1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sdb_cache; 56 static struct kmem_cache *scsi_sense_cache; 57 static struct kmem_cache *scsi_sense_isadma_cache; 58 static DEFINE_MUTEX(scsi_sense_cache_mutex); 59 60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 61 62 static inline struct kmem_cache * 63 scsi_select_sense_cache(bool unchecked_isa_dma) 64 { 65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 66 } 67 68 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 69 unsigned char *sense_buffer) 70 { 71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 72 sense_buffer); 73 } 74 75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 76 gfp_t gfp_mask, int numa_node) 77 { 78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 79 gfp_mask, numa_node); 80 } 81 82 int scsi_init_sense_cache(struct Scsi_Host *shost) 83 { 84 struct kmem_cache *cache; 85 int ret = 0; 86 87 mutex_lock(&scsi_sense_cache_mutex); 88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 89 if (cache) 90 goto exit; 91 92 if (shost->unchecked_isa_dma) { 93 scsi_sense_isadma_cache = 94 kmem_cache_create("scsi_sense_cache(DMA)", 95 SCSI_SENSE_BUFFERSIZE, 0, 96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 97 if (!scsi_sense_isadma_cache) 98 ret = -ENOMEM; 99 } else { 100 scsi_sense_cache = 101 kmem_cache_create_usercopy("scsi_sense_cache", 102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 103 0, SCSI_SENSE_BUFFERSIZE, NULL); 104 if (!scsi_sense_cache) 105 ret = -ENOMEM; 106 } 107 exit: 108 mutex_unlock(&scsi_sense_cache_mutex); 109 return ret; 110 } 111 112 /* 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 114 * not change behaviour from the previous unplug mechanism, experimentation 115 * may prove this needs changing. 116 */ 117 #define SCSI_QUEUE_DELAY 3 118 119 static void 120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 121 { 122 struct Scsi_Host *host = cmd->device->host; 123 struct scsi_device *device = cmd->device; 124 struct scsi_target *starget = scsi_target(device); 125 126 /* 127 * Set the appropriate busy bit for the device/host. 128 * 129 * If the host/device isn't busy, assume that something actually 130 * completed, and that we should be able to queue a command now. 131 * 132 * Note that the prior mid-layer assumption that any host could 133 * always queue at least one command is now broken. The mid-layer 134 * will implement a user specifiable stall (see 135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 136 * if a command is requeued with no other commands outstanding 137 * either for the device or for the host. 138 */ 139 switch (reason) { 140 case SCSI_MLQUEUE_HOST_BUSY: 141 atomic_set(&host->host_blocked, host->max_host_blocked); 142 break; 143 case SCSI_MLQUEUE_DEVICE_BUSY: 144 case SCSI_MLQUEUE_EH_RETRY: 145 atomic_set(&device->device_blocked, 146 device->max_device_blocked); 147 break; 148 case SCSI_MLQUEUE_TARGET_BUSY: 149 atomic_set(&starget->target_blocked, 150 starget->max_target_blocked); 151 break; 152 } 153 } 154 155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 156 { 157 if (cmd->request->rq_flags & RQF_DONTPREP) { 158 cmd->request->rq_flags &= ~RQF_DONTPREP; 159 scsi_mq_uninit_cmd(cmd); 160 } else { 161 WARN_ON_ONCE(true); 162 } 163 blk_mq_requeue_request(cmd->request, true); 164 } 165 166 /** 167 * __scsi_queue_insert - private queue insertion 168 * @cmd: The SCSI command being requeued 169 * @reason: The reason for the requeue 170 * @unbusy: Whether the queue should be unbusied 171 * 172 * This is a private queue insertion. The public interface 173 * scsi_queue_insert() always assumes the queue should be unbusied 174 * because it's always called before the completion. This function is 175 * for a requeue after completion, which should only occur in this 176 * file. 177 */ 178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 179 { 180 struct scsi_device *device = cmd->device; 181 182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 183 "Inserting command %p into mlqueue\n", cmd)); 184 185 scsi_set_blocked(cmd, reason); 186 187 /* 188 * Decrement the counters, since these commands are no longer 189 * active on the host/device. 190 */ 191 if (unbusy) 192 scsi_device_unbusy(device, cmd); 193 194 /* 195 * Requeue this command. It will go before all other commands 196 * that are already in the queue. Schedule requeue work under 197 * lock such that the kblockd_schedule_work() call happens 198 * before blk_cleanup_queue() finishes. 199 */ 200 cmd->result = 0; 201 202 blk_mq_requeue_request(cmd->request, true); 203 } 204 205 /* 206 * Function: scsi_queue_insert() 207 * 208 * Purpose: Insert a command in the midlevel queue. 209 * 210 * Arguments: cmd - command that we are adding to queue. 211 * reason - why we are inserting command to queue. 212 * 213 * Lock status: Assumed that lock is not held upon entry. 214 * 215 * Returns: Nothing. 216 * 217 * Notes: We do this for one of two cases. Either the host is busy 218 * and it cannot accept any more commands for the time being, 219 * or the device returned QUEUE_FULL and can accept no more 220 * commands. 221 * Notes: This could be called either from an interrupt context or a 222 * normal process context. 223 */ 224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 225 { 226 __scsi_queue_insert(cmd, reason, true); 227 } 228 229 230 /** 231 * __scsi_execute - insert request and wait for the result 232 * @sdev: scsi device 233 * @cmd: scsi command 234 * @data_direction: data direction 235 * @buffer: data buffer 236 * @bufflen: len of buffer 237 * @sense: optional sense buffer 238 * @sshdr: optional decoded sense header 239 * @timeout: request timeout in seconds 240 * @retries: number of times to retry request 241 * @flags: flags for ->cmd_flags 242 * @rq_flags: flags for ->rq_flags 243 * @resid: optional residual length 244 * 245 * Returns the scsi_cmnd result field if a command was executed, or a negative 246 * Linux error code if we didn't get that far. 247 */ 248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 249 int data_direction, void *buffer, unsigned bufflen, 250 unsigned char *sense, struct scsi_sense_hdr *sshdr, 251 int timeout, int retries, u64 flags, req_flags_t rq_flags, 252 int *resid) 253 { 254 struct request *req; 255 struct scsi_request *rq; 256 int ret = DRIVER_ERROR << 24; 257 258 req = blk_get_request(sdev->request_queue, 259 data_direction == DMA_TO_DEVICE ? 260 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 261 if (IS_ERR(req)) 262 return ret; 263 rq = scsi_req(req); 264 265 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 266 buffer, bufflen, GFP_NOIO)) 267 goto out; 268 269 rq->cmd_len = COMMAND_SIZE(cmd[0]); 270 memcpy(rq->cmd, cmd, rq->cmd_len); 271 rq->retries = retries; 272 req->timeout = timeout; 273 req->cmd_flags |= flags; 274 req->rq_flags |= rq_flags | RQF_QUIET; 275 276 /* 277 * head injection *required* here otherwise quiesce won't work 278 */ 279 blk_execute_rq(req->q, NULL, req, 1); 280 281 /* 282 * Some devices (USB mass-storage in particular) may transfer 283 * garbage data together with a residue indicating that the data 284 * is invalid. Prevent the garbage from being misinterpreted 285 * and prevent security leaks by zeroing out the excess data. 286 */ 287 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 288 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 289 290 if (resid) 291 *resid = rq->resid_len; 292 if (sense && rq->sense_len) 293 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 294 if (sshdr) 295 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 296 ret = rq->result; 297 out: 298 blk_put_request(req); 299 300 return ret; 301 } 302 EXPORT_SYMBOL(__scsi_execute); 303 304 /* 305 * Function: scsi_init_cmd_errh() 306 * 307 * Purpose: Initialize cmd fields related to error handling. 308 * 309 * Arguments: cmd - command that is ready to be queued. 310 * 311 * Notes: This function has the job of initializing a number of 312 * fields related to error handling. Typically this will 313 * be called once for each command, as required. 314 */ 315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 316 { 317 scsi_set_resid(cmd, 0); 318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 319 if (cmd->cmd_len == 0) 320 cmd->cmd_len = scsi_command_size(cmd->cmnd); 321 } 322 323 /* 324 * Wake up the error handler if necessary. Avoid as follows that the error 325 * handler is not woken up if host in-flight requests number == 326 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 327 * with an RCU read lock in this function to ensure that this function in 328 * its entirety either finishes before scsi_eh_scmd_add() increases the 329 * host_failed counter or that it notices the shost state change made by 330 * scsi_eh_scmd_add(). 331 */ 332 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 333 { 334 unsigned long flags; 335 336 rcu_read_lock(); 337 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 338 if (unlikely(scsi_host_in_recovery(shost))) { 339 spin_lock_irqsave(shost->host_lock, flags); 340 if (shost->host_failed || shost->host_eh_scheduled) 341 scsi_eh_wakeup(shost); 342 spin_unlock_irqrestore(shost->host_lock, flags); 343 } 344 rcu_read_unlock(); 345 } 346 347 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 348 { 349 struct Scsi_Host *shost = sdev->host; 350 struct scsi_target *starget = scsi_target(sdev); 351 352 scsi_dec_host_busy(shost, cmd); 353 354 if (starget->can_queue > 0) 355 atomic_dec(&starget->target_busy); 356 357 atomic_dec(&sdev->device_busy); 358 } 359 360 static void scsi_kick_queue(struct request_queue *q) 361 { 362 blk_mq_run_hw_queues(q, false); 363 } 364 365 /* 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 367 * and call blk_run_queue for all the scsi_devices on the target - 368 * including current_sdev first. 369 * 370 * Called with *no* scsi locks held. 371 */ 372 static void scsi_single_lun_run(struct scsi_device *current_sdev) 373 { 374 struct Scsi_Host *shost = current_sdev->host; 375 struct scsi_device *sdev, *tmp; 376 struct scsi_target *starget = scsi_target(current_sdev); 377 unsigned long flags; 378 379 spin_lock_irqsave(shost->host_lock, flags); 380 starget->starget_sdev_user = NULL; 381 spin_unlock_irqrestore(shost->host_lock, flags); 382 383 /* 384 * Call blk_run_queue for all LUNs on the target, starting with 385 * current_sdev. We race with others (to set starget_sdev_user), 386 * but in most cases, we will be first. Ideally, each LU on the 387 * target would get some limited time or requests on the target. 