xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		/*
195 		 * Before a SCSI command is dispatched,
196 		 * get_device(&sdev->sdev_gendev) is called and the host,
197 		 * target and device busy counters are increased. Since
198 		 * requeuing a request causes these actions to be repeated and
199 		 * since scsi_device_unbusy() has already been called,
200 		 * put_device(&device->sdev_gendev) must still be called. Call
201 		 * put_device() after blk_mq_requeue_request() to avoid that
202 		 * removal of the SCSI device can start before requeueing has
203 		 * happened.
204 		 */
205 		blk_mq_requeue_request(cmd->request, true);
206 		put_device(&device->sdev_gendev);
207 		return;
208 	}
209 	spin_lock_irqsave(q->queue_lock, flags);
210 	blk_requeue_request(q, cmd->request);
211 	kblockd_schedule_work(&device->requeue_work);
212 	spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214 
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236 	__scsi_queue_insert(cmd, reason, true);
237 }
238 
239 
240 /**
241  * scsi_execute - insert request and wait for the result
242  * @sdev:	scsi device
243  * @cmd:	scsi command
244  * @data_direction: data direction
245  * @buffer:	data buffer
246  * @bufflen:	len of buffer
247  * @sense:	optional sense buffer
248  * @sshdr:	optional decoded sense header
249  * @timeout:	request timeout in seconds
250  * @retries:	number of times to retry request
251  * @flags:	flags for ->cmd_flags
252  * @rq_flags:	flags for ->rq_flags
253  * @resid:	optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 		 int data_direction, void *buffer, unsigned bufflen,
260 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 		 int *resid)
263 {
264 	struct request *req;
265 	struct scsi_request *rq;
266 	int ret = DRIVER_ERROR << 24;
267 
268 	req = blk_get_request_flags(sdev->request_queue,
269 			data_direction == DMA_TO_DEVICE ?
270 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 	if (IS_ERR(req))
272 		return ret;
273 	rq = scsi_req(req);
274 
275 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
276 					buffer, bufflen, __GFP_RECLAIM))
277 		goto out;
278 
279 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 	memcpy(rq->cmd, cmd, rq->cmd_len);
281 	rq->retries = retries;
282 	req->timeout = timeout;
283 	req->cmd_flags |= flags;
284 	req->rq_flags |= rq_flags | RQF_QUIET;
285 
286 	/*
287 	 * head injection *required* here otherwise quiesce won't work
288 	 */
289 	blk_execute_rq(req->q, NULL, req, 1);
290 
291 	/*
292 	 * Some devices (USB mass-storage in particular) may transfer
293 	 * garbage data together with a residue indicating that the data
294 	 * is invalid.  Prevent the garbage from being misinterpreted
295 	 * and prevent security leaks by zeroing out the excess data.
296 	 */
297 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299 
300 	if (resid)
301 		*resid = rq->resid_len;
302 	if (sense && rq->sense_len)
303 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 	if (sshdr)
305 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 	ret = rq->result;
307  out:
308 	blk_put_request(req);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL(scsi_execute);
313 
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd	- command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327 	cmd->serial_number = 0;
328 	scsi_set_resid(cmd, 0);
329 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 	if (cmd->cmd_len == 0)
331 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333 
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345 	unsigned long flags;
346 
347 	rcu_read_lock();
348 	atomic_dec(&shost->host_busy);
349 	if (unlikely(scsi_host_in_recovery(shost))) {
350 		spin_lock_irqsave(shost->host_lock, flags);
351 		if (shost->host_failed || shost->host_eh_scheduled)
352 			scsi_eh_wakeup(shost);
353 		spin_unlock_irqrestore(shost->host_lock, flags);
354 	}
355 	rcu_read_unlock();
356 }
357 
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360 	struct Scsi_Host *shost = sdev->host;
361 	struct scsi_target *starget = scsi_target(sdev);
362 
363 	scsi_dec_host_busy(shost);
364 
365 	if (starget->can_queue > 0)
366 		atomic_dec(&starget->target_busy);
367 
368 	atomic_dec(&sdev->device_busy);
369 }
370 
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373 	if (q->mq_ops)
374 		blk_mq_start_hw_queues(q);
375 	else
376 		blk_run_queue(q);
377 }
378 
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388 	struct Scsi_Host *shost = current_sdev->host;
389 	struct scsi_device *sdev, *tmp;
390 	struct scsi_target *starget = scsi_target(current_sdev);
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	starget->starget_sdev_user = NULL;
395 	spin_unlock_irqrestore(shost->host_lock, flags);
396 
397 	/*
398 	 * Call blk_run_queue for all LUNs on the target, starting with
399 	 * current_sdev. We race with others (to set starget_sdev_user),
400 	 * but in most cases, we will be first. Ideally, each LU on the
401 	 * target would get some limited time or requests on the target.
402 	 */
403 	scsi_kick_queue(current_sdev->request_queue);
404 
405 	spin_lock_irqsave(shost->host_lock, flags);
406 	if (starget->starget_sdev_user)
407 		goto out;
408 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 			same_target_siblings) {
410 		if (sdev == current_sdev)
411 			continue;
412 		if (scsi_device_get(sdev))
413 			continue;
414 
415 		spin_unlock_irqrestore(shost->host_lock, flags);
416 		scsi_kick_queue(sdev->request_queue);
417 		spin_lock_irqsave(shost->host_lock, flags);
418 
419 		scsi_device_put(sdev);
420 	}
421  out:
422 	spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424 
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 		return true;
429 	if (atomic_read(&sdev->device_blocked) > 0)
430 		return true;
431 	return false;
432 }
433 
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436 	if (starget->can_queue > 0) {
437 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 			return true;
439 		if (atomic_read(&starget->target_blocked) > 0)
440 			return true;
441 	}
442 	return false;
443 }
444 
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447 	if (shost->can_queue > 0 &&
448 	    atomic_read(&shost->host_busy) >= shost->can_queue)
449 		return true;
450 	if (atomic_read(&shost->host_blocked) > 0)
451 		return true;
452 	if (shost->host_self_blocked)
453 		return true;
454 	return false;
455 }
456 
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459 	LIST_HEAD(starved_list);
460 	struct scsi_device *sdev;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(shost->host_lock, flags);
464 	list_splice_init(&shost->starved_list, &starved_list);
465 
466 	while (!list_empty(&starved_list)) {
467 		struct request_queue *slq;
468 
469 		/*
470 		 * As long as shost is accepting commands and we have
471 		 * starved queues, call blk_run_queue. scsi_request_fn
472 		 * drops the queue_lock and can add us back to the
473 		 * starved_list.
474 		 *
475 		 * host_lock protects the starved_list and starved_entry.
476 		 * scsi_request_fn must get the host_lock before checking
477 		 * or modifying starved_list or starved_entry.
478 		 */
479 		if (scsi_host_is_busy(shost))
480 			break;
481 
482 		sdev = list_entry(starved_list.next,
483 				  struct scsi_device, starved_entry);
484 		list_del_init(&sdev->starved_entry);
485 		if (scsi_target_is_busy(scsi_target(sdev))) {
486 			list_move_tail(&sdev->starved_entry,
487 				       &shost->starved_list);
488 			continue;
489 		}
490 
491 		/*
492 		 * Once we drop the host lock, a racing scsi_remove_device()
493 		 * call may remove the sdev from the starved list and destroy
494 		 * it and the queue.  Mitigate by taking a reference to the
495 		 * queue and never touching the sdev again after we drop the
496 		 * host lock.  Note: if __scsi_remove_device() invokes
497 		 * blk_cleanup_queue() before the queue is run from this
498 		 * function then blk_run_queue() will return immediately since
499 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500 		 */
501 		slq = sdev->request_queue;
502 		if (!blk_get_queue(slq))
503 			continue;
504 		spin_unlock_irqrestore(shost->host_lock, flags);
505 
506 		scsi_kick_queue(slq);
507 		blk_put_queue(slq);
508 
509 		spin_lock_irqsave(shost->host_lock, flags);
510 	}
511 	/* put any unprocessed entries back */
512 	list_splice(&starved_list, &shost->starved_list);
513 	spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515 
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530 	struct scsi_device *sdev = q->queuedata;
531 
532 	if (scsi_target(sdev)->single_lun)
533 		scsi_single_lun_run(sdev);
534 	if (!list_empty(&sdev->host->starved_list))
535 		scsi_starved_list_run(sdev->host);
536 
537 	if (q->mq_ops)
538 		blk_mq_run_hw_queues(q, false);
539 	else
540 		blk_run_queue(q);
541 }
542 
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545 	struct scsi_device *sdev;
546 	struct request_queue *q;
547 
548 	sdev = container_of(work, struct scsi_device, requeue_work);
549 	q = sdev->request_queue;
550 	scsi_run_queue(q);
551 }
552 
553 /*
554  * Function:	scsi_requeue_command()
555  *
556  * Purpose:	Handle post-processing of completed commands.
557  *
558  * Arguments:	q	- queue to operate on
559  *		cmd	- command that may need to be requeued.
560  *
561  * Returns:	Nothing
562  *
563  * Notes:	After command completion, there may be blocks left
564  *		over which weren't finished by the previous command
565  *		this can be for a number of reasons - the main one is
566  *		I/O errors in the middle of the request, in which case
567  *		we need to request the blocks that come after the bad
568  *		sector.
569  * Notes:	Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573 	struct scsi_device *sdev = cmd->device;
574 	struct request *req = cmd->request;
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(q->queue_lock, flags);
578 	blk_unprep_request(req);
579 	req->special = NULL;
580 	scsi_put_command(cmd);
581 	blk_requeue_request(q, req);
582 	spin_unlock_irqrestore(q->queue_lock, flags);
583 
584 	scsi_run_queue(q);
585 
586 	put_device(&sdev->sdev_gendev);
587 }
588 
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591 	struct scsi_device *sdev;
592 
593 	shost_for_each_device(sdev, shost)
594 		scsi_run_queue(sdev->request_queue);
595 }
596 
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599 	if (!blk_rq_is_passthrough(cmd->request)) {
600 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601 
602 		if (drv->uninit_command)
603 			drv->uninit_command(cmd);
604 	}
605 }
606 
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609 	struct scsi_data_buffer *sdb;
610 
611 	if (cmd->sdb.table.nents)
612 		sg_free_table_chained(&cmd->sdb.table, true);
613 	if (cmd->request->next_rq) {
614 		sdb = cmd->request->next_rq->special;
615 		if (sdb)
616 			sg_free_table_chained(&sdb->table, true);
617 	}
618 	if (scsi_prot_sg_count(cmd))
619 		sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621 
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624 	scsi_mq_free_sgtables(cmd);
625 	scsi_uninit_cmd(cmd);
626 	scsi_del_cmd_from_list(cmd);
627 }
628 
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd	- command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *		command, we must release resources allocated during
642  *		the __init_io() function.  Primarily this would involve
643  *		the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647 	if (cmd->sdb.table.nents)
648 		sg_free_table_chained(&cmd->sdb.table, false);
649 
650 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651 
652 	if (scsi_prot_sg_count(cmd))
653 		sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655 
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659 
660 	sg_free_table_chained(&bidi_sdb->table, false);
661 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 	cmd->request->next_rq->special = NULL;
663 }
664 
665 static bool scsi_end_request(struct request *req, blk_status_t error,
666 		unsigned int bytes, unsigned int bidi_bytes)
667 {
668 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
669 	struct scsi_device *sdev = cmd->device;
670 	struct request_queue *q = sdev->request_queue;
671 
672 	if (blk_update_request(req, error, bytes))
673 		return true;
674 
675 	/* Bidi request must be completed as a whole */
676 	if (unlikely(bidi_bytes) &&
677 	    blk_update_request(req->next_rq, error, bidi_bytes))
678 		return true;
679 
680 	if (blk_queue_add_random(q))
681 		add_disk_randomness(req->rq_disk);
682 
683 	if (!blk_rq_is_scsi(req)) {
684 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
685 		cmd->flags &= ~SCMD_INITIALIZED;
686 		destroy_rcu_head(&cmd->rcu);
687 	}
688 
689 	if (req->mq_ctx) {
690 		/*
691 		 * In the MQ case the command gets freed by __blk_mq_end_request,
692 		 * so we have to do all cleanup that depends on it earlier.
693 		 *
694 		 * We also can't kick the queues from irq context, so we
695 		 * will have to defer it to a workqueue.
