xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision cc8bbe1a)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 
43 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
44 #define SG_MEMPOOL_SIZE		2
45 
46 struct scsi_host_sg_pool {
47 	size_t		size;
48 	char		*name;
49 	struct kmem_cache	*slab;
50 	mempool_t	*pool;
51 };
52 
53 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
54 #if (SCSI_MAX_SG_SEGMENTS < 32)
55 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
56 #endif
57 static struct scsi_host_sg_pool scsi_sg_pools[] = {
58 	SP(8),
59 	SP(16),
60 #if (SCSI_MAX_SG_SEGMENTS > 32)
61 	SP(32),
62 #if (SCSI_MAX_SG_SEGMENTS > 64)
63 	SP(64),
64 #if (SCSI_MAX_SG_SEGMENTS > 128)
65 	SP(128),
66 #if (SCSI_MAX_SG_SEGMENTS > 256)
67 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
68 #endif
69 #endif
70 #endif
71 #endif
72 	SP(SCSI_MAX_SG_SEGMENTS)
73 };
74 #undef SP
75 
76 struct kmem_cache *scsi_sdb_cache;
77 
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY	3
84 
85 static void
86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88 	struct Scsi_Host *host = cmd->device->host;
89 	struct scsi_device *device = cmd->device;
90 	struct scsi_target *starget = scsi_target(device);
91 
92 	/*
93 	 * Set the appropriate busy bit for the device/host.
94 	 *
95 	 * If the host/device isn't busy, assume that something actually
96 	 * completed, and that we should be able to queue a command now.
97 	 *
98 	 * Note that the prior mid-layer assumption that any host could
99 	 * always queue at least one command is now broken.  The mid-layer
100 	 * will implement a user specifiable stall (see
101 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102 	 * if a command is requeued with no other commands outstanding
103 	 * either for the device or for the host.
104 	 */
105 	switch (reason) {
106 	case SCSI_MLQUEUE_HOST_BUSY:
107 		atomic_set(&host->host_blocked, host->max_host_blocked);
108 		break;
109 	case SCSI_MLQUEUE_DEVICE_BUSY:
110 	case SCSI_MLQUEUE_EH_RETRY:
111 		atomic_set(&device->device_blocked,
112 			   device->max_device_blocked);
113 		break;
114 	case SCSI_MLQUEUE_TARGET_BUSY:
115 		atomic_set(&starget->target_blocked,
116 			   starget->max_target_blocked);
117 		break;
118 	}
119 }
120 
121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 {
123 	struct scsi_device *sdev = cmd->device;
124 	struct request_queue *q = cmd->request->q;
125 
126 	blk_mq_requeue_request(cmd->request);
127 	blk_mq_kick_requeue_list(q);
128 	put_device(&sdev->sdev_gendev);
129 }
130 
131 /**
132  * __scsi_queue_insert - private queue insertion
133  * @cmd: The SCSI command being requeued
134  * @reason:  The reason for the requeue
135  * @unbusy: Whether the queue should be unbusied
136  *
137  * This is a private queue insertion.  The public interface
138  * scsi_queue_insert() always assumes the queue should be unbusied
139  * because it's always called before the completion.  This function is
140  * for a requeue after completion, which should only occur in this
141  * file.
142  */
143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
144 {
145 	struct scsi_device *device = cmd->device;
146 	struct request_queue *q = device->request_queue;
147 	unsigned long flags;
148 
149 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 		"Inserting command %p into mlqueue\n", cmd));
151 
152 	scsi_set_blocked(cmd, reason);
153 
154 	/*
155 	 * Decrement the counters, since these commands are no longer
156 	 * active on the host/device.
157 	 */
158 	if (unbusy)
159 		scsi_device_unbusy(device);
160 
161 	/*
162 	 * Requeue this command.  It will go before all other commands
163 	 * that are already in the queue. Schedule requeue work under
164 	 * lock such that the kblockd_schedule_work() call happens
165 	 * before blk_cleanup_queue() finishes.
166 	 */
167 	cmd->result = 0;
168 	if (q->mq_ops) {
169 		scsi_mq_requeue_cmd(cmd);
170 		return;
171 	}
172 	spin_lock_irqsave(q->queue_lock, flags);
173 	blk_requeue_request(q, cmd->request);
174 	kblockd_schedule_work(&device->requeue_work);
175 	spin_unlock_irqrestore(q->queue_lock, flags);
176 }
177 
178 /*
179  * Function:    scsi_queue_insert()
180  *
181  * Purpose:     Insert a command in the midlevel queue.
182  *
183  * Arguments:   cmd    - command that we are adding to queue.
184  *              reason - why we are inserting command to queue.
185  *
186  * Lock status: Assumed that lock is not held upon entry.
187  *
188  * Returns:     Nothing.
189  *
190  * Notes:       We do this for one of two cases.  Either the host is busy
191  *              and it cannot accept any more commands for the time being,
192  *              or the device returned QUEUE_FULL and can accept no more
193  *              commands.
194  * Notes:       This could be called either from an interrupt context or a
195  *              normal process context.
196  */
197 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
198 {
199 	__scsi_queue_insert(cmd, reason, 1);
200 }
201 /**
202  * scsi_execute - insert request and wait for the result
203  * @sdev:	scsi device
204  * @cmd:	scsi command
205  * @data_direction: data direction
206  * @buffer:	data buffer
207  * @bufflen:	len of buffer
208  * @sense:	optional sense buffer
209  * @timeout:	request timeout in seconds
210  * @retries:	number of times to retry request
211  * @flags:	or into request flags;
212  * @resid:	optional residual length
213  *
214  * returns the req->errors value which is the scsi_cmnd result
215  * field.
216  */
217 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
218 		 int data_direction, void *buffer, unsigned bufflen,
219 		 unsigned char *sense, int timeout, int retries, u64 flags,
220 		 int *resid)
221 {
222 	struct request *req;
223 	int write = (data_direction == DMA_TO_DEVICE);
224 	int ret = DRIVER_ERROR << 24;
225 
226 	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
227 	if (IS_ERR(req))
228 		return ret;
229 	blk_rq_set_block_pc(req);
230 
231 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
232 					buffer, bufflen, __GFP_RECLAIM))
233 		goto out;
234 
235 	req->cmd_len = COMMAND_SIZE(cmd[0]);
236 	memcpy(req->cmd, cmd, req->cmd_len);
237 	req->sense = sense;
238 	req->sense_len = 0;
239 	req->retries = retries;
240 	req->timeout = timeout;
241 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
242 
243 	/*
244 	 * head injection *required* here otherwise quiesce won't work
245 	 */
246 	blk_execute_rq(req->q, NULL, req, 1);
247 
248 	/*
249 	 * Some devices (USB mass-storage in particular) may transfer
250 	 * garbage data together with a residue indicating that the data
251 	 * is invalid.  Prevent the garbage from being misinterpreted
252 	 * and prevent security leaks by zeroing out the excess data.
253 	 */
254 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
255 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
256 
257 	if (resid)
258 		*resid = req->resid_len;
259 	ret = req->errors;
260  out:
261 	blk_put_request(req);
262 
263 	return ret;
264 }
265 EXPORT_SYMBOL(scsi_execute);
266 
267 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
268 		     int data_direction, void *buffer, unsigned bufflen,
269 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
270 		     int *resid, u64 flags)
271 {
272 	char *sense = NULL;
273 	int result;
274 
275 	if (sshdr) {
276 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
277 		if (!sense)
278 			return DRIVER_ERROR << 24;
279 	}
280 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
281 			      sense, timeout, retries, flags, resid);
282 	if (sshdr)
283 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
284 
285 	kfree(sense);
286 	return result;
287 }
288 EXPORT_SYMBOL(scsi_execute_req_flags);
289 
290 /*
291  * Function:    scsi_init_cmd_errh()
292  *
293  * Purpose:     Initialize cmd fields related to error handling.
294  *
295  * Arguments:   cmd	- command that is ready to be queued.
296  *
297  * Notes:       This function has the job of initializing a number of
298  *              fields related to error handling.   Typically this will
299  *              be called once for each command, as required.
300  */
301 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
302 {
303 	cmd->serial_number = 0;
304 	scsi_set_resid(cmd, 0);
305 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
306 	if (cmd->cmd_len == 0)
307 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
308 }
309 
310 void scsi_device_unbusy(struct scsi_device *sdev)
311 {
312 	struct Scsi_Host *shost = sdev->host;
313 	struct scsi_target *starget = scsi_target(sdev);
314 	unsigned long flags;
315 
316 	atomic_dec(&shost->host_busy);
317 	if (starget->can_queue > 0)
318 		atomic_dec(&starget->target_busy);
319 
320 	if (unlikely(scsi_host_in_recovery(shost) &&
321 		     (shost->host_failed || shost->host_eh_scheduled))) {
322 		spin_lock_irqsave(shost->host_lock, flags);
323 		scsi_eh_wakeup(shost);
324 		spin_unlock_irqrestore(shost->host_lock, flags);
325 	}
326 
327 	atomic_dec(&sdev->device_busy);
328 }
329 
330 static void scsi_kick_queue(struct request_queue *q)
331 {
332 	if (q->mq_ops)
333 		blk_mq_start_hw_queues(q);
334 	else
335 		blk_run_queue(q);
336 }
337 
338 /*
339  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
340  * and call blk_run_queue for all the scsi_devices on the target -
341  * including current_sdev first.
342  *
343  * Called with *no* scsi locks held.
344  */
345 static void scsi_single_lun_run(struct scsi_device *current_sdev)
346 {
347 	struct Scsi_Host *shost = current_sdev->host;
348 	struct scsi_device *sdev, *tmp;
349 	struct scsi_target *starget = scsi_target(current_sdev);
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(shost->host_lock, flags);
353 	starget->starget_sdev_user = NULL;
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 
356 	/*
357 	 * Call blk_run_queue for all LUNs on the target, starting with
358 	 * current_sdev. We race with others (to set starget_sdev_user),
359 	 * but in most cases, we will be first. Ideally, each LU on the
360 	 * target would get some limited time or requests on the target.
361 	 */
362 	scsi_kick_queue(current_sdev->request_queue);
363 
364 	spin_lock_irqsave(shost->host_lock, flags);
365 	if (starget->starget_sdev_user)
366 		goto out;
367 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
368 			same_target_siblings) {
369 		if (sdev == current_sdev)
370 			continue;
371 		if (scsi_device_get(sdev))
372 			continue;
373 
374 		spin_unlock_irqrestore(shost->host_lock, flags);
375 		scsi_kick_queue(sdev->request_queue);
376 		spin_lock_irqsave(shost->host_lock, flags);
377 
378 		scsi_device_put(sdev);
379 	}
380  out:
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 }
383 
384 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
385 {
386 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
387 		return true;
388 	if (atomic_read(&sdev->device_blocked) > 0)
389 		return true;
390 	return false;
391 }
392 
393 static inline bool scsi_target_is_busy(struct scsi_target *starget)
394 {
395 	if (starget->can_queue > 0) {
396 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
397 			return true;
398 		if (atomic_read(&starget->target_blocked) > 0)
399 			return true;
400 	}
401 	return false;
402 }
403 
404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
405 {
406 	if (shost->can_queue > 0 &&
407 	    atomic_read(&shost->host_busy) >= shost->can_queue)
408 		return true;
409 	if (atomic_read(&shost->host_blocked) > 0)
410 		return true;
411 	if (shost->host_self_blocked)
412 		return true;
413 	return false;
414 }
415 
416 static void scsi_starved_list_run(struct Scsi_Host *shost)
417 {
418 	LIST_HEAD(starved_list);
419 	struct scsi_device *sdev;
420 	unsigned long flags;
421 
422 	spin_lock_irqsave(shost->host_lock, flags);
423 	list_splice_init(&shost->starved_list, &starved_list);
424 
425 	while (!list_empty(&starved_list)) {
426 		struct request_queue *slq;
427 
428 		/*
429 		 * As long as shost is accepting commands and we have
430 		 * starved queues, call blk_run_queue. scsi_request_fn
431 		 * drops the queue_lock and can add us back to the
432 		 * starved_list.
433 		 *
434 		 * host_lock protects the starved_list and starved_entry.
435 		 * scsi_request_fn must get the host_lock before checking
436 		 * or modifying starved_list or starved_entry.
