xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision c1cf3d89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254 	if (IS_ERR(req))
255 		return ret;
256 	rq = scsi_req(req);
257 
258 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
259 					buffer, bufflen, GFP_NOIO))
260 		goto out;
261 
262 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 	memcpy(rq->cmd, cmd, rq->cmd_len);
264 	rq->retries = retries;
265 	req->timeout = timeout;
266 	req->cmd_flags |= flags;
267 	req->rq_flags |= rq_flags | RQF_QUIET;
268 
269 	/*
270 	 * head injection *required* here otherwise quiesce won't work
271 	 */
272 	blk_execute_rq(req->q, NULL, req, 1);
273 
274 	/*
275 	 * Some devices (USB mass-storage in particular) may transfer
276 	 * garbage data together with a residue indicating that the data
277 	 * is invalid.  Prevent the garbage from being misinterpreted
278 	 * and prevent security leaks by zeroing out the excess data.
279 	 */
280 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282 
283 	if (resid)
284 		*resid = rq->resid_len;
285 	if (sense && rq->sense_len)
286 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 	if (sshdr)
288 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 	ret = rq->result;
290  out:
291 	blk_put_request(req);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296 
297 /*
298  * Wake up the error handler if necessary. Avoid as follows that the error
299  * handler is not woken up if host in-flight requests number ==
300  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301  * with an RCU read lock in this function to ensure that this function in
302  * its entirety either finishes before scsi_eh_scmd_add() increases the
303  * host_failed counter or that it notices the shost state change made by
304  * scsi_eh_scmd_add().
305  */
306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308 	unsigned long flags;
309 
310 	rcu_read_lock();
311 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312 	if (unlikely(scsi_host_in_recovery(shost))) {
313 		spin_lock_irqsave(shost->host_lock, flags);
314 		if (shost->host_failed || shost->host_eh_scheduled)
315 			scsi_eh_wakeup(shost);
316 		spin_unlock_irqrestore(shost->host_lock, flags);
317 	}
318 	rcu_read_unlock();
319 }
320 
321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323 	struct Scsi_Host *shost = sdev->host;
324 	struct scsi_target *starget = scsi_target(sdev);
325 
326 	scsi_dec_host_busy(shost, cmd);
327 
328 	if (starget->can_queue > 0)
329 		atomic_dec(&starget->target_busy);
330 
331 	atomic_dec(&sdev->device_busy);
332 }
333 
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336 	blk_mq_run_hw_queues(q, false);
337 }
338 
339 /*
340  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341  * and call blk_run_queue for all the scsi_devices on the target -
342  * including current_sdev first.
343  *
344  * Called with *no* scsi locks held.
345  */
346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348 	struct Scsi_Host *shost = current_sdev->host;
349 	struct scsi_device *sdev, *tmp;
350 	struct scsi_target *starget = scsi_target(current_sdev);
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(shost->host_lock, flags);
354 	starget->starget_sdev_user = NULL;
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 
357 	/*
358 	 * Call blk_run_queue for all LUNs on the target, starting with
359 	 * current_sdev. We race with others (to set starget_sdev_user),
360 	 * but in most cases, we will be first. Ideally, each LU on the
361 	 * target would get some limited time or requests on the target.
362 	 */
363 	scsi_kick_queue(current_sdev->request_queue);
364 
365 	spin_lock_irqsave(shost->host_lock, flags);
366 	if (starget->starget_sdev_user)
367 		goto out;
368 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
369 			same_target_siblings) {
370 		if (sdev == current_sdev)
371 			continue;
372 		if (scsi_device_get(sdev))
373 			continue;
374 
375 		spin_unlock_irqrestore(shost->host_lock, flags);
376 		scsi_kick_queue(sdev->request_queue);
377 		spin_lock_irqsave(shost->host_lock, flags);
378 
379 		scsi_device_put(sdev);
380 	}
381  out:
382 	spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384 
385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388 		return true;
389 	if (atomic_read(&sdev->device_blocked) > 0)
390 		return true;
391 	return false;
392 }
393 
394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396 	if (starget->can_queue > 0) {
397 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
398 			return true;
399 		if (atomic_read(&starget->target_blocked) > 0)
400 			return true;
401 	}
402 	return false;
403 }
404 
405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407 	if (atomic_read(&shost->host_blocked) > 0)
408 		return true;
409 	if (shost->host_self_blocked)
410 		return true;
411 	return false;
412 }
413 
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 	LIST_HEAD(starved_list);
417 	struct scsi_device *sdev;
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(shost->host_lock, flags);
421 	list_splice_init(&shost->starved_list, &starved_list);
422 
423 	while (!list_empty(&starved_list)) {
424 		struct request_queue *slq;
425 
426 		/*
427 		 * As long as shost is accepting commands and we have
428 		 * starved queues, call blk_run_queue. scsi_request_fn
429 		 * drops the queue_lock and can add us back to the
430 		 * starved_list.
431 		 *
432 		 * host_lock protects the starved_list and starved_entry.
433 		 * scsi_request_fn must get the host_lock before checking
434 		 * or modifying starved_list or starved_entry.
435 		 */
436 		if (scsi_host_is_busy(shost))
437 			break;
438 
439 		sdev = list_entry(starved_list.next,
440 				  struct scsi_device, starved_entry);
441 		list_del_init(&sdev->starved_entry);
442 		if (scsi_target_is_busy(scsi_target(sdev))) {
443 			list_move_tail(&sdev->starved_entry,
444 				       &shost->starved_list);
445 			continue;
446 		}
447 
448 		/*
449 		 * Once we drop the host lock, a racing scsi_remove_device()
450 		 * call may remove the sdev from the starved list and destroy
451 		 * it and the queue.  Mitigate by taking a reference to the
452 		 * queue and never touching the sdev again after we drop the
453 		 * host lock.  Note: if __scsi_remove_device() invokes
454 		 * blk_cleanup_queue() before the queue is run from this
455 		 * function then blk_run_queue() will return immediately since
456 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 		 */
458 		slq = sdev->request_queue;
459 		if (!blk_get_queue(slq))
460 			continue;
461 		spin_unlock_irqrestore(shost->host_lock, flags);
462 
463 		scsi_kick_queue(slq);
464 		blk_put_queue(slq);
465 
466 		spin_lock_irqsave(shost->host_lock, flags);
467 	}
468 	/* put any unprocessed entries back */
469 	list_splice(&starved_list, &shost->starved_list);
470 	spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472 
473 /**
474  * scsi_run_queue - Select a proper request queue to serve next.
475  * @q:  last request's queue
476  *
477  * The previous command was completely finished, start a new one if possible.
478  */
479 static void scsi_run_queue(struct request_queue *q)
480 {
481 	struct scsi_device *sdev = q->queuedata;
482 
483 	if (scsi_target(sdev)->single_lun)
484 		scsi_single_lun_run(sdev);
485 	if (!list_empty(&sdev->host->starved_list))
486 		scsi_starved_list_run(sdev->host);
487 
488 	blk_mq_run_hw_queues(q, false);
489 }
490 
491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493 	struct scsi_device *sdev;
494 	struct request_queue *q;
495 
496 	sdev = container_of(work, struct scsi_device, requeue_work);
497 	q = sdev->request_queue;
498 	scsi_run_queue(q);
499 }
500 
501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503 	struct scsi_device *sdev;
504 
505 	shost_for_each_device(sdev, shost)
506 		scsi_run_queue(sdev->request_queue);
507 }
508 
509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511 	if (!blk_rq_is_passthrough(cmd->request)) {
512 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513 
514 		if (drv->uninit_command)
515 			drv->uninit_command(cmd);
516 	}
517 }
518 
519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521 	if (cmd->sdb.table.nents)
522 		sg_free_table_chained(&cmd->sdb.table,
523 				SCSI_INLINE_SG_CNT);
524 	if (scsi_prot_sg_count(cmd))
525 		sg_free_table_chained(&cmd->prot_sdb->table,
526 				SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529 
530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532 	scsi_free_sgtables(cmd);
533 	scsi_uninit_cmd(cmd);
534 }
535 
536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538 	if (scsi_target(sdev)->single_lun ||
539 	    !list_empty(&sdev->host->starved_list)) {
540 		kblockd_schedule_work(&sdev->requeue_work);
541 	} else {
542 		/*
543 		 * smp_mb() present in sbitmap_queue_clear() or implied in
544 		 * .end_io is for ordering writing .device_busy in
545 		 * scsi_device_unbusy() and reading sdev->restarts.
546 		 */
547 		int old = atomic_read(&sdev->restarts);
548 
549 		/*
550 		 * ->restarts has to be kept as non-zero if new budget
551 		 *  contention occurs.
552 		 *
553 		 *  No need to run queue when either another re-run
554 		 *  queue wins in updating ->restarts or a new budget
555 		 *  contention occurs.
556 		 */
557 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558 			blk_mq_run_hw_queues(sdev->request_queue, true);
559 	}
560 }
561 
562 /* Returns false when no more bytes to process, true if there are more */
563 static bool scsi_end_request(struct request *req, blk_status_t error,
564 		unsigned int bytes)
565 {
566 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567 	struct scsi_device *sdev = cmd->device;
568 	struct request_queue *q = sdev->request_queue;
569 
570 	if (blk_update_request(req, error, bytes))
571 		return true;
572 
573 	if (blk_queue_add_random(q))
574 		add_disk_randomness(req->rq_disk);
575 
576 	if (!blk_rq_is_scsi(req)) {
577 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578 		cmd->flags &= ~SCMD_INITIALIZED;
579 	}
580 
581 	/*
582 	 * Calling rcu_barrier() is not necessary here because the
583 	 * SCSI error handler guarantees that the function called by
584 	 * call_rcu() has been called before scsi_end_request() is
585 	 * called.
586 	 */
587 	destroy_rcu_head(&cmd->rcu);
588 
589 	/*
590 	 * In the MQ case the command gets freed by __blk_mq_end_request,
591 	 * so we have to do all cleanup that depends on it earlier.
592 	 *
593 	 * We also can't kick the queues from irq context, so we
594 	 * will have to defer it to a workqueue.
595 	 */
596 	scsi_mq_uninit_cmd(cmd);
597 
598 	/*
599 	 * queue is still alive, so grab the ref for preventing it
600 	 * from being cleaned up during running queue.
601 	 */
602 	percpu_ref_get(&q->q_usage_counter);
603 
604 	__blk_mq_end_request(req, error);
605 
606 	scsi_run_queue_async(sdev);
607 
608 	percpu_ref_put(&q->q_usage_counter);
609 	return false;
610 }
611 
612 /**
613  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614  * @cmd:	SCSI command
615  * @result:	scsi error code
616  *
617  * Translate a SCSI result code into a blk_status_t value. May reset the host
618  * byte of @cmd->result.
