xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision d0b73b48)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73 
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
75 {
76         bus->bus = &scsi_bus_type;
77         return register_acpi_bus_type(bus);
78 }
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
80 
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
82 {
83 	unregister_acpi_bus_type(bus);
84 }
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
86 #endif
87 
88 /*
89  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90  * not change behaviour from the previous unplug mechanism, experimentation
91  * may prove this needs changing.
92  */
93 #define SCSI_QUEUE_DELAY	3
94 
95 /*
96  * Function:	scsi_unprep_request()
97  *
98  * Purpose:	Remove all preparation done for a request, including its
99  *		associated scsi_cmnd, so that it can be requeued.
100  *
101  * Arguments:	req	- request to unprepare
102  *
103  * Lock status:	Assumed that no locks are held upon entry.
104  *
105  * Returns:	Nothing.
106  */
107 static void scsi_unprep_request(struct request *req)
108 {
109 	struct scsi_cmnd *cmd = req->special;
110 
111 	blk_unprep_request(req);
112 	req->special = NULL;
113 
114 	scsi_put_command(cmd);
115 }
116 
117 /**
118  * __scsi_queue_insert - private queue insertion
119  * @cmd: The SCSI command being requeued
120  * @reason:  The reason for the requeue
121  * @unbusy: Whether the queue should be unbusied
122  *
123  * This is a private queue insertion.  The public interface
124  * scsi_queue_insert() always assumes the queue should be unbusied
125  * because it's always called before the completion.  This function is
126  * for a requeue after completion, which should only occur in this
127  * file.
128  */
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
130 {
131 	struct Scsi_Host *host = cmd->device->host;
132 	struct scsi_device *device = cmd->device;
133 	struct scsi_target *starget = scsi_target(device);
134 	struct request_queue *q = device->request_queue;
135 	unsigned long flags;
136 
137 	SCSI_LOG_MLQUEUE(1,
138 		 printk("Inserting command %p into mlqueue\n", cmd));
139 
140 	/*
141 	 * Set the appropriate busy bit for the device/host.
142 	 *
143 	 * If the host/device isn't busy, assume that something actually
144 	 * completed, and that we should be able to queue a command now.
145 	 *
146 	 * Note that the prior mid-layer assumption that any host could
147 	 * always queue at least one command is now broken.  The mid-layer
148 	 * will implement a user specifiable stall (see
149 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150 	 * if a command is requeued with no other commands outstanding
151 	 * either for the device or for the host.
152 	 */
153 	switch (reason) {
154 	case SCSI_MLQUEUE_HOST_BUSY:
155 		host->host_blocked = host->max_host_blocked;
156 		break;
157 	case SCSI_MLQUEUE_DEVICE_BUSY:
158 	case SCSI_MLQUEUE_EH_RETRY:
159 		device->device_blocked = device->max_device_blocked;
160 		break;
161 	case SCSI_MLQUEUE_TARGET_BUSY:
162 		starget->target_blocked = starget->max_target_blocked;
163 		break;
164 	}
165 
166 	/*
167 	 * Decrement the counters, since these commands are no longer
168 	 * active on the host/device.
169 	 */
170 	if (unbusy)
171 		scsi_device_unbusy(device);
172 
173 	/*
174 	 * Requeue this command.  It will go before all other commands
175 	 * that are already in the queue. Schedule requeue work under
176 	 * lock such that the kblockd_schedule_work() call happens
177 	 * before blk_cleanup_queue() finishes.
178 	 */
179 	spin_lock_irqsave(q->queue_lock, flags);
180 	blk_requeue_request(q, cmd->request);
181 	kblockd_schedule_work(q, &device->requeue_work);
182 	spin_unlock_irqrestore(q->queue_lock, flags);
183 }
184 
185 /*
186  * Function:    scsi_queue_insert()
187  *
188  * Purpose:     Insert a command in the midlevel queue.
189  *
190  * Arguments:   cmd    - command that we are adding to queue.
191  *              reason - why we are inserting command to queue.
192  *
193  * Lock status: Assumed that lock is not held upon entry.
194  *
195  * Returns:     Nothing.
196  *
197  * Notes:       We do this for one of two cases.  Either the host is busy
198  *              and it cannot accept any more commands for the time being,
199  *              or the device returned QUEUE_FULL and can accept no more
200  *              commands.
201  * Notes:       This could be called either from an interrupt context or a
202  *              normal process context.
203  */
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
205 {
206 	__scsi_queue_insert(cmd, reason, 1);
207 }
208 /**
209  * scsi_execute - insert request and wait for the result
210  * @sdev:	scsi device
211  * @cmd:	scsi command
212  * @data_direction: data direction
213  * @buffer:	data buffer
214  * @bufflen:	len of buffer
215  * @sense:	optional sense buffer
216  * @timeout:	request timeout in seconds
217  * @retries:	number of times to retry request
218  * @flags:	or into request flags;
219  * @resid:	optional residual length
220  *
221  * returns the req->errors value which is the scsi_cmnd result
222  * field.
223  */
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225 		 int data_direction, void *buffer, unsigned bufflen,
226 		 unsigned char *sense, int timeout, int retries, int flags,
227 		 int *resid)
228 {
229 	struct request *req;
230 	int write = (data_direction == DMA_TO_DEVICE);
231 	int ret = DRIVER_ERROR << 24;
232 
233 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
234 	if (!req)
235 		return ret;
236 
237 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
238 					buffer, bufflen, __GFP_WAIT))
239 		goto out;
240 
241 	req->cmd_len = COMMAND_SIZE(cmd[0]);
242 	memcpy(req->cmd, cmd, req->cmd_len);
243 	req->sense = sense;
244 	req->sense_len = 0;
245 	req->retries = retries;
246 	req->timeout = timeout;
247 	req->cmd_type = REQ_TYPE_BLOCK_PC;
248 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
249 
250 	/*
251 	 * head injection *required* here otherwise quiesce won't work
252 	 */
253 	blk_execute_rq(req->q, NULL, req, 1);
254 
255 	/*
256 	 * Some devices (USB mass-storage in particular) may transfer
257 	 * garbage data together with a residue indicating that the data
258 	 * is invalid.  Prevent the garbage from being misinterpreted
259 	 * and prevent security leaks by zeroing out the excess data.
260 	 */
261 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
263 
264 	if (resid)
265 		*resid = req->resid_len;
266 	ret = req->errors;
267  out:
268 	blk_put_request(req);
269 
270 	return ret;
271 }
272 EXPORT_SYMBOL(scsi_execute);
273 
274 
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276 		     int data_direction, void *buffer, unsigned bufflen,
277 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
278 		     int *resid)
279 {
280 	char *sense = NULL;
281 	int result;
282 
283 	if (sshdr) {
284 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
285 		if (!sense)
286 			return DRIVER_ERROR << 24;
287 	}
288 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289 			      sense, timeout, retries, 0, resid);
290 	if (sshdr)
291 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
292 
293 	kfree(sense);
294 	return result;
295 }
296 EXPORT_SYMBOL(scsi_execute_req);
297 
298 /*
299  * Function:    scsi_init_cmd_errh()
300  *
301  * Purpose:     Initialize cmd fields related to error handling.
302  *
303  * Arguments:   cmd	- command that is ready to be queued.
304  *
305  * Notes:       This function has the job of initializing a number of
306  *              fields related to error handling.   Typically this will
307  *              be called once for each command, as required.
308  */
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
310 {
311 	cmd->serial_number = 0;
312 	scsi_set_resid(cmd, 0);
313 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314 	if (cmd->cmd_len == 0)
315 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
316 }
317 
318 void scsi_device_unbusy(struct scsi_device *sdev)
319 {
320 	struct Scsi_Host *shost = sdev->host;
321 	struct scsi_target *starget = scsi_target(sdev);
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(shost->host_lock, flags);
325 	shost->host_busy--;
326 	starget->target_busy--;
327 	if (unlikely(scsi_host_in_recovery(shost) &&
328 		     (shost->host_failed || shost->host_eh_scheduled)))
329 		scsi_eh_wakeup(shost);
330 	spin_unlock(shost->host_lock);
331 	spin_lock(sdev->request_queue->queue_lock);
332 	sdev->device_busy--;
333 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
334 }
335 
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 	struct Scsi_Host *shost = current_sdev->host;
346 	struct scsi_device *sdev, *tmp;
347 	struct scsi_target *starget = scsi_target(current_sdev);
348 	unsigned long flags;
349 
350 	spin_lock_irqsave(shost->host_lock, flags);
351 	starget->starget_sdev_user = NULL;
352 	spin_unlock_irqrestore(shost->host_lock, flags);
353 
354 	/*
355 	 * Call blk_run_queue for all LUNs on the target, starting with
356 	 * current_sdev. We race with others (to set starget_sdev_user),
357 	 * but in most cases, we will be first. Ideally, each LU on the
358 	 * target would get some limited time or requests on the target.
359 	 */
360 	blk_run_queue(current_sdev->request_queue);
361 
362 	spin_lock_irqsave(shost->host_lock, flags);
363 	if (starget->starget_sdev_user)
364 		goto out;
365 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 			same_target_siblings) {
367 		if (sdev == current_sdev)
368 			continue;
369 		if (scsi_device_get(sdev))
370 			continue;
371 
372 		spin_unlock_irqrestore(shost->host_lock, flags);
373 		blk_run_queue(sdev->request_queue);
374 		spin_lock_irqsave(shost->host_lock, flags);
375 
376 		scsi_device_put(sdev);
377 	}
378  out:
379 	spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381 
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
385 		return 1;
386 
387 	return 0;
388 }
389 
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
391 {
392 	return ((starget->can_queue > 0 &&
393 		 starget->target_busy >= starget->can_queue) ||
394 		 starget->target_blocked);
395 }
396 
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
398 {
399 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400 	    shost->host_blocked || shost->host_self_blocked)
401 		return 1;
402 
403 	return 0;
404 }
405 
406 /*
407  * Function:	scsi_run_queue()
408  *
409  * Purpose:	Select a proper request queue to serve next
410  *
411  * Arguments:	q	- last request's queue
412  *
413  * Returns:     Nothing
414  *
415  * Notes:	The previous command was completely finished, start
416  *		a new one if possible.