437 		 */
438 		if (scsi_host_is_busy(shost))
439 			break;
440 
441 		sdev = list_entry(starved_list.next,
442 				  struct scsi_device, starved_entry);
443 		list_del_init(&sdev->starved_entry);
444 		if (scsi_target_is_busy(scsi_target(sdev))) {
445 			list_move_tail(&sdev->starved_entry,
446 				       &shost->starved_list);
447 			continue;
448 		}
449 
450 		/*
451 		 * Once we drop the host lock, a racing scsi_remove_device()
452 		 * call may remove the sdev from the starved list and destroy
453 		 * it and the queue.  Mitigate by taking a reference to the
454 		 * queue and never touching the sdev again after we drop the
455 		 * host lock.  Note: if __scsi_remove_device() invokes
456 		 * blk_cleanup_queue() before the queue is run from this
457 		 * function then blk_run_queue() will return immediately since
458 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
459 		 */
460 		slq = sdev->request_queue;
461 		if (!blk_get_queue(slq))
462 			continue;
463 		spin_unlock_irqrestore(shost->host_lock, flags);
464 
465 		scsi_kick_queue(slq);
466 		blk_put_queue(slq);
467 
468 		spin_lock_irqsave(shost->host_lock, flags);
469 	}
470 	/* put any unprocessed entries back */
471 	list_splice(&starved_list, &shost->starved_list);
472 	spin_unlock_irqrestore(shost->host_lock, flags);
473 }
474 
475 /*
476  * Function:   scsi_run_queue()
477  *
478  * Purpose:    Select a proper request queue to serve next
479  *
480  * Arguments:  q       - last request's queue
481  *
482  * Returns:     Nothing
483  *
484  * Notes:      The previous command was completely finished, start
485  *             a new one if possible.
486  */
487 static void scsi_run_queue(struct request_queue *q)
488 {
489 	struct scsi_device *sdev = q->queuedata;
490 
491 	if (scsi_target(sdev)->single_lun)
492 		scsi_single_lun_run(sdev);
493 	if (!list_empty(&sdev->host->starved_list))
494 		scsi_starved_list_run(sdev->host);
495 
496 	if (q->mq_ops)
497 		blk_mq_start_stopped_hw_queues(q, false);
498 	else
499 		blk_run_queue(q);
500 }
501 
502 void scsi_requeue_run_queue(struct work_struct *work)
503 {
504 	struct scsi_device *sdev;
505 	struct request_queue *q;
506 
507 	sdev = container_of(work, struct scsi_device, requeue_work);
508 	q = sdev->request_queue;
509 	scsi_run_queue(q);
510 }
511 
512 /*
513  * Function:	scsi_requeue_command()
514  *
515  * Purpose:	Handle post-processing of completed commands.
516  *
517  * Arguments:	q	- queue to operate on
518  *		cmd	- command that may need to be requeued.
519  *
520  * Returns:	Nothing
521  *
522  * Notes:	After command completion, there may be blocks left
523  *		over which weren't finished by the previous command
524  *		this can be for a number of reasons - the main one is
525  *		I/O errors in the middle of the request, in which case
526  *		we need to request the blocks that come after the bad
527  *		sector.
528  * Notes:	Upon return, cmd is a stale pointer.
529  */
530 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
531 {
532 	struct scsi_device *sdev = cmd->device;
533 	struct request *req = cmd->request;
534 	unsigned long flags;
535 
536 	spin_lock_irqsave(q->queue_lock, flags);
537 	blk_unprep_request(req);
538 	req->special = NULL;
539 	scsi_put_command(cmd);
540 	blk_requeue_request(q, req);
541 	spin_unlock_irqrestore(q->queue_lock, flags);
542 
543 	scsi_run_queue(q);
544 
545 	put_device(&sdev->sdev_gendev);
546 }
547 
548 void scsi_run_host_queues(struct Scsi_Host *shost)
549 {
550 	struct scsi_device *sdev;
551 
552 	shost_for_each_device(sdev, shost)
553 		scsi_run_queue(sdev->request_queue);
554 }
555 
556 static inline unsigned int scsi_sgtable_index(unsigned short nents)
557 {
558 	unsigned int index;
559 
560 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
561 
562 	if (nents <= 8)
563 		index = 0;
564 	else
565 		index = get_count_order(nents) - 3;
566 
567 	return index;
568 }
569 
570 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
571 {
572 	struct scsi_host_sg_pool *sgp;
573 
574 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
575 	mempool_free(sgl, sgp->pool);
576 }
577 
578 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
579 {
580 	struct scsi_host_sg_pool *sgp;
581 
582 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583 	return mempool_alloc(sgp->pool, gfp_mask);
584 }
585 
586 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
587 {
588 	if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
589 		return;
590 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
591 }
592 
593 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
594 {
595 	struct scatterlist *first_chunk = NULL;
596 	int ret;
597 
598 	BUG_ON(!nents);
599 
600 	if (mq) {
601 		if (nents <= SCSI_MAX_SG_SEGMENTS) {
602 			sdb->table.nents = sdb->table.orig_nents = nents;
603 			sg_init_table(sdb->table.sgl, nents);
604 			return 0;
605 		}
606 		first_chunk = sdb->table.sgl;
607 	}
608 
609 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
610 			       first_chunk, GFP_ATOMIC, scsi_sg_alloc);
611 	if (unlikely(ret))
612 		scsi_free_sgtable(sdb, mq);
613 	return ret;
614 }
615 
616 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
617 {
618 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
619 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
620 
621 		if (drv->uninit_command)
622 			drv->uninit_command(cmd);
623 	}
624 }
625 
626 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
627 {
628 	if (cmd->sdb.table.nents)
629 		scsi_free_sgtable(&cmd->sdb, true);
630 	if (cmd->request->next_rq && cmd->request->next_rq->special)
631 		scsi_free_sgtable(cmd->request->next_rq->special, true);
632 	if (scsi_prot_sg_count(cmd))
633 		scsi_free_sgtable(cmd->prot_sdb, true);
634 }
635 
636 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
637 {
638 	struct scsi_device *sdev = cmd->device;
639 	struct Scsi_Host *shost = sdev->host;
640 	unsigned long flags;
641 
642 	scsi_mq_free_sgtables(cmd);
643 	scsi_uninit_cmd(cmd);
644 
645 	if (shost->use_cmd_list) {
646 		BUG_ON(list_empty(&cmd->list));
647 		spin_lock_irqsave(&sdev->list_lock, flags);
648 		list_del_init(&cmd->list);
649 		spin_unlock_irqrestore(&sdev->list_lock, flags);
650 	}
651 }
652 
653 /*
654  * Function:    scsi_release_buffers()
655  *
656  * Purpose:     Free resources allocate for a scsi_command.
657  *
658  * Arguments:   cmd	- command that we are bailing.
659  *
660  * Lock status: Assumed that no lock is held upon entry.
661  *
662  * Returns:     Nothing
663  *
664  * Notes:       In the event that an upper level driver rejects a
665  *		command, we must release resources allocated during
666  *		the __init_io() function.  Primarily this would involve
667  *		the scatter-gather table.
668  */
669 static void scsi_release_buffers(struct scsi_cmnd *cmd)
670 {
671 	if (cmd->sdb.table.nents)
672 		scsi_free_sgtable(&cmd->sdb, false);
673 
674 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
675 
676 	if (scsi_prot_sg_count(cmd))
677 		scsi_free_sgtable(cmd->prot_sdb, false);
678 }
679 
680 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
681 {
682 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
683 
684 	scsi_free_sgtable(bidi_sdb, false);
685 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
686 	cmd->request->next_rq->special = NULL;
687 }
688 
689 static bool scsi_end_request(struct request *req, int error,
690 		unsigned int bytes, unsigned int bidi_bytes)
691 {
692 	struct scsi_cmnd *cmd = req->special;
693 	struct scsi_device *sdev = cmd->device;
694 	struct request_queue *q = sdev->request_queue;
695 
696 	if (blk_update_request(req, error, bytes))
697 		return true;
698 
699 	/* Bidi request must be completed as a whole */
700 	if (unlikely(bidi_bytes) &&
701 	    blk_update_request(req->next_rq, error, bidi_bytes))
702 		return true;
703 
704 	if (blk_queue_add_random(q))
705 		add_disk_randomness(req->rq_disk);
706 
707 	if (req->mq_ctx) {
708 		/*
709 		 * In the MQ case the command gets freed by __blk_mq_end_request,
710 		 * so we have to do all cleanup that depends on it earlier.
711 		 *
712 		 * We also can't kick the queues from irq context, so we
713 		 * will have to defer it to a workqueue.
714 		 */
715 		scsi_mq_uninit_cmd(cmd);
716 
717 		__blk_mq_end_request(req, error);
718 
719 		if (scsi_target(sdev)->single_lun ||
720 		    !list_empty(&sdev->host->starved_list))
721 			kblockd_schedule_work(&sdev->requeue_work);
722 		else
723 			blk_mq_start_stopped_hw_queues(q, true);
724 	} else {
725 		unsigned long flags;
726 
727 		if (bidi_bytes)
728 			scsi_release_bidi_buffers(cmd);
729 
730 		spin_lock_irqsave(q->queue_lock, flags);
731 		blk_finish_request(req, error);
732 		spin_unlock_irqrestore(q->queue_lock, flags);
733 
734 		scsi_release_buffers(cmd);
735 
736 		scsi_put_command(cmd);
737 		scsi_run_queue(q);
738 	}
739 
740 	put_device(&sdev->sdev_gendev);
741 	return false;
742 }
743 
744 /**
745  * __scsi_error_from_host_byte - translate SCSI error code into errno
746  * @cmd:	SCSI command (unused)
747  * @result:	scsi error code
748  *
749  * Translate SCSI error code into standard UNIX errno.
750  * Return values:
751  * -ENOLINK	temporary transport failure
752  * -EREMOTEIO	permanent target failure, do not retry
753  * -EBADE	permanent nexus failure, retry on other path
754  * -ENOSPC	No write space available
755  * -ENODATA	Medium error
756  * -EIO		unspecified I/O error
757  */
758 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
759 {
760 	int error = 0;
761 
762 	switch(host_byte(result)) {
763 	case DID_TRANSPORT_FAILFAST:
764 		error = -ENOLINK;
765 		break;
766 	case DID_TARGET_FAILURE:
767 		set_host_byte(cmd, DID_OK);
768 		error = -EREMOTEIO;
769 		break;
770 	case DID_NEXUS_FAILURE:
771 		set_host_byte(cmd, DID_OK);
772 		error = -EBADE;
773 		break;
774 	case DID_ALLOC_FAILURE:
775 		set_host_byte(cmd, DID_OK);
776 		error = -ENOSPC;
777 		break;
778 	case DID_MEDIUM_ERROR:
779 		set_host_byte(cmd, DID_OK);
780 		error = -ENODATA;
781 		break;
782 	default:
783 		error = -EIO;
784 		break;
785 	}
786 
787 	return error;
788 }
789 
790 /*
791  * Function:    scsi_io_completion()
792  *
793  * Purpose:     Completion processing for block device I/O requests.
794  *
795  * Arguments:   cmd   - command that is finished.
796  *
797  * Lock status: Assumed that no lock is held upon entry.
798  *
799  * Returns:     Nothing
800  *
801  * Notes:       We will finish off the specified number of sectors.  If we
802  *		are done, the command block will be released and the queue
803  *		function will be goosed.  If we are not done then we have to
804  *		figure out what to do next:
805  *
806  *		a) We can call scsi_requeue_command().  The request
807  *		   will be unprepared and put back on the queue.  Then
808  *		   a new command will be created for it.  This should
809  *		   be used if we made forward progress, or if we want
810  *		   to switch from READ(10) to READ(6) for example.
811  *
812  *		b) We can call __scsi_queue_insert().  The request will
813  *		   be put back on the queue and retried using the same
814  *		   command as before, possibly after a delay.
815  *
816  *		c) We can call scsi_end_request() with -EIO to fail
817  *		   the remainder of the request.
818  */
819 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
820 {
821 	int result = cmd->result;
822 	struct request_queue *q = cmd->device->request_queue;
823 	struct request *req = cmd->request;
824 	int error = 0;
825 	struct scsi_sense_hdr sshdr;
826 	bool sense_valid = false;
827 	int sense_deferred = 0, level = 0;
828 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
829 	      ACTION_DELAYED_RETRY} action;
830 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
831 
832 	if (result) {
833 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
834 		if (sense_valid)
835 			sense_deferred = scsi_sense_is_deferred(&sshdr);
836 	}
837 
838 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
839 		if (result) {
840 			if (sense_valid && req->sense) {
841 				/*
842 				 * SG_IO wants current and deferred errors
843 				 */
844 				int len = 8 + cmd->sense_buffer[7];
845 
846 				if (len > SCSI_SENSE_BUFFERSIZE)
847 					len = SCSI_SENSE_BUFFERSIZE;
848 				memcpy(req->sense, cmd->sense_buffer,  len);
849 				req->sense_len = len;
850 			}
851 			if (!sense_deferred)
852 				error = __scsi_error_from_host_byte(cmd, result);
853 		}
854 		/*
855 		 * __scsi_error_from_host_byte may have reset the host_byte
856 		 */
857 		req->errors = cmd->result;
858 
859 		req->resid_len = scsi_get_resid(cmd);
860 
861 		if (scsi_bidi_cmnd(cmd)) {
862 			/*
863 			 * Bidi commands Must be complete as a whole,
864 			 * both sides at once.
865 			 */
866 			req->next_rq->resid_len = scsi_in(cmd)->resid;
867 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
868 					blk_rq_bytes(req->next_rq)))
869 				BUG();
870 			return;
871 		}
872 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
873 		/*
874 		 * Certain non BLOCK_PC requests are commands that don't
875 		 * actually transfer anything (FLUSH), so cannot use
876 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
877 		 * This sets the error explicitly for the problem case.