388 */ 389 scsi_kick_queue(current_sdev->request_queue); 390 391 spin_lock_irqsave(shost->host_lock, flags); 392 if (starget->starget_sdev_user) 393 goto out; 394 list_for_each_entry_safe(sdev, tmp, &starget->devices, 395 same_target_siblings) { 396 if (sdev == current_sdev) 397 continue; 398 if (scsi_device_get(sdev)) 399 continue; 400 401 spin_unlock_irqrestore(shost->host_lock, flags); 402 scsi_kick_queue(sdev->request_queue); 403 spin_lock_irqsave(shost->host_lock, flags); 404 405 scsi_device_put(sdev); 406 } 407 out: 408 spin_unlock_irqrestore(shost->host_lock, flags); 409 } 410 411 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 412 { 413 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 414 return true; 415 if (atomic_read(&sdev->device_blocked) > 0) 416 return true; 417 return false; 418 } 419 420 static inline bool scsi_target_is_busy(struct scsi_target *starget) 421 { 422 if (starget->can_queue > 0) { 423 if (atomic_read(&starget->target_busy) >= starget->can_queue) 424 return true; 425 if (atomic_read(&starget->target_blocked) > 0) 426 return true; 427 } 428 return false; 429 } 430 431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 432 { 433 if (atomic_read(&shost->host_blocked) > 0) 434 return true; 435 if (shost->host_self_blocked) 436 return true; 437 return false; 438 } 439 440 static void scsi_starved_list_run(struct Scsi_Host *shost) 441 { 442 LIST_HEAD(starved_list); 443 struct scsi_device *sdev; 444 unsigned long flags; 445 446 spin_lock_irqsave(shost->host_lock, flags); 447 list_splice_init(&shost->starved_list, &starved_list); 448 449 while (!list_empty(&starved_list)) { 450 struct request_queue *slq; 451 452 /* 453 * As long as shost is accepting commands and we have 454 * starved queues, call blk_run_queue. scsi_request_fn 455 * drops the queue_lock and can add us back to the 456 * starved_list. 457 * 458 * host_lock protects the starved_list and starved_entry. 459 * scsi_request_fn must get the host_lock before checking 460 * or modifying starved_list or starved_entry. 461 */ 462 if (scsi_host_is_busy(shost)) 463 break; 464 465 sdev = list_entry(starved_list.next, 466 struct scsi_device, starved_entry); 467 list_del_init(&sdev->starved_entry); 468 if (scsi_target_is_busy(scsi_target(sdev))) { 469 list_move_tail(&sdev->starved_entry, 470 &shost->starved_list); 471 continue; 472 } 473 474 /* 475 * Once we drop the host lock, a racing scsi_remove_device() 476 * call may remove the sdev from the starved list and destroy 477 * it and the queue. Mitigate by taking a reference to the 478 * queue and never touching the sdev again after we drop the 479 * host lock. Note: if __scsi_remove_device() invokes 480 * blk_cleanup_queue() before the queue is run from this 481 * function then blk_run_queue() will return immediately since 482 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 483 */ 484 slq = sdev->request_queue; 485 if (!blk_get_queue(slq)) 486 continue; 487 spin_unlock_irqrestore(shost->host_lock, flags); 488 489 scsi_kick_queue(slq); 490 blk_put_queue(slq); 491 492 spin_lock_irqsave(shost->host_lock, flags); 493 } 494 /* put any unprocessed entries back */ 495 list_splice(&starved_list, &shost->starved_list); 496 spin_unlock_irqrestore(shost->host_lock, flags); 497 } 498 499 /* 500 * Function: scsi_run_queue() 501 * 502 * Purpose: Select a proper request queue to serve next 503 * 504 * Arguments: q - last request's queue 505 * 506 * Returns: Nothing 507 * 508 * Notes: The previous command was completely finished, start 509 * a new one if possible. 510 */ 511 static void scsi_run_queue(struct request_queue *q) 512 { 513 struct scsi_device *sdev = q->queuedata; 514 515 if (scsi_target(sdev)->single_lun) 516 scsi_single_lun_run(sdev); 517 if (!list_empty(&sdev->host->starved_list)) 518 scsi_starved_list_run(sdev->host); 519 520 blk_mq_run_hw_queues(q, false); 521 } 522 523 void scsi_requeue_run_queue(struct work_struct *work) 524 { 525 struct scsi_device *sdev; 526 struct request_queue *q; 527 528 sdev = container_of(work, struct scsi_device, requeue_work); 529 q = sdev->request_queue; 530 scsi_run_queue(q); 531 } 532 533 void scsi_run_host_queues(struct Scsi_Host *shost) 534 { 535 struct scsi_device *sdev; 536 537 shost_for_each_device(sdev, shost) 538 scsi_run_queue(sdev->request_queue); 539 } 540 541 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 542 { 543 if (!blk_rq_is_passthrough(cmd->request)) { 544 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 545 546 if (drv->uninit_command) 547 drv->uninit_command(cmd); 548 } 549 } 550 551 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 552 { 553 if (cmd->sdb.table.nents) 554 sg_free_table_chained(&cmd->sdb.table, 555 SCSI_INLINE_SG_CNT); 556 if (scsi_prot_sg_count(cmd)) 557 sg_free_table_chained(&cmd->prot_sdb->table, 558 SCSI_INLINE_PROT_SG_CNT); 559 } 560 561 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 562 { 563 scsi_mq_free_sgtables(cmd); 564 scsi_uninit_cmd(cmd); 565 scsi_del_cmd_from_list(cmd); 566 } 567 568 /* Returns false when no more bytes to process, true if there are more */ 569 static bool scsi_end_request(struct request *req, blk_status_t error, 570 unsigned int bytes) 571 { 572 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 573 struct scsi_device *sdev = cmd->device; 574 struct request_queue *q = sdev->request_queue; 575 576 if (blk_update_request(req, error, bytes)) 577 return true; 578 579 if (blk_queue_add_random(q)) 580 add_disk_randomness(req->rq_disk); 581 582 if (!blk_rq_is_scsi(req)) { 583 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 584 cmd->flags &= ~SCMD_INITIALIZED; 585 } 586 587 /* 588 * Calling rcu_barrier() is not necessary here because the 589 * SCSI error handler guarantees that the function called by 590 * call_rcu() has been called before scsi_end_request() is 591 * called. 592 */ 593 destroy_rcu_head(&cmd->rcu); 594 595 /* 596 * In the MQ case the command gets freed by __blk_mq_end_request, 597 * so we have to do all cleanup that depends on it earlier. 598 * 599 * We also can't kick the queues from irq context, so we 600 * will have to defer it to a workqueue. 601 */ 602 scsi_mq_uninit_cmd(cmd); 603 604 /* 605 * queue is still alive, so grab the ref for preventing it 606 * from being cleaned up during running queue. 607 */ 608 percpu_ref_get(&q->q_usage_counter); 609 610 __blk_mq_end_request(req, error); 611 612 if (scsi_target(sdev)->single_lun || 613 !list_empty(&sdev->host->starved_list)) 614 kblockd_schedule_work(&sdev->requeue_work); 615 else 616 blk_mq_run_hw_queues(q, true); 617 618 percpu_ref_put(&q->q_usage_counter); 619 return false; 620 } 621 622 /** 623 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 624 * @cmd: SCSI command 625 * @result: scsi error code 626 * 627 * Translate a SCSI result code into a blk_status_t value. May reset the host 628 * byte of @cmd->result. 629 */ 630 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 631 { 632 switch (host_byte(result)) { 633 case DID_OK: 634 /* 635 * Also check the other bytes than the status byte in result 636 * to handle the case when a SCSI LLD sets result to 637 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 638 */ 639 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 640 return BLK_STS_OK; 641 return BLK_STS_IOERR; 642 case DID_TRANSPORT_FAILFAST: 643 return BLK_STS_TRANSPORT; 644 case DID_TARGET_FAILURE: 645 set_host_byte(cmd, DID_OK); 646 return BLK_STS_TARGET; 647 case DID_NEXUS_FAILURE: 648 set_host_byte(cmd, DID_OK); 649 return BLK_STS_NEXUS; 650 case DID_ALLOC_FAILURE: 651 set_host_byte(cmd, DID_OK); 652 return BLK_STS_NOSPC; 653 case DID_MEDIUM_ERROR: 654 set_host_byte(cmd, DID_OK); 655 return BLK_STS_MEDIUM; 656 default: 657 return BLK_STS_IOERR; 658 } 659 } 660 661 /* Helper for scsi_io_completion() when "reprep" action required. */ 662 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 663 struct request_queue *q) 664 { 665 /* A new command will be prepared and issued. */ 666 scsi_mq_requeue_cmd(cmd); 667 } 668 669 /* Helper for scsi_io_completion() when special action required. */ 670 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 671 { 672 struct request_queue *q = cmd->device->request_queue; 673 struct request *req = cmd->request; 674 int level = 0; 675 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 676 ACTION_DELAYED_RETRY} action; 677 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 678 struct scsi_sense_hdr sshdr; 679 bool sense_valid; 680 bool sense_current = true; /* false implies "deferred sense" */ 681 blk_status_t blk_stat; 682 683 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 684 if (sense_valid) 685 sense_current = !scsi_sense_is_deferred(&sshdr); 686 687 blk_stat = scsi_result_to_blk_status(cmd, result); 688 689 if (host_byte(result) == DID_RESET) { 690 /* Third party bus reset or reset for error recovery 691 * reasons. Just retry the command and see what 692 * happens. 693 */ 694 action = ACTION_RETRY; 695 } else if (sense_valid && sense_current) { 696 switch (sshdr.sense_key) { 697 case UNIT_ATTENTION: 698 if (cmd->device->removable) { 699 /* Detected disc change. Set a bit 700 * and quietly refuse further access. 701 */ 702 cmd->device->changed = 1; 703 action = ACTION_FAIL; 704 } else { 705 /* Must have been a power glitch, or a 706 * bus reset. Could not have been a 707 * media change, so we just retry the 708 * command and see what happens. 709 */ 710 action = ACTION_RETRY; 711 } 712 break; 713 case ILLEGAL_REQUEST: 714 /* If we had an ILLEGAL REQUEST returned, then 715 * we may have performed an unsupported 716 * command. The only thing this should be 717 * would be a ten byte read where only a six 718 * byte read was supported. Also, on a system 719 * where READ CAPACITY failed, we may have 720 * read past the end of the disk. 721 */ 722 if ((cmd->device->use_10_for_rw && 723 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 724 (cmd->cmnd[0] == READ_10 || 725 cmd->cmnd[0] == WRITE_10)) { 726 /* This will issue a new 6-byte command. */ 727 cmd->device->use_10_for_rw = 0; 728 action = ACTION_REPREP; 729 } else if (sshdr.asc == 0x10) /* DIX */ { 730 action = ACTION_FAIL; 731 blk_stat = BLK_STS_PROTECTION; 732 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 733 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 734 action = ACTION_FAIL; 735 blk_stat = BLK_STS_TARGET; 736 } else 737 action = ACTION_FAIL; 738 break; 739 case ABORTED_COMMAND: 740 action = ACTION_FAIL; 741 if (sshdr.asc == 0x10) /* DIF */ 742 blk_stat = BLK_STS_PROTECTION; 743 break; 744 case NOT_READY: 745 /* If the device is in the process of becoming 746 * ready, or has a temporary blockage, retry. 747 */ 748 if (sshdr.asc == 0x04) { 749 switch (sshdr.ascq) { 750 case 0x01: /* becoming ready */ 751 case 0x04: /* format in progress */ 752 case 0x05: /* rebuild in progress */ 753 case 0x06: /* recalculation in progress */ 754 case 0x07: /* operation in progress */ 755 case 0x08: /* Long write in progress */ 756 case 0x09: /* self test in progress */ 757 case 0x14: /* space allocation in progress */ 758 case 0x1a: /* start stop unit in progress */ 759 case 0x1b: /* sanitize in progress */ 760 case 0x1d: /* configuration in progress */ 761 case 0x24: /* depopulation in progress */ 762 action = ACTION_DELAYED_RETRY; 763 break; 764 default: 765 action = ACTION_FAIL; 766 break; 767 } 768 } else 769 action = ACTION_FAIL; 770 break; 771 case VOLUME_OVERFLOW: 772 /* See SSC3rXX or current. */ 773 action = ACTION_FAIL; 774 break; 775 default: 776 action = ACTION_FAIL; 777 break; 778 } 779 } else 780 action = ACTION_FAIL; 781 782 if (action != ACTION_FAIL && 783 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 784 action = ACTION_FAIL; 785 786 switch (action) { 787 case ACTION_FAIL: 788 /* Give up and fail the remainder of the request */ 789 if (!