xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision c21b37f6)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28 
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31 
32 
33 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE		2
35 
36 struct scsi_host_sg_pool {
37 	size_t		size;
38 	char		*name;
39 	struct kmem_cache	*slab;
40 	mempool_t	*pool;
41 };
42 
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46 
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 	SP(8),
50 	SP(16),
51 	SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 	SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 	SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 	SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->cmd_flags &= ~REQ_DONTPREP;
86 	req->special = NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:	scsi device
167  * @cmd:	scsi command
168  * @data_direction: data direction
169  * @buffer:	data buffer
170  * @bufflen:	len of buffer
171  * @sense:	optional sense buffer
172  * @timeout:	request timeout in seconds
173  * @retries:	number of times to retry request
174  * @flags:	or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 		 int data_direction, void *buffer, unsigned bufflen,
181 		 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 	struct request *req;
184 	int write = (data_direction == DMA_TO_DEVICE);
185 	int ret = DRIVER_ERROR << 24;
186 
187 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188 
189 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190 					buffer, bufflen, __GFP_WAIT))
191 		goto out;
192 
193 	req->cmd_len = COMMAND_SIZE(cmd[0]);
194 	memcpy(req->cmd, cmd, req->cmd_len);
195 	req->sense = sense;
196 	req->sense_len = 0;
197 	req->retries = retries;
198 	req->timeout = timeout;
199 	req->cmd_type = REQ_TYPE_BLOCK_PC;
200 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201 
202 	/*
203 	 * head injection *required* here otherwise quiesce won't work
204 	 */
205 	blk_execute_rq(req->q, NULL, req, 1);
206 
207 	ret = req->errors;
208  out:
209 	blk_put_request(req);
210 
211 	return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214 
215 
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 		     int data_direction, void *buffer, unsigned bufflen,
218 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 	char *sense = NULL;
221 	int result;
222 
223 	if (sshdr) {
224 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 		if (!sense)
226 			return DRIVER_ERROR << 24;
227 	}
228 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 			      sense, timeout, retries, 0);
230 	if (sshdr)
231 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232 
233 	kfree(sense);
234 	return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237 
238 struct scsi_io_context {
239 	void *data;
240 	void (*done)(void *data, char *sense, int result, int resid);
241 	char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243 
244 static struct kmem_cache *scsi_io_context_cache;
245 
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 	struct scsi_io_context *sioc = req->end_io_data;
249 
250 	if (sioc->done)
251 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252 
253 	kmem_cache_free(scsi_io_context_cache, sioc);
254 	__blk_put_request(req->q, req);
255 }
256 
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 	struct request_queue *q = rq->q;
260 
261 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 	if (rq_data_dir(rq) == WRITE)
263 		bio->bi_rw |= (1 << BIO_RW);
264 	blk_queue_bounce(q, &bio);
265 
266 	if (!rq->bio)
267 		blk_rq_bio_prep(q, rq, bio);
268 	else if (!ll_back_merge_fn(q, rq, bio))
269 		return -EINVAL;
270 	else {
271 		rq->biotail->bi_next = bio;
272 		rq->biotail = bio;
273 	}
274 
275 	return 0;
276 }
277 
278 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
279 {
280 	if (bio->bi_size)
281 		return 1;
282 
283 	bio_put(bio);
284 	return 0;
285 }
286 
287 /**
288  * scsi_req_map_sg - map a scatterlist into a request
289  * @rq:		request to fill
290  * @sg:		scatterlist
291  * @nsegs:	number of elements
292  * @bufflen:	len of buffer
293  * @gfp:	memory allocation flags
294  *
295  * scsi_req_map_sg maps a scatterlist into a request so that the
296  * request can be sent to the block layer. We do not trust the scatterlist
297  * sent to use, as some ULDs use that struct to only organize the pages.
298  */
299 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300 			   int nsegs, unsigned bufflen, gfp_t gfp)
301 {
302 	struct request_queue *q = rq->q;
303 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304 	unsigned int data_len = 0, len, bytes, off;
305 	struct page *page;
306 	struct bio *bio = NULL;
307 	int i, err, nr_vecs = 0;
308 
309 	for (i = 0; i < nsegs; i++) {
310 		page = sgl[i].page;
311 		off = sgl[i].offset;
312 		len = sgl[i].length;
313 		data_len += len;
314 
315 		while (len > 0) {
316 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
317 
318 			if (!bio) {
319 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
320 				nr_pages -= nr_vecs;
321 
322 				bio = bio_alloc(gfp, nr_vecs);
323 				if (!bio) {
324 					err = -ENOMEM;
325 					goto free_bios;
326 				}
327 				bio->bi_end_io = scsi_bi_endio;
328 			}
329 
330 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
331 			    bytes) {
332 				bio_put(bio);
333 				err = -EINVAL;
334 				goto free_bios;
335 			}
336 
337 			if (bio->bi_vcnt >= nr_vecs) {
338 				err = scsi_merge_bio(rq, bio);
339 				if (err) {
340 					bio_endio(bio, bio->bi_size, 0);
341 					goto free_bios;
342 				}
343 				bio = NULL;
344 			}
345 
346 			page++;
347 			len -= bytes;
348 			off = 0;
349 		}
350 	}
351 
352 	rq->buffer = rq->data = NULL;
353 	rq->data_len = data_len;
354 	return 0;
355 
356 free_bios:
357 	while ((bio = rq->bio) != NULL) {
358 		rq->bio = bio->bi_next;
359 		/*
360 		 * call endio instead of bio_put incase it was bounced
361 		 */
362 		bio_endio(bio, bio->bi_size, 0);
363 	}
364 
365 	return err;
366 }
367 
368 /**
369  * scsi_execute_async - insert request
370  * @sdev:	scsi device
371  * @cmd:	scsi command
372  * @cmd_len:	length of scsi cdb
373  * @data_direction: data direction
374  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
375  * @bufflen:	len of buffer
376  * @use_sg:	if buffer is a scatterlist this is the number of elements
377  * @timeout:	request timeout in seconds
378  * @retries:	number of times to retry request
379  * @flags:	or into request flags
380  **/
381 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
382 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
383 		       int use_sg, int timeout, int retries, void *privdata,
384 		       void (*done)(void *, char *, int, int), gfp_t gfp)
385 {
386 	struct request *req;
387 	struct scsi_io_context *sioc;
388 	int err = 0;
389 	int write = (data_direction == DMA_TO_DEVICE);
390 
391 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
392 	if (!sioc)
393 		return DRIVER_ERROR << 24;
394 
395 	req = blk_get_request(sdev->request_queue, write, gfp);
396 	if (!req)
397 		goto free_sense;
398 	req->cmd_type = REQ_TYPE_BLOCK_PC;
399 	req->cmd_flags |= REQ_QUIET;
400 
401 	if (use_sg)
402 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
403 	else if (bufflen)
404 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
405 
406 	if (err)
407 		goto free_req;
408 
409 	req->cmd_len = cmd_len;
410 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
411 	memcpy(req->cmd, cmd, req->cmd_len);
412 	req->sense = sioc->sense;
413 	req->sense_len = 0;
414 	req->timeout = timeout;
415 	req->retries = retries;
416 	req->end_io_data = sioc;
417 
418 	sioc->data = privdata;
419 	sioc->done = done;
420 
421 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422 	return 0;
423 
424 free_req:
425 	blk_put_request(req);
426 free_sense:
427 	kmem_cache_free(scsi_io_context_cache, sioc);
428 	return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431 
432 /*
433  * Function:    scsi_init_cmd_errh()
434  *
435  * Purpose:     Initialize cmd fields related to error handling.
436  *
437  * Arguments:   cmd	- command that is ready to be queued.
438  *
439  * Notes:       This function has the job of initializing a number of
440  *              fields related to error handling.   Typically this will
441  *              be called once for each command, as required.
442  */
443 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444 {
445 	cmd->serial_number = 0;
446 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
447 	if (cmd->cmd_len == 0)
448 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450 
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453 	struct Scsi_Host *shost = sdev->host;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(shost->host_lock, flags);
457 	shost->host_busy--;
458 	if (unlikely(scsi_host_in_recovery(shost) &&
459 		     (shost->host_failed || shost->host_eh_scheduled)))
460 		scsi_eh_wakeup(shost);
461 	spin_unlock(shost->host_lock);
462 	spin_lock(sdev->request_queue->queue_lock);
463 	sdev->device_busy--;
464 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466 
467 /*
468  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469  * and call blk_run_queue for all the scsi_devices on the target -
470  * including current_sdev first.
