1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 /* 195 * Before a SCSI command is dispatched, 196 * get_device(&sdev->sdev_gendev) is called and the host, 197 * target and device busy counters are increased. Since 198 * requeuing a request causes these actions to be repeated and 199 * since scsi_device_unbusy() has already been called, 200 * put_device(&device->sdev_gendev) must still be called. Call 201 * put_device() after blk_mq_requeue_request() to avoid that 202 * removal of the SCSI device can start before requeueing has 203 * happened. 204 */ 205 blk_mq_requeue_request(cmd->request, true); 206 put_device(&device->sdev_gendev); 207 return; 208 } 209 spin_lock_irqsave(q->queue_lock, flags); 210 blk_requeue_request(q, cmd->request); 211 kblockd_schedule_work(&device->requeue_work); 212 spin_unlock_irqrestore(q->queue_lock, flags); 213 } 214 215 /* 216 * Function: scsi_queue_insert() 217 * 218 * Purpose: Insert a command in the midlevel queue. 219 * 220 * Arguments: cmd - command that we are adding to queue. 221 * reason - why we are inserting command to queue. 222 * 223 * Lock status: Assumed that lock is not held upon entry. 224 * 225 * Returns: Nothing. 226 * 227 * Notes: We do this for one of two cases. Either the host is busy 228 * and it cannot accept any more commands for the time being, 229 * or the device returned QUEUE_FULL and can accept no more 230 * commands. 231 * Notes: This could be called either from an interrupt context or a 232 * normal process context. 233 */ 234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 235 { 236 __scsi_queue_insert(cmd, reason, true); 237 } 238 239 240 /** 241 * scsi_execute - insert request and wait for the result 242 * @sdev: scsi device 243 * @cmd: scsi command 244 * @data_direction: data direction 245 * @buffer: data buffer 246 * @bufflen: len of buffer 247 * @sense: optional sense buffer 248 * @sshdr: optional decoded sense header 249 * @timeout: request timeout in seconds 250 * @retries: number of times to retry request 251 * @flags: flags for ->cmd_flags 252 * @rq_flags: flags for ->rq_flags 253 * @resid: optional residual length 254 * 255 * Returns the scsi_cmnd result field if a command was executed, or a negative 256 * Linux error code if we didn't get that far. 257 */ 258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 259 int data_direction, void *buffer, unsigned bufflen, 260 unsigned char *sense, struct scsi_sense_hdr *sshdr, 261 int timeout, int retries, u64 flags, req_flags_t rq_flags, 262 int *resid) 263 { 264 struct request *req; 265 struct scsi_request *rq; 266 int ret = DRIVER_ERROR << 24; 267 268 req = blk_get_request_flags(sdev->request_queue, 269 data_direction == DMA_TO_DEVICE ? 270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 271 if (IS_ERR(req)) 272 return ret; 273 rq = scsi_req(req); 274 275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 276 buffer, bufflen, __GFP_RECLAIM)) 277 goto out; 278 279 rq->cmd_len = COMMAND_SIZE(cmd[0]); 280 memcpy(rq->cmd, cmd, rq->cmd_len); 281 rq->retries = retries; 282 req->timeout = timeout; 283 req->cmd_flags |= flags; 284 req->rq_flags |= rq_flags | RQF_QUIET; 285 286 /* 287 * head injection *required* here otherwise quiesce won't work 288 */ 289 blk_execute_rq(req->q, NULL, req, 1); 290 291 /* 292 * Some devices (USB mass-storage in particular) may transfer 293 * garbage data together with a residue indicating that the data 294 * is invalid. Prevent the garbage from being misinterpreted 295 * and prevent security leaks by zeroing out the excess data. 296 */ 297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 299 300 if (resid) 301 *resid = rq->resid_len; 302 if (sense && rq->sense_len) 303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 304 if (sshdr) 305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 306 ret = rq->result; 307 out: 308 blk_put_request(req); 309 310 return ret; 311 } 312 EXPORT_SYMBOL(scsi_execute); 313 314 /* 315 * Function: scsi_init_cmd_errh() 316 * 317 * Purpose: Initialize cmd fields related to error handling. 318 * 319 * Arguments: cmd - command that is ready to be queued. 320 * 321 * Notes: This function has the job of initializing a number of 322 * fields related to error handling. Typically this will 323 * be called once for each command, as required. 324 */ 325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 326 { 327 cmd->serial_number = 0; 328 scsi_set_resid(cmd, 0); 329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 330 if (cmd->cmd_len == 0) 331 cmd->cmd_len = scsi_command_size(cmd->cmnd); 332 } 333 334 /* 335 * Decrement the host_busy counter and wake up the error handler if necessary. 336 * Avoid as follows that the error handler is not woken up if shost->host_busy 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 338 * with an RCU read lock in this function to ensure that this function in its 339 * entirety either finishes before scsi_eh_scmd_add() increases the 340 * host_failed counter or that it notices the shost state change made by 341 * scsi_eh_scmd_add(). 342 */ 343 static void scsi_dec_host_busy(struct Scsi_Host *shost) 344 { 345 unsigned long flags; 346 347 rcu_read_lock(); 348 atomic_dec(&shost->host_busy); 349 if (unlikely(scsi_host_in_recovery(shost))) { 350 spin_lock_irqsave(shost->host_lock, flags); 351 if (shost->host_failed || shost->host_eh_scheduled) 352 scsi_eh_wakeup(shost); 353 spin_unlock_irqrestore(shost->host_lock, flags); 354 } 355 rcu_read_unlock(); 356 } 357 358 void scsi_device_unbusy(struct scsi_device *sdev) 359 { 360 struct Scsi_Host *shost = sdev->host; 361 struct scsi_target *starget = scsi_target(sdev); 362 363 scsi_dec_host_busy(shost); 364 365 if (starget->can_queue > 0) 366 atomic_dec(&starget->target_busy); 367 368 atomic_dec(&sdev->device_busy); 369 } 370 371 static void scsi_kick_queue(struct request_queue *q) 372 { 373 if (q->mq_ops) 374 blk_mq_start_hw_queues(q); 375 else 376 blk_run_queue(q); 377 } 378 379 /* 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 381 * and call blk_run_queue for all the scsi_devices on the target - 382 * including current_sdev first. 383 * 384 * Called with *no* scsi locks held. 385 */ 386 static void scsi_single_lun_run(struct scsi_device *current_sdev) 387 { 388 struct Scsi_Host *shost = current_sdev->host; 389 struct scsi_device *sdev, *tmp; 390 struct scsi_target *starget = scsi_target(current_sdev); 391 unsigned long flags; 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 starget->starget_sdev_user = NULL; 395 spin_unlock_irqrestore(shost->host_lock, flags); 396 397 /* 398 * Call blk_run_queue for all LUNs on the target, starting with 399 * current_sdev. We race with others (to set starget_sdev_user), 400 * but in most cases, we will be first. Ideally, each LU on the 401 * target would get some limited time or requests on the target. 402 */ 403 scsi_kick_queue(current_sdev->request_queue); 404 405 spin_lock_irqsave(shost->host_lock, flags); 406 if (starget->starget_sdev_user) 407 goto out; 408 list_for_each_entry_safe(sdev, tmp, &starget->devices, 409 same_target_siblings) { 410 if (sdev == current_sdev) 411 continue; 412 if (scsi_device_get(sdev)) 413 continue; 414 415 spin_unlock_irqrestore(shost->host_lock, flags); 416 scsi_kick_queue(sdev->request_queue); 417 spin_lock_irqsave(shost->host_lock, flags); 418 419 scsi_device_put(sdev); 420 } 421 out: 422 spin_unlock_irqrestore(shost->host_lock, flags); 423 } 424 425 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 426 { 427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 428 return true; 429 if (atomic_read(&sdev->device_blocked) > 0) 430 return true; 431 return false; 432 } 433 434 static inline bool scsi_target_is_busy(struct scsi_target *starget) 435 { 436 if (starget->can_queue > 0) { 437 if (atomic_read(&starget->target_busy) >= starget->can_queue) 438 return true; 439 if (atomic_read(&starget->target_blocked) > 0) 440 return true; 441 } 442 return false; 443 } 444 445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 446 { 447 if (shost->can_queue > 0 && 448 atomic_read(&shost->host_busy) >= shost->can_queue) 449 return true; 450 if (atomic_read(&shost->host_blocked) > 0) 451 return true; 452 if (shost->host_self_blocked) 453 return true; 454 return false; 455 } 456 457 static void scsi_starved_list_run(struct Scsi_Host *shost) 458 { 459 LIST_HEAD(starved_list); 460 struct scsi_device *sdev; 461 unsigned long flags; 462 463 spin_lock_irqsave(shost->host_lock, flags); 464 list_splice_init(&shost->starved_list, &starved_list); 465 466 while (!list_empty(&starved_list)) { 467 struct request_queue *slq; 468 469 /* 470 * As long as shost is accepting commands and we have 471 * starved queues, call blk_run_queue. scsi_request_fn 472 * drops the queue_lock and can add us back to the 473 * starved_list. 474 * 475 * host_lock protects the starved_list and starved_entry. 476 * scsi_request_fn must get the host_lock before checking 477 * or modifying starved_list or starved_entry. 