1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 if (cmd->request->rq_flags & RQF_DONTPREP) { 145 cmd->request->rq_flags &= ~RQF_DONTPREP; 146 scsi_mq_uninit_cmd(cmd); 147 } else { 148 WARN_ON_ONCE(true); 149 } 150 blk_mq_requeue_request(cmd->request, true); 151 } 152 153 /** 154 * __scsi_queue_insert - private queue insertion 155 * @cmd: The SCSI command being requeued 156 * @reason: The reason for the requeue 157 * @unbusy: Whether the queue should be unbusied 158 * 159 * This is a private queue insertion. The public interface 160 * scsi_queue_insert() always assumes the queue should be unbusied 161 * because it's always called before the completion. This function is 162 * for a requeue after completion, which should only occur in this 163 * file. 164 */ 165 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 166 { 167 struct scsi_device *device = cmd->device; 168 169 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 170 "Inserting command %p into mlqueue\n", cmd)); 171 172 scsi_set_blocked(cmd, reason); 173 174 /* 175 * Decrement the counters, since these commands are no longer 176 * active on the host/device. 177 */ 178 if (unbusy) 179 scsi_device_unbusy(device); 180 181 /* 182 * Requeue this command. It will go before all other commands 183 * that are already in the queue. Schedule requeue work under 184 * lock such that the kblockd_schedule_work() call happens 185 * before blk_cleanup_queue() finishes. 186 */ 187 cmd->result = 0; 188 189 blk_mq_requeue_request(cmd->request, true); 190 } 191 192 /* 193 * Function: scsi_queue_insert() 194 * 195 * Purpose: Insert a command in the midlevel queue. 196 * 197 * Arguments: cmd - command that we are adding to queue. 198 * reason - why we are inserting command to queue. 199 * 200 * Lock status: Assumed that lock is not held upon entry. 201 * 202 * Returns: Nothing. 203 * 204 * Notes: We do this for one of two cases. Either the host is busy 205 * and it cannot accept any more commands for the time being, 206 * or the device returned QUEUE_FULL and can accept no more 207 * commands. 208 * Notes: This could be called either from an interrupt context or a 209 * normal process context. 210 */ 211 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 212 { 213 __scsi_queue_insert(cmd, reason, true); 214 } 215 216 217 /** 218 * __scsi_execute - insert request and wait for the result 219 * @sdev: scsi device 220 * @cmd: scsi command 221 * @data_direction: data direction 222 * @buffer: data buffer 223 * @bufflen: len of buffer 224 * @sense: optional sense buffer 225 * @sshdr: optional decoded sense header 226 * @timeout: request timeout in seconds 227 * @retries: number of times to retry request 228 * @flags: flags for ->cmd_flags 229 * @rq_flags: flags for ->rq_flags 230 * @resid: optional residual length 231 * 232 * Returns the scsi_cmnd result field if a command was executed, or a negative 233 * Linux error code if we didn't get that far. 234 */ 235 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 236 int data_direction, void *buffer, unsigned bufflen, 237 unsigned char *sense, struct scsi_sense_hdr *sshdr, 238 int timeout, int retries, u64 flags, req_flags_t rq_flags, 239 int *resid) 240 { 241 struct request *req; 242 struct scsi_request *rq; 243 int ret = DRIVER_ERROR << 24; 244 245 req = blk_get_request(sdev->request_queue, 246 data_direction == DMA_TO_DEVICE ? 247 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 248 if (IS_ERR(req)) 249 return ret; 250 rq = scsi_req(req); 251 252 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 253 buffer, bufflen, GFP_NOIO)) 254 goto out; 255 256 rq->cmd_len = COMMAND_SIZE(cmd[0]); 257 memcpy(rq->cmd, cmd, rq->cmd_len); 258 rq->retries = retries; 259 req->timeout = timeout; 260 req->cmd_flags |= flags; 261 req->rq_flags |= rq_flags | RQF_QUIET; 262 263 /* 264 * head injection *required* here otherwise quiesce won't work 265 */ 266 blk_execute_rq(req->q, NULL, req, 1); 267 268 /* 269 * Some devices (USB mass-storage in particular) may transfer 270 * garbage data together with a residue indicating that the data 271 * is invalid. Prevent the garbage from being misinterpreted 272 * and prevent security leaks by zeroing out the excess data. 273 */ 274 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 275 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 276 277 if (resid) 278 *resid = rq->resid_len; 279 if (sense && rq->sense_len) 280 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 281 if (sshdr) 282 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 283 ret = rq->result; 284 out: 285 blk_put_request(req); 286 287 return ret; 288 } 289 EXPORT_SYMBOL(__scsi_execute); 290 291 /* 292 * Function: scsi_init_cmd_errh() 293 * 294 * Purpose: Initialize cmd fields related to error handling. 295 * 296 * Arguments: cmd - command that is ready to be queued. 297 * 298 * Notes: This function has the job of initializing a number of 299 * fields related to error handling. Typically this will 300 * be called once for each command, as required. 301 */ 302 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 303 { 304 scsi_set_resid(cmd, 0); 305 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 306 if (cmd->cmd_len == 0) 307 cmd->cmd_len = scsi_command_size(cmd->cmnd); 308 } 309 310 /* 311 * Decrement the host_busy counter and wake up the error handler if necessary. 312 * Avoid as follows that the error handler is not woken up if shost->host_busy 313 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 314 * with an RCU read lock in this function to ensure that this function in its 315 * entirety either finishes before scsi_eh_scmd_add() increases the 316 * host_failed counter or that it notices the shost state change made by 317 * scsi_eh_scmd_add(). 318 */ 319 static void scsi_dec_host_busy(struct Scsi_Host *shost) 320 { 321 unsigned long flags; 322 323 rcu_read_lock(); 324 atomic_dec(&shost->host_busy); 325 if (unlikely(scsi_host_in_recovery(shost))) { 326 spin_lock_irqsave(shost->host_lock, flags); 327 if (shost->host_failed || shost->host_eh_scheduled) 328 scsi_eh_wakeup(shost); 329 spin_unlock_irqrestore(shost->host_lock, flags); 330 } 331 rcu_read_unlock(); 332 } 333 334 void scsi_device_unbusy(struct scsi_device *sdev) 335 { 336 struct Scsi_Host *shost = sdev->host; 337 struct scsi_target *starget = scsi_target(sdev); 338 339 scsi_dec_host_busy(shost); 340 341 if (starget->can_queue > 0) 342 atomic_dec(&starget->target_busy); 343 344 atomic_dec(&sdev->device_busy); 345 } 346 347 static void scsi_kick_queue(struct request_queue *q) 348 { 349 blk_mq_run_hw_queues(q, false); 350 } 351 352 /* 353 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 354 * and call blk_run_queue for all the scsi_devices on the target - 355 * including current_sdev first. 356 * 357 * Called with *no* scsi locks held. 358 */ 359 static void scsi_single_lun_run(struct scsi_device *current_sdev) 360 { 361 struct Scsi_Host *shost = current_sdev->host; 362 struct scsi_device *sdev, *tmp; 363 struct scsi_target *starget = scsi_target(current_sdev); 364 unsigned long flags; 365 366 spin_lock_irqsave(shost->host_lock, flags); 367 starget->starget_sdev_user = NULL; 368 spin_unlock_irqrestore(shost->host_lock, flags); 369 370 /* 371 * Call blk_run_queue for all LUNs on the target, starting with 372 * current_sdev. We race with others (to set starget_sdev_user), 373 * but in most cases, we will be first. Ideally, each LU on the 374 * target would get some limited time or requests on the target. 375 */ 376 scsi_kick_queue(current_sdev->request_queue); 377 378 spin_lock_irqsave(shost->host_lock, flags); 379 if (starget->starget_sdev_user) 380 goto out; 381 list_for_each_entry_safe(sdev, tmp, &starget->devices, 382 same_target_siblings) { 383 if (sdev == current_sdev) 384 continue; 385 if (scsi_device_get(sdev)) 386 continue; 387 388 spin_unlock_irqrestore(shost->host_lock, flags); 389 scsi_kick_queue(sdev->request_queue); 390 spin_lock_irqsave(shost->host_lock, flags); 391 392 scsi_device_put(sdev); 393 } 394 out: 395 spin_unlock_irqrestore(shost->host_lock, flags); 396 } 397 398 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 399 { 400 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 401 return true; 402 if (atomic_read(&sdev->device_blocked) > 0) 403 return true; 404 return false; 405 } 406 407 static inline bool scsi_target_is_busy(struct scsi_target *starget) 408 { 409 if (starget->can_queue > 0) { 410 if (atomic_read(&starget->target_busy) >= starget->can_queue) 411 return true; 412 if (atomic_read(&starget->target_blocked) > 0) 413 return true; 414 } 415 return false; 416 } 417 418 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 419 { 420 if (shost->can_queue > 0 && 421 atomic_read(&shost->host_busy) >= shost->can_queue) 422 return true; 423 if (atomic_read(&shost->host_blocked) > 0) 424 return true; 425 if (shost->host_self_blocked) 426 return true; 427 return false; 428 } 429 430 static void scsi_starved_list_run(struct Scsi_Host *shost) 431 { 432 LIST_HEAD(starved_list); 433 struct scsi_device *sdev; 434 unsigned long flags; 435 436 spin_lock_irqsave(shost->host_lock, flags); 437 list_splice_init(&shost->starved_list, &starved_list); 438 439 while (!list_empty(&starved_list)) { 440 struct request_queue *slq; 441 442 /* 443 * As long as shost is accepting commands and we have 444 * starved queues, call blk_run_queue. scsi_request_fn 445 * drops the queue_lock and can add us back to the 446 * starved_list. 447 * 448 * host_lock protects the starved_list and starved_entry. 449 * scsi_request_fn must get the host_lock before checking 450 * or modifying starved_list or starved_entry. 451 */ 452 if (scsi_host_is_busy(shost)) 453 break; 454 455 sdev = list_entry(starved_list.next, 456 struct scsi_device, starved_entry); 457 list_del_init(&sdev->starved_entry); 458 if (scsi_target_is_busy(scsi_target(sdev))) { 459 list_move_tail(&sdev->starved_entry, 460 &shost->starved_list); 461 continue; 462 } 463 464 /* 465 * Once we drop the host lock, a racing scsi_remove_device() 466 * call may remove the sdev from the starved list and destroy 467 * it and the queue. Mitigate by taking a reference to the 468 * queue and never touching the sdev again after we drop the 469 * host lock. Note: if __scsi_remove_device() invokes 470 * blk_cleanup_queue() before the queue is run from this 471 * function then blk_run_queue() will return immediately since 472 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 473 */ 474 slq = sdev->request_queue; 475 if (!blk_get_queue(slq)) 476 continue; 477 spin_unlock_irqrestore(shost->host_lock, flags); 478 479 scsi_kick_queue(slq); 480 blk_put_queue(slq); 481 482 spin_lock_irqsave(shost->host_lock, flags); 483 } 484 /* put any unprocessed entries back */ 485 list_splice(&starved_list, &shost->starved_list); 486 spin_unlock_irqrestore(shost->host_lock, flags); 487 } 488 489 /* 490 * Function: scsi_run_queue() 491 * 492 * Purpose: Select a proper request queue to serve next 493 * 494 * Arguments: q - last request's queue 495 * 496 * Returns: Nothing 497 * 498 * Notes: The previous command was completely finished, start 499 * a new one if possible. 