471  *
472  * Called with *no* scsi locks held.
473  */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476 	struct Scsi_Host *shost = current_sdev->host;
477 	struct scsi_device *sdev, *tmp;
478 	struct scsi_target *starget = scsi_target(current_sdev);
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(shost->host_lock, flags);
482 	starget->starget_sdev_user = NULL;
483 	spin_unlock_irqrestore(shost->host_lock, flags);
484 
485 	/*
486 	 * Call blk_run_queue for all LUNs on the target, starting with
487 	 * current_sdev. We race with others (to set starget_sdev_user),
488 	 * but in most cases, we will be first. Ideally, each LU on the
489 	 * target would get some limited time or requests on the target.
490 	 */
491 	blk_run_queue(current_sdev->request_queue);
492 
493 	spin_lock_irqsave(shost->host_lock, flags);
494 	if (starget->starget_sdev_user)
495 		goto out;
496 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497 			same_target_siblings) {
498 		if (sdev == current_sdev)
499 			continue;
500 		if (scsi_device_get(sdev))
501 			continue;
502 
503 		spin_unlock_irqrestore(shost->host_lock, flags);
504 		blk_run_queue(sdev->request_queue);
505 		spin_lock_irqsave(shost->host_lock, flags);
506 
507 		scsi_device_put(sdev);
508 	}
509  out:
510 	spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512 
513 /*
514  * Function:	scsi_run_queue()
515  *
516  * Purpose:	Select a proper request queue to serve next
517  *
518  * Arguments:	q	- last request's queue
519  *
520  * Returns:     Nothing
521  *
522  * Notes:	The previous command was completely finished, start
523  *		a new one if possible.
524  */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527 	struct scsi_device *sdev = q->queuedata;
528 	struct Scsi_Host *shost = sdev->host;
529 	unsigned long flags;
530 
531 	if (sdev->single_lun)
532 		scsi_single_lun_run(sdev);
533 
534 	spin_lock_irqsave(shost->host_lock, flags);
535 	while (!list_empty(&shost->starved_list) &&
536 	       !shost->host_blocked && !shost->host_self_blocked &&
537 		!((shost->can_queue > 0) &&
538 		  (shost->host_busy >= shost->can_queue))) {
539 		/*
540 		 * As long as shost is accepting commands and we have
541 		 * starved queues, call blk_run_queue. scsi_request_fn
542 		 * drops the queue_lock and can add us back to the
543 		 * starved_list.
544 		 *
545 		 * host_lock protects the starved_list and starved_entry.
546 		 * scsi_request_fn must get the host_lock before checking
547 		 * or modifying starved_list or starved_entry.
548 		 */
549 		sdev = list_entry(shost->starved_list.next,
550 					  struct scsi_device, starved_entry);
551 		list_del_init(&sdev->starved_entry);
552 		spin_unlock_irqrestore(shost->host_lock, flags);
553 
554 
555 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
557 				      &sdev->request_queue->queue_flags)) {
558 			blk_run_queue(sdev->request_queue);
559 			clear_bit(QUEUE_FLAG_REENTER,
560 				  &sdev->request_queue->queue_flags);
561 		} else
562 			blk_run_queue(sdev->request_queue);
563 
564 		spin_lock_irqsave(shost->host_lock, flags);
565 		if (unlikely(!list_empty(&sdev->starved_entry)))
566 			/*
567 			 * sdev lost a race, and was put back on the
568 			 * starved list. This is unlikely but without this
569 			 * in theory we could loop forever.
570 			 */
571 			break;
572 	}
573 	spin_unlock_irqrestore(shost->host_lock, flags);
574 
575 	blk_run_queue(q);
576 }
577 
578 /*
579  * Function:	scsi_requeue_command()
580  *
581  * Purpose:	Handle post-processing of completed commands.
582  *
583  * Arguments:	q	- queue to operate on
584  *		cmd	- command that may need to be requeued.
585  *
586  * Returns:	Nothing
587  *
588  * Notes:	After command completion, there may be blocks left
589  *		over which weren't finished by the previous command
590  *		this can be for a number of reasons - the main one is
591  *		I/O errors in the middle of the request, in which case
592  *		we need to request the blocks that come after the bad
593  *		sector.
594  * Notes:	Upon return, cmd is a stale pointer.
595  */
596 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597 {
598 	struct request *req = cmd->request;
599 	unsigned long flags;
600 
601 	scsi_unprep_request(req);
602 	spin_lock_irqsave(q->queue_lock, flags);
603 	blk_requeue_request(q, req);
604 	spin_unlock_irqrestore(q->queue_lock, flags);
605 
606 	scsi_run_queue(q);
607 }
608 
609 void scsi_next_command(struct scsi_cmnd *cmd)
610 {
611 	struct scsi_device *sdev = cmd->device;
612 	struct request_queue *q = sdev->request_queue;
613 
614 	/* need to hold a reference on the device before we let go of the cmd */
615 	get_device(&sdev->sdev_gendev);
616 
617 	scsi_put_command(cmd);
618 	scsi_run_queue(q);
619 
620 	/* ok to remove device now */
621 	put_device(&sdev->sdev_gendev);
622 }
623 
624 void scsi_run_host_queues(struct Scsi_Host *shost)
625 {
626 	struct scsi_device *sdev;
627 
628 	shost_for_each_device(sdev, shost)
629 		scsi_run_queue(sdev->request_queue);
630 }
631 
632 /*
633  * Function:    scsi_end_request()
634  *
635  * Purpose:     Post-processing of completed commands (usually invoked at end
636  *		of upper level post-processing and scsi_io_completion).
637  *
638  * Arguments:   cmd	 - command that is complete.
639  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
640  *              bytes    - number of bytes of completed I/O
641  *		requeue  - indicates whether we should requeue leftovers.
642  *
643  * Lock status: Assumed that lock is not held upon entry.
644  *
645  * Returns:     cmd if requeue required, NULL otherwise.
646  *
647  * Notes:       This is called for block device requests in order to
648  *              mark some number of sectors as complete.
649  *
650  *		We are guaranteeing that the request queue will be goosed
651  *		at some point during this call.
652  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
653  */
654 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
655 					  int bytes, int requeue)
656 {
657 	struct request_queue *q = cmd->device->request_queue;
658 	struct request *req = cmd->request;
659 	unsigned long flags;
660 
661 	/*
662 	 * If there are blocks left over at the end, set up the command
663 	 * to queue the remainder of them.
664 	 */
665 	if (end_that_request_chunk(req, uptodate, bytes)) {
666 		int leftover = (req->hard_nr_sectors << 9);
667 
668 		if (blk_pc_request(req))
669 			leftover = req->data_len;
670 
671 		/* kill remainder if no retrys */
672 		if (!uptodate && blk_noretry_request(req))
673 			end_that_request_chunk(req, 0, leftover);
674 		else {
675 			if (requeue) {
676 				/*
677 				 * Bleah.  Leftovers again.  Stick the
678 				 * leftovers in the front of the
679 				 * queue, and goose the queue again.
680 				 */
681 				scsi_requeue_command(q, cmd);
682 				cmd = NULL;
683 			}
684 			return cmd;
685 		}
686 	}
687 
688 	add_disk_randomness(req->rq_disk);
689 
690 	spin_lock_irqsave(q->queue_lock, flags);
691 	if (blk_rq_tagged(req))
692 		blk_queue_end_tag(q, req);
693 	end_that_request_last(req, uptodate);
694 	spin_unlock_irqrestore(q->queue_lock, flags);
695 
696 	/*
697 	 * This will goose the queue request function at the end, so we don't
698 	 * need to worry about launching another command.
