xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision cb1aaebe)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	if (cmd->request->rq_flags & RQF_DONTPREP) {
145 		cmd->request->rq_flags &= ~RQF_DONTPREP;
146 		scsi_mq_uninit_cmd(cmd);
147 	} else {
148 		WARN_ON_ONCE(true);
149 	}
150 	blk_mq_requeue_request(cmd->request, true);
151 }
152 
153 /**
154  * __scsi_queue_insert - private queue insertion
155  * @cmd: The SCSI command being requeued
156  * @reason:  The reason for the requeue
157  * @unbusy: Whether the queue should be unbusied
158  *
159  * This is a private queue insertion.  The public interface
160  * scsi_queue_insert() always assumes the queue should be unbusied
161  * because it's always called before the completion.  This function is
162  * for a requeue after completion, which should only occur in this
163  * file.
164  */
165 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
166 {
167 	struct scsi_device *device = cmd->device;
168 
169 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
170 		"Inserting command %p into mlqueue\n", cmd));
171 
172 	scsi_set_blocked(cmd, reason);
173 
174 	/*
175 	 * Decrement the counters, since these commands are no longer
176 	 * active on the host/device.
177 	 */
178 	if (unbusy)
179 		scsi_device_unbusy(device);
180 
181 	/*
182 	 * Requeue this command.  It will go before all other commands
183 	 * that are already in the queue. Schedule requeue work under
184 	 * lock such that the kblockd_schedule_work() call happens
185 	 * before blk_cleanup_queue() finishes.
186 	 */
187 	cmd->result = 0;
188 
189 	blk_mq_requeue_request(cmd->request, true);
190 }
191 
192 /*
193  * Function:    scsi_queue_insert()
194  *
195  * Purpose:     Insert a command in the midlevel queue.
196  *
197  * Arguments:   cmd    - command that we are adding to queue.
198  *              reason - why we are inserting command to queue.
199  *
200  * Lock status: Assumed that lock is not held upon entry.
201  *
202  * Returns:     Nothing.
203  *
204  * Notes:       We do this for one of two cases.  Either the host is busy
205  *              and it cannot accept any more commands for the time being,
206  *              or the device returned QUEUE_FULL and can accept no more
207  *              commands.
208  * Notes:       This could be called either from an interrupt context or a
209  *              normal process context.
210  */
211 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
212 {
213 	__scsi_queue_insert(cmd, reason, true);
214 }
215 
216 
217 /**
218  * __scsi_execute - insert request and wait for the result
219  * @sdev:	scsi device
220  * @cmd:	scsi command
221  * @data_direction: data direction
222  * @buffer:	data buffer
223  * @bufflen:	len of buffer
224  * @sense:	optional sense buffer
225  * @sshdr:	optional decoded sense header
226  * @timeout:	request timeout in seconds
227  * @retries:	number of times to retry request
228  * @flags:	flags for ->cmd_flags
229  * @rq_flags:	flags for ->rq_flags
230  * @resid:	optional residual length
231  *
232  * Returns the scsi_cmnd result field if a command was executed, or a negative
233  * Linux error code if we didn't get that far.
234  */
235 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
236 		 int data_direction, void *buffer, unsigned bufflen,
237 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
238 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
239 		 int *resid)
240 {
241 	struct request *req;
242 	struct scsi_request *rq;
243 	int ret = DRIVER_ERROR << 24;
244 
245 	req = blk_get_request(sdev->request_queue,
246 			data_direction == DMA_TO_DEVICE ?
247 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
248 	if (IS_ERR(req))
249 		return ret;
250 	rq = scsi_req(req);
251 
252 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
253 					buffer, bufflen, GFP_NOIO))
254 		goto out;
255 
256 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
257 	memcpy(rq->cmd, cmd, rq->cmd_len);
258 	rq->retries = retries;
259 	req->timeout = timeout;
260 	req->cmd_flags |= flags;
261 	req->rq_flags |= rq_flags | RQF_QUIET;
262 
263 	/*
264 	 * head injection *required* here otherwise quiesce won't work
265 	 */
266 	blk_execute_rq(req->q, NULL, req, 1);
267 
268 	/*
269 	 * Some devices (USB mass-storage in particular) may transfer
270 	 * garbage data together with a residue indicating that the data
271 	 * is invalid.  Prevent the garbage from being misinterpreted
272 	 * and prevent security leaks by zeroing out the excess data.
273 	 */
274 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
275 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
276 
277 	if (resid)
278 		*resid = rq->resid_len;
279 	if (sense && rq->sense_len)
280 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
281 	if (sshdr)
282 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
283 	ret = rq->result;
284  out:
285 	blk_put_request(req);
286 
287 	return ret;
288 }
289 EXPORT_SYMBOL(__scsi_execute);
290 
291 /*
292  * Function:    scsi_init_cmd_errh()
293  *
294  * Purpose:     Initialize cmd fields related to error handling.
295  *
296  * Arguments:   cmd	- command that is ready to be queued.
297  *
298  * Notes:       This function has the job of initializing a number of
299  *              fields related to error handling.   Typically this will
300  *              be called once for each command, as required.
301  */
302 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
303 {
304 	scsi_set_resid(cmd, 0);
305 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
306 	if (cmd->cmd_len == 0)
307 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
308 }
309 
310 /*
311  * Decrement the host_busy counter and wake up the error handler if necessary.
312  * Avoid as follows that the error handler is not woken up if shost->host_busy
313  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
314  * with an RCU read lock in this function to ensure that this function in its
315  * entirety either finishes before scsi_eh_scmd_add() increases the
316  * host_failed counter or that it notices the shost state change made by
317  * scsi_eh_scmd_add().
318  */
319 static void scsi_dec_host_busy(struct Scsi_Host *shost)
320 {
321 	unsigned long flags;
322 
323 	rcu_read_lock();
324 	atomic_dec(&shost->host_busy);
325 	if (unlikely(scsi_host_in_recovery(shost))) {
326 		spin_lock_irqsave(shost->host_lock, flags);
327 		if (shost->host_failed || shost->host_eh_scheduled)
328 			scsi_eh_wakeup(shost);
329 		spin_unlock_irqrestore(shost->host_lock, flags);
330 	}
331 	rcu_read_unlock();
332 }
333 
334 void scsi_device_unbusy(struct scsi_device *sdev)
335 {
336 	struct Scsi_Host *shost = sdev->host;
337 	struct scsi_target *starget = scsi_target(sdev);
338 
339 	scsi_dec_host_busy(shost);
340 
341 	if (starget->can_queue > 0)
342 		atomic_dec(&starget->target_busy);
343 
344 	atomic_dec(&sdev->device_busy);
345 }
346 
347 static void scsi_kick_queue(struct request_queue *q)
348 {
349 	blk_mq_run_hw_queues(q, false);
350 }
351 
352 /*
353  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
354  * and call blk_run_queue for all the scsi_devices on the target -
355  * including current_sdev first.
356  *
357  * Called with *no* scsi locks held.
358  */
359 static void scsi_single_lun_run(struct scsi_device *current_sdev)
360 {
361 	struct Scsi_Host *shost = current_sdev->host;
362 	struct scsi_device *sdev, *tmp;
363 	struct scsi_target *starget = scsi_target(current_sdev);
364 	unsigned long flags;
365 
366 	spin_lock_irqsave(shost->host_lock, flags);
367 	starget->starget_sdev_user = NULL;
368 	spin_unlock_irqrestore(shost->host_lock, flags);
369 
370 	/*
371 	 * Call blk_run_queue for all LUNs on the target, starting with
372 	 * current_sdev. We race with others (to set starget_sdev_user),
373 	 * but in most cases, we will be first. Ideally, each LU on the
374 	 * target would get some limited time or requests on the target.
375 	 */
376 	scsi_kick_queue(current_sdev->request_queue);
377 
378 	spin_lock_irqsave(shost->host_lock, flags);
379 	if (starget->starget_sdev_user)
380 		goto out;
381 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
382 			same_target_siblings) {
383 		if (sdev == current_sdev)
384 			continue;
385 		if (scsi_device_get(sdev))
386 			continue;
387 
388 		spin_unlock_irqrestore(shost->host_lock, flags);
389 		scsi_kick_queue(sdev->request_queue);
390 		spin_lock_irqsave(shost->host_lock, flags);
391 
392 		scsi_device_put(sdev);
393 	}
394  out:
395 	spin_unlock_irqrestore(shost->host_lock, flags);
396 }
397 
398 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
399 {
400 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
401 		return true;
402 	if (atomic_read(&sdev->device_blocked) > 0)
403 		return true;
404 	return false;
405 }
406 
407 static inline bool scsi_target_is_busy(struct scsi_target *starget)
408 {
409 	if (starget->can_queue > 0) {
410 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
411 			return true;
412 		if (atomic_read(&starget->target_blocked) > 0)
413 			return true;
414 	}
415 	return false;
416 }
417 
418 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
419 {
420 	if (shost->can_queue > 0 &&
421 	    atomic_read(&shost->host_busy) >= shost->can_queue)
422 		return true;
423 	if (atomic_read(&shost->host_blocked) > 0)
424 		return true;
425 	if (shost->host_self_blocked)
426 		return true;
427 	return false;
428 }
429 
430 static void scsi_starved_list_run(struct Scsi_Host *shost)
431 {
432 	LIST_HEAD(starved_list);
433 	struct scsi_device *sdev;
434 	unsigned long flags;
435 
436 	spin_lock_irqsave(shost->host_lock, flags);
437 	list_splice_init(&shost->starved_list, &starved_list);
438 
439 	while (!list_empty(&starved_list)) {
440 		struct request_queue *slq;
441 
442 		/*
443 		 * As long as shost is accepting commands and we have
444 		 * starved queues, call blk_run_queue. scsi_request_fn
445 		 * drops the queue_lock and can add us back to the
446 		 * starved_list.
447 		 *
448 		 * host_lock protects the starved_list and starved_entry.
449 		 * scsi_request_fn must get the host_lock before checking
450 		 * or modifying starved_list or starved_entry.
451 		 */
452 		if (scsi_host_is_busy(shost))
453 			break;
454 
455 		sdev = list_entry(starved_list.next,
456 				  struct scsi_device, starved_entry);
457 		list_del_init(&sdev->starved_entry);
458 		if (scsi_target_is_busy(scsi_target(sdev))) {
459 			list_move_tail(&sdev->starved_entry,
460 				       &shost->starved_list);
461 			continue;
462 		}
463 
464 		/*
465 		 * Once we drop the host lock, a racing scsi_remove_device()
466 		 * call may remove the sdev from the starved list and destroy
467 		 * it and the queue.  Mitigate by taking a reference to the
468 		 * queue and never touching the sdev again after we drop the
469 		 * host lock.  Note: if __scsi_remove_device() invokes
470 		 * blk_cleanup_queue() before the queue is run from this
471 		 * function then blk_run_queue() will return immediately since
472 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
473 		 */
474 		slq = sdev->request_queue;
475 		if (!blk_get_queue(slq))
476 			continue;
477 		spin_unlock_irqrestore(shost->host_lock, flags);
478 
479 		scsi_kick_queue(slq);
480 		blk_put_queue(slq);
481 
482 		spin_lock_irqsave(shost->host_lock, flags);
483 	}
484 	/* put any unprocessed entries back */
485 	list_splice(&starved_list, &shost->starved_list);
486 	spin_unlock_irqrestore(shost->host_lock, flags);
487 }
488 
489 /*
490  * Function:   scsi_run_queue()
491  *
492  * Purpose:    Select a proper request queue to serve next
493  *
494  * Arguments:  q       - last request's queue
495  *
496  * Returns:     Nothing
497  *
498  * Notes:      The previous command was completely finished, start
499  *             a new one if possible.