500 */ 501 static void scsi_run_queue(struct request_queue *q) 502 { 503 struct scsi_device *sdev = q->queuedata; 504 505 if (scsi_target(sdev)->single_lun) 506 scsi_single_lun_run(sdev); 507 if (!list_empty(&sdev->host->starved_list)) 508 scsi_starved_list_run(sdev->host); 509 510 blk_mq_run_hw_queues(q, false); 511 } 512 513 void scsi_requeue_run_queue(struct work_struct *work) 514 { 515 struct scsi_device *sdev; 516 struct request_queue *q; 517 518 sdev = container_of(work, struct scsi_device, requeue_work); 519 q = sdev->request_queue; 520 scsi_run_queue(q); 521 } 522 523 void scsi_run_host_queues(struct Scsi_Host *shost) 524 { 525 struct scsi_device *sdev; 526 527 shost_for_each_device(sdev, shost) 528 scsi_run_queue(sdev->request_queue); 529 } 530 531 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 532 { 533 if (!blk_rq_is_passthrough(cmd->request)) { 534 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 535 536 if (drv->uninit_command) 537 drv->uninit_command(cmd); 538 } 539 } 540 541 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 542 { 543 if (cmd->sdb.table.nents) 544 sg_free_table_chained(&cmd->sdb.table, true); 545 if (scsi_prot_sg_count(cmd)) 546 sg_free_table_chained(&cmd->prot_sdb->table, true); 547 } 548 549 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 550 { 551 scsi_mq_free_sgtables(cmd); 552 scsi_uninit_cmd(cmd); 553 scsi_del_cmd_from_list(cmd); 554 } 555 556 /* Returns false when no more bytes to process, true if there are more */ 557 static bool scsi_end_request(struct request *req, blk_status_t error, 558 unsigned int bytes) 559 { 560 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 561 struct scsi_device *sdev = cmd->device; 562 struct request_queue *q = sdev->request_queue; 563 564 if (blk_update_request(req, error, bytes)) 565 return true; 566 567 if (blk_queue_add_random(q)) 568 add_disk_randomness(req->rq_disk); 569 570 if (!blk_rq_is_scsi(req)) { 571 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 572 cmd->flags &= ~SCMD_INITIALIZED; 573 } 574 575 /* 576 * Calling rcu_barrier() is not necessary here because the 577 * SCSI error handler guarantees that the function called by 578 * call_rcu() has been called before scsi_end_request() is 579 * called. 580 */ 581 destroy_rcu_head(&cmd->rcu); 582 583 /* 584 * In the MQ case the command gets freed by __blk_mq_end_request, 585 * so we have to do all cleanup that depends on it earlier. 586 * 587 * We also can't kick the queues from irq context, so we 588 * will have to defer it to a workqueue. 589 */ 590 scsi_mq_uninit_cmd(cmd); 591 592 /* 593 * queue is still alive, so grab the ref for preventing it 594 * from being cleaned up during running queue. 595 */ 596 percpu_ref_get(&q->q_usage_counter); 597 598 __blk_mq_end_request(req, error); 599 600 if (scsi_target(sdev)->single_lun || 601 !list_empty(&sdev->host->starved_list)) 602 kblockd_schedule_work(&sdev->requeue_work); 603 else 604 blk_mq_run_hw_queues(q, true); 605 606 percpu_ref_put(&q->q_usage_counter); 607 return false; 608 } 609 610 /** 611 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 612 * @cmd: SCSI command 613 * @result: scsi error code 614 * 615 * Translate a SCSI result code into a blk_status_t value. May reset the host 616 * byte of @cmd->result. 617 */ 618 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 619 { 620 switch (host_byte(result)) { 621 case DID_OK: 622 /* 623 * Also check the other bytes than the status byte in result 624 * to handle the case when a SCSI LLD sets result to 625 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 626 */ 627 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 628 return BLK_STS_OK; 629 return BLK_STS_IOERR; 630 case DID_TRANSPORT_FAILFAST: 631 return BLK_STS_TRANSPORT; 632 case DID_TARGET_FAILURE: 633 set_host_byte(cmd, DID_OK); 634 return BLK_STS_TARGET; 635 case DID_NEXUS_FAILURE: 636 set_host_byte(cmd, DID_OK); 637 return BLK_STS_NEXUS; 638 case DID_ALLOC_FAILURE: 639 set_host_byte(cmd, DID_OK); 640 return BLK_STS_NOSPC; 641 case DID_MEDIUM_ERROR: 642 set_host_byte(cmd, DID_OK); 643 return BLK_STS_MEDIUM; 644 default: 645 return BLK_STS_IOERR; 646 } 647 } 648 649 /* Helper for scsi_io_completion() when "reprep" action required. */ 650 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 651 struct request_queue *q) 652 { 653 /* A new command will be prepared and issued. */ 654 scsi_mq_requeue_cmd(cmd); 655 } 656 657 /* Helper for scsi_io_completion() when special action required. */ 658 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 659 { 660 struct request_queue *q = cmd->device->request_queue; 661 struct request *req = cmd->request; 662 int level = 0; 663 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 664 ACTION_DELAYED_RETRY} action; 665 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 666 struct scsi_sense_hdr sshdr; 667 bool sense_valid; 668 bool sense_current = true; /* false implies "deferred sense" */ 669 blk_status_t blk_stat; 670 671 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 672 if (sense_valid) 673 sense_current = !scsi_sense_is_deferred(&sshdr); 674 675 blk_stat = scsi_result_to_blk_status(cmd, result); 676 677 if (host_byte(result) == DID_RESET) { 678 /* Third party bus reset or reset for error recovery 679 * reasons. Just retry the command and see what 680 * happens. 681 */ 682 action = ACTION_RETRY; 683 } else if (sense_valid && sense_current) { 684 switch (sshdr.sense_key) { 685 case UNIT_ATTENTION: 686 if (cmd->device->removable) { 687 /* Detected disc change. Set a bit 688 * and quietly refuse further access. 689 */ 690 cmd->device->changed = 1; 691 action = ACTION_FAIL; 692 } else { 693 /* Must have been a power glitch, or a 694 * bus reset. Could not have been a 695 * media change, so we just retry the 696 * command and see what happens. 697 */ 698 action = ACTION_RETRY; 699 } 700 break; 701 case ILLEGAL_REQUEST: 702 /* If we had an ILLEGAL REQUEST returned, then 703 * we may have performed an unsupported 704 * command. The only thing this should be 705 * would be a ten byte read where only a six 706 * byte read was supported. Also, on a system 707 * where READ CAPACITY failed, we may have 708 * read past the end of the disk. 709 */ 710 if ((cmd->device->use_10_for_rw && 711 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 712 (cmd->cmnd[0] == READ_10 || 713 cmd->cmnd[0] == WRITE_10)) { 714 /* This will issue a new 6-byte command. */ 715 cmd->device->use_10_for_rw = 0; 716 action = ACTION_REPREP; 717 } else if (sshdr.asc == 0x10) /* DIX */ { 718 action = ACTION_FAIL; 719 blk_stat = BLK_STS_PROTECTION; 720 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 721 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 722 action = ACTION_FAIL; 723 blk_stat = BLK_STS_TARGET; 724 } else 725 action = ACTION_FAIL; 726 break; 727 case ABORTED_COMMAND: 728 action = ACTION_FAIL; 729 if (sshdr.asc == 0x10) /* DIF */ 730 blk_stat = BLK_STS_PROTECTION; 731 break; 732 case NOT_READY: 733 /* If the device is in the process of becoming 734 * ready, or has a temporary blockage, retry. 735 */ 736 if (sshdr.asc == 0x04) { 737 switch (sshdr.ascq) { 738 case 0x01: /* becoming ready */ 739 case 0x04: /* format in progress */ 740 case 0x05: /* rebuild in progress */ 741 case 0x06: /* recalculation in progress */ 742 case 0x07: /* operation in progress */ 743 case 0x08: /* Long write in progress */ 744 case 0x09: /* self test in progress */ 745 case 0x14: /* space allocation in progress */ 746 case 0x1a: /* start stop unit in progress */ 747 case 0x1b: /* sanitize in progress */ 748 case 0x1d: /* configuration in progress */ 749 case 0x24: /* depopulation in progress */ 750 action = ACTION_DELAYED_RETRY; 751 break; 752 default: 753 action = ACTION_FAIL; 754 break; 755 } 756 } else 757 action = ACTION_FAIL; 758 break; 759 case VOLUME_OVERFLOW: 760 /* See SSC3rXX or current. */ 761 action = ACTION_FAIL; 762 break; 763 default: 764 action = ACTION_FAIL; 765 break; 766 } 767 } else 768 action = ACTION_FAIL; 769 770 if (action != ACTION_FAIL && 771 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 772 action = ACTION_FAIL; 773 774 switch (action) { 775 case ACTION_FAIL: 776 /* Give up and fail the remainder of the request */ 777 if (!(req->rq_flags & RQF_QUIET)) { 778 static DEFINE_RATELIMIT_STATE(_rs, 779 DEFAULT_RATELIMIT_INTERVAL, 780 DEFAULT_RATELIMIT_BURST); 781 782 if (unlikely(scsi_logging_level)) 783 level = 784 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 785 SCSI_LOG_MLCOMPLETE_BITS); 786 787 /* 788 * if logging is enabled the failure will be printed 789 * in scsi_log_completion(), so avoid duplicate messages 790 */ 791 if (!level && __ratelimit(&_rs)) { 792 scsi_print_result(cmd, NULL, FAILED); 793 if (driver_byte(result) == DRIVER_SENSE) 794 scsi_print_sense(cmd); 795 scsi_print_command(cmd); 796 } 797 } 798 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 799 return; 800 /*FALLTHRU*/ 801 case ACTION_REPREP: 802 scsi_io_completion_reprep(cmd, q); 803 break; 804 case ACTION_RETRY: 805 /* Retry the same command immediately */ 806 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 807 break; 808 case ACTION_DELAYED_RETRY: 809 /* Retry the same command after a delay */ 810 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 811 break; 812 } 813 } 814 815 /* 816 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 817 * new result that may suppress further error checking. Also modifies 818 * *blk_statp in some cases. 819 */ 820 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 821 blk_status_t *blk_statp) 822 { 823 bool sense_valid; 824 bool sense_current = true; /* false implies "deferred sense" */ 825 struct request *req = cmd->request; 826 struct scsi_sense_hdr sshdr; 827 828 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 829 if (sense_valid) 830 sense_current = !scsi_sense_is_deferred(&sshdr); 831 832 if (blk_rq_is_passthrough(req)) { 833 if (sense_valid) { 834 /* 835 * SG_IO wants current and deferred errors 836 */ 837 scsi_req(req)->sense_len = 838 min(8 + cmd->sense_buffer[7], 839 SCSI_SENSE_BUFFERSIZE); 840 } 841 if (sense_current) 842 *blk_statp = scsi_result_to_blk_status(cmd, result); 843 } else if (blk_rq_bytes(req) == 0 && sense_current) { 844 /* 845 * Flush commands do not transfers any data, and thus cannot use 846 * good_bytes != blk_rq_bytes(req) as the signal for an error. 