(req->rq_flags & RQF_QUIET)) { 790 static DEFINE_RATELIMIT_STATE(_rs, 791 DEFAULT_RATELIMIT_INTERVAL, 792 DEFAULT_RATELIMIT_BURST); 793 794 if (unlikely(scsi_logging_level)) 795 level = 796 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 797 SCSI_LOG_MLCOMPLETE_BITS); 798 799 /* 800 * if logging is enabled the failure will be printed 801 * in scsi_log_completion(), so avoid duplicate messages 802 */ 803 if (!level && __ratelimit(&_rs)) { 804 scsi_print_result(cmd, NULL, FAILED); 805 if (driver_byte(result) == DRIVER_SENSE) 806 scsi_print_sense(cmd); 807 scsi_print_command(cmd); 808 } 809 } 810 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 811 return; 812 /*FALLTHRU*/ 813 case ACTION_REPREP: 814 scsi_io_completion_reprep(cmd, q); 815 break; 816 case ACTION_RETRY: 817 /* Retry the same command immediately */ 818 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 819 break; 820 case ACTION_DELAYED_RETRY: 821 /* Retry the same command after a delay */ 822 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 823 break; 824 } 825 } 826 827 /* 828 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 829 * new result that may suppress further error checking. Also modifies 830 * *blk_statp in some cases. 831 */ 832 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 833 blk_status_t *blk_statp) 834 { 835 bool sense_valid; 836 bool sense_current = true; /* false implies "deferred sense" */ 837 struct request *req = cmd->request; 838 struct scsi_sense_hdr sshdr; 839 840 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 841 if (sense_valid) 842 sense_current = !scsi_sense_is_deferred(&sshdr); 843 844 if (blk_rq_is_passthrough(req)) { 845 if (sense_valid) { 846 /* 847 * SG_IO wants current and deferred errors 848 */ 849 scsi_req(req)->sense_len = 850 min(8 + cmd->sense_buffer[7], 851 SCSI_SENSE_BUFFERSIZE); 852 } 853 if (sense_current) 854 *blk_statp = scsi_result_to_blk_status(cmd, result); 855 } else if (blk_rq_bytes(req) == 0 && sense_current) { 856 /* 857 * Flush commands do not transfers any data, and thus cannot use 858 * good_bytes != blk_rq_bytes(req) as the signal for an error. 859 * This sets *blk_statp explicitly for the problem case. 860 */ 861 *blk_statp = scsi_result_to_blk_status(cmd, result); 862 } 863 /* 864 * Recovered errors need reporting, but they're always treated as 865 * success, so fiddle the result code here. For passthrough requests 866 * we already took a copy of the original into sreq->result which 867 * is what gets returned to the user 868 */ 869 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 870 bool do_print = true; 871 /* 872 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 873 * skip print since caller wants ATA registers. Only occurs 874 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 875 */ 876 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 877 do_print = false; 878 else if (req->rq_flags & RQF_QUIET) 879 do_print = false; 880 if (do_print) 881 scsi_print_sense(cmd); 882 result = 0; 883 /* for passthrough, *blk_statp may be set */ 884 *blk_statp = BLK_STS_OK; 885 } 886 /* 887 * Another corner case: the SCSI status byte is non-zero but 'good'. 888 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 889 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 890 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 891 * intermediate statuses (both obsolete in SAM-4) as good. 892 */ 893 if (status_byte(result) && scsi_status_is_good(result)) { 894 result = 0; 895 *blk_statp = BLK_STS_OK; 896 } 897 return result; 898 } 899 900 /* 901 * Function: scsi_io_completion() 902 * 903 * Purpose: Completion processing for block device I/O requests. 904 * 905 * Arguments: cmd - command that is finished. 906 * 907 * Lock status: Assumed that no lock is held upon entry. 908 * 909 * Returns: Nothing 910 * 911 * Notes: We will finish off the specified number of sectors. If we 912 * are done, the command block will be released and the queue 913 * function will be goosed. If we are not done then we have to 914 * figure out what to do next: 915 * 916 * a) We can call scsi_requeue_command(). The request 917 * will be unprepared and put back on the queue. Then 918 * a new command will be created for it. This should 919 * be used if we made forward progress, or if we want 920 * to switch from READ(10) to READ(6) for example. 921 * 922 * b) We can call __scsi_queue_insert(). The request will 923 * be put back on the queue and retried using the same 924 * command as before, possibly after a delay. 925 * 926 * c) We can call scsi_end_request() with blk_stat other than 927 * BLK_STS_OK, to fail the remainder of the request. 928 */ 929 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 930 { 931 int result = cmd->result; 932 struct request_queue *q = cmd->device->request_queue; 933 struct request *req = cmd->request; 934 blk_status_t blk_stat = BLK_STS_OK; 935 936 if (unlikely(result)) /* a nz result may or may not be an error */ 937 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 938 939 if (unlikely(blk_rq_is_passthrough(req))) { 940 /* 941 * scsi_result_to_blk_status may have reset the host_byte 942 */ 943 scsi_req(req)->result = cmd->result; 944 } 945 946 /* 947 * Next deal with any sectors which we were able to correctly 948 * handle. 949 */ 950 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 951 "%u sectors total, %d bytes done.\n", 952 blk_rq_sectors(req), good_bytes)); 953 954 /* 955 * Next deal with any sectors which we were able to correctly 956 * handle. Failed, zero length commands always need to drop down 957 * to retry code. Fast path should return in this block. 958 */ 959 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 960 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 961 return; /* no bytes remaining */ 962 } 963 964 /* Kill remainder if no retries. */ 965 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 966 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 967 WARN_ONCE(true, 968 "Bytes remaining after failed, no-retry command"); 969 return; 970 } 971 972 /* 973 * If there had been no error, but we have leftover bytes in the 974 * requeues just queue the command up again. 975 */ 976 if (likely(result == 0)) 977 scsi_io_completion_reprep(cmd, q); 978 else 979 scsi_io_completion_action(cmd, result); 980 } 981 982 static blk_status_t scsi_init_sgtable(struct request *req, 983 struct scsi_data_buffer *sdb) 984 { 985 int count; 986 987 /* 988 * If sg table allocation fails, requeue request later. 989 */ 990 if (unlikely(sg_alloc_table_chained(&sdb->table, 991 blk_rq_nr_phys_segments(req), sdb->table.sgl, 992 SCSI_INLINE_SG_CNT))) 993 return BLK_STS_RESOURCE; 994 995 /* 996 * Next, walk the list, and fill in the addresses and sizes of 997 * each segment. 998 */ 999 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1000 BUG_ON(count > sdb->table.nents); 1001 sdb->table.nents = count; 1002 sdb->length = blk_rq_payload_bytes(req); 1003 return BLK_STS_OK; 1004 } 1005 1006 /* 1007 * Function: scsi_init_io() 1008 * 1009 * Purpose: SCSI I/O initialize function. 1010 * 1011 * Arguments: cmd - Command descriptor we wish to initialize 1012 * 1013 * Returns: BLK_STS_OK on success 1014 * BLK_STS_RESOURCE if the failure is retryable 1015 * BLK_STS_IOERR if the failure is fatal 1016 */ 1017 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1018 { 1019 struct request *rq = cmd->request; 1020 blk_status_t ret; 1021 1022 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1023 return BLK_STS_IOERR; 1024 1025 ret = scsi_init_sgtable(rq, &cmd->sdb); 1026 if (ret) 1027 return ret; 1028 1029 if (blk_integrity_rq(rq)) { 1030 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1031 int ivecs, count; 1032 1033 if (WARN_ON_ONCE(!prot_sdb)) { 1034 /* 1035 * This can happen if someone (e.g. multipath) 1036 * queues a command to a device on an adapter 1037 * that does not support DIX. 1038 */ 1039 ret = BLK_STS_IOERR; 1040 goto out_free_sgtables; 1041 } 1042 1043 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1044 1045 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1046 prot_sdb->table.sgl, 1047 SCSI_INLINE_PROT_SG_CNT)) { 1048 ret = BLK_STS_RESOURCE; 1049 goto out_free_sgtables; 1050 } 1051 1052 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1053 prot_sdb->table.sgl); 1054 BUG_ON(count > ivecs); 1055 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1056 1057 cmd->prot_sdb = prot_sdb; 1058 cmd->prot_sdb->table.nents = count; 1059 } 1060 1061 return BLK_STS_OK; 1062 out_free_sgtables: 1063 scsi_mq_free_sgtables(cmd); 1064 return ret; 1065 } 1066 EXPORT_SYMBOL(scsi_init_io); 1067 1068 /** 1069 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1070 * @rq: Request associated with the SCSI command to be initialized. 1071 * 1072 * This function initializes the members of struct scsi_cmnd that must be 1073 * initialized before request processing starts and that won't be 1074 * reinitialized if a SCSI command is requeued. 1075 * 1076 * Called from inside blk_get_request() for pass-through requests and from 1077 * inside scsi_init_command() for filesystem requests. 1078 */ 1079 static void scsi_initialize_rq(struct request *rq) 1080 { 1081 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1082 1083 scsi_req_init(&cmd->req); 1084 init_rcu_head(&cmd->rcu); 1085 cmd->jiffies_at_alloc = jiffies; 1086 cmd->retries = 0; 1087 } 1088 1089 /* 1090 * Only called when the request isn't completed by SCSI, and not freed by 1091 * SCSI 1092 */ 1093 static void scsi_cleanup_rq(struct request *rq) 1094 { 1095 if (rq->rq_flags & RQF_DONTPREP) { 1096 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1097 rq->rq_flags &= ~RQF_DONTPREP; 1098 } 1099 } 1100 1101 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1102 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1103 { 1104 struct scsi_device *sdev = cmd->device; 1105 struct Scsi_Host *shost = sdev->host; 1106 unsigned long flags; 1107 1108 if (shost->use_cmd_list) { 1109 spin_lock_irqsave(&sdev->list_lock, flags); 1110 list_add_tail(&cmd->list, &sdev->cmd_list); 1111 spin_unlock_irqrestore(&sdev->list_lock, flags); 1112 } 1113 } 1114 1115 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1116 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1117 { 1118 struct scsi_device *sdev = cmd->device; 1119 struct Scsi_Host *shost = sdev->host; 1120 unsigned long flags; 1121 1122 if (shost->use_cmd_list) { 1123 spin_lock_irqsave(&sdev->list_lock, flags); 1124 BUG_ON(list_empty(&cmd->list)); 1125 list_del_init(&cmd->list); 1126 spin_unlock_irqrestore(&sdev->list_lock, flags); 1127 } 1128 } 1129 1130 /* Called after a request has been started. */ 1131 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1132 { 1133 void *buf = cmd->sense_buffer; 1134 void *prot = cmd->prot_sdb; 1135 struct request *rq = blk_mq_rq_from_pdu(cmd); 1136 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1137 unsigned long jiffies_at_alloc; 1138 int retries; 1139 bool in_flight; 1140 1141 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1142 flags |= SCMD_INITIALIZED; 1143 scsi_initialize_rq(rq); 1144 } 1145 1146 jiffies_at_alloc = cmd->jiffies_at_alloc; 1147 retries = cmd->retries; 1148 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1149 /* zero out the cmd, except for the embedded scsi_request */ 1150 memset((char *)cmd + sizeof(cmd->req), 0, 1151 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1152 1153 cmd->device = dev; 1154 cmd->sense_buffer = buf; 1155 cmd->prot_sdb = prot; 1156 cmd->flags = flags; 1157 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1158 cmd->jiffies_at_alloc = jiffies_at_alloc; 1159 cmd->retries = retries; 1160 if (in_flight) 1161 