619  */
620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622 	switch (host_byte(result)) {
623 	case DID_OK:
624 		/*
625 		 * Also check the other bytes than the status byte in result
626 		 * to handle the case when a SCSI LLD sets result to
627 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628 		 */
629 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630 			return BLK_STS_OK;
631 		return BLK_STS_IOERR;
632 	case DID_TRANSPORT_FAILFAST:
633 		return BLK_STS_TRANSPORT;
634 	case DID_TARGET_FAILURE:
635 		set_host_byte(cmd, DID_OK);
636 		return BLK_STS_TARGET;
637 	case DID_NEXUS_FAILURE:
638 		set_host_byte(cmd, DID_OK);
639 		return BLK_STS_NEXUS;
640 	case DID_ALLOC_FAILURE:
641 		set_host_byte(cmd, DID_OK);
642 		return BLK_STS_NOSPC;
643 	case DID_MEDIUM_ERROR:
644 		set_host_byte(cmd, DID_OK);
645 		return BLK_STS_MEDIUM;
646 	default:
647 		return BLK_STS_IOERR;
648 	}
649 }
650 
651 /* Helper for scsi_io_completion() when "reprep" action required. */
652 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
653 				      struct request_queue *q)
654 {
655 	/* A new command will be prepared and issued. */
656 	scsi_mq_requeue_cmd(cmd);
657 }
658 
659 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
660 {
661 	struct request *req = cmd->request;
662 	unsigned long wait_for;
663 
664 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
665 		return false;
666 
667 	wait_for = (cmd->allowed + 1) * req->timeout;
668 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
669 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
670 			    wait_for/HZ);
671 		return true;
672 	}
673 	return false;
674 }
675 
676 /* Helper for scsi_io_completion() when special action required. */
677 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
678 {
679 	struct request_queue *q = cmd->device->request_queue;
680 	struct request *req = cmd->request;
681 	int level = 0;
682 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
683 	      ACTION_DELAYED_RETRY} action;
684 	struct scsi_sense_hdr sshdr;
685 	bool sense_valid;
686 	bool sense_current = true;      /* false implies "deferred sense" */
687 	blk_status_t blk_stat;
688 
689 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
690 	if (sense_valid)
691 		sense_current = !scsi_sense_is_deferred(&sshdr);
692 
693 	blk_stat = scsi_result_to_blk_status(cmd, result);
694 
695 	if (host_byte(result) == DID_RESET) {
696 		/* Third party bus reset or reset for error recovery
697 		 * reasons.  Just retry the command and see what
698 		 * happens.
699 		 */
700 		action = ACTION_RETRY;
701 	} else if (sense_valid && sense_current) {
702 		switch (sshdr.sense_key) {
703 		case UNIT_ATTENTION:
704 			if (cmd->device->removable) {
705 				/* Detected disc change.  Set a bit
706 				 * and quietly refuse further access.
707 				 */
708 				cmd->device->changed = 1;
709 				action = ACTION_FAIL;
710 			} else {
711 				/* Must have been a power glitch, or a
712 				 * bus reset.  Could not have been a
713 				 * media change, so we just retry the
714 				 * command and see what happens.
715 				 */
716 				action = ACTION_RETRY;
717 			}
718 			break;
719 		case ILLEGAL_REQUEST:
720 			/* If we had an ILLEGAL REQUEST returned, then
721 			 * we may have performed an unsupported
722 			 * command.  The only thing this should be
723 			 * would be a ten byte read where only a six
724 			 * byte read was supported.  Also, on a system
725 			 * where READ CAPACITY failed, we may have
726 			 * read past the end of the disk.
727 			 */
728 			if ((cmd->device->use_10_for_rw &&
729 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
730 			    (cmd->cmnd[0] == READ_10 ||
731 			     cmd->cmnd[0] == WRITE_10)) {
732 				/* This will issue a new 6-byte command. */
733 				cmd->device->use_10_for_rw = 0;
734 				action = ACTION_REPREP;
735 			} else if (sshdr.asc == 0x10) /* DIX */ {
736 				action = ACTION_FAIL;
737 				blk_stat = BLK_STS_PROTECTION;
738 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
739 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
740 				action = ACTION_FAIL;
741 				blk_stat = BLK_STS_TARGET;
742 			} else
743 				action = ACTION_FAIL;
744 			break;
745 		case ABORTED_COMMAND:
746 			action = ACTION_FAIL;
747 			if (sshdr.asc == 0x10) /* DIF */
748 				blk_stat = BLK_STS_PROTECTION;
749 			break;
750 		case NOT_READY:
751 			/* If the device is in the process of becoming
752 			 * ready, or has a temporary blockage, retry.
753 			 */
754 			if (sshdr.asc == 0x04) {
755 				switch (sshdr.ascq) {
756 				case 0x01: /* becoming ready */
757 				case 0x04: /* format in progress */
758 				case 0x05: /* rebuild in progress */
759 				case 0x06: /* recalculation in progress */
760 				case 0x07: /* operation in progress */
761 				case 0x08: /* Long write in progress */
762 				case 0x09: /* self test in progress */
763 				case 0x14: /* space allocation in progress */
764 				case 0x1a: /* start stop unit in progress */
765 				case 0x1b: /* sanitize in progress */
766 				case 0x1d: /* configuration in progress */
767 				case 0x24: /* depopulation in progress */
768 					action = ACTION_DELAYED_RETRY;
769 					break;
770 				case 0x0a: /* ALUA state transition */
771 					blk_stat = BLK_STS_AGAIN;
772 					fallthrough;
773 				default:
774 					action = ACTION_FAIL;
775 					break;
776 				}
777 			} else
778 				action = ACTION_FAIL;
779 			break;
780 		case VOLUME_OVERFLOW:
781 			/* See SSC3rXX or current. */
782 			action = ACTION_FAIL;
783 			break;
784 		case DATA_PROTECT:
785 			action = ACTION_FAIL;
786 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
787 			    (sshdr.asc == 0x55 &&
788 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
789 				/* Insufficient zone resources */
790 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
791 			}
792 			break;
793 		default:
794 			action = ACTION_FAIL;
795 			break;
796 		}
797 	} else
798 		action = ACTION_FAIL;
799 
800 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
801 		action = ACTION_FAIL;
802 
803 	switch (action) {
804 	case ACTION_FAIL:
805 		/* Give up and fail the remainder of the request */
806 		if (!(req->rq_flags & RQF_QUIET)) {
807 			static DEFINE_RATELIMIT_STATE(_rs,
808 					DEFAULT_RATELIMIT_INTERVAL,
809 					DEFAULT_RATELIMIT_BURST);
810 
811 			if (unlikely(scsi_logging_level))
812 				level =
813 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
814 						    SCSI_LOG_MLCOMPLETE_BITS);
815 
816 			/*
817 			 * if logging is enabled the failure will be printed
818 			 * in scsi_log_completion(), so avoid duplicate messages
819 			 */
820 			if (!level && __ratelimit(&_rs)) {
821 				scsi_print_result(cmd, NULL, FAILED);
822 				if (driver_byte(result) == DRIVER_SENSE)
823 					scsi_print_sense(cmd);
824 				scsi_print_command(cmd);
825 			}
826 		}
827 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
828 			return;
829 		fallthrough;
830 	case ACTION_REPREP:
831 		scsi_io_completion_reprep(cmd, q);
832 		break;
833 	case ACTION_RETRY:
834 		/* Retry the same command immediately */
835 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
836 		break;
837 	case ACTION_DELAYED_RETRY:
838 		/* Retry the same command after a delay */
839 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
840 		break;
841 	}
842 }
843 
844 /*
845  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
846  * new result that may suppress further error checking. Also modifies
847  * *blk_statp in some cases.
848  */
849 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
850 					blk_status_t *blk_statp)
851 {
852 	bool sense_valid;
853 	bool sense_current = true;	/* false implies "deferred sense" */
854 	struct request *req = cmd->request;
855 	struct scsi_sense_hdr sshdr;
856 
857 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
858 	if (sense_valid)
859 		sense_current = !scsi_sense_is_deferred(&sshdr);
860 
861 	if (blk_rq_is_passthrough(req)) {
862 		if (sense_valid) {
863 			/*
864 			 * SG_IO wants current and deferred errors
865 			 */
866 			scsi_req(req)->sense_len =
867 				min(8 + cmd->sense_buffer[7],
868 				    SCSI_SENSE_BUFFERSIZE);
869 		}
870 		if (sense_current)
871 			*blk_statp = scsi_result_to_blk_status(cmd, result);
872 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
873 		/*
874 		 * Flush commands do not transfers any data, and thus cannot use
875 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 		 * This sets *blk_statp explicitly for the problem case.
877 		 */
878 		*blk_statp = scsi_result_to_blk_status(cmd, result);
879 	}
880 	/*
881 	 * Recovered errors need reporting, but they're always treated as
882 	 * success, so fiddle the result code here.  For passthrough requests
883 	 * we already took a copy of the original into sreq->result which
884 	 * is what gets returned to the user
885 	 */
886 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
887 		bool do_print = true;
888 		/*
889 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
890 		 * skip print since caller wants ATA registers. Only occurs
891 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
892 		 */
893 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
894 			do_print = false;
895 		else if (req->rq_flags & RQF_QUIET)
896 			do_print = false;
897 		if (do_print)
898 			scsi_print_sense(cmd);
899 		result = 0;
900 		/* for passthrough, *blk_statp may be set */
901 		*blk_statp = BLK_STS_OK;
902 	}
903 	/*
904 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
905 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
906 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
907 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
908 	 * intermediate statuses (both obsolete in SAM-4) as good.
909 	 */
910 	if (status_byte(result) && scsi_status_is_good(result)) {
911 		result = 0;
912 		*blk_statp = BLK_STS_OK;
913 	}
914 	return result;
915 }
916 
917 /**
918  * scsi_io_completion - Completion processing for SCSI commands.
919  * @cmd:	command that is finished.
920  * @good_bytes:	number of processed bytes.
921  *
922  * We will finish off the specified number of sectors. If we are done, the
923  * command block will be released and the queue function will be goosed. If we
924  * are not done then we have to figure out what to do next:
925  *
926  *   a) We can call scsi_io_completion_reprep().  The request will be
927  *	unprepared and put back on the queue.  Then a new command will
928  *	be created for it.  This should be used if we made forward
929  *	progress, or if we want to switch from READ(10) to READ(6) for
930  *	example.
931  *
932  *   b) We can call scsi_io_completion_action().  The request will be
933  *	put back on the queue and retried using the same command as
934  *	before, possibly after a delay.
935  *
936  *   c) We can call scsi_end_request() with blk_stat other than
937  *	BLK_STS_OK, to fail the remainder of the request.
938  */
939 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
940 {
941 	int result = cmd->result;
942 	struct request_queue *q = cmd->device->request_queue;
943 	struct request *req = cmd->request;
944 	blk_status_t blk_stat = BLK_STS_OK;
945 
946 	if (unlikely(result))	/* a nz result may or may not be an error */
947 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
948 
949 	if (unlikely(blk_rq_is_passthrough(req))) {
950 		/*
951 		 * scsi_result_to_blk_status may have reset the host_byte
952 		 */
953 		scsi_req(req)->result = cmd->result;
954 	}
955 
956 	/*
957 	 * Next deal with any sectors which we were able to correctly
958 	 * handle.
959 	 */
960 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
961 		"%u sectors total, %d bytes done.\n",
962 		blk_rq_sectors(req), good_bytes));
963 
964 	/*
965 	 * Failed, zero length commands always need to drop down
966 	 * to retry code. Fast path should return in this block.
967 	 */
968 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
969 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
970 			return; /* no bytes remaining */
971 	}
972 
973 	/* Kill remainder if no retries. */
974 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
975 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
976 			WARN_ONCE(true,
977 			    "Bytes remaining after failed, no-retry command");
978 		return;
979 	}
980 
981 	/*
982 	 * If there had been no error, but we have leftover bytes in the
983 	 * requeues just queue the command up again.