500  */
501 static void scsi_run_queue(struct request_queue *q)
502 {
503 	struct scsi_device *sdev = q->queuedata;
504 
505 	if (scsi_target(sdev)->single_lun)
506 		scsi_single_lun_run(sdev);
507 	if (!list_empty(&sdev->host->starved_list))
508 		scsi_starved_list_run(sdev->host);
509 
510 	blk_mq_run_hw_queues(q, false);
511 }
512 
513 void scsi_requeue_run_queue(struct work_struct *work)
514 {
515 	struct scsi_device *sdev;
516 	struct request_queue *q;
517 
518 	sdev = container_of(work, struct scsi_device, requeue_work);
519 	q = sdev->request_queue;
520 	scsi_run_queue(q);
521 }
522 
523 void scsi_run_host_queues(struct Scsi_Host *shost)
524 {
525 	struct scsi_device *sdev;
526 
527 	shost_for_each_device(sdev, shost)
528 		scsi_run_queue(sdev->request_queue);
529 }
530 
531 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
532 {
533 	if (!blk_rq_is_passthrough(cmd->request)) {
534 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
535 
536 		if (drv->uninit_command)
537 			drv->uninit_command(cmd);
538 	}
539 }
540 
541 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
542 {
543 	if (cmd->sdb.table.nents)
544 		sg_free_table_chained(&cmd->sdb.table, true);
545 	if (scsi_prot_sg_count(cmd))
546 		sg_free_table_chained(&cmd->prot_sdb->table, true);
547 }
548 
549 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
550 {
551 	scsi_mq_free_sgtables(cmd);
552 	scsi_uninit_cmd(cmd);
553 	scsi_del_cmd_from_list(cmd);
554 }
555 
556 /* Returns false when no more bytes to process, true if there are more */
557 static bool scsi_end_request(struct request *req, blk_status_t error,
558 		unsigned int bytes)
559 {
560 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
561 	struct scsi_device *sdev = cmd->device;
562 	struct request_queue *q = sdev->request_queue;
563 
564 	if (blk_update_request(req, error, bytes))
565 		return true;
566 
567 	if (blk_queue_add_random(q))
568 		add_disk_randomness(req->rq_disk);
569 
570 	if (!blk_rq_is_scsi(req)) {
571 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
572 		cmd->flags &= ~SCMD_INITIALIZED;
573 	}
574 
575 	/*
576 	 * Calling rcu_barrier() is not necessary here because the
577 	 * SCSI error handler guarantees that the function called by
578 	 * call_rcu() has been called before scsi_end_request() is
579 	 * called.
580 	 */
581 	destroy_rcu_head(&cmd->rcu);
582 
583 	/*
584 	 * In the MQ case the command gets freed by __blk_mq_end_request,
585 	 * so we have to do all cleanup that depends on it earlier.
586 	 *
587 	 * We also can't kick the queues from irq context, so we
588 	 * will have to defer it to a workqueue.
589 	 */
590 	scsi_mq_uninit_cmd(cmd);
591 
592 	/*
593 	 * queue is still alive, so grab the ref for preventing it
594 	 * from being cleaned up during running queue.
595 	 */
596 	percpu_ref_get(&q->q_usage_counter);
597 
598 	__blk_mq_end_request(req, error);
599 
600 	if (scsi_target(sdev)->single_lun ||
601 	    !list_empty(&sdev->host->starved_list))
602 		kblockd_schedule_work(&sdev->requeue_work);
603 	else
604 		blk_mq_run_hw_queues(q, true);
605 
606 	percpu_ref_put(&q->q_usage_counter);
607 	return false;
608 }
609 
610 /**
611  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
612  * @cmd:	SCSI command
613  * @result:	scsi error code
614  *
615  * Translate a SCSI result code into a blk_status_t value. May reset the host
616  * byte of @cmd->result.
617  */
618 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
619 {
620 	switch (host_byte(result)) {
621 	case DID_OK:
622 		/*
623 		 * Also check the other bytes than the status byte in result
624 		 * to handle the case when a SCSI LLD sets result to
625 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
626 		 */
627 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
628 			return BLK_STS_OK;
629 		return BLK_STS_IOERR;
630 	case DID_TRANSPORT_FAILFAST:
631 		return BLK_STS_TRANSPORT;
632 	case DID_TARGET_FAILURE:
633 		set_host_byte(cmd, DID_OK);
634 		return BLK_STS_TARGET;
635 	case DID_NEXUS_FAILURE:
636 		set_host_byte(cmd, DID_OK);
637 		return BLK_STS_NEXUS;
638 	case DID_ALLOC_FAILURE:
639 		set_host_byte(cmd, DID_OK);
640 		return BLK_STS_NOSPC;
641 	case DID_MEDIUM_ERROR:
642 		set_host_byte(cmd, DID_OK);
643 		return BLK_STS_MEDIUM;
644 	default:
645 		return BLK_STS_IOERR;
646 	}
647 }
648 
649 /* Helper for scsi_io_completion() when "reprep" action required. */
650 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
651 				      struct request_queue *q)
652 {
653 	/* A new command will be prepared and issued. */
654 	scsi_mq_requeue_cmd(cmd);
655 }
656 
657 /* Helper for scsi_io_completion() when special action required. */
658 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
659 {
660 	struct request_queue *q = cmd->device->request_queue;
661 	struct request *req = cmd->request;
662 	int level = 0;
663 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
664 	      ACTION_DELAYED_RETRY} action;
665 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
666 	struct scsi_sense_hdr sshdr;
667 	bool sense_valid;
668 	bool sense_current = true;      /* false implies "deferred sense" */
669 	blk_status_t blk_stat;
670 
671 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
672 	if (sense_valid)
673 		sense_current = !scsi_sense_is_deferred(&sshdr);
674 
675 	blk_stat = scsi_result_to_blk_status(cmd, result);
676 
677 	if (host_byte(result) == DID_RESET) {
678 		/* Third party bus reset or reset for error recovery
679 		 * reasons.  Just retry the command and see what
680 		 * happens.
681 		 */
682 		action = ACTION_RETRY;
683 	} else if (sense_valid && sense_current) {
684 		switch (sshdr.sense_key) {
685 		case UNIT_ATTENTION:
686 			if (cmd->device->removable) {
687 				/* Detected disc change.  Set a bit
688 				 * and quietly refuse further access.
689 				 */
690 				cmd->device->changed = 1;
691 				action = ACTION_FAIL;
692 			} else {
693 				/* Must have been a power glitch, or a
694 				 * bus reset.  Could not have been a
695 				 * media change, so we just retry the
696 				 * command and see what happens.
697 				 */
698 				action = ACTION_RETRY;
699 			}
700 			break;
701 		case ILLEGAL_REQUEST:
702 			/* If we had an ILLEGAL REQUEST returned, then
703 			 * we may have performed an unsupported
704 			 * command.  The only thing this should be
705 			 * would be a ten byte read where only a six
706 			 * byte read was supported.  Also, on a system
707 			 * where READ CAPACITY failed, we may have
708 			 * read past the end of the disk.
709 			 */
710 			if ((cmd->device->use_10_for_rw &&
711 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
712 			    (cmd->cmnd[0] == READ_10 ||
713 			     cmd->cmnd[0] == WRITE_10)) {
714 				/* This will issue a new 6-byte command. */
715 				cmd->device->use_10_for_rw = 0;
716 				action = ACTION_REPREP;
717 			} else if (sshdr.asc == 0x10) /* DIX */ {
718 				action = ACTION_FAIL;
719 				blk_stat = BLK_STS_PROTECTION;
720 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
721 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
722 				action = ACTION_FAIL;
723 				blk_stat = BLK_STS_TARGET;
724 			} else
725 				action = ACTION_FAIL;
726 			break;
727 		case ABORTED_COMMAND:
728 			action = ACTION_FAIL;
729 			if (sshdr.asc == 0x10) /* DIF */
730 				blk_stat = BLK_STS_PROTECTION;
731 			break;
732 		case NOT_READY:
733 			/* If the device is in the process of becoming
734 			 * ready, or has a temporary blockage, retry.
735 			 */
736 			if (sshdr.asc == 0x04) {
737 				switch (sshdr.ascq) {
738 				case 0x01: /* becoming ready */
739 				case 0x04: /* format in progress */
740 				case 0x05: /* rebuild in progress */
741 				case 0x06: /* recalculation in progress */
742 				case 0x07: /* operation in progress */
743 				case 0x08: /* Long write in progress */
744 				case 0x09: /* self test in progress */
745 				case 0x14: /* space allocation in progress */
746 				case 0x1a: /* start stop unit in progress */
747 				case 0x1b: /* sanitize in progress */
748 				case 0x1d: /* configuration in progress */
749 				case 0x24: /* depopulation in progress */
750 					action = ACTION_DELAYED_RETRY;
751 					break;
752 				default:
753 					action = ACTION_FAIL;
754 					break;
755 				}
756 			} else
757 				action = ACTION_FAIL;
758 			break;
759 		case VOLUME_OVERFLOW:
760 			/* See SSC3rXX or current. */
761 			action = ACTION_FAIL;
762 			break;
763 		default:
764 			action = ACTION_FAIL;
765 			break;
766 		}
767 	} else
768 		action = ACTION_FAIL;
769 
770 	if (action != ACTION_FAIL &&
771 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
772 		action = ACTION_FAIL;
773 
774 	switch (action) {
775 	case ACTION_FAIL:
776 		/* Give up and fail the remainder of the request */
777 		if (!(req->rq_flags & RQF_QUIET)) {
778 			static DEFINE_RATELIMIT_STATE(_rs,
779 					DEFAULT_RATELIMIT_INTERVAL,
780 					DEFAULT_RATELIMIT_BURST);
781 
782 			if (unlikely(scsi_logging_level))
783 				level =
784 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
785 						    SCSI_LOG_MLCOMPLETE_BITS);
786 
787 			/*
788 			 * if logging is enabled the failure will be printed
789 			 * in scsi_log_completion(), so avoid duplicate messages
790 			 */
791 			if (!level && __ratelimit(&_rs)) {
792 				scsi_print_result(cmd, NULL, FAILED);
793 				if (driver_byte(result) == DRIVER_SENSE)
794 					scsi_print_sense(cmd);
795 				scsi_print_command(cmd);
796 			}
797 		}
798 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
799 			return;
800 		/*FALLTHRU*/
801 	case ACTION_REPREP:
802 		scsi_io_completion_reprep(cmd, q);
803 		break;
804 	case ACTION_RETRY:
805 		/* Retry the same command immediately */
806 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
807 		break;
808 	case ACTION_DELAYED_RETRY:
809 		/* Retry the same command after a delay */
810 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
811 		break;
812 	}
813 }
814 
815 /*
816  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
817  * new result that may suppress further error checking. Also modifies
818  * *blk_statp in some cases.
819  */
820 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
821 					blk_status_t *blk_statp)
822 {
823 	bool sense_valid;
824 	bool sense_current = true;	/* false implies "deferred sense" */
825 	struct request *req = cmd->request;
826 	struct scsi_sense_hdr sshdr;
827 
828 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
829 	if (sense_valid)
830 		sense_current = !scsi_sense_is_deferred(&sshdr);
831 
832 	if (blk_rq_is_passthrough(req)) {
833 		if (sense_valid) {
834 			/*
835 			 * SG_IO wants current and deferred errors
836 			 */
837 			scsi_req(req)->sense_len =
838 				min(8 + cmd->sense_buffer[7],
839 				    SCSI_SENSE_BUFFERSIZE);
840 		}
841 		if (sense_current)
842 			*blk_statp = scsi_result_to_blk_status(cmd, result);
843 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
844 		/*
845 		 * Flush commands do not transfers any data, and thus cannot use
846 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
847 		 * This sets *blk_statp explicitly for the problem case.