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1162 1163 scsi_add_cmd_to_list(cmd); 1164 } 1165 1166 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1167 struct request *req) 1168 { 1169 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1170 1171 /* 1172 * Passthrough requests may transfer data, in which case they must 1173 * a bio attached to them. Or they might contain a SCSI command 1174 * that does not transfer data, in which case they may optionally 1175 * submit a request without an attached bio. 1176 */ 1177 if (req->bio) { 1178 blk_status_t ret = scsi_init_io(cmd); 1179 if (unlikely(ret != BLK_STS_OK)) 1180 return ret; 1181 } else { 1182 BUG_ON(blk_rq_bytes(req)); 1183 1184 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1185 } 1186 1187 cmd->cmd_len = scsi_req(req)->cmd_len; 1188 cmd->cmnd = scsi_req(req)->cmd; 1189 cmd->transfersize = blk_rq_bytes(req); 1190 cmd->allowed = scsi_req(req)->retries; 1191 return BLK_STS_OK; 1192 } 1193 1194 /* 1195 * Setup a normal block command. These are simple request from filesystems 1196 * that still need to be translated to SCSI CDBs from the ULD. 1197 */ 1198 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1199 struct request *req) 1200 { 1201 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1202 1203 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1204 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1205 if (ret != BLK_STS_OK) 1206 return ret; 1207 } 1208 1209 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1210 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1211 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1212 } 1213 1214 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1215 struct request *req) 1216 { 1217 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1218 1219 if (!blk_rq_bytes(req)) 1220 cmd->sc_data_direction = DMA_NONE; 1221 else if (rq_data_dir(req) == WRITE) 1222 cmd->sc_data_direction = DMA_TO_DEVICE; 1223 else 1224 cmd->sc_data_direction = DMA_FROM_DEVICE; 1225 1226 if (blk_rq_is_scsi(req)) 1227 return scsi_setup_scsi_cmnd(sdev, req); 1228 else 1229 return scsi_setup_fs_cmnd(sdev, req); 1230 } 1231 1232 static blk_status_t 1233 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1234 { 1235 switch (sdev->sdev_state) { 1236 case SDEV_OFFLINE: 1237 case SDEV_TRANSPORT_OFFLINE: 1238 /* 1239 * If the device is offline we refuse to process any 1240 * commands. The device must be brought online 1241 * before trying any recovery commands. 1242 */ 1243 sdev_printk(KERN_ERR, sdev, 1244 "rejecting I/O to offline device\n"); 1245 return BLK_STS_IOERR; 1246 case SDEV_DEL: 1247 /* 1248 * If the device is fully deleted, we refuse to 1249 * process any commands as well. 1250 */ 1251 sdev_printk(KERN_ERR, sdev, 1252 "rejecting I/O to dead device\n"); 1253 return BLK_STS_IOERR; 1254 case SDEV_BLOCK: 1255 case SDEV_CREATED_BLOCK: 1256 return BLK_STS_RESOURCE; 1257 case SDEV_QUIESCE: 1258 /* 1259 * If the devices is blocked we defer normal commands. 1260 */ 1261 if (req && !(req->rq_flags & RQF_PREEMPT)) 1262 return BLK_STS_RESOURCE; 1263 return BLK_STS_OK; 1264 default: 1265 /* 1266 * For any other not fully online state we only allow 1267 * special commands. In particular any user initiated 1268 * command is not allowed. 1269 */ 1270 if (req && !(req->rq_flags & RQF_PREEMPT)) 1271 return BLK_STS_IOERR; 1272 return BLK_STS_OK; 1273 } 1274 } 1275 1276 /* 1277 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1278 * return 0. 1279 * 1280 * Called with the queue_lock held. 1281 */ 1282 static inline int scsi_dev_queue_ready(struct request_queue *q, 1283 struct scsi_device *sdev) 1284 { 1285 unsigned int busy; 1286 1287 busy = atomic_inc_return(&sdev->device_busy) - 1; 1288 if (atomic_read(&sdev->device_blocked)) { 1289 if (busy) 1290 goto out_dec; 1291 1292 /* 1293 * unblock after device_blocked iterates to zero 1294 */ 1295 if (atomic_dec_return(&sdev->device_blocked) > 0) 1296 goto out_dec; 1297 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1298 "unblocking device at zero depth\n")); 1299 } 1300 1301 if (busy >= sdev->queue_depth) 1302 goto out_dec; 1303 1304 return 1; 1305 out_dec: 1306 atomic_dec(&sdev->device_busy); 1307 return 0; 1308 } 1309 1310 /* 1311 * scsi_target_queue_ready: checks if there we can send commands to target 1312 * @sdev: scsi device on starget to check. 1313 */ 1314 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1315 struct scsi_device *sdev) 1316 { 1317 struct scsi_target *starget = scsi_target(sdev); 1318 unsigned int busy; 1319 1320 if (starget->single_lun) { 1321 spin_lock_irq(shost->host_lock); 1322 if (starget->starget_sdev_user && 1323 starget->starget_sdev_user != sdev) { 1324 spin_unlock_irq(shost->host_lock); 1325 return 0; 1326 } 1327 starget->starget_sdev_user = sdev; 1328 spin_unlock_irq(shost->host_lock); 1329 } 1330 1331 if (starget->can_queue <= 0) 1332 return 1; 1333 1334 busy = atomic_inc_return(&starget->target_busy) - 1; 1335 if (atomic_read(&starget->target_blocked) > 0) { 1336 if (busy) 1337 goto starved; 1338 1339 /* 1340 * unblock after target_blocked iterates to zero 1341 */ 1342 if (atomic_dec_return(&starget->target_blocked) > 0) 1343 goto out_dec; 1344 1345 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1346 "unblocking target at zero depth\n")); 1347 } 1348 1349 if (busy >= starget->can_queue) 1350 goto starved; 1351 1352 return 1; 1353 1354 starved: 1355 spin_lock_irq(shost->host_lock); 1356 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1357 spin_unlock_irq(shost->host_lock); 1358 out_dec: 1359 if (starget->can_queue > 0) 1360 atomic_dec(&starget->target_busy); 1361 return 0; 1362 } 1363 1364 /* 1365 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1366 * return 0. We must end up running the queue again whenever 0 is 1367 * returned, else IO can hang. 1368 */ 1369 static inline int scsi_host_queue_ready(struct request_queue *q, 1370 struct Scsi_Host *shost, 1371 struct scsi_device *sdev, 1372 struct scsi_cmnd *cmd) 1373 { 1374 if (scsi_host_in_recovery(shost)) 1375 return 0; 1376 1377 if (atomic_read(&shost->host_blocked) > 0) { 1378 if (scsi_host_busy(shost) > 0) 1379 goto starved; 1380 1381 /* 1382 * unblock after host_blocked iterates to zero 1383 */ 1384 if (atomic_dec_return(&shost->host_blocked) > 0) 1385 goto out_dec; 1386 1387 SCSI_LOG_MLQUEUE(3, 1388 shost_printk(KERN_INFO, shost, 1389 "unblocking host at zero depth\n")); 1390 } 1391 1392 if (shost->host_self_blocked) 1393 goto starved; 1394 1395 /* We're OK to process the command, so we can't be starved */ 1396 if (!list_empty(&sdev->starved_entry)) { 1397 spin_lock_irq(shost->host_lock); 1398 if (!list_empty(&sdev->starved_entry)) 1399 list_del_init(&sdev->starved_entry); 1400 spin_unlock_irq(shost->host_lock); 1401 } 1402 1403 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1404 1405 return 1; 1406 1407 starved: 1408 spin_lock_irq(shost->host_lock); 1409 if (list_empty(&sdev->starved_entry)) 1410 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1411 spin_unlock_irq(shost->host_lock); 1412 out_dec: 1413 scsi_dec_host_busy(shost, cmd); 1414 return 0; 1415 } 1416 1417 /* 1418 * Busy state exporting function for request stacking drivers. 1419 * 1420 * For efficiency, no lock is taken to check the busy state of 1421 * shost/starget/sdev, since the returned value is not guaranteed and 1422 * may be changed after request stacking drivers call the function, 1423 * regardless of taking lock or not. 1424 * 1425 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1426 * needs to return 'not busy'. Otherwise, request stacking drivers 1427 * may hold requests forever. 1428 */ 1429 static bool scsi_mq_lld_busy(struct request_queue *q) 1430 { 1431 struct scsi_device *sdev = q->queuedata; 1432 struct Scsi_Host *shost; 1433 1434 if (blk_queue_dying(q)) 1435 return false; 1436 1437 shost = sdev->host; 1438 1439 /* 1440 * Ignore host/starget busy state. 1441 * Since block layer does not have a concept of fairness across 1442 * multiple queues, congestion of host/starget needs to be handled 1443 * in SCSI layer. 1444 */ 1445 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1446 return true; 1447 1448 return false; 1449 } 1450 1451 static void scsi_softirq_done(struct request *rq) 1452 { 1453 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1454 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1455 int disposition; 1456 1457 INIT_LIST_HEAD(&cmd->eh_entry); 1458 1459 atomic_inc(&cmd->device->iodone_cnt); 1460 if (cmd->result) 1461 atomic_inc(&cmd->device->ioerr_cnt); 1462 1463 disposition = scsi_decide_disposition(cmd); 1464 if (disposition != SUCCESS && 1465 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1466 scmd_printk(KERN_ERR, cmd, 1467 "timing out command, waited %lus\n", 1468 wait_for/HZ); 1469 disposition = SUCCESS; 1470 } 1471 1472 scsi_log_completion(cmd, disposition); 1473 1474 switch (disposition) { 1475 case SUCCESS: 1476 scsi_finish_command(cmd); 1477 break; 1478 case NEEDS_RETRY: 1479 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1480 break; 1481 case ADD_TO_MLQUEUE: 1482 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1483 break; 1484 default: 1485 scsi_eh_scmd_add(cmd); 1486 break; 1487 } 1488 } 1489 1490 /** 1491 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1492 * @cmd: command block we are dispatching. 1493 * 1494 * Return: nonzero return request was rejected and device's queue needs to be 1495 * plugged. 1496 */ 1497 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1498 { 1499 struct Scsi_Host *host = cmd->device->host; 1500 int rtn = 0; 1501 1502 atomic_inc(&cmd->device->iorequest_cnt); 1503 1504 /* check if the device is still usable */ 1505 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1506 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1507 * returns an immediate error upwards, and signals 1508 * that the device is no longer present */ 1509 cmd->result = DID_NO_CONNECT << 16; 1510 goto done; 1511 } 1512 1513 /* Check to see if the scsi lld made this device blocked. */ 1514 if (unlikely(scsi_device_blocked(cmd->device))) { 1515 /* 1516 * in blocked state, the command is just put back on 1517 * the device queue. The suspend state has already 1518 * blocked the queue so future requests should not 1519 * occur until the device transitions out of the 1520 * suspend state. 1521 */ 1522 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1523 "queuecommand : device blocked\n")); 1524 return SCSI_MLQUEUE_DEVICE_BUSY; 1525 } 1526 1527 /* Store the LUN value in cmnd, if needed. */ 1528 if (cmd->device->lun_in_cdb) 1529 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1530 (cmd->device->lun << 5 & 0xe0); 1531 1532 scsi_log_send(cmd); 1533 1534 /* 1535 * Before we queue this command, check if the command 1536 * length exceeds what the host adapter can handle. 