478 */ 479 if (scsi_host_is_busy(shost)) 480 break; 481 482 sdev = list_entry(starved_list.next, 483 struct scsi_device, starved_entry); 484 list_del_init(&sdev->starved_entry); 485 if (scsi_target_is_busy(scsi_target(sdev))) { 486 list_move_tail(&sdev->starved_entry, 487 &shost->starved_list); 488 continue; 489 } 490 491 /* 492 * Once we drop the host lock, a racing scsi_remove_device() 493 * call may remove the sdev from the starved list and destroy 494 * it and the queue. Mitigate by taking a reference to the 495 * queue and never touching the sdev again after we drop the 496 * host lock. Note: if __scsi_remove_device() invokes 497 * blk_cleanup_queue() before the queue is run from this 498 * function then blk_run_queue() will return immediately since 499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 500 */ 501 slq = sdev->request_queue; 502 if (!blk_get_queue(slq)) 503 continue; 504 spin_unlock_irqrestore(shost->host_lock, flags); 505 506 scsi_kick_queue(slq); 507 blk_put_queue(slq); 508 509 spin_lock_irqsave(shost->host_lock, flags); 510 } 511 /* put any unprocessed entries back */ 512 list_splice(&starved_list, &shost->starved_list); 513 spin_unlock_irqrestore(shost->host_lock, flags); 514 } 515 516 /* 517 * Function: scsi_run_queue() 518 * 519 * Purpose: Select a proper request queue to serve next 520 * 521 * Arguments: q - last request's queue 522 * 523 * Returns: Nothing 524 * 525 * Notes: The previous command was completely finished, start 526 * a new one if possible. 527 */ 528 static void scsi_run_queue(struct request_queue *q) 529 { 530 struct scsi_device *sdev = q->queuedata; 531 532 if (scsi_target(sdev)->single_lun) 533 scsi_single_lun_run(sdev); 534 if (!list_empty(&sdev->host->starved_list)) 535 scsi_starved_list_run(sdev->host); 536 537 if (q->mq_ops) 538 blk_mq_run_hw_queues(q, false); 539 else 540 blk_run_queue(q); 541 } 542 543 void scsi_requeue_run_queue(struct work_struct *work) 544 { 545 struct scsi_device *sdev; 546 struct request_queue *q; 547 548 sdev = container_of(work, struct scsi_device, requeue_work); 549 q = sdev->request_queue; 550 scsi_run_queue(q); 551 } 552 553 /* 554 * Function: scsi_requeue_command() 555 * 556 * Purpose: Handle post-processing of completed commands. 557 * 558 * Arguments: q - queue to operate on 559 * cmd - command that may need to be requeued. 560 * 561 * Returns: Nothing 562 * 563 * Notes: After command completion, there may be blocks left 564 * over which weren't finished by the previous command 565 * this can be for a number of reasons - the main one is 566 * I/O errors in the middle of the request, in which case 567 * we need to request the blocks that come after the bad 568 * sector. 569 * Notes: Upon return, cmd is a stale pointer. 570 */ 571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 572 { 573 struct scsi_device *sdev = cmd->device; 574 struct request *req = cmd->request; 575 unsigned long flags; 576 577 spin_lock_irqsave(q->queue_lock, flags); 578 blk_unprep_request(req); 579 req->special = NULL; 580 scsi_put_command(cmd); 581 blk_requeue_request(q, req); 582 spin_unlock_irqrestore(q->queue_lock, flags); 583 584 scsi_run_queue(q); 585 586 put_device(&sdev->sdev_gendev); 587 } 588 589 void scsi_run_host_queues(struct Scsi_Host *shost) 590 { 591 struct scsi_device *sdev; 592 593 shost_for_each_device(sdev, shost) 594 scsi_run_queue(sdev->request_queue); 595 } 596 597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 598 { 599 if (!blk_rq_is_passthrough(cmd->request)) { 600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 601 602 if (drv->uninit_command) 603 drv->uninit_command(cmd); 604 } 605 } 606 607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 608 { 609 struct scsi_data_buffer *sdb; 610 611 if (cmd->sdb.table.nents) 612 sg_free_table_chained(&cmd->sdb.table, true); 613 if (cmd->request->next_rq) { 614 sdb = cmd->request->next_rq->special; 615 if (sdb) 616 sg_free_table_chained(&sdb->table, true); 617 } 618 if (scsi_prot_sg_count(cmd)) 619 sg_free_table_chained(&cmd->prot_sdb->table, true); 620 } 621 622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 623 { 624 scsi_mq_free_sgtables(cmd); 625 scsi_uninit_cmd(cmd); 626 scsi_del_cmd_from_list(cmd); 627 } 628 629 /* 630 * Function: scsi_release_buffers() 631 * 632 * Purpose: Free resources allocate for a scsi_command. 633 * 634 * Arguments: cmd - command that we are bailing. 635 * 636 * Lock status: Assumed that no lock is held upon entry. 637 * 638 * Returns: Nothing 639 * 640 * Notes: In the event that an upper level driver rejects a 641 * command, we must release resources allocated during 642 * the __init_io() function. Primarily this would involve 643 * the scatter-gather table. 644 */ 645 static void scsi_release_buffers(struct scsi_cmnd *cmd) 646 { 647 if (cmd->sdb.table.nents) 648 sg_free_table_chained(&cmd->sdb.table, false); 649 650 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 651 652 if (scsi_prot_sg_count(cmd)) 653 sg_free_table_chained(&cmd->prot_sdb->table, false); 654 } 655 656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 657 { 658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 659 660 sg_free_table_chained(&bidi_sdb->table, false); 661 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 662 cmd->request->next_rq->special = NULL; 663 } 664 665 static bool scsi_end_request(struct request *req, blk_status_t error, 666 unsigned int bytes, unsigned int bidi_bytes) 667 { 668 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 669 struct scsi_device *sdev = cmd->device; 670 struct request_queue *q = sdev->request_queue; 671 672 if (blk_update_request(req, error, bytes)) 673 return true; 674 675 /* Bidi request must be completed as a whole */ 676 if (unlikely(bidi_bytes) && 677 blk_update_request(req->next_rq, error, bidi_bytes)) 678 return true; 679 680 if (blk_queue_add_random(q)) 681 add_disk_randomness(req->rq_disk); 682 683 if (!blk_rq_is_scsi(req)) { 684 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 685 cmd->flags &= ~SCMD_INITIALIZED; 686 destroy_rcu_head(&cmd->rcu); 687 } 688 689 if (req->mq_ctx) { 690 /* 691 * In the MQ case the command gets freed by __blk_mq_end_request, 692 * so we have to do all cleanup that depends on it earlier. 693 * 694 * We also can't kick the queues from irq context, so we 695 * will have to defer it to a workqueue. 696 */ 697 scsi_mq_uninit_cmd(cmd); 698 699 __blk_mq_end_request(req, error); 700 701 if (scsi_target(sdev)->single_lun || 702 !list_empty(&sdev->host->starved_list)) 703 kblockd_schedule_work(&sdev->requeue_work); 704 else 705 blk_mq_run_hw_queues(q, true); 706 } else { 707 unsigned long flags; 708 709 if (bidi_bytes) 710 scsi_release_bidi_buffers(cmd); 711 scsi_release_buffers(cmd); 712 scsi_put_command(cmd); 713 714 spin_lock_irqsave(q->queue_lock, flags); 715 blk_finish_request(req, error); 716 spin_unlock_irqrestore(q->queue_lock, flags); 717 718 scsi_run_queue(q); 719 } 720 721 put_device(&sdev->sdev_gendev); 722 return false; 723 } 724 725 /** 726 * __scsi_error_from_host_byte - translate SCSI error code into errno 727 * @cmd: SCSI command (unused) 728 * @result: scsi error code 729 * 730 * Translate SCSI error code into block errors. 731 */ 732 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd, 733 int result) 734 { 735 switch (host_byte(result)) { 736 case DID_OK: 737 return BLK_STS_OK; 738 case DID_TRANSPORT_FAILFAST: 739 return BLK_STS_TRANSPORT; 740 case DID_TARGET_FAILURE: 741 set_host_byte(cmd, DID_OK); 742 return BLK_STS_TARGET; 743 case DID_NEXUS_FAILURE: 744 return BLK_STS_NEXUS; 745 case DID_ALLOC_FAILURE: 746 set_host_byte(cmd, DID_OK); 747 return BLK_STS_NOSPC; 748 case DID_MEDIUM_ERROR: 749 set_host_byte(cmd, DID_OK); 750 return BLK_STS_MEDIUM; 751 default: 752 return BLK_STS_IOERR; 753 } 754 } 755 756 /* 757 * Function: scsi_io_completion() 758 * 759 * Purpose: Completion processing for block device I/O requests. 760 * 761 * Arguments: cmd - command that is finished. 762 * 763 * Lock status: Assumed that no lock is held upon entry. 764 * 765 * Returns: Nothing 766 * 767 * Notes: We will finish off the specified number of sectors. If we 768 * are done, the command block will be released and the queue 769 * function will be goosed. If we are not done then we have to 770 * figure out what to do next: 771 * 772 * a) We can call scsi_requeue_command(). The request 773 * will be unprepared and put back on the queue. Then 774 * a new command will be created for it. This should 775 * be used if we made forward progress, or if we want 776 * to switch from READ(10) to READ(6) for example. 777 * 778 * b) We can call __scsi_queue_insert(). The request will 779 * be put back on the queue and retried using the same 780 * command as before, possibly after a delay. 781 * 782 * c) We can call scsi_end_request() with -EIO to fail 783 * the remainder of the request. 