417  */
418 static void scsi_run_queue(struct request_queue *q)
419 {
420 	struct scsi_device *sdev = q->queuedata;
421 	struct Scsi_Host *shost;
422 	LIST_HEAD(starved_list);
423 	unsigned long flags;
424 
425 	shost = sdev->host;
426 	if (scsi_target(sdev)->single_lun)
427 		scsi_single_lun_run(sdev);
428 
429 	spin_lock_irqsave(shost->host_lock, flags);
430 	list_splice_init(&shost->starved_list, &starved_list);
431 
432 	while (!list_empty(&starved_list)) {
433 		/*
434 		 * As long as shost is accepting commands and we have
435 		 * starved queues, call blk_run_queue. scsi_request_fn
436 		 * drops the queue_lock and can add us back to the
437 		 * starved_list.
438 		 *
439 		 * host_lock protects the starved_list and starved_entry.
440 		 * scsi_request_fn must get the host_lock before checking
441 		 * or modifying starved_list or starved_entry.
442 		 */
443 		if (scsi_host_is_busy(shost))
444 			break;
445 
446 		sdev = list_entry(starved_list.next,
447 				  struct scsi_device, starved_entry);
448 		list_del_init(&sdev->starved_entry);
449 		if (scsi_target_is_busy(scsi_target(sdev))) {
450 			list_move_tail(&sdev->starved_entry,
451 				       &shost->starved_list);
452 			continue;
453 		}
454 
455 		spin_unlock(shost->host_lock);
456 		spin_lock(sdev->request_queue->queue_lock);
457 		__blk_run_queue(sdev->request_queue);
458 		spin_unlock(sdev->request_queue->queue_lock);
459 		spin_lock(shost->host_lock);
460 	}
461 	/* put any unprocessed entries back */
462 	list_splice(&starved_list, &shost->starved_list);
463 	spin_unlock_irqrestore(shost->host_lock, flags);
464 
465 	blk_run_queue(q);
466 }
467 
468 void scsi_requeue_run_queue(struct work_struct *work)
469 {
470 	struct scsi_device *sdev;
471 	struct request_queue *q;
472 
473 	sdev = container_of(work, struct scsi_device, requeue_work);
474 	q = sdev->request_queue;
475 	scsi_run_queue(q);
476 }
477 
478 /*
479  * Function:	scsi_requeue_command()
480  *
481  * Purpose:	Handle post-processing of completed commands.
482  *
483  * Arguments:	q	- queue to operate on
484  *		cmd	- command that may need to be requeued.
485  *
486  * Returns:	Nothing
487  *
488  * Notes:	After command completion, there may be blocks left
489  *		over which weren't finished by the previous command
490  *		this can be for a number of reasons - the main one is
491  *		I/O errors in the middle of the request, in which case
492  *		we need to request the blocks that come after the bad
493  *		sector.
494  * Notes:	Upon return, cmd is a stale pointer.
495  */
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 {
498 	struct scsi_device *sdev = cmd->device;
499 	struct request *req = cmd->request;
500 	unsigned long flags;
501 
502 	/*
503 	 * We need to hold a reference on the device to avoid the queue being
504 	 * killed after the unlock and before scsi_run_queue is invoked which
505 	 * may happen because scsi_unprep_request() puts the command which
506 	 * releases its reference on the device.
507 	 */
508 	get_device(&sdev->sdev_gendev);
509 
510 	spin_lock_irqsave(q->queue_lock, flags);
511 	scsi_unprep_request(req);
512 	blk_requeue_request(q, req);
513 	spin_unlock_irqrestore(q->queue_lock, flags);
514 
515 	scsi_run_queue(q);
516 
517 	put_device(&sdev->sdev_gendev);
518 }
519 
520 void scsi_next_command(struct scsi_cmnd *cmd)
521 {
522 	struct scsi_device *sdev = cmd->device;
523 	struct request_queue *q = sdev->request_queue;
524 
525 	/* need to hold a reference on the device before we let go of the cmd */
526 	get_device(&sdev->sdev_gendev);
527 
528 	scsi_put_command(cmd);
529 	scsi_run_queue(q);
530 
531 	/* ok to remove device now */
532 	put_device(&sdev->sdev_gendev);
533 }
534 
535 void scsi_run_host_queues(struct Scsi_Host *shost)
536 {
537 	struct scsi_device *sdev;
538 
539 	shost_for_each_device(sdev, shost)
540 		scsi_run_queue(sdev->request_queue);
541 }
542 
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544 
545 /*
546  * Function:    scsi_end_request()
547  *
548  * Purpose:     Post-processing of completed commands (usually invoked at end
549  *		of upper level post-processing and scsi_io_completion).
550  *
551  * Arguments:   cmd	 - command that is complete.
552  *              error    - 0 if I/O indicates success, < 0 for I/O error.
553  *              bytes    - number of bytes of completed I/O
554  *		requeue  - indicates whether we should requeue leftovers.
555  *
556  * Lock status: Assumed that lock is not held upon entry.
557  *
558  * Returns:     cmd if requeue required, NULL otherwise.
559  *
560  * Notes:       This is called for block device requests in order to
561  *              mark some number of sectors as complete.
562  *
563  *		We are guaranteeing that the request queue will be goosed
564  *		at some point during this call.
565  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
566  */
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568 					  int bytes, int requeue)
569 {
570 	struct request_queue *q = cmd->device->request_queue;
571 	struct request *req = cmd->request;
572 
573 	/*
574 	 * If there are blocks left over at the end, set up the command
575 	 * to queue the remainder of them.
576 	 */
577 	if (blk_end_request(req, error, bytes)) {
578 		/* kill remainder if no retrys */
579 		if (error && scsi_noretry_cmd(cmd))
580 			blk_end_request_all(req, error);
581 		else {
582 			if (requeue) {
583 				/*
584 				 * Bleah.  Leftovers again.  Stick the
585 				 * leftovers in the front of the
586 				 * queue, and goose the queue again.
587 				 */
588 				scsi_release_buffers(cmd);
589 				scsi_requeue_command(q, cmd);
590 				cmd = NULL;
591 			}
592 			return cmd;
593 		}
594 	}
595 
596 	/*
597 	 * This will goose the queue request function at the end, so we don't
598 	 * need to worry about launching another command.
599 	 */
600 	__scsi_release_buffers(cmd, 0);
601 	scsi_next_command(cmd);
602 	return NULL;
603 }
604 
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
606 {
607 	unsigned int index;
608 
609 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
610 
611 	if (nents <= 8)
612 		index = 0;
613 	else
614 		index = get_count_order(nents) - 3;
615 
616 	return index;
617 }
618 
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
620 {
621 	struct scsi_host_sg_pool *sgp;
622 
623 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624 	mempool_free(sgl, sgp->pool);
625 }
626 
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
628 {
629 	struct scsi_host_sg_pool *sgp;
630 
631 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632 	return mempool_alloc(sgp->pool, gfp_mask);
633 }
634 
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
636 			      gfp_t gfp_mask)
637 {
638 	int ret;
639 
640 	BUG_ON(!nents);
641 
642 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643 			       gfp_mask, scsi_sg_alloc);
644 	if (unlikely(ret))
645 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
646 				scsi_sg_free);
647 
648 	return ret;
649 }
650 
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
652 {
653 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 }
655 
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 {
658 
659 	if (cmd->sdb.table.nents)
660 		scsi_free_sgtable(&cmd->sdb);
661 
662 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
663 
664 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665 		struct scsi_data_buffer *bidi_sdb =
666 			cmd->request->next_rq->special;
667 		scsi_free_sgtable(bidi_sdb);
668 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669 		cmd->request->next_rq->special = NULL;
670 	}
671 
672 	if (scsi_prot_sg_count(cmd))
673 		scsi_free_sgtable(cmd->prot_sdb);
674 }
675 
676 /*
677  * Function:    scsi_release_buffers()
678  *
679  * Purpose:     Completion processing for block device I/O requests.
680  *
681  * Arguments:   cmd	- command that we are bailing.
682  *
683  * Lock status: Assumed that no lock is held upon entry.
684  *
685  * Returns:     Nothing
686  *
687  * Notes:       In the event that an upper level driver rejects a
688  *		command, we must release resources allocated during
689  *		the __init_io() function.  Primarily this would involve
690  *		the scatter-gather table, and potentially any bounce
691  *		buffers.
692  */
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
694 {
695 	__scsi_release_buffers(cmd, 1);
696 }
697 EXPORT_SYMBOL(scsi_release_buffers);
698 
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
700 {
701 	int error = 0;
702 
703 	switch(host_byte(result)) {
704 	case DID_TRANSPORT_FAILFAST:
705 		error = -ENOLINK;
706 		break;
707 	case DID_TARGET_FAILURE:
708 		set_host_byte(cmd, DID_OK);
709 		error = -EREMOTEIO;
710 		break;
711 	case DID_NEXUS_FAILURE:
712 		set_host_byte(cmd, DID_OK);
713 		error = -EBADE;
714 		break;
715 	default:
716 		error = -EIO;
717 		break;
718 	}
719 
720 	return error;
721 }
722 
723 /*
724  * Function:    scsi_io_completion()
725  *
726  * Purpose:     Completion processing for block device I/O requests.
727  *
728  * Arguments:   cmd   - command that is finished.
729  *
730  * Lock status: Assumed that no lock is held upon entry.
731  *
732  * Returns:     Nothing
733  *
734  * Notes:       This function is matched in terms of capabilities to
735  *              the function that created the scatter-gather list.
736  *              In other words, if there are no bounce buffers
737  *              (the normal case for most drivers), we don't need
738  *              the logic to deal with cleaning up afterwards.