699 	 */
700 	scsi_next_command(cmd);
701 	return NULL;
702 }
703 
704 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
705 {
706 	struct scsi_host_sg_pool *sgp;
707 	struct scatterlist *sgl;
708 
709 	BUG_ON(!cmd->use_sg);
710 
711 	switch (cmd->use_sg) {
712 	case 1 ... 8:
713 		cmd->sglist_len = 0;
714 		break;
715 	case 9 ... 16:
716 		cmd->sglist_len = 1;
717 		break;
718 	case 17 ... 32:
719 		cmd->sglist_len = 2;
720 		break;
721 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
722 	case 33 ... 64:
723 		cmd->sglist_len = 3;
724 		break;
725 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
726 	case 65 ... 128:
727 		cmd->sglist_len = 4;
728 		break;
729 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
730 	case 129 ... 256:
731 		cmd->sglist_len = 5;
732 		break;
733 #endif
734 #endif
735 #endif
736 	default:
737 		return NULL;
738 	}
739 
740 	sgp = scsi_sg_pools + cmd->sglist_len;
741 	sgl = mempool_alloc(sgp->pool, gfp_mask);
742 	return sgl;
743 }
744 
745 EXPORT_SYMBOL(scsi_alloc_sgtable);
746 
747 void scsi_free_sgtable(struct scatterlist *sgl, int index)
748 {
749 	struct scsi_host_sg_pool *sgp;
750 
751 	BUG_ON(index >= SG_MEMPOOL_NR);
752 
753 	sgp = scsi_sg_pools + index;
754 	mempool_free(sgl, sgp->pool);
755 }
756 
757 EXPORT_SYMBOL(scsi_free_sgtable);
758 
759 /*
760  * Function:    scsi_release_buffers()
761  *
762  * Purpose:     Completion processing for block device I/O requests.
763  *
764  * Arguments:   cmd	- command that we are bailing.
765  *
766  * Lock status: Assumed that no lock is held upon entry.
767  *
768  * Returns:     Nothing
769  *
770  * Notes:       In the event that an upper level driver rejects a
771  *		command, we must release resources allocated during
772  *		the __init_io() function.  Primarily this would involve
773  *		the scatter-gather table, and potentially any bounce
774  *		buffers.
775  */
776 static void scsi_release_buffers(struct scsi_cmnd *cmd)
777 {
778 	if (cmd->use_sg)
779 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
780 
781 	/*
782 	 * Zero these out.  They now point to freed memory, and it is
783 	 * dangerous to hang onto the pointers.
784 	 */
785 	cmd->request_buffer = NULL;
786 	cmd->request_bufflen = 0;
787 }
788 
789 /*
790  * Function:    scsi_io_completion()
791  *
792  * Purpose:     Completion processing for block device I/O requests.
793  *
794  * Arguments:   cmd   - command that is finished.
795  *
796  * Lock status: Assumed that no lock is held upon entry.
797  *
798  * Returns:     Nothing
799  *
800  * Notes:       This function is matched in terms of capabilities to
801  *              the function that created the scatter-gather list.
802  *              In other words, if there are no bounce buffers
803  *              (the normal case for most drivers), we don't need
804  *              the logic to deal with cleaning up afterwards.
805  *
806  *		We must do one of several things here:
807  *
808  *		a) Call scsi_end_request.  This will finish off the
809  *		   specified number of sectors.  If we are done, the
810  *		   command block will be released, and the queue
811  *		   function will be goosed.  If we are not done, then
812  *		   scsi_end_request will directly goose the queue.
813  *
814  *		b) We can just use scsi_requeue_command() here.  This would
815  *		   be used if we just wanted to retry, for example.
816  */
817 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
818 {
819 	int result = cmd->result;
820 	int this_count = cmd->request_bufflen;
821 	struct request_queue *q = cmd->device->request_queue;
822 	struct request *req = cmd->request;
823 	int clear_errors = 1;
824 	struct scsi_sense_hdr sshdr;
825 	int sense_valid = 0;
826 	int sense_deferred = 0;
827 
828 	scsi_release_buffers(cmd);
829 
830 	if (result) {
831 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832 		if (sense_valid)
833 			sense_deferred = scsi_sense_is_deferred(&sshdr);
834 	}
835 
836 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
837 		req->errors = result;
838 		if (result) {
839 			clear_errors = 0;
840 			if (sense_valid && req->sense) {
841 				/*
842 				 * SG_IO wants current and deferred errors
843 				 */
844 				int len = 8 + cmd->sense_buffer[7];
845 
846 				if (len > SCSI_SENSE_BUFFERSIZE)
847 					len = SCSI_SENSE_BUFFERSIZE;
848 				memcpy(req->sense, cmd->sense_buffer,  len);
849 				req->sense_len = len;
850 			}
851 		}
852 		req->data_len = cmd->resid;
853 	}
854 
855 	/*
856 	 * Next deal with any sectors which we were able to correctly
857 	 * handle.
858 	 */
859 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
860 				      "%d bytes done.\n",
861 				      req->nr_sectors, good_bytes));
862 	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
863 
864 	if (clear_errors)
865 		req->errors = 0;
866 
867 	/* A number of bytes were successfully read.  If there
868 	 * are leftovers and there is some kind of error
869 	 * (result != 0), retry the rest.
870 	 */
871 	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
872 		return;
873 
874 	/* good_bytes = 0, or (inclusive) there were leftovers and
875 	 * result = 0, so scsi_end_request couldn't retry.
876 	 */
877 	if (sense_valid && !sense_deferred) {
878 		switch (sshdr.sense_key) {
879 		case UNIT_ATTENTION:
880 			if (cmd->device->removable) {
881 				/* Detected disc change.  Set a bit
882 				 * and quietly refuse further access.
883 				 */
884 				cmd->device->changed = 1;
885 				scsi_end_request(cmd, 0, this_count, 1);
886 				return;
887 			} else {
888 				/* Must have been a power glitch, or a
889 				 * bus reset.  Could not have been a
890 				 * media change, so we just retry the
891 				 * request and see what happens.
892 				 */
893 				scsi_requeue_command(q, cmd);
894 				return;
895 			}
896 			break;
897 		case ILLEGAL_REQUEST:
898 			/* If we had an ILLEGAL REQUEST returned, then
899 			 * we may have performed an unsupported
900 			 * command.  The only thing this should be
901 			 * would be a ten byte read where only a six
902 			 * byte read was supported.  Also, on a system
903 			 * where READ CAPACITY failed, we may have
904 			 * read past the end of the disk.
905 			 */
906 			if ((cmd->device->use_10_for_rw &&
907 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
908 			    (cmd->cmnd[0] == READ_10 ||
909 			     cmd->cmnd[0] == WRITE_10)) {
910 				cmd->device->use_10_for_rw = 0;
911 				/* This will cause a retry with a
912 				 * 6-byte command.
913 				 */
914 				scsi_requeue_command(q, cmd);
915 				return;
916 			} else {
917 				scsi_end_request(cmd, 0, this_count, 1);
918 				return;
919 			}
920 			break;
921 		case NOT_READY:
922 			/* If the device is in the process of becoming
923 			 * ready, or has a temporary blockage, retry.
924 			 */
925 			if (sshdr.asc == 0x04) {
926 				switch (sshdr.ascq) {
927 				case 0x01: /* becoming ready */
928 				case 0x04: /* format in progress */
929 				case 0x05: /* rebuild in progress */
930 				case 0x06: /* recalculation in progress */
931 				case 0x07: /* operation in progress */
932 				case 0x08: /* Long write in progress */
933 				case 0x09: /* self test in progress */
934 					scsi_requeue_command(q, cmd);
935 					return;
936 				default:
937 					break;
938 				}
939 			}
940 			if (!(req->cmd_flags & REQ_QUIET)) {
941 				scmd_printk(KERN_INFO, cmd,
942 					    "Device not ready: ");
943 				scsi_print_sense_hdr("", &sshdr);
944 			}
945 			scsi_end_request(cmd, 0, this_count, 1);
946 			return;
947 		case VOLUME_OVERFLOW:
948 			if (!(req->cmd_flags & REQ_QUIET)) {
949 				scmd_printk(KERN_INFO, cmd,
950 					    "Volume overflow, CDB: ");
951 				__scsi_print_command(cmd->cmnd);
952 				scsi_print_sense("", cmd);
953 			}
954 			/* See SSC3rXX or current. */
955 			scsi_end_request(cmd, 0, this_count, 1);
956 			return;
957 		default:
958 			break;
959 		}
960 	}
961 	if (host_byte(result) == DID_RESET) {
962 		/* Third party bus reset or reset for error recovery
963 		 * reasons.  Just retry the request and see what
964 		 * happens.
965 		 */
966 		scsi_requeue_command(q, cmd);
967 		return;
968 	}
969 	if (result) {
970 		if (!(req->cmd_flags & REQ_QUIET)) {
971 			scsi_print_result(cmd);
972 			if (driver_byte(result) & DRIVER_SENSE)
973 				scsi_print_sense("", cmd);
974 		}
975 	}
976 	scsi_end_request(cmd, 0, this_count, !result);
977 }
978 EXPORT_SYMBOL(scsi_io_completion);
979 
980 /*
981  * Function:    scsi_init_io()
982  *
983  * Purpose:     SCSI I/O initialize function.