848 		 */
849 		*blk_statp = scsi_result_to_blk_status(cmd, result);
850 	}
851 	/*
852 	 * Recovered errors need reporting, but they're always treated as
853 	 * success, so fiddle the result code here.  For passthrough requests
854 	 * we already took a copy of the original into sreq->result which
855 	 * is what gets returned to the user
856 	 */
857 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
858 		bool do_print = true;
859 		/*
860 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
861 		 * skip print since caller wants ATA registers. Only occurs
862 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
863 		 */
864 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
865 			do_print = false;
866 		else if (req->rq_flags & RQF_QUIET)
867 			do_print = false;
868 		if (do_print)
869 			scsi_print_sense(cmd);
870 		result = 0;
871 		/* for passthrough, *blk_statp may be set */
872 		*blk_statp = BLK_STS_OK;
873 	}
874 	/*
875 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
876 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
877 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
878 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
879 	 * intermediate statuses (both obsolete in SAM-4) as good.
880 	 */
881 	if (status_byte(result) && scsi_status_is_good(result)) {
882 		result = 0;
883 		*blk_statp = BLK_STS_OK;
884 	}
885 	return result;
886 }
887 
888 /*
889  * Function:    scsi_io_completion()
890  *
891  * Purpose:     Completion processing for block device I/O requests.
892  *
893  * Arguments:   cmd   - command that is finished.
894  *
895  * Lock status: Assumed that no lock is held upon entry.
896  *
897  * Returns:     Nothing
898  *
899  * Notes:       We will finish off the specified number of sectors.  If we
900  *		are done, the command block will be released and the queue
901  *		function will be goosed.  If we are not done then we have to
902  *		figure out what to do next:
903  *
904  *		a) We can call scsi_requeue_command().  The request
905  *		   will be unprepared and put back on the queue.  Then
906  *		   a new command will be created for it.  This should
907  *		   be used if we made forward progress, or if we want
908  *		   to switch from READ(10) to READ(6) for example.
909  *
910  *		b) We can call __scsi_queue_insert().  The request will
911  *		   be put back on the queue and retried using the same
912  *		   command as before, possibly after a delay.
913  *
914  *		c) We can call scsi_end_request() with blk_stat other than
915  *		   BLK_STS_OK, to fail the remainder of the request.
916  */
917 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
918 {
919 	int result = cmd->result;
920 	struct request_queue *q = cmd->device->request_queue;
921 	struct request *req = cmd->request;
922 	blk_status_t blk_stat = BLK_STS_OK;
923 
924 	if (unlikely(result))	/* a nz result may or may not be an error */
925 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
926 
927 	if (unlikely(blk_rq_is_passthrough(req))) {
928 		/*
929 		 * scsi_result_to_blk_status may have reset the host_byte
930 		 */
931 		scsi_req(req)->result = cmd->result;
932 	}
933 
934 	/*
935 	 * Next deal with any sectors which we were able to correctly
936 	 * handle.
937 	 */
938 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
939 		"%u sectors total, %d bytes done.\n",
940 		blk_rq_sectors(req), good_bytes));
941 
942 	/*
943 	 * Next deal with any sectors which we were able to correctly
944 	 * handle. Failed, zero length commands always need to drop down
945 	 * to retry code. Fast path should return in this block.
946 	 */
947 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
948 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
949 			return; /* no bytes remaining */
950 	}
951 
952 	/* Kill remainder if no retries. */
953 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
954 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
955 			WARN_ONCE(true,
956 			    "Bytes remaining after failed, no-retry command");
957 		return;
958 	}
959 
960 	/*
961 	 * If there had been no error, but we have leftover bytes in the
962 	 * requeues just queue the command up again.
963 	 */
964 	if (likely(result == 0))
965 		scsi_io_completion_reprep(cmd, q);
966 	else
967 		scsi_io_completion_action(cmd, result);
968 }
969 
970 static blk_status_t scsi_init_sgtable(struct request *req,
971 		struct scsi_data_buffer *sdb)
972 {
973 	int count;
974 
975 	/*
976 	 * If sg table allocation fails, requeue request later.
977 	 */
978 	if (unlikely(sg_alloc_table_chained(&sdb->table,
979 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
980 		return BLK_STS_RESOURCE;
981 
982 	/*
983 	 * Next, walk the list, and fill in the addresses and sizes of
984 	 * each segment.
985 	 */
986 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
987 	BUG_ON(count > sdb->table.nents);
988 	sdb->table.nents = count;
989 	sdb->length = blk_rq_payload_bytes(req);
990 	return BLK_STS_OK;
991 }
992 
993 /*
994  * Function:    scsi_init_io()
995  *
996  * Purpose:     SCSI I/O initialize function.
997  *
998  * Arguments:   cmd   - Command descriptor we wish to initialize
999  *
1000  * Returns:     BLK_STS_OK on success
1001  *		BLK_STS_RESOURCE if the failure is retryable
1002  *		BLK_STS_IOERR if the failure is fatal
1003  */
1004 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1005 {
1006 	struct request *rq = cmd->request;
1007 	blk_status_t ret;
1008 
1009 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1010 		return BLK_STS_IOERR;
1011 
1012 	ret = scsi_init_sgtable(rq, &cmd->sdb);
1013 	if (ret)
1014 		return ret;
1015 
1016 	if (blk_integrity_rq(rq)) {
1017 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1018 		int ivecs, count;
1019 
1020 		if (WARN_ON_ONCE(!prot_sdb)) {
1021 			/*
1022 			 * This can happen if someone (e.g. multipath)
1023 			 * queues a command to a device on an adapter
1024 			 * that does not support DIX.
1025 			 */
1026 			ret = BLK_STS_IOERR;
1027 			goto out_free_sgtables;
1028 		}
1029 
1030 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1031 
1032 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1033 				prot_sdb->table.sgl)) {
1034 			ret = BLK_STS_RESOURCE;
1035 			goto out_free_sgtables;
1036 		}
1037 
1038 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1039 						prot_sdb->table.sgl);
1040 		BUG_ON(count > ivecs);
1041 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1042 
1043 		cmd->prot_sdb = prot_sdb;
1044 		cmd->prot_sdb->table.nents = count;
1045 	}
1046 
1047 	return BLK_STS_OK;
1048 out_free_sgtables:
1049 	scsi_mq_free_sgtables(cmd);
1050 	return ret;
1051 }
1052 EXPORT_SYMBOL(scsi_init_io);
1053 
1054 /**
1055  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1056  * @rq: Request associated with the SCSI command to be initialized.
1057  *
1058  * This function initializes the members of struct scsi_cmnd that must be
1059  * initialized before request processing starts and that won't be
1060  * reinitialized if a SCSI command is requeued.
1061  *
1062  * Called from inside blk_get_request() for pass-through requests and from
1063  * inside scsi_init_command() for filesystem requests.
1064  */
1065 static void scsi_initialize_rq(struct request *rq)
1066 {
1067 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1068 
1069 	scsi_req_init(&cmd->req);
1070 	init_rcu_head(&cmd->rcu);
1071 	cmd->jiffies_at_alloc = jiffies;
1072 	cmd->retries = 0;
1073 }
1074 
1075 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1076 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1077 {
1078 	struct scsi_device *sdev = cmd->device;
1079 	struct Scsi_Host *shost = sdev->host;
1080 	unsigned long flags;
1081 
1082 	if (shost->use_cmd_list) {
1083 		spin_lock_irqsave(&sdev->list_lock, flags);
1084 		list_add_tail(&cmd->list, &sdev->cmd_list);
1085 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1086 	}
1087 }
1088 
1089 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1090 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1091 {
1092 	struct scsi_device *sdev = cmd->device;
1093 	struct Scsi_Host *shost = sdev->host;
1094 	unsigned long flags;
1095 
1096 	if (shost->use_cmd_list) {
1097 		spin_lock_irqsave(&sdev->list_lock, flags);
1098 		BUG_ON(list_empty(&cmd->list));
1099 		list_del_init(&cmd->list);
1100 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1101 	}
1102 }
1103 
1104 /* Called after a request has been started. */
1105 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1106 {
1107 	void *buf = cmd->sense_buffer;
1108 	void *prot = cmd->prot_sdb;
1109 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1110 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1111 	unsigned long jiffies_at_alloc;
1112 	int retries;
1113 
1114 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1115 		flags |= SCMD_INITIALIZED;
1116 		scsi_initialize_rq(rq);
1117 	}
1118 
1119 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1120 	retries = cmd->retries;
1121 	/* zero out the cmd, except for the embedded scsi_request */
1122 	memset((char *)cmd + sizeof(cmd->req), 0,
1123 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1124 
1125 	cmd->device = dev;
1126 	cmd->sense_buffer = buf;
1127 	cmd->prot_sdb = prot;
1128 	cmd->flags = flags;
1129 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1130 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1131 	cmd->retries = retries;
1132 
1133 	scsi_add_cmd_to_list(cmd);
1134 }
1135 
1136 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1137 		struct request *req)
1138 {
1139 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1140 
1141 	/*
1142 	 * Passthrough requests may transfer data, in which case they must
1143 	 * a bio attached to them.  Or they might contain a SCSI command
1144 	 * that does not transfer data, in which case they may optionally
1145 	 * submit a request without an attached bio.
1146 	 */
1147 	if (req->bio) {
1148 		blk_status_t ret = scsi_init_io(cmd);
1149 		if (unlikely(ret != BLK_STS_OK))
1150 			return ret;
1151 	} else {
1152 		BUG_ON(blk_rq_bytes(req));
1153 
1154 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1155 	}
1156 
1157 	cmd->cmd_len = scsi_req(req)->cmd_len;
1158 	cmd->cmnd = scsi_req(req)->cmd;
1159 	cmd->transfersize = blk_rq_bytes(req);
1160 	cmd->allowed = scsi_req(req)->retries;
1161 	return BLK_STS_OK;
1162 }
1163 
1164 /*
1165  * Setup a normal block command.  These are simple request from filesystems
1166  * that still need to be translated to SCSI CDBs from the ULD.
1167  */
1168 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1169 		struct request *req)
1170 {
1171 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1172 
1173 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1174 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1175 		if (ret != BLK_STS_OK)
1176 			return ret;
1177 	}
1178 
1179 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1180 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1181 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1182 }
1183 
1184 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1185 		struct request *req)
1186 {
1187 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1188 
1189 	if (!blk_rq_bytes(req))
1190 		cmd->sc_data_direction = DMA_NONE;
1191 	else if (rq_data_dir(req) == WRITE)
1192 		cmd->sc_data_direction = DMA_TO_DEVICE;
1193 	else
1194 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1195 
1196 	if (blk_rq_is_scsi(req))
1197 		return scsi_setup_scsi_cmnd(sdev, req);
1198 	else
1199 		return scsi_setup_fs_cmnd(sdev, req);
1200 }
1201 
1202 static blk_status_t
1203 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 	switch (sdev->sdev_state) {
1206 	case SDEV_OFFLINE:
1207 	case SDEV_TRANSPORT_OFFLINE:
1208 		/*
1209 		 * If the device is offline we refuse to process any
1210 		 * commands.  The device must be brought online
1211 		 * before trying any recovery commands.