696 		 */
697 		scsi_mq_uninit_cmd(cmd);
698 
699 		__blk_mq_end_request(req, error);
700 
701 		if (scsi_target(sdev)->single_lun ||
702 		    !list_empty(&sdev->host->starved_list))
703 			kblockd_schedule_work(&sdev->requeue_work);
704 		else
705 			blk_mq_run_hw_queues(q, true);
706 	} else {
707 		unsigned long flags;
708 
709 		if (bidi_bytes)
710 			scsi_release_bidi_buffers(cmd);
711 		scsi_release_buffers(cmd);
712 		scsi_put_command(cmd);
713 
714 		spin_lock_irqsave(q->queue_lock, flags);
715 		blk_finish_request(req, error);
716 		spin_unlock_irqrestore(q->queue_lock, flags);
717 
718 		scsi_run_queue(q);
719 	}
720 
721 	put_device(&sdev->sdev_gendev);
722 	return false;
723 }
724 
725 /**
726  * __scsi_error_from_host_byte - translate SCSI error code into errno
727  * @cmd:	SCSI command (unused)
728  * @result:	scsi error code
729  *
730  * Translate SCSI error code into block errors.
731  */
732 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
733 		int result)
734 {
735 	switch (host_byte(result)) {
736 	case DID_OK:
737 		return BLK_STS_OK;
738 	case DID_TRANSPORT_FAILFAST:
739 		return BLK_STS_TRANSPORT;
740 	case DID_TARGET_FAILURE:
741 		set_host_byte(cmd, DID_OK);
742 		return BLK_STS_TARGET;
743 	case DID_NEXUS_FAILURE:
744 		return BLK_STS_NEXUS;
745 	case DID_ALLOC_FAILURE:
746 		set_host_byte(cmd, DID_OK);
747 		return BLK_STS_NOSPC;
748 	case DID_MEDIUM_ERROR:
749 		set_host_byte(cmd, DID_OK);
750 		return BLK_STS_MEDIUM;
751 	default:
752 		return BLK_STS_IOERR;
753 	}
754 }
755 
756 /*
757  * Function:    scsi_io_completion()
758  *
759  * Purpose:     Completion processing for block device I/O requests.
760  *
761  * Arguments:   cmd   - command that is finished.
762  *
763  * Lock status: Assumed that no lock is held upon entry.
764  *
765  * Returns:     Nothing
766  *
767  * Notes:       We will finish off the specified number of sectors.  If we
768  *		are done, the command block will be released and the queue
769  *		function will be goosed.  If we are not done then we have to
770  *		figure out what to do next:
771  *
772  *		a) We can call scsi_requeue_command().  The request
773  *		   will be unprepared and put back on the queue.  Then
774  *		   a new command will be created for it.  This should
775  *		   be used if we made forward progress, or if we want
776  *		   to switch from READ(10) to READ(6) for example.
777  *
778  *		b) We can call __scsi_queue_insert().  The request will
779  *		   be put back on the queue and retried using the same
780  *		   command as before, possibly after a delay.
781  *
782  *		c) We can call scsi_end_request() with -EIO to fail
783  *		   the remainder of the request.
784  */
785 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
786 {
787 	int result = cmd->result;
788 	struct request_queue *q = cmd->device->request_queue;
789 	struct request *req = cmd->request;
790 	blk_status_t error = BLK_STS_OK;
791 	struct scsi_sense_hdr sshdr;
792 	bool sense_valid = false;
793 	int sense_deferred = 0, level = 0;
794 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
795 	      ACTION_DELAYED_RETRY} action;
796 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
797 
798 	if (result) {
799 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
800 		if (sense_valid)
801 			sense_deferred = scsi_sense_is_deferred(&sshdr);
802 	}
803 
804 	if (blk_rq_is_passthrough(req)) {
805 		if (result) {
806 			if (sense_valid) {
807 				/*
808 				 * SG_IO wants current and deferred errors
809 				 */
810 				scsi_req(req)->sense_len =
811 					min(8 + cmd->sense_buffer[7],
812 					    SCSI_SENSE_BUFFERSIZE);
813 			}
814 			if (!sense_deferred)
815 				error = __scsi_error_from_host_byte(cmd, result);
816 		}
817 		/*
818 		 * __scsi_error_from_host_byte may have reset the host_byte
819 		 */
820 		scsi_req(req)->result = cmd->result;
821 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
822 
823 		if (scsi_bidi_cmnd(cmd)) {
824 			/*
825 			 * Bidi commands Must be complete as a whole,
826 			 * both sides at once.
827 			 */
828 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
829 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
830 					blk_rq_bytes(req->next_rq)))
831 				BUG();
832 			return;
833 		}
834 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
835 		/*
836 		 * Flush commands do not transfers any data, and thus cannot use
837 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
838 		 * This sets the error explicitly for the problem case.
839 		 */
840 		error = __scsi_error_from_host_byte(cmd, result);
841 	}
842 
843 	/* no bidi support for !blk_rq_is_passthrough yet */
844 	BUG_ON(blk_bidi_rq(req));
845 
846 	/*
847 	 * Next deal with any sectors which we were able to correctly
848 	 * handle.
849 	 */
850 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
851 		"%u sectors total, %d bytes done.\n",
852 		blk_rq_sectors(req), good_bytes));
853 
854 	/*
855 	 * Recovered errors need reporting, but they're always treated as
856 	 * success, so fiddle the result code here.  For passthrough requests
857 	 * we already took a copy of the original into sreq->result which
858 	 * is what gets returned to the user
859 	 */
860 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
861 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
862 		 * print since caller wants ATA registers. Only occurs on
863 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
864 		 */
865 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
866 			;
867 		else if (!(req->rq_flags & RQF_QUIET))
868 			scsi_print_sense(cmd);
869 		result = 0;
870 		/* for passthrough error may be set */
871 		error = BLK_STS_OK;
872 	}
873 	/*
874 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
875 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
876 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
877 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
878 	 * intermediate statuses (both obsolete in SAM-4) as good.
879 	 */
880 	if (status_byte(result) && scsi_status_is_good(result)) {
881 		result = 0;
882 		error = BLK_STS_OK;
883 	}
884 
885 	/*
886 	 * special case: failed zero length commands always need to
887 	 * drop down into the retry code. Otherwise, if we finished
888 	 * all bytes in the request we are done now.
889 	 */
890 	if (!(blk_rq_bytes(req) == 0 && error) &&
891 	    !scsi_end_request(req, error, good_bytes, 0))
892 		return;
893 
894 	/*
895 	 * Kill remainder if no retrys.
896 	 */
897 	if (error && scsi_noretry_cmd(cmd)) {
898 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
899 			BUG();
900 		return;
901 	}
902 
903 	/*
904 	 * If there had been no error, but we have leftover bytes in the
905 	 * requeues just queue the command up again.
906 	 */
907 	if (result == 0)
908 		goto requeue;
909 
910 	error = __scsi_error_from_host_byte(cmd, result);
911 
912 	if (host_byte(result) == DID_RESET) {
913 		/* Third party bus reset or reset for error recovery
914 		 * reasons.  Just retry the command and see what
915 		 * happens.
916 		 */
917 		action = ACTION_RETRY;
918 	} else if (sense_valid && !sense_deferred) {
919 		switch (sshdr.sense_key) {
920 		case UNIT_ATTENTION:
921 			if (cmd->device->removable) {
922 				/* Detected disc change.  Set a bit
923 				 * and quietly refuse further access.
924 				 */
925 				cmd->device->changed = 1;
926 				action = ACTION_FAIL;
927 			} else {
928 				/* Must have been a power glitch, or a
929 				 * bus reset.  Could not have been a
930 				 * media change, so we just retry the
931 				 * command and see what happens.
932 				 */
933 				action = ACTION_RETRY;
934 			}
935 			break;
936 		case ILLEGAL_REQUEST:
937 			/* If we had an ILLEGAL REQUEST returned, then
938 			 * we may have performed an unsupported
939 			 * command.  The only thing this should be
940 			 * would be a ten byte read where only a six
941 			 * byte read was supported.  Also, on a system
942 			 * where READ CAPACITY failed, we may have
943 			 * read past the end of the disk.
944 			 */
945 			if ((cmd->device->use_10_for_rw &&
946 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
947 			    (cmd->cmnd[0] == READ_10 ||
948 			     cmd->cmnd[0] == WRITE_10)) {
949 				/* This will issue a new 6-byte command. */
950 				cmd->device->use_10_for_rw = 0;
951 				action = ACTION_REPREP;
952 			} else if (sshdr.asc == 0x10) /* DIX */ {
953 				action = ACTION_FAIL;
954 				error = BLK_STS_PROTECTION;
955 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
956 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
957 				action = ACTION_FAIL;
958 				error = BLK_STS_TARGET;
959 			} else
960 				action = ACTION_FAIL;
961 			break;
962 		case ABORTED_COMMAND:
963 			action = ACTION_FAIL;
964 			if (sshdr.asc == 0x10) /* DIF */
965 				error = BLK_STS_PROTECTION;
966 			break;
967 		case NOT_READY:
968 			/* If the device is in the process of becoming
969 			 * ready, or has a temporary blockage, retry.
970 			 */
971 			if (sshdr.asc == 0x04) {
972 				switch (sshdr.ascq) {
973 				case 0x01: /* becoming ready */
974 				case 0x04: /* format in progress */
975 				case 0x05: /* rebuild in progress */
976 				case 0x06: /* recalculation in progress */
977 				case 0x07: /* operation in progress */
978 				case 0x08: /* Long write in progress */
979 				case 0x09: /* self test in progress */
980 				case 0x14: /* space allocation in progress */
981 					action = ACTION_DELAYED_RETRY;
982 					break;
983 				default:
984 					action = ACTION_FAIL;
985 					break;
986 				}
987 			} else
988 				action = ACTION_FAIL;
989 			break;
990 		case VOLUME_OVERFLOW:
991 			/* See SSC3rXX or current. */
992 			action = ACTION_FAIL;
993 			break;
994 		default:
995 			action = ACTION_FAIL;
996 			break;
997 		}
998 	} else
999 		action = ACTION_FAIL;
1000 
1001 	if (action != ACTION_FAIL &&
1002 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1003 		action = ACTION_FAIL;
1004 
1005 	switch (action) {
1006 	case ACTION_FAIL:
1007 		/* Give up and fail the remainder of the request */
1008 		if (!(req->rq_flags & RQF_QUIET)) {
1009 			static DEFINE_RATELIMIT_STATE(_rs,
1010 					DEFAULT_RATELIMIT_INTERVAL,
1011 					DEFAULT_RATELIMIT_BURST);
1012 
1013 			if (unlikely(scsi_logging_level))
1014 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1015 						       SCSI_LOG_MLCOMPLETE_BITS);
1016 
1017 			/*
1018 			 * if logging is enabled the failure will be printed
1019 			 * in scsi_log_completion(), so avoid duplicate messages
1020 			 */
1021 			if (!level && __ratelimit(&_rs)) {
1022 				scsi_print_result(cmd, NULL, FAILED);
1023 				if (driver_byte(result) & DRIVER_SENSE)
1024 					scsi_print_sense(cmd);
1025 				scsi_print_command(cmd);
1026 			}
1027 		}
1028 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1029 			return;
1030 		/*FALLTHRU*/
1031 	case ACTION_REPREP:
1032 	requeue:
1033 		/* Unprep the request and put it back at the head of the queue.
1034 		 * A new command will be prepared and issued.
1035 		 */
1036 		if (q->mq_ops) {
1037 			scsi_mq_requeue_cmd(cmd);
1038 		} else {
1039 			scsi_release_buffers(cmd);
1040 			scsi_requeue_command(q, cmd);
1041 		}
1042 		break;
1043 	case ACTION_RETRY:
1044 		/* Retry the same command immediately */
1045 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1046 		break;
1047 	case ACTION_DELAYED_RETRY:
1048 		/* Retry the same command after a delay */
1049 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1050 		break;
1051 	}
1052 }
1053 
1054 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1055 {
1056 	int count;
1057 
1058 	/*
1059 	 * If sg table allocation fails, requeue request later.
1060 	 */
1061 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1062 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1063 		return BLKPREP_DEFER;
1064 
1065 	/*
1066 	 * Next, walk the list, and fill in the addresses and sizes of
1067 	 * each segment.
1068 	 */
1069 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1070 	BUG_ON(count > sdb->table.nents);
1071 	sdb->table.nents = count;
1072 	sdb->length = blk_rq_payload_bytes(req);
1073 	return BLKPREP_OK;
1074 }
1075 
1076 /*
1077  * Function:    scsi_init_io()
1078  *
1079  * Purpose:     SCSI I/O initialize function.