984  *
985  * Arguments:   cmd   - Command descriptor we wish to initialize
986  *
987  * Returns:     0 on success
988  *		BLKPREP_DEFER if the failure is retryable
989  *		BLKPREP_KILL if the failure is fatal
990  */
991 static int scsi_init_io(struct scsi_cmnd *cmd)
992 {
993 	struct request     *req = cmd->request;
994 	struct scatterlist *sgpnt;
995 	int		   count;
996 
997 	/*
998 	 * We used to not use scatter-gather for single segment request,
999 	 * but now we do (it makes highmem I/O easier to support without
1000 	 * kmapping pages)
1001 	 */
1002 	cmd->use_sg = req->nr_phys_segments;
1003 
1004 	/*
1005 	 * If sg table allocation fails, requeue request later.
1006 	 */
1007 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1008 	if (unlikely(!sgpnt)) {
1009 		scsi_unprep_request(req);
1010 		return BLKPREP_DEFER;
1011 	}
1012 
1013 	req->buffer = NULL;
1014 	cmd->request_buffer = (char *) sgpnt;
1015 	if (blk_pc_request(req))
1016 		cmd->request_bufflen = req->data_len;
1017 	else
1018 		cmd->request_bufflen = req->nr_sectors << 9;
1019 
1020 	/*
1021 	 * Next, walk the list, and fill in the addresses and sizes of
1022 	 * each segment.
1023 	 */
1024 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1025 	if (likely(count <= cmd->use_sg)) {
1026 		cmd->use_sg = count;
1027 		return BLKPREP_OK;
1028 	}
1029 
1030 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1031 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1032 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1033 			req->current_nr_sectors);
1034 
1035 	/* release the command and kill it */
1036 	scsi_release_buffers(cmd);
1037 	scsi_put_command(cmd);
1038 	return BLKPREP_KILL;
1039 }
1040 
1041 static int scsi_issue_flush_fn(struct request_queue *q, struct gendisk *disk,
1042 			       sector_t *error_sector)
1043 {
1044 	struct scsi_device *sdev = q->queuedata;
1045 	struct scsi_driver *drv;
1046 
1047 	if (sdev->sdev_state != SDEV_RUNNING)
1048 		return -ENXIO;
1049 
1050 	drv = *(struct scsi_driver **) disk->private_data;
1051 	if (drv->issue_flush)
1052 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1053 
1054 	return -EOPNOTSUPP;
1055 }
1056 
1057 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1058 		struct request *req)
1059 {
1060 	struct scsi_cmnd *cmd;
1061 
1062 	if (!req->special) {
1063 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1064 		if (unlikely(!cmd))
1065 			return NULL;
1066 		req->special = cmd;
1067 	} else {
1068 		cmd = req->special;
1069 	}
1070 
1071 	/* pull a tag out of the request if we have one */
1072 	cmd->tag = req->tag;
1073 	cmd->request = req;
1074 
1075 	return cmd;
1076 }
1077 
1078 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1079 {
1080 	BUG_ON(!blk_pc_request(cmd->request));
1081 	/*
1082 	 * This will complete the whole command with uptodate=1 so
1083 	 * as far as the block layer is concerned the command completed
1084 	 * successfully. Since this is a REQ_BLOCK_PC command the
1085 	 * caller should check the request's errors value
1086 	 */
1087 	scsi_io_completion(cmd, cmd->request_bufflen);
1088 }
1089 
1090 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1091 {
1092 	struct scsi_cmnd *cmd;
1093 
1094 	cmd = scsi_get_cmd_from_req(sdev, req);
1095 	if (unlikely(!cmd))
1096 		return BLKPREP_DEFER;
1097 
1098 	/*
1099 	 * BLOCK_PC requests may transfer data, in which case they must
1100 	 * a bio attached to them.  Or they might contain a SCSI command
1101 	 * that does not transfer data, in which case they may optionally
1102 	 * submit a request without an attached bio.
1103 	 */
1104 	if (req->bio) {
1105 		int ret;
1106 
1107 		BUG_ON(!req->nr_phys_segments);
1108 
1109 		ret = scsi_init_io(cmd);
1110 		if (unlikely(ret))
1111 			return ret;
1112 	} else {
1113 		BUG_ON(req->data_len);
1114 		BUG_ON(req->data);
1115 
1116 		cmd->request_bufflen = 0;
1117 		cmd->request_buffer = NULL;
1118 		cmd->use_sg = 0;
1119 		req->buffer = NULL;
1120 	}
1121 
1122 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1123 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1124 	cmd->cmd_len = req->cmd_len;
1125 	if (!req->data_len)
1126 		cmd->sc_data_direction = DMA_NONE;
1127 	else if (rq_data_dir(req) == WRITE)
1128 		cmd->sc_data_direction = DMA_TO_DEVICE;
1129 	else
1130 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1131 
1132 	cmd->transfersize = req->data_len;
1133 	cmd->allowed = req->retries;
1134 	cmd->timeout_per_command = req->timeout;
1135 	cmd->done = scsi_blk_pc_done;
1136 	return BLKPREP_OK;
1137 }
1138 
1139 /*
1140  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1141  * from filesystems that still need to be translated to SCSI CDBs from
1142  * the ULD.
1143  */
1144 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1145 {
1146 	struct scsi_cmnd *cmd;
1147 	struct scsi_driver *drv;
1148 	int ret;
1149 
1150 	/*
1151 	 * Filesystem requests must transfer data.
1152 	 */
1153 	BUG_ON(!req->nr_phys_segments);
1154 
1155 	cmd = scsi_get_cmd_from_req(sdev, req);
1156 	if (unlikely(!cmd))
1157 		return BLKPREP_DEFER;
1158 
1159 	ret = scsi_init_io(cmd);
1160 	if (unlikely(ret))
1161 		return ret;
1162 
1163 	/*
1164 	 * Initialize the actual SCSI command for this request.
1165 	 */
1166 	drv = *(struct scsi_driver **)req->rq_disk->private_data;
1167 	if (unlikely(!drv->init_command(cmd))) {
1168 		scsi_release_buffers(cmd);
1169 		scsi_put_command(cmd);
1170 		return BLKPREP_KILL;
1171 	}
1172 
1173 	return BLKPREP_OK;
1174 }
1175 
1176 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1177 {
1178 	struct scsi_device *sdev = q->queuedata;
1179 	int ret = BLKPREP_OK;
1180 
1181 	/*
1182 	 * If the device is not in running state we will reject some
1183 	 * or all commands.
1184 	 */
1185 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1186 		switch (sdev->sdev_state) {
1187 		case SDEV_OFFLINE:
1188 			/*
1189 			 * If the device is offline we refuse to process any
1190 			 * commands.  The device must be brought online
1191 			 * before trying any recovery commands.
1192 			 */
1193 			sdev_printk(KERN_ERR, sdev,
1194 				    "rejecting I/O to offline device\n");
1195 			ret = BLKPREP_KILL;
1196 			break;
1197 		case SDEV_DEL:
1198 			/*
1199 			 * If the device is fully deleted, we refuse to
1200 			 * process any commands as well.
1201 			 */
1202 			sdev_printk(KERN_ERR, sdev,
1203 				    "rejecting I/O to dead device\n");
1204 			ret = BLKPREP_KILL;
1205 			break;
1206 		case SDEV_QUIESCE:
1207 		case SDEV_BLOCK:
1208 			/*
1209 			 * If the devices is blocked we defer normal commands.
1210 			 */
1211 			if (!(req->cmd_flags & REQ_PREEMPT))
1212 				ret = BLKPREP_DEFER;
1213 			break;
1214 		default:
1215 			/*
1216 			 * For any other not fully online state we only allow
1217 			 * special commands.  In particular any user initiated
1218 			 * command is not allowed.
1219 			 */
1220 			if (!(req->cmd_flags & REQ_PREEMPT))
1221 				ret = BLKPREP_KILL;
1222 			break;
1223 		}
1224 
1225 		if (ret != BLKPREP_OK)
1226 			goto out;
1227 	}
1228 
1229 	switch (req->cmd_type) {
1230 	case REQ_TYPE_BLOCK_PC:
1231 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1232 		break;
1233 	case REQ_TYPE_FS:
1234 		ret = scsi_setup_fs_cmnd(sdev, req);
1235 		break;
1236 	default:
1237 		/*
1238 		 * All other command types are not supported.