1537 */ 1538 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1539 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1540 "queuecommand : command too long. " 1541 "cdb_size=%d host->max_cmd_len=%d\n", 1542 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1543 cmd->result = (DID_ABORT << 16); 1544 goto done; 1545 } 1546 1547 if (unlikely(host->shost_state == SHOST_DEL)) { 1548 cmd->result = (DID_NO_CONNECT << 16); 1549 goto done; 1550 1551 } 1552 1553 trace_scsi_dispatch_cmd_start(cmd); 1554 rtn = host->hostt->queuecommand(host, cmd); 1555 if (rtn) { 1556 trace_scsi_dispatch_cmd_error(cmd, rtn); 1557 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1558 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1559 rtn = SCSI_MLQUEUE_HOST_BUSY; 1560 1561 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1562 "queuecommand : request rejected\n")); 1563 } 1564 1565 return rtn; 1566 done: 1567 cmd->scsi_done(cmd); 1568 return 0; 1569 } 1570 1571 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1572 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1573 { 1574 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1575 sizeof(struct scatterlist); 1576 } 1577 1578 static blk_status_t scsi_mq_prep_fn(struct request *req) 1579 { 1580 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1581 struct scsi_device *sdev = req->q->queuedata; 1582 struct Scsi_Host *shost = sdev->host; 1583 struct scatterlist *sg; 1584 1585 scsi_init_command(sdev, cmd); 1586 1587 cmd->request = req; 1588 cmd->tag = req->tag; 1589 cmd->prot_op = SCSI_PROT_NORMAL; 1590 1591 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1592 cmd->sdb.table.sgl = sg; 1593 1594 if (scsi_host_get_prot(shost)) { 1595 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1596 1597 cmd->prot_sdb->table.sgl = 1598 (struct scatterlist *)(cmd->prot_sdb + 1); 1599 } 1600 1601 blk_mq_start_request(req); 1602 1603 return scsi_setup_cmnd(sdev, req); 1604 } 1605 1606 static void scsi_mq_done(struct scsi_cmnd *cmd) 1607 { 1608 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1609 return; 1610 trace_scsi_dispatch_cmd_done(cmd); 1611 1612 /* 1613 * If the block layer didn't complete the request due to a timeout 1614 * injection, scsi must clear its internal completed state so that the 1615 * timeout handler will see it needs to escalate its own error 1616 * recovery. 1617 */ 1618 if (unlikely(!blk_mq_complete_request(cmd->request))) 1619 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1620 } 1621 1622 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1623 { 1624 struct request_queue *q = hctx->queue; 1625 struct scsi_device *sdev = q->queuedata; 1626 1627 atomic_dec(&sdev->device_busy); 1628 } 1629 1630 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1631 { 1632 struct request_queue *q = hctx->queue; 1633 struct scsi_device *sdev = q->queuedata; 1634 1635 if (scsi_dev_queue_ready(q, sdev)) 1636 return true; 1637 1638 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1639 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1640 return false; 1641 } 1642 1643 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1644 const struct blk_mq_queue_data *bd) 1645 { 1646 struct request *req = bd->rq; 1647 struct request_queue *q = req->q; 1648 struct scsi_device *sdev = q->queuedata; 1649 struct Scsi_Host *shost = sdev->host; 1650 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1651 blk_status_t ret; 1652 int reason; 1653 1654 /* 1655 * If the device is not in running state we will reject some or all 1656 * commands. 1657 */ 1658 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1659 ret = scsi_prep_state_check(sdev, req); 1660 if (ret != BLK_STS_OK) 1661 goto out_put_budget; 1662 } 1663 1664 ret = BLK_STS_RESOURCE; 1665 if (!scsi_target_queue_ready(shost, sdev)) 1666 goto out_put_budget; 1667 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1668 goto out_dec_target_busy; 1669 1670 if (!(req->rq_flags & RQF_DONTPREP)) { 1671 ret = scsi_mq_prep_fn(req); 1672 if (ret != BLK_STS_OK) 1673 goto out_dec_host_busy; 1674 req->rq_flags |= RQF_DONTPREP; 1675 } else { 1676 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1677 blk_mq_start_request(req); 1678 } 1679 1680 cmd->flags &= SCMD_PRESERVED_FLAGS; 1681 if (sdev->simple_tags) 1682 cmd->flags |= SCMD_TAGGED; 1683 if (bd->last) 1684 cmd->flags |= SCMD_LAST; 1685 1686 scsi_init_cmd_errh(cmd); 1687 cmd->scsi_done = scsi_mq_done; 1688 1689 reason = scsi_dispatch_cmd(cmd); 1690 if (reason) { 1691 scsi_set_blocked(cmd, reason); 1692 ret = BLK_STS_RESOURCE; 1693 goto out_dec_host_busy; 1694 } 1695 1696 return BLK_STS_OK; 1697 1698 out_dec_host_busy: 1699 scsi_dec_host_busy(shost, cmd); 1700 out_dec_target_busy: 1701 if (scsi_target(sdev)->can_queue > 0) 1702 atomic_dec(&scsi_target(sdev)->target_busy); 1703 out_put_budget: 1704 scsi_mq_put_budget(hctx); 1705 switch (ret) { 1706 case BLK_STS_OK: 1707 break; 1708 case BLK_STS_RESOURCE: 1709 if (atomic_read(&sdev->device_busy) || 1710 scsi_device_blocked(sdev)) 1711 ret = BLK_STS_DEV_RESOURCE; 1712 break; 1713 default: 1714 if (unlikely(!scsi_device_online(sdev))) 1715 scsi_req(req)->result = DID_NO_CONNECT << 16; 1716 else 1717 scsi_req(req)->result = DID_ERROR << 16; 1718 /* 1719 * Make sure to release all allocated resources when 1720 * we hit an error, as we will never see this command 1721 * again. 1722 */ 1723 if (req->rq_flags & RQF_DONTPREP) 1724 scsi_mq_uninit_cmd(cmd); 1725 break; 1726 } 1727 return ret; 1728 } 1729 1730 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1731 bool reserved) 1732 { 1733 if (reserved) 1734 return BLK_EH_RESET_TIMER; 1735 return scsi_times_out(req); 1736 } 1737 1738 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1739 unsigned int hctx_idx, unsigned int numa_node) 1740 { 1741 struct Scsi_Host *shost = set->driver_data; 1742 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1743 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1744 struct scatterlist *sg; 1745 1746 if (unchecked_isa_dma) 1747 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1748 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1749 GFP_KERNEL, numa_node); 1750 if (!cmd->sense_buffer) 1751 return -ENOMEM; 1752 cmd->req.sense = cmd->sense_buffer; 1753 1754 if (scsi_host_get_prot(shost)) { 1755 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1756 shost->hostt->cmd_size; 1757 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1758 } 1759 1760 return 0; 1761 } 1762 1763 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1764 unsigned int hctx_idx) 1765 { 1766 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1767 1768 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1769 cmd->sense_buffer); 1770 } 1771 1772 static int scsi_map_queues(struct blk_mq_tag_set *set) 1773 { 1774 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1775 1776 if (shost->hostt->map_queues) 1777 return shost->hostt->map_queues(shost); 1778 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1779 } 1780 1781 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1782 { 1783 struct device *dev = shost->dma_dev; 1784 1785 /* 1786 * this limit is imposed by hardware restrictions 1787 */ 1788 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1789 SG_MAX_SEGMENTS)); 1790 1791 if (scsi_host_prot_dma(shost)) { 1792 shost->sg_prot_tablesize = 1793 min_not_zero(shost->sg_prot_tablesize, 1794 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1795 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1796 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1797 } 1798 1799 if (dev->dma_mask) { 1800 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1801 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1802 } 1803 blk_queue_max_hw_sectors(q, shost->max_sectors); 1804 if (shost->unchecked_isa_dma) 1805 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1806 blk_queue_segment_boundary(q, shost->dma_boundary); 1807 dma_set_seg_boundary(dev, shost->dma_boundary); 1808 1809 blk_queue_max_segment_size(q, shost->max_segment_size); 1810 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1811 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1812 1813 /* 1814 * Set a reasonable default alignment: The larger of 32-byte (dword), 1815 * which is a common minimum for HBAs, and the minimum DMA alignment, 1816 * which is set by the platform. 1817 * 1818 * Devices that require a bigger alignment can increase it later. 1819 */ 1820 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1821 } 1822 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1823 1824 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1825 .get_budget = scsi_mq_get_budget, 1826 .put_budget = scsi_mq_put_budget, 1827 .queue_rq = scsi_queue_rq, 1828 .complete = scsi_softirq_done, 1829 .timeout = scsi_timeout, 1830 #ifdef CONFIG_BLK_DEBUG_FS 1831 .show_rq = scsi_show_rq, 1832 #endif 1833 .init_request = scsi_mq_init_request, 1834 .exit_request = scsi_mq_exit_request, 1835 .initialize_rq_fn = scsi_initialize_rq, 1836 .cleanup_rq = scsi_cleanup_rq, 1837 .busy = scsi_mq_lld_busy, 1838 .map_queues = scsi_map_queues, 1839 }; 1840 1841 1842 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1843 { 1844 struct request_queue *q = hctx->queue; 1845 struct scsi_device *sdev = q->queuedata; 1846 struct Scsi_Host *shost = sdev->host; 1847 1848 shost->hostt->commit_rqs(shost, hctx->queue_num); 1849 } 1850 1851 static const struct blk_mq_ops scsi_mq_ops = { 1852 .get_budget = scsi_mq_get_budget, 1853 .put_budget = scsi_mq_put_budget, 1854 .queue_rq = scsi_queue_rq, 1855 .commit_rqs = scsi_commit_rqs, 1856 .complete = scsi_softirq_done, 1857 .timeout = scsi_timeout, 1858 #ifdef CONFIG_BLK_DEBUG_FS 1859 .show_rq = scsi_show_rq, 1860 #endif 1861 .init_request = scsi_mq_init_request, 1862 .exit_request = scsi_mq_exit_request, 1863 .initialize_rq_fn = scsi_initialize_rq, 1864 .cleanup_rq = scsi_cleanup_rq, 1865 .busy = scsi_mq_lld_busy, 1866 .map_queues = scsi_map_queues, 1867 }; 1868 1869 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1870 { 1871 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1872 if (IS_ERR(sdev->request_queue)) 1873 return NULL; 1874 1875 sdev->request_queue->queuedata = sdev; 1876 __scsi_init_queue(sdev->host, sdev->request_queue); 1877 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1878 return sdev->request_queue; 1879 } 1880 1881 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1882 { 1883 unsigned int cmd_size, sgl_size; 1884 1885 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1886 scsi_mq_inline_sgl_size(shost)); 1887 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1888 if (scsi_host_get_prot(shost)) 1889 cmd_size += sizeof(struct scsi_data_buffer) + 1890 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1891 1892 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1893 if (shost->hostt->commit_rqs) 1894 shost->tag_set.ops = &scsi_mq_ops; 1895 else 1896 shost->tag_set.ops = &scsi_mq_ops_no_commit; 1897 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1898 shost->tag_set.queue_depth = shost->can_queue; 1899 shost->tag_set.cmd_size = cmd_size; 1900 shost->tag_set.numa_node = NUMA_NO_NODE; 1901 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1902 shost->tag_set.flags |= 1903 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1904 shost->tag_set.driver_data = shost; 1905 1906 return blk_mq_alloc_tag_set(&shost->tag_set); 1907 } 1908 1909 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1910 { 1911 blk_mq_free_tag_set(&shost->tag_set); 1912 } 1913 1914 /** 1915 * scsi_device_from_queue - return sdev associated with a request_queue 1916 * @q: The request queue to return the sdev from 1917 * 1918 * Return the sdev associated with a request queue or NULL if the 1919 * request_queue does not reference a SCSI device. 