xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 			SCSI_SENSE_BUFFERSIZE, 0,
83 			SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create("scsi_sense_cache",
89 			SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 		if (!scsi_sense_cache)
91 			ret = -ENOMEM;
92 	}
93 
94 	mutex_unlock(&scsi_sense_cache_mutex);
95 	return ret;
96 }
97 
98 /*
99  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100  * not change behaviour from the previous unplug mechanism, experimentation
101  * may prove this needs changing.
102  */
103 #define SCSI_QUEUE_DELAY	3
104 
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 
112 	/*
113 	 * Set the appropriate busy bit for the device/host.
114 	 *
115 	 * If the host/device isn't busy, assume that something actually
116 	 * completed, and that we should be able to queue a command now.
117 	 *
118 	 * Note that the prior mid-layer assumption that any host could
119 	 * always queue at least one command is now broken.  The mid-layer
120 	 * will implement a user specifiable stall (see
121 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 	 * if a command is requeued with no other commands outstanding
123 	 * either for the device or for the host.
124 	 */
125 	switch (reason) {
126 	case SCSI_MLQUEUE_HOST_BUSY:
127 		atomic_set(&host->host_blocked, host->max_host_blocked);
128 		break;
129 	case SCSI_MLQUEUE_DEVICE_BUSY:
130 	case SCSI_MLQUEUE_EH_RETRY:
131 		atomic_set(&device->device_blocked,
132 			   device->max_device_blocked);
133 		break;
134 	case SCSI_MLQUEUE_TARGET_BUSY:
135 		atomic_set(&starget->target_blocked,
136 			   starget->max_target_blocked);
137 		break;
138 	}
139 }
140 
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143 	struct scsi_device *sdev = cmd->device;
144 
145 	if (cmd->request->rq_flags & RQF_DONTPREP) {
146 		cmd->request->rq_flags &= ~RQF_DONTPREP;
147 		scsi_mq_uninit_cmd(cmd);
148 	} else {
149 		WARN_ON_ONCE(true);
150 	}
151 	blk_mq_requeue_request(cmd->request, true);
152 	put_device(&sdev->sdev_gendev);
153 }
154 
155 /**
156  * __scsi_queue_insert - private queue insertion
157  * @cmd: The SCSI command being requeued
158  * @reason:  The reason for the requeue
159  * @unbusy: Whether the queue should be unbusied
160  *
161  * This is a private queue insertion.  The public interface
162  * scsi_queue_insert() always assumes the queue should be unbusied
163  * because it's always called before the completion.  This function is
164  * for a requeue after completion, which should only occur in this
165  * file.
166  */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
168 {
169 	struct scsi_device *device = cmd->device;
170 	struct request_queue *q = device->request_queue;
171 	unsigned long flags;
172 
173 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 		"Inserting command %p into mlqueue\n", cmd));
175 
176 	scsi_set_blocked(cmd, reason);
177 
178 	/*
179 	 * Decrement the counters, since these commands are no longer
180 	 * active on the host/device.
181 	 */
182 	if (unbusy)
183 		scsi_device_unbusy(device);
184 
185 	/*
186 	 * Requeue this command.  It will go before all other commands
187 	 * that are already in the queue. Schedule requeue work under
188 	 * lock such that the kblockd_schedule_work() call happens
189 	 * before blk_cleanup_queue() finishes.
190 	 */
191 	cmd->result = 0;
192 	if (q->mq_ops) {
193 		scsi_mq_requeue_cmd(cmd);
194 		return;
195 	}
196 	spin_lock_irqsave(q->queue_lock, flags);
197 	blk_requeue_request(q, cmd->request);
198 	kblockd_schedule_work(&device->requeue_work);
199 	spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 
202 /*
203  * Function:    scsi_queue_insert()
204  *
205  * Purpose:     Insert a command in the midlevel queue.
206  *
207  * Arguments:   cmd    - command that we are adding to queue.
208  *              reason - why we are inserting command to queue.
209  *
210  * Lock status: Assumed that lock is not held upon entry.
211  *
212  * Returns:     Nothing.
213  *
214  * Notes:       We do this for one of two cases.  Either the host is busy
215  *              and it cannot accept any more commands for the time being,
216  *              or the device returned QUEUE_FULL and can accept no more
217  *              commands.
218  * Notes:       This could be called either from an interrupt context or a
219  *              normal process context.
220  */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223 	__scsi_queue_insert(cmd, reason, 1);
224 }
225 
226 
227 /**
228  * scsi_execute - insert request and wait for the result
229  * @sdev:	scsi device
230  * @cmd:	scsi command
231  * @data_direction: data direction
232  * @buffer:	data buffer
233  * @bufflen:	len of buffer
234  * @sense:	optional sense buffer
235  * @sshdr:	optional decoded sense header
236  * @timeout:	request timeout in seconds
237  * @retries:	number of times to retry request
238  * @flags:	flags for ->cmd_flags
239  * @rq_flags:	flags for ->rq_flags
240  * @resid:	optional residual length
241  *
242  * Returns the scsi_cmnd result field if a command was executed, or a negative
243  * Linux error code if we didn't get that far.
244  */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 		 int data_direction, void *buffer, unsigned bufflen,
247 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
249 		 int *resid)
250 {
251 	struct request *req;
252 	struct scsi_request *rq;
253 	int ret = DRIVER_ERROR << 24;
254 
255 	req = blk_get_request(sdev->request_queue,
256 			data_direction == DMA_TO_DEVICE ?
257 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
258 	if (IS_ERR(req))
259 		return ret;
260 	rq = scsi_req(req);
261 
262 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
263 					buffer, bufflen, __GFP_RECLAIM))
264 		goto out;
265 
266 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 	memcpy(rq->cmd, cmd, rq->cmd_len);
268 	rq->retries = retries;
269 	req->timeout = timeout;
270 	req->cmd_flags |= flags;
271 	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
272 
273 	/*
274 	 * head injection *required* here otherwise quiesce won't work
275 	 */
276 	blk_execute_rq(req->q, NULL, req, 1);
277 
278 	/*
279 	 * Some devices (USB mass-storage in particular) may transfer
280 	 * garbage data together with a residue indicating that the data
281 	 * is invalid.  Prevent the garbage from being misinterpreted
282 	 * and prevent security leaks by zeroing out the excess data.
283 	 */
284 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286 
287 	if (resid)
288 		*resid = rq->resid_len;
289 	if (sense && rq->sense_len)
290 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291 	if (sshdr)
292 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293 	ret = rq->result;
294  out:
295 	blk_put_request(req);
296 
297 	return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300 
301 /*
302  * Function:    scsi_init_cmd_errh()
303  *
304  * Purpose:     Initialize cmd fields related to error handling.
305  *
306  * Arguments:   cmd	- command that is ready to be queued.
307  *
308  * Notes:       This function has the job of initializing a number of
309  *              fields related to error handling.   Typically this will
310  *              be called once for each command, as required.
311  */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314 	cmd->serial_number = 0;
315 	scsi_set_resid(cmd, 0);
316 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 	if (cmd->cmd_len == 0)
318 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320 
321 void scsi_device_unbusy(struct scsi_device *sdev)
322 {
323 	struct Scsi_Host *shost = sdev->host;
324 	struct scsi_target *starget = scsi_target(sdev);
325 	unsigned long flags;
326 
327 	atomic_dec(&shost->host_busy);
328 	if (starget->can_queue > 0)
329 		atomic_dec(&starget->target_busy);
330 
331 	if (unlikely(scsi_host_in_recovery(shost) &&
332 		     (shost->host_failed || shost->host_eh_scheduled))) {
333 		spin_lock_irqsave(shost->host_lock, flags);
334 		scsi_eh_wakeup(shost);
335 		spin_unlock_irqrestore(shost->host_lock, flags);
336 	}
337 
338 	atomic_dec(&sdev->device_busy);
339 }
340 
341 static void scsi_kick_queue(struct request_queue *q)
342 {
343 	if (q->mq_ops)
344 		blk_mq_start_hw_queues(q);
345 	else
346 		blk_run_queue(q);
347 }
348 
349 /*
350  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
351  * and call blk_run_queue for all the scsi_devices on the target -
352  * including current_sdev first.
353  *
354  * Called with *no* scsi locks held.
355  */
356 static void scsi_single_lun_run(struct scsi_device *current_sdev)
357 {
358 	struct Scsi_Host *shost = current_sdev->host;
359 	struct scsi_device *sdev, *tmp;
360 	struct scsi_target *starget = scsi_target(current_sdev);
361 	unsigned long flags;
362 
363 	spin_lock_irqsave(shost->host_lock, flags);
364 	starget->starget_sdev_user = NULL;
365 	spin_unlock_irqrestore(shost->host_lock, flags);
366 
367 	/*
368 	 * Call blk_run_queue for all LUNs on the target, starting with
369 	 * current_sdev. We race with others (to set starget_sdev_user),
370 	 * but in most cases, we will be first. Ideally, each LU on the
371 	 * target would get some limited time or requests on the target.
372 	 */
373 	scsi_kick_queue(current_sdev->request_queue);
374 
375 	spin_lock_irqsave(shost->host_lock, flags);
376 	if (starget->starget_sdev_user)
377 		goto out;
378 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
379 			same_target_siblings) {
380 		if (sdev == current_sdev)
381 			continue;
382 		if (scsi_device_get(sdev))
383 			continue;
384 
385 		spin_unlock_irqrestore(shost->host_lock, flags);
386 		scsi_kick_queue(sdev->request_queue);
387 		spin_lock_irqsave(shost->host_lock, flags);
388 
389 		scsi_device_put(sdev);
390 	}
391  out:
392 	spin_unlock_irqrestore(shost->host_lock, flags);
393 }
394 
395 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
396 {
397 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
398 		return true;
399 	if (atomic_read(&sdev->device_blocked) > 0)
400 		return true;
401 	return false;
402 }
403 
404 static inline bool scsi_target_is_busy(struct scsi_target *starget)
405 {
406 	if (starget->can_queue > 0) {
407 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
408 			return true;
409 		if (atomic_read(&starget->target_blocked) > 0)
410 			return true;
411 	}
412 	return false;
413 }
414 
415 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
416 {
417 	if (shost->can_queue > 0 &&
418 	    atomic_read(&shost->host_busy) >= shost->can_queue)
419 		return true;
420 	if (atomic_read(&shost->host_blocked) > 0)
421 		return true;
422 	if (shost->host_self_blocked)
423 		return true;
424 	return false;
425 }
426 
427 static void scsi_starved_list_run(struct Scsi_Host *shost)
428 {
429 	LIST_HEAD(starved_list);
430 	struct scsi_device *sdev;
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(shost->host_lock, flags);
434 	list_splice_init(&shost->starved_list, &starved_list);
435 
436 	while (!list_empty(&starved_list)) {
437 		struct request_queue *slq;
438 
439 		/*
440 		 * As long as shost is accepting commands and we have
441 		 * starved queues, call blk_run_queue. scsi_request_fn
442 		 * drops the queue_lock and can add us back to the
443 		 * starved_list.
444 		 *
445 		 * host_lock protects the starved_list and starved_entry.
446 		 * scsi_request_fn must get the host_lock before checking
447 		 * or modifying starved_list or starved_entry.
448 		 */
449 		if (scsi_host_is_busy(shost))
450 			break;
451 
452 		sdev = list_entry(starved_list.next,
453 				  struct scsi_device, starved_entry);
454 		list_del_init(&sdev->starved_entry);
455 		if (scsi_target_is_busy(scsi_target(sdev))) {
456 			list_move_tail(&sdev->starved_entry,
457 				       &shost->starved_list);
458 			continue;
459 		}
460 
461 		/*
462 		 * Once we drop the host lock, a racing scsi_remove_device()
463 		 * call may remove the sdev from the starved list and destroy
464 		 * it and the queue.  Mitigate by taking a reference to the
465 		 * queue and never touching the sdev again after we drop the
466 		 * host lock.  Note: if __scsi_remove_device() invokes
467 		 * blk_cleanup_queue() before the queue is run from this
468 		 * function then blk_run_queue() will return immediately since
469 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470 		 */
471 		slq = sdev->request_queue;
472 		if (!blk_get_queue(slq))
473 			continue;
474 		spin_unlock_irqrestore(shost->host_lock, flags);
475 
476 		scsi_kick_queue(slq);
477 		blk_put_queue(slq);
478 
479 		spin_lock_irqsave(shost->host_lock, flags);
480 	}
481 	/* put any unprocessed entries back */
482 	list_splice(&starved_list, &shost->starved_list);
483 	spin_unlock_irqrestore(shost->host_lock, flags);
484 }
485 
486 /*
487  * Function:   scsi_run_queue()
488  *
489  * Purpose:    Select a proper request queue to serve next
490  *
491  * Arguments:  q       - last request's queue
492  *
493  * Returns:     Nothing
494  *
495  * Notes:      The previous command was completely finished, start
496  *             a new one if possible.