847 * This sets *blk_statp explicitly for the problem case. 848 */ 849 *blk_statp = scsi_result_to_blk_status(cmd, result); 850 } 851 /* 852 * Recovered errors need reporting, but they're always treated as 853 * success, so fiddle the result code here. For passthrough requests 854 * we already took a copy of the original into sreq->result which 855 * is what gets returned to the user 856 */ 857 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 858 bool do_print = true; 859 /* 860 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 861 * skip print since caller wants ATA registers. Only occurs 862 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 863 */ 864 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 865 do_print = false; 866 else if (req->rq_flags & RQF_QUIET) 867 do_print = false; 868 if (do_print) 869 scsi_print_sense(cmd); 870 result = 0; 871 /* for passthrough, *blk_statp may be set */ 872 *blk_statp = BLK_STS_OK; 873 } 874 /* 875 * Another corner case: the SCSI status byte is non-zero but 'good'. 876 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 877 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 878 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 879 * intermediate statuses (both obsolete in SAM-4) as good. 880 */ 881 if (status_byte(result) && scsi_status_is_good(result)) { 882 result = 0; 883 *blk_statp = BLK_STS_OK; 884 } 885 return result; 886 } 887 888 /* 889 * Function: scsi_io_completion() 890 * 891 * Purpose: Completion processing for block device I/O requests. 892 * 893 * Arguments: cmd - command that is finished. 894 * 895 * Lock status: Assumed that no lock is held upon entry. 896 * 897 * Returns: Nothing 898 * 899 * Notes: We will finish off the specified number of sectors. If we 900 * are done, the command block will be released and the queue 901 * function will be goosed. If we are not done then we have to 902 * figure out what to do next: 903 * 904 * a) We can call scsi_requeue_command(). The request 905 * will be unprepared and put back on the queue. Then 906 * a new command will be created for it. This should 907 * be used if we made forward progress, or if we want 908 * to switch from READ(10) to READ(6) for example. 909 * 910 * b) We can call __scsi_queue_insert(). The request will 911 * be put back on the queue and retried using the same 912 * command as before, possibly after a delay. 913 * 914 * c) We can call scsi_end_request() with blk_stat other than 915 * BLK_STS_OK, to fail the remainder of the request. 916 */ 917 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 918 { 919 int result = cmd->result; 920 struct request_queue *q = cmd->device->request_queue; 921 struct request *req = cmd->request; 922 blk_status_t blk_stat = BLK_STS_OK; 923 924 if (unlikely(result)) /* a nz result may or may not be an error */ 925 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 926 927 if (unlikely(blk_rq_is_passthrough(req))) { 928 /* 929 * scsi_result_to_blk_status may have reset the host_byte 930 */ 931 scsi_req(req)->result = cmd->result; 932 } 933 934 /* 935 * Next deal with any sectors which we were able to correctly 936 * handle. 937 */ 938 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 939 "%u sectors total, %d bytes done.\n", 940 blk_rq_sectors(req), good_bytes)); 941 942 /* 943 * Next deal with any sectors which we were able to correctly 944 * handle. Failed, zero length commands always need to drop down 945 * to retry code. Fast path should return in this block. 946 */ 947 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 948 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 949 return; /* no bytes remaining */ 950 } 951 952 /* Kill remainder if no retries. */ 953 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 954 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 955 WARN_ONCE(true, 956 "Bytes remaining after failed, no-retry command"); 957 return; 958 } 959 960 /* 961 * If there had been no error, but we have leftover bytes in the 962 * requeues just queue the command up again. 963 */ 964 if (likely(result == 0)) 965 scsi_io_completion_reprep(cmd, q); 966 else 967 scsi_io_completion_action(cmd, result); 968 } 969 970 static blk_status_t scsi_init_sgtable(struct request *req, 971 struct scsi_data_buffer *sdb) 972 { 973 int count; 974 975 /* 976 * If sg table allocation fails, requeue request later. 977 */ 978 if (unlikely(sg_alloc_table_chained(&sdb->table, 979 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 980 return BLK_STS_RESOURCE; 981 982 /* 983 * Next, walk the list, and fill in the addresses and sizes of 984 * each segment. 985 */ 986 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 987 BUG_ON(count > sdb->table.nents); 988 sdb->table.nents = count; 989 sdb->length = blk_rq_payload_bytes(req); 990 return BLK_STS_OK; 991 } 992 993 /* 994 * Function: scsi_init_io() 995 * 996 * Purpose: SCSI I/O initialize function. 997 * 998 * Arguments: cmd - Command descriptor we wish to initialize 999 * 1000 * Returns: BLK_STS_OK on success 1001 * BLK_STS_RESOURCE if the failure is retryable 1002 * BLK_STS_IOERR if the failure is fatal 1003 */ 1004 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1005 { 1006 struct request *rq = cmd->request; 1007 blk_status_t ret; 1008 1009 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1010 return BLK_STS_IOERR; 1011 1012 ret = scsi_init_sgtable(rq, &cmd->sdb); 1013 if (ret) 1014 return ret; 1015 1016 if (blk_integrity_rq(rq)) { 1017 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1018 int ivecs, count; 1019 1020 if (WARN_ON_ONCE(!prot_sdb)) { 1021 /* 1022 * This can happen if someone (e.g. multipath) 1023 * queues a command to a device on an adapter 1024 * that does not support DIX. 1025 */ 1026 ret = BLK_STS_IOERR; 1027 goto out_free_sgtables; 1028 } 1029 1030 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1031 1032 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1033 prot_sdb->table.sgl)) { 1034 ret = BLK_STS_RESOURCE; 1035 goto out_free_sgtables; 1036 } 1037 1038 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1039 prot_sdb->table.sgl); 1040 BUG_ON(count > ivecs); 1041 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1042 1043 cmd->prot_sdb = prot_sdb; 1044 cmd->prot_sdb->table.nents = count; 1045 } 1046 1047 return BLK_STS_OK; 1048 out_free_sgtables: 1049 scsi_mq_free_sgtables(cmd); 1050 return ret; 1051 } 1052 EXPORT_SYMBOL(scsi_init_io); 1053 1054 /** 1055 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1056 * @rq: Request associated with the SCSI command to be initialized. 1057 * 1058 * This function initializes the members of struct scsi_cmnd that must be 1059 * initialized before request processing starts and that won't be 1060 * reinitialized if a SCSI command is requeued. 1061 * 1062 * Called from inside blk_get_request() for pass-through requests and from 1063 * inside scsi_init_command() for filesystem requests. 1064 */ 1065 static void scsi_initialize_rq(struct request *rq) 1066 { 1067 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1068 1069 scsi_req_init(&cmd->req); 1070 init_rcu_head(&cmd->rcu); 1071 cmd->jiffies_at_alloc = jiffies; 1072 cmd->retries = 0; 1073 } 1074 1075 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1076 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1077 { 1078 struct scsi_device *sdev = cmd->device; 1079 struct Scsi_Host *shost = sdev->host; 1080 unsigned long flags; 1081 1082 if (shost->use_cmd_list) { 1083 spin_lock_irqsave(&sdev->list_lock, flags); 1084 list_add_tail(&cmd->list, &sdev->cmd_list); 1085 spin_unlock_irqrestore(&sdev->list_lock, flags); 1086 } 1087 } 1088 1089 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1090 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1091 { 1092 struct scsi_device *sdev = cmd->device; 1093 struct Scsi_Host *shost = sdev->host; 1094 unsigned long flags; 1095 1096 if (shost->use_cmd_list) { 1097 spin_lock_irqsave(&sdev->list_lock, flags); 1098 BUG_ON(list_empty(&cmd->list)); 1099 list_del_init(&cmd->list); 1100 spin_unlock_irqrestore(&sdev->list_lock, flags); 1101 } 1102 } 1103 1104 /* Called after a request has been started. */ 1105 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1106 { 1107 void *buf = cmd->sense_buffer; 1108 void *prot = cmd->prot_sdb; 1109 struct request *rq = blk_mq_rq_from_pdu(cmd); 1110 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1111 unsigned long jiffies_at_alloc; 1112 int retries; 1113 1114 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1115 flags |= SCMD_INITIALIZED; 1116 scsi_initialize_rq(rq); 1117 } 1118 1119 jiffies_at_alloc = cmd->jiffies_at_alloc; 1120 retries = cmd->retries; 1121 /* zero out the cmd, except for the embedded scsi_request */ 1122 memset((char *)cmd + sizeof(cmd->req), 0, 1123 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1124 1125 cmd->device = dev; 1126 cmd->sense_buffer = buf; 1127 cmd->prot_sdb = prot; 1128 cmd->flags = flags; 1129 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1130 cmd->jiffies_at_alloc = jiffies_at_alloc; 1131 cmd->retries = retries; 1132 1133 scsi_add_cmd_to_list(cmd); 1134 } 1135 1136 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1137 struct request *req) 1138 { 1139 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1140 1141 /* 1142 * Passthrough requests may transfer data, in which case they must 1143 * a bio attached to them. Or they might contain a SCSI command 1144 * that does not transfer data, in which case they may optionally 1145 * submit a request without an attached bio. 1146 */ 1147 if (req->bio) { 1148 blk_status_t ret = scsi_init_io(cmd); 1149 if (unlikely(ret != BLK_STS_OK)) 1150 return ret; 1151 } else { 1152 BUG_ON(blk_rq_bytes(req)); 1153 1154 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1155 } 1156 1157 cmd->cmd_len = scsi_req(req)->cmd_len; 1158 cmd->cmnd = scsi_req(req)->cmd; 1159 cmd->transfersize = blk_rq_bytes(req); 1160 cmd->allowed = scsi_req(req)->retries; 1161 return BLK_STS_OK; 1162 } 1163 1164 /* 1165 * Setup a normal block command. These are simple request from filesystems 1166 * that still need to be translated to SCSI CDBs from the ULD. 1167 */ 1168 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1169 struct request *req) 1170 { 1171 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1172 1173 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1174 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1175 if (ret != BLK_STS_OK) 1176 return ret; 1177 } 1178 1179 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1180 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1181 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1182 } 1183 1184 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1185 struct request *req) 1186 { 1187 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1188 1189 if (!blk_rq_bytes(req)) 1190 cmd->sc_data_direction = DMA_NONE; 1191 else if (rq_data_dir(req) == WRITE) 1192 cmd->sc_data_direction = DMA_TO_DEVICE; 1193 else 1194 cmd->sc_data_direction = DMA_FROM_DEVICE; 1195 1196 if (blk_rq_is_scsi(req)) 1197 return scsi_setup_scsi_cmnd(sdev, req); 1198 else 1199 return scsi_setup_fs_cmnd(sdev, req); 1200 } 1201 1202 static blk_status_t 1203 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1204 { 1205 switch (sdev->sdev_state) { 1206 case SDEV_OFFLINE: 1207 case SDEV_TRANSPORT_OFFLINE: 1208 /* 1209 * If the device is offline we refuse to process any 1210 * commands. The device must be brought online 1211 * before trying any recovery commands. 