784 */ 785 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 786 { 787 int result = cmd->result; 788 struct request_queue *q = cmd->device->request_queue; 789 struct request *req = cmd->request; 790 blk_status_t error = BLK_STS_OK; 791 struct scsi_sense_hdr sshdr; 792 bool sense_valid = false; 793 int sense_deferred = 0, level = 0; 794 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 795 ACTION_DELAYED_RETRY} action; 796 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 797 798 if (result) { 799 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 800 if (sense_valid) 801 sense_deferred = scsi_sense_is_deferred(&sshdr); 802 } 803 804 if (blk_rq_is_passthrough(req)) { 805 if (result) { 806 if (sense_valid) { 807 /* 808 * SG_IO wants current and deferred errors 809 */ 810 scsi_req(req)->sense_len = 811 min(8 + cmd->sense_buffer[7], 812 SCSI_SENSE_BUFFERSIZE); 813 } 814 if (!sense_deferred) 815 error = __scsi_error_from_host_byte(cmd, result); 816 } 817 /* 818 * __scsi_error_from_host_byte may have reset the host_byte 819 */ 820 scsi_req(req)->result = cmd->result; 821 scsi_req(req)->resid_len = scsi_get_resid(cmd); 822 823 if (scsi_bidi_cmnd(cmd)) { 824 /* 825 * Bidi commands Must be complete as a whole, 826 * both sides at once. 827 */ 828 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 829 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 830 blk_rq_bytes(req->next_rq))) 831 BUG(); 832 return; 833 } 834 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 835 /* 836 * Flush commands do not transfers any data, and thus cannot use 837 * good_bytes != blk_rq_bytes(req) as the signal for an error. 838 * This sets the error explicitly for the problem case. 839 */ 840 error = __scsi_error_from_host_byte(cmd, result); 841 } 842 843 /* no bidi support for !blk_rq_is_passthrough yet */ 844 BUG_ON(blk_bidi_rq(req)); 845 846 /* 847 * Next deal with any sectors which we were able to correctly 848 * handle. 849 */ 850 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 851 "%u sectors total, %d bytes done.\n", 852 blk_rq_sectors(req), good_bytes)); 853 854 /* 855 * Recovered errors need reporting, but they're always treated as 856 * success, so fiddle the result code here. For passthrough requests 857 * we already took a copy of the original into sreq->result which 858 * is what gets returned to the user 859 */ 860 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 861 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 862 * print since caller wants ATA registers. Only occurs on 863 * SCSI ATA PASS_THROUGH commands when CK_COND=1 864 */ 865 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 866 ; 867 else if (!(req->rq_flags & RQF_QUIET)) 868 scsi_print_sense(cmd); 869 result = 0; 870 /* for passthrough error may be set */ 871 error = BLK_STS_OK; 872 } 873 /* 874 * Another corner case: the SCSI status byte is non-zero but 'good'. 875 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 876 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 877 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 878 * intermediate statuses (both obsolete in SAM-4) as good. 879 */ 880 if (status_byte(result) && scsi_status_is_good(result)) { 881 result = 0; 882 error = BLK_STS_OK; 883 } 884 885 /* 886 * special case: failed zero length commands always need to 887 * drop down into the retry code. Otherwise, if we finished 888 * all bytes in the request we are done now. 889 */ 890 if (!(blk_rq_bytes(req) == 0 && error) && 891 !scsi_end_request(req, error, good_bytes, 0)) 892 return; 893 894 /* 895 * Kill remainder if no retrys. 896 */ 897 if (error && scsi_noretry_cmd(cmd)) { 898 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 899 BUG(); 900 return; 901 } 902 903 /* 904 * If there had been no error, but we have leftover bytes in the 905 * requeues just queue the command up again. 906 */ 907 if (result == 0) 908 goto requeue; 909 910 error = __scsi_error_from_host_byte(cmd, result); 911 912 if (host_byte(result) == DID_RESET) { 913 /* Third party bus reset or reset for error recovery 914 * reasons. Just retry the command and see what 915 * happens. 916 */ 917 action = ACTION_RETRY; 918 } else if (sense_valid && !sense_deferred) { 919 switch (sshdr.sense_key) { 920 case UNIT_ATTENTION: 921 if (cmd->device->removable) { 922 /* Detected disc change. Set a bit 923 * and quietly refuse further access. 924 */ 925 cmd->device->changed = 1; 926 action = ACTION_FAIL; 927 } else { 928 /* Must have been a power glitch, or a 929 * bus reset. Could not have been a 930 * media change, so we just retry the 931 * command and see what happens. 932 */ 933 action = ACTION_RETRY; 934 } 935 break; 936 case ILLEGAL_REQUEST: 937 /* If we had an ILLEGAL REQUEST returned, then 938 * we may have performed an unsupported 939 * command. The only thing this should be 940 * would be a ten byte read where only a six 941 * byte read was supported. Also, on a system 942 * where READ CAPACITY failed, we may have 943 * read past the end of the disk. 944 */ 945 if ((cmd->device->use_10_for_rw && 946 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 947 (cmd->cmnd[0] == READ_10 || 948 cmd->cmnd[0] == WRITE_10)) { 949 /* This will issue a new 6-byte command. */ 950 cmd->device->use_10_for_rw = 0; 951 action = ACTION_REPREP; 952 } else if (sshdr.asc == 0x10) /* DIX */ { 953 action = ACTION_FAIL; 954 error = BLK_STS_PROTECTION; 955 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 956 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 957 action = ACTION_FAIL; 958 error = BLK_STS_TARGET; 959 } else 960 action = ACTION_FAIL; 961 break; 962 case ABORTED_COMMAND: 963 action = ACTION_FAIL; 964 if (sshdr.asc == 0x10) /* DIF */ 965 error = BLK_STS_PROTECTION; 966 break; 967 case NOT_READY: 968 /* If the device is in the process of becoming 969 * ready, or has a temporary blockage, retry. 970 */ 971 if (sshdr.asc == 0x04) { 972 switch (sshdr.ascq) { 973 case 0x01: /* becoming ready */ 974 case 0x04: /* format in progress */ 975 case 0x05: /* rebuild in progress */ 976 case 0x06: /* recalculation in progress */ 977 case 0x07: /* operation in progress */ 978 case 0x08: /* Long write in progress */ 979 case 0x09: /* self test in progress */ 980 case 0x14: /* space allocation in progress */ 981 action = ACTION_DELAYED_RETRY; 982 break; 983 default: 984 action = ACTION_FAIL; 985 break; 986 } 987 } else 988 action = ACTION_FAIL; 989 break; 990 case VOLUME_OVERFLOW: 991 /* See SSC3rXX or current. */ 992 action = ACTION_FAIL; 993 break; 994 default: 995 action = ACTION_FAIL; 996 break; 997 } 998 } else 999 action = ACTION_FAIL; 1000 1001 if (action != ACTION_FAIL && 1002 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 1003 action = ACTION_FAIL; 1004 1005 switch (action) { 1006 case ACTION_FAIL: 1007 /* Give up and fail the remainder of the request */ 1008 if (!(req->rq_flags & RQF_QUIET)) { 1009 static DEFINE_RATELIMIT_STATE(_rs, 1010 DEFAULT_RATELIMIT_INTERVAL, 1011 DEFAULT_RATELIMIT_BURST); 1012 1013 if (unlikely(scsi_logging_level)) 1014 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 1015 SCSI_LOG_MLCOMPLETE_BITS); 1016 1017 /* 1018 * if logging is enabled the failure will be printed 1019 * in scsi_log_completion(), so avoid duplicate messages 1020 */ 1021 if (!level && __ratelimit(&_rs)) { 1022 scsi_print_result(cmd, NULL, FAILED); 1023 if (driver_byte(result) & DRIVER_SENSE) 1024 scsi_print_sense(cmd); 1025 scsi_print_command(cmd); 1026 } 1027 } 1028 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 1029 return; 1030 /*FALLTHRU*/ 1031 case ACTION_REPREP: 1032 requeue: 1033 /* Unprep the request and put it back at the head of the queue. 1034 * A new command will be prepared and issued. 1035 */ 1036 if (q->mq_ops) { 1037 scsi_mq_requeue_cmd(cmd); 1038 } else { 1039 scsi_release_buffers(cmd); 1040 scsi_requeue_command(q, cmd); 1041 } 1042 break; 1043 case ACTION_RETRY: 1044 /* Retry the same command immediately */ 1045 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 1046 break; 1047 case ACTION_DELAYED_RETRY: 1048 /* Retry the same command after a delay */ 1049 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 1050 break; 1051 } 1052 } 1053 1054 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1055 { 1056 int count; 1057 1058 /* 1059 * If sg table allocation fails, requeue request later. 1060 */ 1061 if (unlikely(sg_alloc_table_chained(&sdb->table, 1062 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1063 return BLKPREP_DEFER; 1064 1065 /* 1066 * Next, walk the list, and fill in the addresses and sizes of 1067 * each segment. 1068 */ 1069 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1070 BUG_ON(count > sdb->table.nents); 1071 sdb->table.nents = count; 1072 sdb->length = blk_rq_payload_bytes(req); 1073 return BLKPREP_OK; 1074 } 1075 1076 /* 1077 * Function: scsi_init_io() 1078 * 1079 * Purpose: SCSI I/O initialize function. 