1080  *
1081  * Arguments:   cmd   - Command descriptor we wish to initialize
1082  *
1083  * Returns:     0 on success
1084  *		BLKPREP_DEFER if the failure is retryable
1085  *		BLKPREP_KILL if the failure is fatal
1086  */
1087 int scsi_init_io(struct scsi_cmnd *cmd)
1088 {
1089 	struct scsi_device *sdev = cmd->device;
1090 	struct request *rq = cmd->request;
1091 	bool is_mq = (rq->mq_ctx != NULL);
1092 	int error = BLKPREP_KILL;
1093 
1094 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1095 		goto err_exit;
1096 
1097 	error = scsi_init_sgtable(rq, &cmd->sdb);
1098 	if (error)
1099 		goto err_exit;
1100 
1101 	if (blk_bidi_rq(rq)) {
1102 		if (!rq->q->mq_ops) {
1103 			struct scsi_data_buffer *bidi_sdb =
1104 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1105 			if (!bidi_sdb) {
1106 				error = BLKPREP_DEFER;
1107 				goto err_exit;
1108 			}
1109 
1110 			rq->next_rq->special = bidi_sdb;
1111 		}
1112 
1113 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1114 		if (error)
1115 			goto err_exit;
1116 	}
1117 
1118 	if (blk_integrity_rq(rq)) {
1119 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1120 		int ivecs, count;
1121 
1122 		if (prot_sdb == NULL) {
1123 			/*
1124 			 * This can happen if someone (e.g. multipath)
1125 			 * queues a command to a device on an adapter
1126 			 * that does not support DIX.
1127 			 */
1128 			WARN_ON_ONCE(1);
1129 			error = BLKPREP_KILL;
1130 			goto err_exit;
1131 		}
1132 
1133 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1134 
1135 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1136 				prot_sdb->table.sgl)) {
1137 			error = BLKPREP_DEFER;
1138 			goto err_exit;
1139 		}
1140 
1141 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1142 						prot_sdb->table.sgl);
1143 		BUG_ON(unlikely(count > ivecs));
1144 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1145 
1146 		cmd->prot_sdb = prot_sdb;
1147 		cmd->prot_sdb->table.nents = count;
1148 	}
1149 
1150 	return BLKPREP_OK;
1151 err_exit:
1152 	if (is_mq) {
1153 		scsi_mq_free_sgtables(cmd);
1154 	} else {
1155 		scsi_release_buffers(cmd);
1156 		cmd->request->special = NULL;
1157 		scsi_put_command(cmd);
1158 		put_device(&sdev->sdev_gendev);
1159 	}
1160 	return error;
1161 }
1162 EXPORT_SYMBOL(scsi_init_io);
1163 
1164 /**
1165  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1166  * @rq: Request associated with the SCSI command to be initialized.
1167  *
1168  * This function initializes the members of struct scsi_cmnd that must be
1169  * initialized before request processing starts and that won't be
1170  * reinitialized if a SCSI command is requeued.
1171  *
1172  * Called from inside blk_get_request() for pass-through requests and from
1173  * inside scsi_init_command() for filesystem requests.
1174  */
1175 static void scsi_initialize_rq(struct request *rq)
1176 {
1177 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1178 
1179 	scsi_req_init(&cmd->req);
1180 	init_rcu_head(&cmd->rcu);
1181 	cmd->jiffies_at_alloc = jiffies;
1182 	cmd->retries = 0;
1183 }
1184 
1185 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1186 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1187 {
1188 	struct scsi_device *sdev = cmd->device;
1189 	struct Scsi_Host *shost = sdev->host;
1190 	unsigned long flags;
1191 
1192 	if (shost->use_cmd_list) {
1193 		spin_lock_irqsave(&sdev->list_lock, flags);
1194 		list_add_tail(&cmd->list, &sdev->cmd_list);
1195 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1196 	}
1197 }
1198 
1199 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1200 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1201 {
1202 	struct scsi_device *sdev = cmd->device;
1203 	struct Scsi_Host *shost = sdev->host;
1204 	unsigned long flags;
1205 
1206 	if (shost->use_cmd_list) {
1207 		spin_lock_irqsave(&sdev->list_lock, flags);
1208 		BUG_ON(list_empty(&cmd->list));
1209 		list_del_init(&cmd->list);
1210 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1211 	}
1212 }
1213 
1214 /* Called after a request has been started. */
1215 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1216 {
1217 	void *buf = cmd->sense_buffer;
1218 	void *prot = cmd->prot_sdb;
1219 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1220 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1221 	unsigned long jiffies_at_alloc;
1222 	int retries;
1223 
1224 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1225 		flags |= SCMD_INITIALIZED;
1226 		scsi_initialize_rq(rq);
1227 	}
1228 
1229 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1230 	retries = cmd->retries;
1231 	/* zero out the cmd, except for the embedded scsi_request */
1232 	memset((char *)cmd + sizeof(cmd->req), 0,
1233 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1234 
1235 	cmd->device = dev;
1236 	cmd->sense_buffer = buf;
1237 	cmd->prot_sdb = prot;
1238 	cmd->flags = flags;
1239 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1240 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1241 	cmd->retries = retries;
1242 
1243 	scsi_add_cmd_to_list(cmd);
1244 }
1245 
1246 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1247 {
1248 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1249 
1250 	/*
1251 	 * Passthrough requests may transfer data, in which case they must
1252 	 * a bio attached to them.  Or they might contain a SCSI command
1253 	 * that does not transfer data, in which case they may optionally
1254 	 * submit a request without an attached bio.
1255 	 */
1256 	if (req->bio) {
1257 		int ret = scsi_init_io(cmd);
1258 		if (unlikely(ret))
1259 			return ret;
1260 	} else {
1261 		BUG_ON(blk_rq_bytes(req));
1262 
1263 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1264 	}
1265 
1266 	cmd->cmd_len = scsi_req(req)->cmd_len;
1267 	cmd->cmnd = scsi_req(req)->cmd;
1268 	cmd->transfersize = blk_rq_bytes(req);
1269 	cmd->allowed = scsi_req(req)->retries;
1270 	return BLKPREP_OK;
1271 }
1272 
1273 /*
1274  * Setup a normal block command.  These are simple request from filesystems
1275  * that still need to be translated to SCSI CDBs from the ULD.
1276  */
1277 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1278 {
1279 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1280 
1281 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1282 		int ret = sdev->handler->prep_fn(sdev, req);
1283 		if (ret != BLKPREP_OK)
1284 			return ret;
1285 	}
1286 
1287 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1288 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1289 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1290 }
1291 
1292 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1293 {
1294 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1295 
1296 	if (!blk_rq_bytes(req))
1297 		cmd->sc_data_direction = DMA_NONE;
1298 	else if (rq_data_dir(req) == WRITE)
1299 		cmd->sc_data_direction = DMA_TO_DEVICE;
1300 	else
1301 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1302 
1303 	if (blk_rq_is_scsi(req))
1304 		return scsi_setup_scsi_cmnd(sdev, req);
1305 	else
1306 		return scsi_setup_fs_cmnd(sdev, req);
1307 }
1308 
1309 static int
1310 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1311 {
1312 	int ret = BLKPREP_OK;
1313 
1314 	/*
1315 	 * If the device is not in running state we will reject some
1316 	 * or all commands.
1317 	 */
1318 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1319 		switch (sdev->sdev_state) {
1320 		case SDEV_OFFLINE:
1321 		case SDEV_TRANSPORT_OFFLINE:
1322 			/*
1323 			 * If the device is offline we refuse to process any
1324 			 * commands.  The device must be brought online
1325 			 * before trying any recovery commands.
1326 			 */
1327 			sdev_printk(KERN_ERR, sdev,
1328 				    "rejecting I/O to offline device\n");
1329 			ret = BLKPREP_KILL;
1330 			break;
1331 		case SDEV_DEL:
1332 			/*
1333 			 * If the device is fully deleted, we refuse to
1334 			 * process any commands as well.
1335 			 */
1336 			sdev_printk(KERN_ERR, sdev,
1337 				    "rejecting I/O to dead device\n");
1338 			ret = BLKPREP_KILL;
1339 			break;
1340 		case SDEV_BLOCK:
1341 		case SDEV_CREATED_BLOCK:
1342 			ret = BLKPREP_DEFER;
1343 			break;
1344 		case SDEV_QUIESCE:
1345 			/*
1346 			 * If the devices is blocked we defer normal commands.
1347 			 */
1348 			if (req && !(req->rq_flags & RQF_PREEMPT))
1349 				ret = BLKPREP_DEFER;
1350 			break;
1351 		default:
1352 			/*
1353 			 * For any other not fully online state we only allow
1354 			 * special commands.  In particular any user initiated
1355 			 * command is not allowed.
1356 			 */
1357 			if (req && !(req->rq_flags & RQF_PREEMPT))
1358 				ret = BLKPREP_KILL;
1359 			break;
1360 		}
1361 	}
1362 	return ret;
1363 }
1364 
1365 static int
1366 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1367 {
1368 	struct scsi_device *sdev = q->queuedata;
1369 
1370 	switch (ret) {
1371 	case BLKPREP_KILL:
1372 	case BLKPREP_INVALID:
1373 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1374 		/* release the command and kill it */
1375 		if (req->special) {
1376 			struct scsi_cmnd *cmd = req->special;
1377 			scsi_release_buffers(cmd);
1378 			scsi_put_command(cmd);
1379 			put_device(&sdev->sdev_gendev);
1380 			req->special = NULL;
1381 		}
1382 		break;
1383 	case BLKPREP_DEFER:
1384 		/*
1385 		 * If we defer, the blk_peek_request() returns NULL, but the
1386 		 * queue must be restarted, so we schedule a callback to happen
1387 		 * shortly.
1388 		 */
1389 		if (atomic_read(&sdev->device_busy) == 0)
1390 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1391 		break;
1392 	default:
1393 		req->rq_flags |= RQF_DONTPREP;
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1400 {
1401 	struct scsi_device *sdev = q->queuedata;
1402 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1403 	int ret;
1404 
1405 	ret = scsi_prep_state_check(sdev, req);
1406 	if (ret != BLKPREP_OK)
1407 		goto out;
1408 
1409 	if (!req->special) {
1410 		/* Bail if we can't get a reference to the device */
1411 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1412 			ret = BLKPREP_DEFER;
1413 			goto out;
1414 		}
1415 
1416 		scsi_init_command(sdev, cmd);
1417 		req->special = cmd;
1418 	}
1419 
1420 	cmd->tag = req->tag;
1421 	cmd->request = req;
1422 	cmd->prot_op = SCSI_PROT_NORMAL;
1423 
1424 	ret = scsi_setup_cmnd(sdev, req);
1425 out:
1426 	return scsi_prep_return(q, req, ret);
1427 }
1428 
1429 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1430 {
1431 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1432 }
1433 
1434 /*
1435  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1436  * return 0.
1437  *
1438  * Called with the queue_lock held.
1439  */
1440 static inline int scsi_dev_queue_ready(struct request_queue *q,
1441 				  struct scsi_device *sdev)
1442 {
1443 	unsigned int busy;
1444 
1445 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1446 	if (atomic_read(&sdev->device_blocked)) {
1447 		if (busy)
1448 			goto out_dec;
1449 
1450 		/*
1451 		 * unblock after device_blocked iterates to zero
1452 		 */
1453 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1454 			/*
1455 			 * For the MQ case we take care of this in the caller.
1456 			 */
1457 			if (!q->mq_ops)
1458 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1459 			goto out_dec;
1460 		}
1461 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1462 				   "unblocking device at zero depth\n"));
1463 	}
1464 
1465 	if (busy >= sdev->queue_depth)
1466 		goto out_dec;
1467 
1468 	return 1;
1469 out_dec:
1470 	atomic_dec(&sdev->device_busy);
1471 	return 0;
1472 }
1473 
1474 /*
1475  * scsi_target_queue_ready: checks if there we can send commands to target
1476  * @sdev: scsi device on starget to check.
1477  */
1478 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1479 					   struct scsi_device *sdev)
1480 {
1481 	struct scsi_target *starget = scsi_target(sdev);
1482 	unsigned int busy;
1483 
1484 	if (starget->single_lun) {
1485 		spin_lock_irq(shost->host_lock);
1486 		if (starget->starget_sdev_user &&
1487 		    starget->starget_sdev_user != sdev) {
1488 			spin_unlock_irq(shost->host_lock);
1489 			return 0;
1490 		}
1491 		starget->starget_sdev_user = sdev;
1492 		spin_unlock_irq(shost->host_lock);
1493 	}
1494 
1495 	if (starget->can_queue <= 0)
1496 		return 1;
1497 
1498 	busy = atomic_inc_return(&starget->target_busy) - 1;
1499 	if (atomic_read(&starget->target_blocked) > 0) {
1500 		if (busy)
1501 			goto starved;
1502 
1503 		/*
1504 		 * unblock after target_blocked iterates to zero
1505 		 */
1506 		if (atomic_dec_return(&starget->target_blocked) > 0)
1507 			goto out_dec;
1508 
1509 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1510 				 "unblocking target at zero depth\n"));
1511 	}
1512 
1513 	if (busy >= starget->can_queue)
1514 		goto starved;
1515 
1516 	return 1;
1517 
1518 starved:
1519 	spin_lock_irq(shost->host_lock);
1520 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1521 	spin_unlock_irq(shost->host_lock);
1522 out_dec:
1523 	if (starget->can_queue > 0)
1524 		atomic_dec(&starget->target_busy);
1525 	return 0;
1526 }
1527 
1528 /*
1529  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1530  * return 0. We must end up running the queue again whenever 0 is
1531  * returned, else IO can hang.