1212 */ 1213 sdev_printk(KERN_ERR, sdev, 1214 "rejecting I/O to offline device\n"); 1215 return BLK_STS_IOERR; 1216 case SDEV_DEL: 1217 /* 1218 * If the device is fully deleted, we refuse to 1219 * process any commands as well. 1220 */ 1221 sdev_printk(KERN_ERR, sdev, 1222 "rejecting I/O to dead device\n"); 1223 return BLK_STS_IOERR; 1224 case SDEV_BLOCK: 1225 case SDEV_CREATED_BLOCK: 1226 return BLK_STS_RESOURCE; 1227 case SDEV_QUIESCE: 1228 /* 1229 * If the devices is blocked we defer normal commands. 1230 */ 1231 if (req && !(req->rq_flags & RQF_PREEMPT)) 1232 return BLK_STS_RESOURCE; 1233 return BLK_STS_OK; 1234 default: 1235 /* 1236 * For any other not fully online state we only allow 1237 * special commands. In particular any user initiated 1238 * command is not allowed. 1239 */ 1240 if (req && !(req->rq_flags & RQF_PREEMPT)) 1241 return BLK_STS_IOERR; 1242 return BLK_STS_OK; 1243 } 1244 } 1245 1246 /* 1247 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1248 * return 0. 1249 * 1250 * Called with the queue_lock held. 1251 */ 1252 static inline int scsi_dev_queue_ready(struct request_queue *q, 1253 struct scsi_device *sdev) 1254 { 1255 unsigned int busy; 1256 1257 busy = atomic_inc_return(&sdev->device_busy) - 1; 1258 if (atomic_read(&sdev->device_blocked)) { 1259 if (busy) 1260 goto out_dec; 1261 1262 /* 1263 * unblock after device_blocked iterates to zero 1264 */ 1265 if (atomic_dec_return(&sdev->device_blocked) > 0) 1266 goto out_dec; 1267 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1268 "unblocking device at zero depth\n")); 1269 } 1270 1271 if (busy >= sdev->queue_depth) 1272 goto out_dec; 1273 1274 return 1; 1275 out_dec: 1276 atomic_dec(&sdev->device_busy); 1277 return 0; 1278 } 1279 1280 /* 1281 * scsi_target_queue_ready: checks if there we can send commands to target 1282 * @sdev: scsi device on starget to check. 1283 */ 1284 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1285 struct scsi_device *sdev) 1286 { 1287 struct scsi_target *starget = scsi_target(sdev); 1288 unsigned int busy; 1289 1290 if (starget->single_lun) { 1291 spin_lock_irq(shost->host_lock); 1292 if (starget->starget_sdev_user && 1293 starget->starget_sdev_user != sdev) { 1294 spin_unlock_irq(shost->host_lock); 1295 return 0; 1296 } 1297 starget->starget_sdev_user = sdev; 1298 spin_unlock_irq(shost->host_lock); 1299 } 1300 1301 if (starget->can_queue <= 0) 1302 return 1; 1303 1304 busy = atomic_inc_return(&starget->target_busy) - 1; 1305 if (atomic_read(&starget->target_blocked) > 0) { 1306 if (busy) 1307 goto starved; 1308 1309 /* 1310 * unblock after target_blocked iterates to zero 1311 */ 1312 if (atomic_dec_return(&starget->target_blocked) > 0) 1313 goto out_dec; 1314 1315 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1316 "unblocking target at zero depth\n")); 1317 } 1318 1319 if (busy >= starget->can_queue) 1320 goto starved; 1321 1322 return 1; 1323 1324 starved: 1325 spin_lock_irq(shost->host_lock); 1326 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1327 spin_unlock_irq(shost->host_lock); 1328 out_dec: 1329 if (starget->can_queue > 0) 1330 atomic_dec(&starget->target_busy); 1331 return 0; 1332 } 1333 1334 /* 1335 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1336 * return 0. We must end up running the queue again whenever 0 is 1337 * returned, else IO can hang. 1338 */ 1339 static inline int scsi_host_queue_ready(struct request_queue *q, 1340 struct Scsi_Host *shost, 1341 struct scsi_device *sdev) 1342 { 1343 unsigned int busy; 1344 1345 if (scsi_host_in_recovery(shost)) 1346 return 0; 1347 1348 busy = atomic_inc_return(&shost->host_busy) - 1; 1349 if (atomic_read(&shost->host_blocked) > 0) { 1350 if (busy) 1351 goto starved; 1352 1353 /* 1354 * unblock after host_blocked iterates to zero 1355 */ 1356 if (atomic_dec_return(&shost->host_blocked) > 0) 1357 goto out_dec; 1358 1359 SCSI_LOG_MLQUEUE(3, 1360 shost_printk(KERN_INFO, shost, 1361 "unblocking host at zero depth\n")); 1362 } 1363 1364 if (shost->can_queue > 0 && busy >= shost->can_queue) 1365 goto starved; 1366 if (shost->host_self_blocked) 1367 goto starved; 1368 1369 /* We're OK to process the command, so we can't be starved */ 1370 if (!list_empty(&sdev->starved_entry)) { 1371 spin_lock_irq(shost->host_lock); 1372 if (!list_empty(&sdev->starved_entry)) 1373 list_del_init(&sdev->starved_entry); 1374 spin_unlock_irq(shost->host_lock); 1375 } 1376 1377 return 1; 1378 1379 starved: 1380 spin_lock_irq(shost->host_lock); 1381 if (list_empty(&sdev->starved_entry)) 1382 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1383 spin_unlock_irq(shost->host_lock); 1384 out_dec: 1385 scsi_dec_host_busy(shost); 1386 return 0; 1387 } 1388 1389 /* 1390 * Busy state exporting function for request stacking drivers. 1391 * 1392 * For efficiency, no lock is taken to check the busy state of 1393 * shost/starget/sdev, since the returned value is not guaranteed and 1394 * may be changed after request stacking drivers call the function, 1395 * regardless of taking lock or not. 1396 * 1397 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1398 * needs to return 'not busy'. Otherwise, request stacking drivers 1399 * may hold requests forever. 1400 */ 1401 static bool scsi_mq_lld_busy(struct request_queue *q) 1402 { 1403 struct scsi_device *sdev = q->queuedata; 1404 struct Scsi_Host *shost; 1405 1406 if (blk_queue_dying(q)) 1407 return false; 1408 1409 shost = sdev->host; 1410 1411 /* 1412 * Ignore host/starget busy state. 1413 * Since block layer does not have a concept of fairness across 1414 * multiple queues, congestion of host/starget needs to be handled 1415 * in SCSI layer. 1416 */ 1417 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1418 return true; 1419 1420 return false; 1421 } 1422 1423 static void scsi_softirq_done(struct request *rq) 1424 { 1425 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1426 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1427 int disposition; 1428 1429 INIT_LIST_HEAD(&cmd->eh_entry); 1430 1431 atomic_inc(&cmd->device->iodone_cnt); 1432 if (cmd->result) 1433 atomic_inc(&cmd->device->ioerr_cnt); 1434 1435 disposition = scsi_decide_disposition(cmd); 1436 if (disposition != SUCCESS && 1437 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1438 sdev_printk(KERN_ERR, cmd->device, 1439 "timing out command, waited %lus\n", 1440 wait_for/HZ); 1441 disposition = SUCCESS; 1442 } 1443 1444 scsi_log_completion(cmd, disposition); 1445 1446 switch (disposition) { 1447 case SUCCESS: 1448 scsi_finish_command(cmd); 1449 break; 1450 case NEEDS_RETRY: 1451 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1452 break; 1453 case ADD_TO_MLQUEUE: 1454 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1455 break; 1456 default: 1457 scsi_eh_scmd_add(cmd); 1458 break; 1459 } 1460 } 1461 1462 /** 1463 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1464 * @cmd: command block we are dispatching. 1465 * 1466 * Return: nonzero return request was rejected and device's queue needs to be 1467 * plugged. 1468 */ 1469 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1470 { 1471 struct Scsi_Host *host = cmd->device->host; 1472 int rtn = 0; 1473 1474 atomic_inc(&cmd->device->iorequest_cnt); 1475 1476 /* check if the device is still usable */ 1477 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1478 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1479 * returns an immediate error upwards, and signals 1480 * that the device is no longer present */ 1481 cmd->result = DID_NO_CONNECT << 16; 1482 goto done; 1483 } 1484 1485 /* Check to see if the scsi lld made this device blocked. */ 1486 if (unlikely(scsi_device_blocked(cmd->device))) { 1487 /* 1488 * in blocked state, the command is just put back on 1489 * the device queue. The suspend state has already 1490 * blocked the queue so future requests should not 1491 * occur until the device transitions out of the 1492 * suspend state. 1493 */ 1494 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1495 "queuecommand : device blocked\n")); 1496 return SCSI_MLQUEUE_DEVICE_BUSY; 1497 } 1498 1499 /* Store the LUN value in cmnd, if needed. */ 1500 if (cmd->device->lun_in_cdb) 1501 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1502 (cmd->device->lun << 5 & 0xe0); 1503 1504 scsi_log_send(cmd); 1505 1506 /* 1507 * Before we queue this command, check if the command 1508 * length exceeds what the host adapter can handle. 1509 */ 1510 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1511 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1512 "queuecommand : command too long. " 1513 "cdb_size=%d host->max_cmd_len=%d\n", 1514 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1515 cmd->result = (DID_ABORT << 16); 1516 goto done; 1517 } 1518 1519 if (unlikely(host->shost_state == SHOST_DEL)) { 1520 cmd->result = (DID_NO_CONNECT << 16); 1521 goto done; 1522 1523 } 1524 1525 trace_scsi_dispatch_cmd_start(cmd); 1526 rtn = host->hostt->queuecommand(host, cmd); 1527 if (rtn) { 1528 trace_scsi_dispatch_cmd_error(cmd, rtn); 1529 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1530 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1531 rtn = SCSI_MLQUEUE_HOST_BUSY; 1532 1533 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1534 "queuecommand : request rejected\n")); 1535 } 1536 1537 return rtn; 1538 done: 1539 cmd->scsi_done(cmd); 1540 return 0; 1541 } 1542 1543 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1544 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1545 { 1546 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1547 sizeof(struct scatterlist); 1548 } 1549 1550 static blk_status_t scsi_mq_prep_fn(struct request *req) 1551 { 1552 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1553 struct scsi_device *sdev = req->q->queuedata; 1554 struct Scsi_Host *shost = sdev->host; 1555 struct scatterlist *sg; 1556 1557 scsi_init_command(sdev, cmd); 1558 1559 cmd->request = req; 1560 cmd->tag = req->tag; 1561 cmd->prot_op = SCSI_PROT_NORMAL; 1562 1563 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1564 cmd->sdb.table.sgl = sg; 1565 1566 if (scsi_host_get_prot(shost)) { 1567 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1568 1569 cmd->prot_sdb->table.sgl = 1570 (struct scatterlist *)(cmd->prot_sdb + 1); 1571 } 1572 1573 blk_mq_start_request(req); 1574 1575 return scsi_setup_cmnd(sdev, req); 1576 } 1577 1578 static void scsi_mq_done(struct scsi_cmnd *cmd) 1579 { 1580 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1581 return; 1582 trace_scsi_dispatch_cmd_done(cmd); 1583 1584 /* 1585 * If the block layer didn't complete the request due to a timeout 1586 * injection, scsi must clear its internal completed state so that the 1587 * timeout handler will see it needs to escalate its own error 1588 * recovery. 