1920 */ 1921 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1922 { 1923 struct scsi_device *sdev = NULL; 1924 1925 if (q->mq_ops == &scsi_mq_ops_no_commit || 1926 q->mq_ops == &scsi_mq_ops) 1927 sdev = q->queuedata; 1928 if (!sdev || !get_device(&sdev->sdev_gendev)) 1929 sdev = NULL; 1930 1931 return sdev; 1932 } 1933 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1934 1935 /* 1936 * Function: scsi_block_requests() 1937 * 1938 * Purpose: Utility function used by low-level drivers to prevent further 1939 * commands from being queued to the device. 1940 * 1941 * Arguments: shost - Host in question 1942 * 1943 * Returns: Nothing 1944 * 1945 * Lock status: No locks are assumed held. 1946 * 1947 * Notes: There is no timer nor any other means by which the requests 1948 * get unblocked other than the low-level driver calling 1949 * scsi_unblock_requests(). 1950 */ 1951 void scsi_block_requests(struct Scsi_Host *shost) 1952 { 1953 shost->host_self_blocked = 1; 1954 } 1955 EXPORT_SYMBOL(scsi_block_requests); 1956 1957 /* 1958 * Function: scsi_unblock_requests() 1959 * 1960 * Purpose: Utility function used by low-level drivers to allow further 1961 * commands from being queued to the device. 1962 * 1963 * Arguments: shost - Host in question 1964 * 1965 * Returns: Nothing 1966 * 1967 * Lock status: No locks are assumed held. 1968 * 1969 * Notes: There is no timer nor any other means by which the requests 1970 * get unblocked other than the low-level driver calling 1971 * scsi_unblock_requests(). 1972 * 1973 * This is done as an API function so that changes to the 1974 * internals of the scsi mid-layer won't require wholesale 1975 * changes to drivers that use this feature. 1976 */ 1977 void scsi_unblock_requests(struct Scsi_Host *shost) 1978 { 1979 shost->host_self_blocked = 0; 1980 scsi_run_host_queues(shost); 1981 } 1982 EXPORT_SYMBOL(scsi_unblock_requests); 1983 1984 int __init scsi_init_queue(void) 1985 { 1986 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1987 sizeof(struct scsi_data_buffer), 1988 0, 0, NULL); 1989 if (!scsi_sdb_cache) { 1990 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1991 return -ENOMEM; 1992 } 1993 1994 return 0; 1995 } 1996 1997 void scsi_exit_queue(void) 1998 { 1999 kmem_cache_destroy(scsi_sense_cache); 2000 kmem_cache_destroy(scsi_sense_isadma_cache); 2001 kmem_cache_destroy(scsi_sdb_cache); 2002 } 2003 2004 /** 2005 * scsi_mode_select - issue a mode select 2006 * @sdev: SCSI device to be queried 2007 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2008 * @sp: Save page bit (0 == don't save, 1 == save) 2009 * @modepage: mode page being requested 2010 * @buffer: request buffer (may not be smaller than eight bytes) 2011 * @len: length of request buffer. 2012 * @timeout: command timeout 2013 * @retries: number of retries before failing 2014 * @data: returns a structure abstracting the mode header data 2015 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2016 * must be SCSI_SENSE_BUFFERSIZE big. 2017 * 2018 * Returns zero if successful; negative error number or scsi 2019 * status on error 2020 * 2021 */ 2022 int 2023 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2024 unsigned char *buffer, int len, int timeout, int retries, 2025 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2026 { 2027 unsigned char cmd[10]; 2028 unsigned char *real_buffer; 2029 int ret; 2030 2031 memset(cmd, 0, sizeof(cmd)); 2032 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2033 2034 if (sdev->use_10_for_ms) { 2035 if (len > 65535) 2036 return -EINVAL; 2037 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2038 if (!real_buffer) 2039 return -ENOMEM; 2040 memcpy(real_buffer + 8, buffer, len); 2041 len += 8; 2042 real_buffer[0] = 0; 2043 real_buffer[1] = 0; 2044 real_buffer[2] = data->medium_type; 2045 real_buffer[3] = data->device_specific; 2046 real_buffer[4] = data->longlba ? 0x01 : 0; 2047 real_buffer[5] = 0; 2048 real_buffer[6] = data->block_descriptor_length >> 8; 2049 real_buffer[7] = data->block_descriptor_length; 2050 2051 cmd[0] = MODE_SELECT_10; 2052 cmd[7] = len >> 8; 2053 cmd[8] = len; 2054 } else { 2055 if (len > 255 || data->block_descriptor_length > 255 || 2056 data->longlba) 2057 return -EINVAL; 2058 2059 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2060 if (!real_buffer) 2061 return -ENOMEM; 2062 memcpy(real_buffer + 4, buffer, len); 2063 len += 4; 2064 real_buffer[0] = 0; 2065 real_buffer[1] = data->medium_type; 2066 real_buffer[2] = data->device_specific; 2067 real_buffer[3] = data->block_descriptor_length; 2068 2069 2070 cmd[0] = MODE_SELECT; 2071 cmd[4] = len; 2072 } 2073 2074 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2075 sshdr, timeout, retries, NULL); 2076 kfree(real_buffer); 2077 return ret; 2078 } 2079 EXPORT_SYMBOL_GPL(scsi_mode_select); 2080 2081 /** 2082 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2083 * @sdev: SCSI device to be queried 2084 * @dbd: set if mode sense will allow block descriptors to be returned 2085 * @modepage: mode page being requested 2086 * @buffer: request buffer (may not be smaller than eight bytes) 2087 * @len: length of request buffer. 2088 * @timeout: command timeout 2089 * @retries: number of retries before failing 2090 * @data: returns a structure abstracting the mode header data 2091 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2092 * must be SCSI_SENSE_BUFFERSIZE big. 2093 * 2094 * Returns zero if unsuccessful, or the header offset (either 4 2095 * or 8 depending on whether a six or ten byte command was 2096 * issued) if successful. 2097 */ 2098 int 2099 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2100 unsigned char *buffer, int len, int timeout, int retries, 2101 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2102 { 2103 unsigned char cmd[12]; 2104 int use_10_for_ms; 2105 int header_length; 2106 int result, retry_count = retries; 2107 struct scsi_sense_hdr my_sshdr; 2108 2109 memset(data, 0, sizeof(*data)); 2110 memset(&cmd[0], 0, 12); 2111 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2112 cmd[2] = modepage; 2113 2114 /* caller might not be interested in sense, but we need it */ 2115 if (!sshdr) 2116 sshdr = &my_sshdr; 2117 2118 retry: 2119 use_10_for_ms = sdev->use_10_for_ms; 2120 2121 if (use_10_for_ms) { 2122 if (len < 8) 2123 len = 8; 2124 2125 cmd[0] = MODE_SENSE_10; 2126 cmd[8] = len; 2127 header_length = 8; 2128 } else { 2129 if (len < 4) 2130 len = 4; 2131 2132 cmd[0] = MODE_SENSE; 2133 cmd[4] = len; 2134 header_length = 4; 2135 } 2136 2137 memset(buffer, 0, len); 2138 2139 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2140 sshdr, timeout, retries, NULL); 2141 2142 /* This code looks awful: what it's doing is making sure an 2143 * ILLEGAL REQUEST sense return identifies the actual command 2144 * byte as the problem. MODE_SENSE commands can return 2145 * ILLEGAL REQUEST if the code page isn't supported */ 2146 2147 if (use_10_for_ms && !scsi_status_is_good(result) && 2148 driver_byte(result) == DRIVER_SENSE) { 2149 if (scsi_sense_valid(sshdr)) { 2150 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2151 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2152 /* 2153 * Invalid command operation code 2154 */ 2155 sdev->use_10_for_ms = 0; 2156 goto retry; 2157 } 2158 } 2159 } 2160 2161 if(scsi_status_is_good(result)) { 2162 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2163 (modepage == 6 || modepage == 8))) { 2164 /* Initio breakage? */ 2165 header_length = 0; 2166 data->length = 13; 2167 data->medium_type = 0; 2168 data->device_specific = 0; 2169 data->longlba = 0; 2170 data->block_descriptor_length = 0; 2171 } else if(use_10_for_ms) { 2172 data->length = buffer[0]*256 + buffer[1] + 2; 2173 data->medium_type = buffer[2]; 2174 data->device_specific = buffer[3]; 2175 data->longlba = buffer[4] & 0x01; 2176 data->block_descriptor_length = buffer[6]*256 2177 + buffer[7]; 2178 } else { 2179 data->length = buffer[0] + 1; 2180 data->medium_type = buffer[1]; 2181 data->device_specific = buffer[2]; 2182 data->block_descriptor_length = buffer[3]; 2183 } 2184 data->header_length = header_length; 2185 } else if ((status_byte(result) == CHECK_CONDITION) && 2186 scsi_sense_valid(sshdr) && 2187 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2188 retry_count--; 2189 goto retry; 2190 } 2191 2192 return result; 2193 } 2194 EXPORT_SYMBOL(scsi_mode_sense); 2195 2196 /** 2197 * scsi_test_unit_ready - test if unit is ready 2198 * @sdev: scsi device to change the state of. 2199 * @timeout: command timeout 2200 * @retries: number of retries before failing 2201 * @sshdr: outpout pointer for decoded sense information. 2202 * 2203 * Returns zero if unsuccessful or an error if TUR failed. For 2204 * removable media, UNIT_ATTENTION sets ->changed flag. 2205 **/ 2206 int 2207 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2208 struct scsi_sense_hdr *sshdr) 2209 { 2210 char cmd[] = { 2211 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2212 }; 2213 int result; 2214 2215 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2216 do { 2217 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2218 timeout, 1, NULL); 2219 if (sdev->removable && scsi_sense_valid(sshdr) && 2220 sshdr->sense_key == UNIT_ATTENTION) 2221 sdev->changed = 1; 2222 } while (scsi_sense_valid(sshdr) && 2223 sshdr->sense_key == UNIT_ATTENTION && --retries); 2224 2225 return result; 2226 } 2227 EXPORT_SYMBOL(scsi_test_unit_ready); 2228 2229 /** 2230 * scsi_device_set_state - Take the given device through the device state model. 2231 * @sdev: scsi device to change the state of. 2232 * @state: state to change to. 2233 * 2234 * Returns zero if successful or an error if the requested 2235 * transition is illegal. 2236 */ 2237 int 2238 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2239 { 2240 enum scsi_device_state oldstate = sdev->sdev_state; 2241 2242 if (state == oldstate) 2243 return 0; 2244 2245 switch (state) { 2246 case SDEV_CREATED: 2247 switch (oldstate) { 2248 case SDEV_CREATED_BLOCK: 2249 break; 2250 default: 2251 goto illegal; 2252 } 2253 break; 2254 2255 case SDEV_RUNNING: 2256 switch (oldstate) { 2257 case SDEV_CREATED: 2258 case SDEV_OFFLINE: 2259 case SDEV_TRANSPORT_OFFLINE: 2260 case SDEV_QUIESCE: 2261 case SDEV_BLOCK: 2262 break; 2263 default: 2264 goto illegal; 2265 } 2266 break; 2267 2268 case SDEV_QUIESCE: 2269 switch (oldstate) { 2270 case SDEV_RUNNING: 2271 case SDEV_OFFLINE: 2272 case SDEV_TRANSPORT_OFFLINE: 2273 break; 2274 default: 2275 goto illegal; 2276 } 2277 break; 2278 2279 case SDEV_OFFLINE: 2280 case SDEV_TRANSPORT_OFFLINE: 2281 switch (oldstate) { 2282 case SDEV_CREATED: 2283 case SDEV_RUNNING: 2284 case SDEV_QUIESCE: 2285 case SDEV_BLOCK: 2286 break; 2287 default: 2288 goto illegal; 2289 } 2290 break; 2291 2292 case SDEV_BLOCK: 2293 switch (oldstate) { 2294 case SDEV_RUNNING: 2295 case SDEV_CREATED_BLOCK: 2296 case SDEV_OFFLINE: 2297 break; 2298 default: 2299 goto illegal; 2300 } 2301 break; 2302 2303 case SDEV_CREATED_BLOCK: 2304 switch (oldstate) { 2305 case SDEV_CREATED: 2306 break; 2307 default: 2308 goto illegal; 2309 } 2310 break; 2311 2312 case SDEV_CANCEL: 2313 switch (oldstate) { 2314 case SDEV_CREATED: 2315 case SDEV_RUNNING: 2316 case SDEV_QUIESCE: 2317 case SDEV_OFFLINE: 2318 case SDEV_TRANSPORT_OFFLINE: 2319 break; 2320 default: 2321 goto illegal; 2322 } 2323 break; 2324 2325 case SDEV_DEL: 2326 switch (oldstate) { 2327 case SDEV_CREATED: 2328 case SDEV_RUNNING: 2329 case SDEV_OFFLINE: 2330 case SDEV_TRANSPORT_OFFLINE: 2331 case SDEV_CANCEL: 2332 case SDEV_BLOCK: 2333 case SDEV_CREATED_BLOCK: 2334 break; 2335 default: 2336 goto illegal; 2337 } 2338 break; 2339 2340 } 2341 sdev->sdev_state = state; 2342 return 0; 2343 2344 illegal: 2345 SCSI_LOG_ERROR_RECOVERY(1, 2346 sdev_printk(KERN_ERR, sdev, 2347 "Illegal state transition %s->%s", 2348 scsi_device_state_name(oldstate), 2349 scsi_device_state_name(state)) 2350 ); 2351 return -EINVAL; 2352 } 2353 EXPORT_SYMBOL(scsi_device_set_state); 2354 2355 /** 2356 * sdev_evt_emit - emit a single SCSI device uevent 2357 * @sdev: associated SCSI device 2358 * @evt: event to emit 2359 * 2360 * Send a single uevent (scsi_event) to the associated scsi_device. 