1239 		 *
1240 		 * Note that these days the SCSI subsystem does not use
1241 		 * REQ_TYPE_SPECIAL requests anymore.  These are only used
1242 		 * (directly or via blk_insert_request) by non-SCSI drivers.
1243 		 */
1244 		blk_dump_rq_flags(req, "SCSI bad req");
1245 		ret = BLKPREP_KILL;
1246 		break;
1247 	}
1248 
1249  out:
1250 	switch (ret) {
1251 	case BLKPREP_KILL:
1252 		req->errors = DID_NO_CONNECT << 16;
1253 		break;
1254 	case BLKPREP_DEFER:
1255 		/*
1256 		 * If we defer, the elv_next_request() returns NULL, but the
1257 		 * queue must be restarted, so we plug here if no returning
1258 		 * command will automatically do that.
1259 		 */
1260 		if (sdev->device_busy == 0)
1261 			blk_plug_device(q);
1262 		break;
1263 	default:
1264 		req->cmd_flags |= REQ_DONTPREP;
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 /*
1271  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1272  * return 0.
1273  *
1274  * Called with the queue_lock held.
1275  */
1276 static inline int scsi_dev_queue_ready(struct request_queue *q,
1277 				  struct scsi_device *sdev)
1278 {
1279 	if (sdev->device_busy >= sdev->queue_depth)
1280 		return 0;
1281 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1282 		/*
1283 		 * unblock after device_blocked iterates to zero
1284 		 */
1285 		if (--sdev->device_blocked == 0) {
1286 			SCSI_LOG_MLQUEUE(3,
1287 				   sdev_printk(KERN_INFO, sdev,
1288 				   "unblocking device at zero depth\n"));
1289 		} else {
1290 			blk_plug_device(q);
1291 			return 0;
1292 		}
1293 	}
1294 	if (sdev->device_blocked)
1295 		return 0;
1296 
1297 	return 1;
1298 }
1299 
1300 /*
1301  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1302  * return 0. We must end up running the queue again whenever 0 is
1303  * returned, else IO can hang.
1304  *
1305  * Called with host_lock held.
1306  */
1307 static inline int scsi_host_queue_ready(struct request_queue *q,
1308 				   struct Scsi_Host *shost,
1309 				   struct scsi_device *sdev)
1310 {
1311 	if (scsi_host_in_recovery(shost))
1312 		return 0;
1313 	if (shost->host_busy == 0 && shost->host_blocked) {
1314 		/*
1315 		 * unblock after host_blocked iterates to zero
1316 		 */
1317 		if (--shost->host_blocked == 0) {
1318 			SCSI_LOG_MLQUEUE(3,
1319 				printk("scsi%d unblocking host at zero depth\n",
1320 					shost->host_no));
1321 		} else {
1322 			blk_plug_device(q);
1323 			return 0;
1324 		}
1325 	}
1326 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1327 	    shost->host_blocked || shost->host_self_blocked) {
1328 		if (list_empty(&sdev->starved_entry))
1329 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1330 		return 0;
1331 	}
1332 
1333 	/* We're OK to process the command, so we can't be starved */
1334 	if (!list_empty(&sdev->starved_entry))
1335 		list_del_init(&sdev->starved_entry);
1336 
1337 	return 1;
1338 }
1339 
1340 /*
1341  * Kill a request for a dead device
1342  */
1343 static void scsi_kill_request(struct request *req, struct request_queue *q)
1344 {
1345 	struct scsi_cmnd *cmd = req->special;
1346 	struct scsi_device *sdev = cmd->device;
1347 	struct Scsi_Host *shost = sdev->host;
1348 
1349 	blkdev_dequeue_request(req);
1350 
1351 	if (unlikely(cmd == NULL)) {
1352 		printk(KERN_CRIT "impossible request in %s.\n",
1353 				 __FUNCTION__);
1354 		BUG();
1355 	}
1356 
1357 	scsi_init_cmd_errh(cmd);
1358 	cmd->result = DID_NO_CONNECT << 16;
1359 	atomic_inc(&cmd->device->iorequest_cnt);
1360 
1361 	/*
1362 	 * SCSI request completion path will do scsi_device_unbusy(),
1363 	 * bump busy counts.  To bump the counters, we need to dance
1364 	 * with the locks as normal issue path does.
1365 	 */
1366 	sdev->device_busy++;
1367 	spin_unlock(sdev->request_queue->queue_lock);
1368 	spin_lock(shost->host_lock);
1369 	shost->host_busy++;
1370 	spin_unlock(shost->host_lock);
1371 	spin_lock(sdev->request_queue->queue_lock);
1372 
1373 	__scsi_done(cmd);
1374 }
1375 
1376 static void scsi_softirq_done(struct request *rq)
1377 {
1378 	struct scsi_cmnd *cmd = rq->completion_data;
1379 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1380 	int disposition;
1381 
1382 	INIT_LIST_HEAD(&cmd->eh_entry);
1383 
1384 	disposition = scsi_decide_disposition(cmd);
1385 	if (disposition != SUCCESS &&
1386 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1387 		sdev_printk(KERN_ERR, cmd->device,
1388 			    "timing out command, waited %lus\n",
1389 			    wait_for/HZ);
1390 		disposition = SUCCESS;
1391 	}
1392 
1393 	scsi_log_completion(cmd, disposition);
1394 
1395 	switch (disposition) {
1396 		case SUCCESS:
1397 			scsi_finish_command(cmd);
1398 			break;
1399 		case NEEDS_RETRY:
1400 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1401 			break;
1402 		case ADD_TO_MLQUEUE:
1403 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1404 			break;
1405 		default:
1406 			if (!scsi_eh_scmd_add(cmd, 0))
1407 				scsi_finish_command(cmd);
1408 	}
1409 }
1410 
1411 /*
1412  * Function:    scsi_request_fn()
1413  *
1414  * Purpose:     Main strategy routine for SCSI.
1415  *
1416  * Arguments:   q       - Pointer to actual queue.
1417  *
1418  * Returns:     Nothing
1419  *
1420  * Lock status: IO request lock assumed to be held when called.
1421  */
1422 static void scsi_request_fn(struct request_queue *q)
1423 {
1424 	struct scsi_device *sdev = q->queuedata;
1425 	struct Scsi_Host *shost;
1426 	struct scsi_cmnd *cmd;
1427 	struct request *req;
1428 
1429 	if (!sdev) {
1430 		printk("scsi: killing requests for dead queue\n");
1431 		while ((req = elv_next_request(q)) != NULL)
1432 			scsi_kill_request(req, q);
1433 		return;
1434 	}
1435 
1436 	if(!get_device(&sdev->sdev_gendev))
1437 		/* We must be tearing the block queue down already */
1438 		return;
1439 
1440 	/*
1441 	 * To start with, we keep looping until the queue is empty, or until
1442 	 * the host is no longer able to accept any more requests.
1443 	 */
1444 	shost = sdev->host;
1445 	while (!blk_queue_plugged(q)) {
1446 		int rtn;
1447 		/*
1448 		 * get next queueable request.  We do this early to make sure
1449 		 * that the request is fully prepared even if we cannot
1450 		 * accept it.
1451 		 */
1452 		req = elv_next_request(q);
1453 		if (!req || !scsi_dev_queue_ready(q, sdev))
1454 			break;
1455 
1456 		if (unlikely(!scsi_device_online(sdev))) {
1457 			sdev_printk(KERN_ERR, sdev,
1458 				    "rejecting I/O to offline device\n");
1459 			scsi_kill_request(req, q);
1460 			continue;
1461 		}
1462 
1463 
1464 		/*
1465 		 * Remove the request from the request list.
1466 		 */
1467 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1468 			blkdev_dequeue_request(req);
1469 		sdev->device_busy++;
1470 
1471 		spin_unlock(q->queue_lock);
1472 		cmd = req->special;
1473 		if (unlikely(cmd == NULL)) {
1474 			printk(KERN_CRIT "impossible request in %s.\n"
1475 					 "please mail a stack trace to "
1476 					 "linux-scsi@vger.kernel.org\n",
1477 					 __FUNCTION__);
1478 			blk_dump_rq_flags(req, "foo");
1479 			BUG();
1480 		}
1481 		spin_lock(shost->host_lock);
1482 
1483 		if (!scsi_host_queue_ready(q, shost, sdev))
1484 			goto not_ready;
1485 		if (sdev->single_lun) {
1486 			if (scsi_target(sdev)->starget_sdev_user &&
1487 			    scsi_target(sdev)->starget_sdev_user != sdev)
1488 				goto not_ready;
1489 			scsi_target(sdev)->starget_sdev_user = sdev;
1490 		}
1491 		shost->host_busy++;
1492 
1493 		/*
1494 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1495 		 *		take the lock again.