1589 */ 1590 if (unlikely(!blk_mq_complete_request(cmd->request))) 1591 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1592 } 1593 1594 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1595 { 1596 struct request_queue *q = hctx->queue; 1597 struct scsi_device *sdev = q->queuedata; 1598 1599 atomic_dec(&sdev->device_busy); 1600 } 1601 1602 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1603 { 1604 struct request_queue *q = hctx->queue; 1605 struct scsi_device *sdev = q->queuedata; 1606 1607 if (scsi_dev_queue_ready(q, sdev)) 1608 return true; 1609 1610 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1611 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1612 return false; 1613 } 1614 1615 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1616 const struct blk_mq_queue_data *bd) 1617 { 1618 struct request *req = bd->rq; 1619 struct request_queue *q = req->q; 1620 struct scsi_device *sdev = q->queuedata; 1621 struct Scsi_Host *shost = sdev->host; 1622 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1623 blk_status_t ret; 1624 int reason; 1625 1626 /* 1627 * If the device is not in running state we will reject some or all 1628 * commands. 1629 */ 1630 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1631 ret = scsi_prep_state_check(sdev, req); 1632 if (ret != BLK_STS_OK) 1633 goto out_put_budget; 1634 } 1635 1636 ret = BLK_STS_RESOURCE; 1637 if (!scsi_target_queue_ready(shost, sdev)) 1638 goto out_put_budget; 1639 if (!scsi_host_queue_ready(q, shost, sdev)) 1640 goto out_dec_target_busy; 1641 1642 if (!(req->rq_flags & RQF_DONTPREP)) { 1643 ret = scsi_mq_prep_fn(req); 1644 if (ret != BLK_STS_OK) 1645 goto out_dec_host_busy; 1646 req->rq_flags |= RQF_DONTPREP; 1647 } else { 1648 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1649 blk_mq_start_request(req); 1650 } 1651 1652 if (sdev->simple_tags) 1653 cmd->flags |= SCMD_TAGGED; 1654 else 1655 cmd->flags &= ~SCMD_TAGGED; 1656 1657 scsi_init_cmd_errh(cmd); 1658 cmd->scsi_done = scsi_mq_done; 1659 1660 reason = scsi_dispatch_cmd(cmd); 1661 if (reason) { 1662 scsi_set_blocked(cmd, reason); 1663 ret = BLK_STS_RESOURCE; 1664 goto out_dec_host_busy; 1665 } 1666 1667 return BLK_STS_OK; 1668 1669 out_dec_host_busy: 1670 scsi_dec_host_busy(shost); 1671 out_dec_target_busy: 1672 if (scsi_target(sdev)->can_queue > 0) 1673 atomic_dec(&scsi_target(sdev)->target_busy); 1674 out_put_budget: 1675 scsi_mq_put_budget(hctx); 1676 switch (ret) { 1677 case BLK_STS_OK: 1678 break; 1679 case BLK_STS_RESOURCE: 1680 if (atomic_read(&sdev->device_busy) || 1681 scsi_device_blocked(sdev)) 1682 ret = BLK_STS_DEV_RESOURCE; 1683 break; 1684 default: 1685 if (unlikely(!scsi_device_online(sdev))) 1686 scsi_req(req)->result = DID_NO_CONNECT << 16; 1687 else 1688 scsi_req(req)->result = DID_ERROR << 16; 1689 /* 1690 * Make sure to release all allocated resources when 1691 * we hit an error, as we will never see this command 1692 * again. 1693 */ 1694 if (req->rq_flags & RQF_DONTPREP) 1695 scsi_mq_uninit_cmd(cmd); 1696 break; 1697 } 1698 return ret; 1699 } 1700 1701 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1702 bool reserved) 1703 { 1704 if (reserved) 1705 return BLK_EH_RESET_TIMER; 1706 return scsi_times_out(req); 1707 } 1708 1709 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1710 unsigned int hctx_idx, unsigned int numa_node) 1711 { 1712 struct Scsi_Host *shost = set->driver_data; 1713 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1714 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1715 struct scatterlist *sg; 1716 1717 if (unchecked_isa_dma) 1718 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1719 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1720 GFP_KERNEL, numa_node); 1721 if (!cmd->sense_buffer) 1722 return -ENOMEM; 1723 cmd->req.sense = cmd->sense_buffer; 1724 1725 if (scsi_host_get_prot(shost)) { 1726 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1727 shost->hostt->cmd_size; 1728 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 1729 } 1730 1731 return 0; 1732 } 1733 1734 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1735 unsigned int hctx_idx) 1736 { 1737 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1738 1739 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1740 cmd->sense_buffer); 1741 } 1742 1743 static int scsi_map_queues(struct blk_mq_tag_set *set) 1744 { 1745 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1746 1747 if (shost->hostt->map_queues) 1748 return shost->hostt->map_queues(shost); 1749 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1750 } 1751 1752 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1753 { 1754 struct device *dev = shost->dma_dev; 1755 1756 /* 1757 * this limit is imposed by hardware restrictions 1758 */ 1759 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1760 SG_MAX_SEGMENTS)); 1761 1762 if (scsi_host_prot_dma(shost)) { 1763 shost->sg_prot_tablesize = 1764 min_not_zero(shost->sg_prot_tablesize, 1765 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1766 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1767 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1768 } 1769 1770 blk_queue_max_hw_sectors(q, shost->max_sectors); 1771 if (shost->unchecked_isa_dma) 1772 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1773 blk_queue_segment_boundary(q, shost->dma_boundary); 1774 dma_set_seg_boundary(dev, shost->dma_boundary); 1775 1776 blk_queue_max_segment_size(q, shost->max_segment_size); 1777 dma_set_max_seg_size(dev, shost->max_segment_size); 1778 1779 /* 1780 * Set a reasonable default alignment: The larger of 32-byte (dword), 1781 * which is a common minimum for HBAs, and the minimum DMA alignment, 1782 * which is set by the platform. 1783 * 1784 * Devices that require a bigger alignment can increase it later. 1785 */ 1786 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1787 } 1788 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1789 1790 static const struct blk_mq_ops scsi_mq_ops = { 1791 .get_budget = scsi_mq_get_budget, 1792 .put_budget = scsi_mq_put_budget, 1793 .queue_rq = scsi_queue_rq, 1794 .complete = scsi_softirq_done, 1795 .timeout = scsi_timeout, 1796 #ifdef CONFIG_BLK_DEBUG_FS 1797 .show_rq = scsi_show_rq, 1798 #endif 1799 .init_request = scsi_mq_init_request, 1800 .exit_request = scsi_mq_exit_request, 1801 .initialize_rq_fn = scsi_initialize_rq, 1802 .busy = scsi_mq_lld_busy, 1803 .map_queues = scsi_map_queues, 1804 }; 1805 1806 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1807 { 1808 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1809 if (IS_ERR(sdev->request_queue)) 1810 return NULL; 1811 1812 sdev->request_queue->queuedata = sdev; 1813 __scsi_init_queue(sdev->host, sdev->request_queue); 1814 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1815 return sdev->request_queue; 1816 } 1817 1818 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1819 { 1820 unsigned int cmd_size, sgl_size; 1821 1822 sgl_size = scsi_mq_sgl_size(shost); 1823 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1824 if (scsi_host_get_prot(shost)) 1825 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 1826 1827 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1828 shost->tag_set.ops = &scsi_mq_ops; 1829 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1830 shost->tag_set.queue_depth = shost->can_queue; 1831 shost->tag_set.cmd_size = cmd_size; 1832 shost->tag_set.numa_node = NUMA_NO_NODE; 1833 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1834 shost->tag_set.flags |= 1835 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1836 shost->tag_set.driver_data = shost; 1837 1838 return blk_mq_alloc_tag_set(&shost->tag_set); 1839 } 1840 1841 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1842 { 1843 blk_mq_free_tag_set(&shost->tag_set); 1844 } 1845 1846 /** 1847 * scsi_device_from_queue - return sdev associated with a request_queue 1848 * @q: The request queue to return the sdev from 1849 * 1850 * Return the sdev associated with a request queue or NULL if the 1851 * request_queue does not reference a SCSI device. 1852 */ 1853 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1854 { 1855 struct scsi_device *sdev = NULL; 1856 1857 if (q->mq_ops == &scsi_mq_ops) 1858 sdev = q->queuedata; 1859 if (!sdev || !get_device(&sdev->sdev_gendev)) 1860 sdev = NULL; 1861 1862 return sdev; 1863 } 1864 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1865 1866 /* 1867 * Function: scsi_block_requests() 1868 * 1869 * Purpose: Utility function used by low-level drivers to prevent further 1870 * commands from being queued to the device. 1871 * 1872 * Arguments: shost - Host in question 1873 * 1874 * Returns: Nothing 1875 * 1876 * Lock status: No locks are assumed held. 1877 * 1878 * Notes: There is no timer nor any other means by which the requests 1879 * get unblocked other than the low-level driver calling 1880 * scsi_unblock_requests(). 1881 */ 1882 void scsi_block_requests(struct Scsi_Host *shost) 1883 { 1884 shost->host_self_blocked = 1; 1885 } 1886 EXPORT_SYMBOL(scsi_block_requests); 1887 1888 /* 1889 * Function: scsi_unblock_requests() 1890 * 1891 * Purpose: Utility function used by low-level drivers to allow further 1892 * commands from being queued to the device. 1893 * 1894 * Arguments: shost - Host in question 1895 * 1896 * Returns: Nothing 1897 * 1898 * Lock status: No locks are assumed held. 1899 * 1900 * Notes: There is no timer nor any other means by which the requests 1901 * get unblocked other than the low-level driver calling 1902 * scsi_unblock_requests(). 1903 * 1904 * This is done as an API function so that changes to the 1905 * internals of the scsi mid-layer won't require wholesale 1906 * changes to drivers that use this feature. 