497  */
498 static void scsi_run_queue(struct request_queue *q)
499 {
500 	struct scsi_device *sdev = q->queuedata;
501 
502 	if (scsi_target(sdev)->single_lun)
503 		scsi_single_lun_run(sdev);
504 	if (!list_empty(&sdev->host->starved_list))
505 		scsi_starved_list_run(sdev->host);
506 
507 	if (q->mq_ops)
508 		blk_mq_run_hw_queues(q, false);
509 	else
510 		blk_run_queue(q);
511 }
512 
513 void scsi_requeue_run_queue(struct work_struct *work)
514 {
515 	struct scsi_device *sdev;
516 	struct request_queue *q;
517 
518 	sdev = container_of(work, struct scsi_device, requeue_work);
519 	q = sdev->request_queue;
520 	scsi_run_queue(q);
521 }
522 
523 /*
524  * Function:	scsi_requeue_command()
525  *
526  * Purpose:	Handle post-processing of completed commands.
527  *
528  * Arguments:	q	- queue to operate on
529  *		cmd	- command that may need to be requeued.
530  *
531  * Returns:	Nothing
532  *
533  * Notes:	After command completion, there may be blocks left
534  *		over which weren't finished by the previous command
535  *		this can be for a number of reasons - the main one is
536  *		I/O errors in the middle of the request, in which case
537  *		we need to request the blocks that come after the bad
538  *		sector.
539  * Notes:	Upon return, cmd is a stale pointer.
540  */
541 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
542 {
543 	struct scsi_device *sdev = cmd->device;
544 	struct request *req = cmd->request;
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(q->queue_lock, flags);
548 	blk_unprep_request(req);
549 	req->special = NULL;
550 	scsi_put_command(cmd);
551 	blk_requeue_request(q, req);
552 	spin_unlock_irqrestore(q->queue_lock, flags);
553 
554 	scsi_run_queue(q);
555 
556 	put_device(&sdev->sdev_gendev);
557 }
558 
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561 	struct scsi_device *sdev;
562 
563 	shost_for_each_device(sdev, shost)
564 		scsi_run_queue(sdev->request_queue);
565 }
566 
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569 	if (!blk_rq_is_passthrough(cmd->request)) {
570 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571 
572 		if (drv->uninit_command)
573 			drv->uninit_command(cmd);
574 	}
575 }
576 
577 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
578 {
579 	struct scsi_data_buffer *sdb;
580 
581 	if (cmd->sdb.table.nents)
582 		sg_free_table_chained(&cmd->sdb.table, true);
583 	if (cmd->request->next_rq) {
584 		sdb = cmd->request->next_rq->special;
585 		if (sdb)
586 			sg_free_table_chained(&sdb->table, true);
587 	}
588 	if (scsi_prot_sg_count(cmd))
589 		sg_free_table_chained(&cmd->prot_sdb->table, true);
590 }
591 
592 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
593 {
594 	scsi_mq_free_sgtables(cmd);
595 	scsi_uninit_cmd(cmd);
596 	scsi_del_cmd_from_list(cmd);
597 }
598 
599 /*
600  * Function:    scsi_release_buffers()
601  *
602  * Purpose:     Free resources allocate for a scsi_command.
603  *
604  * Arguments:   cmd	- command that we are bailing.
605  *
606  * Lock status: Assumed that no lock is held upon entry.
607  *
608  * Returns:     Nothing
609  *
610  * Notes:       In the event that an upper level driver rejects a
611  *		command, we must release resources allocated during
612  *		the __init_io() function.  Primarily this would involve
613  *		the scatter-gather table.
614  */
615 static void scsi_release_buffers(struct scsi_cmnd *cmd)
616 {
617 	if (cmd->sdb.table.nents)
618 		sg_free_table_chained(&cmd->sdb.table, false);
619 
620 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
621 
622 	if (scsi_prot_sg_count(cmd))
623 		sg_free_table_chained(&cmd->prot_sdb->table, false);
624 }
625 
626 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
627 {
628 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
629 
630 	sg_free_table_chained(&bidi_sdb->table, false);
631 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
632 	cmd->request->next_rq->special = NULL;
633 }
634 
635 static bool scsi_end_request(struct request *req, blk_status_t error,
636 		unsigned int bytes, unsigned int bidi_bytes)
637 {
638 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
639 	struct scsi_device *sdev = cmd->device;
640 	struct request_queue *q = sdev->request_queue;
641 
642 	if (blk_update_request(req, error, bytes))
643 		return true;
644 
645 	/* Bidi request must be completed as a whole */
646 	if (unlikely(bidi_bytes) &&
647 	    blk_update_request(req->next_rq, error, bidi_bytes))
648 		return true;
649 
650 	if (blk_queue_add_random(q))
651 		add_disk_randomness(req->rq_disk);
652 
653 	if (!blk_rq_is_scsi(req)) {
654 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
655 		cmd->flags &= ~SCMD_INITIALIZED;
656 	}
657 
658 	if (req->mq_ctx) {
659 		/*
660 		 * In the MQ case the command gets freed by __blk_mq_end_request,
661 		 * so we have to do all cleanup that depends on it earlier.
662 		 *
663 		 * We also can't kick the queues from irq context, so we
664 		 * will have to defer it to a workqueue.
665 		 */
666 		scsi_mq_uninit_cmd(cmd);
667 
668 		__blk_mq_end_request(req, error);
669 
670 		if (scsi_target(sdev)->single_lun ||
671 		    !list_empty(&sdev->host->starved_list))
672 			kblockd_schedule_work(&sdev->requeue_work);
673 		else
674 			blk_mq_run_hw_queues(q, true);
675 	} else {
676 		unsigned long flags;
677 
678 		if (bidi_bytes)
679 			scsi_release_bidi_buffers(cmd);
680 		scsi_release_buffers(cmd);
681 		scsi_put_command(cmd);
682 
683 		spin_lock_irqsave(q->queue_lock, flags);
684 		blk_finish_request(req, error);
685 		spin_unlock_irqrestore(q->queue_lock, flags);
686 
687 		scsi_run_queue(q);
688 	}
689 
690 	put_device(&sdev->sdev_gendev);
691 	return false;
692 }
693 
694 /**
695  * __scsi_error_from_host_byte - translate SCSI error code into errno
696  * @cmd:	SCSI command (unused)
697  * @result:	scsi error code
698  *
699  * Translate SCSI error code into block errors.
700  */
701 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
702 		int result)
703 {
704 	switch (host_byte(result)) {
705 	case DID_TRANSPORT_FAILFAST:
706 		return BLK_STS_TRANSPORT;
707 	case DID_TARGET_FAILURE:
708 		set_host_byte(cmd, DID_OK);
709 		return BLK_STS_TARGET;
710 	case DID_NEXUS_FAILURE:
711 		return BLK_STS_NEXUS;
712 	case DID_ALLOC_FAILURE:
713 		set_host_byte(cmd, DID_OK);
714 		return BLK_STS_NOSPC;
715 	case DID_MEDIUM_ERROR:
716 		set_host_byte(cmd, DID_OK);
717 		return BLK_STS_MEDIUM;
718 	default:
719 		return BLK_STS_IOERR;
720 	}
721 }
722 
723 /*
724  * Function:    scsi_io_completion()
725  *
726  * Purpose:     Completion processing for block device I/O requests.
727  *
728  * Arguments:   cmd   - command that is finished.
729  *
730  * Lock status: Assumed that no lock is held upon entry.
731  *
732  * Returns:     Nothing
733  *
734  * Notes:       We will finish off the specified number of sectors.  If we
735  *		are done, the command block will be released and the queue
736  *		function will be goosed.  If we are not done then we have to
737  *		figure out what to do next:
738  *
739  *		a) We can call scsi_requeue_command().  The request
740  *		   will be unprepared and put back on the queue.  Then
741  *		   a new command will be created for it.  This should
742  *		   be used if we made forward progress, or if we want
743  *		   to switch from READ(10) to READ(6) for example.
744  *
745  *		b) We can call __scsi_queue_insert().  The request will
746  *		   be put back on the queue and retried using the same
747  *		   command as before, possibly after a delay.
748  *
749  *		c) We can call scsi_end_request() with -EIO to fail
750  *		   the remainder of the request.
751  */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754 	int result = cmd->result;
755 	struct request_queue *q = cmd->device->request_queue;
756 	struct request *req = cmd->request;
757 	blk_status_t error = BLK_STS_OK;
758 	struct scsi_sense_hdr sshdr;
759 	bool sense_valid = false;
760 	int sense_deferred = 0, level = 0;
761 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762 	      ACTION_DELAYED_RETRY} action;
763 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
764 
765 	if (result) {
766 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
767 		if (sense_valid)
768 			sense_deferred = scsi_sense_is_deferred(&sshdr);
769 	}
770 
771 	if (blk_rq_is_passthrough(req)) {
772 		if (result) {
773 			if (sense_valid) {
774 				/*
775 				 * SG_IO wants current and deferred errors
776 				 */
777 				scsi_req(req)->sense_len =
778 					min(8 + cmd->sense_buffer[7],
779 					    SCSI_SENSE_BUFFERSIZE);
780 			}
781 			if (!sense_deferred)
782 				error = __scsi_error_from_host_byte(cmd, result);
783 		}
784 		/*
785 		 * __scsi_error_from_host_byte may have reset the host_byte
786 		 */
787 		scsi_req(req)->result = cmd->result;
788 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
789 
790 		if (scsi_bidi_cmnd(cmd)) {
791 			/*
792 			 * Bidi commands Must be complete as a whole,
793 			 * both sides at once.
794 			 */
795 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
796 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
797 					blk_rq_bytes(req->next_rq)))
798 				BUG();
799 			return;
800 		}
801 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
802 		/*
803 		 * Flush commands do not transfers any data, and thus cannot use
804 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
805 		 * This sets the error explicitly for the problem case.
806 		 */
807 		error = __scsi_error_from_host_byte(cmd, result);
808 	}
809 
810 	/* no bidi support for !blk_rq_is_passthrough yet */
811 	BUG_ON(blk_bidi_rq(req));
812 
813 	/*
814 	 * Next deal with any sectors which we were able to correctly
815 	 * handle.
816 	 */
817 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
818 		"%u sectors total, %d bytes done.\n",
819 		blk_rq_sectors(req), good_bytes));
820 
821 	/*
822 	 * Recovered errors need reporting, but they're always treated as
823 	 * success, so fiddle the result code here.  For passthrough requests
824 	 * we already took a copy of the original into sreq->result which
825 	 * is what gets returned to the user
826 	 */
827 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829 		 * print since caller wants ATA registers. Only occurs on
830 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
831 		 */
832 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833 			;
834 		else if (!(req->rq_flags & RQF_QUIET))
835 			scsi_print_sense(cmd);
836 		result = 0;
837 		/* for passthrough error may be set */
838 		error = BLK_STS_OK;
839 	}
840 
841 	/*
842 	 * special case: failed zero length commands always need to
843 	 * drop down into the retry code. Otherwise, if we finished
844 	 * all bytes in the request we are done now.
845 	 */
846 	if (!(blk_rq_bytes(req) == 0 && error) &&
847 	    !scsi_end_request(req, error, good_bytes, 0))
848 		return;
849 
850 	/*
851 	 * Kill remainder if no retrys.
852 	 */
853 	if (error && scsi_noretry_cmd(cmd)) {
854 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
855 			BUG();
856 		return;
857 	}
858 
859 	/*
860 	 * If there had been no error, but we have leftover bytes in the
861 	 * requeues just queue the command up again.
862 	 */
863 	if (result == 0)
864 		goto requeue;
865 
866 	error = __scsi_error_from_host_byte(cmd, result);
867 
868 	if (host_byte(result) == DID_RESET) {
869 		/* Third party bus reset or reset for error recovery
870 		 * reasons.  Just retry the command and see what
871 		 * happens.
872 		 */
873 		action = ACTION_RETRY;
874 	} else if (sense_valid && !sense_deferred) {
875 		switch (sshdr.sense_key) {
876 		case UNIT_ATTENTION:
877 			if (cmd->device->removable) {
878 				/* Detected disc change.  Set a bit
879 				 * and quietly refuse further access.
880 				 */
881 				cmd->device->changed = 1;
882 				action = ACTION_FAIL;
883 			} else {
884 				/* Must have been a power glitch, or a
885 				 * bus reset.  Could not have been a
886 				 * media change, so we just retry the
887 				 * command and see what happens.
888 				 */
889 				action = ACTION_RETRY;
890 			}
891 			break;
892 		case ILLEGAL_REQUEST:
893 			/* If we had an ILLEGAL REQUEST returned, then
894 			 * we may have performed an unsupported
895 			 * command.  The only thing this should be
896 			 * would be a ten byte read where only a six
897 			 * byte read was supported.  Also, on a system
898 			 * where READ CAPACITY failed, we may have
899 			 * read past the end of the disk.
900 			 */
901 			if ((cmd->device->use_10_for_rw &&
902 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
903 			    (cmd->cmnd[0] == READ_10 ||
904 			     cmd->cmnd[0] == WRITE_10)) {
905 				/* This will issue a new 6-byte command. */
906 				cmd->device->use_10_for_rw = 0;
907 				action = ACTION_REPREP;
908 			} else if (sshdr.asc == 0x10) /* DIX */ {
909 				action = ACTION_FAIL;
910 				error = BLK_STS_PROTECTION;
911 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
912 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
913 				action = ACTION_FAIL;
914 				error = BLK_STS_TARGET;
915 			} else
916 				action = ACTION_FAIL;
917 			break;
918 		case ABORTED_COMMAND:
919 			action = ACTION_FAIL;
920 			if (sshdr.asc == 0x10) /* DIF */
921 				error = BLK_STS_PROTECTION;
922 			break;
923 		case NOT_READY:
924 			/* If the device is in the process of becoming
925 			 * ready, or has a temporary blockage, retry.