878 		 */
879 		error = __scsi_error_from_host_byte(cmd, result);
880 	}
881 
882 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
883 	BUG_ON(blk_bidi_rq(req));
884 
885 	/*
886 	 * Next deal with any sectors which we were able to correctly
887 	 * handle.
888 	 */
889 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
890 		"%u sectors total, %d bytes done.\n",
891 		blk_rq_sectors(req), good_bytes));
892 
893 	/*
894 	 * Recovered errors need reporting, but they're always treated
895 	 * as success, so fiddle the result code here.  For BLOCK_PC
896 	 * we already took a copy of the original into rq->errors which
897 	 * is what gets returned to the user
898 	 */
899 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
900 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
901 		 * print since caller wants ATA registers. Only occurs on
902 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
903 		 */
904 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
905 			;
906 		else if (!(req->cmd_flags & REQ_QUIET))
907 			scsi_print_sense(cmd);
908 		result = 0;
909 		/* BLOCK_PC may have set error */
910 		error = 0;
911 	}
912 
913 	/*
914 	 * If we finished all bytes in the request we are done now.
915 	 */
916 	if (!scsi_end_request(req, error, good_bytes, 0))
917 		return;
918 
919 	/*
920 	 * Kill remainder if no retrys.
921 	 */
922 	if (error && scsi_noretry_cmd(cmd)) {
923 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
924 			BUG();
925 		return;
926 	}
927 
928 	/*
929 	 * If there had been no error, but we have leftover bytes in the
930 	 * requeues just queue the command up again.
931 	 */
932 	if (result == 0)
933 		goto requeue;
934 
935 	error = __scsi_error_from_host_byte(cmd, result);
936 
937 	if (host_byte(result) == DID_RESET) {
938 		/* Third party bus reset or reset for error recovery
939 		 * reasons.  Just retry the command and see what
940 		 * happens.
941 		 */
942 		action = ACTION_RETRY;
943 	} else if (sense_valid && !sense_deferred) {
944 		switch (sshdr.sense_key) {
945 		case UNIT_ATTENTION:
946 			if (cmd->device->removable) {
947 				/* Detected disc change.  Set a bit
948 				 * and quietly refuse further access.
949 				 */
950 				cmd->device->changed = 1;
951 				action = ACTION_FAIL;
952 			} else {
953 				/* Must have been a power glitch, or a
954 				 * bus reset.  Could not have been a
955 				 * media change, so we just retry the
956 				 * command and see what happens.
957 				 */
958 				action = ACTION_RETRY;
959 			}
960 			break;
961 		case ILLEGAL_REQUEST:
962 			/* If we had an ILLEGAL REQUEST returned, then
963 			 * we may have performed an unsupported
964 			 * command.  The only thing this should be
965 			 * would be a ten byte read where only a six
966 			 * byte read was supported.  Also, on a system
967 			 * where READ CAPACITY failed, we may have
968 			 * read past the end of the disk.
969 			 */
970 			if ((cmd->device->use_10_for_rw &&
971 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
972 			    (cmd->cmnd[0] == READ_10 ||
973 			     cmd->cmnd[0] == WRITE_10)) {
974 				/* This will issue a new 6-byte command. */
975 				cmd->device->use_10_for_rw = 0;
976 				action = ACTION_REPREP;
977 			} else if (sshdr.asc == 0x10) /* DIX */ {
978 				action = ACTION_FAIL;
979 				error = -EILSEQ;
980 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
981 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
982 				action = ACTION_FAIL;
983 				error = -EREMOTEIO;
984 			} else
985 				action = ACTION_FAIL;
986 			break;
987 		case ABORTED_COMMAND:
988 			action = ACTION_FAIL;
989 			if (sshdr.asc == 0x10) /* DIF */
990 				error = -EILSEQ;
991 			break;
992 		case NOT_READY:
993 			/* If the device is in the process of becoming
994 			 * ready, or has a temporary blockage, retry.
995 			 */
996 			if (sshdr.asc == 0x04) {
997 				switch (sshdr.ascq) {
998 				case 0x01: /* becoming ready */
999 				case 0x04: /* format in progress */
1000 				case 0x05: /* rebuild in progress */
1001 				case 0x06: /* recalculation in progress */
1002 				case 0x07: /* operation in progress */
1003 				case 0x08: /* Long write in progress */
1004 				case 0x09: /* self test in progress */
1005 				case 0x14: /* space allocation in progress */
1006 					action = ACTION_DELAYED_RETRY;
1007 					break;
1008 				default:
1009 					action = ACTION_FAIL;
1010 					break;
1011 				}
1012 			} else
1013 				action = ACTION_FAIL;
1014 			break;
1015 		case VOLUME_OVERFLOW:
1016 			/* See SSC3rXX or current. */
1017 			action = ACTION_FAIL;
1018 			break;
1019 		default:
1020 			action = ACTION_FAIL;
1021 			break;
1022 		}
1023 	} else
1024 		action = ACTION_FAIL;
1025 
1026 	if (action != ACTION_FAIL &&
1027 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1028 		action = ACTION_FAIL;
1029 
1030 	switch (action) {
1031 	case ACTION_FAIL:
1032 		/* Give up and fail the remainder of the request */
1033 		if (!(req->cmd_flags & REQ_QUIET)) {
1034 			static DEFINE_RATELIMIT_STATE(_rs,
1035 					DEFAULT_RATELIMIT_INTERVAL,
1036 					DEFAULT_RATELIMIT_BURST);
1037 
1038 			if (unlikely(scsi_logging_level))
1039 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1040 						       SCSI_LOG_MLCOMPLETE_BITS);
1041 
1042 			/*
1043 			 * if logging is enabled the failure will be printed
1044 			 * in scsi_log_completion(), so avoid duplicate messages
1045 			 */
1046 			if (!level && __ratelimit(&_rs)) {
1047 				scsi_print_result(cmd, NULL, FAILED);
1048 				if (driver_byte(result) & DRIVER_SENSE)
1049 					scsi_print_sense(cmd);
1050 				scsi_print_command(cmd);
1051 			}
1052 		}
1053 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1054 			return;
1055 		/*FALLTHRU*/
1056 	case ACTION_REPREP:
1057 	requeue:
1058 		/* Unprep the request and put it back at the head of the queue.
1059 		 * A new command will be prepared and issued.
1060 		 */
1061 		if (q->mq_ops) {
1062 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1063 			scsi_mq_uninit_cmd(cmd);
1064 			scsi_mq_requeue_cmd(cmd);
1065 		} else {
1066 			scsi_release_buffers(cmd);
1067 			scsi_requeue_command(q, cmd);
1068 		}
1069 		break;
1070 	case ACTION_RETRY:
1071 		/* Retry the same command immediately */
1072 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1073 		break;
1074 	case ACTION_DELAYED_RETRY:
1075 		/* Retry the same command after a delay */
1076 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1077 		break;
1078 	}
1079 }
1080 
1081 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1082 {
1083 	int count;
1084 
1085 	/*
1086 	 * If sg table allocation fails, requeue request later.
1087 	 */
1088 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1089 					req->mq_ctx != NULL)))
1090 		return BLKPREP_DEFER;
1091 
1092 	/*
1093 	 * Next, walk the list, and fill in the addresses and sizes of
1094 	 * each segment.
1095 	 */
1096 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1097 	BUG_ON(count > sdb->table.nents);
1098 	sdb->table.nents = count;
1099 	sdb->length = blk_rq_bytes(req);
1100 	return BLKPREP_OK;
1101 }
1102 
1103 /*
1104  * Function:    scsi_init_io()
1105  *
1106  * Purpose:     SCSI I/O initialize function.
1107  *
1108  * Arguments:   cmd   - Command descriptor we wish to initialize
1109  *
1110  * Returns:     0 on success
1111  *		BLKPREP_DEFER if the failure is retryable
1112  *		BLKPREP_KILL if the failure is fatal
1113  */
1114 int scsi_init_io(struct scsi_cmnd *cmd)
1115 {
1116 	struct scsi_device *sdev = cmd->device;
1117 	struct request *rq = cmd->request;
1118 	bool is_mq = (rq->mq_ctx != NULL);
1119 	int error;
1120 
1121 	BUG_ON(!rq->nr_phys_segments);
1122 
1123 	error = scsi_init_sgtable(rq, &cmd->sdb);
1124 	if (error)
1125 		goto err_exit;
1126 
1127 	if (blk_bidi_rq(rq)) {
1128 		if (!rq->q->mq_ops) {
1129 			struct scsi_data_buffer *bidi_sdb =
1130 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1131 			if (!bidi_sdb) {
1132 				error = BLKPREP_DEFER;
1133 				goto err_exit;
1134 			}
1135 
1136 			rq->next_rq->special = bidi_sdb;
1137 		}
1138 
1139 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1140 		if (error)
1141 			goto err_exit;
1142 	}
1143 
1144 	if (blk_integrity_rq(rq)) {
1145 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1146 		int ivecs, count;
1147 
1148 		if (prot_sdb == NULL) {
1149 			/*
1150 			 * This can happen if someone (e.g. multipath)
1151 			 * queues a command to a device on an adapter
1152 			 * that does not support DIX.
1153 			 */
1154 			WARN_ON_ONCE(1);
1155 			error = BLKPREP_KILL;
1156 			goto err_exit;
1157 		}
1158 
1159 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1160 
1161 		if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1162 			error = BLKPREP_DEFER;
1163 			goto err_exit;
1164 		}
1165 
1166 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1167 						prot_sdb->table.sgl);
1168 		BUG_ON(unlikely(count > ivecs));
1169 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1170 
1171 		cmd->prot_sdb = prot_sdb;
1172 		cmd->prot_sdb->table.nents = count;
1173 	}
1174 
1175 	return BLKPREP_OK;
1176 err_exit:
1177 	if (is_mq) {
1178 		scsi_mq_free_sgtables(cmd);
1179 	} else {
1180 		scsi_release_buffers(cmd);
1181 		cmd->request->special = NULL;
1182 		scsi_put_command(cmd);
1183 		put_device(&sdev->sdev_gendev);
1184 	}
1185 	return error;
1186 }
1187 EXPORT_SYMBOL(scsi_init_io);
1188 
1189 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1190 		struct request *req)
1191 {
1192 	struct scsi_cmnd *cmd;
1193 
1194 	if (!req->special) {
1195 		/* Bail if we can't get a reference to the device */
1196 		if (!get_device(&sdev->sdev_gendev))
1197 			return NULL;
1198 
1199 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1200 		if (unlikely(!cmd)) {
1201 			put_device(&sdev->sdev_gendev);
1202 			return NULL;
1203 		}
1204 		req->special = cmd;
1205 	} else {
1206 		cmd = req->special;
1207 	}
1208 
1209 	/* pull a tag out of the request if we have one */
1210 	cmd->tag = req->tag;
1211 	cmd->request = req;
1212 
1213 	cmd->cmnd = req->cmd;
1214 	cmd->prot_op = SCSI_PROT_NORMAL;
1215 
1216 	return cmd;
1217 }
1218 
1219 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1220 {
1221 	struct scsi_cmnd *cmd = req->special;
1222 
1223 	/*
1224 	 * BLOCK_PC requests may transfer data, in which case they must
1225 	 * a bio attached to them.  Or they might contain a SCSI command
1226 	 * that does not transfer data, in which case they may optionally
1227 	 * submit a request without an attached bio.
1228 	 */
1229 	if (req->bio) {
1230 		int ret = scsi_init_io(cmd);
1231 		if (unlikely(ret))
1232 			return ret;
1233 	} else {
1234 		BUG_ON(blk_rq_bytes(req));
1235 
1236 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1237 	}
1238 
1239 	cmd->cmd_len = req->cmd_len;
1240 	cmd->transfersize = blk_rq_bytes(req);
1241 	cmd->allowed = req->retries;
1242 	return BLKPREP_OK;
1243 }
1244 
1245 /*
1246  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1247  * that still need to be translated to SCSI CDBs from the ULD.
1248  */
1249 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1250 {
1251 	struct scsi_cmnd *cmd = req->special;
1252 
1253 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1254 		int ret = sdev->handler->prep_fn(sdev, req);
1255 		if (ret != BLKPREP_OK)
1256 			return ret;
1257 	}
1258 
1259 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1260 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1261 }
1262 
1263 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1264 {
1265 	struct scsi_cmnd *cmd = req->special;
1266 
1267 	if (!blk_rq_bytes(req))
1268 		cmd->sc_data_direction = DMA_NONE;
1269 	else if (rq_data_dir(req) == WRITE)
1270 		cmd->sc_data_direction = DMA_TO_DEVICE;
1271 	else
1272 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1273 
1274 	switch (req->cmd_type) {
1275 	case REQ_TYPE_FS:
1276 		return scsi_setup_fs_cmnd(sdev, req);
1277 	case REQ_TYPE_BLOCK_PC:
1278 		return scsi_setup_blk_pc_cmnd(sdev, req);
1279 	default:
1280 		return BLKPREP_KILL;
1281 	}
1282 }
1283 
1284 static int
1285 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1286 {
1287 	int ret = BLKPREP_OK;
1288 
1289 	/*
1290 	 * If the device is not in running state we will reject some
1291 	 * or all commands.
