2349 scsi_device_state_name(state)) 2350 ); 2351 return -EINVAL; 2352 } 2353 EXPORT_SYMBOL(scsi_device_set_state); 2354 2355 /** 2356 * sdev_evt_emit - emit a single SCSI device uevent 2357 * @sdev: associated SCSI device 2358 * @evt: event to emit 2359 * 2360 * Send a single uevent (scsi_event) to the associated scsi_device. 2361 */ 2362 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2363 { 2364 int idx = 0; 2365 char *envp[3]; 2366 2367 switch (evt->evt_type) { 2368 case SDEV_EVT_MEDIA_CHANGE: 2369 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2370 break; 2371 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2372 scsi_rescan_device(&sdev->sdev_gendev); 2373 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2374 break; 2375 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2376 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2377 break; 2378 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2379 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2380 break; 2381 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2382 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2383 break; 2384 case SDEV_EVT_LUN_CHANGE_REPORTED: 2385 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2386 break; 2387 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2388 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2389 break; 2390 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2391 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2392 break; 2393 default: 2394 /* do nothing */ 2395 break; 2396 } 2397 2398 envp[idx++] = NULL; 2399 2400 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2401 } 2402 2403 /** 2404 * sdev_evt_thread - send a uevent for each scsi event 2405 * @work: work struct for scsi_device 2406 * 2407 * Dispatch queued events to their associated scsi_device kobjects 2408 * as uevents. 2409 */ 2410 void scsi_evt_thread(struct work_struct *work) 2411 { 2412 struct scsi_device *sdev; 2413 enum scsi_device_event evt_type; 2414 LIST_HEAD(event_list); 2415 2416 sdev = container_of(work, struct scsi_device, event_work); 2417 2418 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2419 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2420 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2421 2422 while (1) { 2423 struct scsi_event *evt; 2424 struct list_head *this, *tmp; 2425 unsigned long flags; 2426 2427 spin_lock_irqsave(&sdev->list_lock, flags); 2428 list_splice_init(&sdev->event_list, &event_list); 2429 spin_unlock_irqrestore(&sdev->list_lock, flags); 2430 2431 if (list_empty(&event_list)) 2432 break; 2433 2434 list_for_each_safe(this, tmp, &event_list) { 2435 evt = list_entry(this, struct scsi_event, node); 2436 list_del(&evt->node); 2437 scsi_evt_emit(sdev, evt); 2438 kfree(evt); 2439 } 2440 } 2441 } 2442 2443 /** 2444 * sdev_evt_send - send asserted event to uevent thread 2445 * @sdev: scsi_device event occurred on 2446 * @evt: event to send 2447 * 2448 * Assert scsi device event asynchronously. 2449 */ 2450 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2451 { 2452 unsigned long flags; 2453 2454 #if 0 2455 /* FIXME: currently this check eliminates all media change events 2456 * for polled devices. Need to update to discriminate between AN 2457 * and polled events */ 2458 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2459 kfree(evt); 2460 return; 2461 } 2462 #endif 2463 2464 spin_lock_irqsave(&sdev->list_lock, flags); 2465 list_add_tail(&evt->node, &sdev->event_list); 2466 schedule_work(&sdev->event_work); 2467 spin_unlock_irqrestore(&sdev->list_lock, flags); 2468 } 2469 EXPORT_SYMBOL_GPL(sdev_evt_send); 2470 2471 /** 2472 * sdev_evt_alloc - allocate a new scsi event 2473 * @evt_type: type of event to allocate 2474 * @gfpflags: GFP flags for allocation 2475 * 2476 * Allocates and returns a new scsi_event. 