926 			 */
927 			if (sshdr.asc == 0x04) {
928 				switch (sshdr.ascq) {
929 				case 0x01: /* becoming ready */
930 				case 0x04: /* format in progress */
931 				case 0x05: /* rebuild in progress */
932 				case 0x06: /* recalculation in progress */
933 				case 0x07: /* operation in progress */
934 				case 0x08: /* Long write in progress */
935 				case 0x09: /* self test in progress */
936 				case 0x14: /* space allocation in progress */
937 					action = ACTION_DELAYED_RETRY;
938 					break;
939 				default:
940 					action = ACTION_FAIL;
941 					break;
942 				}
943 			} else
944 				action = ACTION_FAIL;
945 			break;
946 		case VOLUME_OVERFLOW:
947 			/* See SSC3rXX or current. */
948 			action = ACTION_FAIL;
949 			break;
950 		default:
951 			action = ACTION_FAIL;
952 			break;
953 		}
954 	} else
955 		action = ACTION_FAIL;
956 
957 	if (action != ACTION_FAIL &&
958 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
959 		action = ACTION_FAIL;
960 
961 	switch (action) {
962 	case ACTION_FAIL:
963 		/* Give up and fail the remainder of the request */
964 		if (!(req->rq_flags & RQF_QUIET)) {
965 			static DEFINE_RATELIMIT_STATE(_rs,
966 					DEFAULT_RATELIMIT_INTERVAL,
967 					DEFAULT_RATELIMIT_BURST);
968 
969 			if (unlikely(scsi_logging_level))
970 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
971 						       SCSI_LOG_MLCOMPLETE_BITS);
972 
973 			/*
974 			 * if logging is enabled the failure will be printed
975 			 * in scsi_log_completion(), so avoid duplicate messages
976 			 */
977 			if (!level && __ratelimit(&_rs)) {
978 				scsi_print_result(cmd, NULL, FAILED);
979 				if (driver_byte(result) & DRIVER_SENSE)
980 					scsi_print_sense(cmd);
981 				scsi_print_command(cmd);
982 			}
983 		}
984 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
985 			return;
986 		/*FALLTHRU*/
987 	case ACTION_REPREP:
988 	requeue:
989 		/* Unprep the request and put it back at the head of the queue.
990 		 * A new command will be prepared and issued.
991 		 */
992 		if (q->mq_ops) {
993 			scsi_mq_requeue_cmd(cmd);
994 		} else {
995 			scsi_release_buffers(cmd);
996 			scsi_requeue_command(q, cmd);
997 		}
998 		break;
999 	case ACTION_RETRY:
1000 		/* Retry the same command immediately */
1001 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1002 		break;
1003 	case ACTION_DELAYED_RETRY:
1004 		/* Retry the same command after a delay */
1005 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1006 		break;
1007 	}
1008 }
1009 
1010 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1011 {
1012 	int count;
1013 
1014 	/*
1015 	 * If sg table allocation fails, requeue request later.
1016 	 */
1017 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1018 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1019 		return BLKPREP_DEFER;
1020 
1021 	/*
1022 	 * Next, walk the list, and fill in the addresses and sizes of
1023 	 * each segment.
1024 	 */
1025 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1026 	BUG_ON(count > sdb->table.nents);
1027 	sdb->table.nents = count;
1028 	sdb->length = blk_rq_payload_bytes(req);
1029 	return BLKPREP_OK;
1030 }
1031 
1032 /*
1033  * Function:    scsi_init_io()
1034  *
1035  * Purpose:     SCSI I/O initialize function.
1036  *
1037  * Arguments:   cmd   - Command descriptor we wish to initialize
1038  *
1039  * Returns:     0 on success
1040  *		BLKPREP_DEFER if the failure is retryable
1041  *		BLKPREP_KILL if the failure is fatal
1042  */
1043 int scsi_init_io(struct scsi_cmnd *cmd)
1044 {
1045 	struct scsi_device *sdev = cmd->device;
1046 	struct request *rq = cmd->request;
1047 	bool is_mq = (rq->mq_ctx != NULL);
1048 	int error = BLKPREP_KILL;
1049 
1050 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1051 		goto err_exit;
1052 
1053 	error = scsi_init_sgtable(rq, &cmd->sdb);
1054 	if (error)
1055 		goto err_exit;
1056 
1057 	if (blk_bidi_rq(rq)) {
1058 		if (!rq->q->mq_ops) {
1059 			struct scsi_data_buffer *bidi_sdb =
1060 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1061 			if (!bidi_sdb) {
1062 				error = BLKPREP_DEFER;
1063 				goto err_exit;
1064 			}
1065 
1066 			rq->next_rq->special = bidi_sdb;
1067 		}
1068 
1069 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1070 		if (error)
1071 			goto err_exit;
1072 	}
1073 
1074 	if (blk_integrity_rq(rq)) {
1075 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076 		int ivecs, count;
1077 
1078 		if (prot_sdb == NULL) {
1079 			/*
1080 			 * This can happen if someone (e.g. multipath)
1081 			 * queues a command to a device on an adapter
1082 			 * that does not support DIX.
1083 			 */
1084 			WARN_ON_ONCE(1);
1085 			error = BLKPREP_KILL;
1086 			goto err_exit;
1087 		}
1088 
1089 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1090 
1091 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092 				prot_sdb->table.sgl)) {
1093 			error = BLKPREP_DEFER;
1094 			goto err_exit;
1095 		}
1096 
1097 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098 						prot_sdb->table.sgl);
1099 		BUG_ON(unlikely(count > ivecs));
1100 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1101 
1102 		cmd->prot_sdb = prot_sdb;
1103 		cmd->prot_sdb->table.nents = count;
1104 	}
1105 
1106 	return BLKPREP_OK;
1107 err_exit:
1108 	if (is_mq) {
1109 		scsi_mq_free_sgtables(cmd);
1110 	} else {
1111 		scsi_release_buffers(cmd);
1112 		cmd->request->special = NULL;
1113 		scsi_put_command(cmd);
1114 		put_device(&sdev->sdev_gendev);
1115 	}
1116 	return error;
1117 }
1118 EXPORT_SYMBOL(scsi_init_io);
1119 
1120 /**
1121  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1122  * @rq: Request associated with the SCSI command to be initialized.
1123  *
1124  * This function initializes the members of struct scsi_cmnd that must be
1125  * initialized before request processing starts and that won't be
1126  * reinitialized if a SCSI command is requeued.
1127  *
1128  * Called from inside blk_get_request() for pass-through requests and from
1129  * inside scsi_init_command() for filesystem requests.
1130  */
1131 void scsi_initialize_rq(struct request *rq)
1132 {
1133 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1134 
1135 	scsi_req_init(&cmd->req);
1136 	cmd->jiffies_at_alloc = jiffies;
1137 	cmd->retries = 0;
1138 }
1139 EXPORT_SYMBOL(scsi_initialize_rq);
1140 
1141 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1142 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1143 {
1144 	struct scsi_device *sdev = cmd->device;
1145 	struct Scsi_Host *shost = sdev->host;
1146 	unsigned long flags;
1147 
1148 	if (shost->use_cmd_list) {
1149 		spin_lock_irqsave(&sdev->list_lock, flags);
1150 		list_add_tail(&cmd->list, &sdev->cmd_list);
1151 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1152 	}
1153 }
1154 
1155 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1156 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1157 {
1158 	struct scsi_device *sdev = cmd->device;
1159 	struct Scsi_Host *shost = sdev->host;
1160 	unsigned long flags;
1161 
1162 	if (shost->use_cmd_list) {
1163 		spin_lock_irqsave(&sdev->list_lock, flags);
1164 		BUG_ON(list_empty(&cmd->list));
1165 		list_del_init(&cmd->list);
1166 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1167 	}
1168 }
1169 
1170 /* Called after a request has been started. */
1171 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1172 {
1173 	void *buf = cmd->sense_buffer;
1174 	void *prot = cmd->prot_sdb;
1175 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1176 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1177 	unsigned long jiffies_at_alloc;
1178 	int retries;
1179 
1180 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1181 		flags |= SCMD_INITIALIZED;
1182 		scsi_initialize_rq(rq);
1183 	}
1184 
1185 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1186 	retries = cmd->retries;
1187 	/* zero out the cmd, except for the embedded scsi_request */
1188 	memset((char *)cmd + sizeof(cmd->req), 0,
1189 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1190 
1191 	cmd->device = dev;
1192 	cmd->sense_buffer = buf;
1193 	cmd->prot_sdb = prot;
1194 	cmd->flags = flags;
1195 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1196 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1197 	cmd->retries = retries;
1198 
1199 	scsi_add_cmd_to_list(cmd);
1200 }
1201 
1202 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1203 {
1204 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1205 
1206 	/*
1207 	 * Passthrough requests may transfer data, in which case they must
1208 	 * a bio attached to them.  Or they might contain a SCSI command
1209 	 * that does not transfer data, in which case they may optionally
1210 	 * submit a request without an attached bio.
1211 	 */
1212 	if (req->bio) {
1213 		int ret = scsi_init_io(cmd);
1214 		if (unlikely(ret))
1215 			return ret;
1216 	} else {
1217 		BUG_ON(blk_rq_bytes(req));
1218 
1219 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1220 	}
1221 
1222 	cmd->cmd_len = scsi_req(req)->cmd_len;
1223 	cmd->cmnd = scsi_req(req)->cmd;
1224 	cmd->transfersize = blk_rq_bytes(req);
1225 	cmd->allowed = scsi_req(req)->retries;
1226 	return BLKPREP_OK;
1227 }
1228 
1229 /*
1230  * Setup a normal block command.  These are simple request from filesystems
1231  * that still need to be translated to SCSI CDBs from the ULD.
1232  */
1233 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1234 {
1235 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1236 
1237 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1238 		int ret = sdev->handler->prep_fn(sdev, req);
1239 		if (ret != BLKPREP_OK)
1240 			return ret;
1241 	}
1242 
1243 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1244 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1245 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1246 }
1247 
1248 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1251 
1252 	if (!blk_rq_bytes(req))
1253 		cmd->sc_data_direction = DMA_NONE;
1254 	else if (rq_data_dir(req) == WRITE)
1255 		cmd->sc_data_direction = DMA_TO_DEVICE;
1256 	else
1257 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1258 
1259 	if (blk_rq_is_scsi(req))
1260 		return scsi_setup_scsi_cmnd(sdev, req);
1261 	else
1262 		return scsi_setup_fs_cmnd(sdev, req);
1263 }
1264 
1265 static int
1266 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1267 {
1268 	int ret = BLKPREP_OK;
1269 
1270 	/*
1271 	 * If the device is not in running state we will reject some
1272 	 * or all commands.
1273 	 */
1274 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1275 		switch (sdev->sdev_state) {
1276 		case SDEV_OFFLINE:
1277 		case SDEV_TRANSPORT_OFFLINE:
1278 			/*
1279 			 * If the device is offline we refuse to process any
1280 			 * commands.  The device must be brought online
1281 			 * before trying any recovery commands.
1282 			 */
1283 			sdev_printk(KERN_ERR, sdev,
1284 				    "rejecting I/O to offline device\n");
1285 			ret = BLKPREP_KILL;
1286 			break;
1287 		case SDEV_DEL:
1288 			/*
1289 			 * If the device is fully deleted, we refuse to
1290 			 * process any commands as well.
1291 			 */
1292 			sdev_printk(KERN_ERR, sdev,
1293 				    "rejecting I/O to dead device\n");
1294 			ret = BLKPREP_KILL;
1295 			break;
1296 		case SDEV_BLOCK:
1297 		case SDEV_CREATED_BLOCK:
1298 			ret = BLKPREP_DEFER;
1299 			break;
1300 		case SDEV_QUIESCE:
1301 			/*
1302 			 * If the devices is blocked we defer normal commands.
1303 			 */
1304 			if (!(req->rq_flags & RQF_PREEMPT))
1305 				ret = BLKPREP_DEFER;
1306 			break;
1307 		default:
1308 			/*
1309 			 * For any other not fully online state we only allow
1310 			 * special commands.  In particular any user initiated
1311 			 * command is not allowed.
1312 			 */
1313 			if (!(req->rq_flags & RQF_PREEMPT))
1314 				ret = BLKPREP_KILL;
1315 			break;
1316 		}
1317 	}
1318 	return ret;
1319 }
1320 
1321 static int
1322 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1323 {
1324 	struct scsi_device *sdev = q->queuedata;
1325 
1326 	switch (ret) {
1327 	case BLKPREP_KILL:
1328 	case BLKPREP_INVALID:
1329 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1330 		/* release the command and kill it */
1331 		if (req->special) {
1332 			struct scsi_cmnd *cmd = req->special;
1333 			scsi_release_buffers(cmd);
1334 			scsi_put_command(cmd);
1335 			put_device(&sdev->sdev_gendev);
1336 			req->special = NULL;
1337 		}
1338 		break;
1339 	case BLKPREP_DEFER:
1340 		/*
1341 		 * If we defer, the blk_peek_request() returns NULL, but the
1342 		 * queue must be restarted, so we schedule a callback to happen
1343 		 * shortly.