1212 		 */
1213 		sdev_printk(KERN_ERR, sdev,
1214 			    "rejecting I/O to offline device\n");
1215 		return BLK_STS_IOERR;
1216 	case SDEV_DEL:
1217 		/*
1218 		 * If the device is fully deleted, we refuse to
1219 		 * process any commands as well.
1220 		 */
1221 		sdev_printk(KERN_ERR, sdev,
1222 			    "rejecting I/O to dead device\n");
1223 		return BLK_STS_IOERR;
1224 	case SDEV_BLOCK:
1225 	case SDEV_CREATED_BLOCK:
1226 		return BLK_STS_RESOURCE;
1227 	case SDEV_QUIESCE:
1228 		/*
1229 		 * If the devices is blocked we defer normal commands.
1230 		 */
1231 		if (req && !(req->rq_flags & RQF_PREEMPT))
1232 			return BLK_STS_RESOURCE;
1233 		return BLK_STS_OK;
1234 	default:
1235 		/*
1236 		 * For any other not fully online state we only allow
1237 		 * special commands.  In particular any user initiated
1238 		 * command is not allowed.
1239 		 */
1240 		if (req && !(req->rq_flags & RQF_PREEMPT))
1241 			return BLK_STS_IOERR;
1242 		return BLK_STS_OK;
1243 	}
1244 }
1245 
1246 /*
1247  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1248  * return 0.
1249  *
1250  * Called with the queue_lock held.
1251  */
1252 static inline int scsi_dev_queue_ready(struct request_queue *q,
1253 				  struct scsi_device *sdev)
1254 {
1255 	unsigned int busy;
1256 
1257 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1258 	if (atomic_read(&sdev->device_blocked)) {
1259 		if (busy)
1260 			goto out_dec;
1261 
1262 		/*
1263 		 * unblock after device_blocked iterates to zero
1264 		 */
1265 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1266 			goto out_dec;
1267 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1268 				   "unblocking device at zero depth\n"));
1269 	}
1270 
1271 	if (busy >= sdev->queue_depth)
1272 		goto out_dec;
1273 
1274 	return 1;
1275 out_dec:
1276 	atomic_dec(&sdev->device_busy);
1277 	return 0;
1278 }
1279 
1280 /*
1281  * scsi_target_queue_ready: checks if there we can send commands to target
1282  * @sdev: scsi device on starget to check.
1283  */
1284 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1285 					   struct scsi_device *sdev)
1286 {
1287 	struct scsi_target *starget = scsi_target(sdev);
1288 	unsigned int busy;
1289 
1290 	if (starget->single_lun) {
1291 		spin_lock_irq(shost->host_lock);
1292 		if (starget->starget_sdev_user &&
1293 		    starget->starget_sdev_user != sdev) {
1294 			spin_unlock_irq(shost->host_lock);
1295 			return 0;
1296 		}
1297 		starget->starget_sdev_user = sdev;
1298 		spin_unlock_irq(shost->host_lock);
1299 	}
1300 
1301 	if (starget->can_queue <= 0)
1302 		return 1;
1303 
1304 	busy = atomic_inc_return(&starget->target_busy) - 1;
1305 	if (atomic_read(&starget->target_blocked) > 0) {
1306 		if (busy)
1307 			goto starved;
1308 
1309 		/*
1310 		 * unblock after target_blocked iterates to zero
1311 		 */
1312 		if (atomic_dec_return(&starget->target_blocked) > 0)
1313 			goto out_dec;
1314 
1315 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1316 				 "unblocking target at zero depth\n"));
1317 	}
1318 
1319 	if (busy >= starget->can_queue)
1320 		goto starved;
1321 
1322 	return 1;
1323 
1324 starved:
1325 	spin_lock_irq(shost->host_lock);
1326 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1327 	spin_unlock_irq(shost->host_lock);
1328 out_dec:
1329 	if (starget->can_queue > 0)
1330 		atomic_dec(&starget->target_busy);
1331 	return 0;
1332 }
1333 
1334 /*
1335  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1336  * return 0. We must end up running the queue again whenever 0 is
1337  * returned, else IO can hang.
1338  */
1339 static inline int scsi_host_queue_ready(struct request_queue *q,
1340 				   struct Scsi_Host *shost,
1341 				   struct scsi_device *sdev)
1342 {
1343 	unsigned int busy;
1344 
1345 	if (scsi_host_in_recovery(shost))
1346 		return 0;
1347 
1348 	busy = atomic_inc_return(&shost->host_busy) - 1;
1349 	if (atomic_read(&shost->host_blocked) > 0) {
1350 		if (busy)
1351 			goto starved;
1352 
1353 		/*
1354 		 * unblock after host_blocked iterates to zero
1355 		 */
1356 		if (atomic_dec_return(&shost->host_blocked) > 0)
1357 			goto out_dec;
1358 
1359 		SCSI_LOG_MLQUEUE(3,
1360 			shost_printk(KERN_INFO, shost,
1361 				     "unblocking host at zero depth\n"));
1362 	}
1363 
1364 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1365 		goto starved;
1366 	if (shost->host_self_blocked)
1367 		goto starved;
1368 
1369 	/* We're OK to process the command, so we can't be starved */
1370 	if (!list_empty(&sdev->starved_entry)) {
1371 		spin_lock_irq(shost->host_lock);
1372 		if (!list_empty(&sdev->starved_entry))
1373 			list_del_init(&sdev->starved_entry);
1374 		spin_unlock_irq(shost->host_lock);
1375 	}
1376 
1377 	return 1;
1378 
1379 starved:
1380 	spin_lock_irq(shost->host_lock);
1381 	if (list_empty(&sdev->starved_entry))
1382 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1383 	spin_unlock_irq(shost->host_lock);
1384 out_dec:
1385 	scsi_dec_host_busy(shost);
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Busy state exporting function for request stacking drivers.
1391  *
1392  * For efficiency, no lock is taken to check the busy state of
1393  * shost/starget/sdev, since the returned value is not guaranteed and
1394  * may be changed after request stacking drivers call the function,
1395  * regardless of taking lock or not.
1396  *
1397  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1398  * needs to return 'not busy'. Otherwise, request stacking drivers
1399  * may hold requests forever.
1400  */
1401 static bool scsi_mq_lld_busy(struct request_queue *q)
1402 {
1403 	struct scsi_device *sdev = q->queuedata;
1404 	struct Scsi_Host *shost;
1405 
1406 	if (blk_queue_dying(q))
1407 		return false;
1408 
1409 	shost = sdev->host;
1410 
1411 	/*
1412 	 * Ignore host/starget busy state.
1413 	 * Since block layer does not have a concept of fairness across
1414 	 * multiple queues, congestion of host/starget needs to be handled
1415 	 * in SCSI layer.
1416 	 */
1417 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1418 		return true;
1419 
1420 	return false;
1421 }
1422 
1423 static void scsi_softirq_done(struct request *rq)
1424 {
1425 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1426 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1427 	int disposition;
1428 
1429 	INIT_LIST_HEAD(&cmd->eh_entry);
1430 
1431 	atomic_inc(&cmd->device->iodone_cnt);
1432 	if (cmd->result)
1433 		atomic_inc(&cmd->device->ioerr_cnt);
1434 
1435 	disposition = scsi_decide_disposition(cmd);
1436 	if (disposition != SUCCESS &&
1437 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1438 		sdev_printk(KERN_ERR, cmd->device,
1439 			    "timing out command, waited %lus\n",
1440 			    wait_for/HZ);
1441 		disposition = SUCCESS;
1442 	}
1443 
1444 	scsi_log_completion(cmd, disposition);
1445 
1446 	switch (disposition) {
1447 		case SUCCESS:
1448 			scsi_finish_command(cmd);
1449 			break;
1450 		case NEEDS_RETRY:
1451 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1452 			break;
1453 		case ADD_TO_MLQUEUE:
1454 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1455 			break;
1456 		default:
1457 			scsi_eh_scmd_add(cmd);
1458 			break;
1459 	}
1460 }
1461 
1462 /**
1463  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1464  * @cmd: command block we are dispatching.
1465  *
1466  * Return: nonzero return request was rejected and device's queue needs to be
1467  * plugged.
1468  */
1469 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1470 {
1471 	struct Scsi_Host *host = cmd->device->host;
1472 	int rtn = 0;
1473 
1474 	atomic_inc(&cmd->device->iorequest_cnt);
1475 
1476 	/* check if the device is still usable */
1477 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1478 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1479 		 * returns an immediate error upwards, and signals
1480 		 * that the device is no longer present */
1481 		cmd->result = DID_NO_CONNECT << 16;
1482 		goto done;
1483 	}
1484 
1485 	/* Check to see if the scsi lld made this device blocked. */
1486 	if (unlikely(scsi_device_blocked(cmd->device))) {
1487 		/*
1488 		 * in blocked state, the command is just put back on
1489 		 * the device queue.  The suspend state has already
1490 		 * blocked the queue so future requests should not
1491 		 * occur until the device transitions out of the
1492 		 * suspend state.
1493 		 */
1494 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1495 			"queuecommand : device blocked\n"));
1496 		return SCSI_MLQUEUE_DEVICE_BUSY;
1497 	}
1498 
1499 	/* Store the LUN value in cmnd, if needed. */
1500 	if (cmd->device->lun_in_cdb)
1501 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1502 			       (cmd->device->lun << 5 & 0xe0);
1503 
1504 	scsi_log_send(cmd);
1505 
1506 	/*
1507 	 * Before we queue this command, check if the command
1508 	 * length exceeds what the host adapter can handle.
1509 	 */
1510 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1511 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512 			       "queuecommand : command too long. "
1513 			       "cdb_size=%d host->max_cmd_len=%d\n",
1514 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1515 		cmd->result = (DID_ABORT << 16);
1516 		goto done;
1517 	}
1518 
1519 	if (unlikely(host->shost_state == SHOST_DEL)) {
1520 		cmd->result = (DID_NO_CONNECT << 16);
1521 		goto done;
1522 
1523 	}
1524 
1525 	trace_scsi_dispatch_cmd_start(cmd);
1526 	rtn = host->hostt->queuecommand(host, cmd);
1527 	if (rtn) {
1528 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1529 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1530 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1531 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1532 
1533 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1534 			"queuecommand : request rejected\n"));
1535 	}
1536 
1537 	return rtn;
1538  done:
1539 	cmd->scsi_done(cmd);
1540 	return 0;
1541 }
1542 
1543 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1544 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1545 {
1546 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1547 		sizeof(struct scatterlist);
1548 }
1549 
1550 static blk_status_t scsi_mq_prep_fn(struct request *req)
1551 {
1552 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1553 	struct scsi_device *sdev = req->q->queuedata;
1554 	struct Scsi_Host *shost = sdev->host;
1555 	struct scatterlist *sg;
1556 
1557 	scsi_init_command(sdev, cmd);
1558 
1559 	cmd->request = req;
1560 	cmd->tag = req->tag;
1561 	cmd->prot_op = SCSI_PROT_NORMAL;
1562 
1563 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1564 	cmd->sdb.table.sgl = sg;
1565 
1566 	if (scsi_host_get_prot(shost)) {
1567 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1568 
1569 		cmd->prot_sdb->table.sgl =
1570 			(struct scatterlist *)(cmd->prot_sdb + 1);
1571 	}
1572 
1573 	blk_mq_start_request(req);
1574 
1575 	return scsi_setup_cmnd(sdev, req);
1576 }
1577 
1578 static void scsi_mq_done(struct scsi_cmnd *cmd)
1579 {
1580 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1581 		return;
1582 	trace_scsi_dispatch_cmd_done(cmd);
1583 
1584 	/*
1585 	 * If the block layer didn't complete the request due to a timeout
1586 	 * injection, scsi must clear its internal completed state so that the
1587 	 * timeout handler will see it needs to escalate its own error
1588 	 * recovery.