2477 */ 2478 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2479 gfp_t gfpflags) 2480 { 2481 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2482 if (!evt) 2483 return NULL; 2484 2485 evt->evt_type = evt_type; 2486 INIT_LIST_HEAD(&evt->node); 2487 2488 /* evt_type-specific initialization, if any */ 2489 switch (evt_type) { 2490 case SDEV_EVT_MEDIA_CHANGE: 2491 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2492 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2493 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2494 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2495 case SDEV_EVT_LUN_CHANGE_REPORTED: 2496 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2497 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2498 default: 2499 /* do nothing */ 2500 break; 2501 } 2502 2503 return evt; 2504 } 2505 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2506 2507 /** 2508 * sdev_evt_send_simple - send asserted event to uevent thread 2509 * @sdev: scsi_device event occurred on 2510 * @evt_type: type of event to send 2511 * @gfpflags: GFP flags for allocation 2512 * 2513 * Assert scsi device event asynchronously, given an event type. 2514 */ 2515 void sdev_evt_send_simple(struct scsi_device *sdev, 2516 enum scsi_device_event evt_type, gfp_t gfpflags) 2517 { 2518 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2519 if (!evt) { 2520 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2521 evt_type); 2522 return; 2523 } 2524 2525 sdev_evt_send(sdev, evt); 2526 } 2527 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2528 2529 /** 2530 * scsi_device_quiesce - Block user issued commands. 2531 * @sdev: scsi device to quiesce. 2532 * 2533 * This works by trying to transition to the SDEV_QUIESCE state 2534 * (which must be a legal transition). When the device is in this 2535 * state, only special requests will be accepted, all others will 2536 * be deferred. Since special requests may also be requeued requests, 2537 * a successful return doesn't guarantee the device will be 2538 * totally quiescent. 2539 * 2540 * Must be called with user context, may sleep. 2541 * 2542 * Returns zero if unsuccessful or an error if not. 2543 */ 2544 int 2545 scsi_device_quiesce(struct scsi_device *sdev) 2546 { 2547 struct request_queue *q = sdev->request_queue; 2548 int err; 2549 2550 /* 2551 * It is allowed to call scsi_device_quiesce() multiple times from 2552 * the same context but concurrent scsi_device_quiesce() calls are 2553 * not allowed. 2554 */ 2555 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2556 2557 if (sdev->quiesced_by == current) 2558 return 0; 2559 2560 blk_set_pm_only(q); 2561 2562 blk_mq_freeze_queue(q); 2563 /* 2564 * Ensure that the effect of blk_set_pm_only() will be visible 2565 * for percpu_ref_tryget() callers that occur after the queue 2566 * unfreeze even if the queue was already frozen before this function 2567 * was called. See also https://lwn.net/Articles/573497/. 2568 */ 2569 synchronize_rcu(); 2570 blk_mq_unfreeze_queue(q); 2571 2572 mutex_lock(&sdev->state_mutex); 2573 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2574 if (err == 0) 2575 sdev->quiesced_by = current; 2576 else 2577 blk_clear_pm_only(q); 2578 mutex_unlock(&sdev->state_mutex); 2579 2580 return err; 2581 } 2582 EXPORT_SYMBOL(scsi_device_quiesce); 2583 2584 /** 2585 * scsi_device_resume - Restart user issued commands to a quiesced device. 2586 * @sdev: scsi device to resume. 2587 * 2588 * Moves the device from quiesced back to running and restarts the 2589 * queues. 