984 	 */
985 	if (likely(result == 0))
986 		scsi_io_completion_reprep(cmd, q);
987 	else
988 		scsi_io_completion_action(cmd, result);
989 }
990 
991 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
992 		struct request *rq)
993 {
994 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
995 	       !op_is_write(req_op(rq)) &&
996 	       sdev->host->hostt->dma_need_drain(rq);
997 }
998 
999 /**
1000  * scsi_alloc_sgtables - allocate S/G tables for a command
1001  * @cmd:  command descriptor we wish to initialize
1002  *
1003  * Returns:
1004  * * BLK_STS_OK       - on success
1005  * * BLK_STS_RESOURCE - if the failure is retryable
1006  * * BLK_STS_IOERR    - if the failure is fatal
1007  */
1008 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1009 {
1010 	struct scsi_device *sdev = cmd->device;
1011 	struct request *rq = cmd->request;
1012 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1013 	struct scatterlist *last_sg = NULL;
1014 	blk_status_t ret;
1015 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1016 	int count;
1017 
1018 	if (WARN_ON_ONCE(!nr_segs))
1019 		return BLK_STS_IOERR;
1020 
1021 	/*
1022 	 * Make sure there is space for the drain.  The driver must adjust
1023 	 * max_hw_segments to be prepared for this.
1024 	 */
1025 	if (need_drain)
1026 		nr_segs++;
1027 
1028 	/*
1029 	 * If sg table allocation fails, requeue request later.
1030 	 */
1031 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1032 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1033 		return BLK_STS_RESOURCE;
1034 
1035 	/*
1036 	 * Next, walk the list, and fill in the addresses and sizes of
1037 	 * each segment.
1038 	 */
1039 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1040 
1041 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1042 		unsigned int pad_len =
1043 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1044 
1045 		last_sg->length += pad_len;
1046 		cmd->extra_len += pad_len;
1047 	}
1048 
1049 	if (need_drain) {
1050 		sg_unmark_end(last_sg);
1051 		last_sg = sg_next(last_sg);
1052 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1053 		sg_mark_end(last_sg);
1054 
1055 		cmd->extra_len += sdev->dma_drain_len;
1056 		count++;
1057 	}
1058 
1059 	BUG_ON(count > cmd->sdb.table.nents);
1060 	cmd->sdb.table.nents = count;
1061 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1062 
1063 	if (blk_integrity_rq(rq)) {
1064 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065 		int ivecs;
1066 
1067 		if (WARN_ON_ONCE(!prot_sdb)) {
1068 			/*
1069 			 * This can happen if someone (e.g. multipath)
1070 			 * queues a command to a device on an adapter
1071 			 * that does not support DIX.
1072 			 */
1073 			ret = BLK_STS_IOERR;
1074 			goto out_free_sgtables;
1075 		}
1076 
1077 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1078 
1079 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1080 				prot_sdb->table.sgl,
1081 				SCSI_INLINE_PROT_SG_CNT)) {
1082 			ret = BLK_STS_RESOURCE;
1083 			goto out_free_sgtables;
1084 		}
1085 
1086 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087 						prot_sdb->table.sgl);
1088 		BUG_ON(count > ivecs);
1089 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1090 
1091 		cmd->prot_sdb = prot_sdb;
1092 		cmd->prot_sdb->table.nents = count;
1093 	}
1094 
1095 	return BLK_STS_OK;
1096 out_free_sgtables:
1097 	scsi_free_sgtables(cmd);
1098 	return ret;
1099 }
1100 EXPORT_SYMBOL(scsi_alloc_sgtables);
1101 
1102 /**
1103  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1104  * @rq: Request associated with the SCSI command to be initialized.
1105  *
1106  * This function initializes the members of struct scsi_cmnd that must be
1107  * initialized before request processing starts and that won't be
1108  * reinitialized if a SCSI command is requeued.
1109  *
1110  * Called from inside blk_get_request() for pass-through requests and from
1111  * inside scsi_init_command() for filesystem requests.
1112  */
1113 static void scsi_initialize_rq(struct request *rq)
1114 {
1115 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1116 
1117 	scsi_req_init(&cmd->req);
1118 	init_rcu_head(&cmd->rcu);
1119 	cmd->jiffies_at_alloc = jiffies;
1120 	cmd->retries = 0;
1121 }
1122 
1123 /*
1124  * Only called when the request isn't completed by SCSI, and not freed by
1125  * SCSI
1126  */
1127 static void scsi_cleanup_rq(struct request *rq)
1128 {
1129 	if (rq->rq_flags & RQF_DONTPREP) {
1130 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1131 		rq->rq_flags &= ~RQF_DONTPREP;
1132 	}
1133 }
1134 
1135 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1136 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1137 {
1138 	void *buf = cmd->sense_buffer;
1139 	void *prot = cmd->prot_sdb;
1140 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1141 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1142 	unsigned long jiffies_at_alloc;
1143 	int retries, to_clear;
1144 	bool in_flight;
1145 
1146 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1147 		flags |= SCMD_INITIALIZED;
1148 		scsi_initialize_rq(rq);
1149 	}
1150 
1151 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1152 	retries = cmd->retries;
1153 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1154 	/*
1155 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1156 	 * the driver-private command data if the LLD does not supply a
1157 	 * function to initialize that data.
1158 	 */
1159 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1160 	if (!dev->host->hostt->init_cmd_priv)
1161 		to_clear += dev->host->hostt->cmd_size;
1162 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1163 
1164 	cmd->device = dev;
1165 	cmd->sense_buffer = buf;
1166 	cmd->prot_sdb = prot;
1167 	cmd->flags = flags;
1168 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1170 	cmd->retries = retries;
1171 	if (in_flight)
1172 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1173 
1174 }
1175 
1176 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1177 		struct request *req)
1178 {
1179 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1180 
1181 	/*
1182 	 * Passthrough requests may transfer data, in which case they must
1183 	 * a bio attached to them.  Or they might contain a SCSI command
1184 	 * that does not transfer data, in which case they may optionally
1185 	 * submit a request without an attached bio.
1186 	 */
1187 	if (req->bio) {
1188 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1189 		if (unlikely(ret != BLK_STS_OK))
1190 			return ret;
1191 	} else {
1192 		BUG_ON(blk_rq_bytes(req));
1193 
1194 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1195 	}
1196 
1197 	cmd->cmd_len = scsi_req(req)->cmd_len;
1198 	if (cmd->cmd_len == 0)
1199 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1200 	cmd->cmnd = scsi_req(req)->cmd;
1201 	cmd->transfersize = blk_rq_bytes(req);
1202 	cmd->allowed = scsi_req(req)->retries;
1203 	return BLK_STS_OK;
1204 }
1205 
1206 static blk_status_t
1207 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1208 {
1209 	switch (sdev->sdev_state) {
1210 	case SDEV_CREATED:
1211 		return BLK_STS_OK;
1212 	case SDEV_OFFLINE:
1213 	case SDEV_TRANSPORT_OFFLINE:
1214 		/*
1215 		 * If the device is offline we refuse to process any
1216 		 * commands.  The device must be brought online
1217 		 * before trying any recovery commands.
1218 		 */
1219 		if (!sdev->offline_already) {
1220 			sdev->offline_already = true;
1221 			sdev_printk(KERN_ERR, sdev,
1222 				    "rejecting I/O to offline device\n");
1223 		}
1224 		return BLK_STS_IOERR;
1225 	case SDEV_DEL:
1226 		/*
1227 		 * If the device is fully deleted, we refuse to
1228 		 * process any commands as well.
1229 		 */
1230 		sdev_printk(KERN_ERR, sdev,
1231 			    "rejecting I/O to dead device\n");
1232 		return BLK_STS_IOERR;
1233 	case SDEV_BLOCK:
1234 	case SDEV_CREATED_BLOCK:
1235 		return BLK_STS_RESOURCE;
1236 	case SDEV_QUIESCE:
1237 		/*
1238 		 * If the device is blocked we only accept power management
1239 		 * commands.
1240 		 */
1241 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1242 			return BLK_STS_RESOURCE;
1243 		return BLK_STS_OK;
1244 	default:
1245 		/*
1246 		 * For any other not fully online state we only allow
1247 		 * power management commands.
1248 		 */
1249 		if (req && !(req->rq_flags & RQF_PM))
1250 			return BLK_STS_IOERR;
1251 		return BLK_STS_OK;
1252 	}
1253 }
1254 
1255 /*
1256  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1257  * return 0.
1258  *
1259  * Called with the queue_lock held.
1260  */
1261 static inline int scsi_dev_queue_ready(struct request_queue *q,
1262 				  struct scsi_device *sdev)
1263 {
1264 	unsigned int busy;
1265 
1266 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1267 	if (atomic_read(&sdev->device_blocked)) {
1268 		if (busy)
1269 			goto out_dec;
1270 
1271 		/*
1272 		 * unblock after device_blocked iterates to zero
1273 		 */
1274 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1275 			goto out_dec;
1276 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1277 				   "unblocking device at zero depth\n"));
1278 	}
1279 
1280 	if (busy >= sdev->queue_depth)
1281 		goto out_dec;
1282 
1283 	return 1;
1284 out_dec:
1285 	atomic_dec(&sdev->device_busy);
1286 	return 0;
1287 }
1288 
1289 /*
1290  * scsi_target_queue_ready: checks if there we can send commands to target
1291  * @sdev: scsi device on starget to check.
1292  */
1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1294 					   struct scsi_device *sdev)
1295 {
1296 	struct scsi_target *starget = scsi_target(sdev);
1297 	unsigned int busy;
1298 
1299 	if (starget->single_lun) {
1300 		spin_lock_irq(shost->host_lock);
1301 		if (starget->starget_sdev_user &&
1302 		    starget->starget_sdev_user != sdev) {
1303 			spin_unlock_irq(shost->host_lock);
1304 			return 0;
1305 		}
1306 		starget->starget_sdev_user = sdev;
1307 		spin_unlock_irq(shost->host_lock);
1308 	}
1309 
1310 	if (starget->can_queue <= 0)
1311 		return 1;
1312 
1313 	busy = atomic_inc_return(&starget->target_busy) - 1;
1314 	if (atomic_read(&starget->target_blocked) > 0) {
1315 		if (busy)
1316 			goto starved;
1317 
1318 		/*
1319 		 * unblock after target_blocked iterates to zero
1320 		 */
1321 		if (atomic_dec_return(&starget->target_blocked) > 0)
1322 			goto out_dec;
1323 
1324 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1325 				 "unblocking target at zero depth\n"));
1326 	}
1327 
1328 	if (busy >= starget->can_queue)
1329 		goto starved;
1330 
1331 	return 1;
1332 
1333 starved:
1334 	spin_lock_irq(shost->host_lock);
1335 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1336 	spin_unlock_irq(shost->host_lock);
1337 out_dec:
1338 	if (starget->can_queue > 0)
1339 		atomic_dec(&starget->target_busy);
1340 	return 0;
1341 }
1342 
1343 /*
1344  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1345  * return 0. We must end up running the queue again whenever 0 is
1346  * returned, else IO can hang.