1907 */ 1908 void scsi_unblock_requests(struct Scsi_Host *shost) 1909 { 1910 shost->host_self_blocked = 0; 1911 scsi_run_host_queues(shost); 1912 } 1913 EXPORT_SYMBOL(scsi_unblock_requests); 1914 1915 int __init scsi_init_queue(void) 1916 { 1917 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1918 sizeof(struct scsi_data_buffer), 1919 0, 0, NULL); 1920 if (!scsi_sdb_cache) { 1921 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1922 return -ENOMEM; 1923 } 1924 1925 return 0; 1926 } 1927 1928 void scsi_exit_queue(void) 1929 { 1930 kmem_cache_destroy(scsi_sense_cache); 1931 kmem_cache_destroy(scsi_sense_isadma_cache); 1932 kmem_cache_destroy(scsi_sdb_cache); 1933 } 1934 1935 /** 1936 * scsi_mode_select - issue a mode select 1937 * @sdev: SCSI device to be queried 1938 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1939 * @sp: Save page bit (0 == don't save, 1 == save) 1940 * @modepage: mode page being requested 1941 * @buffer: request buffer (may not be smaller than eight bytes) 1942 * @len: length of request buffer. 1943 * @timeout: command timeout 1944 * @retries: number of retries before failing 1945 * @data: returns a structure abstracting the mode header data 1946 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1947 * must be SCSI_SENSE_BUFFERSIZE big. 1948 * 1949 * Returns zero if successful; negative error number or scsi 1950 * status on error 1951 * 1952 */ 1953 int 1954 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1955 unsigned char *buffer, int len, int timeout, int retries, 1956 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1957 { 1958 unsigned char cmd[10]; 1959 unsigned char *real_buffer; 1960 int ret; 1961 1962 memset(cmd, 0, sizeof(cmd)); 1963 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1964 1965 if (sdev->use_10_for_ms) { 1966 if (len > 65535) 1967 return -EINVAL; 1968 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1969 if (!real_buffer) 1970 return -ENOMEM; 1971 memcpy(real_buffer + 8, buffer, len); 1972 len += 8; 1973 real_buffer[0] = 0; 1974 real_buffer[1] = 0; 1975 real_buffer[2] = data->medium_type; 1976 real_buffer[3] = data->device_specific; 1977 real_buffer[4] = data->longlba ? 0x01 : 0; 1978 real_buffer[5] = 0; 1979 real_buffer[6] = data->block_descriptor_length >> 8; 1980 real_buffer[7] = data->block_descriptor_length; 1981 1982 cmd[0] = MODE_SELECT_10; 1983 cmd[7] = len >> 8; 1984 cmd[8] = len; 1985 } else { 1986 if (len > 255 || data->block_descriptor_length > 255 || 1987 data->longlba) 1988 return -EINVAL; 1989 1990 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1991 if (!real_buffer) 1992 return -ENOMEM; 1993 memcpy(real_buffer + 4, buffer, len); 1994 len += 4; 1995 real_buffer[0] = 0; 1996 real_buffer[1] = data->medium_type; 1997 real_buffer[2] = data->device_specific; 1998 real_buffer[3] = data->block_descriptor_length; 1999 2000 2001 cmd[0] = MODE_SELECT; 2002 cmd[4] = len; 2003 } 2004 2005 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2006 sshdr, timeout, retries, NULL); 2007 kfree(real_buffer); 2008 return ret; 2009 } 2010 EXPORT_SYMBOL_GPL(scsi_mode_select); 2011 2012 /** 2013 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2014 * @sdev: SCSI device to be queried 2015 * @dbd: set if mode sense will allow block descriptors to be returned 2016 * @modepage: mode page being requested 2017 * @buffer: request buffer (may not be smaller than eight bytes) 2018 * @len: length of request buffer. 2019 * @timeout: command timeout 2020 * @retries: number of retries before failing 2021 * @data: returns a structure abstracting the mode header data 2022 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2023 * must be SCSI_SENSE_BUFFERSIZE big. 2024 * 2025 * Returns zero if unsuccessful, or the header offset (either 4 2026 * or 8 depending on whether a six or ten byte command was 2027 * issued) if successful. 2028 */ 2029 int 2030 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2031 unsigned char *buffer, int len, int timeout, int retries, 2032 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2033 { 2034 unsigned char cmd[12]; 2035 int use_10_for_ms; 2036 int header_length; 2037 int result, retry_count = retries; 2038 struct scsi_sense_hdr my_sshdr; 2039 2040 memset(data, 0, sizeof(*data)); 2041 memset(&cmd[0], 0, 12); 2042 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2043 cmd[2] = modepage; 2044 2045 /* caller might not be interested in sense, but we need it */ 2046 if (!sshdr) 2047 sshdr = &my_sshdr; 2048 2049 retry: 2050 use_10_for_ms = sdev->use_10_for_ms; 2051 2052 if (use_10_for_ms) { 2053 if (len < 8) 2054 len = 8; 2055 2056 cmd[0] = MODE_SENSE_10; 2057 cmd[8] = len; 2058 header_length = 8; 2059 } else { 2060 if (len < 4) 2061 len = 4; 2062 2063 cmd[0] = MODE_SENSE; 2064 cmd[4] = len; 2065 header_length = 4; 2066 } 2067 2068 memset(buffer, 0, len); 2069 2070 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2071 sshdr, timeout, retries, NULL); 2072 2073 /* This code looks awful: what it's doing is making sure an 2074 * ILLEGAL REQUEST sense return identifies the actual command 2075 * byte as the problem. MODE_SENSE commands can return 2076 * ILLEGAL REQUEST if the code page isn't supported */ 2077 2078 if (use_10_for_ms && !scsi_status_is_good(result) && 2079 driver_byte(result) == DRIVER_SENSE) { 2080 if (scsi_sense_valid(sshdr)) { 2081 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2082 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2083 /* 2084 * Invalid command operation code 2085 */ 2086 sdev->use_10_for_ms = 0; 2087 goto retry; 2088 } 2089 } 2090 } 2091 2092 if(scsi_status_is_good(result)) { 2093 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2094 (modepage == 6 || modepage == 8))) { 2095 /* Initio breakage? */ 2096 header_length = 0; 2097 data->length = 13; 2098 data->medium_type = 0; 2099 data->device_specific = 0; 2100 data->longlba = 0; 2101 data->block_descriptor_length = 0; 2102 } else if(use_10_for_ms) { 2103 data->length = buffer[0]*256 + buffer[1] + 2; 2104 data->medium_type = buffer[2]; 2105 data->device_specific = buffer[3]; 2106 data->longlba = buffer[4] & 0x01; 2107 data->block_descriptor_length = buffer[6]*256 2108 + buffer[7]; 2109 } else { 2110 data->length = buffer[0] + 1; 2111 data->medium_type = buffer[1]; 2112 data->device_specific = buffer[2]; 2113 data->block_descriptor_length = buffer[3]; 2114 } 2115 data->header_length = header_length; 2116 } else if ((status_byte(result) == CHECK_CONDITION) && 2117 scsi_sense_valid(sshdr) && 2118 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2119 retry_count--; 2120 goto retry; 2121 } 2122 2123 return result; 2124 } 2125 EXPORT_SYMBOL(scsi_mode_sense); 2126 2127 /** 2128 * scsi_test_unit_ready - test if unit is ready 2129 * @sdev: scsi device to change the state of. 2130 * @timeout: command timeout 2131 * @retries: number of retries before failing 2132 * @sshdr: outpout pointer for decoded sense information. 2133 * 2134 * Returns zero if unsuccessful or an error if TUR failed. For 2135 * removable media, UNIT_ATTENTION sets ->changed flag. 2136 **/ 2137 int 2138 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2139 struct scsi_sense_hdr *sshdr) 2140 { 2141 char cmd[] = { 2142 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2143 }; 2144 int result; 2145 2146 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2147 do { 2148 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2149 timeout, 1, NULL); 2150 if (sdev->removable && scsi_sense_valid(sshdr) && 2151 sshdr->sense_key == UNIT_ATTENTION) 2152 sdev->changed = 1; 2153 } while (scsi_sense_valid(sshdr) && 2154 sshdr->sense_key == UNIT_ATTENTION && --retries); 2155 2156 return result; 2157 } 2158 EXPORT_SYMBOL(scsi_test_unit_ready); 2159 2160 /** 2161 * scsi_device_set_state - Take the given device through the device state model. 2162 * @sdev: scsi device to change the state of. 2163 * @state: state to change to. 2164 * 2165 * Returns zero if successful or an error if the requested 2166 * transition is illegal. 2167 */ 2168 int 2169 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2170 { 2171 enum scsi_device_state oldstate = sdev->sdev_state; 2172 2173 if (state == oldstate) 2174 return 0; 2175 2176 switch (state) { 2177 case SDEV_CREATED: 2178 switch (oldstate) { 2179 case SDEV_CREATED_BLOCK: 2180 break; 2181 default: 2182 goto illegal; 2183 } 2184 break; 2185 2186 case SDEV_RUNNING: 2187 switch (oldstate) { 2188 case SDEV_CREATED: 2189 case SDEV_OFFLINE: 2190 case SDEV_TRANSPORT_OFFLINE: 2191 case SDEV_QUIESCE: 2192 case SDEV_BLOCK: 2193 break; 2194 default: 2195 goto illegal; 2196 } 2197 break; 2198 2199 case SDEV_QUIESCE: 2200 switch (oldstate) { 2201 case SDEV_RUNNING: 2202 case SDEV_OFFLINE: 2203 case SDEV_TRANSPORT_OFFLINE: 2204 break; 2205 default: 2206 goto illegal; 2207 } 2208 break; 2209 2210 case SDEV_OFFLINE: 2211 case SDEV_TRANSPORT_OFFLINE: 2212 switch (oldstate) { 2213 case SDEV_CREATED: 2214 case SDEV_RUNNING: 2215 case SDEV_QUIESCE: 2216 case SDEV_BLOCK: 2217 break; 2218 default: 2219 goto illegal; 2220 } 2221 break; 2222 2223 case SDEV_BLOCK: 2224 switch (oldstate) { 2225 case SDEV_RUNNING: 2226 case SDEV_CREATED_BLOCK: 2227 case SDEV_OFFLINE: 2228 break; 2229 default: 2230 goto illegal; 2231 } 2232 break; 2233 2234 case SDEV_CREATED_BLOCK: 2235 switch (oldstate) { 2236 case SDEV_CREATED: 2237 break; 2238 default: 2239 goto illegal; 2240 } 2241 break; 2242 2243 case SDEV_CANCEL: 2244 switch (oldstate) { 2245 case SDEV_CREATED: 2246 case SDEV_RUNNING: 2247 case SDEV_QUIESCE: 2248 case SDEV_OFFLINE: 2249 case SDEV_TRANSPORT_OFFLINE: 2250 break; 2251 default: 2252 goto illegal; 2253 } 2254 break; 2255 2256 case SDEV_DEL: 2257 switch (oldstate) { 2258 case SDEV_CREATED: 2259 case SDEV_RUNNING: 2260 case SDEV_OFFLINE: 2261 case SDEV_TRANSPORT_OFFLINE: 2262 case SDEV_CANCEL: 2263 case SDEV_BLOCK: 2264 case SDEV_CREATED_BLOCK: 2265 break; 2266 default: 2267 goto illegal; 2268 } 2269 break; 2270 2271 } 2272 sdev->sdev_state = state; 2273 return 0; 2274 2275 illegal: 2276 SCSI_LOG_ERROR_RECOVERY(1, 2277 sdev_printk(KERN_ERR, sdev, 2278 "Illegal state transition %s->%s", 2279 scsi_device_state_name(oldstate), 2280 scsi_device_state_name(state)) 2281 ); 2282 return -EINVAL; 2283 } 2284 EXPORT_SYMBOL(scsi_device_set_state); 2285 2286 /** 2287 * sdev_evt_emit - emit a single SCSI device uevent 2288 * @sdev: associated SCSI device 2289 * @evt: event to emit 2290 * 2291 * Send a single uevent (scsi_event) to the associated scsi_device. 