2590 * 2591 * Must be called with user context, may sleep. 2592 */ 2593 void scsi_device_resume(struct scsi_device *sdev) 2594 { 2595 /* check if the device state was mutated prior to resume, and if 2596 * so assume the state is being managed elsewhere (for example 2597 * device deleted during suspend) 2598 */ 2599 mutex_lock(&sdev->state_mutex); 2600 WARN_ON_ONCE(!sdev->quiesced_by); 2601 sdev->quiesced_by = NULL; 2602 blk_clear_pm_only(sdev->request_queue); 2603 if (sdev->sdev_state == SDEV_QUIESCE) 2604 scsi_device_set_state(sdev, SDEV_RUNNING); 2605 mutex_unlock(&sdev->state_mutex); 2606 } 2607 EXPORT_SYMBOL(scsi_device_resume); 2608 2609 static void 2610 device_quiesce_fn(struct scsi_device *sdev, void *data) 2611 { 2612 scsi_device_quiesce(sdev); 2613 } 2614 2615 void 2616 scsi_target_quiesce(struct scsi_target *starget) 2617 { 2618 starget_for_each_device(starget, NULL, device_quiesce_fn); 2619 } 2620 EXPORT_SYMBOL(scsi_target_quiesce); 2621 2622 static void 2623 device_resume_fn(struct scsi_device *sdev, void *data) 2624 { 2625 scsi_device_resume(sdev); 2626 } 2627 2628 void 2629 scsi_target_resume(struct scsi_target *starget) 2630 { 2631 starget_for_each_device(starget, NULL, device_resume_fn); 2632 } 2633 EXPORT_SYMBOL(scsi_target_resume); 2634 2635 /** 2636 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2637 * @sdev: device to block 2638 * 2639 * Pause SCSI command processing on the specified device. Does not sleep. 2640 * 2641 * Returns zero if successful or a negative error code upon failure. 2642 * 2643 * Notes: 2644 * This routine transitions the device to the SDEV_BLOCK state (which must be 2645 * a legal transition). When the device is in this state, command processing 2646 * is paused until the device leaves the SDEV_BLOCK state. See also 2647 * scsi_internal_device_unblock_nowait(). 2648 */ 2649 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2650 { 2651 struct request_queue *q = sdev->request_queue; 2652 int err = 0; 2653 2654 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2655 if (err) { 2656 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2657 2658 if (err) 2659 return err; 2660 } 2661 2662 /* 2663 * The device has transitioned to SDEV_BLOCK. Stop the 2664 * block layer from calling the midlayer with this device's 2665 * request queue. 2666 */ 2667 blk_mq_quiesce_queue_nowait(q); 2668 return 0; 2669 } 2670 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2671 2672 /** 2673 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2674 * @sdev: device to block 2675 * 2676 * Pause SCSI command processing on the specified device and wait until all 2677 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2678 * 2679 * Returns zero if successful or a negative error code upon failure. 2680 * 2681 * Note: 2682 * This routine transitions the device to the SDEV_BLOCK state (which must be 2683 * a legal transition). When the device is in this state, command processing 2684 * is paused until the device leaves the SDEV_BLOCK state. See also 2685 * scsi_internal_device_unblock(). 2686 * 2687 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2688 * scsi_internal_device_block() has blocked a SCSI device and also 2689 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2690 */ 2691 static int scsi_internal_device_block(struct scsi_device *sdev) 2692 { 2693 struct request_queue *q = sdev->request_queue; 2694 int err; 2695 2696 mutex_lock(&sdev->state_mutex); 2697 err = scsi_internal_device_block_nowait(sdev); 2698 if (err == 0) 2699 blk_mq_quiesce_queue(q); 2700 mutex_unlock(&sdev->state_mutex); 2701 2702 return err; 2703 } 2704 2705 void scsi_start_queue(struct scsi_device *sdev) 2706 { 2707 struct request_queue *q = sdev->request_queue; 2708 2709 blk_mq_unquiesce_queue(q); 2710 } 2711 2712 /** 2713 * scsi_internal_device_unblock_nowait - resume a device after a block request 2714 * @sdev: device to resume 2715 * @new_state: state to set the device to after unblocking 2716 * 2717 * Restart the device queue for a previously suspended SCSI device. Does not 2718 * sleep. 