739  *
740  *		We must call scsi_end_request().  This will finish off
741  *		the specified number of sectors.  If we are done, the
742  *		command block will be released and the queue function
743  *		will be goosed.  If we are not done then we have to
744  *		figure out what to do next:
745  *
746  *		a) We can call scsi_requeue_command().  The request
747  *		   will be unprepared and put back on the queue.  Then
748  *		   a new command will be created for it.  This should
749  *		   be used if we made forward progress, or if we want
750  *		   to switch from READ(10) to READ(6) for example.
751  *
752  *		b) We can call scsi_queue_insert().  The request will
753  *		   be put back on the queue and retried using the same
754  *		   command as before, possibly after a delay.
755  *
756  *		c) We can call blk_end_request() with -EIO to fail
757  *		   the remainder of the request.
758  */
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
760 {
761 	int result = cmd->result;
762 	struct request_queue *q = cmd->device->request_queue;
763 	struct request *req = cmd->request;
764 	int error = 0;
765 	struct scsi_sense_hdr sshdr;
766 	int sense_valid = 0;
767 	int sense_deferred = 0;
768 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769 	      ACTION_DELAYED_RETRY} action;
770 	char *description = NULL;
771 
772 	if (result) {
773 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
774 		if (sense_valid)
775 			sense_deferred = scsi_sense_is_deferred(&sshdr);
776 	}
777 
778 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
779 		if (result) {
780 			if (sense_valid && req->sense) {
781 				/*
782 				 * SG_IO wants current and deferred errors
783 				 */
784 				int len = 8 + cmd->sense_buffer[7];
785 
786 				if (len > SCSI_SENSE_BUFFERSIZE)
787 					len = SCSI_SENSE_BUFFERSIZE;
788 				memcpy(req->sense, cmd->sense_buffer,  len);
789 				req->sense_len = len;
790 			}
791 			if (!sense_deferred)
792 				error = __scsi_error_from_host_byte(cmd, result);
793 		}
794 		/*
795 		 * __scsi_error_from_host_byte may have reset the host_byte
796 		 */
797 		req->errors = cmd->result;
798 
799 		req->resid_len = scsi_get_resid(cmd);
800 
801 		if (scsi_bidi_cmnd(cmd)) {
802 			/*
803 			 * Bidi commands Must be complete as a whole,
804 			 * both sides at once.
805 			 */
806 			req->next_rq->resid_len = scsi_in(cmd)->resid;
807 
808 			scsi_release_buffers(cmd);
809 			blk_end_request_all(req, 0);
810 
811 			scsi_next_command(cmd);
812 			return;
813 		}
814 	}
815 
816 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
817 	BUG_ON(blk_bidi_rq(req));
818 
819 	/*
820 	 * Next deal with any sectors which we were able to correctly
821 	 * handle.
822 	 */
823 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
824 				      "%d bytes done.\n",
825 				      blk_rq_sectors(req), good_bytes));
826 
827 	/*
828 	 * Recovered errors need reporting, but they're always treated
829 	 * as success, so fiddle the result code here.  For BLOCK_PC
830 	 * we already took a copy of the original into rq->errors which
831 	 * is what gets returned to the user
832 	 */
833 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
834 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
835 		 * print since caller wants ATA registers. Only occurs on
836 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
837 		 */
838 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
839 			;
840 		else if (!(req->cmd_flags & REQ_QUIET))
841 			scsi_print_sense("", cmd);
842 		result = 0;
843 		/* BLOCK_PC may have set error */
844 		error = 0;
845 	}
846 
847 	/*
848 	 * A number of bytes were successfully read.  If there
849 	 * are leftovers and there is some kind of error
850 	 * (result != 0), retry the rest.
851 	 */
852 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
853 		return;
854 
855 	error = __scsi_error_from_host_byte(cmd, result);
856 
857 	if (host_byte(result) == DID_RESET) {
858 		/* Third party bus reset or reset for error recovery
859 		 * reasons.  Just retry the command and see what
860 		 * happens.
861 		 */
862 		action = ACTION_RETRY;
863 	} else if (sense_valid && !sense_deferred) {
864 		switch (sshdr.sense_key) {
865 		case UNIT_ATTENTION:
866 			if (cmd->device->removable) {
867 				/* Detected disc change.  Set a bit
868 				 * and quietly refuse further access.
869 				 */
870 				cmd->device->changed = 1;
871 				description = "Media Changed";
872 				action = ACTION_FAIL;
873 			} else {
874 				/* Must have been a power glitch, or a
875 				 * bus reset.  Could not have been a
876 				 * media change, so we just retry the
877 				 * command and see what happens.
878 				 */
879 				action = ACTION_RETRY;
880 			}
881 			break;
882 		case ILLEGAL_REQUEST:
883 			/* If we had an ILLEGAL REQUEST returned, then
884 			 * we may have performed an unsupported
885 			 * command.  The only thing this should be
886 			 * would be a ten byte read where only a six
887 			 * byte read was supported.  Also, on a system
888 			 * where READ CAPACITY failed, we may have
889 			 * read past the end of the disk.
890 			 */
891 			if ((cmd->device->use_10_for_rw &&
892 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
893 			    (cmd->cmnd[0] == READ_10 ||
894 			     cmd->cmnd[0] == WRITE_10)) {
895 				/* This will issue a new 6-byte command. */
896 				cmd->device->use_10_for_rw = 0;
897 				action = ACTION_REPREP;
898 			} else if (sshdr.asc == 0x10) /* DIX */ {
899 				description = "Host Data Integrity Failure";
900 				action = ACTION_FAIL;
901 				error = -EILSEQ;
902 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
904 				switch (cmd->cmnd[0]) {
905 				case UNMAP:
906 					description = "Discard failure";
907 					break;
908 				case WRITE_SAME:
909 				case WRITE_SAME_16:
910 					if (cmd->cmnd[1] & 0x8)
911 						description = "Discard failure";
912 					else
913 						description =
914 							"Write same failure";
915 					break;
916 				default:
917 					description = "Invalid command failure";
918 					break;
919 				}
920 				action = ACTION_FAIL;
921 				error = -EREMOTEIO;
922 			} else
923 				action = ACTION_FAIL;
924 			break;
925 		case ABORTED_COMMAND:
926 			action = ACTION_FAIL;
927 			if (sshdr.asc == 0x10) { /* DIF */
928 				description = "Target Data Integrity Failure";
929 				error = -EILSEQ;
930 			}
931 			break;
932 		case NOT_READY:
933 			/* If the device is in the process of becoming
934 			 * ready, or has a temporary blockage, retry.
935 			 */
936 			if (sshdr.asc == 0x04) {
937 				switch (sshdr.ascq) {
938 				case 0x01: /* becoming ready */
939 				case 0x04: /* format in progress */
940 				case 0x05: /* rebuild in progress */
941 				case 0x06: /* recalculation in progress */
942 				case 0x07: /* operation in progress */
943 				case 0x08: /* Long write in progress */
944 				case 0x09: /* self test in progress */
945 				case 0x14: /* space allocation in progress */
946 					action = ACTION_DELAYED_RETRY;
947 					break;
948 				default:
949 					description = "Device not ready";
950 					action = ACTION_FAIL;
951 					break;
952 				}
953 			} else {
954 				description = "Device not ready";
955 				action = ACTION_FAIL;
956 			}
957 			break;
958 		case VOLUME_OVERFLOW:
959 			/* See SSC3rXX or current. */
960 			action = ACTION_FAIL;
961 			break;
962 		default:
963 			description = "Unhandled sense code";
964 			action = ACTION_FAIL;
965 			break;
966 		}
967 	} else {
968 		description = "Unhandled error code";
969 		action = ACTION_FAIL;
970 	}
971 
972 	switch (action) {
973 	case ACTION_FAIL:
974 		/* Give up and fail the remainder of the request */
975 		scsi_release_buffers(cmd);
976 		if (!(req->cmd_flags & REQ_QUIET)) {
977 			if (description)
978 				scmd_printk(KERN_INFO, cmd, "%s\n",
979 					    description);
980 			scsi_print_result(cmd);
981 			if (driver_byte(result) & DRIVER_SENSE)
982 				scsi_print_sense("", cmd);
983 			scsi_print_command(cmd);
984 		}
985 		if (blk_end_request_err(req, error))
986 			scsi_requeue_command(q, cmd);
987 		else
988 			scsi_next_command(cmd);
989 		break;
990 	case ACTION_REPREP:
991 		/* Unprep the request and put it back at the head of the queue.
992 		 * A new command will be prepared and issued.
993 		 */
994 		scsi_release_buffers(cmd);
995 		scsi_requeue_command(q, cmd);
996 		break;
997 	case ACTION_RETRY:
998 		/* Retry the same command immediately */
999 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1000 		break;
1001 	case ACTION_DELAYED_RETRY:
1002 		/* Retry the same command after a delay */
1003 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1004 		break;
1005 	}
1006 }
1007 
1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1009 			     gfp_t gfp_mask)
1010 {
1011 	int count;
1012 
1013 	/*
1014 	 * If sg table allocation fails, requeue request later.
1015 	 */
1016 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1017 					gfp_mask))) {
1018 		return BLKPREP_DEFER;
1019 	}
1020 
1021 	req->buffer = NULL;
1022 
1023 	/*
1024 	 * Next, walk the list, and fill in the addresses and sizes of
1025 	 * each segment.
1026 	 */
1027 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028 	BUG_ON(count > sdb->table.nents);
1029 	sdb->table.nents = count;
1030 	sdb->length = blk_rq_bytes(req);
1031 	return BLKPREP_OK;
1032 }
1033 
1034 /*
1035  * Function:    scsi_init_io()
1036  *
1037  * Purpose:     SCSI I/O initialize function.