2292 */ 2293 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2294 { 2295 int idx = 0; 2296 char *envp[3]; 2297 2298 switch (evt->evt_type) { 2299 case SDEV_EVT_MEDIA_CHANGE: 2300 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2301 break; 2302 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2303 scsi_rescan_device(&sdev->sdev_gendev); 2304 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2305 break; 2306 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2307 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2308 break; 2309 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2310 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2311 break; 2312 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2313 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2314 break; 2315 case SDEV_EVT_LUN_CHANGE_REPORTED: 2316 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2317 break; 2318 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2319 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2320 break; 2321 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2322 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2323 break; 2324 default: 2325 /* do nothing */ 2326 break; 2327 } 2328 2329 envp[idx++] = NULL; 2330 2331 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2332 } 2333 2334 /** 2335 * sdev_evt_thread - send a uevent for each scsi event 2336 * @work: work struct for scsi_device 2337 * 2338 * Dispatch queued events to their associated scsi_device kobjects 2339 * as uevents. 2340 */ 2341 void scsi_evt_thread(struct work_struct *work) 2342 { 2343 struct scsi_device *sdev; 2344 enum scsi_device_event evt_type; 2345 LIST_HEAD(event_list); 2346 2347 sdev = container_of(work, struct scsi_device, event_work); 2348 2349 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2350 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2351 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2352 2353 while (1) { 2354 struct scsi_event *evt; 2355 struct list_head *this, *tmp; 2356 unsigned long flags; 2357 2358 spin_lock_irqsave(&sdev->list_lock, flags); 2359 list_splice_init(&sdev->event_list, &event_list); 2360 spin_unlock_irqrestore(&sdev->list_lock, flags); 2361 2362 if (list_empty(&event_list)) 2363 break; 2364 2365 list_for_each_safe(this, tmp, &event_list) { 2366 evt = list_entry(this, struct scsi_event, node); 2367 list_del(&evt->node); 2368 scsi_evt_emit(sdev, evt); 2369 kfree(evt); 2370 } 2371 } 2372 } 2373 2374 /** 2375 * sdev_evt_send - send asserted event to uevent thread 2376 * @sdev: scsi_device event occurred on 2377 * @evt: event to send 2378 * 2379 * Assert scsi device event asynchronously. 2380 */ 2381 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2382 { 2383 unsigned long flags; 2384 2385 #if 0 2386 /* FIXME: currently this check eliminates all media change events 2387 * for polled devices. Need to update to discriminate between AN 2388 * and polled events */ 2389 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2390 kfree(evt); 2391 return; 2392 } 2393 #endif 2394 2395 spin_lock_irqsave(&sdev->list_lock, flags); 2396 list_add_tail(&evt->node, &sdev->event_list); 2397 schedule_work(&sdev->event_work); 2398 spin_unlock_irqrestore(&sdev->list_lock, flags); 2399 } 2400 EXPORT_SYMBOL_GPL(sdev_evt_send); 2401 2402 /** 2403 * sdev_evt_alloc - allocate a new scsi event 2404 * @evt_type: type of event to allocate 2405 * @gfpflags: GFP flags for allocation 2406 * 2407 * Allocates and returns a new scsi_event. 2408 */ 2409 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2410 gfp_t gfpflags) 2411 { 2412 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2413 if (!evt) 2414 return NULL; 2415 2416 evt->evt_type = evt_type; 2417 INIT_LIST_HEAD(&evt->node); 2418 2419 /* evt_type-specific initialization, if any */ 2420 switch (evt_type) { 2421 case SDEV_EVT_MEDIA_CHANGE: 2422 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2423 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2424 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2425 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2426 case SDEV_EVT_LUN_CHANGE_REPORTED: 2427 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2428 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2429 default: 2430 /* do nothing */ 2431 break; 2432 } 2433 2434 return evt; 2435 } 2436 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2437 2438 /** 2439 * sdev_evt_send_simple - send asserted event to uevent thread 2440 * @sdev: scsi_device event occurred on 2441 * @evt_type: type of event to send 2442 * @gfpflags: GFP flags for allocation 2443 * 2444 * Assert scsi device event asynchronously, given an event type. 2445 */ 2446 void sdev_evt_send_simple(struct scsi_device *sdev, 2447 enum scsi_device_event evt_type, gfp_t gfpflags) 2448 { 2449 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2450 if (!evt) { 2451 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2452 evt_type); 2453 return; 2454 } 2455 2456 sdev_evt_send(sdev, evt); 2457 } 2458 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2459 2460 /** 2461 * scsi_device_quiesce - Block user issued commands. 2462 * @sdev: scsi device to quiesce. 2463 * 2464 * This works by trying to transition to the SDEV_QUIESCE state 2465 * (which must be a legal transition). When the device is in this 2466 * state, only special requests will be accepted, all others will 2467 * be deferred. Since special requests may also be requeued requests, 2468 * a successful return doesn't guarantee the device will be 2469 * totally quiescent. 2470 * 2471 * Must be called with user context, may sleep. 2472 * 2473 * Returns zero if unsuccessful or an error if not. 2474 */ 2475 int 2476 scsi_device_quiesce(struct scsi_device *sdev) 2477 { 2478 struct request_queue *q = sdev->request_queue; 2479 int err; 2480 2481 /* 2482 * It is allowed to call scsi_device_quiesce() multiple times from 2483 * the same context but concurrent scsi_device_quiesce() calls are 2484 * not allowed. 2485 */ 2486 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2487 2488 if (sdev->quiesced_by == current) 2489 return 0; 2490 2491 blk_set_pm_only(q); 2492 2493 blk_mq_freeze_queue(q); 2494 /* 2495 * Ensure that the effect of blk_set_pm_only() will be visible 2496 * for percpu_ref_tryget() callers that occur after the queue 2497 * unfreeze even if the queue was already frozen before this function 2498 * was called. See also https://lwn.net/Articles/573497/. 2499 */ 2500 synchronize_rcu(); 2501 blk_mq_unfreeze_queue(q); 2502 2503 mutex_lock(&sdev->state_mutex); 2504 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2505 if (err == 0) 2506 sdev->quiesced_by = current; 2507 else 2508 blk_clear_pm_only(q); 2509 mutex_unlock(&sdev->state_mutex); 2510 2511 return err; 2512 } 2513 EXPORT_SYMBOL(scsi_device_quiesce); 2514 2515 /** 2516 * scsi_device_resume - Restart user issued commands to a quiesced device. 2517 * @sdev: scsi device to resume. 2518 * 2519 * Moves the device from quiesced back to running and restarts the 2520 * queues. 2521 * 2522 * Must be called with user context, may sleep. 2523 */ 2524 void scsi_device_resume(struct scsi_device *sdev) 2525 { 2526 /* check if the device state was mutated prior to resume, and if 2527 * so assume the state is being managed elsewhere (for example 2528 * device deleted during suspend) 2529 */ 2530 mutex_lock(&sdev->state_mutex); 2531 if (sdev->quiesced_by) { 2532 sdev->quiesced_by = NULL; 2533 blk_clear_pm_only(sdev->request_queue); 2534 } 2535 if (sdev->sdev_state == SDEV_QUIESCE) 2536 scsi_device_set_state(sdev, SDEV_RUNNING); 2537 mutex_unlock(&sdev->state_mutex); 2538 } 2539 EXPORT_SYMBOL(scsi_device_resume); 2540 2541 static void 2542 device_quiesce_fn(struct scsi_device *sdev, void *data) 2543 { 2544 scsi_device_quiesce(sdev); 2545 } 2546 2547 void 2548 scsi_target_quiesce(struct scsi_target *starget) 2549 { 2550 starget_for_each_device(starget, NULL, device_quiesce_fn); 2551 } 2552 EXPORT_SYMBOL(scsi_target_quiesce); 2553 2554 static void 2555 device_resume_fn(struct scsi_device *sdev, void *data) 2556 { 2557 scsi_device_resume(sdev); 2558 } 2559 2560 void 2561 scsi_target_resume(struct scsi_target *starget) 2562 { 2563 starget_for_each_device(starget, NULL, device_resume_fn); 2564 } 2565 EXPORT_SYMBOL(scsi_target_resume); 2566 2567 /** 2568 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2569 * @sdev: device to block 2570 * 2571 * Pause SCSI command processing on the specified device. Does not sleep. 2572 * 2573 * Returns zero if successful or a negative error code upon failure. 2574 * 2575 * Notes: 2576 * This routine transitions the device to the SDEV_BLOCK state (which must be 2577 * a legal transition). When the device is in this state, command processing 2578 * is paused until the device leaves the SDEV_BLOCK state. See also 2579 * scsi_internal_device_unblock_nowait(). 2580 */ 2581 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2582 { 2583 struct request_queue *q = sdev->request_queue; 2584 int err = 0; 2585 2586 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2587 if (err) { 2588 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2589 2590 if (err) 2591 return err; 2592 } 2593 2594 /* 2595 * The device has transitioned to SDEV_BLOCK. Stop the 2596 * block layer from calling the midlayer with this device's 2597 * request queue. 2598 */ 2599 blk_mq_quiesce_queue_nowait(q); 2600 return 0; 2601 } 2602 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2603 2604 /** 2605 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2606 * @sdev: device to block 2607 * 2608 * Pause SCSI command processing on the specified device and wait until all 2609 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2610 * 2611 * Returns zero if successful or a negative error code upon failure. 2612 * 2613 * Note: 2614 * This routine transitions the device to the SDEV_BLOCK state (which must be 2615 * a legal transition). When the device is in this state, command processing 2616 * is paused until the device leaves the SDEV_BLOCK state. See also 2617 * scsi_internal_device_unblock(). 2618 * 2619 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2620 * scsi_internal_device_block() has blocked a SCSI device and also 2621 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2622 */ 2623 static int scsi_internal_device_block(struct scsi_device *sdev) 2624 { 2625 struct request_queue *q = sdev->request_queue; 2626 int err; 2627 2628 mutex_lock(&sdev->state_mutex); 2629 err = scsi_internal_device_block_nowait(sdev); 2630 if (err == 0) 2631 blk_mq_quiesce_queue(q); 2632 mutex_unlock(&sdev->state_mutex); 2633 2634 return err; 2635 } 2636 2637 void scsi_start_queue(struct scsi_device *sdev) 2638 { 2639 struct request_queue *q = sdev->request_queue; 2640 2641 blk_mq_unquiesce_queue(q); 2642 } 2643 2644 /** 2645 * scsi_internal_device_unblock_nowait - resume a device after a block request 2646 * @sdev: device to resume 2647 * @new_state: state to set the device to after unblocking 2648 * 2649 * Restart the device queue for a previously suspended SCSI device. Does not 2650 * sleep. 