2361 */ 2362 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2363 { 2364 int idx = 0; 2365 char *envp[3]; 2366 2367 switch (evt->evt_type) { 2368 case SDEV_EVT_MEDIA_CHANGE: 2369 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2370 break; 2371 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2372 scsi_rescan_device(&sdev->sdev_gendev); 2373 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2374 break; 2375 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2376 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2377 break; 2378 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2379 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2380 break; 2381 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2382 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2383 break; 2384 case SDEV_EVT_LUN_CHANGE_REPORTED: 2385 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2386 break; 2387 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2388 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2389 break; 2390 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2391 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2392 break; 2393 default: 2394 /* do nothing */ 2395 break; 2396 } 2397 2398 envp[idx++] = NULL; 2399 2400 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2401 } 2402 2403 /** 2404 * sdev_evt_thread - send a uevent for each scsi event 2405 * @work: work struct for scsi_device 2406 * 2407 * Dispatch queued events to their associated scsi_device kobjects 2408 * as uevents. 2409 */ 2410 void scsi_evt_thread(struct work_struct *work) 2411 { 2412 struct scsi_device *sdev; 2413 enum scsi_device_event evt_type; 2414 LIST_HEAD(event_list); 2415 2416 sdev = container_of(work, struct scsi_device, event_work); 2417 2418 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2419 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2420 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2421 2422 while (1) { 2423 struct scsi_event *evt; 2424 struct list_head *this, *tmp; 2425 unsigned long flags; 2426 2427 spin_lock_irqsave(&sdev->list_lock, flags); 2428 list_splice_init(&sdev->event_list, &event_list); 2429 spin_unlock_irqrestore(&sdev->list_lock, flags); 2430 2431 if (list_empty(&event_list)) 2432 break; 2433 2434 list_for_each_safe(this, tmp, &event_list) { 2435 evt = list_entry(this, struct scsi_event, node); 2436 list_del(&evt->node); 2437 scsi_evt_emit(sdev, evt); 2438 kfree(evt); 2439 } 2440 } 2441 } 2442 2443 /** 2444 * sdev_evt_send - send asserted event to uevent thread 2445 * @sdev: scsi_device event occurred on 2446 * @evt: event to send 2447 * 2448 * Assert scsi device event asynchronously. 2449 */ 2450 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2451 { 2452 unsigned long flags; 2453 2454 #if 0 2455 /* FIXME: currently this check eliminates all media change events 2456 * for polled devices. Need to update to discriminate between AN 2457 * and polled events */ 2458 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2459 kfree(evt); 2460 return; 2461 } 2462 #endif 2463 2464 spin_lock_irqsave(&sdev->list_lock, flags); 2465 list_add_tail(&evt->node, &sdev->event_list); 2466 schedule_work(&sdev->event_work); 2467 spin_unlock_irqrestore(&sdev->list_lock, flags); 2468 } 2469 EXPORT_SYMBOL_GPL(sdev_evt_send); 2470 2471 /** 2472 * sdev_evt_alloc - allocate a new scsi event 2473 * @evt_type: type of event to allocate 2474 * @gfpflags: GFP flags for allocation 2475 * 2476 * Allocates and returns a new scsi_event. 2477 */ 2478 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2479 gfp_t gfpflags) 2480 { 2481 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2482 if (!evt) 2483 return NULL; 2484 2485 evt->evt_type = evt_type; 2486 INIT_LIST_HEAD(&evt->node); 2487 2488 /* evt_type-specific initialization, if any */ 2489 switch (evt_type) { 2490 case SDEV_EVT_MEDIA_CHANGE: 2491 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2492 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2493 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2494 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2495 case SDEV_EVT_LUN_CHANGE_REPORTED: 2496 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2497 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2498 default: 2499 /* do nothing */ 2500 break; 2501 } 2502 2503 return evt; 2504 } 2505 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2506 2507 /** 2508 * sdev_evt_send_simple - send asserted event to uevent thread 2509 * @sdev: scsi_device event occurred on 2510 * @evt_type: type of event to send 2511 * @gfpflags: GFP flags for allocation 2512 * 2513 * Assert scsi device event asynchronously, given an event type. 2514 */ 2515 void sdev_evt_send_simple(struct scsi_device *sdev, 2516 enum scsi_device_event evt_type, gfp_t gfpflags) 2517 { 2518 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2519 if (!evt) { 2520 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2521 evt_type); 2522 return; 2523 } 2524 2525 sdev_evt_send(sdev, evt); 2526 } 2527 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2528 2529 /** 2530 * scsi_device_quiesce - Block user issued commands. 2531 * @sdev: scsi device to quiesce. 2532 * 2533 * This works by trying to transition to the SDEV_QUIESCE state 2534 * (which must be a legal transition). When the device is in this 2535 * state, only special requests will be accepted, all others will 2536 * be deferred. Since special requests may also be requeued requests, 2537 * a successful return doesn't guarantee the device will be 2538 * totally quiescent. 2539 * 2540 * Must be called with user context, may sleep. 2541 * 2542 * Returns zero if unsuccessful or an error if not. 2543 */ 2544 int 2545 scsi_device_quiesce(struct scsi_device *sdev) 2546 { 2547 struct request_queue *q = sdev->request_queue; 2548 int err; 2549 2550 /* 2551 * It is allowed to call scsi_device_quiesce() multiple times from 2552 * the same context but concurrent scsi_device_quiesce() calls are 2553 * not allowed. 2554 */ 2555 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2556 2557 if (sdev->quiesced_by == current) 2558 return 0; 2559 2560 blk_set_pm_only(q); 2561 2562 blk_mq_freeze_queue(q); 2563 /* 2564 * Ensure that the effect of blk_set_pm_only() will be visible 2565 * for percpu_ref_tryget() callers that occur after the queue 2566 * unfreeze even if the queue was already frozen before this function 2567 * was called. See also https://lwn.net/Articles/573497/. 2568 */ 2569 synchronize_rcu(); 2570 blk_mq_unfreeze_queue(q); 2571 2572 mutex_lock(&sdev->state_mutex); 2573 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2574 if (err == 0) 2575 sdev->quiesced_by = current; 2576 else 2577 blk_clear_pm_only(q); 2578 mutex_unlock(&sdev->state_mutex); 2579 2580 return err; 2581 } 2582 EXPORT_SYMBOL(scsi_device_quiesce); 2583 2584 /** 2585 * scsi_device_resume - Restart user issued commands to a quiesced device. 2586 * @sdev: scsi device to resume. 2587 * 2588 * Moves the device from quiesced back to running and restarts the 2589 * queues. 2590 * 2591 * Must be called with user context, may sleep. 2592 */ 2593 void scsi_device_resume(struct scsi_device *sdev) 2594 { 2595 /* check if the device state was mutated prior to resume, and if 2596 * so assume the state is being managed elsewhere (for example 2597 * device deleted during suspend) 2598 */ 2599 mutex_lock(&sdev->state_mutex); 2600 if (sdev->quiesced_by) { 2601 sdev->quiesced_by = NULL; 2602 blk_clear_pm_only(sdev->request_queue); 2603 } 2604 if (sdev->sdev_state == SDEV_QUIESCE) 2605 scsi_device_set_state(sdev, SDEV_RUNNING); 2606 mutex_unlock(&sdev->state_mutex); 2607 } 2608 EXPORT_SYMBOL(scsi_device_resume); 2609 2610 static void 2611 device_quiesce_fn(struct scsi_device *sdev, void *data) 2612 { 2613 scsi_device_quiesce(sdev); 2614 } 2615 2616 void 2617 scsi_target_quiesce(struct scsi_target *starget) 2618 { 2619 starget_for_each_device(starget, NULL, device_quiesce_fn); 2620 } 2621 EXPORT_SYMBOL(scsi_target_quiesce); 2622 2623 static void 2624 device_resume_fn(struct scsi_device *sdev, void *data) 2625 { 2626 scsi_device_resume(sdev); 2627 } 2628 2629 void 2630 scsi_target_resume(struct scsi_target *starget) 2631 { 2632 starget_for_each_device(starget, NULL, device_resume_fn); 2633 } 2634 EXPORT_SYMBOL(scsi_target_resume); 2635 2636 /** 2637 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2638 * @sdev: device to block 2639 * 2640 * Pause SCSI command processing on the specified device. Does not sleep. 2641 * 2642 * Returns zero if successful or a negative error code upon failure. 2643 * 2644 * Notes: 2645 * This routine transitions the device to the SDEV_BLOCK state (which must be 2646 * a legal transition). When the device is in this state, command processing 2647 * is paused until the device leaves the SDEV_BLOCK state. See also 2648 * scsi_internal_device_unblock_nowait(). 2649 */ 2650 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2651 { 2652 struct request_queue *q = sdev->request_queue; 2653 int err = 0; 2654 2655 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2656 if (err) { 2657 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2658 2659 if (err) 2660 return err; 2661 } 2662 2663 /* 2664 * The device has transitioned to SDEV_BLOCK. Stop the 2665 * block layer from calling the midlayer with this device's 2666 * request queue. 2667 */ 2668 blk_mq_quiesce_queue_nowait(q); 2669 return 0; 2670 } 2671 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2672 2673 /** 2674 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2675 * @sdev: device to block 2676 * 2677 * Pause SCSI command processing on the specified device and wait until all 2678 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2679 * 2680 * Returns zero if successful or a negative error code upon failure. 2681 * 2682 * Note: 2683 * This routine transitions the device to the SDEV_BLOCK state (which must be 2684 * a legal transition). When the device is in this state, command processing 2685 * is paused until the device leaves the SDEV_BLOCK state. See also 2686 * scsi_internal_device_unblock(). 2687 */ 2688 static int scsi_internal_device_block(struct scsi_device *sdev) 2689 { 2690 struct request_queue *q = sdev->request_queue; 2691 int err; 2692 2693 mutex_lock(&sdev->state_mutex); 2694 err = scsi_internal_device_block_nowait(sdev); 2695 if (err == 0) 2696 blk_mq_quiesce_queue(q); 2697 mutex_unlock(&sdev->state_mutex); 2698 2699 return err; 2700 } 2701 2702 void scsi_start_queue(struct scsi_device *sdev) 2703 { 2704 struct request_queue *q = sdev->request_queue; 2705 2706 blk_mq_unquiesce_queue(q); 2707 } 2708 2709 /** 2710 * scsi_internal_device_unblock_nowait - resume a device after a block request 2711 * @sdev: device to resume 2712 * @new_state: state to set the device to after unblocking 2713 * 2714 * Restart the device queue for a previously suspended SCSI device. Does not 2715 * sleep. 