1038  *
1039  * Arguments:   cmd   - Command descriptor we wish to initialize
1040  *
1041  * Returns:     0 on success
1042  *		BLKPREP_DEFER if the failure is retryable
1043  *		BLKPREP_KILL if the failure is fatal
1044  */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047 	struct request *rq = cmd->request;
1048 
1049 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1050 	if (error)
1051 		goto err_exit;
1052 
1053 	if (blk_bidi_rq(rq)) {
1054 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1055 			scsi_sdb_cache, GFP_ATOMIC);
1056 		if (!bidi_sdb) {
1057 			error = BLKPREP_DEFER;
1058 			goto err_exit;
1059 		}
1060 
1061 		rq->next_rq->special = bidi_sdb;
1062 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1063 		if (error)
1064 			goto err_exit;
1065 	}
1066 
1067 	if (blk_integrity_rq(rq)) {
1068 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069 		int ivecs, count;
1070 
1071 		BUG_ON(prot_sdb == NULL);
1072 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073 
1074 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1075 			error = BLKPREP_DEFER;
1076 			goto err_exit;
1077 		}
1078 
1079 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1080 						prot_sdb->table.sgl);
1081 		BUG_ON(unlikely(count > ivecs));
1082 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1083 
1084 		cmd->prot_sdb = prot_sdb;
1085 		cmd->prot_sdb->table.nents = count;
1086 	}
1087 
1088 	return BLKPREP_OK ;
1089 
1090 err_exit:
1091 	scsi_release_buffers(cmd);
1092 	cmd->request->special = NULL;
1093 	scsi_put_command(cmd);
1094 	return error;
1095 }
1096 EXPORT_SYMBOL(scsi_init_io);
1097 
1098 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1099 		struct request *req)
1100 {
1101 	struct scsi_cmnd *cmd;
1102 
1103 	if (!req->special) {
1104 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1105 		if (unlikely(!cmd))
1106 			return NULL;
1107 		req->special = cmd;
1108 	} else {
1109 		cmd = req->special;
1110 	}
1111 
1112 	/* pull a tag out of the request if we have one */
1113 	cmd->tag = req->tag;
1114 	cmd->request = req;
1115 
1116 	cmd->cmnd = req->cmd;
1117 	cmd->prot_op = SCSI_PROT_NORMAL;
1118 
1119 	return cmd;
1120 }
1121 
1122 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1123 {
1124 	struct scsi_cmnd *cmd;
1125 	int ret = scsi_prep_state_check(sdev, req);
1126 
1127 	if (ret != BLKPREP_OK)
1128 		return ret;
1129 
1130 	cmd = scsi_get_cmd_from_req(sdev, req);
1131 	if (unlikely(!cmd))
1132 		return BLKPREP_DEFER;
1133 
1134 	/*
1135 	 * BLOCK_PC requests may transfer data, in which case they must
1136 	 * a bio attached to them.  Or they might contain a SCSI command
1137 	 * that does not transfer data, in which case they may optionally
1138 	 * submit a request without an attached bio.
1139 	 */
1140 	if (req->bio) {
1141 		int ret;
1142 
1143 		BUG_ON(!req->nr_phys_segments);
1144 
1145 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1146 		if (unlikely(ret))
1147 			return ret;
1148 	} else {
1149 		BUG_ON(blk_rq_bytes(req));
1150 
1151 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152 		req->buffer = NULL;
1153 	}
1154 
1155 	cmd->cmd_len = req->cmd_len;
1156 	if (!blk_rq_bytes(req))
1157 		cmd->sc_data_direction = DMA_NONE;
1158 	else if (rq_data_dir(req) == WRITE)
1159 		cmd->sc_data_direction = DMA_TO_DEVICE;
1160 	else
1161 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1162 
1163 	cmd->transfersize = blk_rq_bytes(req);
1164 	cmd->allowed = req->retries;
1165 	return BLKPREP_OK;
1166 }
1167 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1168 
1169 /*
1170  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1171  * from filesystems that still need to be translated to SCSI CDBs from
1172  * the ULD.
1173  */
1174 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1175 {
1176 	struct scsi_cmnd *cmd;
1177 	int ret = scsi_prep_state_check(sdev, req);
1178 
1179 	if (ret != BLKPREP_OK)
1180 		return ret;
1181 
1182 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1183 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1184 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1185 		if (ret != BLKPREP_OK)
1186 			return ret;
1187 	}
1188 
1189 	/*
1190 	 * Filesystem requests must transfer data.
1191 	 */
1192 	BUG_ON(!req->nr_phys_segments);
1193 
1194 	cmd = scsi_get_cmd_from_req(sdev, req);
1195 	if (unlikely(!cmd))
1196 		return BLKPREP_DEFER;
1197 
1198 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1199 	return scsi_init_io(cmd, GFP_ATOMIC);
1200 }
1201 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1202 
1203 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 	int ret = BLKPREP_OK;
1206 
1207 	/*
1208 	 * If the device is not in running state we will reject some
1209 	 * or all commands.
1210 	 */
1211 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1212 		switch (sdev->sdev_state) {
1213 		case SDEV_OFFLINE:
1214 		case SDEV_TRANSPORT_OFFLINE:
1215 			/*
1216 			 * If the device is offline we refuse to process any
1217 			 * commands.  The device must be brought online
1218 			 * before trying any recovery commands.
1219 			 */
1220 			sdev_printk(KERN_ERR, sdev,
1221 				    "rejecting I/O to offline device\n");
1222 			ret = BLKPREP_KILL;
1223 			break;
1224 		case SDEV_DEL:
1225 			/*
1226 			 * If the device is fully deleted, we refuse to
1227 			 * process any commands as well.
1228 			 */
1229 			sdev_printk(KERN_ERR, sdev,
1230 				    "rejecting I/O to dead device\n");
1231 			ret = BLKPREP_KILL;
1232 			break;
1233 		case SDEV_QUIESCE:
1234 		case SDEV_BLOCK:
1235 		case SDEV_CREATED_BLOCK:
1236 			/*
1237 			 * If the devices is blocked we defer normal commands.
1238 			 */
1239 			if (!(req->cmd_flags & REQ_PREEMPT))
1240 				ret = BLKPREP_DEFER;
1241 			break;
1242 		default:
1243 			/*
1244 			 * For any other not fully online state we only allow
1245 			 * special commands.  In particular any user initiated
1246 			 * command is not allowed.
1247 			 */
1248 			if (!(req->cmd_flags & REQ_PREEMPT))
1249 				ret = BLKPREP_KILL;
1250 			break;
1251 		}
1252 	}
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL(scsi_prep_state_check);
1256 
1257 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1258 {
1259 	struct scsi_device *sdev = q->queuedata;
1260 
1261 	switch (ret) {
1262 	case BLKPREP_KILL:
1263 		req->errors = DID_NO_CONNECT << 16;
1264 		/* release the command and kill it */
1265 		if (req->special) {
1266 			struct scsi_cmnd *cmd = req->special;
1267 			scsi_release_buffers(cmd);
1268 			scsi_put_command(cmd);
1269 			req->special = NULL;
1270 		}
1271 		break;
1272 	case BLKPREP_DEFER:
1273 		/*
1274 		 * If we defer, the blk_peek_request() returns NULL, but the
1275 		 * queue must be restarted, so we schedule a callback to happen
1276 		 * shortly.
1277 		 */
1278 		if (sdev->device_busy == 0)
1279 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280 		break;
1281 	default:
1282 		req->cmd_flags |= REQ_DONTPREP;
1283 	}
1284 
1285 	return ret;
1286 }
1287 EXPORT_SYMBOL(scsi_prep_return);
1288 
1289 int scsi_prep_fn(struct request_queue *q, struct request *req)
1290 {
1291 	struct scsi_device *sdev = q->queuedata;
1292 	int ret = BLKPREP_KILL;
1293 
1294 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1295 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1296 	return scsi_prep_return(q, req, ret);
1297 }
1298 EXPORT_SYMBOL(scsi_prep_fn);
1299 
1300 /*
1301  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1302  * return 0.
1303  *
1304  * Called with the queue_lock held.
1305  */
1306 static inline int scsi_dev_queue_ready(struct request_queue *q,
1307 				  struct scsi_device *sdev)
1308 {
1309 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1310 		/*
1311 		 * unblock after device_blocked iterates to zero
1312 		 */
1313 		if (--sdev->device_blocked == 0) {
1314 			SCSI_LOG_MLQUEUE(3,
1315 				   sdev_printk(KERN_INFO, sdev,
1316 				   "unblocking device at zero depth\n"));
1317 		} else {
1318 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1319 			return 0;
1320 		}
1321 	}
1322 	if (scsi_device_is_busy(sdev))
1323 		return 0;
1324 
1325 	return 1;
1326 }
1327 
1328 
1329 /*
1330  * scsi_target_queue_ready: checks if there we can send commands to target
1331  * @sdev: scsi device on starget to check.
1332  *
1333  * Called with the host lock held.
1334  */
1335 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1336 					   struct scsi_device *sdev)
1337 {
1338 	struct scsi_target *starget = scsi_target(sdev);
1339 
1340 	if (starget->single_lun) {
1341 		if (starget->starget_sdev_user &&
1342 		    starget->starget_sdev_user != sdev)
1343 			return 0;
1344 		starget->starget_sdev_user = sdev;
1345 	}
1346 
1347 	if (starget->target_busy == 0 && starget->target_blocked) {
1348 		/*
1349 		 * unblock after target_blocked iterates to zero
1350 		 */
1351 		if (--starget->target_blocked == 0) {
1352 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1353 					 "unblocking target at zero depth\n"));
1354 		} else
1355 			return 0;
1356 	}
1357 
1358 	if (scsi_target_is_busy(starget)) {
1359 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1360 		return 0;
1361 	}
1362 
1363 	return 1;
1364 }
1365 
1366 /*
1367  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1368  * return 0. We must end up running the queue again whenever 0 is
1369  * returned, else IO can hang.
1370  *
1371  * Called with host_lock held.