1292 	 */
1293 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1294 		switch (sdev->sdev_state) {
1295 		case SDEV_OFFLINE:
1296 		case SDEV_TRANSPORT_OFFLINE:
1297 			/*
1298 			 * If the device is offline we refuse to process any
1299 			 * commands.  The device must be brought online
1300 			 * before trying any recovery commands.
1301 			 */
1302 			sdev_printk(KERN_ERR, sdev,
1303 				    "rejecting I/O to offline device\n");
1304 			ret = BLKPREP_KILL;
1305 			break;
1306 		case SDEV_DEL:
1307 			/*
1308 			 * If the device is fully deleted, we refuse to
1309 			 * process any commands as well.
1310 			 */
1311 			sdev_printk(KERN_ERR, sdev,
1312 				    "rejecting I/O to dead device\n");
1313 			ret = BLKPREP_KILL;
1314 			break;
1315 		case SDEV_BLOCK:
1316 		case SDEV_CREATED_BLOCK:
1317 			ret = BLKPREP_DEFER;
1318 			break;
1319 		case SDEV_QUIESCE:
1320 			/*
1321 			 * If the devices is blocked we defer normal commands.
1322 			 */
1323 			if (!(req->cmd_flags & REQ_PREEMPT))
1324 				ret = BLKPREP_DEFER;
1325 			break;
1326 		default:
1327 			/*
1328 			 * For any other not fully online state we only allow
1329 			 * special commands.  In particular any user initiated
1330 			 * command is not allowed.
1331 			 */
1332 			if (!(req->cmd_flags & REQ_PREEMPT))
1333 				ret = BLKPREP_KILL;
1334 			break;
1335 		}
1336 	}
1337 	return ret;
1338 }
1339 
1340 static int
1341 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1342 {
1343 	struct scsi_device *sdev = q->queuedata;
1344 
1345 	switch (ret) {
1346 	case BLKPREP_KILL:
1347 		req->errors = DID_NO_CONNECT << 16;
1348 		/* release the command and kill it */
1349 		if (req->special) {
1350 			struct scsi_cmnd *cmd = req->special;
1351 			scsi_release_buffers(cmd);
1352 			scsi_put_command(cmd);
1353 			put_device(&sdev->sdev_gendev);
1354 			req->special = NULL;
1355 		}
1356 		break;
1357 	case BLKPREP_DEFER:
1358 		/*
1359 		 * If we defer, the blk_peek_request() returns NULL, but the
1360 		 * queue must be restarted, so we schedule a callback to happen
1361 		 * shortly.
1362 		 */
1363 		if (atomic_read(&sdev->device_busy) == 0)
1364 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1365 		break;
1366 	default:
1367 		req->cmd_flags |= REQ_DONTPREP;
1368 	}
1369 
1370 	return ret;
1371 }
1372 
1373 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1374 {
1375 	struct scsi_device *sdev = q->queuedata;
1376 	struct scsi_cmnd *cmd;
1377 	int ret;
1378 
1379 	ret = scsi_prep_state_check(sdev, req);
1380 	if (ret != BLKPREP_OK)
1381 		goto out;
1382 
1383 	cmd = scsi_get_cmd_from_req(sdev, req);
1384 	if (unlikely(!cmd)) {
1385 		ret = BLKPREP_DEFER;
1386 		goto out;
1387 	}
1388 
1389 	ret = scsi_setup_cmnd(sdev, req);
1390 out:
1391 	return scsi_prep_return(q, req, ret);
1392 }
1393 
1394 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1395 {
1396 	scsi_uninit_cmd(req->special);
1397 }
1398 
1399 /*
1400  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1401  * return 0.
1402  *
1403  * Called with the queue_lock held.
1404  */
1405 static inline int scsi_dev_queue_ready(struct request_queue *q,
1406 				  struct scsi_device *sdev)
1407 {
1408 	unsigned int busy;
1409 
1410 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1411 	if (atomic_read(&sdev->device_blocked)) {
1412 		if (busy)
1413 			goto out_dec;
1414 
1415 		/*
1416 		 * unblock after device_blocked iterates to zero
1417 		 */
1418 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1419 			/*
1420 			 * For the MQ case we take care of this in the caller.
1421 			 */
1422 			if (!q->mq_ops)
1423 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1424 			goto out_dec;
1425 		}
1426 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1427 				   "unblocking device at zero depth\n"));
1428 	}
1429 
1430 	if (busy >= sdev->queue_depth)
1431 		goto out_dec;
1432 
1433 	return 1;
1434 out_dec:
1435 	atomic_dec(&sdev->device_busy);
1436 	return 0;
1437 }
1438 
1439 /*
1440  * scsi_target_queue_ready: checks if there we can send commands to target
1441  * @sdev: scsi device on starget to check.
1442  */
1443 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1444 					   struct scsi_device *sdev)
1445 {
1446 	struct scsi_target *starget = scsi_target(sdev);
1447 	unsigned int busy;
1448 
1449 	if (starget->single_lun) {
1450 		spin_lock_irq(shost->host_lock);
1451 		if (starget->starget_sdev_user &&
1452 		    starget->starget_sdev_user != sdev) {
1453 			spin_unlock_irq(shost->host_lock);
1454 			return 0;
1455 		}
1456 		starget->starget_sdev_user = sdev;
1457 		spin_unlock_irq(shost->host_lock);
1458 	}
1459 
1460 	if (starget->can_queue <= 0)
1461 		return 1;
1462 
1463 	busy = atomic_inc_return(&starget->target_busy) - 1;
1464 	if (atomic_read(&starget->target_blocked) > 0) {
1465 		if (busy)
1466 			goto starved;
1467 
1468 		/*
1469 		 * unblock after target_blocked iterates to zero
1470 		 */
1471 		if (atomic_dec_return(&starget->target_blocked) > 0)
1472 			goto out_dec;
1473 
1474 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1475 				 "unblocking target at zero depth\n"));
1476 	}
1477 
1478 	if (busy >= starget->can_queue)
1479 		goto starved;
1480 
1481 	return 1;
1482 
1483 starved:
1484 	spin_lock_irq(shost->host_lock);
1485 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1486 	spin_unlock_irq(shost->host_lock);
1487 out_dec:
1488 	if (starget->can_queue > 0)
1489 		atomic_dec(&starget->target_busy);
1490 	return 0;
1491 }
1492 
1493 /*
1494  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1495  * return 0. We must end up running the queue again whenever 0 is
1496  * returned, else IO can hang.
1497  */
1498 static inline int scsi_host_queue_ready(struct request_queue *q,
1499 				   struct Scsi_Host *shost,
1500 				   struct scsi_device *sdev)
1501 {
1502 	unsigned int busy;
1503 
1504 	if (scsi_host_in_recovery(shost))
1505 		return 0;
1506 
1507 	busy = atomic_inc_return(&shost->host_busy) - 1;
1508 	if (atomic_read(&shost->host_blocked) > 0) {
1509 		if (busy)
1510 			goto starved;
1511 
1512 		/*
1513 		 * unblock after host_blocked iterates to zero
1514 		 */
1515 		if (atomic_dec_return(&shost->host_blocked) > 0)
1516 			goto out_dec;
1517 
1518 		SCSI_LOG_MLQUEUE(3,
1519 			shost_printk(KERN_INFO, shost,
1520 				     "unblocking host at zero depth\n"));
1521 	}
1522 
1523 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1524 		goto starved;
1525 	if (shost->host_self_blocked)
1526 		goto starved;
1527 
1528 	/* We're OK to process the command, so we can't be starved */
1529 	if (!list_empty(&sdev->starved_entry)) {
1530 		spin_lock_irq(shost->host_lock);
1531 		if (!list_empty(&sdev->starved_entry))
1532 			list_del_init(&sdev->starved_entry);
1533 		spin_unlock_irq(shost->host_lock);
1534 	}
1535 
1536 	return 1;
1537 
1538 starved:
1539 	spin_lock_irq(shost->host_lock);
1540 	if (list_empty(&sdev->starved_entry))
1541 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1542 	spin_unlock_irq(shost->host_lock);
1543 out_dec:
1544 	atomic_dec(&shost->host_busy);
1545 	return 0;
1546 }
1547 
1548 /*
1549  * Busy state exporting function for request stacking drivers.
1550  *
1551  * For efficiency, no lock is taken to check the busy state of
1552  * shost/starget/sdev, since the returned value is not guaranteed and
1553  * may be changed after request stacking drivers call the function,
1554  * regardless of taking lock or not.
1555  *
1556  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1557  * needs to return 'not busy'. Otherwise, request stacking drivers
1558  * may hold requests forever.
1559  */
1560 static int scsi_lld_busy(struct request_queue *q)
1561 {
1562 	struct scsi_device *sdev = q->queuedata;
1563 	struct Scsi_Host *shost;
1564 
1565 	if (blk_queue_dying(q))
1566 		return 0;
1567 
1568 	shost = sdev->host;
1569 
1570 	/*
1571 	 * Ignore host/starget busy state.
1572 	 * Since block layer does not have a concept of fairness across
1573 	 * multiple queues, congestion of host/starget needs to be handled
1574 	 * in SCSI layer.
1575 	 */
1576 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1577 		return 1;
1578 
1579 	return 0;
1580 }
1581 
1582 /*
1583  * Kill a request for a dead device
1584  */
1585 static void scsi_kill_request(struct request *req, struct request_queue *q)
1586 {
1587 	struct scsi_cmnd *cmd = req->special;
1588 	struct scsi_device *sdev;
1589 	struct scsi_target *starget;
1590 	struct Scsi_Host *shost;
1591 
1592 	blk_start_request(req);
1593 
1594 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1595 
1596 	sdev = cmd->device;
1597 	starget = scsi_target(sdev);
1598 	shost = sdev->host;
1599 	scsi_init_cmd_errh(cmd);
1600 	cmd->result = DID_NO_CONNECT << 16;
1601 	atomic_inc(&cmd->device->iorequest_cnt);
1602 
1603 	/*
1604 	 * SCSI request completion path will do scsi_device_unbusy(),
1605 	 * bump busy counts.  To bump the counters, we need to dance
1606 	 * with the locks as normal issue path does.
1607 	 */
1608 	atomic_inc(&sdev->device_busy);
1609 	atomic_inc(&shost->host_busy);
1610 	if (starget->can_queue > 0)
1611 		atomic_inc(&starget->target_busy);
1612 
1613 	blk_complete_request(req);
1614 }
1615 
1616 static void scsi_softirq_done(struct request *rq)
1617 {
1618 	struct scsi_cmnd *cmd = rq->special;
1619 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1620 	int disposition;
1621 
1622 	INIT_LIST_HEAD(&cmd->eh_entry);
1623 
1624 	atomic_inc(&cmd->device->iodone_cnt);
1625 	if (cmd->result)
1626 		atomic_inc(&cmd->device->ioerr_cnt);
1627 
1628 	disposition = scsi_decide_disposition(cmd);
1629 	if (disposition != SUCCESS &&
1630 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1631 		sdev_printk(KERN_ERR, cmd->device,
1632 			    "timing out command, waited %lus\n",
1633 			    wait_for/HZ);
1634 		disposition = SUCCESS;
1635 	}
1636 
1637 	scsi_log_completion(cmd, disposition);
1638 
1639 	switch (disposition) {
1640 		case SUCCESS:
1641 			scsi_finish_command(cmd);
1642 			break;
1643 		case NEEDS_RETRY:
1644 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1645 			break;
1646 		case ADD_TO_MLQUEUE:
1647 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1648 			break;
1649 		default:
1650 			if (!scsi_eh_scmd_add(cmd, 0))
1651 				scsi_finish_command(cmd);
1652 	}
1653 }
1654 
1655 /**
1656  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1657  * @cmd: command block we are dispatching.
1658  *
1659  * Return: nonzero return request was rejected and device's queue needs to be
1660  * plugged.
1661  */
1662 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1663 {
1664 	struct Scsi_Host *host = cmd->device->host;
1665 	int rtn = 0;
1666 
1667 	atomic_inc(&cmd->device->iorequest_cnt);
1668 
1669 	/* check if the device is still usable */
1670 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1671 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1672 		 * returns an immediate error upwards, and signals
1673 		 * that the device is no longer present */
1674 		cmd->result = DID_NO_CONNECT << 16;
1675 		goto done;
1676 	}
1677 
1678 	/* Check to see if the scsi lld made this device blocked. */
1679 	if (unlikely(scsi_device_blocked(cmd->device))) {
1680 		/*
1681 		 * in blocked state, the command is just put back on
1682 		 * the device queue.  The suspend state has already
1683 		 * blocked the queue so future requests should not
1684 		 * occur until the device transitions out of the
1685 		 * suspend state.