2719 * 2720 * Returns zero if successful or a negative error code upon failure. 2721 * 2722 * Notes: 2723 * This routine transitions the device to the SDEV_RUNNING state or to one of 2724 * the offline states (which must be a legal transition) allowing the midlayer 2725 * to goose the queue for this device. 2726 */ 2727 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2728 enum scsi_device_state new_state) 2729 { 2730 /* 2731 * Try to transition the scsi device to SDEV_RUNNING or one of the 2732 * offlined states and goose the device queue if successful. 2733 */ 2734 switch (sdev->sdev_state) { 2735 case SDEV_BLOCK: 2736 case SDEV_TRANSPORT_OFFLINE: 2737 sdev->sdev_state = new_state; 2738 break; 2739 case SDEV_CREATED_BLOCK: 2740 if (new_state == SDEV_TRANSPORT_OFFLINE || 2741 new_state == SDEV_OFFLINE) 2742 sdev->sdev_state = new_state; 2743 else 2744 sdev->sdev_state = SDEV_CREATED; 2745 break; 2746 case SDEV_CANCEL: 2747 case SDEV_OFFLINE: 2748 break; 2749 default: 2750 return -EINVAL; 2751 } 2752 scsi_start_queue(sdev); 2753 2754 return 0; 2755 } 2756 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2757 2758 /** 2759 * scsi_internal_device_unblock - resume a device after a block request 2760 * @sdev: device to resume 2761 * @new_state: state to set the device to after unblocking 2762 * 2763 * Restart the device queue for a previously suspended SCSI device. May sleep. 2764 * 2765 * Returns zero if successful or a negative error code upon failure. 2766 * 2767 * Notes: 2768 * This routine transitions the device to the SDEV_RUNNING state or to one of 2769 * the offline states (which must be a legal transition) allowing the midlayer 2770 * to goose the queue for this device. 2771 */ 2772 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2773 enum scsi_device_state new_state) 2774 { 2775 int ret; 2776 2777 mutex_lock(&sdev->state_mutex); 2778 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2779 mutex_unlock(&sdev->state_mutex); 2780 2781 return ret; 2782 } 2783 2784 static void 2785 device_block(struct scsi_device *sdev, void *data) 2786 { 2787 scsi_internal_device_block(sdev); 2788 } 2789 2790 static int 2791 target_block(struct device *dev, void *data) 2792 { 2793 if (scsi_is_target_device(dev)) 2794 starget_for_each_device(to_scsi_target(dev), NULL, 2795 device_block); 2796 return 0; 2797 } 2798 2799 void 2800 scsi_target_block(struct device *dev) 2801 { 2802 if (scsi_is_target_device(dev)) 2803 starget_for_each_device(to_scsi_target(dev), NULL, 2804 device_block); 2805 else 2806 device_for_each_child(dev, NULL, target_block); 2807 } 2808 EXPORT_SYMBOL_GPL(scsi_target_block); 2809 2810 static void 2811 device_unblock(struct scsi_device *sdev, void *data) 2812 { 2813 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2814 } 2815 2816 static int 2817 target_unblock(struct device *dev, void *data) 2818 { 2819 if (scsi_is_target_device(dev)) 2820 starget_for_each_device(to_scsi_target(dev), data, 2821 device_unblock); 2822 return 0; 2823 } 2824 2825 void 2826 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2827 { 2828 if (scsi_is_target_device(dev)) 2829 starget_for_each_device(to_scsi_target(dev), &new_state, 2830 device_unblock); 2831 else 2832 device_for_each_child(dev, &new_state, target_unblock); 2833 } 2834 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2835 