1372  */
1373 static inline int scsi_host_queue_ready(struct request_queue *q,
1374 				   struct Scsi_Host *shost,
1375 				   struct scsi_device *sdev)
1376 {
1377 	if (scsi_host_in_recovery(shost))
1378 		return 0;
1379 	if (shost->host_busy == 0 && shost->host_blocked) {
1380 		/*
1381 		 * unblock after host_blocked iterates to zero
1382 		 */
1383 		if (--shost->host_blocked == 0) {
1384 			SCSI_LOG_MLQUEUE(3,
1385 				printk("scsi%d unblocking host at zero depth\n",
1386 					shost->host_no));
1387 		} else {
1388 			return 0;
1389 		}
1390 	}
1391 	if (scsi_host_is_busy(shost)) {
1392 		if (list_empty(&sdev->starved_entry))
1393 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1394 		return 0;
1395 	}
1396 
1397 	/* We're OK to process the command, so we can't be starved */
1398 	if (!list_empty(&sdev->starved_entry))
1399 		list_del_init(&sdev->starved_entry);
1400 
1401 	return 1;
1402 }
1403 
1404 /*
1405  * Busy state exporting function for request stacking drivers.
1406  *
1407  * For efficiency, no lock is taken to check the busy state of
1408  * shost/starget/sdev, since the returned value is not guaranteed and
1409  * may be changed after request stacking drivers call the function,
1410  * regardless of taking lock or not.
1411  *
1412  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1413  * needs to return 'not busy'. Otherwise, request stacking drivers
1414  * may hold requests forever.
1415  */
1416 static int scsi_lld_busy(struct request_queue *q)
1417 {
1418 	struct scsi_device *sdev = q->queuedata;
1419 	struct Scsi_Host *shost;
1420 
1421 	if (blk_queue_dying(q))
1422 		return 0;
1423 
1424 	shost = sdev->host;
1425 
1426 	/*
1427 	 * Ignore host/starget busy state.
1428 	 * Since block layer does not have a concept of fairness across
1429 	 * multiple queues, congestion of host/starget needs to be handled
1430 	 * in SCSI layer.
1431 	 */
1432 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1433 		return 1;
1434 
1435 	return 0;
1436 }
1437 
1438 /*
1439  * Kill a request for a dead device
1440  */
1441 static void scsi_kill_request(struct request *req, struct request_queue *q)
1442 {
1443 	struct scsi_cmnd *cmd = req->special;
1444 	struct scsi_device *sdev;
1445 	struct scsi_target *starget;
1446 	struct Scsi_Host *shost;
1447 
1448 	blk_start_request(req);
1449 
1450 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1451 
1452 	sdev = cmd->device;
1453 	starget = scsi_target(sdev);
1454 	shost = sdev->host;
1455 	scsi_init_cmd_errh(cmd);
1456 	cmd->result = DID_NO_CONNECT << 16;
1457 	atomic_inc(&cmd->device->iorequest_cnt);
1458 
1459 	/*
1460 	 * SCSI request completion path will do scsi_device_unbusy(),
1461 	 * bump busy counts.  To bump the counters, we need to dance
1462 	 * with the locks as normal issue path does.
1463 	 */
1464 	sdev->device_busy++;
1465 	spin_unlock(sdev->request_queue->queue_lock);
1466 	spin_lock(shost->host_lock);
1467 	shost->host_busy++;
1468 	starget->target_busy++;
1469 	spin_unlock(shost->host_lock);
1470 	spin_lock(sdev->request_queue->queue_lock);
1471 
1472 	blk_complete_request(req);
1473 }
1474 
1475 static void scsi_softirq_done(struct request *rq)
1476 {
1477 	struct scsi_cmnd *cmd = rq->special;
1478 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1479 	int disposition;
1480 
1481 	INIT_LIST_HEAD(&cmd->eh_entry);
1482 
1483 	atomic_inc(&cmd->device->iodone_cnt);
1484 	if (cmd->result)
1485 		atomic_inc(&cmd->device->ioerr_cnt);
1486 
1487 	disposition = scsi_decide_disposition(cmd);
1488 	if (disposition != SUCCESS &&
1489 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1490 		sdev_printk(KERN_ERR, cmd->device,
1491 			    "timing out command, waited %lus\n",
1492 			    wait_for/HZ);
1493 		disposition = SUCCESS;
1494 	}
1495 
1496 	scsi_log_completion(cmd, disposition);
1497 
1498 	switch (disposition) {
1499 		case SUCCESS:
1500 			scsi_finish_command(cmd);
1501 			break;
1502 		case NEEDS_RETRY:
1503 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1504 			break;
1505 		case ADD_TO_MLQUEUE:
1506 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1507 			break;
1508 		default:
1509 			if (!scsi_eh_scmd_add(cmd, 0))
1510 				scsi_finish_command(cmd);
1511 	}
1512 }
1513 
1514 /*
1515  * Function:    scsi_request_fn()
1516  *
1517  * Purpose:     Main strategy routine for SCSI.
1518  *
1519  * Arguments:   q       - Pointer to actual queue.
1520  *
1521  * Returns:     Nothing
1522  *
1523  * Lock status: IO request lock assumed to be held when called.
1524  */
1525 static void scsi_request_fn(struct request_queue *q)
1526 {
1527 	struct scsi_device *sdev = q->queuedata;
1528 	struct Scsi_Host *shost;
1529 	struct scsi_cmnd *cmd;
1530 	struct request *req;
1531 
1532 	if(!get_device(&sdev->sdev_gendev))
1533 		/* We must be tearing the block queue down already */
1534 		return;
1535 
1536 	/*
1537 	 * To start with, we keep looping until the queue is empty, or until
1538 	 * the host is no longer able to accept any more requests.
1539 	 */
1540 	shost = sdev->host;
1541 	for (;;) {
1542 		int rtn;
1543 		/*
1544 		 * get next queueable request.  We do this early to make sure
1545 		 * that the request is fully prepared even if we cannot
1546 		 * accept it.
1547 		 */
1548 		req = blk_peek_request(q);
1549 		if (!req || !scsi_dev_queue_ready(q, sdev))
1550 			break;
1551 
1552 		if (unlikely(!scsi_device_online(sdev))) {
1553 			sdev_printk(KERN_ERR, sdev,
1554 				    "rejecting I/O to offline device\n");
1555 			scsi_kill_request(req, q);
1556 			continue;
1557 		}
1558 
1559 
1560 		/*
1561 		 * Remove the request from the request list.
1562 		 */
1563 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1564 			blk_start_request(req);
1565 		sdev->device_busy++;
1566 
1567 		spin_unlock(q->queue_lock);
1568 		cmd = req->special;
1569 		if (unlikely(cmd == NULL)) {
1570 			printk(KERN_CRIT "impossible request in %s.\n"
1571 					 "please mail a stack trace to "
1572 					 "linux-scsi@vger.kernel.org\n",
1573 					 __func__);
1574 			blk_dump_rq_flags(req, "foo");
1575 			BUG();
1576 		}
1577 		spin_lock(shost->host_lock);
1578 
1579 		/*
1580 		 * We hit this when the driver is using a host wide
1581 		 * tag map. For device level tag maps the queue_depth check
1582 		 * in the device ready fn would prevent us from trying
1583 		 * to allocate a tag. Since the map is a shared host resource
1584 		 * we add the dev to the starved list so it eventually gets
1585 		 * a run when a tag is freed.
1586 		 */
1587 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1588 			if (list_empty(&sdev->starved_entry))
1589 				list_add_tail(&sdev->starved_entry,
1590 					      &shost->starved_list);
1591 			goto not_ready;
1592 		}
1593 
1594 		if (!scsi_target_queue_ready(shost, sdev))
1595 			goto not_ready;
1596 
1597 		if (!scsi_host_queue_ready(q, shost, sdev))
1598 			goto not_ready;
1599 
1600 		scsi_target(sdev)->target_busy++;
1601 		shost->host_busy++;
1602 
1603 		/*
1604 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1605 		 *		take the lock again.
1606 		 */
1607 		spin_unlock_irq(shost->host_lock);
1608 
1609 		/*
1610 		 * Finally, initialize any error handling parameters, and set up
1611 		 * the timers for timeouts.
1612 		 */
1613 		scsi_init_cmd_errh(cmd);
1614 
1615 		/*
1616 		 * Dispatch the command to the low-level driver.
1617 		 */
1618 		rtn = scsi_dispatch_cmd(cmd);
1619 		spin_lock_irq(q->queue_lock);
1620 		if (rtn)
1621 			goto out_delay;
1622 	}
1623 
1624 	goto out;
1625 
1626  not_ready:
1627 	spin_unlock_irq(shost->host_lock);
1628 
1629 	/*
1630 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1631 	 * must return with queue_lock held.
1632 	 *
1633 	 * Decrementing device_busy without checking it is OK, as all such
1634 	 * cases (host limits or settings) should run the queue at some
1635 	 * later time.
1636 	 */
1637 	spin_lock_irq(q->queue_lock);
1638 	blk_requeue_request(q, req);
1639 	sdev->device_busy--;
1640 out_delay:
1641 	if (sdev->device_busy == 0)
1642 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1643 out:
1644 	/* must be careful here...if we trigger the ->remove() function
1645 	 * we cannot be holding the q lock */
1646 	spin_unlock_irq(q->queue_lock);
1647 	put_device(&sdev->sdev_gendev);
1648 	spin_lock_irq(q->queue_lock);
1649 }
1650 
1651 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1652 {
1653 	struct device *host_dev;
1654 	u64 bounce_limit = 0xffffffff;
1655 
1656 	if (shost->unchecked_isa_dma)
1657 		return BLK_BOUNCE_ISA;
1658 	/*
1659 	 * Platforms with virtual-DMA translation
1660 	 * hardware have no practical limit.