1532  */
1533 static inline int scsi_host_queue_ready(struct request_queue *q,
1534 				   struct Scsi_Host *shost,
1535 				   struct scsi_device *sdev)
1536 {
1537 	unsigned int busy;
1538 
1539 	if (scsi_host_in_recovery(shost))
1540 		return 0;
1541 
1542 	busy = atomic_inc_return(&shost->host_busy) - 1;
1543 	if (atomic_read(&shost->host_blocked) > 0) {
1544 		if (busy)
1545 			goto starved;
1546 
1547 		/*
1548 		 * unblock after host_blocked iterates to zero
1549 		 */
1550 		if (atomic_dec_return(&shost->host_blocked) > 0)
1551 			goto out_dec;
1552 
1553 		SCSI_LOG_MLQUEUE(3,
1554 			shost_printk(KERN_INFO, shost,
1555 				     "unblocking host at zero depth\n"));
1556 	}
1557 
1558 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1559 		goto starved;
1560 	if (shost->host_self_blocked)
1561 		goto starved;
1562 
1563 	/* We're OK to process the command, so we can't be starved */
1564 	if (!list_empty(&sdev->starved_entry)) {
1565 		spin_lock_irq(shost->host_lock);
1566 		if (!list_empty(&sdev->starved_entry))
1567 			list_del_init(&sdev->starved_entry);
1568 		spin_unlock_irq(shost->host_lock);
1569 	}
1570 
1571 	return 1;
1572 
1573 starved:
1574 	spin_lock_irq(shost->host_lock);
1575 	if (list_empty(&sdev->starved_entry))
1576 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1577 	spin_unlock_irq(shost->host_lock);
1578 out_dec:
1579 	scsi_dec_host_busy(shost);
1580 	return 0;
1581 }
1582 
1583 /*
1584  * Busy state exporting function for request stacking drivers.
1585  *
1586  * For efficiency, no lock is taken to check the busy state of
1587  * shost/starget/sdev, since the returned value is not guaranteed and
1588  * may be changed after request stacking drivers call the function,
1589  * regardless of taking lock or not.
1590  *
1591  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1592  * needs to return 'not busy'. Otherwise, request stacking drivers
1593  * may hold requests forever.
1594  */
1595 static int scsi_lld_busy(struct request_queue *q)
1596 {
1597 	struct scsi_device *sdev = q->queuedata;
1598 	struct Scsi_Host *shost;
1599 
1600 	if (blk_queue_dying(q))
1601 		return 0;
1602 
1603 	shost = sdev->host;
1604 
1605 	/*
1606 	 * Ignore host/starget busy state.
1607 	 * Since block layer does not have a concept of fairness across
1608 	 * multiple queues, congestion of host/starget needs to be handled
1609 	 * in SCSI layer.
1610 	 */
1611 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1612 		return 1;
1613 
1614 	return 0;
1615 }
1616 
1617 /*
1618  * Kill a request for a dead device
1619  */
1620 static void scsi_kill_request(struct request *req, struct request_queue *q)
1621 {
1622 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1623 	struct scsi_device *sdev;
1624 	struct scsi_target *starget;
1625 	struct Scsi_Host *shost;
1626 
1627 	blk_start_request(req);
1628 
1629 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1630 
1631 	sdev = cmd->device;
1632 	starget = scsi_target(sdev);
1633 	shost = sdev->host;
1634 	scsi_init_cmd_errh(cmd);
1635 	cmd->result = DID_NO_CONNECT << 16;
1636 	atomic_inc(&cmd->device->iorequest_cnt);
1637 
1638 	/*
1639 	 * SCSI request completion path will do scsi_device_unbusy(),
1640 	 * bump busy counts.  To bump the counters, we need to dance
1641 	 * with the locks as normal issue path does.
1642 	 */
1643 	atomic_inc(&sdev->device_busy);
1644 	atomic_inc(&shost->host_busy);
1645 	if (starget->can_queue > 0)
1646 		atomic_inc(&starget->target_busy);
1647 
1648 	blk_complete_request(req);
1649 }
1650 
1651 static void scsi_softirq_done(struct request *rq)
1652 {
1653 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1654 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1655 	int disposition;
1656 
1657 	INIT_LIST_HEAD(&cmd->eh_entry);
1658 
1659 	atomic_inc(&cmd->device->iodone_cnt);
1660 	if (cmd->result)
1661 		atomic_inc(&cmd->device->ioerr_cnt);
1662 
1663 	disposition = scsi_decide_disposition(cmd);
1664 	if (disposition != SUCCESS &&
1665 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1666 		sdev_printk(KERN_ERR, cmd->device,
1667 			    "timing out command, waited %lus\n",
1668 			    wait_for/HZ);
1669 		disposition = SUCCESS;
1670 	}
1671 
1672 	scsi_log_completion(cmd, disposition);
1673 
1674 	switch (disposition) {
1675 		case SUCCESS:
1676 			scsi_finish_command(cmd);
1677 			break;
1678 		case NEEDS_RETRY:
1679 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1680 			break;
1681 		case ADD_TO_MLQUEUE:
1682 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1683 			break;
1684 		default:
1685 			scsi_eh_scmd_add(cmd);
1686 			break;
1687 	}
1688 }
1689 
1690 /**
1691  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1692  * @cmd: command block we are dispatching.
1693  *
1694  * Return: nonzero return request was rejected and device's queue needs to be
1695  * plugged.
1696  */
1697 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1698 {
1699 	struct Scsi_Host *host = cmd->device->host;
1700 	int rtn = 0;
1701 
1702 	atomic_inc(&cmd->device->iorequest_cnt);
1703 
1704 	/* check if the device is still usable */
1705 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1706 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1707 		 * returns an immediate error upwards, and signals
1708 		 * that the device is no longer present */
1709 		cmd->result = DID_NO_CONNECT << 16;
1710 		goto done;
1711 	}
1712 
1713 	/* Check to see if the scsi lld made this device blocked. */
1714 	if (unlikely(scsi_device_blocked(cmd->device))) {
1715 		/*
1716 		 * in blocked state, the command is just put back on
1717 		 * the device queue.  The suspend state has already
1718 		 * blocked the queue so future requests should not
1719 		 * occur until the device transitions out of the
1720 		 * suspend state.
1721 		 */
1722 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1723 			"queuecommand : device blocked\n"));
1724 		return SCSI_MLQUEUE_DEVICE_BUSY;
1725 	}
1726 
1727 	/* Store the LUN value in cmnd, if needed. */
1728 	if (cmd->device->lun_in_cdb)
1729 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1730 			       (cmd->device->lun << 5 & 0xe0);
1731 
1732 	scsi_log_send(cmd);
1733 
1734 	/*
1735 	 * Before we queue this command, check if the command
1736 	 * length exceeds what the host adapter can handle.
1737 	 */
1738 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1739 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1740 			       "queuecommand : command too long. "
1741 			       "cdb_size=%d host->max_cmd_len=%d\n",
1742 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1743 		cmd->result = (DID_ABORT << 16);
1744 		goto done;
1745 	}
1746 
1747 	if (unlikely(host->shost_state == SHOST_DEL)) {
1748 		cmd->result = (DID_NO_CONNECT << 16);
1749 		goto done;
1750 
1751 	}
1752 
1753 	trace_scsi_dispatch_cmd_start(cmd);
1754 	rtn = host->hostt->queuecommand(host, cmd);
1755 	if (rtn) {
1756 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1757 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1758 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1759 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1760 
1761 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1762 			"queuecommand : request rejected\n"));
1763 	}
1764 
1765 	return rtn;
1766  done:
1767 	cmd->scsi_done(cmd);
1768 	return 0;
1769 }
1770 
1771 /**
1772  * scsi_done - Invoke completion on finished SCSI command.
1773  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1774  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1775  *
1776  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1777  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1778  * calls blk_complete_request() for further processing.
1779  *
1780  * This function is interrupt context safe.
1781  */
1782 static void scsi_done(struct scsi_cmnd *cmd)
1783 {
1784 	trace_scsi_dispatch_cmd_done(cmd);
1785 	blk_complete_request(cmd->request);
1786 }
1787 
1788 /*
1789  * Function:    scsi_request_fn()
1790  *
1791  * Purpose:     Main strategy routine for SCSI.
1792  *
1793  * Arguments:   q       - Pointer to actual queue.
1794  *
1795  * Returns:     Nothing
1796  *
1797  * Lock status: request queue lock assumed to be held when called.
1798  *
1799  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1800  * protection for ZBC disks.
1801  */
1802 static void scsi_request_fn(struct request_queue *q)
1803 	__releases(q->queue_lock)
1804 	__acquires(q->queue_lock)
1805 {
1806 	struct scsi_device *sdev = q->queuedata;
1807 	struct Scsi_Host *shost;
1808 	struct scsi_cmnd *cmd;
1809 	struct request *req;
1810 
1811 	/*
1812 	 * To start with, we keep looping until the queue is empty, or until
1813 	 * the host is no longer able to accept any more requests.
1814 	 */
1815 	shost = sdev->host;
1816 	for (;;) {
1817 		int rtn;
1818 		/*
1819 		 * get next queueable request.  We do this early to make sure
1820 		 * that the request is fully prepared even if we cannot
1821 		 * accept it.
1822 		 */
1823 		req = blk_peek_request(q);
1824 		if (!req)
1825 			break;
1826 
1827 		if (unlikely(!scsi_device_online(sdev))) {
1828 			sdev_printk(KERN_ERR, sdev,
1829 				    "rejecting I/O to offline device\n");
1830 			scsi_kill_request(req, q);
1831 			continue;
1832 		}
1833 
1834 		if (!scsi_dev_queue_ready(q, sdev))
1835 			break;
1836 
1837 		/*
1838 		 * Remove the request from the request list.
1839 		 */
1840 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1841 			blk_start_request(req);
1842 
1843 		spin_unlock_irq(q->queue_lock);
1844 		cmd = blk_mq_rq_to_pdu(req);
1845 		if (cmd != req->special) {
1846 			printk(KERN_CRIT "impossible request in %s.\n"
1847 					 "please mail a stack trace to "
1848 					 "linux-scsi@vger.kernel.org\n",
1849 					 __func__);
1850 			blk_dump_rq_flags(req, "foo");
1851 			BUG();
1852 		}
1853 
1854 		/*
1855 		 * We hit this when the driver is using a host wide
1856 		 * tag map. For device level tag maps the queue_depth check
1857 		 * in the device ready fn would prevent us from trying
1858 		 * to allocate a tag. Since the map is a shared host resource
1859 		 * we add the dev to the starved list so it eventually gets
1860 		 * a run when a tag is freed.
1861 		 */
1862 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1863 			spin_lock_irq(shost->host_lock);
1864 			if (list_empty(&sdev->starved_entry))
1865 				list_add_tail(&sdev->starved_entry,
1866 					      &shost->starved_list);
1867 			spin_unlock_irq(shost->host_lock);
1868 			goto not_ready;
1869 		}
1870 
1871 		if (!scsi_target_queue_ready(shost, sdev))
1872 			goto not_ready;
1873 
1874 		if (!scsi_host_queue_ready(q, shost, sdev))
1875 			goto host_not_ready;
1876 
1877 		if (sdev->simple_tags)
1878 			cmd->flags |= SCMD_TAGGED;
1879 		else
1880 			cmd->flags &= ~SCMD_TAGGED;
1881 
1882 		/*
1883 		 * Finally, initialize any error handling parameters, and set up
1884 		 * the timers for timeouts.
1885 		 */
1886 		scsi_init_cmd_errh(cmd);
1887 
1888 		/*
1889 		 * Dispatch the command to the low-level driver.
1890 		 */
1891 		cmd->scsi_done = scsi_done;
1892 		rtn = scsi_dispatch_cmd(cmd);
1893 		if (rtn) {
1894 			scsi_queue_insert(cmd, rtn);
1895 			spin_lock_irq(q->queue_lock);
1896 			goto out_delay;
1897 		}
1898 		spin_lock_irq(q->queue_lock);
1899 	}
1900 
1901 	return;
1902 
1903  host_not_ready:
1904 	if (scsi_target(sdev)->can_queue > 0)
1905 		atomic_dec(&scsi_target(sdev)->target_busy);
1906  not_ready:
1907 	/*
1908 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1909 	 * must return with queue_lock held.
1910 	 *
1911 	 * Decrementing device_busy without checking it is OK, as all such
1912 	 * cases (host limits or settings) should run the queue at some
1913 	 * later time.