2836 /** 2837 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2838 * @sgl: scatter-gather list 2839 * @sg_count: number of segments in sg 2840 * @offset: offset in bytes into sg, on return offset into the mapped area 2841 * @len: bytes to map, on return number of bytes mapped 2842 * 2843 * Returns virtual address of the start of the mapped page 2844 */ 2845 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2846 size_t *offset, size_t *len) 2847 { 2848 int i; 2849 size_t sg_len = 0, len_complete = 0; 2850 struct scatterlist *sg; 2851 struct page *page; 2852 2853 WARN_ON(!irqs_disabled()); 2854 2855 for_each_sg(sgl, sg, sg_count, i) { 2856 len_complete = sg_len; /* Complete sg-entries */ 2857 sg_len += sg->length; 2858 if (sg_len > *offset) 2859 break; 2860 } 2861 2862 if (unlikely(i == sg_count)) { 2863 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2864 "elements %d\n", 2865 __func__, sg_len, *offset, sg_count); 2866 WARN_ON(1); 2867 return NULL; 2868 } 2869 2870 /* Offset starting from the beginning of first page in this sg-entry */ 2871 *offset = *offset - len_complete + sg->offset; 2872 2873 /* Assumption: contiguous pages can be accessed as "page + i" */ 2874 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2875 *offset &= ~PAGE_MASK; 2876 2877 /* Bytes in this sg-entry from *offset to the end of the page */ 2878 sg_len = PAGE_SIZE - *offset; 2879 if (*len > sg_len) 2880 *len = sg_len; 2881 2882 return kmap_atomic(page); 2883 } 2884 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2885 2886 /** 2887 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2888 * @virt: virtual address to be unmapped 2889 */ 2890 void scsi_kunmap_atomic_sg(void *virt) 2891 { 2892 kunmap_atomic(virt); 2893 } 2894 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2895 2896 void sdev_disable_disk_events(struct scsi_device *sdev) 2897 { 2898 atomic_inc(&sdev->disk_events_disable_depth); 2899 } 2900 EXPORT_SYMBOL(sdev_disable_disk_events); 2901 2902 void sdev_enable_disk_events(struct scsi_device *sdev) 2903 { 2904 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2905 return; 2906 atomic_dec(&sdev->disk_events_disable_depth); 2907 } 2908 EXPORT_SYMBOL(sdev_enable_disk_events); 2909 2910 /** 2911 * scsi_vpd_lun_id - return a unique device identification 2912 * @sdev: SCSI device 2913 * @id: buffer for the identification 2914 * @id_len: length of the buffer 2915 * 2916 * Copies a unique device identification into @id based 2917 * on the information in the VPD page 0x83 of the device. 2918 * The string will be formatted as a SCSI name string. 2919 * 2920 * Returns the length of the identification or error on failure. 2921 * If the identifier is longer than the supplied buffer the actual 2922 * identifier length is returned and the buffer is not zero-padded. 2923 */ 2924 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2925 { 2926 u8 cur_id_type = 0xff; 2927 u8 cur_id_size = 0; 2928 const unsigned char *d, *cur_id_str; 2929 const struct scsi_vpd *vpd_pg83; 2930 int id_size = -EINVAL; 2931 2932 rcu_read_lock(); 2933 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2934 if (!vpd_pg83) { 2935 rcu_read_unlock(); 2936 return -ENXIO; 2937 } 2938 2939 /* 2940 * Look for the correct descriptor. 2941 * Order of preference for lun descriptor: 2942 * - SCSI name string 2943 * - NAA IEEE Registered Extended 2944 * - EUI-64 based 16-byte 2945 * - EUI-64 based 12-byte 2946 * - NAA IEEE Registered 2947 * - NAA IEEE Extended 2948 * - T10 Vendor ID 2949 * as longer descriptors reduce the likelyhood 2950 * of identification clashes. 