1344 		 */
1345 		if (atomic_read(&sdev->device_busy) == 0)
1346 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1347 		break;
1348 	default:
1349 		req->rq_flags |= RQF_DONTPREP;
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1356 {
1357 	struct scsi_device *sdev = q->queuedata;
1358 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1359 	int ret;
1360 
1361 	ret = scsi_prep_state_check(sdev, req);
1362 	if (ret != BLKPREP_OK)
1363 		goto out;
1364 
1365 	if (!req->special) {
1366 		/* Bail if we can't get a reference to the device */
1367 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1368 			ret = BLKPREP_DEFER;
1369 			goto out;
1370 		}
1371 
1372 		scsi_init_command(sdev, cmd);
1373 		req->special = cmd;
1374 	}
1375 
1376 	cmd->tag = req->tag;
1377 	cmd->request = req;
1378 	cmd->prot_op = SCSI_PROT_NORMAL;
1379 
1380 	ret = scsi_setup_cmnd(sdev, req);
1381 out:
1382 	if (ret != BLKPREP_OK)
1383 		cmd->flags &= ~SCMD_INITIALIZED;
1384 	return scsi_prep_return(q, req, ret);
1385 }
1386 
1387 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1388 {
1389 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1390 }
1391 
1392 /*
1393  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1394  * return 0.
1395  *
1396  * Called with the queue_lock held.
1397  */
1398 static inline int scsi_dev_queue_ready(struct request_queue *q,
1399 				  struct scsi_device *sdev)
1400 {
1401 	unsigned int busy;
1402 
1403 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1404 	if (atomic_read(&sdev->device_blocked)) {
1405 		if (busy)
1406 			goto out_dec;
1407 
1408 		/*
1409 		 * unblock after device_blocked iterates to zero
1410 		 */
1411 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1412 			/*
1413 			 * For the MQ case we take care of this in the caller.
1414 			 */
1415 			if (!q->mq_ops)
1416 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1417 			goto out_dec;
1418 		}
1419 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1420 				   "unblocking device at zero depth\n"));
1421 	}
1422 
1423 	if (busy >= sdev->queue_depth)
1424 		goto out_dec;
1425 
1426 	return 1;
1427 out_dec:
1428 	atomic_dec(&sdev->device_busy);
1429 	return 0;
1430 }
1431 
1432 /*
1433  * scsi_target_queue_ready: checks if there we can send commands to target
1434  * @sdev: scsi device on starget to check.
1435  */
1436 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1437 					   struct scsi_device *sdev)
1438 {
1439 	struct scsi_target *starget = scsi_target(sdev);
1440 	unsigned int busy;
1441 
1442 	if (starget->single_lun) {
1443 		spin_lock_irq(shost->host_lock);
1444 		if (starget->starget_sdev_user &&
1445 		    starget->starget_sdev_user != sdev) {
1446 			spin_unlock_irq(shost->host_lock);
1447 			return 0;
1448 		}
1449 		starget->starget_sdev_user = sdev;
1450 		spin_unlock_irq(shost->host_lock);
1451 	}
1452 
1453 	if (starget->can_queue <= 0)
1454 		return 1;
1455 
1456 	busy = atomic_inc_return(&starget->target_busy) - 1;
1457 	if (atomic_read(&starget->target_blocked) > 0) {
1458 		if (busy)
1459 			goto starved;
1460 
1461 		/*
1462 		 * unblock after target_blocked iterates to zero
1463 		 */
1464 		if (atomic_dec_return(&starget->target_blocked) > 0)
1465 			goto out_dec;
1466 
1467 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1468 				 "unblocking target at zero depth\n"));
1469 	}
1470 
1471 	if (busy >= starget->can_queue)
1472 		goto starved;
1473 
1474 	return 1;
1475 
1476 starved:
1477 	spin_lock_irq(shost->host_lock);
1478 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1479 	spin_unlock_irq(shost->host_lock);
1480 out_dec:
1481 	if (starget->can_queue > 0)
1482 		atomic_dec(&starget->target_busy);
1483 	return 0;
1484 }
1485 
1486 /*
1487  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1488  * return 0. We must end up running the queue again whenever 0 is
1489  * returned, else IO can hang.
1490  */
1491 static inline int scsi_host_queue_ready(struct request_queue *q,
1492 				   struct Scsi_Host *shost,
1493 				   struct scsi_device *sdev)
1494 {
1495 	unsigned int busy;
1496 
1497 	if (scsi_host_in_recovery(shost))
1498 		return 0;
1499 
1500 	busy = atomic_inc_return(&shost->host_busy) - 1;
1501 	if (atomic_read(&shost->host_blocked) > 0) {
1502 		if (busy)
1503 			goto starved;
1504 
1505 		/*
1506 		 * unblock after host_blocked iterates to zero
1507 		 */
1508 		if (atomic_dec_return(&shost->host_blocked) > 0)
1509 			goto out_dec;
1510 
1511 		SCSI_LOG_MLQUEUE(3,
1512 			shost_printk(KERN_INFO, shost,
1513 				     "unblocking host at zero depth\n"));
1514 	}
1515 
1516 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1517 		goto starved;
1518 	if (shost->host_self_blocked)
1519 		goto starved;
1520 
1521 	/* We're OK to process the command, so we can't be starved */
1522 	if (!list_empty(&sdev->starved_entry)) {
1523 		spin_lock_irq(shost->host_lock);
1524 		if (!list_empty(&sdev->starved_entry))
1525 			list_del_init(&sdev->starved_entry);
1526 		spin_unlock_irq(shost->host_lock);
1527 	}
1528 
1529 	return 1;
1530 
1531 starved:
1532 	spin_lock_irq(shost->host_lock);
1533 	if (list_empty(&sdev->starved_entry))
1534 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1535 	spin_unlock_irq(shost->host_lock);
1536 out_dec:
1537 	atomic_dec(&shost->host_busy);
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Busy state exporting function for request stacking drivers.
1543  *
1544  * For efficiency, no lock is taken to check the busy state of
1545  * shost/starget/sdev, since the returned value is not guaranteed and
1546  * may be changed after request stacking drivers call the function,
1547  * regardless of taking lock or not.
1548  *
1549  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1550  * needs to return 'not busy'. Otherwise, request stacking drivers
1551  * may hold requests forever.
1552  */
1553 static int scsi_lld_busy(struct request_queue *q)
1554 {
1555 	struct scsi_device *sdev = q->queuedata;
1556 	struct Scsi_Host *shost;
1557 
1558 	if (blk_queue_dying(q))
1559 		return 0;
1560 
1561 	shost = sdev->host;
1562 
1563 	/*
1564 	 * Ignore host/starget busy state.
1565 	 * Since block layer does not have a concept of fairness across
1566 	 * multiple queues, congestion of host/starget needs to be handled
1567 	 * in SCSI layer.
1568 	 */
1569 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1570 		return 1;
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Kill a request for a dead device
1577  */
1578 static void scsi_kill_request(struct request *req, struct request_queue *q)
1579 {
1580 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1581 	struct scsi_device *sdev;
1582 	struct scsi_target *starget;
1583 	struct Scsi_Host *shost;
1584 
1585 	blk_start_request(req);
1586 
1587 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1588 
1589 	sdev = cmd->device;
1590 	starget = scsi_target(sdev);
1591 	shost = sdev->host;
1592 	scsi_init_cmd_errh(cmd);
1593 	cmd->result = DID_NO_CONNECT << 16;
1594 	atomic_inc(&cmd->device->iorequest_cnt);
1595 
1596 	/*
1597 	 * SCSI request completion path will do scsi_device_unbusy(),
1598 	 * bump busy counts.  To bump the counters, we need to dance
1599 	 * with the locks as normal issue path does.
1600 	 */
1601 	atomic_inc(&sdev->device_busy);
1602 	atomic_inc(&shost->host_busy);
1603 	if (starget->can_queue > 0)
1604 		atomic_inc(&starget->target_busy);
1605 
1606 	blk_complete_request(req);
1607 }
1608 
1609 static void scsi_softirq_done(struct request *rq)
1610 {
1611 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1612 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1613 	int disposition;
1614 
1615 	INIT_LIST_HEAD(&cmd->eh_entry);
1616 
1617 	atomic_inc(&cmd->device->iodone_cnt);
1618 	if (cmd->result)
1619 		atomic_inc(&cmd->device->ioerr_cnt);
1620 
1621 	disposition = scsi_decide_disposition(cmd);
1622 	if (disposition != SUCCESS &&
1623 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1624 		sdev_printk(KERN_ERR, cmd->device,
1625 			    "timing out command, waited %lus\n",
1626 			    wait_for/HZ);
1627 		disposition = SUCCESS;
1628 	}
1629 
1630 	scsi_log_completion(cmd, disposition);
1631 
1632 	switch (disposition) {
1633 		case SUCCESS:
1634 			scsi_finish_command(cmd);
1635 			break;
1636 		case NEEDS_RETRY:
1637 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1638 			break;
1639 		case ADD_TO_MLQUEUE:
1640 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1641 			break;
1642 		default:
1643 			scsi_eh_scmd_add(cmd);
1644 			break;
1645 	}
1646 }
1647 
1648 /**
1649  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1650  * @cmd: command block we are dispatching.
1651  *
1652  * Return: nonzero return request was rejected and device's queue needs to be
1653  * plugged.
1654  */
1655 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1656 {
1657 	struct Scsi_Host *host = cmd->device->host;
1658 	int rtn = 0;
1659 
1660 	atomic_inc(&cmd->device->iorequest_cnt);
1661 
1662 	/* check if the device is still usable */
1663 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1664 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1665 		 * returns an immediate error upwards, and signals
1666 		 * that the device is no longer present */
1667 		cmd->result = DID_NO_CONNECT << 16;
1668 		goto done;
1669 	}
1670 
1671 	/* Check to see if the scsi lld made this device blocked. */
1672 	if (unlikely(scsi_device_blocked(cmd->device))) {
1673 		/*
1674 		 * in blocked state, the command is just put back on
1675 		 * the device queue.  The suspend state has already
1676 		 * blocked the queue so future requests should not
1677 		 * occur until the device transitions out of the
1678 		 * suspend state.
1679 		 */
1680 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1681 			"queuecommand : device blocked\n"));
1682 		return SCSI_MLQUEUE_DEVICE_BUSY;
1683 	}
1684 
1685 	/* Store the LUN value in cmnd, if needed. */
1686 	if (cmd->device->lun_in_cdb)
1687 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1688 			       (cmd->device->lun << 5 & 0xe0);
1689 
1690 	scsi_log_send(cmd);
1691 
1692 	/*
1693 	 * Before we queue this command, check if the command
1694 	 * length exceeds what the host adapter can handle.
1695 	 */
1696 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1697 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1698 			       "queuecommand : command too long. "
1699 			       "cdb_size=%d host->max_cmd_len=%d\n",
1700 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1701 		cmd->result = (DID_ABORT << 16);
1702 		goto done;
1703 	}
1704 
1705 	if (unlikely(host->shost_state == SHOST_DEL)) {
1706 		cmd->result = (DID_NO_CONNECT << 16);
1707 		goto done;
1708 
1709 	}
1710 
1711 	trace_scsi_dispatch_cmd_start(cmd);
1712 	rtn = host->hostt->queuecommand(host, cmd);
1713 	if (rtn) {
1714 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1715 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1716 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1717 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1718 
1719 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1720 			"queuecommand : request rejected\n"));
1721 	}
1722 
1723 	return rtn;
1724  done:
1725 	cmd->scsi_done(cmd);
1726 	return 0;
1727 }
1728 
1729 /**
1730  * scsi_done - Invoke completion on finished SCSI command.
1731  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1732  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1733  *
1734  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1735  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1736  * calls blk_complete_request() for further processing.
1737  *
1738  * This function is interrupt context safe.
1739  */
1740 static void scsi_done(struct scsi_cmnd *cmd)
1741 {
1742 	trace_scsi_dispatch_cmd_done(cmd);
1743 	blk_complete_request(cmd->request);
1744 }
1745 
1746 /*
1747  * Function:    scsi_request_fn()
1748  *
1749  * Purpose:     Main strategy routine for SCSI.
1750  *
1751  * Arguments:   q       - Pointer to actual queue.
1752  *
1753  * Returns:     Nothing
1754  *
1755  * Lock status: IO request lock assumed to be held when called.
1756  */
1757 static void scsi_request_fn(struct request_queue *q)
1758 	__releases(q->queue_lock)
1759 	__acquires(q->queue_lock)
1760 {
1761 	struct scsi_device *sdev = q->queuedata;
1762 	struct Scsi_Host *shost;
1763 	struct scsi_cmnd *cmd;
1764 	struct request *req;
1765 
1766 	/*
1767 	 * To start with, we keep looping until the queue is empty, or until
1768 	 * the host is no longer able to accept any more requests.
1769 	 */
1770 	shost = sdev->host;
1771 	for (;;) {
1772 		int rtn;
1773 		/*
1774 		 * get next queueable request.  We do this early to make sure
1775 		 * that the request is fully prepared even if we cannot
1776 		 * accept it.
1777 		 */
1778 		req = blk_peek_request(q);
1779 		if (!req)
1780 			break;
1781 
1782 		if (unlikely(!scsi_device_online(sdev))) {
1783 			sdev_printk(KERN_ERR, sdev,
1784 				    "rejecting I/O to offline device\n");
1785 			scsi_kill_request(req, q);
1786 			continue;
1787 		}
1788 
1789 		if (!scsi_dev_queue_ready(q, sdev))
1790 			break;
1791 
1792 		/*
1793 		 * Remove the request from the request list.