1589 	 */
1590 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1591 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1592 }
1593 
1594 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1595 {
1596 	struct request_queue *q = hctx->queue;
1597 	struct scsi_device *sdev = q->queuedata;
1598 
1599 	atomic_dec(&sdev->device_busy);
1600 }
1601 
1602 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1603 {
1604 	struct request_queue *q = hctx->queue;
1605 	struct scsi_device *sdev = q->queuedata;
1606 
1607 	if (scsi_dev_queue_ready(q, sdev))
1608 		return true;
1609 
1610 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1611 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1612 	return false;
1613 }
1614 
1615 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1616 			 const struct blk_mq_queue_data *bd)
1617 {
1618 	struct request *req = bd->rq;
1619 	struct request_queue *q = req->q;
1620 	struct scsi_device *sdev = q->queuedata;
1621 	struct Scsi_Host *shost = sdev->host;
1622 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1623 	blk_status_t ret;
1624 	int reason;
1625 
1626 	/*
1627 	 * If the device is not in running state we will reject some or all
1628 	 * commands.
1629 	 */
1630 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1631 		ret = scsi_prep_state_check(sdev, req);
1632 		if (ret != BLK_STS_OK)
1633 			goto out_put_budget;
1634 	}
1635 
1636 	ret = BLK_STS_RESOURCE;
1637 	if (!scsi_target_queue_ready(shost, sdev))
1638 		goto out_put_budget;
1639 	if (!scsi_host_queue_ready(q, shost, sdev))
1640 		goto out_dec_target_busy;
1641 
1642 	if (!(req->rq_flags & RQF_DONTPREP)) {
1643 		ret = scsi_mq_prep_fn(req);
1644 		if (ret != BLK_STS_OK)
1645 			goto out_dec_host_busy;
1646 		req->rq_flags |= RQF_DONTPREP;
1647 	} else {
1648 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1649 		blk_mq_start_request(req);
1650 	}
1651 
1652 	if (sdev->simple_tags)
1653 		cmd->flags |= SCMD_TAGGED;
1654 	else
1655 		cmd->flags &= ~SCMD_TAGGED;
1656 
1657 	scsi_init_cmd_errh(cmd);
1658 	cmd->scsi_done = scsi_mq_done;
1659 
1660 	reason = scsi_dispatch_cmd(cmd);
1661 	if (reason) {
1662 		scsi_set_blocked(cmd, reason);
1663 		ret = BLK_STS_RESOURCE;
1664 		goto out_dec_host_busy;
1665 	}
1666 
1667 	return BLK_STS_OK;
1668 
1669 out_dec_host_busy:
1670 	scsi_dec_host_busy(shost);
1671 out_dec_target_busy:
1672 	if (scsi_target(sdev)->can_queue > 0)
1673 		atomic_dec(&scsi_target(sdev)->target_busy);
1674 out_put_budget:
1675 	scsi_mq_put_budget(hctx);
1676 	switch (ret) {
1677 	case BLK_STS_OK:
1678 		break;
1679 	case BLK_STS_RESOURCE:
1680 		if (atomic_read(&sdev->device_busy) ||
1681 		    scsi_device_blocked(sdev))
1682 			ret = BLK_STS_DEV_RESOURCE;
1683 		break;
1684 	default:
1685 		if (unlikely(!scsi_device_online(sdev)))
1686 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1687 		else
1688 			scsi_req(req)->result = DID_ERROR << 16;
1689 		/*
1690 		 * Make sure to release all allocated resources when
1691 		 * we hit an error, as we will never see this command
1692 		 * again.
1693 		 */
1694 		if (req->rq_flags & RQF_DONTPREP)
1695 			scsi_mq_uninit_cmd(cmd);
1696 		break;
1697 	}
1698 	return ret;
1699 }
1700 
1701 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1702 		bool reserved)
1703 {
1704 	if (reserved)
1705 		return BLK_EH_RESET_TIMER;
1706 	return scsi_times_out(req);
1707 }
1708 
1709 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1710 				unsigned int hctx_idx, unsigned int numa_node)
1711 {
1712 	struct Scsi_Host *shost = set->driver_data;
1713 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1714 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1715 	struct scatterlist *sg;
1716 
1717 	if (unchecked_isa_dma)
1718 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1719 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1720 						    GFP_KERNEL, numa_node);
1721 	if (!cmd->sense_buffer)
1722 		return -ENOMEM;
1723 	cmd->req.sense = cmd->sense_buffer;
1724 
1725 	if (scsi_host_get_prot(shost)) {
1726 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1727 			shost->hostt->cmd_size;
1728 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1735 				 unsigned int hctx_idx)
1736 {
1737 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1738 
1739 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1740 			       cmd->sense_buffer);
1741 }
1742 
1743 static int scsi_map_queues(struct blk_mq_tag_set *set)
1744 {
1745 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1746 
1747 	if (shost->hostt->map_queues)
1748 		return shost->hostt->map_queues(shost);
1749 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1750 }
1751 
1752 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1753 {
1754 	struct device *dev = shost->dma_dev;
1755 
1756 	/*
1757 	 * this limit is imposed by hardware restrictions
1758 	 */
1759 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1760 					SG_MAX_SEGMENTS));
1761 
1762 	if (scsi_host_prot_dma(shost)) {
1763 		shost->sg_prot_tablesize =
1764 			min_not_zero(shost->sg_prot_tablesize,
1765 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1766 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1767 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1768 	}
1769 
1770 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1771 	if (shost->unchecked_isa_dma)
1772 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1773 	blk_queue_segment_boundary(q, shost->dma_boundary);
1774 	dma_set_seg_boundary(dev, shost->dma_boundary);
1775 
1776 	blk_queue_max_segment_size(q, shost->max_segment_size);
1777 	dma_set_max_seg_size(dev, shost->max_segment_size);
1778 
1779 	/*
1780 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1781 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1782 	 * which is set by the platform.
1783 	 *
1784 	 * Devices that require a bigger alignment can increase it later.
1785 	 */
1786 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1787 }
1788 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1789 
1790 static const struct blk_mq_ops scsi_mq_ops = {
1791 	.get_budget	= scsi_mq_get_budget,
1792 	.put_budget	= scsi_mq_put_budget,
1793 	.queue_rq	= scsi_queue_rq,
1794 	.complete	= scsi_softirq_done,
1795 	.timeout	= scsi_timeout,
1796 #ifdef CONFIG_BLK_DEBUG_FS
1797 	.show_rq	= scsi_show_rq,
1798 #endif
1799 	.init_request	= scsi_mq_init_request,
1800 	.exit_request	= scsi_mq_exit_request,
1801 	.initialize_rq_fn = scsi_initialize_rq,
1802 	.busy		= scsi_mq_lld_busy,
1803 	.map_queues	= scsi_map_queues,
1804 };
1805 
1806 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1807 {
1808 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1809 	if (IS_ERR(sdev->request_queue))
1810 		return NULL;
1811 
1812 	sdev->request_queue->queuedata = sdev;
1813 	__scsi_init_queue(sdev->host, sdev->request_queue);
1814 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1815 	return sdev->request_queue;
1816 }
1817 
1818 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1819 {
1820 	unsigned int cmd_size, sgl_size;
1821 
1822 	sgl_size = scsi_mq_sgl_size(shost);
1823 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1824 	if (scsi_host_get_prot(shost))
1825 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
1826 
1827 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1828 	shost->tag_set.ops = &scsi_mq_ops;
1829 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1830 	shost->tag_set.queue_depth = shost->can_queue;
1831 	shost->tag_set.cmd_size = cmd_size;
1832 	shost->tag_set.numa_node = NUMA_NO_NODE;
1833 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1834 	shost->tag_set.flags |=
1835 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1836 	shost->tag_set.driver_data = shost;
1837 
1838 	return blk_mq_alloc_tag_set(&shost->tag_set);
1839 }
1840 
1841 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1842 {
1843 	blk_mq_free_tag_set(&shost->tag_set);
1844 }
1845 
1846 /**
1847  * scsi_device_from_queue - return sdev associated with a request_queue
1848  * @q: The request queue to return the sdev from
1849  *
1850  * Return the sdev associated with a request queue or NULL if the
1851  * request_queue does not reference a SCSI device.
1852  */
1853 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1854 {
1855 	struct scsi_device *sdev = NULL;
1856 
1857 	if (q->mq_ops == &scsi_mq_ops)
1858 		sdev = q->queuedata;
1859 	if (!sdev || !get_device(&sdev->sdev_gendev))
1860 		sdev = NULL;
1861 
1862 	return sdev;
1863 }
1864 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1865 
1866 /*
1867  * Function:    scsi_block_requests()
1868  *
1869  * Purpose:     Utility function used by low-level drivers to prevent further
1870  *		commands from being queued to the device.
1871  *
1872  * Arguments:   shost       - Host in question
1873  *
1874  * Returns:     Nothing
1875  *
1876  * Lock status: No locks are assumed held.
1877  *
1878  * Notes:       There is no timer nor any other means by which the requests
1879  *		get unblocked other than the low-level driver calling
1880  *		scsi_unblock_requests().
1881  */
1882 void scsi_block_requests(struct Scsi_Host *shost)
1883 {
1884 	shost->host_self_blocked = 1;
1885 }
1886 EXPORT_SYMBOL(scsi_block_requests);
1887 
1888 /*
1889  * Function:    scsi_unblock_requests()
1890  *
1891  * Purpose:     Utility function used by low-level drivers to allow further
1892  *		commands from being queued to the device.
1893  *
1894  * Arguments:   shost       - Host in question
1895  *
1896  * Returns:     Nothing
1897  *
1898  * Lock status: No locks are assumed held.
1899  *
1900  * Notes:       There is no timer nor any other means by which the requests
1901  *		get unblocked other than the low-level driver calling
1902  *		scsi_unblock_requests().
1903  *
1904  *		This is done as an API function so that changes to the
1905  *		internals of the scsi mid-layer won't require wholesale
1906  *		changes to drivers that use this feature.
1907  */
1908 void scsi_unblock_requests(struct Scsi_Host *shost)
1909 {
1910 	shost->host_self_blocked = 0;
1911 	scsi_run_host_queues(shost);
1912 }
1913 EXPORT_SYMBOL(scsi_unblock_requests);
1914 
1915 int __init scsi_init_queue(void)
1916 {
1917 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1918 					   sizeof(struct scsi_data_buffer),
1919 					   0, 0, NULL);
1920 	if (!scsi_sdb_cache) {
1921 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1922 		return -ENOMEM;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 void scsi_exit_queue(void)
1929 {
1930 	kmem_cache_destroy(scsi_sense_cache);
1931 	kmem_cache_destroy(scsi_sense_isadma_cache);
1932 	kmem_cache_destroy(scsi_sdb_cache);
1933 }
1934 
1935 /**
1936  *	scsi_mode_select - issue a mode select
1937  *	@sdev:	SCSI device to be queried
1938  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1939  *	@sp:	Save page bit (0 == don't save, 1 == save)
1940  *	@modepage: mode page being requested
1941  *	@buffer: request buffer (may not be smaller than eight bytes)
1942  *	@len:	length of request buffer.
1943  *	@timeout: command timeout
1944  *	@retries: number of retries before failing
1945  *	@data: returns a structure abstracting the mode header data
1946  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1947  *		must be SCSI_SENSE_BUFFERSIZE big.