1347  */
1348 static inline int scsi_host_queue_ready(struct request_queue *q,
1349 				   struct Scsi_Host *shost,
1350 				   struct scsi_device *sdev,
1351 				   struct scsi_cmnd *cmd)
1352 {
1353 	if (scsi_host_in_recovery(shost))
1354 		return 0;
1355 
1356 	if (atomic_read(&shost->host_blocked) > 0) {
1357 		if (scsi_host_busy(shost) > 0)
1358 			goto starved;
1359 
1360 		/*
1361 		 * unblock after host_blocked iterates to zero
1362 		 */
1363 		if (atomic_dec_return(&shost->host_blocked) > 0)
1364 			goto out_dec;
1365 
1366 		SCSI_LOG_MLQUEUE(3,
1367 			shost_printk(KERN_INFO, shost,
1368 				     "unblocking host at zero depth\n"));
1369 	}
1370 
1371 	if (shost->host_self_blocked)
1372 		goto starved;
1373 
1374 	/* We're OK to process the command, so we can't be starved */
1375 	if (!list_empty(&sdev->starved_entry)) {
1376 		spin_lock_irq(shost->host_lock);
1377 		if (!list_empty(&sdev->starved_entry))
1378 			list_del_init(&sdev->starved_entry);
1379 		spin_unlock_irq(shost->host_lock);
1380 	}
1381 
1382 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1383 
1384 	return 1;
1385 
1386 starved:
1387 	spin_lock_irq(shost->host_lock);
1388 	if (list_empty(&sdev->starved_entry))
1389 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1390 	spin_unlock_irq(shost->host_lock);
1391 out_dec:
1392 	scsi_dec_host_busy(shost, cmd);
1393 	return 0;
1394 }
1395 
1396 /*
1397  * Busy state exporting function for request stacking drivers.
1398  *
1399  * For efficiency, no lock is taken to check the busy state of
1400  * shost/starget/sdev, since the returned value is not guaranteed and
1401  * may be changed after request stacking drivers call the function,
1402  * regardless of taking lock or not.
1403  *
1404  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1405  * needs to return 'not busy'. Otherwise, request stacking drivers
1406  * may hold requests forever.
1407  */
1408 static bool scsi_mq_lld_busy(struct request_queue *q)
1409 {
1410 	struct scsi_device *sdev = q->queuedata;
1411 	struct Scsi_Host *shost;
1412 
1413 	if (blk_queue_dying(q))
1414 		return false;
1415 
1416 	shost = sdev->host;
1417 
1418 	/*
1419 	 * Ignore host/starget busy state.
1420 	 * Since block layer does not have a concept of fairness across
1421 	 * multiple queues, congestion of host/starget needs to be handled
1422 	 * in SCSI layer.
1423 	 */
1424 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1425 		return true;
1426 
1427 	return false;
1428 }
1429 
1430 static void scsi_softirq_done(struct request *rq)
1431 {
1432 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1433 	int disposition;
1434 
1435 	INIT_LIST_HEAD(&cmd->eh_entry);
1436 
1437 	atomic_inc(&cmd->device->iodone_cnt);
1438 	if (cmd->result)
1439 		atomic_inc(&cmd->device->ioerr_cnt);
1440 
1441 	disposition = scsi_decide_disposition(cmd);
1442 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1443 		disposition = SUCCESS;
1444 
1445 	scsi_log_completion(cmd, disposition);
1446 
1447 	switch (disposition) {
1448 	case SUCCESS:
1449 		scsi_finish_command(cmd);
1450 		break;
1451 	case NEEDS_RETRY:
1452 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1453 		break;
1454 	case ADD_TO_MLQUEUE:
1455 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1456 		break;
1457 	default:
1458 		scsi_eh_scmd_add(cmd);
1459 		break;
1460 	}
1461 }
1462 
1463 /**
1464  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1465  * @cmd: command block we are dispatching.
1466  *
1467  * Return: nonzero return request was rejected and device's queue needs to be
1468  * plugged.
1469  */
1470 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1471 {
1472 	struct Scsi_Host *host = cmd->device->host;
1473 	int rtn = 0;
1474 
1475 	atomic_inc(&cmd->device->iorequest_cnt);
1476 
1477 	/* check if the device is still usable */
1478 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1479 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1480 		 * returns an immediate error upwards, and signals
1481 		 * that the device is no longer present */
1482 		cmd->result = DID_NO_CONNECT << 16;
1483 		goto done;
1484 	}
1485 
1486 	/* Check to see if the scsi lld made this device blocked. */
1487 	if (unlikely(scsi_device_blocked(cmd->device))) {
1488 		/*
1489 		 * in blocked state, the command is just put back on
1490 		 * the device queue.  The suspend state has already
1491 		 * blocked the queue so future requests should not
1492 		 * occur until the device transitions out of the
1493 		 * suspend state.
1494 		 */
1495 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496 			"queuecommand : device blocked\n"));
1497 		return SCSI_MLQUEUE_DEVICE_BUSY;
1498 	}
1499 
1500 	/* Store the LUN value in cmnd, if needed. */
1501 	if (cmd->device->lun_in_cdb)
1502 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1503 			       (cmd->device->lun << 5 & 0xe0);
1504 
1505 	scsi_log_send(cmd);
1506 
1507 	/*
1508 	 * Before we queue this command, check if the command
1509 	 * length exceeds what the host adapter can handle.
1510 	 */
1511 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1512 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1513 			       "queuecommand : command too long. "
1514 			       "cdb_size=%d host->max_cmd_len=%d\n",
1515 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1516 		cmd->result = (DID_ABORT << 16);
1517 		goto done;
1518 	}
1519 
1520 	if (unlikely(host->shost_state == SHOST_DEL)) {
1521 		cmd->result = (DID_NO_CONNECT << 16);
1522 		goto done;
1523 
1524 	}
1525 
1526 	trace_scsi_dispatch_cmd_start(cmd);
1527 	rtn = host->hostt->queuecommand(host, cmd);
1528 	if (rtn) {
1529 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1530 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1531 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1532 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1533 
1534 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1535 			"queuecommand : request rejected\n"));
1536 	}
1537 
1538 	return rtn;
1539  done:
1540 	cmd->scsi_done(cmd);
1541 	return 0;
1542 }
1543 
1544 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1545 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1546 {
1547 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1548 		sizeof(struct scatterlist);
1549 }
1550 
1551 static blk_status_t scsi_prepare_cmd(struct request *req)
1552 {
1553 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1554 	struct scsi_device *sdev = req->q->queuedata;
1555 	struct Scsi_Host *shost = sdev->host;
1556 	struct scatterlist *sg;
1557 
1558 	scsi_init_command(sdev, cmd);
1559 
1560 	cmd->request = req;
1561 	cmd->tag = req->tag;
1562 	cmd->prot_op = SCSI_PROT_NORMAL;
1563 	if (blk_rq_bytes(req))
1564 		cmd->sc_data_direction = rq_dma_dir(req);
1565 	else
1566 		cmd->sc_data_direction = DMA_NONE;
1567 
1568 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1569 	cmd->sdb.table.sgl = sg;
1570 
1571 	if (scsi_host_get_prot(shost)) {
1572 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1573 
1574 		cmd->prot_sdb->table.sgl =
1575 			(struct scatterlist *)(cmd->prot_sdb + 1);
1576 	}
1577 
1578 	/*
1579 	 * Special handling for passthrough commands, which don't go to the ULP
1580 	 * at all:
1581 	 */
1582 	if (blk_rq_is_scsi(req))
1583 		return scsi_setup_scsi_cmnd(sdev, req);
1584 
1585 	if (sdev->handler && sdev->handler->prep_fn) {
1586 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1587 
1588 		if (ret != BLK_STS_OK)
1589 			return ret;
1590 	}
1591 
1592 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1593 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1594 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1595 }
1596 
1597 static void scsi_mq_done(struct scsi_cmnd *cmd)
1598 {
1599 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1600 		return;
1601 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1602 		return;
1603 	trace_scsi_dispatch_cmd_done(cmd);
1604 	blk_mq_complete_request(cmd->request);
1605 }
1606 
1607 static void scsi_mq_put_budget(struct request_queue *q)
1608 {
1609 	struct scsi_device *sdev = q->queuedata;
1610 
1611 	atomic_dec(&sdev->device_busy);
1612 }
1613 
1614 static bool scsi_mq_get_budget(struct request_queue *q)
1615 {
1616 	struct scsi_device *sdev = q->queuedata;
1617 
1618 	if (scsi_dev_queue_ready(q, sdev))
1619 		return true;
1620 
1621 	atomic_inc(&sdev->restarts);
1622 
1623 	/*
1624 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1625 	 * .restarts must be incremented before .device_busy is read because the
1626 	 * code in scsi_run_queue_async() depends on the order of these operations.
1627 	 */
1628 	smp_mb__after_atomic();
1629 
1630 	/*
1631 	 * If all in-flight requests originated from this LUN are completed
1632 	 * before reading .device_busy, sdev->device_busy will be observed as
1633 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1634 	 * soon. Otherwise, completion of one of these requests will observe
1635 	 * the .restarts flag, and the request queue will be run for handling
1636 	 * this request, see scsi_end_request().
1637 	 */
1638 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1639 				!scsi_device_blocked(sdev)))
1640 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1641 	return false;
1642 }
1643 
1644 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645 			 const struct blk_mq_queue_data *bd)
1646 {
1647 	struct request *req = bd->rq;
1648 	struct request_queue *q = req->q;
1649 	struct scsi_device *sdev = q->queuedata;
1650 	struct Scsi_Host *shost = sdev->host;
1651 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652 	blk_status_t ret;
1653 	int reason;
1654 
1655 	/*
1656 	 * If the device is not in running state we will reject some or all
1657 	 * commands.
1658 	 */
1659 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660 		ret = scsi_device_state_check(sdev, req);
1661 		if (ret != BLK_STS_OK)
1662 			goto out_put_budget;
1663 	}
1664 
1665 	ret = BLK_STS_RESOURCE;
1666 	if (!scsi_target_queue_ready(shost, sdev))
1667 		goto out_put_budget;
1668 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1669 		goto out_dec_target_busy;
1670 
1671 	if (!(req->rq_flags & RQF_DONTPREP)) {
1672 		ret = scsi_prepare_cmd(req);
1673 		if (ret != BLK_STS_OK)
1674 			goto out_dec_host_busy;
1675 		req->rq_flags |= RQF_DONTPREP;
1676 	} else {
1677 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678 	}
1679 
1680 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1681 	if (sdev->simple_tags)
1682 		cmd->flags |= SCMD_TAGGED;
1683 	if (bd->last)
1684 		cmd->flags |= SCMD_LAST;
1685 
1686 	scsi_set_resid(cmd, 0);
1687 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1688 	cmd->scsi_done = scsi_mq_done;
1689 
1690 	blk_mq_start_request(req);
1691 	reason = scsi_dispatch_cmd(cmd);
1692 	if (reason) {
1693 		scsi_set_blocked(cmd, reason);
1694 		ret = BLK_STS_RESOURCE;
1695 		goto out_dec_host_busy;
1696 	}
1697 
1698 	return BLK_STS_OK;
1699 
1700 out_dec_host_busy:
1701 	scsi_dec_host_busy(shost, cmd);
1702 out_dec_target_busy:
1703 	if (scsi_target(sdev)->can_queue > 0)
1704 		atomic_dec(&scsi_target(sdev)->target_busy);
1705 out_put_budget:
1706 	scsi_mq_put_budget(q);
1707 	switch (ret) {
1708 	case BLK_STS_OK:
1709 		break;
1710 	case BLK_STS_RESOURCE:
1711 	case BLK_STS_ZONE_RESOURCE:
1712 		if (scsi_device_blocked(sdev))
1713 			ret = BLK_STS_DEV_RESOURCE;
1714 		break;
1715 	case BLK_STS_AGAIN:
1716 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1717 		if (req->rq_flags & RQF_DONTPREP)
1718 			scsi_mq_uninit_cmd(cmd);
1719 		break;
1720 	default:
1721 		if (unlikely(!scsi_device_online(sdev)))
1722 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1723 		else
1724 			scsi_req(req)->result = DID_ERROR << 16;
1725 		/*
1726 		 * Make sure to release all allocated resources when
1727 		 * we hit an error, as we will never see this command
1728 		 * again.