1914 	 */
1915 	spin_lock_irq(q->queue_lock);
1916 	blk_requeue_request(q, req);
1917 	atomic_dec(&sdev->device_busy);
1918 out_delay:
1919 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1920 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1921 }
1922 
1923 static inline blk_status_t prep_to_mq(int ret)
1924 {
1925 	switch (ret) {
1926 	case BLKPREP_OK:
1927 		return BLK_STS_OK;
1928 	case BLKPREP_DEFER:
1929 		return BLK_STS_RESOURCE;
1930 	default:
1931 		return BLK_STS_IOERR;
1932 	}
1933 }
1934 
1935 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1936 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1937 {
1938 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1939 		sizeof(struct scatterlist);
1940 }
1941 
1942 static int scsi_mq_prep_fn(struct request *req)
1943 {
1944 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1945 	struct scsi_device *sdev = req->q->queuedata;
1946 	struct Scsi_Host *shost = sdev->host;
1947 	struct scatterlist *sg;
1948 
1949 	scsi_init_command(sdev, cmd);
1950 
1951 	req->special = cmd;
1952 
1953 	cmd->request = req;
1954 
1955 	cmd->tag = req->tag;
1956 	cmd->prot_op = SCSI_PROT_NORMAL;
1957 
1958 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1959 	cmd->sdb.table.sgl = sg;
1960 
1961 	if (scsi_host_get_prot(shost)) {
1962 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1963 
1964 		cmd->prot_sdb->table.sgl =
1965 			(struct scatterlist *)(cmd->prot_sdb + 1);
1966 	}
1967 
1968 	if (blk_bidi_rq(req)) {
1969 		struct request *next_rq = req->next_rq;
1970 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1971 
1972 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1973 		bidi_sdb->table.sgl =
1974 			(struct scatterlist *)(bidi_sdb + 1);
1975 
1976 		next_rq->special = bidi_sdb;
1977 	}
1978 
1979 	blk_mq_start_request(req);
1980 
1981 	return scsi_setup_cmnd(sdev, req);
1982 }
1983 
1984 static void scsi_mq_done(struct scsi_cmnd *cmd)
1985 {
1986 	trace_scsi_dispatch_cmd_done(cmd);
1987 	blk_mq_complete_request(cmd->request);
1988 }
1989 
1990 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1991 {
1992 	struct request_queue *q = hctx->queue;
1993 	struct scsi_device *sdev = q->queuedata;
1994 
1995 	atomic_dec(&sdev->device_busy);
1996 	put_device(&sdev->sdev_gendev);
1997 }
1998 
1999 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2000 {
2001 	struct request_queue *q = hctx->queue;
2002 	struct scsi_device *sdev = q->queuedata;
2003 
2004 	if (!get_device(&sdev->sdev_gendev))
2005 		goto out;
2006 	if (!scsi_dev_queue_ready(q, sdev))
2007 		goto out_put_device;
2008 
2009 	return true;
2010 
2011 out_put_device:
2012 	put_device(&sdev->sdev_gendev);
2013 out:
2014 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2015 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2016 	return false;
2017 }
2018 
2019 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2020 			 const struct blk_mq_queue_data *bd)
2021 {
2022 	struct request *req = bd->rq;
2023 	struct request_queue *q = req->q;
2024 	struct scsi_device *sdev = q->queuedata;
2025 	struct Scsi_Host *shost = sdev->host;
2026 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2027 	blk_status_t ret;
2028 	int reason;
2029 
2030 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2031 	if (ret != BLK_STS_OK)
2032 		goto out_put_budget;
2033 
2034 	ret = BLK_STS_RESOURCE;
2035 	if (!scsi_target_queue_ready(shost, sdev))
2036 		goto out_put_budget;
2037 	if (!scsi_host_queue_ready(q, shost, sdev))
2038 		goto out_dec_target_busy;
2039 
2040 	if (!(req->rq_flags & RQF_DONTPREP)) {
2041 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2042 		if (ret != BLK_STS_OK)
2043 			goto out_dec_host_busy;
2044 		req->rq_flags |= RQF_DONTPREP;
2045 	} else {
2046 		blk_mq_start_request(req);
2047 	}
2048 
2049 	if (sdev->simple_tags)
2050 		cmd->flags |= SCMD_TAGGED;
2051 	else
2052 		cmd->flags &= ~SCMD_TAGGED;
2053 
2054 	scsi_init_cmd_errh(cmd);
2055 	cmd->scsi_done = scsi_mq_done;
2056 
2057 	reason = scsi_dispatch_cmd(cmd);
2058 	if (reason) {
2059 		scsi_set_blocked(cmd, reason);
2060 		ret = BLK_STS_RESOURCE;
2061 		goto out_dec_host_busy;
2062 	}
2063 
2064 	return BLK_STS_OK;
2065 
2066 out_dec_host_busy:
2067 	scsi_dec_host_busy(shost);
2068 out_dec_target_busy:
2069 	if (scsi_target(sdev)->can_queue > 0)
2070 		atomic_dec(&scsi_target(sdev)->target_busy);
2071 out_put_budget:
2072 	scsi_mq_put_budget(hctx);
2073 	switch (ret) {
2074 	case BLK_STS_OK:
2075 		break;
2076 	case BLK_STS_RESOURCE:
2077 		if (atomic_read(&sdev->device_busy) ||
2078 		    scsi_device_blocked(sdev))
2079 			ret = BLK_STS_DEV_RESOURCE;
2080 		break;
2081 	default:
2082 		/*
2083 		 * Make sure to release all allocated ressources when
2084 		 * we hit an error, as we will never see this command
2085 		 * again.
2086 		 */
2087 		if (req->rq_flags & RQF_DONTPREP)
2088 			scsi_mq_uninit_cmd(cmd);
2089 		break;
2090 	}
2091 	return ret;
2092 }
2093 
2094 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2095 		bool reserved)
2096 {
2097 	if (reserved)
2098 		return BLK_EH_RESET_TIMER;
2099 	return scsi_times_out(req);
2100 }
2101 
2102 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2103 				unsigned int hctx_idx, unsigned int numa_node)
2104 {
2105 	struct Scsi_Host *shost = set->driver_data;
2106 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2107 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2108 	struct scatterlist *sg;
2109 
2110 	if (unchecked_isa_dma)
2111 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2112 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2113 						    GFP_KERNEL, numa_node);
2114 	if (!cmd->sense_buffer)
2115 		return -ENOMEM;
2116 	cmd->req.sense = cmd->sense_buffer;
2117 
2118 	if (scsi_host_get_prot(shost)) {
2119 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2120 			shost->hostt->cmd_size;
2121 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2128 				 unsigned int hctx_idx)
2129 {
2130 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2131 
2132 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2133 			       cmd->sense_buffer);
2134 }
2135 
2136 static int scsi_map_queues(struct blk_mq_tag_set *set)
2137 {
2138 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2139 
2140 	if (shost->hostt->map_queues)
2141 		return shost->hostt->map_queues(shost);
2142 	return blk_mq_map_queues(set);
2143 }
2144 
2145 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2146 {
2147 	struct device *host_dev;
2148 	u64 bounce_limit = 0xffffffff;
2149 
2150 	if (shost->unchecked_isa_dma)
2151 		return BLK_BOUNCE_ISA;
2152 	/*
2153 	 * Platforms with virtual-DMA translation
2154 	 * hardware have no practical limit.
2155 	 */
2156 	if (!PCI_DMA_BUS_IS_PHYS)
2157 		return BLK_BOUNCE_ANY;
2158 
2159 	host_dev = scsi_get_device(shost);
2160 	if (host_dev && host_dev->dma_mask)
2161 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2162 
2163 	return bounce_limit;
2164 }
2165 
2166 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2167 {
2168 	struct device *dev = shost->dma_dev;
2169 
2170 	/*
2171 	 * this limit is imposed by hardware restrictions
2172 	 */
2173 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2174 					SG_MAX_SEGMENTS));
2175 
2176 	if (scsi_host_prot_dma(shost)) {
2177 		shost->sg_prot_tablesize =
2178 			min_not_zero(shost->sg_prot_tablesize,
2179 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2180 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2181 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2182 	}
2183 
2184 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2185 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2186 	blk_queue_segment_boundary(q, shost->dma_boundary);
2187 	dma_set_seg_boundary(dev, shost->dma_boundary);
2188 
2189 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2190 
2191 	if (!shost->use_clustering)
2192 		q->limits.cluster = 0;
2193 
2194 	/*
2195 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2196 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2197 	 * which is set by the platform.
2198 	 *
2199 	 * Devices that require a bigger alignment can increase it later.
2200 	 */
2201 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2202 }
2203 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2204 
2205 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2206 			    gfp_t gfp)
2207 {
2208 	struct Scsi_Host *shost = q->rq_alloc_data;
2209 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2210 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2211 
2212 	memset(cmd, 0, sizeof(*cmd));
2213 
2214 	if (unchecked_isa_dma)
2215 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2216 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2217 						    NUMA_NO_NODE);
2218 	if (!cmd->sense_buffer)
2219 		goto fail;
2220 	cmd->req.sense = cmd->sense_buffer;
2221 
2222 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2223 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2224 		if (!cmd->prot_sdb)
2225 			goto fail_free_sense;
2226 	}
2227 
2228 	return 0;
2229 
2230 fail_free_sense:
2231 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2232 fail:
2233 	return -ENOMEM;
2234 }
2235 
2236 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2237 {
2238 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2239 
2240 	if (cmd->prot_sdb)
2241 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2242 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2243 			       cmd->sense_buffer);
2244 }
2245 
2246 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2247 {
2248 	struct Scsi_Host *shost = sdev->host;
2249 	struct request_queue *q;
2250 
2251 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2252 	if (!q)
2253 		return NULL;
2254 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2255 	q->rq_alloc_data = shost;
2256 	q->request_fn = scsi_request_fn;
2257 	q->init_rq_fn = scsi_old_init_rq;
2258 	q->exit_rq_fn = scsi_old_exit_rq;
2259 	q->initialize_rq_fn = scsi_initialize_rq;
2260 
2261 	if (blk_init_allocated_queue(q) < 0) {
2262 		blk_cleanup_queue(q);
2263 		return NULL;
2264 	}
2265 
2266 	__scsi_init_queue(shost, q);
2267 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2268 	blk_queue_prep_rq(q, scsi_prep_fn);
2269 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2270 	blk_queue_softirq_done(q, scsi_softirq_done);
2271 	blk_queue_rq_timed_out(q, scsi_times_out);
2272 	blk_queue_lld_busy(q, scsi_lld_busy);
2273 	return q;
2274 }
2275 
2276 static const struct blk_mq_ops scsi_mq_ops = {
2277 	.get_budget	= scsi_mq_get_budget,
2278 	.put_budget	= scsi_mq_put_budget,
2279 	.queue_rq	= scsi_queue_rq,
2280 	.complete	= scsi_softirq_done,
2281 	.timeout	= scsi_timeout,
2282 #ifdef CONFIG_BLK_DEBUG_FS
2283 	.show_rq	= scsi_show_rq,
2284 #endif
2285 	.init_request	= scsi_mq_init_request,
2286 	.exit_request	= scsi_mq_exit_request,
2287 	.initialize_rq_fn = scsi_initialize_rq,
2288 	.map_queues	= scsi_map_queues,
2289 };
2290 
2291 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2292 {
2293 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2294 	if (IS_ERR(sdev->request_queue))
2295 		return NULL;
2296 
2297 	sdev->request_queue->queuedata = sdev;
2298 	__scsi_init_queue(sdev->host, sdev->request_queue);
2299 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2300 	return sdev->request_queue;
2301 }
2302 
2303 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2304 {
2305 	unsigned int cmd_size, sgl_size;
2306 
2307 	sgl_size = scsi_mq_sgl_size(shost);
2308 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2309 	if (scsi_host_get_prot(shost))
2310 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2311 
2312 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2313 	shost->tag_set.ops = &scsi_mq_ops;
2314 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2315 	shost->tag_set.queue_depth = shost->can_queue;
2316 	shost->tag_set.cmd_size = cmd_size;
2317 	shost->tag_set.numa_node = NUMA_NO_NODE;
2318 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2319 	shost->tag_set.flags |=
2320 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2321 	shost->tag_set.driver_data = shost;
2322 
2323 	return blk_mq_alloc_tag_set(&shost->tag_set);
2324 }
2325 
2326 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2327 {
2328 	blk_mq_free_tag_set(&shost->tag_set);
2329 }
2330 
2331 /**
2332  * scsi_device_from_queue - return sdev associated with a request_queue
2333  * @q: The request queue to return the sdev from
2334  *
2335  * Return the sdev associated with a request queue or NULL if the
2336  * request_queue does not reference a SCSI device.
2337  */
2338 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2339 {
2340 	struct scsi_device *sdev = NULL;
2341 
2342 	if (q->mq_ops) {
2343 		if (q->mq_ops == &scsi_mq_ops)
2344 			sdev = q->queuedata;
2345 	} else if (q->request_fn == scsi_request_fn)
2346 		sdev = q->queuedata;
2347 	if (!sdev || !get_device(&sdev->sdev_gendev))
2348 		sdev = NULL;
2349 
2350 	return sdev;
2351 }
2352 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2353 
2354 /*
2355  * Function:    scsi_block_requests()
2356  *
2357  * Purpose:     Utility function used by low-level drivers to prevent further
2358  *		commands from being queued to the device.