1948  *
1949  *	Returns zero if successful; negative error number or scsi
1950  *	status on error
1951  *
1952  */
1953 int
1954 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1955 		 unsigned char *buffer, int len, int timeout, int retries,
1956 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1957 {
1958 	unsigned char cmd[10];
1959 	unsigned char *real_buffer;
1960 	int ret;
1961 
1962 	memset(cmd, 0, sizeof(cmd));
1963 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1964 
1965 	if (sdev->use_10_for_ms) {
1966 		if (len > 65535)
1967 			return -EINVAL;
1968 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1969 		if (!real_buffer)
1970 			return -ENOMEM;
1971 		memcpy(real_buffer + 8, buffer, len);
1972 		len += 8;
1973 		real_buffer[0] = 0;
1974 		real_buffer[1] = 0;
1975 		real_buffer[2] = data->medium_type;
1976 		real_buffer[3] = data->device_specific;
1977 		real_buffer[4] = data->longlba ? 0x01 : 0;
1978 		real_buffer[5] = 0;
1979 		real_buffer[6] = data->block_descriptor_length >> 8;
1980 		real_buffer[7] = data->block_descriptor_length;
1981 
1982 		cmd[0] = MODE_SELECT_10;
1983 		cmd[7] = len >> 8;
1984 		cmd[8] = len;
1985 	} else {
1986 		if (len > 255 || data->block_descriptor_length > 255 ||
1987 		    data->longlba)
1988 			return -EINVAL;
1989 
1990 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1991 		if (!real_buffer)
1992 			return -ENOMEM;
1993 		memcpy(real_buffer + 4, buffer, len);
1994 		len += 4;
1995 		real_buffer[0] = 0;
1996 		real_buffer[1] = data->medium_type;
1997 		real_buffer[2] = data->device_specific;
1998 		real_buffer[3] = data->block_descriptor_length;
1999 
2000 
2001 		cmd[0] = MODE_SELECT;
2002 		cmd[4] = len;
2003 	}
2004 
2005 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2006 			       sshdr, timeout, retries, NULL);
2007 	kfree(real_buffer);
2008 	return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(scsi_mode_select);
2011 
2012 /**
2013  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2014  *	@sdev:	SCSI device to be queried
2015  *	@dbd:	set if mode sense will allow block descriptors to be returned
2016  *	@modepage: mode page being requested
2017  *	@buffer: request buffer (may not be smaller than eight bytes)
2018  *	@len:	length of request buffer.
2019  *	@timeout: command timeout
2020  *	@retries: number of retries before failing
2021  *	@data: returns a structure abstracting the mode header data
2022  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2023  *		must be SCSI_SENSE_BUFFERSIZE big.
2024  *
2025  *	Returns zero if unsuccessful, or the header offset (either 4
2026  *	or 8 depending on whether a six or ten byte command was
2027  *	issued) if successful.
2028  */
2029 int
2030 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2031 		  unsigned char *buffer, int len, int timeout, int retries,
2032 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2033 {
2034 	unsigned char cmd[12];
2035 	int use_10_for_ms;
2036 	int header_length;
2037 	int result, retry_count = retries;
2038 	struct scsi_sense_hdr my_sshdr;
2039 
2040 	memset(data, 0, sizeof(*data));
2041 	memset(&cmd[0], 0, 12);
2042 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2043 	cmd[2] = modepage;
2044 
2045 	/* caller might not be interested in sense, but we need it */
2046 	if (!sshdr)
2047 		sshdr = &my_sshdr;
2048 
2049  retry:
2050 	use_10_for_ms = sdev->use_10_for_ms;
2051 
2052 	if (use_10_for_ms) {
2053 		if (len < 8)
2054 			len = 8;
2055 
2056 		cmd[0] = MODE_SENSE_10;
2057 		cmd[8] = len;
2058 		header_length = 8;
2059 	} else {
2060 		if (len < 4)
2061 			len = 4;
2062 
2063 		cmd[0] = MODE_SENSE;
2064 		cmd[4] = len;
2065 		header_length = 4;
2066 	}
2067 
2068 	memset(buffer, 0, len);
2069 
2070 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2071 				  sshdr, timeout, retries, NULL);
2072 
2073 	/* This code looks awful: what it's doing is making sure an
2074 	 * ILLEGAL REQUEST sense return identifies the actual command
2075 	 * byte as the problem.  MODE_SENSE commands can return
2076 	 * ILLEGAL REQUEST if the code page isn't supported */
2077 
2078 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2079 	    driver_byte(result) == DRIVER_SENSE) {
2080 		if (scsi_sense_valid(sshdr)) {
2081 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2082 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2083 				/*
2084 				 * Invalid command operation code
2085 				 */
2086 				sdev->use_10_for_ms = 0;
2087 				goto retry;
2088 			}
2089 		}
2090 	}
2091 
2092 	if(scsi_status_is_good(result)) {
2093 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2094 			     (modepage == 6 || modepage == 8))) {
2095 			/* Initio breakage? */
2096 			header_length = 0;
2097 			data->length = 13;
2098 			data->medium_type = 0;
2099 			data->device_specific = 0;
2100 			data->longlba = 0;
2101 			data->block_descriptor_length = 0;
2102 		} else if(use_10_for_ms) {
2103 			data->length = buffer[0]*256 + buffer[1] + 2;
2104 			data->medium_type = buffer[2];
2105 			data->device_specific = buffer[3];
2106 			data->longlba = buffer[4] & 0x01;
2107 			data->block_descriptor_length = buffer[6]*256
2108 				+ buffer[7];
2109 		} else {
2110 			data->length = buffer[0] + 1;
2111 			data->medium_type = buffer[1];
2112 			data->device_specific = buffer[2];
2113 			data->block_descriptor_length = buffer[3];
2114 		}
2115 		data->header_length = header_length;
2116 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2117 		   scsi_sense_valid(sshdr) &&
2118 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2119 		retry_count--;
2120 		goto retry;
2121 	}
2122 
2123 	return result;
2124 }
2125 EXPORT_SYMBOL(scsi_mode_sense);
2126 
2127 /**
2128  *	scsi_test_unit_ready - test if unit is ready
2129  *	@sdev:	scsi device to change the state of.
2130  *	@timeout: command timeout
2131  *	@retries: number of retries before failing
2132  *	@sshdr: outpout pointer for decoded sense information.
2133  *
2134  *	Returns zero if unsuccessful or an error if TUR failed.  For
2135  *	removable media, UNIT_ATTENTION sets ->changed flag.
2136  **/
2137 int
2138 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2139 		     struct scsi_sense_hdr *sshdr)
2140 {
2141 	char cmd[] = {
2142 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2143 	};
2144 	int result;
2145 
2146 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2147 	do {
2148 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2149 					  timeout, 1, NULL);
2150 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2151 		    sshdr->sense_key == UNIT_ATTENTION)
2152 			sdev->changed = 1;
2153 	} while (scsi_sense_valid(sshdr) &&
2154 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2155 
2156 	return result;
2157 }
2158 EXPORT_SYMBOL(scsi_test_unit_ready);
2159 
2160 /**
2161  *	scsi_device_set_state - Take the given device through the device state model.
2162  *	@sdev:	scsi device to change the state of.
2163  *	@state:	state to change to.
2164  *
2165  *	Returns zero if successful or an error if the requested
2166  *	transition is illegal.
2167  */
2168 int
2169 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2170 {
2171 	enum scsi_device_state oldstate = sdev->sdev_state;
2172 
2173 	if (state == oldstate)
2174 		return 0;
2175 
2176 	switch (state) {
2177 	case SDEV_CREATED:
2178 		switch (oldstate) {
2179 		case SDEV_CREATED_BLOCK:
2180 			break;
2181 		default:
2182 			goto illegal;
2183 		}
2184 		break;
2185 
2186 	case SDEV_RUNNING:
2187 		switch (oldstate) {
2188 		case SDEV_CREATED:
2189 		case SDEV_OFFLINE:
2190 		case SDEV_TRANSPORT_OFFLINE:
2191 		case SDEV_QUIESCE:
2192 		case SDEV_BLOCK:
2193 			break;
2194 		default:
2195 			goto illegal;
2196 		}
2197 		break;
2198 
2199 	case SDEV_QUIESCE:
2200 		switch (oldstate) {
2201 		case SDEV_RUNNING:
2202 		case SDEV_OFFLINE:
2203 		case SDEV_TRANSPORT_OFFLINE:
2204 			break;
2205 		default:
2206 			goto illegal;
2207 		}
2208 		break;
2209 
2210 	case SDEV_OFFLINE:
2211 	case SDEV_TRANSPORT_OFFLINE:
2212 		switch (oldstate) {
2213 		case SDEV_CREATED:
2214 		case SDEV_RUNNING:
2215 		case SDEV_QUIESCE:
2216 		case SDEV_BLOCK:
2217 			break;
2218 		default:
2219 			goto illegal;
2220 		}
2221 		break;
2222 
2223 	case SDEV_BLOCK:
2224 		switch (oldstate) {
2225 		case SDEV_RUNNING:
2226 		case SDEV_CREATED_BLOCK:
2227 		case SDEV_OFFLINE:
2228 			break;
2229 		default:
2230 			goto illegal;
2231 		}
2232 		break;
2233 
2234 	case SDEV_CREATED_BLOCK:
2235 		switch (oldstate) {
2236 		case SDEV_CREATED:
2237 			break;
2238 		default:
2239 			goto illegal;
2240 		}
2241 		break;
2242 
2243 	case SDEV_CANCEL:
2244 		switch (oldstate) {
2245 		case SDEV_CREATED:
2246 		case SDEV_RUNNING:
2247 		case SDEV_QUIESCE:
2248 		case SDEV_OFFLINE:
2249 		case SDEV_TRANSPORT_OFFLINE:
2250 			break;
2251 		default:
2252 			goto illegal;
2253 		}
2254 		break;
2255 
2256 	case SDEV_DEL:
2257 		switch (oldstate) {
2258 		case SDEV_CREATED:
2259 		case SDEV_RUNNING:
2260 		case SDEV_OFFLINE:
2261 		case SDEV_TRANSPORT_OFFLINE:
2262 		case SDEV_CANCEL:
2263 		case SDEV_BLOCK:
2264 		case SDEV_CREATED_BLOCK:
2265 			break;
2266 		default:
2267 			goto illegal;
2268 		}
2269 		break;
2270 
2271 	}
2272 	sdev->sdev_state = state;
2273 	return 0;
2274 
2275  illegal:
2276 	SCSI_LOG_ERROR_RECOVERY(1,
2277 				sdev_printk(KERN_ERR, sdev,
2278 					    "Illegal state transition %s->%s",
2279 					    scsi_device_state_name(oldstate),
2280 					    scsi_device_state_name(state))
2281 				);
2282 	return -EINVAL;
2283 }
2284 EXPORT_SYMBOL(scsi_device_set_state);
2285 
2286 /**
2287  * 	sdev_evt_emit - emit a single SCSI device uevent
2288  *	@sdev: associated SCSI device
2289  *	@evt: event to emit
2290  *
2291  *	Send a single uevent (scsi_event) to the associated scsi_device.