1729 		 */
1730 		if (req->rq_flags & RQF_DONTPREP)
1731 			scsi_mq_uninit_cmd(cmd);
1732 		scsi_run_queue_async(sdev);
1733 		break;
1734 	}
1735 	return ret;
1736 }
1737 
1738 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1739 		bool reserved)
1740 {
1741 	if (reserved)
1742 		return BLK_EH_RESET_TIMER;
1743 	return scsi_times_out(req);
1744 }
1745 
1746 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1747 				unsigned int hctx_idx, unsigned int numa_node)
1748 {
1749 	struct Scsi_Host *shost = set->driver_data;
1750 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1751 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1752 	struct scatterlist *sg;
1753 	int ret = 0;
1754 
1755 	if (unchecked_isa_dma)
1756 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1757 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1758 						    GFP_KERNEL, numa_node);
1759 	if (!cmd->sense_buffer)
1760 		return -ENOMEM;
1761 	cmd->req.sense = cmd->sense_buffer;
1762 
1763 	if (scsi_host_get_prot(shost)) {
1764 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1765 			shost->hostt->cmd_size;
1766 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1767 	}
1768 
1769 	if (shost->hostt->init_cmd_priv) {
1770 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1771 		if (ret < 0)
1772 			scsi_free_sense_buffer(unchecked_isa_dma,
1773 					       cmd->sense_buffer);
1774 	}
1775 
1776 	return ret;
1777 }
1778 
1779 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1780 				 unsigned int hctx_idx)
1781 {
1782 	struct Scsi_Host *shost = set->driver_data;
1783 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1784 
1785 	if (shost->hostt->exit_cmd_priv)
1786 		shost->hostt->exit_cmd_priv(shost, cmd);
1787 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1788 			       cmd->sense_buffer);
1789 }
1790 
1791 static int scsi_map_queues(struct blk_mq_tag_set *set)
1792 {
1793 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1794 
1795 	if (shost->hostt->map_queues)
1796 		return shost->hostt->map_queues(shost);
1797 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1798 }
1799 
1800 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1801 {
1802 	struct device *dev = shost->dma_dev;
1803 
1804 	/*
1805 	 * this limit is imposed by hardware restrictions
1806 	 */
1807 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1808 					SG_MAX_SEGMENTS));
1809 
1810 	if (scsi_host_prot_dma(shost)) {
1811 		shost->sg_prot_tablesize =
1812 			min_not_zero(shost->sg_prot_tablesize,
1813 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1814 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1815 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1816 	}
1817 
1818 	if (dev->dma_mask) {
1819 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1820 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1821 	}
1822 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1823 	if (shost->unchecked_isa_dma)
1824 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1825 	blk_queue_segment_boundary(q, shost->dma_boundary);
1826 	dma_set_seg_boundary(dev, shost->dma_boundary);
1827 
1828 	blk_queue_max_segment_size(q, shost->max_segment_size);
1829 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1830 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1831 
1832 	/*
1833 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1834 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1835 	 * which is set by the platform.
1836 	 *
1837 	 * Devices that require a bigger alignment can increase it later.
1838 	 */
1839 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1840 }
1841 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1842 
1843 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1844 	.get_budget	= scsi_mq_get_budget,
1845 	.put_budget	= scsi_mq_put_budget,
1846 	.queue_rq	= scsi_queue_rq,
1847 	.complete	= scsi_softirq_done,
1848 	.timeout	= scsi_timeout,
1849 #ifdef CONFIG_BLK_DEBUG_FS
1850 	.show_rq	= scsi_show_rq,
1851 #endif
1852 	.init_request	= scsi_mq_init_request,
1853 	.exit_request	= scsi_mq_exit_request,
1854 	.initialize_rq_fn = scsi_initialize_rq,
1855 	.cleanup_rq	= scsi_cleanup_rq,
1856 	.busy		= scsi_mq_lld_busy,
1857 	.map_queues	= scsi_map_queues,
1858 };
1859 
1860 
1861 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1862 {
1863 	struct request_queue *q = hctx->queue;
1864 	struct scsi_device *sdev = q->queuedata;
1865 	struct Scsi_Host *shost = sdev->host;
1866 
1867 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1868 }
1869 
1870 static const struct blk_mq_ops scsi_mq_ops = {
1871 	.get_budget	= scsi_mq_get_budget,
1872 	.put_budget	= scsi_mq_put_budget,
1873 	.queue_rq	= scsi_queue_rq,
1874 	.commit_rqs	= scsi_commit_rqs,
1875 	.complete	= scsi_softirq_done,
1876 	.timeout	= scsi_timeout,
1877 #ifdef CONFIG_BLK_DEBUG_FS
1878 	.show_rq	= scsi_show_rq,
1879 #endif
1880 	.init_request	= scsi_mq_init_request,
1881 	.exit_request	= scsi_mq_exit_request,
1882 	.initialize_rq_fn = scsi_initialize_rq,
1883 	.cleanup_rq	= scsi_cleanup_rq,
1884 	.busy		= scsi_mq_lld_busy,
1885 	.map_queues	= scsi_map_queues,
1886 };
1887 
1888 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1889 {
1890 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1891 	if (IS_ERR(sdev->request_queue))
1892 		return NULL;
1893 
1894 	sdev->request_queue->queuedata = sdev;
1895 	__scsi_init_queue(sdev->host, sdev->request_queue);
1896 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1897 	return sdev->request_queue;
1898 }
1899 
1900 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1901 {
1902 	unsigned int cmd_size, sgl_size;
1903 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1904 
1905 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1906 				scsi_mq_inline_sgl_size(shost));
1907 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1908 	if (scsi_host_get_prot(shost))
1909 		cmd_size += sizeof(struct scsi_data_buffer) +
1910 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1911 
1912 	memset(tag_set, 0, sizeof(*tag_set));
1913 	if (shost->hostt->commit_rqs)
1914 		tag_set->ops = &scsi_mq_ops;
1915 	else
1916 		tag_set->ops = &scsi_mq_ops_no_commit;
1917 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1918 	tag_set->queue_depth = shost->can_queue;
1919 	tag_set->cmd_size = cmd_size;
1920 	tag_set->numa_node = NUMA_NO_NODE;
1921 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1922 	tag_set->flags |=
1923 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1924 	tag_set->driver_data = shost;
1925 	if (shost->host_tagset)
1926 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1927 
1928 	return blk_mq_alloc_tag_set(tag_set);
1929 }
1930 
1931 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1932 {
1933 	blk_mq_free_tag_set(&shost->tag_set);
1934 }
1935 
1936 /**
1937  * scsi_device_from_queue - return sdev associated with a request_queue
1938  * @q: The request queue to return the sdev from
1939  *
1940  * Return the sdev associated with a request queue or NULL if the
1941  * request_queue does not reference a SCSI device.
1942  */
1943 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1944 {
1945 	struct scsi_device *sdev = NULL;
1946 
1947 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1948 	    q->mq_ops == &scsi_mq_ops)
1949 		sdev = q->queuedata;
1950 	if (!sdev || !get_device(&sdev->sdev_gendev))
1951 		sdev = NULL;
1952 
1953 	return sdev;
1954 }
1955 
1956 /**
1957  * scsi_block_requests - Utility function used by low-level drivers to prevent
1958  * further commands from being queued to the device.
1959  * @shost:  host in question
1960  *
1961  * There is no timer nor any other means by which the requests get unblocked
1962  * other than the low-level driver calling scsi_unblock_requests().
1963  */
1964 void scsi_block_requests(struct Scsi_Host *shost)
1965 {
1966 	shost->host_self_blocked = 1;
1967 }
1968 EXPORT_SYMBOL(scsi_block_requests);
1969 
1970 /**
1971  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1972  * further commands to be queued to the device.
1973  * @shost:  host in question
1974  *
1975  * There is no timer nor any other means by which the requests get unblocked
1976  * other than the low-level driver calling scsi_unblock_requests(). This is done
1977  * as an API function so that changes to the internals of the scsi mid-layer
1978  * won't require wholesale changes to drivers that use this feature.
1979  */
1980 void scsi_unblock_requests(struct Scsi_Host *shost)
1981 {
1982 	shost->host_self_blocked = 0;
1983 	scsi_run_host_queues(shost);
1984 }
1985 EXPORT_SYMBOL(scsi_unblock_requests);
1986 
1987 void scsi_exit_queue(void)
1988 {
1989 	kmem_cache_destroy(scsi_sense_cache);
1990 	kmem_cache_destroy(scsi_sense_isadma_cache);
1991 }
1992 
1993 /**
1994  *	scsi_mode_select - issue a mode select
1995  *	@sdev:	SCSI device to be queried
1996  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1997  *	@sp:	Save page bit (0 == don't save, 1 == save)
1998  *	@modepage: mode page being requested
1999  *	@buffer: request buffer (may not be smaller than eight bytes)
2000  *	@len:	length of request buffer.
2001  *	@timeout: command timeout
2002  *	@retries: number of retries before failing
2003  *	@data: returns a structure abstracting the mode header data
2004  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2005  *		must be SCSI_SENSE_BUFFERSIZE big.
2006  *
2007  *	Returns zero if successful; negative error number or scsi
2008  *	status on error
2009  *
2010  */
2011 int
2012 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2013 		 unsigned char *buffer, int len, int timeout, int retries,
2014 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2015 {
2016 	unsigned char cmd[10];
2017 	unsigned char *real_buffer;
2018 	int ret;
2019 
2020 	memset(cmd, 0, sizeof(cmd));
2021 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2022 
2023 	if (sdev->use_10_for_ms) {
2024 		if (len > 65535)
2025 			return -EINVAL;
2026 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2027 		if (!real_buffer)
2028 			return -ENOMEM;
2029 		memcpy(real_buffer + 8, buffer, len);
2030 		len += 8;
2031 		real_buffer[0] = 0;
2032 		real_buffer[1] = 0;
2033 		real_buffer[2] = data->medium_type;
2034 		real_buffer[3] = data->device_specific;
2035 		real_buffer[4] = data->longlba ? 0x01 : 0;
2036 		real_buffer[5] = 0;
2037 		real_buffer[6] = data->block_descriptor_length >> 8;
2038 		real_buffer[7] = data->block_descriptor_length;
2039 
2040 		cmd[0] = MODE_SELECT_10;
2041 		cmd[7] = len >> 8;
2042 		cmd[8] = len;
2043 	} else {
2044 		if (len > 255 || data->block_descriptor_length > 255 ||
2045 		    data->longlba)
2046 			return -EINVAL;
2047 
2048 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2049 		if (!real_buffer)
2050 			return -ENOMEM;
2051 		memcpy(real_buffer + 4, buffer, len);
2052 		len += 4;
2053 		real_buffer[0] = 0;
2054 		real_buffer[1] = data->medium_type;
2055 		real_buffer[2] = data->device_specific;
2056 		real_buffer[3] = data->block_descriptor_length;
2057 
2058 		cmd[0] = MODE_SELECT;
2059 		cmd[4] = len;
2060 	}
2061 
2062 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2063 			       sshdr, timeout, retries, NULL);
2064 	kfree(real_buffer);
2065 	return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(scsi_mode_select);
2068 
2069 /**
2070  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2071  *	@sdev:	SCSI device to be queried
2072  *	@dbd:	set if mode sense will allow block descriptors to be returned
2073  *	@modepage: mode page being requested
2074  *	@buffer: request buffer (may not be smaller than eight bytes)
2075  *	@len:	length of request buffer.