1661 	 */
1662 	if (!PCI_DMA_BUS_IS_PHYS)
1663 		return BLK_BOUNCE_ANY;
1664 
1665 	host_dev = scsi_get_device(shost);
1666 	if (host_dev && host_dev->dma_mask)
1667 		bounce_limit = *host_dev->dma_mask;
1668 
1669 	return bounce_limit;
1670 }
1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1672 
1673 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1674 					 request_fn_proc *request_fn)
1675 {
1676 	struct request_queue *q;
1677 	struct device *dev = shost->dma_dev;
1678 
1679 	q = blk_init_queue(request_fn, NULL);
1680 	if (!q)
1681 		return NULL;
1682 
1683 	/*
1684 	 * this limit is imposed by hardware restrictions
1685 	 */
1686 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1687 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1688 
1689 	if (scsi_host_prot_dma(shost)) {
1690 		shost->sg_prot_tablesize =
1691 			min_not_zero(shost->sg_prot_tablesize,
1692 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1693 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1694 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1695 	}
1696 
1697 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1698 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1699 	blk_queue_segment_boundary(q, shost->dma_boundary);
1700 	dma_set_seg_boundary(dev, shost->dma_boundary);
1701 
1702 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1703 
1704 	if (!shost->use_clustering)
1705 		q->limits.cluster = 0;
1706 
1707 	/*
1708 	 * set a reasonable default alignment on word boundaries: the
1709 	 * host and device may alter it using
1710 	 * blk_queue_update_dma_alignment() later.
1711 	 */
1712 	blk_queue_dma_alignment(q, 0x03);
1713 
1714 	return q;
1715 }
1716 EXPORT_SYMBOL(__scsi_alloc_queue);
1717 
1718 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1719 {
1720 	struct request_queue *q;
1721 
1722 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1723 	if (!q)
1724 		return NULL;
1725 
1726 	blk_queue_prep_rq(q, scsi_prep_fn);
1727 	blk_queue_softirq_done(q, scsi_softirq_done);
1728 	blk_queue_rq_timed_out(q, scsi_times_out);
1729 	blk_queue_lld_busy(q, scsi_lld_busy);
1730 	return q;
1731 }
1732 
1733 /*
1734  * Function:    scsi_block_requests()
1735  *
1736  * Purpose:     Utility function used by low-level drivers to prevent further
1737  *		commands from being queued to the device.
1738  *
1739  * Arguments:   shost       - Host in question
1740  *
1741  * Returns:     Nothing
1742  *
1743  * Lock status: No locks are assumed held.
1744  *
1745  * Notes:       There is no timer nor any other means by which the requests
1746  *		get unblocked other than the low-level driver calling
1747  *		scsi_unblock_requests().
1748  */
1749 void scsi_block_requests(struct Scsi_Host *shost)
1750 {
1751 	shost->host_self_blocked = 1;
1752 }
1753 EXPORT_SYMBOL(scsi_block_requests);
1754 
1755 /*
1756  * Function:    scsi_unblock_requests()
1757  *
1758  * Purpose:     Utility function used by low-level drivers to allow further
1759  *		commands from being queued to the device.
1760  *
1761  * Arguments:   shost       - Host in question
1762  *
1763  * Returns:     Nothing
1764  *
1765  * Lock status: No locks are assumed held.
1766  *
1767  * Notes:       There is no timer nor any other means by which the requests
1768  *		get unblocked other than the low-level driver calling
1769  *		scsi_unblock_requests().
1770  *
1771  *		This is done as an API function so that changes to the
1772  *		internals of the scsi mid-layer won't require wholesale
1773  *		changes to drivers that use this feature.
1774  */
1775 void scsi_unblock_requests(struct Scsi_Host *shost)
1776 {
1777 	shost->host_self_blocked = 0;
1778 	scsi_run_host_queues(shost);
1779 }
1780 EXPORT_SYMBOL(scsi_unblock_requests);
1781 
1782 int __init scsi_init_queue(void)
1783 {
1784 	int i;
1785 
1786 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1787 					   sizeof(struct scsi_data_buffer),
1788 					   0, 0, NULL);
1789 	if (!scsi_sdb_cache) {
1790 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1791 		return -ENOMEM;
1792 	}
1793 
1794 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1795 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1796 		int size = sgp->size * sizeof(struct scatterlist);
1797 
1798 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1799 				SLAB_HWCACHE_ALIGN, NULL);
1800 		if (!sgp->slab) {
1801 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1802 					sgp->name);
1803 			goto cleanup_sdb;
1804 		}
1805 
1806 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1807 						     sgp->slab);
1808 		if (!sgp->pool) {
1809 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1810 					sgp->name);
1811 			goto cleanup_sdb;
1812 		}
1813 	}
1814 
1815 	return 0;
1816 
1817 cleanup_sdb:
1818 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1819 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1820 		if (sgp->pool)
1821 			mempool_destroy(sgp->pool);
1822 		if (sgp->slab)
1823 			kmem_cache_destroy(sgp->slab);
1824 	}
1825 	kmem_cache_destroy(scsi_sdb_cache);
1826 
1827 	return -ENOMEM;
1828 }
1829 
1830 void scsi_exit_queue(void)
1831 {
1832 	int i;
1833 
1834 	kmem_cache_destroy(scsi_sdb_cache);
1835 
1836 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1837 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1838 		mempool_destroy(sgp->pool);
1839 		kmem_cache_destroy(sgp->slab);
1840 	}
1841 }
1842 
1843 /**
1844  *	scsi_mode_select - issue a mode select
1845  *	@sdev:	SCSI device to be queried
1846  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1847  *	@sp:	Save page bit (0 == don't save, 1 == save)
1848  *	@modepage: mode page being requested
1849  *	@buffer: request buffer (may not be smaller than eight bytes)
1850  *	@len:	length of request buffer.
1851  *	@timeout: command timeout
1852  *	@retries: number of retries before failing
1853  *	@data: returns a structure abstracting the mode header data
1854  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1855  *		must be SCSI_SENSE_BUFFERSIZE big.
1856  *
1857  *	Returns zero if successful; negative error number or scsi
1858  *	status on error
1859  *
1860  */
1861 int
1862 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1863 		 unsigned char *buffer, int len, int timeout, int retries,
1864 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1865 {
1866 	unsigned char cmd[10];
1867 	unsigned char *real_buffer;
1868 	int ret;
1869 
1870 	memset(cmd, 0, sizeof(cmd));
1871 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1872 
1873 	if (sdev->use_10_for_ms) {
1874 		if (len > 65535)
1875 			return -EINVAL;
1876 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1877 		if (!real_buffer)
1878 			return -ENOMEM;
1879 		memcpy(real_buffer + 8, buffer, len);
1880 		len += 8;
1881 		real_buffer[0] = 0;
1882 		real_buffer[1] = 0;
1883 		real_buffer[2] = data->medium_type;
1884 		real_buffer[3] = data->device_specific;
1885 		real_buffer[4] = data->longlba ? 0x01 : 0;
1886 		real_buffer[5] = 0;
1887 		real_buffer[6] = data->block_descriptor_length >> 8;
1888 		real_buffer[7] = data->block_descriptor_length;
1889 
1890 		cmd[0] = MODE_SELECT_10;
1891 		cmd[7] = len >> 8;
1892 		cmd[8] = len;
1893 	} else {
1894 		if (len > 255 || data->block_descriptor_length > 255 ||
1895 		    data->longlba)
1896 			return -EINVAL;
1897 
1898 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1899 		if (!real_buffer)
1900 			return -ENOMEM;
1901 		memcpy(real_buffer + 4, buffer, len);
1902 		len += 4;
1903 		real_buffer[0] = 0;
1904 		real_buffer[1] = data->medium_type;
1905 		real_buffer[2] = data->device_specific;
1906 		real_buffer[3] = data->block_descriptor_length;
1907 
1908 
1909 		cmd[0] = MODE_SELECT;
1910 		cmd[4] = len;
1911 	}
1912 
1913 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1914 			       sshdr, timeout, retries, NULL);
1915 	kfree(real_buffer);
1916 	return ret;
1917 }
1918 EXPORT_SYMBOL_GPL(scsi_mode_select);
1919 
1920 /**
1921  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1922  *	@sdev:	SCSI device to be queried
1923  *	@dbd:	set if mode sense will allow block descriptors to be returned
1924  *	@modepage: mode page being requested
1925  *	@buffer: request buffer (may not be smaller than eight bytes)
1926  *	@len:	length of request buffer.
1927  *	@timeout: command timeout
1928  *	@retries: number of retries before failing
1929  *	@data: returns a structure abstracting the mode header data
1930  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1931  *		must be SCSI_SENSE_BUFFERSIZE big.
1932  *
1933  *	Returns zero if unsuccessful, or the header offset (either 4
1934  *	or 8 depending on whether a six or ten byte command was
1935  *	issued) if successful.