1686 		 */
1687 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1688 			"queuecommand : device blocked\n"));
1689 		return SCSI_MLQUEUE_DEVICE_BUSY;
1690 	}
1691 
1692 	/* Store the LUN value in cmnd, if needed. */
1693 	if (cmd->device->lun_in_cdb)
1694 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1695 			       (cmd->device->lun << 5 & 0xe0);
1696 
1697 	scsi_log_send(cmd);
1698 
1699 	/*
1700 	 * Before we queue this command, check if the command
1701 	 * length exceeds what the host adapter can handle.
1702 	 */
1703 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1704 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1705 			       "queuecommand : command too long. "
1706 			       "cdb_size=%d host->max_cmd_len=%d\n",
1707 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1708 		cmd->result = (DID_ABORT << 16);
1709 		goto done;
1710 	}
1711 
1712 	if (unlikely(host->shost_state == SHOST_DEL)) {
1713 		cmd->result = (DID_NO_CONNECT << 16);
1714 		goto done;
1715 
1716 	}
1717 
1718 	trace_scsi_dispatch_cmd_start(cmd);
1719 	rtn = host->hostt->queuecommand(host, cmd);
1720 	if (rtn) {
1721 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1722 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1723 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1724 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1725 
1726 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1727 			"queuecommand : request rejected\n"));
1728 	}
1729 
1730 	return rtn;
1731  done:
1732 	cmd->scsi_done(cmd);
1733 	return 0;
1734 }
1735 
1736 /**
1737  * scsi_done - Invoke completion on finished SCSI command.
1738  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1739  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1740  *
1741  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1742  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1743  * calls blk_complete_request() for further processing.
1744  *
1745  * This function is interrupt context safe.
1746  */
1747 static void scsi_done(struct scsi_cmnd *cmd)
1748 {
1749 	trace_scsi_dispatch_cmd_done(cmd);
1750 	blk_complete_request(cmd->request);
1751 }
1752 
1753 /*
1754  * Function:    scsi_request_fn()
1755  *
1756  * Purpose:     Main strategy routine for SCSI.
1757  *
1758  * Arguments:   q       - Pointer to actual queue.
1759  *
1760  * Returns:     Nothing
1761  *
1762  * Lock status: IO request lock assumed to be held when called.
1763  */
1764 static void scsi_request_fn(struct request_queue *q)
1765 	__releases(q->queue_lock)
1766 	__acquires(q->queue_lock)
1767 {
1768 	struct scsi_device *sdev = q->queuedata;
1769 	struct Scsi_Host *shost;
1770 	struct scsi_cmnd *cmd;
1771 	struct request *req;
1772 
1773 	/*
1774 	 * To start with, we keep looping until the queue is empty, or until
1775 	 * the host is no longer able to accept any more requests.
1776 	 */
1777 	shost = sdev->host;
1778 	for (;;) {
1779 		int rtn;
1780 		/*
1781 		 * get next queueable request.  We do this early to make sure
1782 		 * that the request is fully prepared even if we cannot
1783 		 * accept it.
1784 		 */
1785 		req = blk_peek_request(q);
1786 		if (!req)
1787 			break;
1788 
1789 		if (unlikely(!scsi_device_online(sdev))) {
1790 			sdev_printk(KERN_ERR, sdev,
1791 				    "rejecting I/O to offline device\n");
1792 			scsi_kill_request(req, q);
1793 			continue;
1794 		}
1795 
1796 		if (!scsi_dev_queue_ready(q, sdev))
1797 			break;
1798 
1799 		/*
1800 		 * Remove the request from the request list.
1801 		 */
1802 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1803 			blk_start_request(req);
1804 
1805 		spin_unlock_irq(q->queue_lock);
1806 		cmd = req->special;
1807 		if (unlikely(cmd == NULL)) {
1808 			printk(KERN_CRIT "impossible request in %s.\n"
1809 					 "please mail a stack trace to "
1810 					 "linux-scsi@vger.kernel.org\n",
1811 					 __func__);
1812 			blk_dump_rq_flags(req, "foo");
1813 			BUG();
1814 		}
1815 
1816 		/*
1817 		 * We hit this when the driver is using a host wide
1818 		 * tag map. For device level tag maps the queue_depth check
1819 		 * in the device ready fn would prevent us from trying
1820 		 * to allocate a tag. Since the map is a shared host resource
1821 		 * we add the dev to the starved list so it eventually gets
1822 		 * a run when a tag is freed.
1823 		 */
1824 		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1825 			spin_lock_irq(shost->host_lock);
1826 			if (list_empty(&sdev->starved_entry))
1827 				list_add_tail(&sdev->starved_entry,
1828 					      &shost->starved_list);
1829 			spin_unlock_irq(shost->host_lock);
1830 			goto not_ready;
1831 		}
1832 
1833 		if (!scsi_target_queue_ready(shost, sdev))
1834 			goto not_ready;
1835 
1836 		if (!scsi_host_queue_ready(q, shost, sdev))
1837 			goto host_not_ready;
1838 
1839 		if (sdev->simple_tags)
1840 			cmd->flags |= SCMD_TAGGED;
1841 		else
1842 			cmd->flags &= ~SCMD_TAGGED;
1843 
1844 		/*
1845 		 * Finally, initialize any error handling parameters, and set up
1846 		 * the timers for timeouts.
1847 		 */
1848 		scsi_init_cmd_errh(cmd);
1849 
1850 		/*
1851 		 * Dispatch the command to the low-level driver.
1852 		 */
1853 		cmd->scsi_done = scsi_done;
1854 		rtn = scsi_dispatch_cmd(cmd);
1855 		if (rtn) {
1856 			scsi_queue_insert(cmd, rtn);
1857 			spin_lock_irq(q->queue_lock);
1858 			goto out_delay;
1859 		}
1860 		spin_lock_irq(q->queue_lock);
1861 	}
1862 
1863 	return;
1864 
1865  host_not_ready:
1866 	if (scsi_target(sdev)->can_queue > 0)
1867 		atomic_dec(&scsi_target(sdev)->target_busy);
1868  not_ready:
1869 	/*
1870 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1871 	 * must return with queue_lock held.
1872 	 *
1873 	 * Decrementing device_busy without checking it is OK, as all such
1874 	 * cases (host limits or settings) should run the queue at some
1875 	 * later time.
1876 	 */
1877 	spin_lock_irq(q->queue_lock);
1878 	blk_requeue_request(q, req);
1879 	atomic_dec(&sdev->device_busy);
1880 out_delay:
1881 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1882 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1883 }
1884 
1885 static inline int prep_to_mq(int ret)
1886 {
1887 	switch (ret) {
1888 	case BLKPREP_OK:
1889 		return 0;
1890 	case BLKPREP_DEFER:
1891 		return BLK_MQ_RQ_QUEUE_BUSY;
1892 	default:
1893 		return BLK_MQ_RQ_QUEUE_ERROR;
1894 	}
1895 }
1896 
1897 static int scsi_mq_prep_fn(struct request *req)
1898 {
1899 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1900 	struct scsi_device *sdev = req->q->queuedata;
1901 	struct Scsi_Host *shost = sdev->host;
1902 	unsigned char *sense_buf = cmd->sense_buffer;
1903 	struct scatterlist *sg;
1904 
1905 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1906 
1907 	req->special = cmd;
1908 
1909 	cmd->request = req;
1910 	cmd->device = sdev;
1911 	cmd->sense_buffer = sense_buf;
1912 
1913 	cmd->tag = req->tag;
1914 
1915 	cmd->cmnd = req->cmd;
1916 	cmd->prot_op = SCSI_PROT_NORMAL;
1917 
1918 	INIT_LIST_HEAD(&cmd->list);
1919 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1920 	cmd->jiffies_at_alloc = jiffies;
1921 
1922 	if (shost->use_cmd_list) {
1923 		spin_lock_irq(&sdev->list_lock);
1924 		list_add_tail(&cmd->list, &sdev->cmd_list);
1925 		spin_unlock_irq(&sdev->list_lock);
1926 	}
1927 
1928 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1929 	cmd->sdb.table.sgl = sg;
1930 
1931 	if (scsi_host_get_prot(shost)) {
1932 		cmd->prot_sdb = (void *)sg +
1933 			min_t(unsigned int,
1934 			      shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1935 			sizeof(struct scatterlist);
1936 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1937 
1938 		cmd->prot_sdb->table.sgl =
1939 			(struct scatterlist *)(cmd->prot_sdb + 1);
1940 	}
1941 
1942 	if (blk_bidi_rq(req)) {
1943 		struct request *next_rq = req->next_rq;
1944 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1945 
1946 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1947 		bidi_sdb->table.sgl =
1948 			(struct scatterlist *)(bidi_sdb + 1);
1949 
1950 		next_rq->special = bidi_sdb;
1951 	}
1952 
1953 	blk_mq_start_request(req);
1954 
1955 	return scsi_setup_cmnd(sdev, req);
1956 }
1957 
1958 static void scsi_mq_done(struct scsi_cmnd *cmd)
1959 {
1960 	trace_scsi_dispatch_cmd_done(cmd);
1961 	blk_mq_complete_request(cmd->request, cmd->request->errors);
1962 }
1963 
1964 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1965 			 const struct blk_mq_queue_data *bd)
1966 {
1967 	struct request *req = bd->rq;
1968 	struct request_queue *q = req->q;
1969 	struct scsi_device *sdev = q->queuedata;
1970 	struct Scsi_Host *shost = sdev->host;
1971 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1972 	int ret;
1973 	int reason;
1974 
1975 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1976 	if (ret)
1977 		goto out;
1978 
1979 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1980 	if (!get_device(&sdev->sdev_gendev))
1981 		goto out;
1982 
1983 	if (!scsi_dev_queue_ready(q, sdev))
1984 		goto out_put_device;
1985 	if (!scsi_target_queue_ready(shost, sdev))
1986 		goto out_dec_device_busy;
1987 	if (!scsi_host_queue_ready(q, shost, sdev))
1988 		goto out_dec_target_busy;
1989 
1990 
1991 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1992 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1993 		if (ret)
1994 			goto out_dec_host_busy;
1995 		req->cmd_flags |= REQ_DONTPREP;
1996 	} else {
1997 		blk_mq_start_request(req);
1998 	}
1999 
2000 	if (sdev->simple_tags)
2001 		cmd->flags |= SCMD_TAGGED;
2002 	else
2003 		cmd->flags &= ~SCMD_TAGGED;
2004 
2005 	scsi_init_cmd_errh(cmd);
2006 	cmd->scsi_done = scsi_mq_done;
2007 
2008 	reason = scsi_dispatch_cmd(cmd);
2009 	if (reason) {
2010 		scsi_set_blocked(cmd, reason);
2011 		ret = BLK_MQ_RQ_QUEUE_BUSY;
2012 		goto out_dec_host_busy;
2013 	}
2014 
2015 	return BLK_MQ_RQ_QUEUE_OK;
2016 
2017 out_dec_host_busy:
2018 	atomic_dec(&shost->host_busy);
2019 out_dec_target_busy:
2020 	if (scsi_target(sdev)->can_queue > 0)
2021 		atomic_dec(&scsi_target(sdev)->target_busy);
2022 out_dec_device_busy:
2023 	atomic_dec(&sdev->device_busy);
2024 out_put_device:
2025 	put_device(&sdev->sdev_gendev);
2026 out:
2027 	switch (ret) {
2028 	case BLK_MQ_RQ_QUEUE_BUSY:
2029 		blk_mq_stop_hw_queue(hctx);
2030 		if (atomic_read(&sdev->device_busy) == 0 &&
2031 		    !scsi_device_blocked(sdev))
2032 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2033 		break;
2034 	case BLK_MQ_RQ_QUEUE_ERROR:
2035 		/*
2036 		 * Make sure to release all allocated ressources when
2037 		 * we hit an error, as we will never see this command
2038 		 * again.
2039 		 */
2040 		if (req->cmd_flags & REQ_DONTPREP)
2041 			scsi_mq_uninit_cmd(cmd);
2042 		break;
2043 	default:
2044 		break;
2045 	}
2046 	return ret;
2047 }
2048 
2049 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2050 		bool reserved)
2051 {
2052 	if (reserved)
2053 		return BLK_EH_RESET_TIMER;
2054 	return scsi_times_out(req);
2055 }
2056 
2057 static int scsi_init_request(void *data, struct request *rq,
2058 		unsigned int hctx_idx, unsigned int request_idx,
2059 		unsigned int numa_node)
2060 {
2061 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2062 
2063 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2064 			numa_node);
2065 	if (!cmd->sense_buffer)
2066 		return -ENOMEM;
2067 	return 0;
2068 }
2069 
2070 static void scsi_exit_request(void *data, struct request *rq,
2071 		unsigned int hctx_idx, unsigned int request_idx)
2072 {
2073 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2074 
2075 	kfree(cmd->sense_buffer);
2076 }
2077 
2078 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2079 {
2080 	struct device *host_dev;
2081 	u64 bounce_limit = 0xffffffff;
2082 
2083 	if (shost->unchecked_isa_dma)
2084 		return BLK_BOUNCE_ISA;
2085 	/*
2086 	 * Platforms with virtual-DMA translation
2087 	 * hardware have no practical limit.