1080 * 1081 * Arguments: cmd - Command descriptor we wish to initialize 1082 * 1083 * Returns: 0 on success 1084 * BLKPREP_DEFER if the failure is retryable 1085 * BLKPREP_KILL if the failure is fatal 1086 */ 1087 int scsi_init_io(struct scsi_cmnd *cmd) 1088 { 1089 struct scsi_device *sdev = cmd->device; 1090 struct request *rq = cmd->request; 1091 bool is_mq = (rq->mq_ctx != NULL); 1092 int error = BLKPREP_KILL; 1093 1094 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1095 goto err_exit; 1096 1097 error = scsi_init_sgtable(rq, &cmd->sdb); 1098 if (error) 1099 goto err_exit; 1100 1101 if (blk_bidi_rq(rq)) { 1102 if (!rq->q->mq_ops) { 1103 struct scsi_data_buffer *bidi_sdb = 1104 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1105 if (!bidi_sdb) { 1106 error = BLKPREP_DEFER; 1107 goto err_exit; 1108 } 1109 1110 rq->next_rq->special = bidi_sdb; 1111 } 1112 1113 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1114 if (error) 1115 goto err_exit; 1116 } 1117 1118 if (blk_integrity_rq(rq)) { 1119 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1120 int ivecs, count; 1121 1122 if (prot_sdb == NULL) { 1123 /* 1124 * This can happen if someone (e.g. multipath) 1125 * queues a command to a device on an adapter 1126 * that does not support DIX. 1127 */ 1128 WARN_ON_ONCE(1); 1129 error = BLKPREP_KILL; 1130 goto err_exit; 1131 } 1132 1133 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1134 1135 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1136 prot_sdb->table.sgl)) { 1137 error = BLKPREP_DEFER; 1138 goto err_exit; 1139 } 1140 1141 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1142 prot_sdb->table.sgl); 1143 BUG_ON(unlikely(count > ivecs)); 1144 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1145 1146 cmd->prot_sdb = prot_sdb; 1147 cmd->prot_sdb->table.nents = count; 1148 } 1149 1150 return BLKPREP_OK; 1151 err_exit: 1152 if (is_mq) { 1153 scsi_mq_free_sgtables(cmd); 1154 } else { 1155 scsi_release_buffers(cmd); 1156 cmd->request->special = NULL; 1157 scsi_put_command(cmd); 1158 put_device(&sdev->sdev_gendev); 1159 } 1160 return error; 1161 } 1162 EXPORT_SYMBOL(scsi_init_io); 1163 1164 /** 1165 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1166 * @rq: Request associated with the SCSI command to be initialized. 1167 * 1168 * This function initializes the members of struct scsi_cmnd that must be 1169 * initialized before request processing starts and that won't be 1170 * reinitialized if a SCSI command is requeued. 1171 * 1172 * Called from inside blk_get_request() for pass-through requests and from 1173 * inside scsi_init_command() for filesystem requests. 1174 */ 1175 static void scsi_initialize_rq(struct request *rq) 1176 { 1177 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1178 1179 scsi_req_init(&cmd->req); 1180 init_rcu_head(&cmd->rcu); 1181 cmd->jiffies_at_alloc = jiffies; 1182 cmd->retries = 0; 1183 } 1184 1185 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1186 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1187 { 1188 struct scsi_device *sdev = cmd->device; 1189 struct Scsi_Host *shost = sdev->host; 1190 unsigned long flags; 1191 1192 if (shost->use_cmd_list) { 1193 spin_lock_irqsave(&sdev->list_lock, flags); 1194 list_add_tail(&cmd->list, &sdev->cmd_list); 1195 spin_unlock_irqrestore(&sdev->list_lock, flags); 1196 } 1197 } 1198 1199 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1200 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1201 { 1202 struct scsi_device *sdev = cmd->device; 1203 struct Scsi_Host *shost = sdev->host; 1204 unsigned long flags; 1205 1206 if (shost->use_cmd_list) { 1207 spin_lock_irqsave(&sdev->list_lock, flags); 1208 BUG_ON(list_empty(&cmd->list)); 1209 list_del_init(&cmd->list); 1210 spin_unlock_irqrestore(&sdev->list_lock, flags); 1211 } 1212 } 1213 1214 /* Called after a request has been started. */ 1215 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1216 { 1217 void *buf = cmd->sense_buffer; 1218 void *prot = cmd->prot_sdb; 1219 struct request *rq = blk_mq_rq_from_pdu(cmd); 1220 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1221 unsigned long jiffies_at_alloc; 1222 int retries; 1223 1224 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1225 flags |= SCMD_INITIALIZED; 1226 scsi_initialize_rq(rq); 1227 } 1228 1229 jiffies_at_alloc = cmd->jiffies_at_alloc; 1230 retries = cmd->retries; 1231 /* zero out the cmd, except for the embedded scsi_request */ 1232 memset((char *)cmd + sizeof(cmd->req), 0, 1233 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1234 1235 cmd->device = dev; 1236 cmd->sense_buffer = buf; 1237 cmd->prot_sdb = prot; 1238 cmd->flags = flags; 1239 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1240 cmd->jiffies_at_alloc = jiffies_at_alloc; 1241 cmd->retries = retries; 1242 1243 scsi_add_cmd_to_list(cmd); 1244 } 1245 1246 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1247 { 1248 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1249 1250 /* 1251 * Passthrough requests may transfer data, in which case they must 1252 * a bio attached to them. Or they might contain a SCSI command 1253 * that does not transfer data, in which case they may optionally 1254 * submit a request without an attached bio. 1255 */ 1256 if (req->bio) { 1257 int ret = scsi_init_io(cmd); 1258 if (unlikely(ret)) 1259 return ret; 1260 } else { 1261 BUG_ON(blk_rq_bytes(req)); 1262 1263 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1264 } 1265 1266 cmd->cmd_len = scsi_req(req)->cmd_len; 1267 cmd->cmnd = scsi_req(req)->cmd; 1268 cmd->transfersize = blk_rq_bytes(req); 1269 cmd->allowed = scsi_req(req)->retries; 1270 return BLKPREP_OK; 1271 } 1272 1273 /* 1274 * Setup a normal block command. These are simple request from filesystems 1275 * that still need to be translated to SCSI CDBs from the ULD. 1276 */ 1277 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1278 { 1279 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1280 1281 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1282 int ret = sdev->handler->prep_fn(sdev, req); 1283 if (ret != BLKPREP_OK) 1284 return ret; 1285 } 1286 1287 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1288 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1289 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1290 } 1291 1292 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1293 { 1294 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1295 1296 if (!blk_rq_bytes(req)) 1297 cmd->sc_data_direction = DMA_NONE; 1298 else if (rq_data_dir(req) == WRITE) 1299 cmd->sc_data_direction = DMA_TO_DEVICE; 1300 else 1301 cmd->sc_data_direction = DMA_FROM_DEVICE; 1302 1303 if (blk_rq_is_scsi(req)) 1304 return scsi_setup_scsi_cmnd(sdev, req); 1305 else 1306 return scsi_setup_fs_cmnd(sdev, req); 1307 } 1308 1309 static int 1310 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1311 { 1312 int ret = BLKPREP_OK; 1313 1314 /* 1315 * If the device is not in running state we will reject some 1316 * or all commands. 1317 */ 1318 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1319 switch (sdev->sdev_state) { 1320 case SDEV_OFFLINE: 1321 case SDEV_TRANSPORT_OFFLINE: 1322 /* 1323 * If the device is offline we refuse to process any 1324 * commands. The device must be brought online 1325 * before trying any recovery commands. 1326 */ 1327 sdev_printk(KERN_ERR, sdev, 1328 "rejecting I/O to offline device\n"); 1329 ret = BLKPREP_KILL; 1330 break; 1331 case SDEV_DEL: 1332 /* 1333 * If the device is fully deleted, we refuse to 1334 * process any commands as well. 1335 */ 1336 sdev_printk(KERN_ERR, sdev, 1337 "rejecting I/O to dead device\n"); 1338 ret = BLKPREP_KILL; 1339 break; 1340 case SDEV_BLOCK: 1341 case SDEV_CREATED_BLOCK: 1342 ret = BLKPREP_DEFER; 1343 break; 1344 case SDEV_QUIESCE: 1345 /* 1346 * If the devices is blocked we defer normal commands. 1347 */ 1348 if (req && !(req->rq_flags & RQF_PREEMPT)) 1349 ret = BLKPREP_DEFER; 1350 break; 1351 default: 1352 /* 1353 * For any other not fully online state we only allow 1354 * special commands. In particular any user initiated 1355 * command is not allowed. 1356 */ 1357 if (req && !(req->rq_flags & RQF_PREEMPT)) 1358 ret = BLKPREP_KILL; 1359 break; 1360 } 1361 } 1362 return ret; 1363 } 1364 1365 static int 1366 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1367 { 1368 struct scsi_device *sdev = q->queuedata; 1369 1370 switch (ret) { 1371 case BLKPREP_KILL: 1372 case BLKPREP_INVALID: 1373 scsi_req(req)->result = DID_NO_CONNECT << 16; 1374 /* release the command and kill it */ 1375 if (req->special) { 1376 struct scsi_cmnd *cmd = req->special; 1377 scsi_release_buffers(cmd); 1378 scsi_put_command(cmd); 1379 put_device(&sdev->sdev_gendev); 1380 req->special = NULL; 1381 } 1382 break; 1383 case BLKPREP_DEFER: 1384 /* 1385 * If we defer, the blk_peek_request() returns NULL, but the 1386 * queue must be restarted, so we schedule a callback to happen 1387 * shortly. 1388 */ 1389 if (atomic_read(&sdev->device_busy) == 0) 1390 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1391 break; 1392 default: 1393 req->rq_flags |= RQF_DONTPREP; 1394 } 1395 1396 return ret; 1397 } 1398 1399 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1400 { 1401 struct scsi_device *sdev = q->queuedata; 1402 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1403 int ret; 1404 1405 ret = scsi_prep_state_check(sdev, req); 1406 if (ret != BLKPREP_OK) 1407 goto out; 1408 1409 if (!req->special) { 1410 /* Bail if we can't get a reference to the device */ 1411 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1412 ret = BLKPREP_DEFER; 1413 goto out; 1414 } 1415 1416 scsi_init_command(sdev, cmd); 1417 req->special = cmd; 1418 } 1419 1420 cmd->tag = req->tag; 1421 cmd->request = req; 1422 cmd->prot_op = SCSI_PROT_NORMAL; 1423 1424 ret = scsi_setup_cmnd(sdev, req); 1425 out: 1426 return scsi_prep_return(q, req, ret); 1427 } 1428 1429 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1430 { 1431 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1432 } 1433 1434 /* 1435 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1436 * return 0. 