1496 		 */
1497 		spin_unlock_irq(shost->host_lock);
1498 
1499 		/*
1500 		 * Finally, initialize any error handling parameters, and set up
1501 		 * the timers for timeouts.
1502 		 */
1503 		scsi_init_cmd_errh(cmd);
1504 
1505 		/*
1506 		 * Dispatch the command to the low-level driver.
1507 		 */
1508 		rtn = scsi_dispatch_cmd(cmd);
1509 		spin_lock_irq(q->queue_lock);
1510 		if(rtn) {
1511 			/* we're refusing the command; because of
1512 			 * the way locks get dropped, we need to
1513 			 * check here if plugging is required */
1514 			if(sdev->device_busy == 0)
1515 				blk_plug_device(q);
1516 
1517 			break;
1518 		}
1519 	}
1520 
1521 	goto out;
1522 
1523  not_ready:
1524 	spin_unlock_irq(shost->host_lock);
1525 
1526 	/*
1527 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1528 	 * must return with queue_lock held.
1529 	 *
1530 	 * Decrementing device_busy without checking it is OK, as all such
1531 	 * cases (host limits or settings) should run the queue at some
1532 	 * later time.
1533 	 */
1534 	spin_lock_irq(q->queue_lock);
1535 	blk_requeue_request(q, req);
1536 	sdev->device_busy--;
1537 	if(sdev->device_busy == 0)
1538 		blk_plug_device(q);
1539  out:
1540 	/* must be careful here...if we trigger the ->remove() function
1541 	 * we cannot be holding the q lock */
1542 	spin_unlock_irq(q->queue_lock);
1543 	put_device(&sdev->sdev_gendev);
1544 	spin_lock_irq(q->queue_lock);
1545 }
1546 
1547 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1548 {
1549 	struct device *host_dev;
1550 	u64 bounce_limit = 0xffffffff;
1551 
1552 	if (shost->unchecked_isa_dma)
1553 		return BLK_BOUNCE_ISA;
1554 	/*
1555 	 * Platforms with virtual-DMA translation
1556 	 * hardware have no practical limit.
1557 	 */
1558 	if (!PCI_DMA_BUS_IS_PHYS)
1559 		return BLK_BOUNCE_ANY;
1560 
1561 	host_dev = scsi_get_device(shost);
1562 	if (host_dev && host_dev->dma_mask)
1563 		bounce_limit = *host_dev->dma_mask;
1564 
1565 	return bounce_limit;
1566 }
1567 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1568 
1569 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1570 					 request_fn_proc *request_fn)
1571 {
1572 	struct request_queue *q;
1573 
1574 	q = blk_init_queue(request_fn, NULL);
1575 	if (!q)
1576 		return NULL;
1577 
1578 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1579 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1580 	blk_queue_max_sectors(q, shost->max_sectors);
1581 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1582 	blk_queue_segment_boundary(q, shost->dma_boundary);
1583 
1584 	if (!shost->use_clustering)
1585 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1586 	return q;
1587 }
1588 EXPORT_SYMBOL(__scsi_alloc_queue);
1589 
1590 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1591 {
1592 	struct request_queue *q;
1593 
1594 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1595 	if (!q)
1596 		return NULL;
1597 
1598 	blk_queue_prep_rq(q, scsi_prep_fn);
1599 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1600 	blk_queue_softirq_done(q, scsi_softirq_done);
1601 	return q;
1602 }
1603 
1604 void scsi_free_queue(struct request_queue *q)
1605 {
1606 	blk_cleanup_queue(q);
1607 }
1608 
1609 /*
1610  * Function:    scsi_block_requests()
1611  *
1612  * Purpose:     Utility function used by low-level drivers to prevent further
1613  *		commands from being queued to the device.
1614  *
1615  * Arguments:   shost       - Host in question
1616  *
1617  * Returns:     Nothing
1618  *
1619  * Lock status: No locks are assumed held.
1620  *
1621  * Notes:       There is no timer nor any other means by which the requests
1622  *		get unblocked other than the low-level driver calling
1623  *		scsi_unblock_requests().
1624  */
1625 void scsi_block_requests(struct Scsi_Host *shost)
1626 {
1627 	shost->host_self_blocked = 1;
1628 }
1629 EXPORT_SYMBOL(scsi_block_requests);
1630 
1631 /*
1632  * Function:    scsi_unblock_requests()
1633  *
1634  * Purpose:     Utility function used by low-level drivers to allow further
1635  *		commands from being queued to the device.
1636  *
1637  * Arguments:   shost       - Host in question
1638  *
1639  * Returns:     Nothing
1640  *
1641  * Lock status: No locks are assumed held.
1642  *
1643  * Notes:       There is no timer nor any other means by which the requests
1644  *		get unblocked other than the low-level driver calling
1645  *		scsi_unblock_requests().
1646  *
1647  *		This is done as an API function so that changes to the
1648  *		internals of the scsi mid-layer won't require wholesale
1649  *		changes to drivers that use this feature.
1650  */
1651 void scsi_unblock_requests(struct Scsi_Host *shost)
1652 {
1653 	shost->host_self_blocked = 0;
1654 	scsi_run_host_queues(shost);
1655 }
1656 EXPORT_SYMBOL(scsi_unblock_requests);
1657 
1658 int __init scsi_init_queue(void)
1659 {
1660 	int i;
1661 
1662 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1663 					sizeof(struct scsi_io_context),
1664 					0, 0, NULL);
1665 	if (!scsi_io_context_cache) {
1666 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1667 		return -ENOMEM;
1668 	}
1669 
1670 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1671 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1672 		int size = sgp->size * sizeof(struct scatterlist);
1673 
1674 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1675 				SLAB_HWCACHE_ALIGN, NULL);
1676 		if (!sgp->slab) {
1677 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1678 					sgp->name);
1679 		}
1680 
1681 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1682 						     sgp->slab);
1683 		if (!sgp->pool) {
1684 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1685 					sgp->name);
1686 		}
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 void scsi_exit_queue(void)
1693 {
1694 	int i;
1695 
1696 	kmem_cache_destroy(scsi_io_context_cache);
1697 
1698 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1699 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1700 		mempool_destroy(sgp->pool);
1701 		kmem_cache_destroy(sgp->slab);
1702 	}
1703 }
1704 
1705 /**
1706  *	scsi_mode_select - issue a mode select
1707  *	@sdev:	SCSI device to be queried
1708  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1709  *	@sp:	Save page bit (0 == don't save, 1 == save)
1710  *	@modepage: mode page being requested
1711  *	@buffer: request buffer (may not be smaller than eight bytes)
1712  *	@len:	length of request buffer.
1713  *	@timeout: command timeout
1714  *	@retries: number of retries before failing
1715  *	@data: returns a structure abstracting the mode header data
1716  *	@sense: place to put sense data (or NULL if no sense to be collected).
1717  *		must be SCSI_SENSE_BUFFERSIZE big.
1718  *
1719  *	Returns zero if successful; negative error number or scsi
1720  *	status on error
1721  *
1722  */
1723 int
1724 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1725 		 unsigned char *buffer, int len, int timeout, int retries,
1726 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1727 {
1728 	unsigned char cmd[10];
1729 	unsigned char *real_buffer;
1730 	int ret;
1731 
1732 	memset(cmd, 0, sizeof(cmd));
1733 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1734 
1735 	if (sdev->use_10_for_ms) {
1736 		if (len > 65535)
1737 			return -EINVAL;
1738 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1739 		if (!real_buffer)
1740 			return -ENOMEM;
1741 		memcpy(real_buffer + 8, buffer, len);
1742 		len += 8;
1743 		real_buffer[0] = 0;
1744 		real_buffer[1] = 0;
1745 		real_buffer[2] = data->medium_type;
1746 		real_buffer[3] = data->device_specific;
1747 		real_buffer[4] = data->longlba ? 0x01 : 0;
1748 		real_buffer[5] = 0;
1749 		real_buffer[6] = data->block_descriptor_length >> 8;
1750 		real_buffer[7] = data->block_descriptor_length;
1751 
1752 		cmd[0] = MODE_SELECT_10;
1753 		cmd[7] = len >> 8;
1754 		cmd[8] = len;
1755 	} else {
1756 		if (len > 255 || data->block_descriptor_length > 255 ||
1757 		    data->longlba)
1758 			return -EINVAL;
1759 
1760 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1761 		if (!real_buffer)
1762 			return -ENOMEM;
1763 		memcpy(real_buffer + 4, buffer, len);
1764 		len += 4;
1765 		real_buffer[0] = 0;
1766 		real_buffer[1] = data->medium_type;
1767 		real_buffer[2] = data->device_specific;
1768 		real_buffer[3] = data->block_descriptor_length;
1769 
1770 
1771 		cmd[0] = MODE_SELECT;
1772 		cmd[4] = len;
1773 	}
1774 
1775 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1776 			       sshdr, timeout, retries);
1777 	kfree(real_buffer);
1778 	return ret;
1779 }
1780 EXPORT_SYMBOL_GPL(scsi_mode_select);
1781 
1782 /**
1783  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1784  *		six bytes if necessary.