2076  *	@timeout: command timeout
2077  *	@retries: number of retries before failing
2078  *	@data: returns a structure abstracting the mode header data
2079  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2080  *		must be SCSI_SENSE_BUFFERSIZE big.
2081  *
2082  *	Returns zero if unsuccessful, or the header offset (either 4
2083  *	or 8 depending on whether a six or ten byte command was
2084  *	issued) if successful.
2085  */
2086 int
2087 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2088 		  unsigned char *buffer, int len, int timeout, int retries,
2089 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 {
2091 	unsigned char cmd[12];
2092 	int use_10_for_ms;
2093 	int header_length;
2094 	int result, retry_count = retries;
2095 	struct scsi_sense_hdr my_sshdr;
2096 
2097 	memset(data, 0, sizeof(*data));
2098 	memset(&cmd[0], 0, 12);
2099 
2100 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2101 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2102 	cmd[2] = modepage;
2103 
2104 	/* caller might not be interested in sense, but we need it */
2105 	if (!sshdr)
2106 		sshdr = &my_sshdr;
2107 
2108  retry:
2109 	use_10_for_ms = sdev->use_10_for_ms;
2110 
2111 	if (use_10_for_ms) {
2112 		if (len < 8)
2113 			len = 8;
2114 
2115 		cmd[0] = MODE_SENSE_10;
2116 		cmd[8] = len;
2117 		header_length = 8;
2118 	} else {
2119 		if (len < 4)
2120 			len = 4;
2121 
2122 		cmd[0] = MODE_SENSE;
2123 		cmd[4] = len;
2124 		header_length = 4;
2125 	}
2126 
2127 	memset(buffer, 0, len);
2128 
2129 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2130 				  sshdr, timeout, retries, NULL);
2131 
2132 	/* This code looks awful: what it's doing is making sure an
2133 	 * ILLEGAL REQUEST sense return identifies the actual command
2134 	 * byte as the problem.  MODE_SENSE commands can return
2135 	 * ILLEGAL REQUEST if the code page isn't supported */
2136 
2137 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2138 	    driver_byte(result) == DRIVER_SENSE) {
2139 		if (scsi_sense_valid(sshdr)) {
2140 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2141 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2142 				/*
2143 				 * Invalid command operation code
2144 				 */
2145 				sdev->use_10_for_ms = 0;
2146 				goto retry;
2147 			}
2148 		}
2149 	}
2150 
2151 	if (scsi_status_is_good(result)) {
2152 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2153 			     (modepage == 6 || modepage == 8))) {
2154 			/* Initio breakage? */
2155 			header_length = 0;
2156 			data->length = 13;
2157 			data->medium_type = 0;
2158 			data->device_specific = 0;
2159 			data->longlba = 0;
2160 			data->block_descriptor_length = 0;
2161 		} else if (use_10_for_ms) {
2162 			data->length = buffer[0]*256 + buffer[1] + 2;
2163 			data->medium_type = buffer[2];
2164 			data->device_specific = buffer[3];
2165 			data->longlba = buffer[4] & 0x01;
2166 			data->block_descriptor_length = buffer[6]*256
2167 				+ buffer[7];
2168 		} else {
2169 			data->length = buffer[0] + 1;
2170 			data->medium_type = buffer[1];
2171 			data->device_specific = buffer[2];
2172 			data->block_descriptor_length = buffer[3];
2173 		}
2174 		data->header_length = header_length;
2175 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2176 		   scsi_sense_valid(sshdr) &&
2177 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2178 		retry_count--;
2179 		goto retry;
2180 	}
2181 
2182 	return result;
2183 }
2184 EXPORT_SYMBOL(scsi_mode_sense);
2185 
2186 /**
2187  *	scsi_test_unit_ready - test if unit is ready
2188  *	@sdev:	scsi device to change the state of.
2189  *	@timeout: command timeout
2190  *	@retries: number of retries before failing
2191  *	@sshdr: outpout pointer for decoded sense information.
2192  *
2193  *	Returns zero if unsuccessful or an error if TUR failed.  For
2194  *	removable media, UNIT_ATTENTION sets ->changed flag.
2195  **/
2196 int
2197 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2198 		     struct scsi_sense_hdr *sshdr)
2199 {
2200 	char cmd[] = {
2201 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2202 	};
2203 	int result;
2204 
2205 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2206 	do {
2207 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2208 					  timeout, 1, NULL);
2209 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2210 		    sshdr->sense_key == UNIT_ATTENTION)
2211 			sdev->changed = 1;
2212 	} while (scsi_sense_valid(sshdr) &&
2213 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2214 
2215 	return result;
2216 }
2217 EXPORT_SYMBOL(scsi_test_unit_ready);
2218 
2219 /**
2220  *	scsi_device_set_state - Take the given device through the device state model.
2221  *	@sdev:	scsi device to change the state of.
2222  *	@state:	state to change to.
2223  *
2224  *	Returns zero if successful or an error if the requested
2225  *	transition is illegal.
2226  */
2227 int
2228 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2229 {
2230 	enum scsi_device_state oldstate = sdev->sdev_state;
2231 
2232 	if (state == oldstate)
2233 		return 0;
2234 
2235 	switch (state) {
2236 	case SDEV_CREATED:
2237 		switch (oldstate) {
2238 		case SDEV_CREATED_BLOCK:
2239 			break;
2240 		default:
2241 			goto illegal;
2242 		}
2243 		break;
2244 
2245 	case SDEV_RUNNING:
2246 		switch (oldstate) {
2247 		case SDEV_CREATED:
2248 		case SDEV_OFFLINE:
2249 		case SDEV_TRANSPORT_OFFLINE:
2250 		case SDEV_QUIESCE:
2251 		case SDEV_BLOCK:
2252 			break;
2253 		default:
2254 			goto illegal;
2255 		}
2256 		break;
2257 
2258 	case SDEV_QUIESCE:
2259 		switch (oldstate) {
2260 		case SDEV_RUNNING:
2261 		case SDEV_OFFLINE:
2262 		case SDEV_TRANSPORT_OFFLINE:
2263 			break;
2264 		default:
2265 			goto illegal;
2266 		}
2267 		break;
2268 
2269 	case SDEV_OFFLINE:
2270 	case SDEV_TRANSPORT_OFFLINE:
2271 		switch (oldstate) {
2272 		case SDEV_CREATED:
2273 		case SDEV_RUNNING:
2274 		case SDEV_QUIESCE:
2275 		case SDEV_BLOCK:
2276 			break;
2277 		default:
2278 			goto illegal;
2279 		}
2280 		break;
2281 
2282 	case SDEV_BLOCK:
2283 		switch (oldstate) {
2284 		case SDEV_RUNNING:
2285 		case SDEV_CREATED_BLOCK:
2286 		case SDEV_QUIESCE:
2287 		case SDEV_OFFLINE:
2288 			break;
2289 		default:
2290 			goto illegal;
2291 		}
2292 		break;
2293 
2294 	case SDEV_CREATED_BLOCK:
2295 		switch (oldstate) {
2296 		case SDEV_CREATED:
2297 			break;
2298 		default:
2299 			goto illegal;
2300 		}
2301 		break;
2302 
2303 	case SDEV_CANCEL:
2304 		switch (oldstate) {
2305 		case SDEV_CREATED:
2306 		case SDEV_RUNNING:
2307 		case SDEV_QUIESCE:
2308 		case SDEV_OFFLINE:
2309 		case SDEV_TRANSPORT_OFFLINE:
2310 			break;
2311 		default:
2312 			goto illegal;
2313 		}
2314 		break;
2315 
2316 	case SDEV_DEL:
2317 		switch (oldstate) {
2318 		case SDEV_CREATED:
2319 		case SDEV_RUNNING:
2320 		case SDEV_OFFLINE:
2321 		case SDEV_TRANSPORT_OFFLINE:
2322 		case SDEV_CANCEL:
2323 		case SDEV_BLOCK:
2324 		case SDEV_CREATED_BLOCK:
2325 			break;
2326 		default:
2327 			goto illegal;
2328 		}
2329 		break;
2330 
2331 	}
2332 	sdev->offline_already = false;
2333 	sdev->sdev_state = state;
2334 	return 0;
2335 
2336  illegal:
2337 	SCSI_LOG_ERROR_RECOVERY(1,
2338 				sdev_printk(KERN_ERR, sdev,
2339 					    "Illegal state transition %s->%s",
2340 					    scsi_device_state_name(oldstate),
2341 					    scsi_device_state_name(state))
2342 				);
2343 	return -EINVAL;
2344 }
2345 EXPORT_SYMBOL(scsi_device_set_state);
2346 
2347 /**
2348  *	scsi_evt_emit - emit a single SCSI device uevent
2349  *	@sdev: associated SCSI device
2350  *	@evt: event to emit
2351  *
2352  *	Send a single uevent (scsi_event) to the associated scsi_device.
2353  */
2354 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2355 {
2356 	int idx = 0;
2357 	char *envp[3];
2358 
2359 	switch (evt->evt_type) {
2360 	case SDEV_EVT_MEDIA_CHANGE:
2361 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2362 		break;
2363 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2364 		scsi_rescan_device(&sdev->sdev_gendev);
2365 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2366 		break;
2367 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2368 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2369 		break;
2370 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2371 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2372 		break;
2373 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2374 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2375 		break;
2376 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2377 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2378 		break;
2379 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2380 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2381 		break;
2382 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2383 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2384 		break;
2385 	default:
2386 		/* do nothing */
2387 		break;
2388 	}
2389 
2390 	envp[idx++] = NULL;
2391 
2392 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2393 }
2394 
2395 /**
2396  *	scsi_evt_thread - send a uevent for each scsi event
2397  *	@work: work struct for scsi_device
2398  *
2399  *	Dispatch queued events to their associated scsi_device kobjects
2400  *	as uevents.
2401  */
2402 void scsi_evt_thread(struct work_struct *work)
2403 {
2404 	struct scsi_device *sdev;
2405 	enum scsi_device_event evt_type;
2406 	LIST_HEAD(event_list);
2407 
2408 	sdev = container_of(work, struct scsi_device, event_work);
2409 
2410 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2411 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2412 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2413 
2414 	while (1) {
2415 		struct scsi_event *evt;
2416 		struct list_head *this, *tmp;
2417 		unsigned long flags;
2418 
2419 		spin_lock_irqsave(&sdev->list_lock, flags);
2420 		list_splice_init(&sdev->event_list, &event_list);
2421 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2422 
2423 		if (list_empty(&event_list))
2424 			break;
2425 
2426 		list_for_each_safe(this, tmp, &event_list) {
2427 			evt = list_entry(this, struct scsi_event, node);
2428 			list_del(&evt->node);
2429 			scsi_evt_emit(sdev, evt);
2430 			kfree(evt);
2431 		}
2432 	}
2433 }
2434 
2435 /**
2436  * 	sdev_evt_send - send asserted event to uevent thread
2437  *	@sdev: scsi_device event occurred on
2438  *	@evt: event to send
2439  *
2440  *	Assert scsi device event asynchronously.
2441  */
2442 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444 	unsigned long flags;
2445 
2446 #if 0
2447 	/* FIXME: currently this check eliminates all media change events
2448 	 * for polled devices.  Need to update to discriminate between AN
2449 	 * and polled events */
2450 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2451 		kfree(evt);
2452 		return;
2453 	}
2454 #endif
2455 
2456 	spin_lock_irqsave(&sdev->list_lock, flags);
2457 	list_add_tail(&evt->node, &sdev->event_list);
2458 	schedule_work(&sdev->event_work);
2459 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2460 }
2461 EXPORT_SYMBOL_GPL(sdev_evt_send);
2462 
2463 /**
2464  * 	sdev_evt_alloc - allocate a new scsi event
2465  *	@evt_type: type of event to allocate
2466  *	@gfpflags: GFP flags for allocation
2467  *
2468  *	Allocates and returns a new scsi_event.