1794 		 */
1795 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1796 			blk_start_request(req);
1797 
1798 		spin_unlock_irq(q->queue_lock);
1799 		cmd = blk_mq_rq_to_pdu(req);
1800 		if (cmd != req->special) {
1801 			printk(KERN_CRIT "impossible request in %s.\n"
1802 					 "please mail a stack trace to "
1803 					 "linux-scsi@vger.kernel.org\n",
1804 					 __func__);
1805 			blk_dump_rq_flags(req, "foo");
1806 			BUG();
1807 		}
1808 
1809 		/*
1810 		 * We hit this when the driver is using a host wide
1811 		 * tag map. For device level tag maps the queue_depth check
1812 		 * in the device ready fn would prevent us from trying
1813 		 * to allocate a tag. Since the map is a shared host resource
1814 		 * we add the dev to the starved list so it eventually gets
1815 		 * a run when a tag is freed.
1816 		 */
1817 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1818 			spin_lock_irq(shost->host_lock);
1819 			if (list_empty(&sdev->starved_entry))
1820 				list_add_tail(&sdev->starved_entry,
1821 					      &shost->starved_list);
1822 			spin_unlock_irq(shost->host_lock);
1823 			goto not_ready;
1824 		}
1825 
1826 		if (!scsi_target_queue_ready(shost, sdev))
1827 			goto not_ready;
1828 
1829 		if (!scsi_host_queue_ready(q, shost, sdev))
1830 			goto host_not_ready;
1831 
1832 		if (sdev->simple_tags)
1833 			cmd->flags |= SCMD_TAGGED;
1834 		else
1835 			cmd->flags &= ~SCMD_TAGGED;
1836 
1837 		/*
1838 		 * Finally, initialize any error handling parameters, and set up
1839 		 * the timers for timeouts.
1840 		 */
1841 		scsi_init_cmd_errh(cmd);
1842 
1843 		/*
1844 		 * Dispatch the command to the low-level driver.
1845 		 */
1846 		cmd->scsi_done = scsi_done;
1847 		rtn = scsi_dispatch_cmd(cmd);
1848 		if (rtn) {
1849 			scsi_queue_insert(cmd, rtn);
1850 			spin_lock_irq(q->queue_lock);
1851 			goto out_delay;
1852 		}
1853 		spin_lock_irq(q->queue_lock);
1854 	}
1855 
1856 	return;
1857 
1858  host_not_ready:
1859 	if (scsi_target(sdev)->can_queue > 0)
1860 		atomic_dec(&scsi_target(sdev)->target_busy);
1861  not_ready:
1862 	/*
1863 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1864 	 * must return with queue_lock held.
1865 	 *
1866 	 * Decrementing device_busy without checking it is OK, as all such
1867 	 * cases (host limits or settings) should run the queue at some
1868 	 * later time.
1869 	 */
1870 	spin_lock_irq(q->queue_lock);
1871 	blk_requeue_request(q, req);
1872 	atomic_dec(&sdev->device_busy);
1873 out_delay:
1874 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1875 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1876 }
1877 
1878 static inline blk_status_t prep_to_mq(int ret)
1879 {
1880 	switch (ret) {
1881 	case BLKPREP_OK:
1882 		return BLK_STS_OK;
1883 	case BLKPREP_DEFER:
1884 		return BLK_STS_RESOURCE;
1885 	default:
1886 		return BLK_STS_IOERR;
1887 	}
1888 }
1889 
1890 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1891 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1892 {
1893 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1894 		sizeof(struct scatterlist);
1895 }
1896 
1897 static int scsi_mq_prep_fn(struct request *req)
1898 {
1899 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1900 	struct scsi_device *sdev = req->q->queuedata;
1901 	struct Scsi_Host *shost = sdev->host;
1902 	struct scatterlist *sg;
1903 	int ret;
1904 
1905 	scsi_init_command(sdev, cmd);
1906 
1907 	req->special = cmd;
1908 
1909 	cmd->request = req;
1910 
1911 	cmd->tag = req->tag;
1912 	cmd->prot_op = SCSI_PROT_NORMAL;
1913 
1914 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1915 	cmd->sdb.table.sgl = sg;
1916 
1917 	if (scsi_host_get_prot(shost)) {
1918 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1919 
1920 		cmd->prot_sdb->table.sgl =
1921 			(struct scatterlist *)(cmd->prot_sdb + 1);
1922 	}
1923 
1924 	if (blk_bidi_rq(req)) {
1925 		struct request *next_rq = req->next_rq;
1926 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1927 
1928 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1929 		bidi_sdb->table.sgl =
1930 			(struct scatterlist *)(bidi_sdb + 1);
1931 
1932 		next_rq->special = bidi_sdb;
1933 	}
1934 
1935 	blk_mq_start_request(req);
1936 
1937 	ret = scsi_setup_cmnd(sdev, req);
1938 	if (ret != BLK_STS_OK)
1939 		cmd->flags &= ~SCMD_INITIALIZED;
1940 	return ret;
1941 }
1942 
1943 static void scsi_mq_done(struct scsi_cmnd *cmd)
1944 {
1945 	trace_scsi_dispatch_cmd_done(cmd);
1946 	blk_mq_complete_request(cmd->request);
1947 }
1948 
1949 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1950 			 const struct blk_mq_queue_data *bd)
1951 {
1952 	struct request *req = bd->rq;
1953 	struct request_queue *q = req->q;
1954 	struct scsi_device *sdev = q->queuedata;
1955 	struct Scsi_Host *shost = sdev->host;
1956 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1957 	blk_status_t ret;
1958 	int reason;
1959 
1960 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1961 	if (ret != BLK_STS_OK)
1962 		goto out;
1963 
1964 	ret = BLK_STS_RESOURCE;
1965 	if (!get_device(&sdev->sdev_gendev))
1966 		goto out;
1967 
1968 	if (!scsi_dev_queue_ready(q, sdev))
1969 		goto out_put_device;
1970 	if (!scsi_target_queue_ready(shost, sdev))
1971 		goto out_dec_device_busy;
1972 	if (!scsi_host_queue_ready(q, shost, sdev))
1973 		goto out_dec_target_busy;
1974 
1975 	if (!(req->rq_flags & RQF_DONTPREP)) {
1976 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1977 		if (ret != BLK_STS_OK)
1978 			goto out_dec_host_busy;
1979 		req->rq_flags |= RQF_DONTPREP;
1980 	} else {
1981 		blk_mq_start_request(req);
1982 	}
1983 
1984 	if (sdev->simple_tags)
1985 		cmd->flags |= SCMD_TAGGED;
1986 	else
1987 		cmd->flags &= ~SCMD_TAGGED;
1988 
1989 	scsi_init_cmd_errh(cmd);
1990 	cmd->scsi_done = scsi_mq_done;
1991 
1992 	reason = scsi_dispatch_cmd(cmd);
1993 	if (reason) {
1994 		scsi_set_blocked(cmd, reason);
1995 		ret = BLK_STS_RESOURCE;
1996 		goto out_dec_host_busy;
1997 	}
1998 
1999 	return BLK_STS_OK;
2000 
2001 out_dec_host_busy:
2002 	atomic_dec(&shost->host_busy);
2003 out_dec_target_busy:
2004 	if (scsi_target(sdev)->can_queue > 0)
2005 		atomic_dec(&scsi_target(sdev)->target_busy);
2006 out_dec_device_busy:
2007 	atomic_dec(&sdev->device_busy);
2008 out_put_device:
2009 	put_device(&sdev->sdev_gendev);
2010 out:
2011 	switch (ret) {
2012 	case BLK_STS_OK:
2013 		break;
2014 	case BLK_STS_RESOURCE:
2015 		if (atomic_read(&sdev->device_busy) == 0 &&
2016 		    !scsi_device_blocked(sdev))
2017 			blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2018 		break;
2019 	default:
2020 		/*
2021 		 * Make sure to release all allocated ressources when
2022 		 * we hit an error, as we will never see this command
2023 		 * again.
2024 		 */
2025 		if (req->rq_flags & RQF_DONTPREP)
2026 			scsi_mq_uninit_cmd(cmd);
2027 		break;
2028 	}
2029 	return ret;
2030 }
2031 
2032 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2033 		bool reserved)
2034 {
2035 	if (reserved)
2036 		return BLK_EH_RESET_TIMER;
2037 	return scsi_times_out(req);
2038 }
2039 
2040 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2041 				unsigned int hctx_idx, unsigned int numa_node)
2042 {
2043 	struct Scsi_Host *shost = set->driver_data;
2044 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2045 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2046 	struct scatterlist *sg;
2047 
2048 	if (unchecked_isa_dma)
2049 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2050 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2051 						    GFP_KERNEL, numa_node);
2052 	if (!cmd->sense_buffer)
2053 		return -ENOMEM;
2054 	cmd->req.sense = cmd->sense_buffer;
2055 
2056 	if (scsi_host_get_prot(shost)) {
2057 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2058 			shost->hostt->cmd_size;
2059 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2066 				 unsigned int hctx_idx)
2067 {
2068 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2069 
2070 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2071 			       cmd->sense_buffer);
2072 }
2073 
2074 static int scsi_map_queues(struct blk_mq_tag_set *set)
2075 {
2076 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2077 
2078 	if (shost->hostt->map_queues)
2079 		return shost->hostt->map_queues(shost);
2080 	return blk_mq_map_queues(set);
2081 }
2082 
2083 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2084 {
2085 	struct device *host_dev;
2086 	u64 bounce_limit = 0xffffffff;
2087 
2088 	if (shost->unchecked_isa_dma)
2089 		return BLK_BOUNCE_ISA;
2090 	/*
2091 	 * Platforms with virtual-DMA translation
2092 	 * hardware have no practical limit.
2093 	 */
2094 	if (!PCI_DMA_BUS_IS_PHYS)
2095 		return BLK_BOUNCE_ANY;
2096 
2097 	host_dev = scsi_get_device(shost);
2098 	if (host_dev && host_dev->dma_mask)
2099 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2100 
2101 	return bounce_limit;
2102 }
2103 
2104 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2105 {
2106 	struct device *dev = shost->dma_dev;
2107 
2108 	queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2109 
2110 	/*
2111 	 * this limit is imposed by hardware restrictions
2112 	 */
2113 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2114 					SG_MAX_SEGMENTS));
2115 
2116 	if (scsi_host_prot_dma(shost)) {
2117 		shost->sg_prot_tablesize =
2118 			min_not_zero(shost->sg_prot_tablesize,
2119 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2120 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2121 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2122 	}
2123 
2124 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2125 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2126 	blk_queue_segment_boundary(q, shost->dma_boundary);
2127 	dma_set_seg_boundary(dev, shost->dma_boundary);
2128 
2129 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2130 
2131 	if (!shost->use_clustering)
2132 		q->limits.cluster = 0;
2133 
2134 	/*
2135 	 * set a reasonable default alignment on word boundaries: the
2136 	 * host and device may alter it using
2137 	 * blk_queue_update_dma_alignment() later.
2138 	 */
2139 	blk_queue_dma_alignment(q, 0x03);
2140 }
2141 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2142 
2143 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2144 			    gfp_t gfp)
2145 {
2146 	struct Scsi_Host *shost = q->rq_alloc_data;
2147 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2148 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2149 
2150 	memset(cmd, 0, sizeof(*cmd));
2151 
2152 	if (unchecked_isa_dma)
2153 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2154 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2155 						    NUMA_NO_NODE);
2156 	if (!cmd->sense_buffer)
2157 		goto fail;
2158 	cmd->req.sense = cmd->sense_buffer;
2159 
2160 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2161 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2162 		if (!cmd->prot_sdb)
2163 			goto fail_free_sense;
2164 	}
2165 
2166 	return 0;
2167 
2168 fail_free_sense:
2169 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2170 fail:
2171 	return -ENOMEM;
2172 }
2173 
2174 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2175 {
2176 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2177 
2178 	if (cmd->prot_sdb)
2179 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2180 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2181 			       cmd->sense_buffer);
2182 }
2183 
2184 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2185 {
2186 	struct Scsi_Host *shost = sdev->host;
2187 	struct request_queue *q;
2188 
2189 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2190 	if (!q)
2191 		return NULL;
2192 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2193 	q->rq_alloc_data = shost;
2194 	q->request_fn = scsi_request_fn;
2195 	q->init_rq_fn = scsi_old_init_rq;
2196 	q->exit_rq_fn = scsi_old_exit_rq;
2197 	q->initialize_rq_fn = scsi_initialize_rq;
2198 
2199 	if (blk_init_allocated_queue(q) < 0) {
2200 		blk_cleanup_queue(q);
2201 		return NULL;
2202 	}
2203 
2204 	__scsi_init_queue(shost, q);
2205 	blk_queue_prep_rq(q, scsi_prep_fn);
2206 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2207 	blk_queue_softirq_done(q, scsi_softirq_done);
2208 	blk_queue_rq_timed_out(q, scsi_times_out);
2209 	blk_queue_lld_busy(q, scsi_lld_busy);
2210 	return q;
2211 }
2212 
2213 static const struct blk_mq_ops scsi_mq_ops = {
2214 	.queue_rq	= scsi_queue_rq,
2215 	.complete	= scsi_softirq_done,
2216 	.timeout	= scsi_timeout,
2217 #ifdef CONFIG_BLK_DEBUG_FS
2218 	.show_rq	= scsi_show_rq,
2219 #endif
2220 	.init_request	= scsi_mq_init_request,
2221 	.exit_request	= scsi_mq_exit_request,
2222 	.initialize_rq_fn = scsi_initialize_rq,
2223 	.map_queues	= scsi_map_queues,
2224 };
2225 
2226 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2227 {
2228 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2229 	if (IS_ERR(sdev->request_queue))
2230 		return NULL;
2231 
2232 	sdev->request_queue->queuedata = sdev;
2233 	__scsi_init_queue(sdev->host, sdev->request_queue);
2234 	return sdev->request_queue;
2235 }
2236 
2237 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2238 {
2239 	unsigned int cmd_size, sgl_size;
2240 
2241 	sgl_size = scsi_mq_sgl_size(shost);
2242 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2243 	if (scsi_host_get_prot(shost))
2244 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2245 
2246 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2247 	shost->tag_set.ops = &scsi_mq_ops;
2248 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2249 	shost->tag_set.queue_depth = shost->can_queue;
2250 	shost->tag_set.cmd_size = cmd_size;
2251 	shost->tag_set.numa_node = NUMA_NO_NODE;
2252 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2253 	shost->tag_set.flags |=
2254 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2255 	shost->tag_set.driver_data = shost;
2256 
2257 	return blk_mq_alloc_tag_set(&shost->tag_set);
2258 }
2259 
2260 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2261 {
2262 	blk_mq_free_tag_set(&shost->tag_set);
2263 }
2264 
2265 /**
2266  * scsi_device_from_queue - return sdev associated with a request_queue
2267  * @q: The request queue to return the sdev from
2268  *
2269  * Return the sdev associated with a request queue or NULL if the
2270  * request_queue does not reference a SCSI device.