1785  *	@sdev:	SCSI device to be queried
1786  *	@dbd:	set if mode sense will allow block descriptors to be returned
1787  *	@modepage: mode page being requested
1788  *	@buffer: request buffer (may not be smaller than eight bytes)
1789  *	@len:	length of request buffer.
1790  *	@timeout: command timeout
1791  *	@retries: number of retries before failing
1792  *	@data: returns a structure abstracting the mode header data
1793  *	@sense: place to put sense data (or NULL if no sense to be collected).
1794  *		must be SCSI_SENSE_BUFFERSIZE big.
1795  *
1796  *	Returns zero if unsuccessful, or the header offset (either 4
1797  *	or 8 depending on whether a six or ten byte command was
1798  *	issued) if successful.
1799  **/
1800 int
1801 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1802 		  unsigned char *buffer, int len, int timeout, int retries,
1803 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1804 {
1805 	unsigned char cmd[12];
1806 	int use_10_for_ms;
1807 	int header_length;
1808 	int result;
1809 	struct scsi_sense_hdr my_sshdr;
1810 
1811 	memset(data, 0, sizeof(*data));
1812 	memset(&cmd[0], 0, 12);
1813 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1814 	cmd[2] = modepage;
1815 
1816 	/* caller might not be interested in sense, but we need it */
1817 	if (!sshdr)
1818 		sshdr = &my_sshdr;
1819 
1820  retry:
1821 	use_10_for_ms = sdev->use_10_for_ms;
1822 
1823 	if (use_10_for_ms) {
1824 		if (len < 8)
1825 			len = 8;
1826 
1827 		cmd[0] = MODE_SENSE_10;
1828 		cmd[8] = len;
1829 		header_length = 8;
1830 	} else {
1831 		if (len < 4)
1832 			len = 4;
1833 
1834 		cmd[0] = MODE_SENSE;
1835 		cmd[4] = len;
1836 		header_length = 4;
1837 	}
1838 
1839 	memset(buffer, 0, len);
1840 
1841 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1842 				  sshdr, timeout, retries);
1843 
1844 	/* This code looks awful: what it's doing is making sure an
1845 	 * ILLEGAL REQUEST sense return identifies the actual command
1846 	 * byte as the problem.  MODE_SENSE commands can return
1847 	 * ILLEGAL REQUEST if the code page isn't supported */
1848 
1849 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1850 	    (driver_byte(result) & DRIVER_SENSE)) {
1851 		if (scsi_sense_valid(sshdr)) {
1852 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1853 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1854 				/*
1855 				 * Invalid command operation code
1856 				 */
1857 				sdev->use_10_for_ms = 0;
1858 				goto retry;
1859 			}
1860 		}
1861 	}
1862 
1863 	if(scsi_status_is_good(result)) {
1864 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1865 			     (modepage == 6 || modepage == 8))) {
1866 			/* Initio breakage? */
1867 			header_length = 0;
1868 			data->length = 13;
1869 			data->medium_type = 0;
1870 			data->device_specific = 0;
1871 			data->longlba = 0;
1872 			data->block_descriptor_length = 0;
1873 		} else if(use_10_for_ms) {
1874 			data->length = buffer[0]*256 + buffer[1] + 2;
1875 			data->medium_type = buffer[2];
1876 			data->device_specific = buffer[3];
1877 			data->longlba = buffer[4] & 0x01;
1878 			data->block_descriptor_length = buffer[6]*256
1879 				+ buffer[7];
1880 		} else {
1881 			data->length = buffer[0] + 1;
1882 			data->medium_type = buffer[1];
1883 			data->device_specific = buffer[2];
1884 			data->block_descriptor_length = buffer[3];
1885 		}
1886 		data->header_length = header_length;
1887 	}
1888 
1889 	return result;
1890 }
1891 EXPORT_SYMBOL(scsi_mode_sense);
1892 
1893 int
1894 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1895 {
1896 	char cmd[] = {
1897 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1898 	};
1899 	struct scsi_sense_hdr sshdr;
1900 	int result;
1901 
1902 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1903 				  timeout, retries);
1904 
1905 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1906 
1907 		if ((scsi_sense_valid(&sshdr)) &&
1908 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1909 		     (sshdr.sense_key == NOT_READY))) {
1910 			sdev->changed = 1;
1911 			result = 0;
1912 		}
1913 	}
1914 	return result;
1915 }
1916 EXPORT_SYMBOL(scsi_test_unit_ready);
1917 
1918 /**
1919  *	scsi_device_set_state - Take the given device through the device
1920  *		state model.
1921  *	@sdev:	scsi device to change the state of.
1922  *	@state:	state to change to.
1923  *
1924  *	Returns zero if unsuccessful or an error if the requested
1925  *	transition is illegal.
1926  **/
1927 int
1928 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1929 {
1930 	enum scsi_device_state oldstate = sdev->sdev_state;
1931 
1932 	if (state == oldstate)
1933 		return 0;
1934 
1935 	switch (state) {
1936 	case SDEV_CREATED:
1937 		/* There are no legal states that come back to
1938 		 * created.  This is the manually initialised start
1939 		 * state */
1940 		goto illegal;
1941 
1942 	case SDEV_RUNNING:
1943 		switch (oldstate) {
1944 		case SDEV_CREATED:
1945 		case SDEV_OFFLINE:
1946 		case SDEV_QUIESCE:
1947 		case SDEV_BLOCK:
1948 			break;
1949 		default:
1950 			goto illegal;
1951 		}
1952 		break;
1953 
1954 	case SDEV_QUIESCE:
1955 		switch (oldstate) {
1956 		case SDEV_RUNNING:
1957 		case SDEV_OFFLINE:
1958 			break;
1959 		default:
1960 			goto illegal;
1961 		}
1962 		break;
1963 
1964 	case SDEV_OFFLINE:
1965 		switch (oldstate) {
1966 		case SDEV_CREATED:
1967 		case SDEV_RUNNING:
1968 		case SDEV_QUIESCE:
1969 		case SDEV_BLOCK:
1970 			break;
1971 		default:
1972 			goto illegal;
1973 		}
1974 		break;
1975 
1976 	case SDEV_BLOCK:
1977 		switch (oldstate) {
1978 		case SDEV_CREATED:
1979 		case SDEV_RUNNING:
1980 			break;
1981 		default:
1982 			goto illegal;
1983 		}
1984 		break;
1985 
1986 	case SDEV_CANCEL:
1987 		switch (oldstate) {
1988 		case SDEV_CREATED:
1989 		case SDEV_RUNNING:
1990 		case SDEV_QUIESCE:
1991 		case SDEV_OFFLINE:
1992 		case SDEV_BLOCK:
1993 			break;
1994 		default:
1995 			goto illegal;
1996 		}
1997 		break;
1998 
1999 	case SDEV_DEL:
2000 		switch (oldstate) {
2001 		case SDEV_CREATED:
2002 		case SDEV_RUNNING:
2003 		case SDEV_OFFLINE:
2004 		case SDEV_CANCEL:
2005 			break;
2006 		default:
2007 			goto illegal;
2008 		}
2009 		break;
2010 
2011 	}
2012 	sdev->sdev_state = state;
2013 	return 0;
2014 
2015  illegal:
2016 	SCSI_LOG_ERROR_RECOVERY(1,
2017 				sdev_printk(KERN_ERR, sdev,
2018 					    "Illegal state transition %s->%s\n",
2019 					    scsi_device_state_name(oldstate),
2020 					    scsi_device_state_name(state))
2021 				);
2022 	return -EINVAL;
2023 }
2024 EXPORT_SYMBOL(scsi_device_set_state);
2025 
2026 /**
2027  *	scsi_device_quiesce - Block user issued commands.