2469  */
2470 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2471 				  gfp_t gfpflags)
2472 {
2473 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2474 	if (!evt)
2475 		return NULL;
2476 
2477 	evt->evt_type = evt_type;
2478 	INIT_LIST_HEAD(&evt->node);
2479 
2480 	/* evt_type-specific initialization, if any */
2481 	switch (evt_type) {
2482 	case SDEV_EVT_MEDIA_CHANGE:
2483 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2484 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2485 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2486 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2487 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2488 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2489 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2490 	default:
2491 		/* do nothing */
2492 		break;
2493 	}
2494 
2495 	return evt;
2496 }
2497 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2498 
2499 /**
2500  * 	sdev_evt_send_simple - send asserted event to uevent thread
2501  *	@sdev: scsi_device event occurred on
2502  *	@evt_type: type of event to send
2503  *	@gfpflags: GFP flags for allocation
2504  *
2505  *	Assert scsi device event asynchronously, given an event type.
2506  */
2507 void sdev_evt_send_simple(struct scsi_device *sdev,
2508 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2509 {
2510 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2511 	if (!evt) {
2512 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2513 			    evt_type);
2514 		return;
2515 	}
2516 
2517 	sdev_evt_send(sdev, evt);
2518 }
2519 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2520 
2521 /**
2522  *	scsi_device_quiesce - Block all commands except power management.
2523  *	@sdev:	scsi device to quiesce.
2524  *
2525  *	This works by trying to transition to the SDEV_QUIESCE state
2526  *	(which must be a legal transition).  When the device is in this
2527  *	state, only power management requests will be accepted, all others will
2528  *	be deferred.
2529  *
2530  *	Must be called with user context, may sleep.
2531  *
2532  *	Returns zero if unsuccessful or an error if not.
2533  */
2534 int
2535 scsi_device_quiesce(struct scsi_device *sdev)
2536 {
2537 	struct request_queue *q = sdev->request_queue;
2538 	int err;
2539 
2540 	/*
2541 	 * It is allowed to call scsi_device_quiesce() multiple times from
2542 	 * the same context but concurrent scsi_device_quiesce() calls are
2543 	 * not allowed.
2544 	 */
2545 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2546 
2547 	if (sdev->quiesced_by == current)
2548 		return 0;
2549 
2550 	blk_set_pm_only(q);
2551 
2552 	blk_mq_freeze_queue(q);
2553 	/*
2554 	 * Ensure that the effect of blk_set_pm_only() will be visible
2555 	 * for percpu_ref_tryget() callers that occur after the queue
2556 	 * unfreeze even if the queue was already frozen before this function
2557 	 * was called. See also https://lwn.net/Articles/573497/.
2558 	 */
2559 	synchronize_rcu();
2560 	blk_mq_unfreeze_queue(q);
2561 
2562 	mutex_lock(&sdev->state_mutex);
2563 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2564 	if (err == 0)
2565 		sdev->quiesced_by = current;
2566 	else
2567 		blk_clear_pm_only(q);
2568 	mutex_unlock(&sdev->state_mutex);
2569 
2570 	return err;
2571 }
2572 EXPORT_SYMBOL(scsi_device_quiesce);
2573 
2574 /**
2575  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2576  *	@sdev:	scsi device to resume.
2577  *
2578  *	Moves the device from quiesced back to running and restarts the
2579  *	queues.
2580  *
2581  *	Must be called with user context, may sleep.
2582  */
2583 void scsi_device_resume(struct scsi_device *sdev)
2584 {
2585 	/* check if the device state was mutated prior to resume, and if
2586 	 * so assume the state is being managed elsewhere (for example
2587 	 * device deleted during suspend)
2588 	 */
2589 	mutex_lock(&sdev->state_mutex);
2590 	if (sdev->sdev_state == SDEV_QUIESCE)
2591 		scsi_device_set_state(sdev, SDEV_RUNNING);
2592 	if (sdev->quiesced_by) {
2593 		sdev->quiesced_by = NULL;
2594 		blk_clear_pm_only(sdev->request_queue);
2595 	}
2596 	mutex_unlock(&sdev->state_mutex);
2597 }
2598 EXPORT_SYMBOL(scsi_device_resume);
2599 
2600 static void
2601 device_quiesce_fn(struct scsi_device *sdev, void *data)
2602 {
2603 	scsi_device_quiesce(sdev);
2604 }
2605 
2606 void
2607 scsi_target_quiesce(struct scsi_target *starget)
2608 {
2609 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2610 }
2611 EXPORT_SYMBOL(scsi_target_quiesce);
2612 
2613 static void
2614 device_resume_fn(struct scsi_device *sdev, void *data)
2615 {
2616 	scsi_device_resume(sdev);
2617 }
2618 
2619 void
2620 scsi_target_resume(struct scsi_target *starget)
2621 {
2622 	starget_for_each_device(starget, NULL, device_resume_fn);
2623 }
2624 EXPORT_SYMBOL(scsi_target_resume);
2625 
2626 /**
2627  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2628  * @sdev: device to block
2629  *
2630  * Pause SCSI command processing on the specified device. Does not sleep.
2631  *
2632  * Returns zero if successful or a negative error code upon failure.
2633  *
2634  * Notes:
2635  * This routine transitions the device to the SDEV_BLOCK state (which must be
2636  * a legal transition). When the device is in this state, command processing
2637  * is paused until the device leaves the SDEV_BLOCK state. See also
2638  * scsi_internal_device_unblock_nowait().
2639  */
2640 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2641 {
2642 	struct request_queue *q = sdev->request_queue;
2643 	int err = 0;
2644 
2645 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2646 	if (err) {
2647 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2648 
2649 		if (err)
2650 			return err;
2651 	}
2652 
2653 	/*
2654 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2655 	 * block layer from calling the midlayer with this device's
2656 	 * request queue.
2657 	 */
2658 	blk_mq_quiesce_queue_nowait(q);
2659 	return 0;
2660 }
2661 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2662 
2663 /**
2664  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2665  * @sdev: device to block
2666  *
2667  * Pause SCSI command processing on the specified device and wait until all
2668  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2669  *
2670  * Returns zero if successful or a negative error code upon failure.
2671  *
2672  * Note:
2673  * This routine transitions the device to the SDEV_BLOCK state (which must be
2674  * a legal transition). When the device is in this state, command processing
2675  * is paused until the device leaves the SDEV_BLOCK state. See also
2676  * scsi_internal_device_unblock().
2677  */
2678 static int scsi_internal_device_block(struct scsi_device *sdev)
2679 {
2680 	struct request_queue *q = sdev->request_queue;
2681 	int err;
2682 
2683 	mutex_lock(&sdev->state_mutex);
2684 	err = scsi_internal_device_block_nowait(sdev);
2685 	if (err == 0)
2686 		blk_mq_quiesce_queue(q);
2687 	mutex_unlock(&sdev->state_mutex);
2688 
2689 	return err;
2690 }
2691 
2692 void scsi_start_queue(struct scsi_device *sdev)
2693 {
2694 	struct request_queue *q = sdev->request_queue;
2695 
2696 	blk_mq_unquiesce_queue(q);
2697 }
2698 
2699 /**
2700  * scsi_internal_device_unblock_nowait - resume a device after a block request
2701  * @sdev:	device to resume
2702  * @new_state:	state to set the device to after unblocking
2703  *
2704  * Restart the device queue for a previously suspended SCSI device. Does not
2705  * sleep.
2706  *
2707  * Returns zero if successful or a negative error code upon failure.
2708  *
2709  * Notes:
2710  * This routine transitions the device to the SDEV_RUNNING state or to one of
2711  * the offline states (which must be a legal transition) allowing the midlayer
2712  * to goose the queue for this device.
2713  */
2714 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2715 					enum scsi_device_state new_state)
2716 {
2717 	switch (new_state) {
2718 	case SDEV_RUNNING:
2719 	case SDEV_TRANSPORT_OFFLINE:
2720 		break;
2721 	default:
2722 		return -EINVAL;
2723 	}
2724 
2725 	/*
2726 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2727 	 * offlined states and goose the device queue if successful.
2728 	 */
2729 	switch (sdev->sdev_state) {
2730 	case SDEV_BLOCK:
2731 	case SDEV_TRANSPORT_OFFLINE:
2732 		sdev->sdev_state = new_state;
2733 		break;
2734 	case SDEV_CREATED_BLOCK:
2735 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2736 		    new_state == SDEV_OFFLINE)
2737 			sdev->sdev_state = new_state;
2738 		else
2739 			sdev->sdev_state = SDEV_CREATED;
2740 		break;
2741 	case SDEV_CANCEL:
2742 	case SDEV_OFFLINE:
2743 		break;
2744 	default:
2745 		return -EINVAL;
2746 	}
2747 	scsi_start_queue(sdev);
2748 
2749 	return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2752 
2753 /**
2754  * scsi_internal_device_unblock - resume a device after a block request
2755  * @sdev:	device to resume
2756  * @new_state:	state to set the device to after unblocking
2757  *
2758  * Restart the device queue for a previously suspended SCSI device. May sleep.
2759  *
2760  * Returns zero if successful or a negative error code upon failure.
2761  *
2762  * Notes:
2763  * This routine transitions the device to the SDEV_RUNNING state or to one of
2764  * the offline states (which must be a legal transition) allowing the midlayer
2765  * to goose the queue for this device.
2766  */
2767 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2768 					enum scsi_device_state new_state)
2769 {
2770 	int ret;
2771 
2772 	mutex_lock(&sdev->state_mutex);
2773 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2774 	mutex_unlock(&sdev->state_mutex);
2775 
2776 	return ret;
2777 }
2778 
2779 static void
2780 device_block(struct scsi_device *sdev, void *data)
2781 {
2782 	int ret;
2783 
2784 	ret = scsi_internal_device_block(sdev);
2785 
2786 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2787 		  dev_name(&sdev->sdev_gendev), ret);
2788 }
2789 
2790 static int
2791 target_block(struct device *dev, void *data)
2792 {
2793 	if (scsi_is_target_device(dev))
2794 		starget_for_each_device(to_scsi_target(dev), NULL,
2795 					device_block);
2796 	return 0;
2797 }
2798 
2799 void
2800 scsi_target_block(struct device *dev)
2801 {
2802 	if (scsi_is_target_device(dev))
2803 		starget_for_each_device(to_scsi_target(dev), NULL,
2804 					device_block);
2805 	else
2806 		device_for_each_child(dev, NULL, target_block);
2807 }
2808 EXPORT_SYMBOL_GPL(scsi_target_block);
2809 
2810 static void
2811 device_unblock(struct scsi_device *sdev, void *data)
2812 {
2813 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2814 }
2815 
2816 static int
2817 target_unblock(struct device *dev, void *data)
2818 {
2819 	if (scsi_is_target_device(dev))
2820 		starget_for_each_device(to_scsi_target(dev), data,
2821 					device_unblock);
2822 	return 0;
2823 }
2824 
2825 void
2826 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2827 {
2828 	if (scsi_is_target_device(dev))
2829 		starget_for_each_device(to_scsi_target(dev), &new_state,
2830 					device_unblock);
2831 	else
2832 		device_for_each_child(dev, &new_state, target_unblock);
2833 }
2834 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2835 
2836 int
2837 scsi_host_block(struct Scsi_Host *shost)
2838 {
2839 	struct scsi_device *sdev;
2840 	int ret = 0;
2841 
2842 	/*
2843 	 * Call scsi_internal_device_block_nowait so we can avoid
2844 	 * calling synchronize_rcu() for each LUN.