1437 * 1438 * Called with the queue_lock held. 1439 */ 1440 static inline int scsi_dev_queue_ready(struct request_queue *q, 1441 struct scsi_device *sdev) 1442 { 1443 unsigned int busy; 1444 1445 busy = atomic_inc_return(&sdev->device_busy) - 1; 1446 if (atomic_read(&sdev->device_blocked)) { 1447 if (busy) 1448 goto out_dec; 1449 1450 /* 1451 * unblock after device_blocked iterates to zero 1452 */ 1453 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1454 /* 1455 * For the MQ case we take care of this in the caller. 1456 */ 1457 if (!q->mq_ops) 1458 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1459 goto out_dec; 1460 } 1461 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1462 "unblocking device at zero depth\n")); 1463 } 1464 1465 if (busy >= sdev->queue_depth) 1466 goto out_dec; 1467 1468 return 1; 1469 out_dec: 1470 atomic_dec(&sdev->device_busy); 1471 return 0; 1472 } 1473 1474 /* 1475 * scsi_target_queue_ready: checks if there we can send commands to target 1476 * @sdev: scsi device on starget to check. 1477 */ 1478 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1479 struct scsi_device *sdev) 1480 { 1481 struct scsi_target *starget = scsi_target(sdev); 1482 unsigned int busy; 1483 1484 if (starget->single_lun) { 1485 spin_lock_irq(shost->host_lock); 1486 if (starget->starget_sdev_user && 1487 starget->starget_sdev_user != sdev) { 1488 spin_unlock_irq(shost->host_lock); 1489 return 0; 1490 } 1491 starget->starget_sdev_user = sdev; 1492 spin_unlock_irq(shost->host_lock); 1493 } 1494 1495 if (starget->can_queue <= 0) 1496 return 1; 1497 1498 busy = atomic_inc_return(&starget->target_busy) - 1; 1499 if (atomic_read(&starget->target_blocked) > 0) { 1500 if (busy) 1501 goto starved; 1502 1503 /* 1504 * unblock after target_blocked iterates to zero 1505 */ 1506 if (atomic_dec_return(&starget->target_blocked) > 0) 1507 goto out_dec; 1508 1509 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1510 "unblocking target at zero depth\n")); 1511 } 1512 1513 if (busy >= starget->can_queue) 1514 goto starved; 1515 1516 return 1; 1517 1518 starved: 1519 spin_lock_irq(shost->host_lock); 1520 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1521 spin_unlock_irq(shost->host_lock); 1522 out_dec: 1523 if (starget->can_queue > 0) 1524 atomic_dec(&starget->target_busy); 1525 return 0; 1526 } 1527 1528 /* 1529 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1530 * return 0. We must end up running the queue again whenever 0 is 1531 * returned, else IO can hang. 1532 */ 1533 static inline int scsi_host_queue_ready(struct request_queue *q, 1534 struct Scsi_Host *shost, 1535 struct scsi_device *sdev) 1536 { 1537 unsigned int busy; 1538 1539 if (scsi_host_in_recovery(shost)) 1540 return 0; 1541 1542 busy = atomic_inc_return(&shost->host_busy) - 1; 1543 if (atomic_read(&shost->host_blocked) > 0) { 1544 if (busy) 1545 goto starved; 1546 1547 /* 1548 * unblock after host_blocked iterates to zero 1549 */ 1550 if (atomic_dec_return(&shost->host_blocked) > 0) 1551 goto out_dec; 1552 1553 SCSI_LOG_MLQUEUE(3, 1554 shost_printk(KERN_INFO, shost, 1555 "unblocking host at zero depth\n")); 1556 } 1557 1558 if (shost->can_queue > 0 && busy >= shost->can_queue) 1559 goto starved; 1560 if (shost->host_self_blocked) 1561 goto starved; 1562 1563 /* We're OK to process the command, so we can't be starved */ 1564 if (!list_empty(&sdev->starved_entry)) { 1565 spin_lock_irq(shost->host_lock); 1566 if (!list_empty(&sdev->starved_entry)) 1567 list_del_init(&sdev->starved_entry); 1568 spin_unlock_irq(shost->host_lock); 1569 } 1570 1571 return 1; 1572 1573 starved: 1574 spin_lock_irq(shost->host_lock); 1575 if (list_empty(&sdev->starved_entry)) 1576 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1577 spin_unlock_irq(shost->host_lock); 1578 out_dec: 1579 scsi_dec_host_busy(shost); 1580 return 0; 1581 } 1582 1583 /* 1584 * Busy state exporting function for request stacking drivers. 1585 * 1586 * For efficiency, no lock is taken to check the busy state of 1587 * shost/starget/sdev, since the returned value is not guaranteed and 1588 * may be changed after request stacking drivers call the function, 1589 * regardless of taking lock or not. 1590 * 1591 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1592 * needs to return 'not busy'. Otherwise, request stacking drivers 1593 * may hold requests forever. 1594 */ 1595 static int scsi_lld_busy(struct request_queue *q) 1596 { 1597 struct scsi_device *sdev = q->queuedata; 1598 struct Scsi_Host *shost; 1599 1600 if (blk_queue_dying(q)) 1601 return 0; 1602 1603 shost = sdev->host; 1604 1605 /* 1606 * Ignore host/starget busy state. 1607 * Since block layer does not have a concept of fairness across 1608 * multiple queues, congestion of host/starget needs to be handled 1609 * in SCSI layer. 1610 */ 1611 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1612 return 1; 1613 1614 return 0; 1615 } 1616 1617 /* 1618 * Kill a request for a dead device 1619 */ 1620 static void scsi_kill_request(struct request *req, struct request_queue *q) 1621 { 1622 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1623 struct scsi_device *sdev; 1624 struct scsi_target *starget; 1625 struct Scsi_Host *shost; 1626 1627 blk_start_request(req); 1628 1629 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1630 1631 sdev = cmd->device; 1632 starget = scsi_target(sdev); 1633 shost = sdev->host; 1634 scsi_init_cmd_errh(cmd); 1635 cmd->result = DID_NO_CONNECT << 16; 1636 atomic_inc(&cmd->device->iorequest_cnt); 1637 1638 /* 1639 * SCSI request completion path will do scsi_device_unbusy(), 1640 * bump busy counts. To bump the counters, we need to dance 1641 * with the locks as normal issue path does. 1642 */ 1643 atomic_inc(&sdev->device_busy); 1644 atomic_inc(&shost->host_busy); 1645 if (starget->can_queue > 0) 1646 atomic_inc(&starget->target_busy); 1647 1648 blk_complete_request(req); 1649 } 1650 1651 static void scsi_softirq_done(struct request *rq) 1652 { 1653 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1654 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1655 int disposition; 1656 1657 INIT_LIST_HEAD(&cmd->eh_entry); 1658 1659 atomic_inc(&cmd->device->iodone_cnt); 1660 if (cmd->result) 1661 atomic_inc(&cmd->device->ioerr_cnt); 1662 1663 disposition = scsi_decide_disposition(cmd); 1664 if (disposition != SUCCESS && 1665 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1666 sdev_printk(KERN_ERR, cmd->device, 1667 "timing out command, waited %lus\n", 1668 wait_for/HZ); 1669 disposition = SUCCESS; 1670 } 1671 1672 scsi_log_completion(cmd, disposition); 1673 1674 switch (disposition) { 1675 case SUCCESS: 1676 scsi_finish_command(cmd); 1677 break; 1678 case NEEDS_RETRY: 1679 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1680 break; 1681 case ADD_TO_MLQUEUE: 1682 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1683 break; 1684 default: 1685 scsi_eh_scmd_add(cmd); 1686 break; 1687 } 1688 } 1689 1690 /** 1691 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1692 * @cmd: command block we are dispatching. 1693 * 1694 * Return: nonzero return request was rejected and device's queue needs to be 1695 * plugged. 1696 */ 1697 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1698 { 1699 struct Scsi_Host *host = cmd->device->host; 1700 int rtn = 0; 1701 1702 atomic_inc(&cmd->device->iorequest_cnt); 1703 1704 /* check if the device is still usable */ 1705 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1706 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1707 * returns an immediate error upwards, and signals 1708 * that the device is no longer present */ 1709 cmd->result = DID_NO_CONNECT << 16; 1710 goto done; 1711 } 1712 1713 /* Check to see if the scsi lld made this device blocked. */ 1714 if (unlikely(scsi_device_blocked(cmd->device))) { 1715 /* 1716 * in blocked state, the command is just put back on 1717 * the device queue. The suspend state has already 1718 * blocked the queue so future requests should not 1719 * occur until the device transitions out of the 1720 * suspend state. 1721 */ 1722 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1723 "queuecommand : device blocked\n")); 1724 return SCSI_MLQUEUE_DEVICE_BUSY; 1725 } 1726 1727 /* Store the LUN value in cmnd, if needed. */ 1728 if (cmd->device->lun_in_cdb) 1729 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1730 (cmd->device->lun << 5 & 0xe0); 1731 1732 scsi_log_send(cmd); 1733 1734 /* 1735 * Before we queue this command, check if the command 1736 * length exceeds what the host adapter can handle. 