2716 * 2717 * Returns zero if successful or a negative error code upon failure. 2718 * 2719 * Notes: 2720 * This routine transitions the device to the SDEV_RUNNING state or to one of 2721 * the offline states (which must be a legal transition) allowing the midlayer 2722 * to goose the queue for this device. 2723 */ 2724 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2725 enum scsi_device_state new_state) 2726 { 2727 switch (new_state) { 2728 case SDEV_RUNNING: 2729 case SDEV_TRANSPORT_OFFLINE: 2730 break; 2731 default: 2732 return -EINVAL; 2733 } 2734 2735 /* 2736 * Try to transition the scsi device to SDEV_RUNNING or one of the 2737 * offlined states and goose the device queue if successful. 2738 */ 2739 switch (sdev->sdev_state) { 2740 case SDEV_BLOCK: 2741 case SDEV_TRANSPORT_OFFLINE: 2742 sdev->sdev_state = new_state; 2743 break; 2744 case SDEV_CREATED_BLOCK: 2745 if (new_state == SDEV_TRANSPORT_OFFLINE || 2746 new_state == SDEV_OFFLINE) 2747 sdev->sdev_state = new_state; 2748 else 2749 sdev->sdev_state = SDEV_CREATED; 2750 break; 2751 case SDEV_CANCEL: 2752 case SDEV_OFFLINE: 2753 break; 2754 default: 2755 return -EINVAL; 2756 } 2757 scsi_start_queue(sdev); 2758 2759 return 0; 2760 } 2761 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2762 2763 /** 2764 * scsi_internal_device_unblock - resume a device after a block request 2765 * @sdev: device to resume 2766 * @new_state: state to set the device to after unblocking 2767 * 2768 * Restart the device queue for a previously suspended SCSI device. May sleep. 2769 * 2770 * Returns zero if successful or a negative error code upon failure. 2771 * 2772 * Notes: 2773 * This routine transitions the device to the SDEV_RUNNING state or to one of 2774 * the offline states (which must be a legal transition) allowing the midlayer 2775 * to goose the queue for this device. 2776 */ 2777 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2778 enum scsi_device_state new_state) 2779 { 2780 int ret; 2781 2782 mutex_lock(&sdev->state_mutex); 2783 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2784 mutex_unlock(&sdev->state_mutex); 2785 2786 return ret; 2787 } 2788 2789 static void 2790 device_block(struct scsi_device *sdev, void *data) 2791 { 2792 int ret; 2793 2794 ret = scsi_internal_device_block(sdev); 2795 2796 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2797 dev_name(&sdev->sdev_gendev), ret); 2798 } 2799 2800 static int 2801 target_block(struct device *dev, void *data) 2802 { 2803 if (scsi_is_target_device(dev)) 2804 starget_for_each_device(to_scsi_target(dev), NULL, 2805 device_block); 2806 return 0; 2807 } 2808 2809 void 2810 scsi_target_block(struct device *dev) 2811 { 2812 if (scsi_is_target_device(dev)) 2813 starget_for_each_device(to_scsi_target(dev), NULL, 2814 device_block); 2815 else 2816 device_for_each_child(dev, NULL, target_block); 2817 } 2818 EXPORT_SYMBOL_GPL(scsi_target_block); 2819 2820 static void 2821 device_unblock(struct scsi_device *sdev, void *data) 2822 { 2823 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2824 } 2825 2826 static int 2827 target_unblock(struct device *dev, void *data) 2828 { 2829 if (scsi_is_target_device(dev)) 2830 starget_for_each_device(to_scsi_target(dev), data, 2831 device_unblock); 2832 return 0; 2833 } 2834 2835 void 2836 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2837 { 2838 if (scsi_is_target_device(dev)) 2839 starget_for_each_device(to_scsi_target(dev), &new_state, 2840 device_unblock); 2841 else 2842 device_for_each_child(dev, &new_state, target_unblock); 2843 } 2844 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2845 2846 /** 2847 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2848 * @sgl: scatter-gather list 2849 * @sg_count: number of segments in sg 2850 * @offset: offset in bytes into sg, on return offset into the mapped area 2851 * @len: bytes to map, on return number of bytes mapped 2852 * 2853 * Returns virtual address of the start of the mapped page 2854 */ 2855 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2856 size_t *offset, size_t *len) 2857 { 2858 int i; 2859 size_t sg_len = 0, len_complete = 0; 2860 struct scatterlist *sg; 2861 struct page *page; 2862 2863 WARN_ON(!irqs_disabled()); 2864 2865 for_each_sg(sgl, sg, sg_count, i) { 2866 len_complete = sg_len; /* Complete sg-entries */ 2867 sg_len += sg->length; 2868 if (sg_len > *offset) 2869 break; 2870 } 2871 2872 if (unlikely(i == sg_count)) { 2873 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2874 "elements %d\n", 2875 __func__, sg_len, *offset, sg_count); 2876 WARN_ON(1); 2877 return NULL; 2878 } 2879 2880 /* Offset starting from the beginning of first page in this sg-entry */ 2881 *offset = *offset - len_complete + sg->offset; 2882 2883 /* Assumption: contiguous pages can be accessed as "page + i" */ 2884 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2885 *offset &= ~PAGE_MASK; 2886 2887 /* Bytes in this sg-entry from *offset to the end of the page */ 2888 sg_len = PAGE_SIZE - *offset; 2889 if (*len > sg_len) 2890 *len = sg_len; 2891 2892 return kmap_atomic(page); 2893 } 2894 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2895 2896 /** 2897 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2898 * @virt: virtual address to be unmapped 2899 */ 2900 void scsi_kunmap_atomic_sg(void *virt) 2901 { 2902 kunmap_atomic(virt); 2903 } 2904 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2905 2906 void sdev_disable_disk_events(struct scsi_device *sdev) 2907 { 2908 atomic_inc(&sdev->disk_events_disable_depth); 2909 } 2910 EXPORT_SYMBOL(sdev_disable_disk_events); 2911 2912 void sdev_enable_disk_events(struct scsi_device *sdev) 2913 { 2914 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2915 return; 2916 atomic_dec(&sdev->disk_events_disable_depth); 2917 } 2918 EXPORT_SYMBOL(sdev_enable_disk_events); 2919 2920 /** 2921 * scsi_vpd_lun_id - return a unique device identification 2922 * @sdev: SCSI device 2923 * @id: buffer for the identification 2924 * @id_len: length of the buffer 2925 * 2926 * Copies a unique device identification into @id based 2927 * on the information in the VPD page 0x83 of the device. 2928 * The string will be formatted as a SCSI name string. 2929 * 2930 * Returns the length of the identification or error on failure. 2931 * If the identifier is longer than the supplied buffer the actual 2932 * identifier length is returned and the buffer is not zero-padded. 2933 */ 2934 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2935 { 2936 u8 cur_id_type = 0xff; 2937 u8 cur_id_size = 0; 2938 const unsigned char *d, *cur_id_str; 2939 const struct scsi_vpd *vpd_pg83; 2940 int id_size = -EINVAL; 2941 2942 rcu_read_lock(); 2943 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2944 if (!vpd_pg83) { 2945 rcu_read_unlock(); 2946 return -ENXIO; 2947 } 2948 2949 /* 2950 * Look for the correct descriptor. 2951 * Order of preference for lun descriptor: 2952 * - SCSI name string 2953 * - NAA IEEE Registered Extended 2954 * - EUI-64 based 16-byte 2955 * - EUI-64 based 12-byte 2956 * - NAA IEEE Registered 2957 * - NAA IEEE Extended 2958 * - T10 Vendor ID 2959 * as longer descriptors reduce the likelyhood 2960 * of identification clashes. 2961 */ 2962 2963 /* The id string must be at least 20 bytes + terminating NULL byte */ 2964 if (id_len < 21) { 2965 rcu_read_unlock(); 2966 return -EINVAL; 2967 } 2968 2969 memset(id, 0, id_len); 2970 d = vpd_pg83->data + 4; 2971 while (d < vpd_pg83->data + vpd_pg83->len) { 2972 /* Skip designators not referring to the LUN */ 2973 if ((d[1] & 0x30) != 0x00) 2974 goto next_desig; 2975 2976 switch (d[1] & 0xf) { 2977 case 0x1: 2978 /* T10 Vendor ID */ 2979 if (cur_id_size > d[3]) 2980 break; 2981 /* Prefer anything */ 2982 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2983 break; 2984 cur_id_size = d[3]; 2985 if (cur_id_size + 4 > id_len) 2986 cur_id_size = id_len - 4; 2987 cur_id_str = d + 4; 2988 cur_id_type = d[1] & 0xf; 2989 id_size = snprintf(id, id_len, "t10.%*pE", 2990 cur_id_size, cur_id_str); 2991 break; 2992 case 0x2: 2993 /* EUI-64 */ 2994 if (cur_id_size > d[3]) 2995 break; 2996 /* Prefer NAA IEEE Registered Extended */ 2997 if (cur_id_type == 0x3 && 2998 cur_id_size == d[3]) 2999 break; 3000 cur_id_size = d[3]; 3001 cur_id_str = d + 4; 3002 cur_id_type = d[1] & 0xf; 3003 switch (cur_id_size) { 3004 case 8: 3005 id_size = snprintf(id, id_len, 3006 "eui.%8phN", 3007 cur_id_str); 3008 break; 3009 case 12: 3010 id_size = snprintf(id, id_len, 3011 "eui.%12phN", 3012 cur_id_str); 3013 break; 3014 case 16: 3015 id_size = snprintf(id, id_len, 3016 "eui.%16phN", 3017 cur_id_str); 3018 break; 3019 default: 3020 cur_id_size = 0; 3021 break; 3022 } 3023 break; 3024 case 0x3: 3025 /* NAA */ 3026 if (cur_id_size > d[3]) 3027 break; 3028 cur_id_size = d[3]; 3029 cur_id_str = d + 4; 3030 cur_id_type = d[1] & 0xf; 3031 switch (cur_id_size) { 3032 case 8: 3033 id_size = snprintf(id, id_len, 3034 "naa.%8phN", 3035 cur_id_str); 3036 break; 3037 case 16: 3038 id_size = snprintf(id, id_len, 3039 "naa.%16phN", 3040 cur_id_str); 3041 break; 3042 default: 3043 cur_id_size = 0; 3044 break; 3045 } 3046 break; 3047 case 0x8: 3048 /* SCSI name string */ 3049 if (cur_id_size + 4 > d[3]) 3050 break; 3051 /* Prefer others for truncated descriptor */ 3052 if (cur_id_size && d[3] > id_len) 3053 break; 3054 cur_id_size = id_size = d[3]; 3055 cur_id_str = d + 4; 3056 cur_id_type = d[1] & 0xf; 3057 if (cur_id_size >= id_len) 3058 cur_id_size = id_len - 1; 3059 memcpy(id, cur_id_str, cur_id_size); 3060 /* Decrease priority for truncated descriptor */ 3061 if (cur_id_size != id_size) 3062 cur_id_size = 6; 3063 break; 3064 default: 3065 break; 3066 } 3067 next_desig: 3068 d += d[3] + 4; 3069 } 3070 rcu_read_unlock(); 3071 3072 return id_size; 3073 } 3074 EXPORT_SYMBOL(scsi_vpd_lun_id); 3075 3076 /* 3077 * scsi_vpd_tpg_id - return a target port group identifier 3078 * @sdev: SCSI device 3079 * 3080 * Returns the Target Port Group identifier from the information 3081 * froom VPD page 0x83 of the device. 3082 * 3083 * Returns the identifier or error on failure. 3084 */ 3085 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3086 { 3087 const unsigned char *d; 3088 const struct scsi_vpd *vpd_pg83; 3089 int group_id = -EAGAIN, rel_port = -1; 3090 3091 rcu_read_lock(); 3092 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3093 if (!vpd_pg83) { 3094 rcu_read_unlock(); 3095 return -ENXIO; 3096 } 3097 3098 d = vpd_pg83->data + 4; 3099 while (d < vpd_pg83->data + vpd_pg83->len) { 3100 switch (d[1] & 0xf) { 3101 case 0x4: 3102 /* Relative target port */ 3103 rel_port = get_unaligned_be16(&d[6]); 3104 break; 3105 case 0x5: 3106 /* Target port group */ 3107 group_id = get_unaligned_be16(&d[6]); 3108 break; 3109 default: 3110 break; 3111 } 3112 d += d[3] + 4; 3113 } 3114 rcu_read_unlock(); 3115 3116 if (group_id >= 0 && rel_id && rel_port != -1) 3117 *rel_id = rel_port; 3118 3119 return group_id; 3120 } 3121 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3122