2292  */
2293 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2294 {
2295 	int idx = 0;
2296 	char *envp[3];
2297 
2298 	switch (evt->evt_type) {
2299 	case SDEV_EVT_MEDIA_CHANGE:
2300 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2301 		break;
2302 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2303 		scsi_rescan_device(&sdev->sdev_gendev);
2304 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2305 		break;
2306 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2307 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2308 		break;
2309 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2310 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2311 		break;
2312 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2313 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2314 		break;
2315 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2316 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2317 		break;
2318 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2319 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2320 		break;
2321 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2322 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2323 		break;
2324 	default:
2325 		/* do nothing */
2326 		break;
2327 	}
2328 
2329 	envp[idx++] = NULL;
2330 
2331 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2332 }
2333 
2334 /**
2335  * 	sdev_evt_thread - send a uevent for each scsi event
2336  *	@work: work struct for scsi_device
2337  *
2338  *	Dispatch queued events to their associated scsi_device kobjects
2339  *	as uevents.
2340  */
2341 void scsi_evt_thread(struct work_struct *work)
2342 {
2343 	struct scsi_device *sdev;
2344 	enum scsi_device_event evt_type;
2345 	LIST_HEAD(event_list);
2346 
2347 	sdev = container_of(work, struct scsi_device, event_work);
2348 
2349 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2350 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2351 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2352 
2353 	while (1) {
2354 		struct scsi_event *evt;
2355 		struct list_head *this, *tmp;
2356 		unsigned long flags;
2357 
2358 		spin_lock_irqsave(&sdev->list_lock, flags);
2359 		list_splice_init(&sdev->event_list, &event_list);
2360 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2361 
2362 		if (list_empty(&event_list))
2363 			break;
2364 
2365 		list_for_each_safe(this, tmp, &event_list) {
2366 			evt = list_entry(this, struct scsi_event, node);
2367 			list_del(&evt->node);
2368 			scsi_evt_emit(sdev, evt);
2369 			kfree(evt);
2370 		}
2371 	}
2372 }
2373 
2374 /**
2375  * 	sdev_evt_send - send asserted event to uevent thread
2376  *	@sdev: scsi_device event occurred on
2377  *	@evt: event to send
2378  *
2379  *	Assert scsi device event asynchronously.
2380  */
2381 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2382 {
2383 	unsigned long flags;
2384 
2385 #if 0
2386 	/* FIXME: currently this check eliminates all media change events
2387 	 * for polled devices.  Need to update to discriminate between AN
2388 	 * and polled events */
2389 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2390 		kfree(evt);
2391 		return;
2392 	}
2393 #endif
2394 
2395 	spin_lock_irqsave(&sdev->list_lock, flags);
2396 	list_add_tail(&evt->node, &sdev->event_list);
2397 	schedule_work(&sdev->event_work);
2398 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2399 }
2400 EXPORT_SYMBOL_GPL(sdev_evt_send);
2401 
2402 /**
2403  * 	sdev_evt_alloc - allocate a new scsi event
2404  *	@evt_type: type of event to allocate
2405  *	@gfpflags: GFP flags for allocation
2406  *
2407  *	Allocates and returns a new scsi_event.
2408  */
2409 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2410 				  gfp_t gfpflags)
2411 {
2412 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2413 	if (!evt)
2414 		return NULL;
2415 
2416 	evt->evt_type = evt_type;
2417 	INIT_LIST_HEAD(&evt->node);
2418 
2419 	/* evt_type-specific initialization, if any */
2420 	switch (evt_type) {
2421 	case SDEV_EVT_MEDIA_CHANGE:
2422 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2423 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2424 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2425 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2426 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2427 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2428 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2429 	default:
2430 		/* do nothing */
2431 		break;
2432 	}
2433 
2434 	return evt;
2435 }
2436 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2437 
2438 /**
2439  * 	sdev_evt_send_simple - send asserted event to uevent thread
2440  *	@sdev: scsi_device event occurred on
2441  *	@evt_type: type of event to send
2442  *	@gfpflags: GFP flags for allocation
2443  *
2444  *	Assert scsi device event asynchronously, given an event type.
2445  */
2446 void sdev_evt_send_simple(struct scsi_device *sdev,
2447 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2448 {
2449 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2450 	if (!evt) {
2451 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2452 			    evt_type);
2453 		return;
2454 	}
2455 
2456 	sdev_evt_send(sdev, evt);
2457 }
2458 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2459 
2460 /**
2461  *	scsi_device_quiesce - Block user issued commands.
2462  *	@sdev:	scsi device to quiesce.
2463  *
2464  *	This works by trying to transition to the SDEV_QUIESCE state
2465  *	(which must be a legal transition).  When the device is in this
2466  *	state, only special requests will be accepted, all others will
2467  *	be deferred.  Since special requests may also be requeued requests,
2468  *	a successful return doesn't guarantee the device will be
2469  *	totally quiescent.
2470  *
2471  *	Must be called with user context, may sleep.
2472  *
2473  *	Returns zero if unsuccessful or an error if not.
2474  */
2475 int
2476 scsi_device_quiesce(struct scsi_device *sdev)
2477 {
2478 	struct request_queue *q = sdev->request_queue;
2479 	int err;
2480 
2481 	/*
2482 	 * It is allowed to call scsi_device_quiesce() multiple times from
2483 	 * the same context but concurrent scsi_device_quiesce() calls are
2484 	 * not allowed.
2485 	 */
2486 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2487 
2488 	if (sdev->quiesced_by == current)
2489 		return 0;
2490 
2491 	blk_set_pm_only(q);
2492 
2493 	blk_mq_freeze_queue(q);
2494 	/*
2495 	 * Ensure that the effect of blk_set_pm_only() will be visible
2496 	 * for percpu_ref_tryget() callers that occur after the queue
2497 	 * unfreeze even if the queue was already frozen before this function
2498 	 * was called. See also https://lwn.net/Articles/573497/.
2499 	 */
2500 	synchronize_rcu();
2501 	blk_mq_unfreeze_queue(q);
2502 
2503 	mutex_lock(&sdev->state_mutex);
2504 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2505 	if (err == 0)
2506 		sdev->quiesced_by = current;
2507 	else
2508 		blk_clear_pm_only(q);
2509 	mutex_unlock(&sdev->state_mutex);
2510 
2511 	return err;
2512 }
2513 EXPORT_SYMBOL(scsi_device_quiesce);
2514 
2515 /**
2516  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2517  *	@sdev:	scsi device to resume.
2518  *
2519  *	Moves the device from quiesced back to running and restarts the
2520  *	queues.
2521  *
2522  *	Must be called with user context, may sleep.
2523  */
2524 void scsi_device_resume(struct scsi_device *sdev)
2525 {
2526 	/* check if the device state was mutated prior to resume, and if
2527 	 * so assume the state is being managed elsewhere (for example
2528 	 * device deleted during suspend)
2529 	 */
2530 	mutex_lock(&sdev->state_mutex);
2531 	if (sdev->quiesced_by) {
2532 		sdev->quiesced_by = NULL;
2533 		blk_clear_pm_only(sdev->request_queue);
2534 	}
2535 	if (sdev->sdev_state == SDEV_QUIESCE)
2536 		scsi_device_set_state(sdev, SDEV_RUNNING);
2537 	mutex_unlock(&sdev->state_mutex);
2538 }
2539 EXPORT_SYMBOL(scsi_device_resume);
2540 
2541 static void
2542 device_quiesce_fn(struct scsi_device *sdev, void *data)
2543 {
2544 	scsi_device_quiesce(sdev);
2545 }
2546 
2547 void
2548 scsi_target_quiesce(struct scsi_target *starget)
2549 {
2550 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2551 }
2552 EXPORT_SYMBOL(scsi_target_quiesce);
2553 
2554 static void
2555 device_resume_fn(struct scsi_device *sdev, void *data)
2556 {
2557 	scsi_device_resume(sdev);
2558 }
2559 
2560 void
2561 scsi_target_resume(struct scsi_target *starget)
2562 {
2563 	starget_for_each_device(starget, NULL, device_resume_fn);
2564 }
2565 EXPORT_SYMBOL(scsi_target_resume);
2566 
2567 /**
2568  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2569  * @sdev: device to block
2570  *
2571  * Pause SCSI command processing on the specified device. Does not sleep.
2572  *
2573  * Returns zero if successful or a negative error code upon failure.
2574  *
2575  * Notes:
2576  * This routine transitions the device to the SDEV_BLOCK state (which must be
2577  * a legal transition). When the device is in this state, command processing
2578  * is paused until the device leaves the SDEV_BLOCK state. See also
2579  * scsi_internal_device_unblock_nowait().
2580  */
2581 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2582 {
2583 	struct request_queue *q = sdev->request_queue;
2584 	int err = 0;
2585 
2586 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2587 	if (err) {
2588 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2589 
2590 		if (err)
2591 			return err;
2592 	}
2593 
2594 	/*
2595 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2596 	 * block layer from calling the midlayer with this device's
2597 	 * request queue.
2598 	 */
2599 	blk_mq_quiesce_queue_nowait(q);
2600 	return 0;
2601 }
2602 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2603 
2604 /**
2605  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2606  * @sdev: device to block
2607  *
2608  * Pause SCSI command processing on the specified device and wait until all
2609  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2610  *
2611  * Returns zero if successful or a negative error code upon failure.
2612  *
2613  * Note:
2614  * This routine transitions the device to the SDEV_BLOCK state (which must be
2615  * a legal transition). When the device is in this state, command processing
2616  * is paused until the device leaves the SDEV_BLOCK state. See also
2617  * scsi_internal_device_unblock().
2618  *
2619  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2620  * scsi_internal_device_block() has blocked a SCSI device and also
2621  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2622  */
2623 static int scsi_internal_device_block(struct scsi_device *sdev)
2624 {
2625 	struct request_queue *q = sdev->request_queue;
2626 	int err;
2627 
2628 	mutex_lock(&sdev->state_mutex);
2629 	err = scsi_internal_device_block_nowait(sdev);
2630 	if (err == 0)
2631 		blk_mq_quiesce_queue(q);
2632 	mutex_unlock(&sdev->state_mutex);
2633 
2634 	return err;
2635 }
2636 
2637 void scsi_start_queue(struct scsi_device *sdev)
2638 {
2639 	struct request_queue *q = sdev->request_queue;
2640 
2641 	blk_mq_unquiesce_queue(q);
2642 }
2643 
2644 /**
2645  * scsi_internal_device_unblock_nowait - resume a device after a block request
2646  * @sdev:	device to resume
2647  * @new_state:	state to set the device to after unblocking
2648  *
2649  * Restart the device queue for a previously suspended SCSI device. Does not
2650  * sleep.
2651  *
2652  * Returns zero if successful or a negative error code upon failure.
2653  *
2654  * Notes:
2655  * This routine transitions the device to the SDEV_RUNNING state or to one of
2656  * the offline states (which must be a legal transition) allowing the midlayer
2657  * to goose the queue for this device.
2658  */
2659 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2660 					enum scsi_device_state new_state)
2661 {
2662 	/*
2663 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2664 	 * offlined states and goose the device queue if successful.
2665 	 */
2666 	switch (sdev->sdev_state) {
2667 	case SDEV_BLOCK:
2668 	case SDEV_TRANSPORT_OFFLINE:
2669 		sdev->sdev_state = new_state;
2670 		break;
2671 	case SDEV_CREATED_BLOCK:
2672 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2673 		    new_state == SDEV_OFFLINE)
2674 			sdev->sdev_state = new_state;
2675 		else
2676 			sdev->sdev_state = SDEV_CREATED;
2677 		break;
2678 	case SDEV_CANCEL:
2679 	case SDEV_OFFLINE:
2680 		break;
2681 	default:
2682 		return -EINVAL;
2683 	}
2684 	scsi_start_queue(sdev);
2685 
2686 	return 0;
2687 }
2688 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2689 
2690 /**
2691  * scsi_internal_device_unblock - resume a device after a block request
2692  * @sdev:	device to resume
2693  * @new_state:	state to set the device to after unblocking
2694  *
2695  * Restart the device queue for a previously suspended SCSI device. May sleep.