1737 */ 1738 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1739 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1740 "queuecommand : command too long. " 1741 "cdb_size=%d host->max_cmd_len=%d\n", 1742 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1743 cmd->result = (DID_ABORT << 16); 1744 goto done; 1745 } 1746 1747 if (unlikely(host->shost_state == SHOST_DEL)) { 1748 cmd->result = (DID_NO_CONNECT << 16); 1749 goto done; 1750 1751 } 1752 1753 trace_scsi_dispatch_cmd_start(cmd); 1754 rtn = host->hostt->queuecommand(host, cmd); 1755 if (rtn) { 1756 trace_scsi_dispatch_cmd_error(cmd, rtn); 1757 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1758 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1759 rtn = SCSI_MLQUEUE_HOST_BUSY; 1760 1761 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1762 "queuecommand : request rejected\n")); 1763 } 1764 1765 return rtn; 1766 done: 1767 cmd->scsi_done(cmd); 1768 return 0; 1769 } 1770 1771 /** 1772 * scsi_done - Invoke completion on finished SCSI command. 1773 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1774 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1775 * 1776 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1777 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1778 * calls blk_complete_request() for further processing. 1779 * 1780 * This function is interrupt context safe. 1781 */ 1782 static void scsi_done(struct scsi_cmnd *cmd) 1783 { 1784 trace_scsi_dispatch_cmd_done(cmd); 1785 blk_complete_request(cmd->request); 1786 } 1787 1788 /* 1789 * Function: scsi_request_fn() 1790 * 1791 * Purpose: Main strategy routine for SCSI. 1792 * 1793 * Arguments: q - Pointer to actual queue. 1794 * 1795 * Returns: Nothing 1796 * 1797 * Lock status: request queue lock assumed to be held when called. 1798 * 1799 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1800 * protection for ZBC disks. 1801 */ 1802 static void scsi_request_fn(struct request_queue *q) 1803 __releases(q->queue_lock) 1804 __acquires(q->queue_lock) 1805 { 1806 struct scsi_device *sdev = q->queuedata; 1807 struct Scsi_Host *shost; 1808 struct scsi_cmnd *cmd; 1809 struct request *req; 1810 1811 /* 1812 * To start with, we keep looping until the queue is empty, or until 1813 * the host is no longer able to accept any more requests. 1814 */ 1815 shost = sdev->host; 1816 for (;;) { 1817 int rtn; 1818 /* 1819 * get next queueable request. We do this early to make sure 1820 * that the request is fully prepared even if we cannot 1821 * accept it. 1822 */ 1823 req = blk_peek_request(q); 1824 if (!req) 1825 break; 1826 1827 if (unlikely(!scsi_device_online(sdev))) { 1828 sdev_printk(KERN_ERR, sdev, 1829 "rejecting I/O to offline device\n"); 1830 scsi_kill_request(req, q); 1831 continue; 1832 } 1833 1834 if (!scsi_dev_queue_ready(q, sdev)) 1835 break; 1836 1837 /* 1838 * Remove the request from the request list. 1839 */ 1840 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1841 blk_start_request(req); 1842 1843 spin_unlock_irq(q->queue_lock); 1844 cmd = blk_mq_rq_to_pdu(req); 1845 if (cmd != req->special) { 1846 printk(KERN_CRIT "impossible request in %s.\n" 1847 "please mail a stack trace to " 1848 "linux-scsi@vger.kernel.org\n", 1849 __func__); 1850 blk_dump_rq_flags(req, "foo"); 1851 BUG(); 1852 } 1853 1854 /* 1855 * We hit this when the driver is using a host wide 1856 * tag map. For device level tag maps the queue_depth check 1857 * in the device ready fn would prevent us from trying 1858 * to allocate a tag. Since the map is a shared host resource 1859 * we add the dev to the starved list so it eventually gets 1860 * a run when a tag is freed. 1861 */ 1862 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1863 spin_lock_irq(shost->host_lock); 1864 if (list_empty(&sdev->starved_entry)) 1865 list_add_tail(&sdev->starved_entry, 1866 &shost->starved_list); 1867 spin_unlock_irq(shost->host_lock); 1868 goto not_ready; 1869 } 1870 1871 if (!scsi_target_queue_ready(shost, sdev)) 1872 goto not_ready; 1873 1874 if (!scsi_host_queue_ready(q, shost, sdev)) 1875 goto host_not_ready; 1876 1877 if (sdev->simple_tags) 1878 cmd->flags |= SCMD_TAGGED; 1879 else 1880 cmd->flags &= ~SCMD_TAGGED; 1881 1882 /* 1883 * Finally, initialize any error handling parameters, and set up 1884 * the timers for timeouts. 1885 */ 1886 scsi_init_cmd_errh(cmd); 1887 1888 /* 1889 * Dispatch the command to the low-level driver. 1890 */ 1891 cmd->scsi_done = scsi_done; 1892 rtn = scsi_dispatch_cmd(cmd); 1893 if (rtn) { 1894 scsi_queue_insert(cmd, rtn); 1895 spin_lock_irq(q->queue_lock); 1896 goto out_delay; 1897 } 1898 spin_lock_irq(q->queue_lock); 1899 } 1900 1901 return; 1902 1903 host_not_ready: 1904 if (scsi_target(sdev)->can_queue > 0) 1905 atomic_dec(&scsi_target(sdev)->target_busy); 1906 not_ready: 1907 /* 1908 * lock q, handle tag, requeue req, and decrement device_busy. We 1909 * must return with queue_lock held. 1910 * 1911 * Decrementing device_busy without checking it is OK, as all such 1912 * cases (host limits or settings) should run the queue at some 1913 * later time. 1914 */ 1915 spin_lock_irq(q->queue_lock); 1916 blk_requeue_request(q, req); 1917 atomic_dec(&sdev->device_busy); 1918 out_delay: 1919 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1920 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1921 } 1922 1923 static inline blk_status_t prep_to_mq(int ret) 1924 { 1925 switch (ret) { 1926 case BLKPREP_OK: 1927 return BLK_STS_OK; 1928 case BLKPREP_DEFER: 1929 return BLK_STS_RESOURCE; 1930 default: 1931 return BLK_STS_IOERR; 1932 } 1933 } 1934 1935 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1936 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1937 { 1938 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1939 sizeof(struct scatterlist); 1940 } 1941 1942 static int scsi_mq_prep_fn(struct request *req) 1943 { 1944 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1945 struct scsi_device *sdev = req->q->queuedata; 1946 struct Scsi_Host *shost = sdev->host; 1947 struct scatterlist *sg; 1948 1949 scsi_init_command(sdev, cmd); 1950 1951 req->special = cmd; 1952 1953 cmd->request = req; 1954 1955 cmd->tag = req->tag; 1956 cmd->prot_op = SCSI_PROT_NORMAL; 1957 1958 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1959 cmd->sdb.table.sgl = sg; 1960 1961 if (scsi_host_get_prot(shost)) { 1962 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1963 1964 cmd->prot_sdb->table.sgl = 1965 (struct scatterlist *)(cmd->prot_sdb + 1); 1966 } 1967 1968 if (blk_bidi_rq(req)) { 1969 struct request *next_rq = req->next_rq; 1970 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1971 1972 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1973 bidi_sdb->table.sgl = 1974 (struct scatterlist *)(bidi_sdb + 1); 1975 1976 next_rq->special = bidi_sdb; 1977 } 1978 1979 blk_mq_start_request(req); 1980 1981 return scsi_setup_cmnd(sdev, req); 1982 } 1983 1984 static void scsi_mq_done(struct scsi_cmnd *cmd) 1985 { 1986 trace_scsi_dispatch_cmd_done(cmd); 1987 blk_mq_complete_request(cmd->request); 1988 } 1989 1990 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1991 { 1992 struct request_queue *q = hctx->queue; 1993 struct scsi_device *sdev = q->queuedata; 1994 1995 atomic_dec(&sdev->device_busy); 1996 put_device(&sdev->sdev_gendev); 1997 } 1998 1999 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 2000 { 2001 struct request_queue *q = hctx->queue; 2002 struct scsi_device *sdev = q->queuedata; 2003 2004 if (!get_device(&sdev->sdev_gendev)) 2005 goto out; 2006 if (!scsi_dev_queue_ready(q, sdev)) 2007 goto out_put_device; 2008 2009 return true; 2010 2011 out_put_device: 2012 put_device(&sdev->sdev_gendev); 2013 out: 2014 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 2015 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 2016 return false; 2017 } 2018 2019 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 2020 const struct blk_mq_queue_data *bd) 2021 { 2022 struct request *req = bd->rq; 2023 struct request_queue *q = req->q; 2024 struct scsi_device *sdev = q->queuedata; 2025 struct Scsi_Host *shost = sdev->host; 2026 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2027 blk_status_t ret; 2028 int reason; 2029 2030 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2031 if (ret != BLK_STS_OK) 2032 goto out_put_budget; 2033 2034 ret = BLK_STS_RESOURCE; 2035 if (!scsi_target_queue_ready(shost, sdev)) 2036 goto out_put_budget; 2037 if (!scsi_host_queue_ready(q, shost, sdev)) 2038 goto out_dec_target_busy; 2039 2040 if (!(req->rq_flags & RQF_DONTPREP)) { 2041 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2042 if (ret != BLK_STS_OK) 2043 goto out_dec_host_busy; 2044 req->rq_flags |= RQF_DONTPREP; 2045 } else { 2046 blk_mq_start_request(req); 2047 } 2048 2049 if (sdev->simple_tags) 2050 cmd->flags |= SCMD_TAGGED; 2051 else 2052 cmd->flags &= ~SCMD_TAGGED; 2053 2054 scsi_init_cmd_errh(cmd); 2055 cmd->scsi_done = scsi_mq_done; 2056 2057 reason = scsi_dispatch_cmd(cmd); 2058 if (reason) { 2059 scsi_set_blocked(cmd, reason); 2060 ret = BLK_STS_RESOURCE; 2061 goto out_dec_host_busy; 2062 } 2063 2064 return BLK_STS_OK; 2065 2066 out_dec_host_busy: 2067 scsi_dec_host_busy(shost); 2068 out_dec_target_busy: 2069 if (scsi_target(sdev)->can_queue > 0) 2070 atomic_dec(&scsi_target(sdev)->target_busy); 2071 out_put_budget: 2072 scsi_mq_put_budget(hctx); 2073 switch (ret) { 2074 case BLK_STS_OK: 2075 break; 2076 case BLK_STS_RESOURCE: 2077 if (atomic_read(&sdev->device_busy) || 2078 scsi_device_blocked(sdev)) 2079 ret = BLK_STS_DEV_RESOURCE; 2080 break; 2081 default: 2082 /* 2083 * Make sure to release all allocated ressources when 2084 * we hit an error, as we will never see this command 2085 * again. 