2845 	 */
2846 	shost_for_each_device(sdev, shost) {
2847 		mutex_lock(&sdev->state_mutex);
2848 		ret = scsi_internal_device_block_nowait(sdev);
2849 		mutex_unlock(&sdev->state_mutex);
2850 		if (ret) {
2851 			scsi_device_put(sdev);
2852 			break;
2853 		}
2854 	}
2855 
2856 	/*
2857 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2858 	 * calling synchronize_rcu() once is enough.
2859 	 */
2860 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2861 
2862 	if (!ret)
2863 		synchronize_rcu();
2864 
2865 	return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(scsi_host_block);
2868 
2869 int
2870 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2871 {
2872 	struct scsi_device *sdev;
2873 	int ret = 0;
2874 
2875 	shost_for_each_device(sdev, shost) {
2876 		ret = scsi_internal_device_unblock(sdev, new_state);
2877 		if (ret) {
2878 			scsi_device_put(sdev);
2879 			break;
2880 		}
2881 	}
2882 	return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2885 
2886 /**
2887  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2888  * @sgl:	scatter-gather list
2889  * @sg_count:	number of segments in sg
2890  * @offset:	offset in bytes into sg, on return offset into the mapped area
2891  * @len:	bytes to map, on return number of bytes mapped
2892  *
2893  * Returns virtual address of the start of the mapped page
2894  */
2895 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2896 			  size_t *offset, size_t *len)
2897 {
2898 	int i;
2899 	size_t sg_len = 0, len_complete = 0;
2900 	struct scatterlist *sg;
2901 	struct page *page;
2902 
2903 	WARN_ON(!irqs_disabled());
2904 
2905 	for_each_sg(sgl, sg, sg_count, i) {
2906 		len_complete = sg_len; /* Complete sg-entries */
2907 		sg_len += sg->length;
2908 		if (sg_len > *offset)
2909 			break;
2910 	}
2911 
2912 	if (unlikely(i == sg_count)) {
2913 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2914 			"elements %d\n",
2915 		       __func__, sg_len, *offset, sg_count);
2916 		WARN_ON(1);
2917 		return NULL;
2918 	}
2919 
2920 	/* Offset starting from the beginning of first page in this sg-entry */
2921 	*offset = *offset - len_complete + sg->offset;
2922 
2923 	/* Assumption: contiguous pages can be accessed as "page + i" */
2924 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2925 	*offset &= ~PAGE_MASK;
2926 
2927 	/* Bytes in this sg-entry from *offset to the end of the page */
2928 	sg_len = PAGE_SIZE - *offset;
2929 	if (*len > sg_len)
2930 		*len = sg_len;
2931 
2932 	return kmap_atomic(page);
2933 }
2934 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2935 
2936 /**
2937  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2938  * @virt:	virtual address to be unmapped
2939  */
2940 void scsi_kunmap_atomic_sg(void *virt)
2941 {
2942 	kunmap_atomic(virt);
2943 }
2944 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2945 
2946 void sdev_disable_disk_events(struct scsi_device *sdev)
2947 {
2948 	atomic_inc(&sdev->disk_events_disable_depth);
2949 }
2950 EXPORT_SYMBOL(sdev_disable_disk_events);
2951 
2952 void sdev_enable_disk_events(struct scsi_device *sdev)
2953 {
2954 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2955 		return;
2956 	atomic_dec(&sdev->disk_events_disable_depth);
2957 }
2958 EXPORT_SYMBOL(sdev_enable_disk_events);
2959 
2960 static unsigned char designator_prio(const unsigned char *d)
2961 {
2962 	if (d[1] & 0x30)
2963 		/* not associated with LUN */
2964 		return 0;
2965 
2966 	if (d[3] == 0)
2967 		/* invalid length */
2968 		return 0;
2969 
2970 	/*
2971 	 * Order of preference for lun descriptor:
2972 	 * - SCSI name string
2973 	 * - NAA IEEE Registered Extended
2974 	 * - EUI-64 based 16-byte
2975 	 * - EUI-64 based 12-byte
2976 	 * - NAA IEEE Registered
2977 	 * - NAA IEEE Extended
2978 	 * - EUI-64 based 8-byte
2979 	 * - SCSI name string (truncated)
2980 	 * - T10 Vendor ID
2981 	 * as longer descriptors reduce the likelyhood
2982 	 * of identification clashes.
2983 	 */
2984 
2985 	switch (d[1] & 0xf) {
2986 	case 8:
2987 		/* SCSI name string, variable-length UTF-8 */
2988 		return 9;
2989 	case 3:
2990 		switch (d[4] >> 4) {
2991 		case 6:
2992 			/* NAA registered extended */
2993 			return 8;
2994 		case 5:
2995 			/* NAA registered */
2996 			return 5;
2997 		case 4:
2998 			/* NAA extended */
2999 			return 4;
3000 		case 3:
3001 			/* NAA locally assigned */
3002 			return 1;
3003 		default:
3004 			break;
3005 		}
3006 		break;
3007 	case 2:
3008 		switch (d[3]) {
3009 		case 16:
3010 			/* EUI64-based, 16 byte */
3011 			return 7;
3012 		case 12:
3013 			/* EUI64-based, 12 byte */
3014 			return 6;
3015 		case 8:
3016 			/* EUI64-based, 8 byte */
3017 			return 3;
3018 		default:
3019 			break;
3020 		}
3021 		break;
3022 	case 1:
3023 		/* T10 vendor ID */
3024 		return 1;
3025 	default:
3026 		break;
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 /**
3033  * scsi_vpd_lun_id - return a unique device identification
3034  * @sdev: SCSI device
3035  * @id:   buffer for the identification
3036  * @id_len:  length of the buffer
3037  *
3038  * Copies a unique device identification into @id based
3039  * on the information in the VPD page 0x83 of the device.
3040  * The string will be formatted as a SCSI name string.
3041  *
3042  * Returns the length of the identification or error on failure.
3043  * If the identifier is longer than the supplied buffer the actual
3044  * identifier length is returned and the buffer is not zero-padded.
3045  */
3046 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3047 {
3048 	u8 cur_id_prio = 0;
3049 	u8 cur_id_size = 0;
3050 	const unsigned char *d, *cur_id_str;
3051 	const struct scsi_vpd *vpd_pg83;
3052 	int id_size = -EINVAL;
3053 
3054 	rcu_read_lock();
3055 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3056 	if (!vpd_pg83) {
3057 		rcu_read_unlock();
3058 		return -ENXIO;
3059 	}
3060 
3061 	/* The id string must be at least 20 bytes + terminating NULL byte */
3062 	if (id_len < 21) {
3063 		rcu_read_unlock();
3064 		return -EINVAL;
3065 	}
3066 
3067 	memset(id, 0, id_len);
3068 	for (d = vpd_pg83->data + 4;
3069 	     d < vpd_pg83->data + vpd_pg83->len;
3070 	     d += d[3] + 4) {
3071 		u8 prio = designator_prio(d);
3072 
3073 		if (prio == 0 || cur_id_prio > prio)
3074 			continue;
3075 
3076 		switch (d[1] & 0xf) {
3077 		case 0x1:
3078 			/* T10 Vendor ID */
3079 			if (cur_id_size > d[3])
3080 				break;
3081 			cur_id_prio = prio;
3082 			cur_id_size = d[3];
3083 			if (cur_id_size + 4 > id_len)
3084 				cur_id_size = id_len - 4;
3085 			cur_id_str = d + 4;
3086 			id_size = snprintf(id, id_len, "t10.%*pE",
3087 					   cur_id_size, cur_id_str);
3088 			break;
3089 		case 0x2:
3090 			/* EUI-64 */
3091 			cur_id_prio = prio;
3092 			cur_id_size = d[3];
3093 			cur_id_str = d + 4;
3094 			switch (cur_id_size) {
3095 			case 8:
3096 				id_size = snprintf(id, id_len,
3097 						   "eui.%8phN",
3098 						   cur_id_str);
3099 				break;
3100 			case 12:
3101 				id_size = snprintf(id, id_len,
3102 						   "eui.%12phN",
3103 						   cur_id_str);
3104 				break;
3105 			case 16:
3106 				id_size = snprintf(id, id_len,
3107 						   "eui.%16phN",
3108 						   cur_id_str);
3109 				break;
3110 			default:
3111 				break;
3112 			}
3113 			break;
3114 		case 0x3:
3115 			/* NAA */
3116 			cur_id_prio = prio;
3117 			cur_id_size = d[3];
3118 			cur_id_str = d + 4;
3119 			switch (cur_id_size) {
3120 			case 8:
3121 				id_size = snprintf(id, id_len,
3122 						   "naa.%8phN",
3123 						   cur_id_str);
3124 				break;
3125 			case 16:
3126 				id_size = snprintf(id, id_len,
3127 						   "naa.%16phN",
3128 						   cur_id_str);
3129 				break;
3130 			default:
3131 				break;
3132 			}
3133 			break;
3134 		case 0x8:
3135 			/* SCSI name string */
3136 			if (cur_id_size > d[3])
3137 				break;
3138 			/* Prefer others for truncated descriptor */
3139 			if (d[3] > id_len) {
3140 				prio = 2;
3141 				if (cur_id_prio > prio)
3142 					break;
3143 			}
3144 			cur_id_prio = prio;
3145 			cur_id_size = id_size = d[3];
3146 			cur_id_str = d + 4;
3147 			if (cur_id_size >= id_len)
3148 				cur_id_size = id_len - 1;
3149 			memcpy(id, cur_id_str, cur_id_size);
3150 			break;
3151 		default:
3152 			break;
3153 		}
3154 	}
3155 	rcu_read_unlock();
3156 
3157 	return id_size;
3158 }
3159 EXPORT_SYMBOL(scsi_vpd_lun_id);
3160 
3161 /*
3162  * scsi_vpd_tpg_id - return a target port group identifier
3163  * @sdev: SCSI device
3164  *
3165  * Returns the Target Port Group identifier from the information
3166  * froom VPD page 0x83 of the device.
3167  *
3168  * Returns the identifier or error on failure.
3169  */
3170 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3171 {
3172 	const unsigned char *d;
3173 	const struct scsi_vpd *vpd_pg83;
3174 	int group_id = -EAGAIN, rel_port = -1;
3175 
3176 	rcu_read_lock();
3177 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3178 	if (!vpd_pg83) {
3179 		rcu_read_unlock();
3180 		return -ENXIO;
3181 	}
3182 
3183 	d = vpd_pg83->data + 4;
3184 	while (d < vpd_pg83->data + vpd_pg83->len) {
3185 		switch (d[1] & 0xf) {
3186 		case 0x4:
3187 			/* Relative target port */
3188 			rel_port = get_unaligned_be16(&d[6]);
3189 			break;
3190 		case 0x5:
3191 			/* Target port group */
3192 			group_id = get_unaligned_be16(&d[6]);
3193 			break;
3194 		default:
3195 			break;
3196 		}
3197 		d += d[3] + 4;
3198 	}
3199 	rcu_read_unlock();
3200 
3201 	if (group_id >= 0 && rel_id && rel_port != -1)
3202 		*rel_id = rel_port;
3203 
3204 	return group_id;
3205 }
3206 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3207