2028  *	@sdev:	scsi device to quiesce.
2029  *
2030  *	This works by trying to transition to the SDEV_QUIESCE state
2031  *	(which must be a legal transition).  When the device is in this
2032  *	state, only special requests will be accepted, all others will
2033  *	be deferred.  Since special requests may also be requeued requests,
2034  *	a successful return doesn't guarantee the device will be
2035  *	totally quiescent.
2036  *
2037  *	Must be called with user context, may sleep.
2038  *
2039  *	Returns zero if unsuccessful or an error if not.
2040  **/
2041 int
2042 scsi_device_quiesce(struct scsi_device *sdev)
2043 {
2044 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2045 	if (err)
2046 		return err;
2047 
2048 	scsi_run_queue(sdev->request_queue);
2049 	while (sdev->device_busy) {
2050 		msleep_interruptible(200);
2051 		scsi_run_queue(sdev->request_queue);
2052 	}
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL(scsi_device_quiesce);
2056 
2057 /**
2058  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2059  *	@sdev:	scsi device to resume.
2060  *
2061  *	Moves the device from quiesced back to running and restarts the
2062  *	queues.
2063  *
2064  *	Must be called with user context, may sleep.
2065  **/
2066 void
2067 scsi_device_resume(struct scsi_device *sdev)
2068 {
2069 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2070 		return;
2071 	scsi_run_queue(sdev->request_queue);
2072 }
2073 EXPORT_SYMBOL(scsi_device_resume);
2074 
2075 static void
2076 device_quiesce_fn(struct scsi_device *sdev, void *data)
2077 {
2078 	scsi_device_quiesce(sdev);
2079 }
2080 
2081 void
2082 scsi_target_quiesce(struct scsi_target *starget)
2083 {
2084 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2085 }
2086 EXPORT_SYMBOL(scsi_target_quiesce);
2087 
2088 static void
2089 device_resume_fn(struct scsi_device *sdev, void *data)
2090 {
2091 	scsi_device_resume(sdev);
2092 }
2093 
2094 void
2095 scsi_target_resume(struct scsi_target *starget)
2096 {
2097 	starget_for_each_device(starget, NULL, device_resume_fn);
2098 }
2099 EXPORT_SYMBOL(scsi_target_resume);
2100 
2101 /**
2102  * scsi_internal_device_block - internal function to put a device
2103  *				temporarily into the SDEV_BLOCK state
2104  * @sdev:	device to block
2105  *
2106  * Block request made by scsi lld's to temporarily stop all
2107  * scsi commands on the specified device.  Called from interrupt
2108  * or normal process context.
2109  *
2110  * Returns zero if successful or error if not
2111  *
2112  * Notes:
2113  *	This routine transitions the device to the SDEV_BLOCK state
2114  *	(which must be a legal transition).  When the device is in this
2115  *	state, all commands are deferred until the scsi lld reenables
2116  *	the device with scsi_device_unblock or device_block_tmo fires.
2117  *	This routine assumes the host_lock is held on entry.
2118  **/
2119 int
2120 scsi_internal_device_block(struct scsi_device *sdev)
2121 {
2122 	struct request_queue *q = sdev->request_queue;
2123 	unsigned long flags;
2124 	int err = 0;
2125 
2126 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2127 	if (err)
2128 		return err;
2129 
2130 	/*
2131 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2132 	 * block layer from calling the midlayer with this device's
2133 	 * request queue.
2134 	 */
2135 	spin_lock_irqsave(q->queue_lock, flags);
2136 	blk_stop_queue(q);
2137 	spin_unlock_irqrestore(q->queue_lock, flags);
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2142 
2143 /**
2144  * scsi_internal_device_unblock - resume a device after a block request
2145  * @sdev:	device to resume
2146  *
2147  * Called by scsi lld's or the midlayer to restart the device queue
2148  * for the previously suspended scsi device.  Called from interrupt or
2149  * normal process context.
2150  *
2151  * Returns zero if successful or error if not.
2152  *
2153  * Notes:
2154  *	This routine transitions the device to the SDEV_RUNNING state
2155  *	(which must be a legal transition) allowing the midlayer to
2156  *	goose the queue for this device.  This routine assumes the
2157  *	host_lock is held upon entry.
2158  **/
2159 int
2160 scsi_internal_device_unblock(struct scsi_device *sdev)
2161 {
2162 	struct request_queue *q = sdev->request_queue;
2163 	int err;
2164 	unsigned long flags;
2165 
2166 	/*
2167 	 * Try to transition the scsi device to SDEV_RUNNING
2168 	 * and goose the device queue if successful.
2169 	 */
2170 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2171 	if (err)
2172 		return err;
2173 
2174 	spin_lock_irqsave(q->queue_lock, flags);
2175 	blk_start_queue(q);
2176 	spin_unlock_irqrestore(q->queue_lock, flags);
2177 
2178 	return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2181 
2182 static void
2183 device_block(struct scsi_device *sdev, void *data)
2184 {
2185 	scsi_internal_device_block(sdev);
2186 }
2187 
2188 static int
2189 target_block(struct device *dev, void *data)
2190 {
2191 	if (scsi_is_target_device(dev))
2192 		starget_for_each_device(to_scsi_target(dev), NULL,
2193 					device_block);
2194 	return 0;
2195 }
2196 
2197 void
2198 scsi_target_block(struct device *dev)
2199 {
2200 	if (scsi_is_target_device(dev))
2201 		starget_for_each_device(to_scsi_target(dev), NULL,
2202 					device_block);
2203 	else
2204 		device_for_each_child(dev, NULL, target_block);
2205 }
2206 EXPORT_SYMBOL_GPL(scsi_target_block);
2207 
2208 static void
2209 device_unblock(struct scsi_device *sdev, void *data)
2210 {
2211 	scsi_internal_device_unblock(sdev);
2212 }
2213 
2214 static int
2215 target_unblock(struct device *dev, void *data)
2216 {
2217 	if (scsi_is_target_device(dev))
2218 		starget_for_each_device(to_scsi_target(dev), NULL,
2219 					device_unblock);
2220 	return 0;
2221 }
2222 
2223 void
2224 scsi_target_unblock(struct device *dev)
2225 {
2226 	if (scsi_is_target_device(dev))
2227 		starget_for_each_device(to_scsi_target(dev), NULL,
2228 					device_unblock);
2229 	else
2230 		device_for_each_child(dev, NULL, target_unblock);
2231 }
2232 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2233 
2234 /**
2235  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2236  * @sg:		scatter-gather list
2237  * @sg_count:	number of segments in sg
2238  * @offset:	offset in bytes into sg, on return offset into the mapped area
2239  * @len:	bytes to map, on return number of bytes mapped
2240  *
2241  * Returns virtual address of the start of the mapped page
2242  */
2243 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2244 			  size_t *offset, size_t *len)
2245 {
2246 	int i;
2247 	size_t sg_len = 0, len_complete = 0;
2248 	struct page *page;
2249 
2250 	WARN_ON(!irqs_disabled());
2251 
2252 	for (i = 0; i < sg_count; i++) {
2253 		len_complete = sg_len; /* Complete sg-entries */
2254 		sg_len += sg[i].length;
2255 		if (sg_len > *offset)
2256 			break;
2257 	}
2258 
2259 	if (unlikely(i == sg_count)) {
2260 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2261 			"elements %d\n",
2262 		       __FUNCTION__, sg_len, *offset, sg_count);
2263 		WARN_ON(1);
2264 		return NULL;
2265 	}
2266 
2267 	/* Offset starting from the beginning of first page in this sg-entry */
2268 	*offset = *offset - len_complete + sg[i].offset;
2269 
2270 	/* Assumption: contiguous pages can be accessed as "page + i" */
2271 	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2272 	*offset &= ~PAGE_MASK;
2273 
2274 	/* Bytes in this sg-entry from *offset to the end of the page */
2275 	sg_len = PAGE_SIZE - *offset;
2276 	if (*len > sg_len)
2277 		*len = sg_len;
2278 
2279 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2280 }
2281 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2282 
2283 /**
2284  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2285  *			   mapped with scsi_kmap_atomic_sg
2286  * @virt:	virtual address to be unmapped
2287  */
2288 void scsi_kunmap_atomic_sg(void *virt)
2289 {
2290 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2291 }
2292 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2293