2088 	 */
2089 	if (!PCI_DMA_BUS_IS_PHYS)
2090 		return BLK_BOUNCE_ANY;
2091 
2092 	host_dev = scsi_get_device(shost);
2093 	if (host_dev && host_dev->dma_mask)
2094 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2095 
2096 	return bounce_limit;
2097 }
2098 
2099 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2100 {
2101 	struct device *dev = shost->dma_dev;
2102 
2103 	/*
2104 	 * this limit is imposed by hardware restrictions
2105 	 */
2106 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2107 					SCSI_MAX_SG_CHAIN_SEGMENTS));
2108 
2109 	if (scsi_host_prot_dma(shost)) {
2110 		shost->sg_prot_tablesize =
2111 			min_not_zero(shost->sg_prot_tablesize,
2112 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2113 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2114 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2115 	}
2116 
2117 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2118 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2119 	blk_queue_segment_boundary(q, shost->dma_boundary);
2120 	dma_set_seg_boundary(dev, shost->dma_boundary);
2121 
2122 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2123 
2124 	if (!shost->use_clustering)
2125 		q->limits.cluster = 0;
2126 
2127 	/*
2128 	 * set a reasonable default alignment on word boundaries: the
2129 	 * host and device may alter it using
2130 	 * blk_queue_update_dma_alignment() later.
2131 	 */
2132 	blk_queue_dma_alignment(q, 0x03);
2133 }
2134 
2135 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2136 					 request_fn_proc *request_fn)
2137 {
2138 	struct request_queue *q;
2139 
2140 	q = blk_init_queue(request_fn, NULL);
2141 	if (!q)
2142 		return NULL;
2143 	__scsi_init_queue(shost, q);
2144 	return q;
2145 }
2146 EXPORT_SYMBOL(__scsi_alloc_queue);
2147 
2148 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2149 {
2150 	struct request_queue *q;
2151 
2152 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2153 	if (!q)
2154 		return NULL;
2155 
2156 	blk_queue_prep_rq(q, scsi_prep_fn);
2157 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2158 	blk_queue_softirq_done(q, scsi_softirq_done);
2159 	blk_queue_rq_timed_out(q, scsi_times_out);
2160 	blk_queue_lld_busy(q, scsi_lld_busy);
2161 	return q;
2162 }
2163 
2164 static struct blk_mq_ops scsi_mq_ops = {
2165 	.map_queue	= blk_mq_map_queue,
2166 	.queue_rq	= scsi_queue_rq,
2167 	.complete	= scsi_softirq_done,
2168 	.timeout	= scsi_timeout,
2169 	.init_request	= scsi_init_request,
2170 	.exit_request	= scsi_exit_request,
2171 };
2172 
2173 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2174 {
2175 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2176 	if (IS_ERR(sdev->request_queue))
2177 		return NULL;
2178 
2179 	sdev->request_queue->queuedata = sdev;
2180 	__scsi_init_queue(sdev->host, sdev->request_queue);
2181 	return sdev->request_queue;
2182 }
2183 
2184 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2185 {
2186 	unsigned int cmd_size, sgl_size, tbl_size;
2187 
2188 	tbl_size = shost->sg_tablesize;
2189 	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2190 		tbl_size = SCSI_MAX_SG_SEGMENTS;
2191 	sgl_size = tbl_size * sizeof(struct scatterlist);
2192 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2193 	if (scsi_host_get_prot(shost))
2194 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2195 
2196 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2197 	shost->tag_set.ops = &scsi_mq_ops;
2198 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2199 	shost->tag_set.queue_depth = shost->can_queue;
2200 	shost->tag_set.cmd_size = cmd_size;
2201 	shost->tag_set.numa_node = NUMA_NO_NODE;
2202 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2203 	shost->tag_set.flags |=
2204 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2205 	shost->tag_set.driver_data = shost;
2206 
2207 	return blk_mq_alloc_tag_set(&shost->tag_set);
2208 }
2209 
2210 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2211 {
2212 	blk_mq_free_tag_set(&shost->tag_set);
2213 }
2214 
2215 /*
2216  * Function:    scsi_block_requests()
2217  *
2218  * Purpose:     Utility function used by low-level drivers to prevent further
2219  *		commands from being queued to the device.
2220  *
2221  * Arguments:   shost       - Host in question
2222  *
2223  * Returns:     Nothing
2224  *
2225  * Lock status: No locks are assumed held.
2226  *
2227  * Notes:       There is no timer nor any other means by which the requests
2228  *		get unblocked other than the low-level driver calling
2229  *		scsi_unblock_requests().
2230  */
2231 void scsi_block_requests(struct Scsi_Host *shost)
2232 {
2233 	shost->host_self_blocked = 1;
2234 }
2235 EXPORT_SYMBOL(scsi_block_requests);
2236 
2237 /*
2238  * Function:    scsi_unblock_requests()
2239  *
2240  * Purpose:     Utility function used by low-level drivers to allow further
2241  *		commands from being queued to the device.
2242  *
2243  * Arguments:   shost       - Host in question
2244  *
2245  * Returns:     Nothing
2246  *
2247  * Lock status: No locks are assumed held.
2248  *
2249  * Notes:       There is no timer nor any other means by which the requests
2250  *		get unblocked other than the low-level driver calling
2251  *		scsi_unblock_requests().
2252  *
2253  *		This is done as an API function so that changes to the
2254  *		internals of the scsi mid-layer won't require wholesale
2255  *		changes to drivers that use this feature.
2256  */
2257 void scsi_unblock_requests(struct Scsi_Host *shost)
2258 {
2259 	shost->host_self_blocked = 0;
2260 	scsi_run_host_queues(shost);
2261 }
2262 EXPORT_SYMBOL(scsi_unblock_requests);
2263 
2264 int __init scsi_init_queue(void)
2265 {
2266 	int i;
2267 
2268 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2269 					   sizeof(struct scsi_data_buffer),
2270 					   0, 0, NULL);
2271 	if (!scsi_sdb_cache) {
2272 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2273 		return -ENOMEM;
2274 	}
2275 
2276 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2277 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2278 		int size = sgp->size * sizeof(struct scatterlist);
2279 
2280 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2281 				SLAB_HWCACHE_ALIGN, NULL);
2282 		if (!sgp->slab) {
2283 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2284 					sgp->name);
2285 			goto cleanup_sdb;
2286 		}
2287 
2288 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2289 						     sgp->slab);
2290 		if (!sgp->pool) {
2291 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2292 					sgp->name);
2293 			goto cleanup_sdb;
2294 		}
2295 	}
2296 
2297 	return 0;
2298 
2299 cleanup_sdb:
2300 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2301 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2302 		if (sgp->pool)
2303 			mempool_destroy(sgp->pool);
2304 		if (sgp->slab)
2305 			kmem_cache_destroy(sgp->slab);
2306 	}
2307 	kmem_cache_destroy(scsi_sdb_cache);
2308 
2309 	return -ENOMEM;
2310 }
2311 
2312 void scsi_exit_queue(void)
2313 {
2314 	int i;
2315 
2316 	kmem_cache_destroy(scsi_sdb_cache);
2317 
2318 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2319 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2320 		mempool_destroy(sgp->pool);
2321 		kmem_cache_destroy(sgp->slab);
2322 	}
2323 }
2324 
2325 /**
2326  *	scsi_mode_select - issue a mode select
2327  *	@sdev:	SCSI device to be queried
2328  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2329  *	@sp:	Save page bit (0 == don't save, 1 == save)
2330  *	@modepage: mode page being requested
2331  *	@buffer: request buffer (may not be smaller than eight bytes)
2332  *	@len:	length of request buffer.
2333  *	@timeout: command timeout
2334  *	@retries: number of retries before failing
2335  *	@data: returns a structure abstracting the mode header data
2336  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2337  *		must be SCSI_SENSE_BUFFERSIZE big.
2338  *
2339  *	Returns zero if successful; negative error number or scsi
2340  *	status on error
2341  *
2342  */
2343 int
2344 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2345 		 unsigned char *buffer, int len, int timeout, int retries,
2346 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2347 {
2348 	unsigned char cmd[10];
2349 	unsigned char *real_buffer;
2350 	int ret;
2351 
2352 	memset(cmd, 0, sizeof(cmd));
2353 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2354 
2355 	if (sdev->use_10_for_ms) {
2356 		if (len > 65535)
2357 			return -EINVAL;
2358 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2359 		if (!real_buffer)
2360 			return -ENOMEM;
2361 		memcpy(real_buffer + 8, buffer, len);
2362 		len += 8;
2363 		real_buffer[0] = 0;
2364 		real_buffer[1] = 0;
2365 		real_buffer[2] = data->medium_type;
2366 		real_buffer[3] = data->device_specific;
2367 		real_buffer[4] = data->longlba ? 0x01 : 0;
2368 		real_buffer[5] = 0;
2369 		real_buffer[6] = data->block_descriptor_length >> 8;
2370 		real_buffer[7] = data->block_descriptor_length;
2371 
2372 		cmd[0] = MODE_SELECT_10;
2373 		cmd[7] = len >> 8;
2374 		cmd[8] = len;
2375 	} else {
2376 		if (len > 255 || data->block_descriptor_length > 255 ||
2377 		    data->longlba)
2378 			return -EINVAL;
2379 
2380 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2381 		if (!real_buffer)
2382 			return -ENOMEM;
2383 		memcpy(real_buffer + 4, buffer, len);
2384 		len += 4;
2385 		real_buffer[0] = 0;
2386 		real_buffer[1] = data->medium_type;
2387 		real_buffer[2] = data->device_specific;
2388 		real_buffer[3] = data->block_descriptor_length;
2389 
2390 
2391 		cmd[0] = MODE_SELECT;
2392 		cmd[4] = len;
2393 	}
2394 
2395 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2396 			       sshdr, timeout, retries, NULL);
2397 	kfree(real_buffer);
2398 	return ret;
2399 }
2400 EXPORT_SYMBOL_GPL(scsi_mode_select);
2401 
2402 /**
2403  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2404  *	@sdev:	SCSI device to be queried
2405  *	@dbd:	set if mode sense will allow block descriptors to be returned
2406  *	@modepage: mode page being requested
2407  *	@buffer: request buffer (may not be smaller than eight bytes)
2408  *	@len:	length of request buffer.
2409  *	@timeout: command timeout
2410  *	@retries: number of retries before failing
2411  *	@data: returns a structure abstracting the mode header data
2412  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2413  *		must be SCSI_SENSE_BUFFERSIZE big.
2414  *
2415  *	Returns zero if unsuccessful, or the header offset (either 4
2416  *	or 8 depending on whether a six or ten byte command was
2417  *	issued) if successful.
2418  */
2419 int
2420 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2421 		  unsigned char *buffer, int len, int timeout, int retries,
2422 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2423 {
2424 	unsigned char cmd[12];
2425 	int use_10_for_ms;
2426 	int header_length;
2427 	int result, retry_count = retries;
2428 	struct scsi_sense_hdr my_sshdr;
2429 
2430 	memset(data, 0, sizeof(*data));
2431 	memset(&cmd[0], 0, 12);
2432 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2433 	cmd[2] = modepage;
2434 
2435 	/* caller might not be interested in sense, but we need it */
2436 	if (!sshdr)
2437 		sshdr = &my_sshdr;
2438 
2439  retry:
2440 	use_10_for_ms = sdev->use_10_for_ms;
2441 
2442 	if (use_10_for_ms) {
2443 		if (len < 8)
2444 			len = 8;
2445 
2446 		cmd[0] = MODE_SENSE_10;
2447 		cmd[8] = len;
2448 		header_length = 8;
2449 	} else {
2450 		if (len < 4)
2451 			len = 4;
2452 
2453 		cmd[0] = MODE_SENSE;
2454 		cmd[4] = len;
2455 		header_length = 4;
2456 	}
2457 
2458 	memset(buffer, 0, len);
2459 
2460 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2461 				  sshdr, timeout, retries, NULL);
2462 
2463 	/* This code looks awful: what it's doing is making sure an
2464 	 * ILLEGAL REQUEST sense return identifies the actual command
2465 	 * byte as the problem.  MODE_SENSE commands can return
2466 	 * ILLEGAL REQUEST if the code page isn't supported */
2467 
2468 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2469 	    (driver_byte(result) & DRIVER_SENSE)) {
2470 		if (scsi_sense_valid(sshdr)) {
2471 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2472 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2473 				/*
2474 				 * Invalid command operation code
2475 				 */
2476 				sdev->use_10_for_ms = 0;
2477 				goto retry;
2478 			}
2479 		}
2480 	}
2481 
2482 	if(scsi_status_is_good(result)) {
2483 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2484 			     (modepage == 6 || modepage == 8))) {
2485 			/* Initio breakage? */
2486 			header_length = 0;
2487 			data->length = 13;
2488 			data->medium_type = 0;
2489 			data->device_specific = 0;
2490 			data->longlba = 0;
2491 			data->block_descriptor_length = 0;
2492 		} else if(use_10_for_ms) {
2493 			data->length = buffer[0]*256 + buffer[1] + 2;
2494 			data->medium_type = buffer[2];
2495 			data->device_specific = buffer[3];
2496 			data->longlba = buffer[4] & 0x01;
2497 			data->block_descriptor_length = buffer[6]*256
2498 				+ buffer[7];
2499 		} else {
2500 			data->length = buffer[0] + 1;
2501 			data->medium_type = buffer[1];
2502 			data->device_specific = buffer[2];
2503 			data->block_descriptor_length = buffer[3];
2504 		}
2505 		data->header_length = header_length;
2506 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2507 		   scsi_sense_valid(sshdr) &&
2508 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2509 		retry_count--;
2510 		goto retry;
2511 	}
2512 
2513 	return result;
2514 }
2515 EXPORT_SYMBOL(scsi_mode_sense);
2516 
2517 /**
2518  *	scsi_test_unit_ready - test if unit is ready
2519  *	@sdev:	scsi device to change the state of.