2359  *
2360  * Arguments:   shost       - Host in question
2361  *
2362  * Returns:     Nothing
2363  *
2364  * Lock status: No locks are assumed held.
2365  *
2366  * Notes:       There is no timer nor any other means by which the requests
2367  *		get unblocked other than the low-level driver calling
2368  *		scsi_unblock_requests().
2369  */
2370 void scsi_block_requests(struct Scsi_Host *shost)
2371 {
2372 	shost->host_self_blocked = 1;
2373 }
2374 EXPORT_SYMBOL(scsi_block_requests);
2375 
2376 /*
2377  * Function:    scsi_unblock_requests()
2378  *
2379  * Purpose:     Utility function used by low-level drivers to allow further
2380  *		commands from being queued to the device.
2381  *
2382  * Arguments:   shost       - Host in question
2383  *
2384  * Returns:     Nothing
2385  *
2386  * Lock status: No locks are assumed held.
2387  *
2388  * Notes:       There is no timer nor any other means by which the requests
2389  *		get unblocked other than the low-level driver calling
2390  *		scsi_unblock_requests().
2391  *
2392  *		This is done as an API function so that changes to the
2393  *		internals of the scsi mid-layer won't require wholesale
2394  *		changes to drivers that use this feature.
2395  */
2396 void scsi_unblock_requests(struct Scsi_Host *shost)
2397 {
2398 	shost->host_self_blocked = 0;
2399 	scsi_run_host_queues(shost);
2400 }
2401 EXPORT_SYMBOL(scsi_unblock_requests);
2402 
2403 int __init scsi_init_queue(void)
2404 {
2405 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2406 					   sizeof(struct scsi_data_buffer),
2407 					   0, 0, NULL);
2408 	if (!scsi_sdb_cache) {
2409 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2410 		return -ENOMEM;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 void scsi_exit_queue(void)
2417 {
2418 	kmem_cache_destroy(scsi_sense_cache);
2419 	kmem_cache_destroy(scsi_sense_isadma_cache);
2420 	kmem_cache_destroy(scsi_sdb_cache);
2421 }
2422 
2423 /**
2424  *	scsi_mode_select - issue a mode select
2425  *	@sdev:	SCSI device to be queried
2426  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2427  *	@sp:	Save page bit (0 == don't save, 1 == save)
2428  *	@modepage: mode page being requested
2429  *	@buffer: request buffer (may not be smaller than eight bytes)
2430  *	@len:	length of request buffer.
2431  *	@timeout: command timeout
2432  *	@retries: number of retries before failing
2433  *	@data: returns a structure abstracting the mode header data
2434  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2435  *		must be SCSI_SENSE_BUFFERSIZE big.
2436  *
2437  *	Returns zero if successful; negative error number or scsi
2438  *	status on error
2439  *
2440  */
2441 int
2442 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2443 		 unsigned char *buffer, int len, int timeout, int retries,
2444 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2445 {
2446 	unsigned char cmd[10];
2447 	unsigned char *real_buffer;
2448 	int ret;
2449 
2450 	memset(cmd, 0, sizeof(cmd));
2451 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2452 
2453 	if (sdev->use_10_for_ms) {
2454 		if (len > 65535)
2455 			return -EINVAL;
2456 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2457 		if (!real_buffer)
2458 			return -ENOMEM;
2459 		memcpy(real_buffer + 8, buffer, len);
2460 		len += 8;
2461 		real_buffer[0] = 0;
2462 		real_buffer[1] = 0;
2463 		real_buffer[2] = data->medium_type;
2464 		real_buffer[3] = data->device_specific;
2465 		real_buffer[4] = data->longlba ? 0x01 : 0;
2466 		real_buffer[5] = 0;
2467 		real_buffer[6] = data->block_descriptor_length >> 8;
2468 		real_buffer[7] = data->block_descriptor_length;
2469 
2470 		cmd[0] = MODE_SELECT_10;
2471 		cmd[7] = len >> 8;
2472 		cmd[8] = len;
2473 	} else {
2474 		if (len > 255 || data->block_descriptor_length > 255 ||
2475 		    data->longlba)
2476 			return -EINVAL;
2477 
2478 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2479 		if (!real_buffer)
2480 			return -ENOMEM;
2481 		memcpy(real_buffer + 4, buffer, len);
2482 		len += 4;
2483 		real_buffer[0] = 0;
2484 		real_buffer[1] = data->medium_type;
2485 		real_buffer[2] = data->device_specific;
2486 		real_buffer[3] = data->block_descriptor_length;
2487 
2488 
2489 		cmd[0] = MODE_SELECT;
2490 		cmd[4] = len;
2491 	}
2492 
2493 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2494 			       sshdr, timeout, retries, NULL);
2495 	kfree(real_buffer);
2496 	return ret;
2497 }
2498 EXPORT_SYMBOL_GPL(scsi_mode_select);
2499 
2500 /**
2501  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2502  *	@sdev:	SCSI device to be queried
2503  *	@dbd:	set if mode sense will allow block descriptors to be returned
2504  *	@modepage: mode page being requested
2505  *	@buffer: request buffer (may not be smaller than eight bytes)
2506  *	@len:	length of request buffer.
2507  *	@timeout: command timeout
2508  *	@retries: number of retries before failing
2509  *	@data: returns a structure abstracting the mode header data
2510  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2511  *		must be SCSI_SENSE_BUFFERSIZE big.
2512  *
2513  *	Returns zero if unsuccessful, or the header offset (either 4
2514  *	or 8 depending on whether a six or ten byte command was
2515  *	issued) if successful.
2516  */
2517 int
2518 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2519 		  unsigned char *buffer, int len, int timeout, int retries,
2520 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2521 {
2522 	unsigned char cmd[12];
2523 	int use_10_for_ms;
2524 	int header_length;
2525 	int result, retry_count = retries;
2526 	struct scsi_sense_hdr my_sshdr;
2527 
2528 	memset(data, 0, sizeof(*data));
2529 	memset(&cmd[0], 0, 12);
2530 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2531 	cmd[2] = modepage;
2532 
2533 	/* caller might not be interested in sense, but we need it */
2534 	if (!sshdr)
2535 		sshdr = &my_sshdr;
2536 
2537  retry:
2538 	use_10_for_ms = sdev->use_10_for_ms;
2539 
2540 	if (use_10_for_ms) {
2541 		if (len < 8)
2542 			len = 8;
2543 
2544 		cmd[0] = MODE_SENSE_10;
2545 		cmd[8] = len;
2546 		header_length = 8;
2547 	} else {
2548 		if (len < 4)
2549 			len = 4;
2550 
2551 		cmd[0] = MODE_SENSE;
2552 		cmd[4] = len;
2553 		header_length = 4;
2554 	}
2555 
2556 	memset(buffer, 0, len);
2557 
2558 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2559 				  sshdr, timeout, retries, NULL);
2560 
2561 	/* This code looks awful: what it's doing is making sure an
2562 	 * ILLEGAL REQUEST sense return identifies the actual command
2563 	 * byte as the problem.  MODE_SENSE commands can return
2564 	 * ILLEGAL REQUEST if the code page isn't supported */
2565 
2566 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2567 	    (driver_byte(result) & DRIVER_SENSE)) {
2568 		if (scsi_sense_valid(sshdr)) {
2569 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2570 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2571 				/*
2572 				 * Invalid command operation code
2573 				 */
2574 				sdev->use_10_for_ms = 0;
2575 				goto retry;
2576 			}
2577 		}
2578 	}
2579 
2580 	if(scsi_status_is_good(result)) {
2581 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2582 			     (modepage == 6 || modepage == 8))) {
2583 			/* Initio breakage? */
2584 			header_length = 0;
2585 			data->length = 13;
2586 			data->medium_type = 0;
2587 			data->device_specific = 0;
2588 			data->longlba = 0;
2589 			data->block_descriptor_length = 0;
2590 		} else if(use_10_for_ms) {
2591 			data->length = buffer[0]*256 + buffer[1] + 2;
2592 			data->medium_type = buffer[2];
2593 			data->device_specific = buffer[3];
2594 			data->longlba = buffer[4] & 0x01;
2595 			data->block_descriptor_length = buffer[6]*256
2596 				+ buffer[7];
2597 		} else {
2598 			data->length = buffer[0] + 1;
2599 			data->medium_type = buffer[1];
2600 			data->device_specific = buffer[2];
2601 			data->block_descriptor_length = buffer[3];
2602 		}
2603 		data->header_length = header_length;
2604 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2605 		   scsi_sense_valid(sshdr) &&
2606 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2607 		retry_count--;
2608 		goto retry;
2609 	}
2610 
2611 	return result;
2612 }
2613 EXPORT_SYMBOL(scsi_mode_sense);
2614 
2615 /**
2616  *	scsi_test_unit_ready - test if unit is ready
2617  *	@sdev:	scsi device to change the state of.
2618  *	@timeout: command timeout
2619  *	@retries: number of retries before failing
2620  *	@sshdr: outpout pointer for decoded sense information.
2621  *
2622  *	Returns zero if unsuccessful or an error if TUR failed.  For
2623  *	removable media, UNIT_ATTENTION sets ->changed flag.
2624  **/
2625 int
2626 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2627 		     struct scsi_sense_hdr *sshdr)
2628 {
2629 	char cmd[] = {
2630 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2631 	};
2632 	int result;
2633 
2634 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2635 	do {
2636 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2637 					  timeout, 1, NULL);
2638 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2639 		    sshdr->sense_key == UNIT_ATTENTION)
2640 			sdev->changed = 1;
2641 	} while (scsi_sense_valid(sshdr) &&
2642 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2643 
2644 	return result;
2645 }
2646 EXPORT_SYMBOL(scsi_test_unit_ready);
2647 
2648 /**
2649  *	scsi_device_set_state - Take the given device through the device state model.
2650  *	@sdev:	scsi device to change the state of.
2651  *	@state:	state to change to.
2652  *
2653  *	Returns zero if successful or an error if the requested
2654  *	transition is illegal.
2655  */
2656 int
2657 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2658 {
2659 	enum scsi_device_state oldstate = sdev->sdev_state;
2660 
2661 	if (state == oldstate)
2662 		return 0;
2663 
2664 	switch (state) {
2665 	case SDEV_CREATED:
2666 		switch (oldstate) {
2667 		case SDEV_CREATED_BLOCK:
2668 			break;
2669 		default:
2670 			goto illegal;
2671 		}
2672 		break;
2673 
2674 	case SDEV_RUNNING:
2675 		switch (oldstate) {
2676 		case SDEV_CREATED:
2677 		case SDEV_OFFLINE:
2678 		case SDEV_TRANSPORT_OFFLINE:
2679 		case SDEV_QUIESCE:
2680 		case SDEV_BLOCK:
2681 			break;
2682 		default:
2683 			goto illegal;
2684 		}
2685 		break;
2686 
2687 	case SDEV_QUIESCE:
2688 		switch (oldstate) {
2689 		case SDEV_RUNNING:
2690 		case SDEV_OFFLINE:
2691 		case SDEV_TRANSPORT_OFFLINE:
2692 			break;
2693 		default:
2694 			goto illegal;
2695 		}
2696 		break;
2697 
2698 	case SDEV_OFFLINE:
2699 	case SDEV_TRANSPORT_OFFLINE:
2700 		switch (oldstate) {
2701 		case SDEV_CREATED:
2702 		case SDEV_RUNNING:
2703 		case SDEV_QUIESCE:
2704 		case SDEV_BLOCK:
2705 			break;
2706 		default:
2707 			goto illegal;
2708 		}
2709 		break;
2710 
2711 	case SDEV_BLOCK:
2712 		switch (oldstate) {
2713 		case SDEV_RUNNING:
2714 		case SDEV_CREATED_BLOCK:
2715 			break;
2716 		default:
2717 			goto illegal;
2718 		}
2719 		break;
2720 
2721 	case SDEV_CREATED_BLOCK:
2722 		switch (oldstate) {
2723 		case SDEV_CREATED:
2724 			break;
2725 		default:
2726 			goto illegal;
2727 		}
2728 		break;
2729 
2730 	case SDEV_CANCEL:
2731 		switch (oldstate) {
2732 		case SDEV_CREATED:
2733 		case SDEV_RUNNING:
2734 		case SDEV_QUIESCE:
2735 		case SDEV_OFFLINE:
2736 		case SDEV_TRANSPORT_OFFLINE:
2737 			break;
2738 		default:
2739 			goto illegal;
2740 		}
2741 		break;
2742 
2743 	case SDEV_DEL:
2744 		switch (oldstate) {
2745 		case SDEV_CREATED:
2746 		case SDEV_RUNNING:
2747 		case SDEV_OFFLINE:
2748 		case SDEV_TRANSPORT_OFFLINE:
2749 		case SDEV_CANCEL:
2750 		case SDEV_BLOCK:
2751 		case SDEV_CREATED_BLOCK:
2752 			break;
2753 		default:
2754 			goto illegal;
2755 		}
2756 		break;
2757 
2758 	}
2759 	sdev->sdev_state = state;
2760 	return 0;
2761 
2762  illegal:
2763 	SCSI_LOG_ERROR_RECOVERY(1,
2764 				sdev_printk(KERN_ERR, sdev,
2765 					    "Illegal state transition %s->%s",
2766 					    scsi_device_state_name(oldstate),
2767 					    scsi_device_state_name(state))
2768 				);
2769 	return -EINVAL;
2770 }
2771 EXPORT_SYMBOL(scsi_device_set_state);
2772 
2773 /**
2774  * 	sdev_evt_emit - emit a single SCSI device uevent
2775  *	@sdev: associated SCSI device
2776  *	@evt: event to emit
2777  *
2778  *	Send a single uevent (scsi_event) to the associated scsi_device.