2086 */ 2087 if (req->rq_flags & RQF_DONTPREP) 2088 scsi_mq_uninit_cmd(cmd); 2089 break; 2090 } 2091 return ret; 2092 } 2093 2094 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2095 bool reserved) 2096 { 2097 if (reserved) 2098 return BLK_EH_RESET_TIMER; 2099 return scsi_times_out(req); 2100 } 2101 2102 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2103 unsigned int hctx_idx, unsigned int numa_node) 2104 { 2105 struct Scsi_Host *shost = set->driver_data; 2106 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2107 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2108 struct scatterlist *sg; 2109 2110 if (unchecked_isa_dma) 2111 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2112 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2113 GFP_KERNEL, numa_node); 2114 if (!cmd->sense_buffer) 2115 return -ENOMEM; 2116 cmd->req.sense = cmd->sense_buffer; 2117 2118 if (scsi_host_get_prot(shost)) { 2119 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2120 shost->hostt->cmd_size; 2121 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2122 } 2123 2124 return 0; 2125 } 2126 2127 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2128 unsigned int hctx_idx) 2129 { 2130 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2131 2132 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2133 cmd->sense_buffer); 2134 } 2135 2136 static int scsi_map_queues(struct blk_mq_tag_set *set) 2137 { 2138 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2139 2140 if (shost->hostt->map_queues) 2141 return shost->hostt->map_queues(shost); 2142 return blk_mq_map_queues(set); 2143 } 2144 2145 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2146 { 2147 struct device *host_dev; 2148 u64 bounce_limit = 0xffffffff; 2149 2150 if (shost->unchecked_isa_dma) 2151 return BLK_BOUNCE_ISA; 2152 /* 2153 * Platforms with virtual-DMA translation 2154 * hardware have no practical limit. 2155 */ 2156 if (!PCI_DMA_BUS_IS_PHYS) 2157 return BLK_BOUNCE_ANY; 2158 2159 host_dev = scsi_get_device(shost); 2160 if (host_dev && host_dev->dma_mask) 2161 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2162 2163 return bounce_limit; 2164 } 2165 2166 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2167 { 2168 struct device *dev = shost->dma_dev; 2169 2170 /* 2171 * this limit is imposed by hardware restrictions 2172 */ 2173 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2174 SG_MAX_SEGMENTS)); 2175 2176 if (scsi_host_prot_dma(shost)) { 2177 shost->sg_prot_tablesize = 2178 min_not_zero(shost->sg_prot_tablesize, 2179 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2180 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2181 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2182 } 2183 2184 blk_queue_max_hw_sectors(q, shost->max_sectors); 2185 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2186 blk_queue_segment_boundary(q, shost->dma_boundary); 2187 dma_set_seg_boundary(dev, shost->dma_boundary); 2188 2189 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2190 2191 if (!shost->use_clustering) 2192 q->limits.cluster = 0; 2193 2194 /* 2195 * Set a reasonable default alignment: The larger of 32-byte (dword), 2196 * which is a common minimum for HBAs, and the minimum DMA alignment, 2197 * which is set by the platform. 2198 * 2199 * Devices that require a bigger alignment can increase it later. 2200 */ 2201 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2202 } 2203 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2204 2205 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2206 gfp_t gfp) 2207 { 2208 struct Scsi_Host *shost = q->rq_alloc_data; 2209 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2210 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2211 2212 memset(cmd, 0, sizeof(*cmd)); 2213 2214 if (unchecked_isa_dma) 2215 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2216 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2217 NUMA_NO_NODE); 2218 if (!cmd->sense_buffer) 2219 goto fail; 2220 cmd->req.sense = cmd->sense_buffer; 2221 2222 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2223 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2224 if (!cmd->prot_sdb) 2225 goto fail_free_sense; 2226 } 2227 2228 return 0; 2229 2230 fail_free_sense: 2231 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2232 fail: 2233 return -ENOMEM; 2234 } 2235 2236 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2237 { 2238 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2239 2240 if (cmd->prot_sdb) 2241 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2242 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2243 cmd->sense_buffer); 2244 } 2245 2246 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2247 { 2248 struct Scsi_Host *shost = sdev->host; 2249 struct request_queue *q; 2250 2251 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); 2252 if (!q) 2253 return NULL; 2254 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2255 q->rq_alloc_data = shost; 2256 q->request_fn = scsi_request_fn; 2257 q->init_rq_fn = scsi_old_init_rq; 2258 q->exit_rq_fn = scsi_old_exit_rq; 2259 q->initialize_rq_fn = scsi_initialize_rq; 2260 2261 if (blk_init_allocated_queue(q) < 0) { 2262 blk_cleanup_queue(q); 2263 return NULL; 2264 } 2265 2266 __scsi_init_queue(shost, q); 2267 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2268 blk_queue_prep_rq(q, scsi_prep_fn); 2269 blk_queue_unprep_rq(q, scsi_unprep_fn); 2270 blk_queue_softirq_done(q, scsi_softirq_done); 2271 blk_queue_rq_timed_out(q, scsi_times_out); 2272 blk_queue_lld_busy(q, scsi_lld_busy); 2273 return q; 2274 } 2275 2276 static const struct blk_mq_ops scsi_mq_ops = { 2277 .get_budget = scsi_mq_get_budget, 2278 .put_budget = scsi_mq_put_budget, 2279 .queue_rq = scsi_queue_rq, 2280 .complete = scsi_softirq_done, 2281 .timeout = scsi_timeout, 2282 #ifdef CONFIG_BLK_DEBUG_FS 2283 .show_rq = scsi_show_rq, 2284 #endif 2285 .init_request = scsi_mq_init_request, 2286 .exit_request = scsi_mq_exit_request, 2287 .initialize_rq_fn = scsi_initialize_rq, 2288 .map_queues = scsi_map_queues, 2289 }; 2290 2291 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2292 { 2293 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2294 if (IS_ERR(sdev->request_queue)) 2295 return NULL; 2296 2297 sdev->request_queue->queuedata = sdev; 2298 __scsi_init_queue(sdev->host, sdev->request_queue); 2299 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 2300 return sdev->request_queue; 2301 } 2302 2303 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2304 { 2305 unsigned int cmd_size, sgl_size; 2306 2307 sgl_size = scsi_mq_sgl_size(shost); 2308 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2309 if (scsi_host_get_prot(shost)) 2310 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2311 2312 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2313 shost->tag_set.ops = &scsi_mq_ops; 2314 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2315 shost->tag_set.queue_depth = shost->can_queue; 2316 shost->tag_set.cmd_size = cmd_size; 2317 shost->tag_set.numa_node = NUMA_NO_NODE; 2318 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2319 shost->tag_set.flags |= 2320 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2321 shost->tag_set.driver_data = shost; 2322 2323 return blk_mq_alloc_tag_set(&shost->tag_set); 2324 } 2325 2326 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2327 { 2328 blk_mq_free_tag_set(&shost->tag_set); 2329 } 2330 2331 /** 2332 * scsi_device_from_queue - return sdev associated with a request_queue 2333 * @q: The request queue to return the sdev from 2334 * 2335 * Return the sdev associated with a request queue or NULL if the 2336 * request_queue does not reference a SCSI device. 2337 */ 2338 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2339 { 2340 struct scsi_device *sdev = NULL; 2341 2342 if (q->mq_ops) { 2343 if (q->mq_ops == &scsi_mq_ops) 2344 sdev = q->queuedata; 2345 } else if (q->request_fn == scsi_request_fn) 2346 sdev = q->queuedata; 2347 if (!sdev || !get_device(&sdev->sdev_gendev)) 2348 sdev = NULL; 2349 2350 return sdev; 2351 } 2352 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2353 2354 /* 2355 * Function: scsi_block_requests() 2356 * 2357 * Purpose: Utility function used by low-level drivers to prevent further 2358 * commands from being queued to the device. 2359 * 2360 * Arguments: shost - Host in question 2361 * 2362 * Returns: Nothing 2363 * 2364 * Lock status: No locks are assumed held. 2365 * 2366 * Notes: There is no timer nor any other means by which the requests 2367 * get unblocked other than the low-level driver calling 2368 * scsi_unblock_requests(). 2369 */ 2370 void scsi_block_requests(struct Scsi_Host *shost) 2371 { 2372 shost->host_self_blocked = 1; 2373 } 2374 EXPORT_SYMBOL(scsi_block_requests); 2375 2376 /* 2377 * Function: scsi_unblock_requests() 2378 * 2379 * Purpose: Utility function used by low-level drivers to allow further 2380 * commands from being queued to the device. 