2520  *	@timeout: command timeout
2521  *	@retries: number of retries before failing
2522  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2523  *		returning sense. Make sure that this is cleared before passing
2524  *		in.
2525  *
2526  *	Returns zero if unsuccessful or an error if TUR failed.  For
2527  *	removable media, UNIT_ATTENTION sets ->changed flag.
2528  **/
2529 int
2530 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2531 		     struct scsi_sense_hdr *sshdr_external)
2532 {
2533 	char cmd[] = {
2534 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2535 	};
2536 	struct scsi_sense_hdr *sshdr;
2537 	int result;
2538 
2539 	if (!sshdr_external)
2540 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2541 	else
2542 		sshdr = sshdr_external;
2543 
2544 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2545 	do {
2546 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2547 					  timeout, retries, NULL);
2548 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2549 		    sshdr->sense_key == UNIT_ATTENTION)
2550 			sdev->changed = 1;
2551 	} while (scsi_sense_valid(sshdr) &&
2552 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2553 
2554 	if (!sshdr_external)
2555 		kfree(sshdr);
2556 	return result;
2557 }
2558 EXPORT_SYMBOL(scsi_test_unit_ready);
2559 
2560 /**
2561  *	scsi_device_set_state - Take the given device through the device state model.
2562  *	@sdev:	scsi device to change the state of.
2563  *	@state:	state to change to.
2564  *
2565  *	Returns zero if unsuccessful or an error if the requested
2566  *	transition is illegal.
2567  */
2568 int
2569 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2570 {
2571 	enum scsi_device_state oldstate = sdev->sdev_state;
2572 
2573 	if (state == oldstate)
2574 		return 0;
2575 
2576 	switch (state) {
2577 	case SDEV_CREATED:
2578 		switch (oldstate) {
2579 		case SDEV_CREATED_BLOCK:
2580 			break;
2581 		default:
2582 			goto illegal;
2583 		}
2584 		break;
2585 
2586 	case SDEV_RUNNING:
2587 		switch (oldstate) {
2588 		case SDEV_CREATED:
2589 		case SDEV_OFFLINE:
2590 		case SDEV_TRANSPORT_OFFLINE:
2591 		case SDEV_QUIESCE:
2592 		case SDEV_BLOCK:
2593 			break;
2594 		default:
2595 			goto illegal;
2596 		}
2597 		break;
2598 
2599 	case SDEV_QUIESCE:
2600 		switch (oldstate) {
2601 		case SDEV_RUNNING:
2602 		case SDEV_OFFLINE:
2603 		case SDEV_TRANSPORT_OFFLINE:
2604 			break;
2605 		default:
2606 			goto illegal;
2607 		}
2608 		break;
2609 
2610 	case SDEV_OFFLINE:
2611 	case SDEV_TRANSPORT_OFFLINE:
2612 		switch (oldstate) {
2613 		case SDEV_CREATED:
2614 		case SDEV_RUNNING:
2615 		case SDEV_QUIESCE:
2616 		case SDEV_BLOCK:
2617 			break;
2618 		default:
2619 			goto illegal;
2620 		}
2621 		break;
2622 
2623 	case SDEV_BLOCK:
2624 		switch (oldstate) {
2625 		case SDEV_RUNNING:
2626 		case SDEV_CREATED_BLOCK:
2627 			break;
2628 		default:
2629 			goto illegal;
2630 		}
2631 		break;
2632 
2633 	case SDEV_CREATED_BLOCK:
2634 		switch (oldstate) {
2635 		case SDEV_CREATED:
2636 			break;
2637 		default:
2638 			goto illegal;
2639 		}
2640 		break;
2641 
2642 	case SDEV_CANCEL:
2643 		switch (oldstate) {
2644 		case SDEV_CREATED:
2645 		case SDEV_RUNNING:
2646 		case SDEV_QUIESCE:
2647 		case SDEV_OFFLINE:
2648 		case SDEV_TRANSPORT_OFFLINE:
2649 		case SDEV_BLOCK:
2650 			break;
2651 		default:
2652 			goto illegal;
2653 		}
2654 		break;
2655 
2656 	case SDEV_DEL:
2657 		switch (oldstate) {
2658 		case SDEV_CREATED:
2659 		case SDEV_RUNNING:
2660 		case SDEV_OFFLINE:
2661 		case SDEV_TRANSPORT_OFFLINE:
2662 		case SDEV_CANCEL:
2663 		case SDEV_CREATED_BLOCK:
2664 			break;
2665 		default:
2666 			goto illegal;
2667 		}
2668 		break;
2669 
2670 	}
2671 	sdev->sdev_state = state;
2672 	return 0;
2673 
2674  illegal:
2675 	SCSI_LOG_ERROR_RECOVERY(1,
2676 				sdev_printk(KERN_ERR, sdev,
2677 					    "Illegal state transition %s->%s",
2678 					    scsi_device_state_name(oldstate),
2679 					    scsi_device_state_name(state))
2680 				);
2681 	return -EINVAL;
2682 }
2683 EXPORT_SYMBOL(scsi_device_set_state);
2684 
2685 /**
2686  * 	sdev_evt_emit - emit a single SCSI device uevent
2687  *	@sdev: associated SCSI device
2688  *	@evt: event to emit
2689  *
2690  *	Send a single uevent (scsi_event) to the associated scsi_device.
2691  */
2692 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2693 {
2694 	int idx = 0;
2695 	char *envp[3];
2696 
2697 	switch (evt->evt_type) {
2698 	case SDEV_EVT_MEDIA_CHANGE:
2699 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2700 		break;
2701 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2702 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2703 		break;
2704 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2705 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2706 		break;
2707 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2708 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2709 		break;
2710 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2711 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2712 		break;
2713 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2714 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2715 		break;
2716 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2717 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2718 		break;
2719 	default:
2720 		/* do nothing */
2721 		break;
2722 	}
2723 
2724 	envp[idx++] = NULL;
2725 
2726 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2727 }
2728 
2729 /**
2730  * 	sdev_evt_thread - send a uevent for each scsi event
2731  *	@work: work struct for scsi_device
2732  *
2733  *	Dispatch queued events to their associated scsi_device kobjects
2734  *	as uevents.
2735  */
2736 void scsi_evt_thread(struct work_struct *work)
2737 {
2738 	struct scsi_device *sdev;
2739 	enum scsi_device_event evt_type;
2740 	LIST_HEAD(event_list);
2741 
2742 	sdev = container_of(work, struct scsi_device, event_work);
2743 
2744 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2745 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2746 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2747 
2748 	while (1) {
2749 		struct scsi_event *evt;
2750 		struct list_head *this, *tmp;
2751 		unsigned long flags;
2752 
2753 		spin_lock_irqsave(&sdev->list_lock, flags);
2754 		list_splice_init(&sdev->event_list, &event_list);
2755 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2756 
2757 		if (list_empty(&event_list))
2758 			break;
2759 
2760 		list_for_each_safe(this, tmp, &event_list) {
2761 			evt = list_entry(this, struct scsi_event, node);
2762 			list_del(&evt->node);
2763 			scsi_evt_emit(sdev, evt);
2764 			kfree(evt);
2765 		}
2766 	}
2767 }
2768 
2769 /**
2770  * 	sdev_evt_send - send asserted event to uevent thread
2771  *	@sdev: scsi_device event occurred on
2772  *	@evt: event to send
2773  *
2774  *	Assert scsi device event asynchronously.
2775  */
2776 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2777 {
2778 	unsigned long flags;
2779 
2780 #if 0
2781 	/* FIXME: currently this check eliminates all media change events
2782 	 * for polled devices.  Need to update to discriminate between AN
2783 	 * and polled events */
2784 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2785 		kfree(evt);
2786 		return;
2787 	}
2788 #endif
2789 
2790 	spin_lock_irqsave(&sdev->list_lock, flags);
2791 	list_add_tail(&evt->node, &sdev->event_list);
2792 	schedule_work(&sdev->event_work);
2793 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2794 }
2795 EXPORT_SYMBOL_GPL(sdev_evt_send);
2796 
2797 /**
2798  * 	sdev_evt_alloc - allocate a new scsi event
2799  *	@evt_type: type of event to allocate
2800  *	@gfpflags: GFP flags for allocation
2801  *
2802  *	Allocates and returns a new scsi_event.
2803  */
2804 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2805 				  gfp_t gfpflags)
2806 {
2807 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2808 	if (!evt)
2809 		return NULL;
2810 
2811 	evt->evt_type = evt_type;
2812 	INIT_LIST_HEAD(&evt->node);
2813 
2814 	/* evt_type-specific initialization, if any */
2815 	switch (evt_type) {
2816 	case SDEV_EVT_MEDIA_CHANGE:
2817 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2818 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2819 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2820 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2821 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2822 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2823 	default:
2824 		/* do nothing */
2825 		break;
2826 	}
2827 
2828 	return evt;
2829 }
2830 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2831 
2832 /**
2833  * 	sdev_evt_send_simple - send asserted event to uevent thread
2834  *	@sdev: scsi_device event occurred on
2835  *	@evt_type: type of event to send
2836  *	@gfpflags: GFP flags for allocation
2837  *
2838  *	Assert scsi device event asynchronously, given an event type.
2839  */
2840 void sdev_evt_send_simple(struct scsi_device *sdev,
2841 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2842 {
2843 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2844 	if (!evt) {
2845 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2846 			    evt_type);
2847 		return;
2848 	}
2849 
2850 	sdev_evt_send(sdev, evt);
2851 }
2852 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2853 
2854 /**
2855  *	scsi_device_quiesce - Block user issued commands.
2856  *	@sdev:	scsi device to quiesce.
2857  *
2858  *	This works by trying to transition to the SDEV_QUIESCE state
2859  *	(which must be a legal transition).  When the device is in this
2860  *	state, only special requests will be accepted, all others will
2861  *	be deferred.  Since special requests may also be requeued requests,
2862  *	a successful return doesn't guarantee the device will be
2863  *	totally quiescent.
2864  *
2865  *	Must be called with user context, may sleep.
2866  *
2867  *	Returns zero if unsuccessful or an error if not.
2868  */
2869 int
2870 scsi_device_quiesce(struct scsi_device *sdev)
2871 {
2872 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2873 	if (err)
2874 		return err;
2875 
2876 	scsi_run_queue(sdev->request_queue);
2877 	while (atomic_read(&sdev->device_busy)) {
2878 		msleep_interruptible(200);
2879 		scsi_run_queue(sdev->request_queue);
2880 	}
2881 	return 0;
2882 }
2883 EXPORT_SYMBOL(scsi_device_quiesce);
2884 
2885 /**
2886  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2887  *	@sdev:	scsi device to resume.
2888  *
2889  *	Moves the device from quiesced back to running and restarts the
2890  *	queues.
2891  *
2892  *	Must be called with user context, may sleep.
2893  */
2894 void scsi_device_resume(struct scsi_device *sdev)
2895 {
2896 	/* check if the device state was mutated prior to resume, and if
2897 	 * so assume the state is being managed elsewhere (for example
2898 	 * device deleted during suspend)
2899 	 */
2900 	if (sdev->sdev_state != SDEV_QUIESCE ||
2901 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2902 		return;
2903 	scsi_run_queue(sdev->request_queue);
2904 }
2905 EXPORT_SYMBOL(scsi_device_resume);
2906 
2907 static void
2908 device_quiesce_fn(struct scsi_device *sdev, void *data)
2909 {
2910 	scsi_device_quiesce(sdev);
2911 }
2912 
2913 void
2914 scsi_target_quiesce(struct scsi_target *starget)
2915 {
2916 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2917 }
2918 EXPORT_SYMBOL(scsi_target_quiesce);
2919 
2920 static void
2921 device_resume_fn(struct scsi_device *sdev, void *data)
2922 {
2923 	scsi_device_resume(sdev);
2924 }
2925 
2926 void
2927 scsi_target_resume(struct scsi_target *starget)
2928 {
2929 	starget_for_each_device(starget, NULL, device_resume_fn);
2930 }
2931 EXPORT_SYMBOL(scsi_target_resume);
2932 
2933 /**
2934  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2935  * @sdev:	device to block
2936  *
2937  * Block request made by scsi lld's to temporarily stop all
2938  * scsi commands on the specified device.  Called from interrupt
2939  * or normal process context.