2271  */
2272 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2273 {
2274 	struct scsi_device *sdev = NULL;
2275 
2276 	if (q->mq_ops) {
2277 		if (q->mq_ops == &scsi_mq_ops)
2278 			sdev = q->queuedata;
2279 	} else if (q->request_fn == scsi_request_fn)
2280 		sdev = q->queuedata;
2281 	if (!sdev || !get_device(&sdev->sdev_gendev))
2282 		sdev = NULL;
2283 
2284 	return sdev;
2285 }
2286 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2287 
2288 /*
2289  * Function:    scsi_block_requests()
2290  *
2291  * Purpose:     Utility function used by low-level drivers to prevent further
2292  *		commands from being queued to the device.
2293  *
2294  * Arguments:   shost       - Host in question
2295  *
2296  * Returns:     Nothing
2297  *
2298  * Lock status: No locks are assumed held.
2299  *
2300  * Notes:       There is no timer nor any other means by which the requests
2301  *		get unblocked other than the low-level driver calling
2302  *		scsi_unblock_requests().
2303  */
2304 void scsi_block_requests(struct Scsi_Host *shost)
2305 {
2306 	shost->host_self_blocked = 1;
2307 }
2308 EXPORT_SYMBOL(scsi_block_requests);
2309 
2310 /*
2311  * Function:    scsi_unblock_requests()
2312  *
2313  * Purpose:     Utility function used by low-level drivers to allow further
2314  *		commands from being queued to the device.
2315  *
2316  * Arguments:   shost       - Host in question
2317  *
2318  * Returns:     Nothing
2319  *
2320  * Lock status: No locks are assumed held.
2321  *
2322  * Notes:       There is no timer nor any other means by which the requests
2323  *		get unblocked other than the low-level driver calling
2324  *		scsi_unblock_requests().
2325  *
2326  *		This is done as an API function so that changes to the
2327  *		internals of the scsi mid-layer won't require wholesale
2328  *		changes to drivers that use this feature.
2329  */
2330 void scsi_unblock_requests(struct Scsi_Host *shost)
2331 {
2332 	shost->host_self_blocked = 0;
2333 	scsi_run_host_queues(shost);
2334 }
2335 EXPORT_SYMBOL(scsi_unblock_requests);
2336 
2337 int __init scsi_init_queue(void)
2338 {
2339 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2340 					   sizeof(struct scsi_data_buffer),
2341 					   0, 0, NULL);
2342 	if (!scsi_sdb_cache) {
2343 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2344 		return -ENOMEM;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 void scsi_exit_queue(void)
2351 {
2352 	kmem_cache_destroy(scsi_sense_cache);
2353 	kmem_cache_destroy(scsi_sense_isadma_cache);
2354 	kmem_cache_destroy(scsi_sdb_cache);
2355 }
2356 
2357 /**
2358  *	scsi_mode_select - issue a mode select
2359  *	@sdev:	SCSI device to be queried
2360  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2361  *	@sp:	Save page bit (0 == don't save, 1 == save)
2362  *	@modepage: mode page being requested
2363  *	@buffer: request buffer (may not be smaller than eight bytes)
2364  *	@len:	length of request buffer.
2365  *	@timeout: command timeout
2366  *	@retries: number of retries before failing
2367  *	@data: returns a structure abstracting the mode header data
2368  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2369  *		must be SCSI_SENSE_BUFFERSIZE big.
2370  *
2371  *	Returns zero if successful; negative error number or scsi
2372  *	status on error
2373  *
2374  */
2375 int
2376 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2377 		 unsigned char *buffer, int len, int timeout, int retries,
2378 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2379 {
2380 	unsigned char cmd[10];
2381 	unsigned char *real_buffer;
2382 	int ret;
2383 
2384 	memset(cmd, 0, sizeof(cmd));
2385 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2386 
2387 	if (sdev->use_10_for_ms) {
2388 		if (len > 65535)
2389 			return -EINVAL;
2390 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2391 		if (!real_buffer)
2392 			return -ENOMEM;
2393 		memcpy(real_buffer + 8, buffer, len);
2394 		len += 8;
2395 		real_buffer[0] = 0;
2396 		real_buffer[1] = 0;
2397 		real_buffer[2] = data->medium_type;
2398 		real_buffer[3] = data->device_specific;
2399 		real_buffer[4] = data->longlba ? 0x01 : 0;
2400 		real_buffer[5] = 0;
2401 		real_buffer[6] = data->block_descriptor_length >> 8;
2402 		real_buffer[7] = data->block_descriptor_length;
2403 
2404 		cmd[0] = MODE_SELECT_10;
2405 		cmd[7] = len >> 8;
2406 		cmd[8] = len;
2407 	} else {
2408 		if (len > 255 || data->block_descriptor_length > 255 ||
2409 		    data->longlba)
2410 			return -EINVAL;
2411 
2412 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2413 		if (!real_buffer)
2414 			return -ENOMEM;
2415 		memcpy(real_buffer + 4, buffer, len);
2416 		len += 4;
2417 		real_buffer[0] = 0;
2418 		real_buffer[1] = data->medium_type;
2419 		real_buffer[2] = data->device_specific;
2420 		real_buffer[3] = data->block_descriptor_length;
2421 
2422 
2423 		cmd[0] = MODE_SELECT;
2424 		cmd[4] = len;
2425 	}
2426 
2427 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2428 			       sshdr, timeout, retries, NULL);
2429 	kfree(real_buffer);
2430 	return ret;
2431 }
2432 EXPORT_SYMBOL_GPL(scsi_mode_select);
2433 
2434 /**
2435  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2436  *	@sdev:	SCSI device to be queried
2437  *	@dbd:	set if mode sense will allow block descriptors to be returned
2438  *	@modepage: mode page being requested
2439  *	@buffer: request buffer (may not be smaller than eight bytes)
2440  *	@len:	length of request buffer.
2441  *	@timeout: command timeout
2442  *	@retries: number of retries before failing
2443  *	@data: returns a structure abstracting the mode header data
2444  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2445  *		must be SCSI_SENSE_BUFFERSIZE big.
2446  *
2447  *	Returns zero if unsuccessful, or the header offset (either 4
2448  *	or 8 depending on whether a six or ten byte command was
2449  *	issued) if successful.
2450  */
2451 int
2452 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2453 		  unsigned char *buffer, int len, int timeout, int retries,
2454 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2455 {
2456 	unsigned char cmd[12];
2457 	int use_10_for_ms;
2458 	int header_length;
2459 	int result, retry_count = retries;
2460 	struct scsi_sense_hdr my_sshdr;
2461 
2462 	memset(data, 0, sizeof(*data));
2463 	memset(&cmd[0], 0, 12);
2464 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2465 	cmd[2] = modepage;
2466 
2467 	/* caller might not be interested in sense, but we need it */
2468 	if (!sshdr)
2469 		sshdr = &my_sshdr;
2470 
2471  retry:
2472 	use_10_for_ms = sdev->use_10_for_ms;
2473 
2474 	if (use_10_for_ms) {
2475 		if (len < 8)
2476 			len = 8;
2477 
2478 		cmd[0] = MODE_SENSE_10;
2479 		cmd[8] = len;
2480 		header_length = 8;
2481 	} else {
2482 		if (len < 4)
2483 			len = 4;
2484 
2485 		cmd[0] = MODE_SENSE;
2486 		cmd[4] = len;
2487 		header_length = 4;
2488 	}
2489 
2490 	memset(buffer, 0, len);
2491 
2492 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2493 				  sshdr, timeout, retries, NULL);
2494 
2495 	/* This code looks awful: what it's doing is making sure an
2496 	 * ILLEGAL REQUEST sense return identifies the actual command
2497 	 * byte as the problem.  MODE_SENSE commands can return
2498 	 * ILLEGAL REQUEST if the code page isn't supported */
2499 
2500 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2501 	    (driver_byte(result) & DRIVER_SENSE)) {
2502 		if (scsi_sense_valid(sshdr)) {
2503 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2504 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2505 				/*
2506 				 * Invalid command operation code
2507 				 */
2508 				sdev->use_10_for_ms = 0;
2509 				goto retry;
2510 			}
2511 		}
2512 	}
2513 
2514 	if(scsi_status_is_good(result)) {
2515 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2516 			     (modepage == 6 || modepage == 8))) {
2517 			/* Initio breakage? */
2518 			header_length = 0;
2519 			data->length = 13;
2520 			data->medium_type = 0;
2521 			data->device_specific = 0;
2522 			data->longlba = 0;
2523 			data->block_descriptor_length = 0;
2524 		} else if(use_10_for_ms) {
2525 			data->length = buffer[0]*256 + buffer[1] + 2;
2526 			data->medium_type = buffer[2];
2527 			data->device_specific = buffer[3];
2528 			data->longlba = buffer[4] & 0x01;
2529 			data->block_descriptor_length = buffer[6]*256
2530 				+ buffer[7];
2531 		} else {
2532 			data->length = buffer[0] + 1;
2533 			data->medium_type = buffer[1];
2534 			data->device_specific = buffer[2];
2535 			data->block_descriptor_length = buffer[3];
2536 		}
2537 		data->header_length = header_length;
2538 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2539 		   scsi_sense_valid(sshdr) &&
2540 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2541 		retry_count--;
2542 		goto retry;
2543 	}
2544 
2545 	return result;
2546 }
2547 EXPORT_SYMBOL(scsi_mode_sense);
2548 
2549 /**
2550  *	scsi_test_unit_ready - test if unit is ready
2551  *	@sdev:	scsi device to change the state of.
2552  *	@timeout: command timeout
2553  *	@retries: number of retries before failing
2554  *	@sshdr: outpout pointer for decoded sense information.
2555  *
2556  *	Returns zero if unsuccessful or an error if TUR failed.  For
2557  *	removable media, UNIT_ATTENTION sets ->changed flag.
2558  **/
2559 int
2560 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2561 		     struct scsi_sense_hdr *sshdr)
2562 {
2563 	char cmd[] = {
2564 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2565 	};
2566 	int result;
2567 
2568 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2569 	do {
2570 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2571 					  timeout, retries, NULL);
2572 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2573 		    sshdr->sense_key == UNIT_ATTENTION)
2574 			sdev->changed = 1;
2575 	} while (scsi_sense_valid(sshdr) &&
2576 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2577 
2578 	return result;
2579 }
2580 EXPORT_SYMBOL(scsi_test_unit_ready);
2581 
2582 /**
2583  *	scsi_device_set_state - Take the given device through the device state model.
2584  *	@sdev:	scsi device to change the state of.
2585  *	@state:	state to change to.
2586  *
2587  *	Returns zero if successful or an error if the requested
2588  *	transition is illegal.