2951 */ 2952 2953 /* The id string must be at least 20 bytes + terminating NULL byte */ 2954 if (id_len < 21) { 2955 rcu_read_unlock(); 2956 return -EINVAL; 2957 } 2958 2959 memset(id, 0, id_len); 2960 d = vpd_pg83->data + 4; 2961 while (d < vpd_pg83->data + vpd_pg83->len) { 2962 /* Skip designators not referring to the LUN */ 2963 if ((d[1] & 0x30) != 0x00) 2964 goto next_desig; 2965 2966 switch (d[1] & 0xf) { 2967 case 0x1: 2968 /* T10 Vendor ID */ 2969 if (cur_id_size > d[3]) 2970 break; 2971 /* Prefer anything */ 2972 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2973 break; 2974 cur_id_size = d[3]; 2975 if (cur_id_size + 4 > id_len) 2976 cur_id_size = id_len - 4; 2977 cur_id_str = d + 4; 2978 cur_id_type = d[1] & 0xf; 2979 id_size = snprintf(id, id_len, "t10.%*pE", 2980 cur_id_size, cur_id_str); 2981 break; 2982 case 0x2: 2983 /* EUI-64 */ 2984 if (cur_id_size > d[3]) 2985 break; 2986 /* Prefer NAA IEEE Registered Extended */ 2987 if (cur_id_type == 0x3 && 2988 cur_id_size == d[3]) 2989 break; 2990 cur_id_size = d[3]; 2991 cur_id_str = d + 4; 2992 cur_id_type = d[1] & 0xf; 2993 switch (cur_id_size) { 2994 case 8: 2995 id_size = snprintf(id, id_len, 2996 "eui.%8phN", 2997 cur_id_str); 2998 break; 2999 case 12: 3000 id_size = snprintf(id, id_len, 3001 "eui.%12phN", 3002 cur_id_str); 3003 break; 3004 case 16: 3005 id_size = snprintf(id, id_len, 3006 "eui.%16phN", 3007 cur_id_str); 3008 break; 3009 default: 3010 cur_id_size = 0; 3011 break; 3012 } 3013 break; 3014 case 0x3: 3015 /* NAA */ 3016 if (cur_id_size > d[3]) 3017 break; 3018 cur_id_size = d[3]; 3019 cur_id_str = d + 4; 3020 cur_id_type = d[1] & 0xf; 3021 switch (cur_id_size) { 3022 case 8: 3023 id_size = snprintf(id, id_len, 3024 "naa.%8phN", 3025 cur_id_str); 3026 break; 3027 case 16: 3028 id_size = snprintf(id, id_len, 3029 "naa.%16phN", 3030 cur_id_str); 3031 break; 3032 default: 3033 cur_id_size = 0; 3034 break; 3035 } 3036 break; 3037 case 0x8: 3038 /* SCSI name string */ 3039 if (cur_id_size + 4 > d[3]) 3040 break; 3041 /* Prefer others for truncated descriptor */ 3042 if (cur_id_size && d[3] > id_len) 3043 break; 3044 cur_id_size = id_size = d[3]; 3045 cur_id_str = d + 4; 3046 cur_id_type = d[1] & 0xf; 3047 if (cur_id_size >= id_len) 3048 cur_id_size = id_len - 1; 3049 memcpy(id, cur_id_str, cur_id_size); 3050 /* Decrease priority for truncated descriptor */ 3051 if (cur_id_size != id_size) 3052 cur_id_size = 6; 3053 break; 3054 default: 3055 break; 3056 } 3057 next_desig: 3058 d += d[3] + 4; 3059 } 3060 rcu_read_unlock(); 3061 3062 return id_size; 3063 } 3064 EXPORT_SYMBOL(scsi_vpd_lun_id); 3065 3066 /* 3067 * scsi_vpd_tpg_id - return a target port group identifier 3068 * @sdev: SCSI device 3069 * 3070 * Returns the Target Port Group identifier from the information 3071 * froom VPD page 0x83 of the device. 3072 * 3073 * Returns the identifier or error on failure. 3074 */ 3075 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3076 { 3077 const unsigned char *d; 3078 const struct scsi_vpd *vpd_pg83; 3079 int group_id = -EAGAIN, rel_port = -1; 3080 3081 rcu_read_lock(); 3082 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3083 if (!vpd_pg83) { 3084 rcu_read_unlock(); 3085 return -ENXIO; 3086 } 3087 3088 d = vpd_pg83->data + 4; 3089 while (d < vpd_pg83->data + vpd_pg83->len) { 3090 switch (d[1] & 0xf) { 3091 case 0x4: 3092 /* Relative target port */ 3093 rel_port = get_unaligned_be16(&d[6]); 3094 break; 3095 case 0x5: 3096 /* Target port group */ 3097 group_id = get_unaligned_be16(&d[6]); 3098 break; 3099 default: 3100 break; 3101 } 3102 d += d[3] + 4; 3103 } 3104 rcu_read_unlock(); 3105 3106 if (group_id >= 0 && rel_id && rel_port != -1) 3107 *rel_id = rel_port; 3108 3109 return group_id; 3110 } 3111 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3112