2779  */
2780 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2781 {
2782 	int idx = 0;
2783 	char *envp[3];
2784 
2785 	switch (evt->evt_type) {
2786 	case SDEV_EVT_MEDIA_CHANGE:
2787 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2788 		break;
2789 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2790 		scsi_rescan_device(&sdev->sdev_gendev);
2791 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2792 		break;
2793 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2794 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2795 		break;
2796 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2797 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2798 		break;
2799 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2800 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2801 		break;
2802 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2803 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2804 		break;
2805 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2806 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2807 		break;
2808 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2809 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2810 		break;
2811 	default:
2812 		/* do nothing */
2813 		break;
2814 	}
2815 
2816 	envp[idx++] = NULL;
2817 
2818 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2819 }
2820 
2821 /**
2822  * 	sdev_evt_thread - send a uevent for each scsi event
2823  *	@work: work struct for scsi_device
2824  *
2825  *	Dispatch queued events to their associated scsi_device kobjects
2826  *	as uevents.
2827  */
2828 void scsi_evt_thread(struct work_struct *work)
2829 {
2830 	struct scsi_device *sdev;
2831 	enum scsi_device_event evt_type;
2832 	LIST_HEAD(event_list);
2833 
2834 	sdev = container_of(work, struct scsi_device, event_work);
2835 
2836 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2837 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2838 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2839 
2840 	while (1) {
2841 		struct scsi_event *evt;
2842 		struct list_head *this, *tmp;
2843 		unsigned long flags;
2844 
2845 		spin_lock_irqsave(&sdev->list_lock, flags);
2846 		list_splice_init(&sdev->event_list, &event_list);
2847 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2848 
2849 		if (list_empty(&event_list))
2850 			break;
2851 
2852 		list_for_each_safe(this, tmp, &event_list) {
2853 			evt = list_entry(this, struct scsi_event, node);
2854 			list_del(&evt->node);
2855 			scsi_evt_emit(sdev, evt);
2856 			kfree(evt);
2857 		}
2858 	}
2859 }
2860 
2861 /**
2862  * 	sdev_evt_send - send asserted event to uevent thread
2863  *	@sdev: scsi_device event occurred on
2864  *	@evt: event to send
2865  *
2866  *	Assert scsi device event asynchronously.
2867  */
2868 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2869 {
2870 	unsigned long flags;
2871 
2872 #if 0
2873 	/* FIXME: currently this check eliminates all media change events
2874 	 * for polled devices.  Need to update to discriminate between AN
2875 	 * and polled events */
2876 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2877 		kfree(evt);
2878 		return;
2879 	}
2880 #endif
2881 
2882 	spin_lock_irqsave(&sdev->list_lock, flags);
2883 	list_add_tail(&evt->node, &sdev->event_list);
2884 	schedule_work(&sdev->event_work);
2885 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2886 }
2887 EXPORT_SYMBOL_GPL(sdev_evt_send);
2888 
2889 /**
2890  * 	sdev_evt_alloc - allocate a new scsi event
2891  *	@evt_type: type of event to allocate
2892  *	@gfpflags: GFP flags for allocation
2893  *
2894  *	Allocates and returns a new scsi_event.
2895  */
2896 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2897 				  gfp_t gfpflags)
2898 {
2899 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2900 	if (!evt)
2901 		return NULL;
2902 
2903 	evt->evt_type = evt_type;
2904 	INIT_LIST_HEAD(&evt->node);
2905 
2906 	/* evt_type-specific initialization, if any */
2907 	switch (evt_type) {
2908 	case SDEV_EVT_MEDIA_CHANGE:
2909 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2910 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2911 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2912 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2913 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2914 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2915 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2916 	default:
2917 		/* do nothing */
2918 		break;
2919 	}
2920 
2921 	return evt;
2922 }
2923 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2924 
2925 /**
2926  * 	sdev_evt_send_simple - send asserted event to uevent thread
2927  *	@sdev: scsi_device event occurred on
2928  *	@evt_type: type of event to send
2929  *	@gfpflags: GFP flags for allocation
2930  *
2931  *	Assert scsi device event asynchronously, given an event type.
2932  */
2933 void sdev_evt_send_simple(struct scsi_device *sdev,
2934 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2935 {
2936 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2937 	if (!evt) {
2938 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2939 			    evt_type);
2940 		return;
2941 	}
2942 
2943 	sdev_evt_send(sdev, evt);
2944 }
2945 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2946 
2947 /**
2948  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2949  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2950  */
2951 static int scsi_request_fn_active(struct scsi_device *sdev)
2952 {
2953 	struct request_queue *q = sdev->request_queue;
2954 	int request_fn_active;
2955 
2956 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2957 
2958 	spin_lock_irq(q->queue_lock);
2959 	request_fn_active = q->request_fn_active;
2960 	spin_unlock_irq(q->queue_lock);
2961 
2962 	return request_fn_active;
2963 }
2964 
2965 /**
2966  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2967  * @sdev: SCSI device pointer.
2968  *
2969  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2970  * invoked from scsi_request_fn() have finished.
2971  */
2972 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2973 {
2974 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2975 
2976 	while (scsi_request_fn_active(sdev))
2977 		msleep(20);
2978 }
2979 
2980 /**
2981  *	scsi_device_quiesce - Block user issued commands.
2982  *	@sdev:	scsi device to quiesce.
2983  *
2984  *	This works by trying to transition to the SDEV_QUIESCE state
2985  *	(which must be a legal transition).  When the device is in this
2986  *	state, only special requests will be accepted, all others will
2987  *	be deferred.  Since special requests may also be requeued requests,
2988  *	a successful return doesn't guarantee the device will be
2989  *	totally quiescent.
2990  *
2991  *	Must be called with user context, may sleep.
2992  *
2993  *	Returns zero if unsuccessful or an error if not.
2994  */
2995 int
2996 scsi_device_quiesce(struct scsi_device *sdev)
2997 {
2998 	struct request_queue *q = sdev->request_queue;
2999 	int err;
3000 
3001 	/*
3002 	 * It is allowed to call scsi_device_quiesce() multiple times from
3003 	 * the same context but concurrent scsi_device_quiesce() calls are
3004 	 * not allowed.
3005 	 */
3006 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3007 
3008 	blk_set_preempt_only(q);
3009 
3010 	blk_mq_freeze_queue(q);
3011 	/*
3012 	 * Ensure that the effect of blk_set_preempt_only() will be visible
3013 	 * for percpu_ref_tryget() callers that occur after the queue
3014 	 * unfreeze even if the queue was already frozen before this function
3015 	 * was called. See also https://lwn.net/Articles/573497/.
3016 	 */
3017 	synchronize_rcu();
3018 	blk_mq_unfreeze_queue(q);
3019 
3020 	mutex_lock(&sdev->state_mutex);
3021 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3022 	if (err == 0)
3023 		sdev->quiesced_by = current;
3024 	else
3025 		blk_clear_preempt_only(q);
3026 	mutex_unlock(&sdev->state_mutex);
3027 
3028 	return err;
3029 }
3030 EXPORT_SYMBOL(scsi_device_quiesce);
3031 
3032 /**
3033  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3034  *	@sdev:	scsi device to resume.
3035  *
3036  *	Moves the device from quiesced back to running and restarts the
3037  *	queues.
3038  *
3039  *	Must be called with user context, may sleep.
3040  */
3041 void scsi_device_resume(struct scsi_device *sdev)
3042 {
3043 	/* check if the device state was mutated prior to resume, and if
3044 	 * so assume the state is being managed elsewhere (for example
3045 	 * device deleted during suspend)
3046 	 */
3047 	mutex_lock(&sdev->state_mutex);
3048 	WARN_ON_ONCE(!sdev->quiesced_by);
3049 	sdev->quiesced_by = NULL;
3050 	blk_clear_preempt_only(sdev->request_queue);
3051 	if (sdev->sdev_state == SDEV_QUIESCE)
3052 		scsi_device_set_state(sdev, SDEV_RUNNING);
3053 	mutex_unlock(&sdev->state_mutex);
3054 }
3055 EXPORT_SYMBOL(scsi_device_resume);
3056 
3057 static void
3058 device_quiesce_fn(struct scsi_device *sdev, void *data)
3059 {
3060 	scsi_device_quiesce(sdev);
3061 }
3062 
3063 void
3064 scsi_target_quiesce(struct scsi_target *starget)
3065 {
3066 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3067 }
3068 EXPORT_SYMBOL(scsi_target_quiesce);
3069 
3070 static void
3071 device_resume_fn(struct scsi_device *sdev, void *data)
3072 {
3073 	scsi_device_resume(sdev);
3074 }
3075 
3076 void
3077 scsi_target_resume(struct scsi_target *starget)
3078 {
3079 	starget_for_each_device(starget, NULL, device_resume_fn);
3080 }
3081 EXPORT_SYMBOL(scsi_target_resume);
3082 
3083 /**
3084  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3085  * @sdev: device to block
3086  *
3087  * Pause SCSI command processing on the specified device. Does not sleep.
3088  *
3089  * Returns zero if successful or a negative error code upon failure.
3090  *
3091  * Notes:
3092  * This routine transitions the device to the SDEV_BLOCK state (which must be
3093  * a legal transition). When the device is in this state, command processing
3094  * is paused until the device leaves the SDEV_BLOCK state. See also
3095  * scsi_internal_device_unblock_nowait().
3096  */
3097 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3098 {
3099 	struct request_queue *q = sdev->request_queue;
3100 	unsigned long flags;
3101 	int err = 0;
3102 
3103 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3104 	if (err) {
3105 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3106 
3107 		if (err)
3108 			return err;
3109 	}
3110 
3111 	/*
3112 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3113 	 * block layer from calling the midlayer with this device's
3114 	 * request queue.
3115 	 */
3116 	if (q->mq_ops) {
3117 		blk_mq_quiesce_queue_nowait(q);
3118 	} else {
3119 		spin_lock_irqsave(q->queue_lock, flags);
3120 		blk_stop_queue(q);
3121 		spin_unlock_irqrestore(q->queue_lock, flags);
3122 	}
3123 
3124 	return 0;
3125 }
3126 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3127 
3128 /**
3129  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3130  * @sdev: device to block
3131  *
3132  * Pause SCSI command processing on the specified device and wait until all
3133  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3134  *
3135  * Returns zero if successful or a negative error code upon failure.
3136  *
3137  * Note:
3138  * This routine transitions the device to the SDEV_BLOCK state (which must be
3139  * a legal transition). When the device is in this state, command processing
3140  * is paused until the device leaves the SDEV_BLOCK state. See also
3141  * scsi_internal_device_unblock().
3142  *
3143  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3144  * scsi_internal_device_block() has blocked a SCSI device and also
3145  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3146  */
3147 static int scsi_internal_device_block(struct scsi_device *sdev)
3148 {
3149 	struct request_queue *q = sdev->request_queue;
3150 	int err;
3151 
3152 	mutex_lock(&sdev->state_mutex);
3153 	err = scsi_internal_device_block_nowait(sdev);
3154 	if (err == 0) {
3155 		if (q->mq_ops)
3156 			blk_mq_quiesce_queue(q);
3157 		else
3158 			scsi_wait_for_queuecommand(sdev);
3159 	}
3160 	mutex_unlock(&sdev->state_mutex);
3161 
3162 	return err;
3163 }
3164 
3165 void scsi_start_queue(struct scsi_device *sdev)
3166 {
3167 	struct request_queue *q = sdev->request_queue;
3168 	unsigned long flags;
3169 
3170 	if (q->mq_ops) {
3171 		blk_mq_unquiesce_queue(q);
3172 	} else {
3173 		spin_lock_irqsave(q->queue_lock, flags);
3174 		blk_start_queue(q);
3175 		spin_unlock_irqrestore(q->queue_lock, flags);
3176 	}
3177 }
3178 
3179 /**
3180  * scsi_internal_device_unblock_nowait - resume a device after a block request
3181  * @sdev:	device to resume
3182  * @new_state:	state to set the device to after unblocking
3183  *
3184  * Restart the device queue for a previously suspended SCSI device. Does not
3185  * sleep.