2589  */
2590 int
2591 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2592 {
2593 	enum scsi_device_state oldstate = sdev->sdev_state;
2594 
2595 	if (state == oldstate)
2596 		return 0;
2597 
2598 	switch (state) {
2599 	case SDEV_CREATED:
2600 		switch (oldstate) {
2601 		case SDEV_CREATED_BLOCK:
2602 			break;
2603 		default:
2604 			goto illegal;
2605 		}
2606 		break;
2607 
2608 	case SDEV_RUNNING:
2609 		switch (oldstate) {
2610 		case SDEV_CREATED:
2611 		case SDEV_OFFLINE:
2612 		case SDEV_TRANSPORT_OFFLINE:
2613 		case SDEV_QUIESCE:
2614 		case SDEV_BLOCK:
2615 			break;
2616 		default:
2617 			goto illegal;
2618 		}
2619 		break;
2620 
2621 	case SDEV_QUIESCE:
2622 		switch (oldstate) {
2623 		case SDEV_RUNNING:
2624 		case SDEV_OFFLINE:
2625 		case SDEV_TRANSPORT_OFFLINE:
2626 			break;
2627 		default:
2628 			goto illegal;
2629 		}
2630 		break;
2631 
2632 	case SDEV_OFFLINE:
2633 	case SDEV_TRANSPORT_OFFLINE:
2634 		switch (oldstate) {
2635 		case SDEV_CREATED:
2636 		case SDEV_RUNNING:
2637 		case SDEV_QUIESCE:
2638 		case SDEV_BLOCK:
2639 			break;
2640 		default:
2641 			goto illegal;
2642 		}
2643 		break;
2644 
2645 	case SDEV_BLOCK:
2646 		switch (oldstate) {
2647 		case SDEV_RUNNING:
2648 		case SDEV_CREATED_BLOCK:
2649 			break;
2650 		default:
2651 			goto illegal;
2652 		}
2653 		break;
2654 
2655 	case SDEV_CREATED_BLOCK:
2656 		switch (oldstate) {
2657 		case SDEV_CREATED:
2658 			break;
2659 		default:
2660 			goto illegal;
2661 		}
2662 		break;
2663 
2664 	case SDEV_CANCEL:
2665 		switch (oldstate) {
2666 		case SDEV_CREATED:
2667 		case SDEV_RUNNING:
2668 		case SDEV_QUIESCE:
2669 		case SDEV_OFFLINE:
2670 		case SDEV_TRANSPORT_OFFLINE:
2671 			break;
2672 		default:
2673 			goto illegal;
2674 		}
2675 		break;
2676 
2677 	case SDEV_DEL:
2678 		switch (oldstate) {
2679 		case SDEV_CREATED:
2680 		case SDEV_RUNNING:
2681 		case SDEV_OFFLINE:
2682 		case SDEV_TRANSPORT_OFFLINE:
2683 		case SDEV_CANCEL:
2684 		case SDEV_BLOCK:
2685 		case SDEV_CREATED_BLOCK:
2686 			break;
2687 		default:
2688 			goto illegal;
2689 		}
2690 		break;
2691 
2692 	}
2693 	sdev->sdev_state = state;
2694 	sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
2695 	return 0;
2696 
2697  illegal:
2698 	SCSI_LOG_ERROR_RECOVERY(1,
2699 				sdev_printk(KERN_ERR, sdev,
2700 					    "Illegal state transition %s->%s",
2701 					    scsi_device_state_name(oldstate),
2702 					    scsi_device_state_name(state))
2703 				);
2704 	return -EINVAL;
2705 }
2706 EXPORT_SYMBOL(scsi_device_set_state);
2707 
2708 /**
2709  * 	sdev_evt_emit - emit a single SCSI device uevent
2710  *	@sdev: associated SCSI device
2711  *	@evt: event to emit
2712  *
2713  *	Send a single uevent (scsi_event) to the associated scsi_device.
2714  */
2715 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2716 {
2717 	int idx = 0;
2718 	char *envp[3];
2719 
2720 	switch (evt->evt_type) {
2721 	case SDEV_EVT_MEDIA_CHANGE:
2722 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2723 		break;
2724 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2725 		scsi_rescan_device(&sdev->sdev_gendev);
2726 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2727 		break;
2728 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2729 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2730 		break;
2731 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2732 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2733 		break;
2734 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2735 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2736 		break;
2737 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2738 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2739 		break;
2740 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2741 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2742 		break;
2743 	default:
2744 		/* do nothing */
2745 		break;
2746 	}
2747 
2748 	envp[idx++] = NULL;
2749 
2750 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2751 }
2752 
2753 /**
2754  * 	sdev_evt_thread - send a uevent for each scsi event
2755  *	@work: work struct for scsi_device
2756  *
2757  *	Dispatch queued events to their associated scsi_device kobjects
2758  *	as uevents.
2759  */
2760 void scsi_evt_thread(struct work_struct *work)
2761 {
2762 	struct scsi_device *sdev;
2763 	enum scsi_device_event evt_type;
2764 	LIST_HEAD(event_list);
2765 
2766 	sdev = container_of(work, struct scsi_device, event_work);
2767 
2768 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2769 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2770 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2771 
2772 	while (1) {
2773 		struct scsi_event *evt;
2774 		struct list_head *this, *tmp;
2775 		unsigned long flags;
2776 
2777 		spin_lock_irqsave(&sdev->list_lock, flags);
2778 		list_splice_init(&sdev->event_list, &event_list);
2779 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2780 
2781 		if (list_empty(&event_list))
2782 			break;
2783 
2784 		list_for_each_safe(this, tmp, &event_list) {
2785 			evt = list_entry(this, struct scsi_event, node);
2786 			list_del(&evt->node);
2787 			scsi_evt_emit(sdev, evt);
2788 			kfree(evt);
2789 		}
2790 	}
2791 }
2792 
2793 /**
2794  * 	sdev_evt_send - send asserted event to uevent thread
2795  *	@sdev: scsi_device event occurred on
2796  *	@evt: event to send
2797  *
2798  *	Assert scsi device event asynchronously.
2799  */
2800 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2801 {
2802 	unsigned long flags;
2803 
2804 #if 0
2805 	/* FIXME: currently this check eliminates all media change events
2806 	 * for polled devices.  Need to update to discriminate between AN
2807 	 * and polled events */
2808 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2809 		kfree(evt);
2810 		return;
2811 	}
2812 #endif
2813 
2814 	spin_lock_irqsave(&sdev->list_lock, flags);
2815 	list_add_tail(&evt->node, &sdev->event_list);
2816 	schedule_work(&sdev->event_work);
2817 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2818 }
2819 EXPORT_SYMBOL_GPL(sdev_evt_send);
2820 
2821 /**
2822  * 	sdev_evt_alloc - allocate a new scsi event
2823  *	@evt_type: type of event to allocate
2824  *	@gfpflags: GFP flags for allocation
2825  *
2826  *	Allocates and returns a new scsi_event.
2827  */
2828 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2829 				  gfp_t gfpflags)
2830 {
2831 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2832 	if (!evt)
2833 		return NULL;
2834 
2835 	evt->evt_type = evt_type;
2836 	INIT_LIST_HEAD(&evt->node);
2837 
2838 	/* evt_type-specific initialization, if any */
2839 	switch (evt_type) {
2840 	case SDEV_EVT_MEDIA_CHANGE:
2841 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2842 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2843 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2844 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2845 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2846 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2847 	default:
2848 		/* do nothing */
2849 		break;
2850 	}
2851 
2852 	return evt;
2853 }
2854 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2855 
2856 /**
2857  * 	sdev_evt_send_simple - send asserted event to uevent thread
2858  *	@sdev: scsi_device event occurred on
2859  *	@evt_type: type of event to send
2860  *	@gfpflags: GFP flags for allocation
2861  *
2862  *	Assert scsi device event asynchronously, given an event type.
2863  */
2864 void sdev_evt_send_simple(struct scsi_device *sdev,
2865 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2866 {
2867 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2868 	if (!evt) {
2869 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2870 			    evt_type);
2871 		return;
2872 	}
2873 
2874 	sdev_evt_send(sdev, evt);
2875 }
2876 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2877 
2878 /**
2879  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2880  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2881  */
2882 static int scsi_request_fn_active(struct scsi_device *sdev)
2883 {
2884 	struct request_queue *q = sdev->request_queue;
2885 	int request_fn_active;
2886 
2887 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2888 
2889 	spin_lock_irq(q->queue_lock);
2890 	request_fn_active = q->request_fn_active;
2891 	spin_unlock_irq(q->queue_lock);
2892 
2893 	return request_fn_active;
2894 }
2895 
2896 /**
2897  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2898  * @sdev: SCSI device pointer.
2899  *
2900  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2901  * invoked from scsi_request_fn() have finished.
2902  */
2903 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2904 {
2905 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2906 
2907 	while (scsi_request_fn_active(sdev))
2908 		msleep(20);
2909 }
2910 
2911 /**
2912  *	scsi_device_quiesce - Block user issued commands.
2913  *	@sdev:	scsi device to quiesce.
2914  *
2915  *	This works by trying to transition to the SDEV_QUIESCE state
2916  *	(which must be a legal transition).  When the device is in this
2917  *	state, only special requests will be accepted, all others will
2918  *	be deferred.  Since special requests may also be requeued requests,
2919  *	a successful return doesn't guarantee the device will be
2920  *	totally quiescent.
2921  *
2922  *	Must be called with user context, may sleep.
2923  *
2924  *	Returns zero if unsuccessful or an error if not.
2925  */
2926 int
2927 scsi_device_quiesce(struct scsi_device *sdev)
2928 {
2929 	int err;
2930 
2931 	mutex_lock(&sdev->state_mutex);
2932 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2933 	mutex_unlock(&sdev->state_mutex);
2934 
2935 	if (err)
2936 		return err;
2937 
2938 	scsi_run_queue(sdev->request_queue);
2939 	while (atomic_read(&sdev->device_busy)) {
2940 		msleep_interruptible(200);
2941 		scsi_run_queue(sdev->request_queue);
2942 	}
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL(scsi_device_quiesce);
2946 
2947 /**
2948  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2949  *	@sdev:	scsi device to resume.
2950  *
2951  *	Moves the device from quiesced back to running and restarts the
2952  *	queues.
2953  *
2954  *	Must be called with user context, may sleep.
2955  */
2956 void scsi_device_resume(struct scsi_device *sdev)
2957 {
2958 	/* check if the device state was mutated prior to resume, and if
2959 	 * so assume the state is being managed elsewhere (for example
2960 	 * device deleted during suspend)
2961 	 */
2962 	mutex_lock(&sdev->state_mutex);
2963 	if (sdev->sdev_state == SDEV_QUIESCE &&
2964 	    scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2965 		scsi_run_queue(sdev->request_queue);
2966 	mutex_unlock(&sdev->state_mutex);
2967 }
2968 EXPORT_SYMBOL(scsi_device_resume);
2969 
2970 static void
2971 device_quiesce_fn(struct scsi_device *sdev, void *data)
2972 {
2973 	scsi_device_quiesce(sdev);
2974 }
2975 
2976 void
2977 scsi_target_quiesce(struct scsi_target *starget)
2978 {
2979 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2980 }
2981 EXPORT_SYMBOL(scsi_target_quiesce);
2982 
2983 static void
2984 device_resume_fn(struct scsi_device *sdev, void *data)
2985 {
2986 	scsi_device_resume(sdev);
2987 }
2988 
2989 void
2990 scsi_target_resume(struct scsi_target *starget)
2991 {
2992 	starget_for_each_device(starget, NULL, device_resume_fn);
2993 }
2994 EXPORT_SYMBOL(scsi_target_resume);
2995 
2996 /**
2997  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2998  * @sdev: device to block
2999  *
3000  * Pause SCSI command processing on the specified device. Does not sleep.
3001  *
3002  * Returns zero if successful or a negative error code upon failure.
3003  *
3004  * Notes:
3005  * This routine transitions the device to the SDEV_BLOCK state (which must be
3006  * a legal transition). When the device is in this state, command processing
3007  * is paused until the device leaves the SDEV_BLOCK state. See also
3008  * scsi_internal_device_unblock_nowait().
3009  */
3010 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3011 {
3012 	struct request_queue *q = sdev->request_queue;
3013 	unsigned long flags;
3014 	int err = 0;
3015 
3016 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3017 	if (err) {
3018 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3019 
3020 		if (err)
3021 			return err;
3022 	}
3023 
3024 	/*
3025 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3026 	 * block layer from calling the midlayer with this device's
3027 	 * request queue.
3028 	 */
3029 	if (q->mq_ops) {
3030 		blk_mq_quiesce_queue_nowait(q);
3031 	} else {
3032 		spin_lock_irqsave(q->queue_lock, flags);
3033 		blk_stop_queue(q);
3034 		spin_unlock_irqrestore(q->queue_lock, flags);
3035 	}
3036 
3037 	return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3040 
3041 /**
3042  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3043  * @sdev: device to block
3044  *
3045  * Pause SCSI command processing on the specified device and wait until all
3046  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3047  *
3048  * Returns zero if successful or a negative error code upon failure.
3049  *
3050  * Note:
3051  * This routine transitions the device to the SDEV_BLOCK state (which must be
3052  * a legal transition). When the device is in this state, command processing
3053  * is paused until the device leaves the SDEV_BLOCK state. See also
3054  * scsi_internal_device_unblock().
3055  *
3056  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3057  * scsi_internal_device_block() has blocked a SCSI device and also
3058  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3059  */
3060 static int scsi_internal_device_block(struct scsi_device *sdev)
3061 {
3062 	struct request_queue *q = sdev->request_queue;
3063 	int err;
3064 
3065 	mutex_lock(&sdev->state_mutex);
3066 	err = scsi_internal_device_block_nowait(sdev);
3067 	if (err == 0) {
3068 		if (q->mq_ops)
3069 			blk_mq_quiesce_queue(q);
3070 		else
3071 			scsi_wait_for_queuecommand(sdev);
3072 	}
3073 	mutex_unlock(&sdev->state_mutex);
3074 
3075 	return err;
3076 }
3077 
3078 void scsi_start_queue(struct scsi_device *sdev)
3079 {
3080 	struct request_queue *q = sdev->request_queue;
3081 	unsigned long flags;
3082 
3083 	if (q->mq_ops) {
3084 		blk_mq_unquiesce_queue(q);
3085 	} else {
3086 		spin_lock_irqsave(q->queue_lock, flags);
3087 		blk_start_queue(q);
3088 		spin_unlock_irqrestore(q->queue_lock, flags);
3089 	}
3090 }
3091 
3092 /**
3093  * scsi_internal_device_unblock_nowait - resume a device after a block request
3094  * @sdev:	device to resume
3095  * @new_state:	state to set the device to after unblocking
3096  *
3097  * Restart the device queue for a previously suspended SCSI device. Does not
3098  * sleep.