2651 * 2652 * Returns zero if successful or a negative error code upon failure. 2653 * 2654 * Notes: 2655 * This routine transitions the device to the SDEV_RUNNING state or to one of 2656 * the offline states (which must be a legal transition) allowing the midlayer 2657 * to goose the queue for this device. 2658 */ 2659 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2660 enum scsi_device_state new_state) 2661 { 2662 /* 2663 * Try to transition the scsi device to SDEV_RUNNING or one of the 2664 * offlined states and goose the device queue if successful. 2665 */ 2666 switch (sdev->sdev_state) { 2667 case SDEV_BLOCK: 2668 case SDEV_TRANSPORT_OFFLINE: 2669 sdev->sdev_state = new_state; 2670 break; 2671 case SDEV_CREATED_BLOCK: 2672 if (new_state == SDEV_TRANSPORT_OFFLINE || 2673 new_state == SDEV_OFFLINE) 2674 sdev->sdev_state = new_state; 2675 else 2676 sdev->sdev_state = SDEV_CREATED; 2677 break; 2678 case SDEV_CANCEL: 2679 case SDEV_OFFLINE: 2680 break; 2681 default: 2682 return -EINVAL; 2683 } 2684 scsi_start_queue(sdev); 2685 2686 return 0; 2687 } 2688 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2689 2690 /** 2691 * scsi_internal_device_unblock - resume a device after a block request 2692 * @sdev: device to resume 2693 * @new_state: state to set the device to after unblocking 2694 * 2695 * Restart the device queue for a previously suspended SCSI device. May sleep. 2696 * 2697 * Returns zero if successful or a negative error code upon failure. 2698 * 2699 * Notes: 2700 * This routine transitions the device to the SDEV_RUNNING state or to one of 2701 * the offline states (which must be a legal transition) allowing the midlayer 2702 * to goose the queue for this device. 2703 */ 2704 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2705 enum scsi_device_state new_state) 2706 { 2707 int ret; 2708 2709 mutex_lock(&sdev->state_mutex); 2710 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2711 mutex_unlock(&sdev->state_mutex); 2712 2713 return ret; 2714 } 2715 2716 static void 2717 device_block(struct scsi_device *sdev, void *data) 2718 { 2719 scsi_internal_device_block(sdev); 2720 } 2721 2722 static int 2723 target_block(struct device *dev, void *data) 2724 { 2725 if (scsi_is_target_device(dev)) 2726 starget_for_each_device(to_scsi_target(dev), NULL, 2727 device_block); 2728 return 0; 2729 } 2730 2731 void 2732 scsi_target_block(struct device *dev) 2733 { 2734 if (scsi_is_target_device(dev)) 2735 starget_for_each_device(to_scsi_target(dev), NULL, 2736 device_block); 2737 else 2738 device_for_each_child(dev, NULL, target_block); 2739 } 2740 EXPORT_SYMBOL_GPL(scsi_target_block); 2741 2742 static void 2743 device_unblock(struct scsi_device *sdev, void *data) 2744 { 2745 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2746 } 2747 2748 static int 2749 target_unblock(struct device *dev, void *data) 2750 { 2751 if (scsi_is_target_device(dev)) 2752 starget_for_each_device(to_scsi_target(dev), data, 2753 device_unblock); 2754 return 0; 2755 } 2756 2757 void 2758 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2759 { 2760 if (scsi_is_target_device(dev)) 2761 starget_for_each_device(to_scsi_target(dev), &new_state, 2762 device_unblock); 2763 else 2764 device_for_each_child(dev, &new_state, target_unblock); 2765 } 2766 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2767 2768 /** 2769 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2770 * @sgl: scatter-gather list 2771 * @sg_count: number of segments in sg 2772 * @offset: offset in bytes into sg, on return offset into the mapped area 2773 * @len: bytes to map, on return number of bytes mapped 2774 * 2775 * Returns virtual address of the start of the mapped page 2776 */ 2777 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2778 size_t *offset, size_t *len) 2779 { 2780 int i; 2781 size_t sg_len = 0, len_complete = 0; 2782 struct scatterlist *sg; 2783 struct page *page; 2784 2785 WARN_ON(!irqs_disabled()); 2786 2787 for_each_sg(sgl, sg, sg_count, i) { 2788 len_complete = sg_len; /* Complete sg-entries */ 2789 sg_len += sg->length; 2790 if (sg_len > *offset) 2791 break; 2792 } 2793 2794 if (unlikely(i == sg_count)) { 2795 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2796 "elements %d\n", 2797 __func__, sg_len, *offset, sg_count); 2798 WARN_ON(1); 2799 return NULL; 2800 } 2801 2802 /* Offset starting from the beginning of first page in this sg-entry */ 2803 *offset = *offset - len_complete + sg->offset; 2804 2805 /* Assumption: contiguous pages can be accessed as "page + i" */ 2806 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2807 *offset &= ~PAGE_MASK; 2808 2809 /* Bytes in this sg-entry from *offset to the end of the page */ 2810 sg_len = PAGE_SIZE - *offset; 2811 if (*len > sg_len) 2812 *len = sg_len; 2813 2814 return kmap_atomic(page); 2815 } 2816 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2817 2818 /** 2819 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2820 * @virt: virtual address to be unmapped 2821 */ 2822 void scsi_kunmap_atomic_sg(void *virt) 2823 { 2824 kunmap_atomic(virt); 2825 } 2826 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2827 2828 void sdev_disable_disk_events(struct scsi_device *sdev) 2829 { 2830 atomic_inc(&sdev->disk_events_disable_depth); 2831 } 2832 EXPORT_SYMBOL(sdev_disable_disk_events); 2833 2834 void sdev_enable_disk_events(struct scsi_device *sdev) 2835 { 2836 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2837 return; 2838 atomic_dec(&sdev->disk_events_disable_depth); 2839 } 2840 EXPORT_SYMBOL(sdev_enable_disk_events); 2841 2842 /** 2843 * scsi_vpd_lun_id - return a unique device identification 2844 * @sdev: SCSI device 2845 * @id: buffer for the identification 2846 * @id_len: length of the buffer 2847 * 2848 * Copies a unique device identification into @id based 2849 * on the information in the VPD page 0x83 of the device. 2850 * The string will be formatted as a SCSI name string. 2851 * 2852 * Returns the length of the identification or error on failure. 2853 * If the identifier is longer than the supplied buffer the actual 2854 * identifier length is returned and the buffer is not zero-padded. 2855 */ 2856 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2857 { 2858 u8 cur_id_type = 0xff; 2859 u8 cur_id_size = 0; 2860 const unsigned char *d, *cur_id_str; 2861 const struct scsi_vpd *vpd_pg83; 2862 int id_size = -EINVAL; 2863 2864 rcu_read_lock(); 2865 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2866 if (!vpd_pg83) { 2867 rcu_read_unlock(); 2868 return -ENXIO; 2869 } 2870 2871 /* 2872 * Look for the correct descriptor. 2873 * Order of preference for lun descriptor: 2874 * - SCSI name string 2875 * - NAA IEEE Registered Extended 2876 * - EUI-64 based 16-byte 2877 * - EUI-64 based 12-byte 2878 * - NAA IEEE Registered 2879 * - NAA IEEE Extended 2880 * - T10 Vendor ID 2881 * as longer descriptors reduce the likelyhood 2882 * of identification clashes. 2883 */ 2884 2885 /* The id string must be at least 20 bytes + terminating NULL byte */ 2886 if (id_len < 21) { 2887 rcu_read_unlock(); 2888 return -EINVAL; 2889 } 2890 2891 memset(id, 0, id_len); 2892 d = vpd_pg83->data + 4; 2893 while (d < vpd_pg83->data + vpd_pg83->len) { 2894 /* Skip designators not referring to the LUN */ 2895 if ((d[1] & 0x30) != 0x00) 2896 goto next_desig; 2897 2898 switch (d[1] & 0xf) { 2899 case 0x1: 2900 /* T10 Vendor ID */ 2901 if (cur_id_size > d[3]) 2902 break; 2903 /* Prefer anything */ 2904 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2905 break; 2906 cur_id_size = d[3]; 2907 if (cur_id_size + 4 > id_len) 2908 cur_id_size = id_len - 4; 2909 cur_id_str = d + 4; 2910 cur_id_type = d[1] & 0xf; 2911 id_size = snprintf(id, id_len, "t10.%*pE", 2912 cur_id_size, cur_id_str); 2913 break; 2914 case 0x2: 2915 /* EUI-64 */ 2916 if (cur_id_size > d[3]) 2917 break; 2918 /* Prefer NAA IEEE Registered Extended */ 2919 if (cur_id_type == 0x3 && 2920 cur_id_size == d[3]) 2921 break; 2922 cur_id_size = d[3]; 2923 cur_id_str = d + 4; 2924 cur_id_type = d[1] & 0xf; 2925 switch (cur_id_size) { 2926 case 8: 2927 id_size = snprintf(id, id_len, 2928 "eui.%8phN", 2929 cur_id_str); 2930 break; 2931 case 12: 2932 id_size = snprintf(id, id_len, 2933 "eui.%12phN", 2934 cur_id_str); 2935 break; 2936 case 16: 2937 id_size = snprintf(id, id_len, 2938 "eui.%16phN", 2939 cur_id_str); 2940 break; 2941 default: 2942 cur_id_size = 0; 2943 break; 2944 } 2945 break; 2946 case 0x3: 2947 /* NAA */ 2948 if (cur_id_size > d[3]) 2949 break; 2950 cur_id_size = d[3]; 2951 cur_id_str = d + 4; 2952 cur_id_type = d[1] & 0xf; 2953 switch (cur_id_size) { 2954 case 8: 2955 id_size = snprintf(id, id_len, 2956 "naa.%8phN", 2957 cur_id_str); 2958 break; 2959 case 16: 2960 id_size = snprintf(id, id_len, 2961 "naa.%16phN", 2962 cur_id_str); 2963 break; 2964 default: 2965 cur_id_size = 0; 2966 break; 2967 } 2968 break; 2969 case 0x8: 2970 /* SCSI name string */ 2971 if (cur_id_size + 4 > d[3]) 2972 break; 2973 /* Prefer others for truncated descriptor */ 2974 if (cur_id_size && d[3] > id_len) 2975 break; 2976 cur_id_size = id_size = d[3]; 2977 cur_id_str = d + 4; 2978 cur_id_type = d[1] & 0xf; 2979 if (cur_id_size >= id_len) 2980 cur_id_size = id_len - 1; 2981 memcpy(id, cur_id_str, cur_id_size); 2982 /* Decrease priority for truncated descriptor */ 2983 if (cur_id_size != id_size) 2984 cur_id_size = 6; 2985 break; 2986 default: 2987 break; 2988 } 2989 next_desig: 2990 d += d[3] + 4; 2991 } 2992 rcu_read_unlock(); 2993 2994 return id_size; 2995 } 2996 EXPORT_SYMBOL(scsi_vpd_lun_id); 2997 2998 /* 2999 * scsi_vpd_tpg_id - return a target port group identifier 3000 * @sdev: SCSI device 3001 * 3002 * Returns the Target Port Group identifier from the information 3003 * froom VPD page 0x83 of the device. 3004 * 3005 * Returns the identifier or error on failure. 3006 */ 3007 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3008 { 3009 const unsigned char *d; 3010 const struct scsi_vpd *vpd_pg83; 3011 int group_id = -EAGAIN, rel_port = -1; 3012 3013 rcu_read_lock(); 3014 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3015 if (!vpd_pg83) { 3016 rcu_read_unlock(); 3017 return -ENXIO; 3018 } 3019 3020 d = vpd_pg83->data + 4; 3021 while (d < vpd_pg83->data + vpd_pg83->len) { 3022 switch (d[1] & 0xf) { 3023 case 0x4: 3024 /* Relative target port */ 3025 rel_port = get_unaligned_be16(&d[6]); 3026 break; 3027 case 0x5: 3028 /* Target port group */ 3029 group_id = get_unaligned_be16(&d[6]); 3030 break; 3031 default: 3032 break; 3033 } 3034 d += d[3] + 4; 3035 } 3036 rcu_read_unlock(); 3037 3038 if (group_id >= 0 && rel_id && rel_port != -1) 3039 *rel_id = rel_port; 3040 3041 return group_id; 3042 } 3043 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3044