2696  *
2697  * Returns zero if successful or a negative error code upon failure.
2698  *
2699  * Notes:
2700  * This routine transitions the device to the SDEV_RUNNING state or to one of
2701  * the offline states (which must be a legal transition) allowing the midlayer
2702  * to goose the queue for this device.
2703  */
2704 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2705 					enum scsi_device_state new_state)
2706 {
2707 	int ret;
2708 
2709 	mutex_lock(&sdev->state_mutex);
2710 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2711 	mutex_unlock(&sdev->state_mutex);
2712 
2713 	return ret;
2714 }
2715 
2716 static void
2717 device_block(struct scsi_device *sdev, void *data)
2718 {
2719 	scsi_internal_device_block(sdev);
2720 }
2721 
2722 static int
2723 target_block(struct device *dev, void *data)
2724 {
2725 	if (scsi_is_target_device(dev))
2726 		starget_for_each_device(to_scsi_target(dev), NULL,
2727 					device_block);
2728 	return 0;
2729 }
2730 
2731 void
2732 scsi_target_block(struct device *dev)
2733 {
2734 	if (scsi_is_target_device(dev))
2735 		starget_for_each_device(to_scsi_target(dev), NULL,
2736 					device_block);
2737 	else
2738 		device_for_each_child(dev, NULL, target_block);
2739 }
2740 EXPORT_SYMBOL_GPL(scsi_target_block);
2741 
2742 static void
2743 device_unblock(struct scsi_device *sdev, void *data)
2744 {
2745 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2746 }
2747 
2748 static int
2749 target_unblock(struct device *dev, void *data)
2750 {
2751 	if (scsi_is_target_device(dev))
2752 		starget_for_each_device(to_scsi_target(dev), data,
2753 					device_unblock);
2754 	return 0;
2755 }
2756 
2757 void
2758 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2759 {
2760 	if (scsi_is_target_device(dev))
2761 		starget_for_each_device(to_scsi_target(dev), &new_state,
2762 					device_unblock);
2763 	else
2764 		device_for_each_child(dev, &new_state, target_unblock);
2765 }
2766 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2767 
2768 /**
2769  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2770  * @sgl:	scatter-gather list
2771  * @sg_count:	number of segments in sg
2772  * @offset:	offset in bytes into sg, on return offset into the mapped area
2773  * @len:	bytes to map, on return number of bytes mapped
2774  *
2775  * Returns virtual address of the start of the mapped page
2776  */
2777 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2778 			  size_t *offset, size_t *len)
2779 {
2780 	int i;
2781 	size_t sg_len = 0, len_complete = 0;
2782 	struct scatterlist *sg;
2783 	struct page *page;
2784 
2785 	WARN_ON(!irqs_disabled());
2786 
2787 	for_each_sg(sgl, sg, sg_count, i) {
2788 		len_complete = sg_len; /* Complete sg-entries */
2789 		sg_len += sg->length;
2790 		if (sg_len > *offset)
2791 			break;
2792 	}
2793 
2794 	if (unlikely(i == sg_count)) {
2795 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2796 			"elements %d\n",
2797 		       __func__, sg_len, *offset, sg_count);
2798 		WARN_ON(1);
2799 		return NULL;
2800 	}
2801 
2802 	/* Offset starting from the beginning of first page in this sg-entry */
2803 	*offset = *offset - len_complete + sg->offset;
2804 
2805 	/* Assumption: contiguous pages can be accessed as "page + i" */
2806 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2807 	*offset &= ~PAGE_MASK;
2808 
2809 	/* Bytes in this sg-entry from *offset to the end of the page */
2810 	sg_len = PAGE_SIZE - *offset;
2811 	if (*len > sg_len)
2812 		*len = sg_len;
2813 
2814 	return kmap_atomic(page);
2815 }
2816 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2817 
2818 /**
2819  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2820  * @virt:	virtual address to be unmapped
2821  */
2822 void scsi_kunmap_atomic_sg(void *virt)
2823 {
2824 	kunmap_atomic(virt);
2825 }
2826 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2827 
2828 void sdev_disable_disk_events(struct scsi_device *sdev)
2829 {
2830 	atomic_inc(&sdev->disk_events_disable_depth);
2831 }
2832 EXPORT_SYMBOL(sdev_disable_disk_events);
2833 
2834 void sdev_enable_disk_events(struct scsi_device *sdev)
2835 {
2836 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2837 		return;
2838 	atomic_dec(&sdev->disk_events_disable_depth);
2839 }
2840 EXPORT_SYMBOL(sdev_enable_disk_events);
2841 
2842 /**
2843  * scsi_vpd_lun_id - return a unique device identification
2844  * @sdev: SCSI device
2845  * @id:   buffer for the identification
2846  * @id_len:  length of the buffer
2847  *
2848  * Copies a unique device identification into @id based
2849  * on the information in the VPD page 0x83 of the device.
2850  * The string will be formatted as a SCSI name string.
2851  *
2852  * Returns the length of the identification or error on failure.
2853  * If the identifier is longer than the supplied buffer the actual
2854  * identifier length is returned and the buffer is not zero-padded.
2855  */
2856 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2857 {
2858 	u8 cur_id_type = 0xff;
2859 	u8 cur_id_size = 0;
2860 	const unsigned char *d, *cur_id_str;
2861 	const struct scsi_vpd *vpd_pg83;
2862 	int id_size = -EINVAL;
2863 
2864 	rcu_read_lock();
2865 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2866 	if (!vpd_pg83) {
2867 		rcu_read_unlock();
2868 		return -ENXIO;
2869 	}
2870 
2871 	/*
2872 	 * Look for the correct descriptor.
2873 	 * Order of preference for lun descriptor:
2874 	 * - SCSI name string
2875 	 * - NAA IEEE Registered Extended
2876 	 * - EUI-64 based 16-byte
2877 	 * - EUI-64 based 12-byte
2878 	 * - NAA IEEE Registered
2879 	 * - NAA IEEE Extended
2880 	 * - T10 Vendor ID
2881 	 * as longer descriptors reduce the likelyhood
2882 	 * of identification clashes.
2883 	 */
2884 
2885 	/* The id string must be at least 20 bytes + terminating NULL byte */
2886 	if (id_len < 21) {
2887 		rcu_read_unlock();
2888 		return -EINVAL;
2889 	}
2890 
2891 	memset(id, 0, id_len);
2892 	d = vpd_pg83->data + 4;
2893 	while (d < vpd_pg83->data + vpd_pg83->len) {
2894 		/* Skip designators not referring to the LUN */
2895 		if ((d[1] & 0x30) != 0x00)
2896 			goto next_desig;
2897 
2898 		switch (d[1] & 0xf) {
2899 		case 0x1:
2900 			/* T10 Vendor ID */
2901 			if (cur_id_size > d[3])
2902 				break;
2903 			/* Prefer anything */
2904 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2905 				break;
2906 			cur_id_size = d[3];
2907 			if (cur_id_size + 4 > id_len)
2908 				cur_id_size = id_len - 4;
2909 			cur_id_str = d + 4;
2910 			cur_id_type = d[1] & 0xf;
2911 			id_size = snprintf(id, id_len, "t10.%*pE",
2912 					   cur_id_size, cur_id_str);
2913 			break;
2914 		case 0x2:
2915 			/* EUI-64 */
2916 			if (cur_id_size > d[3])
2917 				break;
2918 			/* Prefer NAA IEEE Registered Extended */
2919 			if (cur_id_type == 0x3 &&
2920 			    cur_id_size == d[3])
2921 				break;
2922 			cur_id_size = d[3];
2923 			cur_id_str = d + 4;
2924 			cur_id_type = d[1] & 0xf;
2925 			switch (cur_id_size) {
2926 			case 8:
2927 				id_size = snprintf(id, id_len,
2928 						   "eui.%8phN",
2929 						   cur_id_str);
2930 				break;
2931 			case 12:
2932 				id_size = snprintf(id, id_len,
2933 						   "eui.%12phN",
2934 						   cur_id_str);
2935 				break;
2936 			case 16:
2937 				id_size = snprintf(id, id_len,
2938 						   "eui.%16phN",
2939 						   cur_id_str);
2940 				break;
2941 			default:
2942 				cur_id_size = 0;
2943 				break;
2944 			}
2945 			break;
2946 		case 0x3:
2947 			/* NAA */
2948 			if (cur_id_size > d[3])
2949 				break;
2950 			cur_id_size = d[3];
2951 			cur_id_str = d + 4;
2952 			cur_id_type = d[1] & 0xf;
2953 			switch (cur_id_size) {
2954 			case 8:
2955 				id_size = snprintf(id, id_len,
2956 						   "naa.%8phN",
2957 						   cur_id_str);
2958 				break;
2959 			case 16:
2960 				id_size = snprintf(id, id_len,
2961 						   "naa.%16phN",
2962 						   cur_id_str);
2963 				break;
2964 			default:
2965 				cur_id_size = 0;
2966 				break;
2967 			}
2968 			break;
2969 		case 0x8:
2970 			/* SCSI name string */
2971 			if (cur_id_size + 4 > d[3])
2972 				break;
2973 			/* Prefer others for truncated descriptor */
2974 			if (cur_id_size && d[3] > id_len)
2975 				break;
2976 			cur_id_size = id_size = d[3];
2977 			cur_id_str = d + 4;
2978 			cur_id_type = d[1] & 0xf;
2979 			if (cur_id_size >= id_len)
2980 				cur_id_size = id_len - 1;
2981 			memcpy(id, cur_id_str, cur_id_size);
2982 			/* Decrease priority for truncated descriptor */
2983 			if (cur_id_size != id_size)
2984 				cur_id_size = 6;
2985 			break;
2986 		default:
2987 			break;
2988 		}
2989 next_desig:
2990 		d += d[3] + 4;
2991 	}
2992 	rcu_read_unlock();
2993 
2994 	return id_size;
2995 }
2996 EXPORT_SYMBOL(scsi_vpd_lun_id);
2997 
2998 /*
2999  * scsi_vpd_tpg_id - return a target port group identifier
3000  * @sdev: SCSI device
3001  *
3002  * Returns the Target Port Group identifier from the information
3003  * froom VPD page 0x83 of the device.
3004  *
3005  * Returns the identifier or error on failure.
3006  */
3007 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3008 {
3009 	const unsigned char *d;
3010 	const struct scsi_vpd *vpd_pg83;
3011 	int group_id = -EAGAIN, rel_port = -1;
3012 
3013 	rcu_read_lock();
3014 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3015 	if (!vpd_pg83) {
3016 		rcu_read_unlock();
3017 		return -ENXIO;
3018 	}
3019 
3020 	d = vpd_pg83->data + 4;
3021 	while (d < vpd_pg83->data + vpd_pg83->len) {
3022 		switch (d[1] & 0xf) {
3023 		case 0x4:
3024 			/* Relative target port */
3025 			rel_port = get_unaligned_be16(&d[6]);
3026 			break;
3027 		case 0x5:
3028 			/* Target port group */
3029 			group_id = get_unaligned_be16(&d[6]);
3030 			break;
3031 		default:
3032 			break;
3033 		}
3034 		d += d[3] + 4;
3035 	}
3036 	rcu_read_unlock();
3037 
3038 	if (group_id >= 0 && rel_id && rel_port != -1)
3039 		*rel_id = rel_port;
3040 
3041 	return group_id;
3042 }
3043 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3044