2940  *
2941  * Returns zero if successful or error if not
2942  *
2943  * Notes:
2944  *	This routine transitions the device to the SDEV_BLOCK state
2945  *	(which must be a legal transition).  When the device is in this
2946  *	state, all commands are deferred until the scsi lld reenables
2947  *	the device with scsi_device_unblock or device_block_tmo fires.
2948  */
2949 int
2950 scsi_internal_device_block(struct scsi_device *sdev)
2951 {
2952 	struct request_queue *q = sdev->request_queue;
2953 	unsigned long flags;
2954 	int err = 0;
2955 
2956 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2957 	if (err) {
2958 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2959 
2960 		if (err)
2961 			return err;
2962 	}
2963 
2964 	/*
2965 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2966 	 * block layer from calling the midlayer with this device's
2967 	 * request queue.
2968 	 */
2969 	if (q->mq_ops) {
2970 		blk_mq_stop_hw_queues(q);
2971 	} else {
2972 		spin_lock_irqsave(q->queue_lock, flags);
2973 		blk_stop_queue(q);
2974 		spin_unlock_irqrestore(q->queue_lock, flags);
2975 	}
2976 
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2980 
2981 /**
2982  * scsi_internal_device_unblock - resume a device after a block request
2983  * @sdev:	device to resume
2984  * @new_state:	state to set devices to after unblocking
2985  *
2986  * Called by scsi lld's or the midlayer to restart the device queue
2987  * for the previously suspended scsi device.  Called from interrupt or
2988  * normal process context.
2989  *
2990  * Returns zero if successful or error if not.
2991  *
2992  * Notes:
2993  *	This routine transitions the device to the SDEV_RUNNING state
2994  *	or to one of the offline states (which must be a legal transition)
2995  *	allowing the midlayer to goose the queue for this device.
2996  */
2997 int
2998 scsi_internal_device_unblock(struct scsi_device *sdev,
2999 			     enum scsi_device_state new_state)
3000 {
3001 	struct request_queue *q = sdev->request_queue;
3002 	unsigned long flags;
3003 
3004 	/*
3005 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3006 	 * offlined states and goose the device queue if successful.
3007 	 */
3008 	if ((sdev->sdev_state == SDEV_BLOCK) ||
3009 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3010 		sdev->sdev_state = new_state;
3011 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3012 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3013 		    new_state == SDEV_OFFLINE)
3014 			sdev->sdev_state = new_state;
3015 		else
3016 			sdev->sdev_state = SDEV_CREATED;
3017 	} else if (sdev->sdev_state != SDEV_CANCEL &&
3018 		 sdev->sdev_state != SDEV_OFFLINE)
3019 		return -EINVAL;
3020 
3021 	if (q->mq_ops) {
3022 		blk_mq_start_stopped_hw_queues(q, false);
3023 	} else {
3024 		spin_lock_irqsave(q->queue_lock, flags);
3025 		blk_start_queue(q);
3026 		spin_unlock_irqrestore(q->queue_lock, flags);
3027 	}
3028 
3029 	return 0;
3030 }
3031 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3032 
3033 static void
3034 device_block(struct scsi_device *sdev, void *data)
3035 {
3036 	scsi_internal_device_block(sdev);
3037 }
3038 
3039 static int
3040 target_block(struct device *dev, void *data)
3041 {
3042 	if (scsi_is_target_device(dev))
3043 		starget_for_each_device(to_scsi_target(dev), NULL,
3044 					device_block);
3045 	return 0;
3046 }
3047 
3048 void
3049 scsi_target_block(struct device *dev)
3050 {
3051 	if (scsi_is_target_device(dev))
3052 		starget_for_each_device(to_scsi_target(dev), NULL,
3053 					device_block);
3054 	else
3055 		device_for_each_child(dev, NULL, target_block);
3056 }
3057 EXPORT_SYMBOL_GPL(scsi_target_block);
3058 
3059 static void
3060 device_unblock(struct scsi_device *sdev, void *data)
3061 {
3062 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3063 }
3064 
3065 static int
3066 target_unblock(struct device *dev, void *data)
3067 {
3068 	if (scsi_is_target_device(dev))
3069 		starget_for_each_device(to_scsi_target(dev), data,
3070 					device_unblock);
3071 	return 0;
3072 }
3073 
3074 void
3075 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3076 {
3077 	if (scsi_is_target_device(dev))
3078 		starget_for_each_device(to_scsi_target(dev), &new_state,
3079 					device_unblock);
3080 	else
3081 		device_for_each_child(dev, &new_state, target_unblock);
3082 }
3083 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3084 
3085 /**
3086  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3087  * @sgl:	scatter-gather list
3088  * @sg_count:	number of segments in sg
3089  * @offset:	offset in bytes into sg, on return offset into the mapped area
3090  * @len:	bytes to map, on return number of bytes mapped
3091  *
3092  * Returns virtual address of the start of the mapped page
3093  */
3094 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3095 			  size_t *offset, size_t *len)
3096 {
3097 	int i;
3098 	size_t sg_len = 0, len_complete = 0;
3099 	struct scatterlist *sg;
3100 	struct page *page;
3101 
3102 	WARN_ON(!irqs_disabled());
3103 
3104 	for_each_sg(sgl, sg, sg_count, i) {
3105 		len_complete = sg_len; /* Complete sg-entries */
3106 		sg_len += sg->length;
3107 		if (sg_len > *offset)
3108 			break;
3109 	}
3110 
3111 	if (unlikely(i == sg_count)) {
3112 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3113 			"elements %d\n",
3114 		       __func__, sg_len, *offset, sg_count);
3115 		WARN_ON(1);
3116 		return NULL;
3117 	}
3118 
3119 	/* Offset starting from the beginning of first page in this sg-entry */
3120 	*offset = *offset - len_complete + sg->offset;
3121 
3122 	/* Assumption: contiguous pages can be accessed as "page + i" */
3123 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3124 	*offset &= ~PAGE_MASK;
3125 
3126 	/* Bytes in this sg-entry from *offset to the end of the page */
3127 	sg_len = PAGE_SIZE - *offset;
3128 	if (*len > sg_len)
3129 		*len = sg_len;
3130 
3131 	return kmap_atomic(page);
3132 }
3133 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3134 
3135 /**
3136  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3137  * @virt:	virtual address to be unmapped
3138  */
3139 void scsi_kunmap_atomic_sg(void *virt)
3140 {
3141 	kunmap_atomic(virt);
3142 }
3143 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3144 
3145 void sdev_disable_disk_events(struct scsi_device *sdev)
3146 {
3147 	atomic_inc(&sdev->disk_events_disable_depth);
3148 }
3149 EXPORT_SYMBOL(sdev_disable_disk_events);
3150 
3151 void sdev_enable_disk_events(struct scsi_device *sdev)
3152 {
3153 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3154 		return;
3155 	atomic_dec(&sdev->disk_events_disable_depth);
3156 }
3157 EXPORT_SYMBOL(sdev_enable_disk_events);
3158 
3159 /**
3160  * scsi_vpd_lun_id - return a unique device identification
3161  * @sdev: SCSI device
3162  * @id:   buffer for the identification
3163  * @id_len:  length of the buffer
3164  *
3165  * Copies a unique device identification into @id based
3166  * on the information in the VPD page 0x83 of the device.
3167  * The string will be formatted as a SCSI name string.
3168  *
3169  * Returns the length of the identification or error on failure.
3170  * If the identifier is longer than the supplied buffer the actual
3171  * identifier length is returned and the buffer is not zero-padded.
3172  */
3173 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3174 {
3175 	u8 cur_id_type = 0xff;
3176 	u8 cur_id_size = 0;
3177 	unsigned char *d, *cur_id_str;
3178 	unsigned char __rcu *vpd_pg83;
3179 	int id_size = -EINVAL;
3180 
3181 	rcu_read_lock();
3182 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3183 	if (!vpd_pg83) {
3184 		rcu_read_unlock();
3185 		return -ENXIO;
3186 	}
3187 
3188 	/*
3189 	 * Look for the correct descriptor.
3190 	 * Order of preference for lun descriptor:
3191 	 * - SCSI name string
3192 	 * - NAA IEEE Registered Extended
3193 	 * - EUI-64 based 16-byte
3194 	 * - EUI-64 based 12-byte
3195 	 * - NAA IEEE Registered
3196 	 * - NAA IEEE Extended
3197 	 * as longer descriptors reduce the likelyhood
3198 	 * of identification clashes.
3199 	 */
3200 
3201 	/* The id string must be at least 20 bytes + terminating NULL byte */
3202 	if (id_len < 21) {
3203 		rcu_read_unlock();
3204 		return -EINVAL;
3205 	}
3206 
3207 	memset(id, 0, id_len);
3208 	d = vpd_pg83 + 4;
3209 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3210 		/* Skip designators not referring to the LUN */
3211 		if ((d[1] & 0x30) != 0x00)
3212 			goto next_desig;
3213 
3214 		switch (d[1] & 0xf) {
3215 		case 0x2:
3216 			/* EUI-64 */
3217 			if (cur_id_size > d[3])
3218 				break;
3219 			/* Prefer NAA IEEE Registered Extended */
3220 			if (cur_id_type == 0x3 &&
3221 			    cur_id_size == d[3])
3222 				break;
3223 			cur_id_size = d[3];
3224 			cur_id_str = d + 4;
3225 			cur_id_type = d[1] & 0xf;
3226 			switch (cur_id_size) {
3227 			case 8:
3228 				id_size = snprintf(id, id_len,
3229 						   "eui.%8phN",
3230 						   cur_id_str);
3231 				break;
3232 			case 12:
3233 				id_size = snprintf(id, id_len,
3234 						   "eui.%12phN",
3235 						   cur_id_str);
3236 				break;
3237 			case 16:
3238 				id_size = snprintf(id, id_len,
3239 						   "eui.%16phN",
3240 						   cur_id_str);
3241 				break;
3242 			default:
3243 				cur_id_size = 0;
3244 				break;
3245 			}
3246 			break;
3247 		case 0x3:
3248 			/* NAA */
3249 			if (cur_id_size > d[3])
3250 				break;
3251 			cur_id_size = d[3];
3252 			cur_id_str = d + 4;
3253 			cur_id_type = d[1] & 0xf;
3254 			switch (cur_id_size) {
3255 			case 8:
3256 				id_size = snprintf(id, id_len,
3257 						   "naa.%8phN",
3258 						   cur_id_str);
3259 				break;
3260 			case 16:
3261 				id_size = snprintf(id, id_len,
3262 						   "naa.%16phN",
3263 						   cur_id_str);
3264 				break;
3265 			default:
3266 				cur_id_size = 0;
3267 				break;
3268 			}
3269 			break;
3270 		case 0x8:
3271 			/* SCSI name string */
3272 			if (cur_id_size + 4 > d[3])
3273 				break;
3274 			/* Prefer others for truncated descriptor */
3275 			if (cur_id_size && d[3] > id_len)
3276 				break;
3277 			cur_id_size = id_size = d[3];
3278 			cur_id_str = d + 4;
3279 			cur_id_type = d[1] & 0xf;
3280 			if (cur_id_size >= id_len)
3281 				cur_id_size = id_len - 1;
3282 			memcpy(id, cur_id_str, cur_id_size);
3283 			/* Decrease priority for truncated descriptor */
3284 			if (cur_id_size != id_size)
3285 				cur_id_size = 6;
3286 			break;
3287 		default:
3288 			break;
3289 		}
3290 next_desig:
3291 		d += d[3] + 4;
3292 	}
3293 	rcu_read_unlock();
3294 
3295 	return id_size;
3296 }
3297 EXPORT_SYMBOL(scsi_vpd_lun_id);
3298 
3299 /*
3300  * scsi_vpd_tpg_id - return a target port group identifier
3301  * @sdev: SCSI device
3302  *
3303  * Returns the Target Port Group identifier from the information
3304  * froom VPD page 0x83 of the device.
3305  *
3306  * Returns the identifier or error on failure.
3307  */
3308 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3309 {
3310 	unsigned char *d;
3311 	unsigned char __rcu *vpd_pg83;
3312 	int group_id = -EAGAIN, rel_port = -1;
3313 
3314 	rcu_read_lock();
3315 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3316 	if (!vpd_pg83) {
3317 		rcu_read_unlock();
3318 		return -ENXIO;
3319 	}
3320 
3321 	d = sdev->vpd_pg83 + 4;
3322 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3323 		switch (d[1] & 0xf) {
3324 		case 0x4:
3325 			/* Relative target port */
3326 			rel_port = get_unaligned_be16(&d[6]);
3327 			break;
3328 		case 0x5:
3329 			/* Target port group */
3330 			group_id = get_unaligned_be16(&d[6]);
3331 			break;
3332 		default:
3333 			break;
3334 		}
3335 		d += d[3] + 4;
3336 	}
3337 	rcu_read_unlock();
3338 
3339 	if (group_id >= 0 && rel_id && rel_port != -1)
3340 		*rel_id = rel_port;
3341 
3342 	return group_id;
3343 }
3344 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3345