1936  */
1937 int
1938 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1939 		  unsigned char *buffer, int len, int timeout, int retries,
1940 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1941 {
1942 	unsigned char cmd[12];
1943 	int use_10_for_ms;
1944 	int header_length;
1945 	int result;
1946 	struct scsi_sense_hdr my_sshdr;
1947 
1948 	memset(data, 0, sizeof(*data));
1949 	memset(&cmd[0], 0, 12);
1950 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1951 	cmd[2] = modepage;
1952 
1953 	/* caller might not be interested in sense, but we need it */
1954 	if (!sshdr)
1955 		sshdr = &my_sshdr;
1956 
1957  retry:
1958 	use_10_for_ms = sdev->use_10_for_ms;
1959 
1960 	if (use_10_for_ms) {
1961 		if (len < 8)
1962 			len = 8;
1963 
1964 		cmd[0] = MODE_SENSE_10;
1965 		cmd[8] = len;
1966 		header_length = 8;
1967 	} else {
1968 		if (len < 4)
1969 			len = 4;
1970 
1971 		cmd[0] = MODE_SENSE;
1972 		cmd[4] = len;
1973 		header_length = 4;
1974 	}
1975 
1976 	memset(buffer, 0, len);
1977 
1978 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1979 				  sshdr, timeout, retries, NULL);
1980 
1981 	/* This code looks awful: what it's doing is making sure an
1982 	 * ILLEGAL REQUEST sense return identifies the actual command
1983 	 * byte as the problem.  MODE_SENSE commands can return
1984 	 * ILLEGAL REQUEST if the code page isn't supported */
1985 
1986 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1987 	    (driver_byte(result) & DRIVER_SENSE)) {
1988 		if (scsi_sense_valid(sshdr)) {
1989 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1990 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1991 				/*
1992 				 * Invalid command operation code
1993 				 */
1994 				sdev->use_10_for_ms = 0;
1995 				goto retry;
1996 			}
1997 		}
1998 	}
1999 
2000 	if(scsi_status_is_good(result)) {
2001 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2002 			     (modepage == 6 || modepage == 8))) {
2003 			/* Initio breakage? */
2004 			header_length = 0;
2005 			data->length = 13;
2006 			data->medium_type = 0;
2007 			data->device_specific = 0;
2008 			data->longlba = 0;
2009 			data->block_descriptor_length = 0;
2010 		} else if(use_10_for_ms) {
2011 			data->length = buffer[0]*256 + buffer[1] + 2;
2012 			data->medium_type = buffer[2];
2013 			data->device_specific = buffer[3];
2014 			data->longlba = buffer[4] & 0x01;
2015 			data->block_descriptor_length = buffer[6]*256
2016 				+ buffer[7];
2017 		} else {
2018 			data->length = buffer[0] + 1;
2019 			data->medium_type = buffer[1];
2020 			data->device_specific = buffer[2];
2021 			data->block_descriptor_length = buffer[3];
2022 		}
2023 		data->header_length = header_length;
2024 	}
2025 
2026 	return result;
2027 }
2028 EXPORT_SYMBOL(scsi_mode_sense);
2029 
2030 /**
2031  *	scsi_test_unit_ready - test if unit is ready
2032  *	@sdev:	scsi device to change the state of.
2033  *	@timeout: command timeout
2034  *	@retries: number of retries before failing
2035  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2036  *		returning sense. Make sure that this is cleared before passing
2037  *		in.
2038  *
2039  *	Returns zero if unsuccessful or an error if TUR failed.  For
2040  *	removable media, UNIT_ATTENTION sets ->changed flag.
2041  **/
2042 int
2043 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2044 		     struct scsi_sense_hdr *sshdr_external)
2045 {
2046 	char cmd[] = {
2047 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2048 	};
2049 	struct scsi_sense_hdr *sshdr;
2050 	int result;
2051 
2052 	if (!sshdr_external)
2053 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2054 	else
2055 		sshdr = sshdr_external;
2056 
2057 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2058 	do {
2059 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2060 					  timeout, retries, NULL);
2061 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2062 		    sshdr->sense_key == UNIT_ATTENTION)
2063 			sdev->changed = 1;
2064 	} while (scsi_sense_valid(sshdr) &&
2065 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2066 
2067 	if (!sshdr_external)
2068 		kfree(sshdr);
2069 	return result;
2070 }
2071 EXPORT_SYMBOL(scsi_test_unit_ready);
2072 
2073 /**
2074  *	scsi_device_set_state - Take the given device through the device state model.
2075  *	@sdev:	scsi device to change the state of.
2076  *	@state:	state to change to.
2077  *
2078  *	Returns zero if unsuccessful or an error if the requested
2079  *	transition is illegal.
2080  */
2081 int
2082 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2083 {
2084 	enum scsi_device_state oldstate = sdev->sdev_state;
2085 
2086 	if (state == oldstate)
2087 		return 0;
2088 
2089 	switch (state) {
2090 	case SDEV_CREATED:
2091 		switch (oldstate) {
2092 		case SDEV_CREATED_BLOCK:
2093 			break;
2094 		default:
2095 			goto illegal;
2096 		}
2097 		break;
2098 
2099 	case SDEV_RUNNING:
2100 		switch (oldstate) {
2101 		case SDEV_CREATED:
2102 		case SDEV_OFFLINE:
2103 		case SDEV_TRANSPORT_OFFLINE:
2104 		case SDEV_QUIESCE:
2105 		case SDEV_BLOCK:
2106 			break;
2107 		default:
2108 			goto illegal;
2109 		}
2110 		break;
2111 
2112 	case SDEV_QUIESCE:
2113 		switch (oldstate) {
2114 		case SDEV_RUNNING:
2115 		case SDEV_OFFLINE:
2116 		case SDEV_TRANSPORT_OFFLINE:
2117 			break;
2118 		default:
2119 			goto illegal;
2120 		}
2121 		break;
2122 
2123 	case SDEV_OFFLINE:
2124 	case SDEV_TRANSPORT_OFFLINE:
2125 		switch (oldstate) {
2126 		case SDEV_CREATED:
2127 		case SDEV_RUNNING:
2128 		case SDEV_QUIESCE:
2129 		case SDEV_BLOCK:
2130 			break;
2131 		default:
2132 			goto illegal;
2133 		}
2134 		break;
2135 
2136 	case SDEV_BLOCK:
2137 		switch (oldstate) {
2138 		case SDEV_RUNNING:
2139 		case SDEV_CREATED_BLOCK:
2140 			break;
2141 		default:
2142 			goto illegal;
2143 		}
2144 		break;
2145 
2146 	case SDEV_CREATED_BLOCK:
2147 		switch (oldstate) {
2148 		case SDEV_CREATED:
2149 			break;
2150 		default:
2151 			goto illegal;
2152 		}
2153 		break;
2154 
2155 	case SDEV_CANCEL:
2156 		switch (oldstate) {
2157 		case SDEV_CREATED:
2158 		case SDEV_RUNNING:
2159 		case SDEV_QUIESCE:
2160 		case SDEV_OFFLINE:
2161 		case SDEV_TRANSPORT_OFFLINE:
2162 		case SDEV_BLOCK:
2163 			break;
2164 		default:
2165 			goto illegal;
2166 		}
2167 		break;
2168 
2169 	case SDEV_DEL:
2170 		switch (oldstate) {
2171 		case SDEV_CREATED:
2172 		case SDEV_RUNNING:
2173 		case SDEV_OFFLINE:
2174 		case SDEV_TRANSPORT_OFFLINE:
2175 		case SDEV_CANCEL:
2176 			break;
2177 		default:
2178 			goto illegal;
2179 		}
2180 		break;
2181 
2182 	}
2183 	sdev->sdev_state = state;
2184 	return 0;
2185 
2186  illegal:
2187 	SCSI_LOG_ERROR_RECOVERY(1,
2188 				sdev_printk(KERN_ERR, sdev,
2189 					    "Illegal state transition %s->%s\n",
2190 					    scsi_device_state_name(oldstate),
2191 					    scsi_device_state_name(state))
2192 				);
2193 	return -EINVAL;
2194 }
2195 EXPORT_SYMBOL(scsi_device_set_state);
2196 
2197 /**
2198  * 	sdev_evt_emit - emit a single SCSI device uevent
2199  *	@sdev: associated SCSI device
2200  *	@evt: event to emit
2201  *
2202  *	Send a single uevent (scsi_event) to the associated scsi_device.
2203  */
2204 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2205 {
2206 	int idx = 0;
2207 	char *envp[3];
2208 
2209 	switch (evt->evt_type) {
2210 	case SDEV_EVT_MEDIA_CHANGE:
2211 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2212 		break;
2213 
2214 	default:
2215 		/* do nothing */
2216 		break;
2217 	}
2218 
2219 	envp[idx++] = NULL;
2220 
2221 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2222 }
2223 
2224 /**
2225  * 	sdev_evt_thread - send a uevent for each scsi event
2226  *	@work: work struct for scsi_device
2227  *
2228  *	Dispatch queued events to their associated scsi_device kobjects
2229  *	as uevents.
2230  */
2231 void scsi_evt_thread(struct work_struct *work)
2232 {
2233 	struct scsi_device *sdev;
2234 	LIST_HEAD(event_list);
2235 
2236 	sdev = container_of(work, struct scsi_device, event_work);
2237 
2238 	while (1) {
2239 		struct scsi_event *evt;
2240 		struct list_head *this, *tmp;
2241 		unsigned long flags;
2242 
2243 		spin_lock_irqsave(&sdev->list_lock, flags);
2244 		list_splice_init(&sdev->event_list, &event_list);
2245 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2246 
2247 		if (list_empty(&event_list))
2248 			break;
2249 
2250 		list_for_each_safe(this, tmp, &event_list) {
2251 			evt = list_entry(this, struct scsi_event, node);
2252 			list_del(&evt->node);
2253 			scsi_evt_emit(sdev, evt);
2254 			kfree(evt);
2255 		}
2256 	}
2257 }
2258 
2259 /**
2260  * 	sdev_evt_send - send asserted event to uevent thread
2261  *	@sdev: scsi_device event occurred on
2262  *	@evt: event to send
2263  *
2264  *	Assert scsi device event asynchronously.
2265  */
2266 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2267 {
2268 	unsigned long flags;
2269 
2270 #if 0
2271 	/* FIXME: currently this check eliminates all media change events
2272 	 * for polled devices.  Need to update to discriminate between AN
2273 	 * and polled events */
2274 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2275 		kfree(evt);
2276 		return;
2277 	}
2278 #endif
2279 
2280 	spin_lock_irqsave(&sdev->list_lock, flags);
2281 	list_add_tail(&evt->node, &sdev->event_list);
2282 	schedule_work(&sdev->event_work);
2283 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2284 }
2285 EXPORT_SYMBOL_GPL(sdev_evt_send);
2286 
2287 /**
2288  * 	sdev_evt_alloc - allocate a new scsi event
2289  *	@evt_type: type of event to allocate
2290  *	@gfpflags: GFP flags for allocation
2291  *
2292  *	Allocates and returns a new scsi_event.