3099  *
3100  * Returns zero if successful or a negative error code upon failure.
3101  *
3102  * Notes:
3103  * This routine transitions the device to the SDEV_RUNNING state or to one of
3104  * the offline states (which must be a legal transition) allowing the midlayer
3105  * to goose the queue for this device.
3106  */
3107 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3108 					enum scsi_device_state new_state)
3109 {
3110 	/*
3111 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3112 	 * offlined states and goose the device queue if successful.
3113 	 */
3114 	switch (sdev->sdev_state) {
3115 	case SDEV_BLOCK:
3116 	case SDEV_TRANSPORT_OFFLINE:
3117 		sdev->sdev_state = new_state;
3118 		sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3119 		break;
3120 	case SDEV_CREATED_BLOCK:
3121 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3122 		    new_state == SDEV_OFFLINE)
3123 			sdev->sdev_state = new_state;
3124 		else
3125 			sdev->sdev_state = SDEV_CREATED;
3126 		sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3127 		break;
3128 	case SDEV_CANCEL:
3129 	case SDEV_OFFLINE:
3130 		break;
3131 	default:
3132 		return -EINVAL;
3133 	}
3134 	scsi_start_queue(sdev);
3135 
3136 	return 0;
3137 }
3138 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3139 
3140 /**
3141  * scsi_internal_device_unblock - resume a device after a block request
3142  * @sdev:	device to resume
3143  * @new_state:	state to set the device to after unblocking
3144  *
3145  * Restart the device queue for a previously suspended SCSI device. May sleep.
3146  *
3147  * Returns zero if successful or a negative error code upon failure.
3148  *
3149  * Notes:
3150  * This routine transitions the device to the SDEV_RUNNING state or to one of
3151  * the offline states (which must be a legal transition) allowing the midlayer
3152  * to goose the queue for this device.
3153  */
3154 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3155 					enum scsi_device_state new_state)
3156 {
3157 	int ret;
3158 
3159 	mutex_lock(&sdev->state_mutex);
3160 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3161 	mutex_unlock(&sdev->state_mutex);
3162 
3163 	return ret;
3164 }
3165 
3166 static void
3167 device_block(struct scsi_device *sdev, void *data)
3168 {
3169 	scsi_internal_device_block(sdev);
3170 }
3171 
3172 static int
3173 target_block(struct device *dev, void *data)
3174 {
3175 	if (scsi_is_target_device(dev))
3176 		starget_for_each_device(to_scsi_target(dev), NULL,
3177 					device_block);
3178 	return 0;
3179 }
3180 
3181 void
3182 scsi_target_block(struct device *dev)
3183 {
3184 	if (scsi_is_target_device(dev))
3185 		starget_for_each_device(to_scsi_target(dev), NULL,
3186 					device_block);
3187 	else
3188 		device_for_each_child(dev, NULL, target_block);
3189 }
3190 EXPORT_SYMBOL_GPL(scsi_target_block);
3191 
3192 static void
3193 device_unblock(struct scsi_device *sdev, void *data)
3194 {
3195 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3196 }
3197 
3198 static int
3199 target_unblock(struct device *dev, void *data)
3200 {
3201 	if (scsi_is_target_device(dev))
3202 		starget_for_each_device(to_scsi_target(dev), data,
3203 					device_unblock);
3204 	return 0;
3205 }
3206 
3207 void
3208 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3209 {
3210 	if (scsi_is_target_device(dev))
3211 		starget_for_each_device(to_scsi_target(dev), &new_state,
3212 					device_unblock);
3213 	else
3214 		device_for_each_child(dev, &new_state, target_unblock);
3215 }
3216 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3217 
3218 /**
3219  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3220  * @sgl:	scatter-gather list
3221  * @sg_count:	number of segments in sg
3222  * @offset:	offset in bytes into sg, on return offset into the mapped area
3223  * @len:	bytes to map, on return number of bytes mapped
3224  *
3225  * Returns virtual address of the start of the mapped page
3226  */
3227 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3228 			  size_t *offset, size_t *len)
3229 {
3230 	int i;
3231 	size_t sg_len = 0, len_complete = 0;
3232 	struct scatterlist *sg;
3233 	struct page *page;
3234 
3235 	WARN_ON(!irqs_disabled());
3236 
3237 	for_each_sg(sgl, sg, sg_count, i) {
3238 		len_complete = sg_len; /* Complete sg-entries */
3239 		sg_len += sg->length;
3240 		if (sg_len > *offset)
3241 			break;
3242 	}
3243 
3244 	if (unlikely(i == sg_count)) {
3245 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3246 			"elements %d\n",
3247 		       __func__, sg_len, *offset, sg_count);
3248 		WARN_ON(1);
3249 		return NULL;
3250 	}
3251 
3252 	/* Offset starting from the beginning of first page in this sg-entry */
3253 	*offset = *offset - len_complete + sg->offset;
3254 
3255 	/* Assumption: contiguous pages can be accessed as "page + i" */
3256 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3257 	*offset &= ~PAGE_MASK;
3258 
3259 	/* Bytes in this sg-entry from *offset to the end of the page */
3260 	sg_len = PAGE_SIZE - *offset;
3261 	if (*len > sg_len)
3262 		*len = sg_len;
3263 
3264 	return kmap_atomic(page);
3265 }
3266 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3267 
3268 /**
3269  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3270  * @virt:	virtual address to be unmapped
3271  */
3272 void scsi_kunmap_atomic_sg(void *virt)
3273 {
3274 	kunmap_atomic(virt);
3275 }
3276 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3277 
3278 void sdev_disable_disk_events(struct scsi_device *sdev)
3279 {
3280 	atomic_inc(&sdev->disk_events_disable_depth);
3281 }
3282 EXPORT_SYMBOL(sdev_disable_disk_events);
3283 
3284 void sdev_enable_disk_events(struct scsi_device *sdev)
3285 {
3286 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3287 		return;
3288 	atomic_dec(&sdev->disk_events_disable_depth);
3289 }
3290 EXPORT_SYMBOL(sdev_enable_disk_events);
3291 
3292 /**
3293  * scsi_vpd_lun_id - return a unique device identification
3294  * @sdev: SCSI device
3295  * @id:   buffer for the identification
3296  * @id_len:  length of the buffer
3297  *
3298  * Copies a unique device identification into @id based
3299  * on the information in the VPD page 0x83 of the device.
3300  * The string will be formatted as a SCSI name string.
3301  *
3302  * Returns the length of the identification or error on failure.
3303  * If the identifier is longer than the supplied buffer the actual
3304  * identifier length is returned and the buffer is not zero-padded.
3305  */
3306 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3307 {
3308 	u8 cur_id_type = 0xff;
3309 	u8 cur_id_size = 0;
3310 	const unsigned char *d, *cur_id_str;
3311 	const struct scsi_vpd *vpd_pg83;
3312 	int id_size = -EINVAL;
3313 
3314 	rcu_read_lock();
3315 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3316 	if (!vpd_pg83) {
3317 		rcu_read_unlock();
3318 		return -ENXIO;
3319 	}
3320 
3321 	/*
3322 	 * Look for the correct descriptor.
3323 	 * Order of preference for lun descriptor:
3324 	 * - SCSI name string
3325 	 * - NAA IEEE Registered Extended
3326 	 * - EUI-64 based 16-byte
3327 	 * - EUI-64 based 12-byte
3328 	 * - NAA IEEE Registered
3329 	 * - NAA IEEE Extended
3330 	 * - T10 Vendor ID
3331 	 * as longer descriptors reduce the likelyhood
3332 	 * of identification clashes.
3333 	 */
3334 
3335 	/* The id string must be at least 20 bytes + terminating NULL byte */
3336 	if (id_len < 21) {
3337 		rcu_read_unlock();
3338 		return -EINVAL;
3339 	}
3340 
3341 	memset(id, 0, id_len);
3342 	d = vpd_pg83->data + 4;
3343 	while (d < vpd_pg83->data + vpd_pg83->len) {
3344 		/* Skip designators not referring to the LUN */
3345 		if ((d[1] & 0x30) != 0x00)
3346 			goto next_desig;
3347 
3348 		switch (d[1] & 0xf) {
3349 		case 0x1:
3350 			/* T10 Vendor ID */
3351 			if (cur_id_size > d[3])
3352 				break;
3353 			/* Prefer anything */
3354 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3355 				break;
3356 			cur_id_size = d[3];
3357 			if (cur_id_size + 4 > id_len)
3358 				cur_id_size = id_len - 4;
3359 			cur_id_str = d + 4;
3360 			cur_id_type = d[1] & 0xf;
3361 			id_size = snprintf(id, id_len, "t10.%*pE",
3362 					   cur_id_size, cur_id_str);
3363 			break;
3364 		case 0x2:
3365 			/* EUI-64 */
3366 			if (cur_id_size > d[3])
3367 				break;
3368 			/* Prefer NAA IEEE Registered Extended */
3369 			if (cur_id_type == 0x3 &&
3370 			    cur_id_size == d[3])
3371 				break;
3372 			cur_id_size = d[3];
3373 			cur_id_str = d + 4;
3374 			cur_id_type = d[1] & 0xf;
3375 			switch (cur_id_size) {
3376 			case 8:
3377 				id_size = snprintf(id, id_len,
3378 						   "eui.%8phN",
3379 						   cur_id_str);
3380 				break;
3381 			case 12:
3382 				id_size = snprintf(id, id_len,
3383 						   "eui.%12phN",
3384 						   cur_id_str);
3385 				break;
3386 			case 16:
3387 				id_size = snprintf(id, id_len,
3388 						   "eui.%16phN",
3389 						   cur_id_str);
3390 				break;
3391 			default:
3392 				cur_id_size = 0;
3393 				break;
3394 			}
3395 			break;
3396 		case 0x3:
3397 			/* NAA */
3398 			if (cur_id_size > d[3])
3399 				break;
3400 			cur_id_size = d[3];
3401 			cur_id_str = d + 4;
3402 			cur_id_type = d[1] & 0xf;
3403 			switch (cur_id_size) {
3404 			case 8:
3405 				id_size = snprintf(id, id_len,
3406 						   "naa.%8phN",
3407 						   cur_id_str);
3408 				break;
3409 			case 16:
3410 				id_size = snprintf(id, id_len,
3411 						   "naa.%16phN",
3412 						   cur_id_str);
3413 				break;
3414 			default:
3415 				cur_id_size = 0;
3416 				break;
3417 			}
3418 			break;
3419 		case 0x8:
3420 			/* SCSI name string */
3421 			if (cur_id_size + 4 > d[3])
3422 				break;
3423 			/* Prefer others for truncated descriptor */
3424 			if (cur_id_size && d[3] > id_len)
3425 				break;
3426 			cur_id_size = id_size = d[3];
3427 			cur_id_str = d + 4;
3428 			cur_id_type = d[1] & 0xf;
3429 			if (cur_id_size >= id_len)
3430 				cur_id_size = id_len - 1;
3431 			memcpy(id, cur_id_str, cur_id_size);
3432 			/* Decrease priority for truncated descriptor */
3433 			if (cur_id_size != id_size)
3434 				cur_id_size = 6;
3435 			break;
3436 		default:
3437 			break;
3438 		}
3439 next_desig:
3440 		d += d[3] + 4;
3441 	}
3442 	rcu_read_unlock();
3443 
3444 	return id_size;
3445 }
3446 EXPORT_SYMBOL(scsi_vpd_lun_id);
3447 
3448 /*
3449  * scsi_vpd_tpg_id - return a target port group identifier
3450  * @sdev: SCSI device
3451  *
3452  * Returns the Target Port Group identifier from the information
3453  * froom VPD page 0x83 of the device.
3454  *
3455  * Returns the identifier or error on failure.
3456  */
3457 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3458 {
3459 	const unsigned char *d;
3460 	const struct scsi_vpd *vpd_pg83;
3461 	int group_id = -EAGAIN, rel_port = -1;
3462 
3463 	rcu_read_lock();
3464 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3465 	if (!vpd_pg83) {
3466 		rcu_read_unlock();
3467 		return -ENXIO;
3468 	}
3469 
3470 	d = vpd_pg83->data + 4;
3471 	while (d < vpd_pg83->data + vpd_pg83->len) {
3472 		switch (d[1] & 0xf) {
3473 		case 0x4:
3474 			/* Relative target port */
3475 			rel_port = get_unaligned_be16(&d[6]);
3476 			break;
3477 		case 0x5:
3478 			/* Target port group */
3479 			group_id = get_unaligned_be16(&d[6]);
3480 			break;
3481 		default:
3482 			break;
3483 		}
3484 		d += d[3] + 4;
3485 	}
3486 	rcu_read_unlock();
3487 
3488 	if (group_id >= 0 && rel_id && rel_port != -1)
3489 		*rel_id = rel_port;
3490 
3491 	return group_id;
3492 }
3493 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3494