3186  *
3187  * Returns zero if successful or a negative error code upon failure.
3188  *
3189  * Notes:
3190  * This routine transitions the device to the SDEV_RUNNING state or to one of
3191  * the offline states (which must be a legal transition) allowing the midlayer
3192  * to goose the queue for this device.
3193  */
3194 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3195 					enum scsi_device_state new_state)
3196 {
3197 	/*
3198 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3199 	 * offlined states and goose the device queue if successful.
3200 	 */
3201 	switch (sdev->sdev_state) {
3202 	case SDEV_BLOCK:
3203 	case SDEV_TRANSPORT_OFFLINE:
3204 		sdev->sdev_state = new_state;
3205 		break;
3206 	case SDEV_CREATED_BLOCK:
3207 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3208 		    new_state == SDEV_OFFLINE)
3209 			sdev->sdev_state = new_state;
3210 		else
3211 			sdev->sdev_state = SDEV_CREATED;
3212 		break;
3213 	case SDEV_CANCEL:
3214 	case SDEV_OFFLINE:
3215 		break;
3216 	default:
3217 		return -EINVAL;
3218 	}
3219 	scsi_start_queue(sdev);
3220 
3221 	return 0;
3222 }
3223 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3224 
3225 /**
3226  * scsi_internal_device_unblock - resume a device after a block request
3227  * @sdev:	device to resume
3228  * @new_state:	state to set the device to after unblocking
3229  *
3230  * Restart the device queue for a previously suspended SCSI device. May sleep.
3231  *
3232  * Returns zero if successful or a negative error code upon failure.
3233  *
3234  * Notes:
3235  * This routine transitions the device to the SDEV_RUNNING state or to one of
3236  * the offline states (which must be a legal transition) allowing the midlayer
3237  * to goose the queue for this device.
3238  */
3239 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3240 					enum scsi_device_state new_state)
3241 {
3242 	int ret;
3243 
3244 	mutex_lock(&sdev->state_mutex);
3245 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3246 	mutex_unlock(&sdev->state_mutex);
3247 
3248 	return ret;
3249 }
3250 
3251 static void
3252 device_block(struct scsi_device *sdev, void *data)
3253 {
3254 	scsi_internal_device_block(sdev);
3255 }
3256 
3257 static int
3258 target_block(struct device *dev, void *data)
3259 {
3260 	if (scsi_is_target_device(dev))
3261 		starget_for_each_device(to_scsi_target(dev), NULL,
3262 					device_block);
3263 	return 0;
3264 }
3265 
3266 void
3267 scsi_target_block(struct device *dev)
3268 {
3269 	if (scsi_is_target_device(dev))
3270 		starget_for_each_device(to_scsi_target(dev), NULL,
3271 					device_block);
3272 	else
3273 		device_for_each_child(dev, NULL, target_block);
3274 }
3275 EXPORT_SYMBOL_GPL(scsi_target_block);
3276 
3277 static void
3278 device_unblock(struct scsi_device *sdev, void *data)
3279 {
3280 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3281 }
3282 
3283 static int
3284 target_unblock(struct device *dev, void *data)
3285 {
3286 	if (scsi_is_target_device(dev))
3287 		starget_for_each_device(to_scsi_target(dev), data,
3288 					device_unblock);
3289 	return 0;
3290 }
3291 
3292 void
3293 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3294 {
3295 	if (scsi_is_target_device(dev))
3296 		starget_for_each_device(to_scsi_target(dev), &new_state,
3297 					device_unblock);
3298 	else
3299 		device_for_each_child(dev, &new_state, target_unblock);
3300 }
3301 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3302 
3303 /**
3304  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3305  * @sgl:	scatter-gather list
3306  * @sg_count:	number of segments in sg
3307  * @offset:	offset in bytes into sg, on return offset into the mapped area
3308  * @len:	bytes to map, on return number of bytes mapped
3309  *
3310  * Returns virtual address of the start of the mapped page
3311  */
3312 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3313 			  size_t *offset, size_t *len)
3314 {
3315 	int i;
3316 	size_t sg_len = 0, len_complete = 0;
3317 	struct scatterlist *sg;
3318 	struct page *page;
3319 
3320 	WARN_ON(!irqs_disabled());
3321 
3322 	for_each_sg(sgl, sg, sg_count, i) {
3323 		len_complete = sg_len; /* Complete sg-entries */
3324 		sg_len += sg->length;
3325 		if (sg_len > *offset)
3326 			break;
3327 	}
3328 
3329 	if (unlikely(i == sg_count)) {
3330 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3331 			"elements %d\n",
3332 		       __func__, sg_len, *offset, sg_count);
3333 		WARN_ON(1);
3334 		return NULL;
3335 	}
3336 
3337 	/* Offset starting from the beginning of first page in this sg-entry */
3338 	*offset = *offset - len_complete + sg->offset;
3339 
3340 	/* Assumption: contiguous pages can be accessed as "page + i" */
3341 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3342 	*offset &= ~PAGE_MASK;
3343 
3344 	/* Bytes in this sg-entry from *offset to the end of the page */
3345 	sg_len = PAGE_SIZE - *offset;
3346 	if (*len > sg_len)
3347 		*len = sg_len;
3348 
3349 	return kmap_atomic(page);
3350 }
3351 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3352 
3353 /**
3354  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3355  * @virt:	virtual address to be unmapped
3356  */
3357 void scsi_kunmap_atomic_sg(void *virt)
3358 {
3359 	kunmap_atomic(virt);
3360 }
3361 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3362 
3363 void sdev_disable_disk_events(struct scsi_device *sdev)
3364 {
3365 	atomic_inc(&sdev->disk_events_disable_depth);
3366 }
3367 EXPORT_SYMBOL(sdev_disable_disk_events);
3368 
3369 void sdev_enable_disk_events(struct scsi_device *sdev)
3370 {
3371 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3372 		return;
3373 	atomic_dec(&sdev->disk_events_disable_depth);
3374 }
3375 EXPORT_SYMBOL(sdev_enable_disk_events);
3376 
3377 /**
3378  * scsi_vpd_lun_id - return a unique device identification
3379  * @sdev: SCSI device
3380  * @id:   buffer for the identification
3381  * @id_len:  length of the buffer
3382  *
3383  * Copies a unique device identification into @id based
3384  * on the information in the VPD page 0x83 of the device.
3385  * The string will be formatted as a SCSI name string.
3386  *
3387  * Returns the length of the identification or error on failure.
3388  * If the identifier is longer than the supplied buffer the actual
3389  * identifier length is returned and the buffer is not zero-padded.
3390  */
3391 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3392 {
3393 	u8 cur_id_type = 0xff;
3394 	u8 cur_id_size = 0;
3395 	const unsigned char *d, *cur_id_str;
3396 	const struct scsi_vpd *vpd_pg83;
3397 	int id_size = -EINVAL;
3398 
3399 	rcu_read_lock();
3400 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3401 	if (!vpd_pg83) {
3402 		rcu_read_unlock();
3403 		return -ENXIO;
3404 	}
3405 
3406 	/*
3407 	 * Look for the correct descriptor.
3408 	 * Order of preference for lun descriptor:
3409 	 * - SCSI name string
3410 	 * - NAA IEEE Registered Extended
3411 	 * - EUI-64 based 16-byte
3412 	 * - EUI-64 based 12-byte
3413 	 * - NAA IEEE Registered
3414 	 * - NAA IEEE Extended
3415 	 * - T10 Vendor ID
3416 	 * as longer descriptors reduce the likelyhood
3417 	 * of identification clashes.
3418 	 */
3419 
3420 	/* The id string must be at least 20 bytes + terminating NULL byte */
3421 	if (id_len < 21) {
3422 		rcu_read_unlock();
3423 		return -EINVAL;
3424 	}
3425 
3426 	memset(id, 0, id_len);
3427 	d = vpd_pg83->data + 4;
3428 	while (d < vpd_pg83->data + vpd_pg83->len) {
3429 		/* Skip designators not referring to the LUN */
3430 		if ((d[1] & 0x30) != 0x00)
3431 			goto next_desig;
3432 
3433 		switch (d[1] & 0xf) {
3434 		case 0x1:
3435 			/* T10 Vendor ID */
3436 			if (cur_id_size > d[3])
3437 				break;
3438 			/* Prefer anything */
3439 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3440 				break;
3441 			cur_id_size = d[3];
3442 			if (cur_id_size + 4 > id_len)
3443 				cur_id_size = id_len - 4;
3444 			cur_id_str = d + 4;
3445 			cur_id_type = d[1] & 0xf;
3446 			id_size = snprintf(id, id_len, "t10.%*pE",
3447 					   cur_id_size, cur_id_str);
3448 			break;
3449 		case 0x2:
3450 			/* EUI-64 */
3451 			if (cur_id_size > d[3])
3452 				break;
3453 			/* Prefer NAA IEEE Registered Extended */
3454 			if (cur_id_type == 0x3 &&
3455 			    cur_id_size == d[3])
3456 				break;
3457 			cur_id_size = d[3];
3458 			cur_id_str = d + 4;
3459 			cur_id_type = d[1] & 0xf;
3460 			switch (cur_id_size) {
3461 			case 8:
3462 				id_size = snprintf(id, id_len,
3463 						   "eui.%8phN",
3464 						   cur_id_str);
3465 				break;
3466 			case 12:
3467 				id_size = snprintf(id, id_len,
3468 						   "eui.%12phN",
3469 						   cur_id_str);
3470 				break;
3471 			case 16:
3472 				id_size = snprintf(id, id_len,
3473 						   "eui.%16phN",
3474 						   cur_id_str);
3475 				break;
3476 			default:
3477 				cur_id_size = 0;
3478 				break;
3479 			}
3480 			break;
3481 		case 0x3:
3482 			/* NAA */
3483 			if (cur_id_size > d[3])
3484 				break;
3485 			cur_id_size = d[3];
3486 			cur_id_str = d + 4;
3487 			cur_id_type = d[1] & 0xf;
3488 			switch (cur_id_size) {
3489 			case 8:
3490 				id_size = snprintf(id, id_len,
3491 						   "naa.%8phN",
3492 						   cur_id_str);
3493 				break;
3494 			case 16:
3495 				id_size = snprintf(id, id_len,
3496 						   "naa.%16phN",
3497 						   cur_id_str);
3498 				break;
3499 			default:
3500 				cur_id_size = 0;
3501 				break;
3502 			}
3503 			break;
3504 		case 0x8:
3505 			/* SCSI name string */
3506 			if (cur_id_size + 4 > d[3])
3507 				break;
3508 			/* Prefer others for truncated descriptor */
3509 			if (cur_id_size && d[3] > id_len)
3510 				break;
3511 			cur_id_size = id_size = d[3];
3512 			cur_id_str = d + 4;
3513 			cur_id_type = d[1] & 0xf;
3514 			if (cur_id_size >= id_len)
3515 				cur_id_size = id_len - 1;
3516 			memcpy(id, cur_id_str, cur_id_size);
3517 			/* Decrease priority for truncated descriptor */
3518 			if (cur_id_size != id_size)
3519 				cur_id_size = 6;
3520 			break;
3521 		default:
3522 			break;
3523 		}
3524 next_desig:
3525 		d += d[3] + 4;
3526 	}
3527 	rcu_read_unlock();
3528 
3529 	return id_size;
3530 }
3531 EXPORT_SYMBOL(scsi_vpd_lun_id);
3532 
3533 /*
3534  * scsi_vpd_tpg_id - return a target port group identifier
3535  * @sdev: SCSI device
3536  *
3537  * Returns the Target Port Group identifier from the information
3538  * froom VPD page 0x83 of the device.
3539  *
3540  * Returns the identifier or error on failure.
3541  */
3542 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3543 {
3544 	const unsigned char *d;
3545 	const struct scsi_vpd *vpd_pg83;
3546 	int group_id = -EAGAIN, rel_port = -1;
3547 
3548 	rcu_read_lock();
3549 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3550 	if (!vpd_pg83) {
3551 		rcu_read_unlock();
3552 		return -ENXIO;
3553 	}
3554 
3555 	d = vpd_pg83->data + 4;
3556 	while (d < vpd_pg83->data + vpd_pg83->len) {
3557 		switch (d[1] & 0xf) {
3558 		case 0x4:
3559 			/* Relative target port */
3560 			rel_port = get_unaligned_be16(&d[6]);
3561 			break;
3562 		case 0x5:
3563 			/* Target port group */
3564 			group_id = get_unaligned_be16(&d[6]);
3565 			break;
3566 		default:
3567 			break;
3568 		}
3569 		d += d[3] + 4;
3570 	}
3571 	rcu_read_unlock();
3572 
3573 	if (group_id >= 0 && rel_id && rel_port != -1)
3574 		*rel_id = rel_port;
3575 
3576 	return group_id;
3577 }
3578 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3579