2293  */
2294 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2295 				  gfp_t gfpflags)
2296 {
2297 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2298 	if (!evt)
2299 		return NULL;
2300 
2301 	evt->evt_type = evt_type;
2302 	INIT_LIST_HEAD(&evt->node);
2303 
2304 	/* evt_type-specific initialization, if any */
2305 	switch (evt_type) {
2306 	case SDEV_EVT_MEDIA_CHANGE:
2307 	default:
2308 		/* do nothing */
2309 		break;
2310 	}
2311 
2312 	return evt;
2313 }
2314 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2315 
2316 /**
2317  * 	sdev_evt_send_simple - send asserted event to uevent thread
2318  *	@sdev: scsi_device event occurred on
2319  *	@evt_type: type of event to send
2320  *	@gfpflags: GFP flags for allocation
2321  *
2322  *	Assert scsi device event asynchronously, given an event type.
2323  */
2324 void sdev_evt_send_simple(struct scsi_device *sdev,
2325 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2326 {
2327 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2328 	if (!evt) {
2329 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2330 			    evt_type);
2331 		return;
2332 	}
2333 
2334 	sdev_evt_send(sdev, evt);
2335 }
2336 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2337 
2338 /**
2339  *	scsi_device_quiesce - Block user issued commands.
2340  *	@sdev:	scsi device to quiesce.
2341  *
2342  *	This works by trying to transition to the SDEV_QUIESCE state
2343  *	(which must be a legal transition).  When the device is in this
2344  *	state, only special requests will be accepted, all others will
2345  *	be deferred.  Since special requests may also be requeued requests,
2346  *	a successful return doesn't guarantee the device will be
2347  *	totally quiescent.
2348  *
2349  *	Must be called with user context, may sleep.
2350  *
2351  *	Returns zero if unsuccessful or an error if not.
2352  */
2353 int
2354 scsi_device_quiesce(struct scsi_device *sdev)
2355 {
2356 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2357 	if (err)
2358 		return err;
2359 
2360 	scsi_run_queue(sdev->request_queue);
2361 	while (sdev->device_busy) {
2362 		msleep_interruptible(200);
2363 		scsi_run_queue(sdev->request_queue);
2364 	}
2365 	return 0;
2366 }
2367 EXPORT_SYMBOL(scsi_device_quiesce);
2368 
2369 /**
2370  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2371  *	@sdev:	scsi device to resume.
2372  *
2373  *	Moves the device from quiesced back to running and restarts the
2374  *	queues.
2375  *
2376  *	Must be called with user context, may sleep.
2377  */
2378 void scsi_device_resume(struct scsi_device *sdev)
2379 {
2380 	/* check if the device state was mutated prior to resume, and if
2381 	 * so assume the state is being managed elsewhere (for example
2382 	 * device deleted during suspend)
2383 	 */
2384 	if (sdev->sdev_state != SDEV_QUIESCE ||
2385 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2386 		return;
2387 	scsi_run_queue(sdev->request_queue);
2388 }
2389 EXPORT_SYMBOL(scsi_device_resume);
2390 
2391 static void
2392 device_quiesce_fn(struct scsi_device *sdev, void *data)
2393 {
2394 	scsi_device_quiesce(sdev);
2395 }
2396 
2397 void
2398 scsi_target_quiesce(struct scsi_target *starget)
2399 {
2400 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2401 }
2402 EXPORT_SYMBOL(scsi_target_quiesce);
2403 
2404 static void
2405 device_resume_fn(struct scsi_device *sdev, void *data)
2406 {
2407 	scsi_device_resume(sdev);
2408 }
2409 
2410 void
2411 scsi_target_resume(struct scsi_target *starget)
2412 {
2413 	starget_for_each_device(starget, NULL, device_resume_fn);
2414 }
2415 EXPORT_SYMBOL(scsi_target_resume);
2416 
2417 /**
2418  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2419  * @sdev:	device to block
2420  *
2421  * Block request made by scsi lld's to temporarily stop all
2422  * scsi commands on the specified device.  Called from interrupt
2423  * or normal process context.
2424  *
2425  * Returns zero if successful or error if not
2426  *
2427  * Notes:
2428  *	This routine transitions the device to the SDEV_BLOCK state
2429  *	(which must be a legal transition).  When the device is in this
2430  *	state, all commands are deferred until the scsi lld reenables
2431  *	the device with scsi_device_unblock or device_block_tmo fires.
2432  */
2433 int
2434 scsi_internal_device_block(struct scsi_device *sdev)
2435 {
2436 	struct request_queue *q = sdev->request_queue;
2437 	unsigned long flags;
2438 	int err = 0;
2439 
2440 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2441 	if (err) {
2442 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2443 
2444 		if (err)
2445 			return err;
2446 	}
2447 
2448 	/*
2449 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2450 	 * block layer from calling the midlayer with this device's
2451 	 * request queue.
2452 	 */
2453 	spin_lock_irqsave(q->queue_lock, flags);
2454 	blk_stop_queue(q);
2455 	spin_unlock_irqrestore(q->queue_lock, flags);
2456 
2457 	return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2460 
2461 /**
2462  * scsi_internal_device_unblock - resume a device after a block request
2463  * @sdev:	device to resume
2464  * @new_state:	state to set devices to after unblocking
2465  *
2466  * Called by scsi lld's or the midlayer to restart the device queue
2467  * for the previously suspended scsi device.  Called from interrupt or
2468  * normal process context.
2469  *
2470  * Returns zero if successful or error if not.
2471  *
2472  * Notes:
2473  *	This routine transitions the device to the SDEV_RUNNING state
2474  *	or to one of the offline states (which must be a legal transition)
2475  *	allowing the midlayer to goose the queue for this device.
2476  */
2477 int
2478 scsi_internal_device_unblock(struct scsi_device *sdev,
2479 			     enum scsi_device_state new_state)
2480 {
2481 	struct request_queue *q = sdev->request_queue;
2482 	unsigned long flags;
2483 
2484 	/*
2485 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2486 	 * offlined states and goose the device queue if successful.
2487 	 */
2488 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2489 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2490 		sdev->sdev_state = new_state;
2491 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2492 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2493 		    new_state == SDEV_OFFLINE)
2494 			sdev->sdev_state = new_state;
2495 		else
2496 			sdev->sdev_state = SDEV_CREATED;
2497 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2498 		 sdev->sdev_state != SDEV_OFFLINE)
2499 		return -EINVAL;
2500 
2501 	spin_lock_irqsave(q->queue_lock, flags);
2502 	blk_start_queue(q);
2503 	spin_unlock_irqrestore(q->queue_lock, flags);
2504 
2505 	return 0;
2506 }
2507 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2508 
2509 static void
2510 device_block(struct scsi_device *sdev, void *data)
2511 {
2512 	scsi_internal_device_block(sdev);
2513 }
2514 
2515 static int
2516 target_block(struct device *dev, void *data)
2517 {
2518 	if (scsi_is_target_device(dev))
2519 		starget_for_each_device(to_scsi_target(dev), NULL,
2520 					device_block);
2521 	return 0;
2522 }
2523 
2524 void
2525 scsi_target_block(struct device *dev)
2526 {
2527 	if (scsi_is_target_device(dev))
2528 		starget_for_each_device(to_scsi_target(dev), NULL,
2529 					device_block);
2530 	else
2531 		device_for_each_child(dev, NULL, target_block);
2532 }
2533 EXPORT_SYMBOL_GPL(scsi_target_block);
2534 
2535 static void
2536 device_unblock(struct scsi_device *sdev, void *data)
2537 {
2538 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2539 }
2540 
2541 static int
2542 target_unblock(struct device *dev, void *data)
2543 {
2544 	if (scsi_is_target_device(dev))
2545 		starget_for_each_device(to_scsi_target(dev), data,
2546 					device_unblock);
2547 	return 0;
2548 }
2549 
2550 void
2551 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2552 {
2553 	if (scsi_is_target_device(dev))
2554 		starget_for_each_device(to_scsi_target(dev), &new_state,
2555 					device_unblock);
2556 	else
2557 		device_for_each_child(dev, &new_state, target_unblock);
2558 }
2559 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2560 
2561 /**
2562  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2563  * @sgl:	scatter-gather list
2564  * @sg_count:	number of segments in sg
2565  * @offset:	offset in bytes into sg, on return offset into the mapped area
2566  * @len:	bytes to map, on return number of bytes mapped
2567  *
2568  * Returns virtual address of the start of the mapped page
2569  */
2570 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2571 			  size_t *offset, size_t *len)
2572 {
2573 	int i;
2574 	size_t sg_len = 0, len_complete = 0;
2575 	struct scatterlist *sg;
2576 	struct page *page;
2577 
2578 	WARN_ON(!irqs_disabled());
2579 
2580 	for_each_sg(sgl, sg, sg_count, i) {
2581 		len_complete = sg_len; /* Complete sg-entries */
2582 		sg_len += sg->length;
2583 		if (sg_len > *offset)
2584 			break;
2585 	}
2586 
2587 	if (unlikely(i == sg_count)) {
2588 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2589 			"elements %d\n",
2590 		       __func__, sg_len, *offset, sg_count);
2591 		WARN_ON(1);
2592 		return NULL;
2593 	}
2594 
2595 	/* Offset starting from the beginning of first page in this sg-entry */
2596 	*offset = *offset - len_complete + sg->offset;
2597 
2598 	/* Assumption: contiguous pages can be accessed as "page + i" */
2599 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2600 	*offset &= ~PAGE_MASK;
2601 
2602 	/* Bytes in this sg-entry from *offset to the end of the page */
2603 	sg_len = PAGE_SIZE - *offset;
2604 	if (*len > sg_len)
2605 		*len = sg_len;
2606 
2607 	return kmap_atomic(page);
2608 }
2609 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2610 
2611 /**
2612  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2613  * @virt:	virtual address to be unmapped
2614  */
2615 void scsi_kunmap_atomic_sg(void *virt)
2616 {
2617 	kunmap_atomic(virt);
2618 }
2619 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2620