2381 * 2382 * Arguments: shost - Host in question 2383 * 2384 * Returns: Nothing 2385 * 2386 * Lock status: No locks are assumed held. 2387 * 2388 * Notes: There is no timer nor any other means by which the requests 2389 * get unblocked other than the low-level driver calling 2390 * scsi_unblock_requests(). 2391 * 2392 * This is done as an API function so that changes to the 2393 * internals of the scsi mid-layer won't require wholesale 2394 * changes to drivers that use this feature. 2395 */ 2396 void scsi_unblock_requests(struct Scsi_Host *shost) 2397 { 2398 shost->host_self_blocked = 0; 2399 scsi_run_host_queues(shost); 2400 } 2401 EXPORT_SYMBOL(scsi_unblock_requests); 2402 2403 int __init scsi_init_queue(void) 2404 { 2405 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2406 sizeof(struct scsi_data_buffer), 2407 0, 0, NULL); 2408 if (!scsi_sdb_cache) { 2409 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2410 return -ENOMEM; 2411 } 2412 2413 return 0; 2414 } 2415 2416 void scsi_exit_queue(void) 2417 { 2418 kmem_cache_destroy(scsi_sense_cache); 2419 kmem_cache_destroy(scsi_sense_isadma_cache); 2420 kmem_cache_destroy(scsi_sdb_cache); 2421 } 2422 2423 /** 2424 * scsi_mode_select - issue a mode select 2425 * @sdev: SCSI device to be queried 2426 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2427 * @sp: Save page bit (0 == don't save, 1 == save) 2428 * @modepage: mode page being requested 2429 * @buffer: request buffer (may not be smaller than eight bytes) 2430 * @len: length of request buffer. 2431 * @timeout: command timeout 2432 * @retries: number of retries before failing 2433 * @data: returns a structure abstracting the mode header data 2434 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2435 * must be SCSI_SENSE_BUFFERSIZE big. 2436 * 2437 * Returns zero if successful; negative error number or scsi 2438 * status on error 2439 * 2440 */ 2441 int 2442 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2443 unsigned char *buffer, int len, int timeout, int retries, 2444 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2445 { 2446 unsigned char cmd[10]; 2447 unsigned char *real_buffer; 2448 int ret; 2449 2450 memset(cmd, 0, sizeof(cmd)); 2451 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2452 2453 if (sdev->use_10_for_ms) { 2454 if (len > 65535) 2455 return -EINVAL; 2456 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2457 if (!real_buffer) 2458 return -ENOMEM; 2459 memcpy(real_buffer + 8, buffer, len); 2460 len += 8; 2461 real_buffer[0] = 0; 2462 real_buffer[1] = 0; 2463 real_buffer[2] = data->medium_type; 2464 real_buffer[3] = data->device_specific; 2465 real_buffer[4] = data->longlba ? 0x01 : 0; 2466 real_buffer[5] = 0; 2467 real_buffer[6] = data->block_descriptor_length >> 8; 2468 real_buffer[7] = data->block_descriptor_length; 2469 2470 cmd[0] = MODE_SELECT_10; 2471 cmd[7] = len >> 8; 2472 cmd[8] = len; 2473 } else { 2474 if (len > 255 || data->block_descriptor_length > 255 || 2475 data->longlba) 2476 return -EINVAL; 2477 2478 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2479 if (!real_buffer) 2480 return -ENOMEM; 2481 memcpy(real_buffer + 4, buffer, len); 2482 len += 4; 2483 real_buffer[0] = 0; 2484 real_buffer[1] = data->medium_type; 2485 real_buffer[2] = data->device_specific; 2486 real_buffer[3] = data->block_descriptor_length; 2487 2488 2489 cmd[0] = MODE_SELECT; 2490 cmd[4] = len; 2491 } 2492 2493 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2494 sshdr, timeout, retries, NULL); 2495 kfree(real_buffer); 2496 return ret; 2497 } 2498 EXPORT_SYMBOL_GPL(scsi_mode_select); 2499 2500 /** 2501 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2502 * @sdev: SCSI device to be queried 2503 * @dbd: set if mode sense will allow block descriptors to be returned 2504 * @modepage: mode page being requested 2505 * @buffer: request buffer (may not be smaller than eight bytes) 2506 * @len: length of request buffer. 2507 * @timeout: command timeout 2508 * @retries: number of retries before failing 2509 * @data: returns a structure abstracting the mode header data 2510 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2511 * must be SCSI_SENSE_BUFFERSIZE big. 2512 * 2513 * Returns zero if unsuccessful, or the header offset (either 4 2514 * or 8 depending on whether a six or ten byte command was 2515 * issued) if successful. 2516 */ 2517 int 2518 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2519 unsigned char *buffer, int len, int timeout, int retries, 2520 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2521 { 2522 unsigned char cmd[12]; 2523 int use_10_for_ms; 2524 int header_length; 2525 int result, retry_count = retries; 2526 struct scsi_sense_hdr my_sshdr; 2527 2528 memset(data, 0, sizeof(*data)); 2529 memset(&cmd[0], 0, 12); 2530 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2531 cmd[2] = modepage; 2532 2533 /* caller might not be interested in sense, but we need it */ 2534 if (!sshdr) 2535 sshdr = &my_sshdr; 2536 2537 retry: 2538 use_10_for_ms = sdev->use_10_for_ms; 2539 2540 if (use_10_for_ms) { 2541 if (len < 8) 2542 len = 8; 2543 2544 cmd[0] = MODE_SENSE_10; 2545 cmd[8] = len; 2546 header_length = 8; 2547 } else { 2548 if (len < 4) 2549 len = 4; 2550 2551 cmd[0] = MODE_SENSE; 2552 cmd[4] = len; 2553 header_length = 4; 2554 } 2555 2556 memset(buffer, 0, len); 2557 2558 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2559 sshdr, timeout, retries, NULL); 2560 2561 /* This code looks awful: what it's doing is making sure an 2562 * ILLEGAL REQUEST sense return identifies the actual command 2563 * byte as the problem. MODE_SENSE commands can return 2564 * ILLEGAL REQUEST if the code page isn't supported */ 2565 2566 if (use_10_for_ms && !scsi_status_is_good(result) && 2567 (driver_byte(result) & DRIVER_SENSE)) { 2568 if (scsi_sense_valid(sshdr)) { 2569 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2570 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2571 /* 2572 * Invalid command operation code 2573 */ 2574 sdev->use_10_for_ms = 0; 2575 goto retry; 2576 } 2577 } 2578 } 2579 2580 if(scsi_status_is_good(result)) { 2581 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2582 (modepage == 6 || modepage == 8))) { 2583 /* Initio breakage? */ 2584 header_length = 0; 2585 data->length = 13; 2586 data->medium_type = 0; 2587 data->device_specific = 0; 2588 data->longlba = 0; 2589 data->block_descriptor_length = 0; 2590 } else if(use_10_for_ms) { 2591 data->length = buffer[0]*256 + buffer[1] + 2; 2592 data->medium_type = buffer[2]; 2593 data->device_specific = buffer[3]; 2594 data->longlba = buffer[4] & 0x01; 2595 data->block_descriptor_length = buffer[6]*256 2596 + buffer[7]; 2597 } else { 2598 data->length = buffer[0] + 1; 2599 data->medium_type = buffer[1]; 2600 data->device_specific = buffer[2]; 2601 data->block_descriptor_length = buffer[3]; 2602 } 2603 data->header_length = header_length; 2604 } else if ((status_byte(result) == CHECK_CONDITION) && 2605 scsi_sense_valid(sshdr) && 2606 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2607 retry_count--; 2608 goto retry; 2609 } 2610 2611 return result; 2612 } 2613 EXPORT_SYMBOL(scsi_mode_sense); 2614 2615 /** 2616 * scsi_test_unit_ready - test if unit is ready 2617 * @sdev: scsi device to change the state of. 2618 * @timeout: command timeout 2619 * @retries: number of retries before failing 2620 * @sshdr: outpout pointer for decoded sense information. 2621 * 2622 * Returns zero if unsuccessful or an error if TUR failed. For 2623 * removable media, UNIT_ATTENTION sets ->changed flag. 2624 **/ 2625 int 2626 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2627 struct scsi_sense_hdr *sshdr) 2628 { 2629 char cmd[] = { 2630 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2631 }; 2632 int result; 2633 2634 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2635 do { 2636 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2637 timeout, 1, NULL); 2638 if (sdev->removable && scsi_sense_valid(sshdr) && 2639 sshdr->sense_key == UNIT_ATTENTION) 2640 sdev->changed = 1; 2641 } while (scsi_sense_valid(sshdr) && 2642 sshdr->sense_key == UNIT_ATTENTION && --retries); 2643 2644 return result; 2645 } 2646 EXPORT_SYMBOL(scsi_test_unit_ready); 2647 2648 /** 2649 * scsi_device_set_state - Take the given device through the device state model. 2650 * @sdev: scsi device to change the state of. 2651 * @state: state to change to. 2652 * 2653 * Returns zero if successful or an error if the requested 2654 * transition is illegal. 2655 */ 2656 int 2657 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2658 { 2659 enum scsi_device_state oldstate = sdev->sdev_state; 2660 2661 if (state == oldstate) 2662 return 0; 2663 2664 switch (state) { 2665 case SDEV_CREATED: 2666 switch (oldstate) { 2667 case SDEV_CREATED_BLOCK: 2668 break; 2669 default: 2670 goto illegal; 2671 } 2672 break; 2673 2674 case SDEV_RUNNING: 2675 switch (oldstate) { 2676 case SDEV_CREATED: 2677 case SDEV_OFFLINE: 2678 case SDEV_TRANSPORT_OFFLINE: 2679 case SDEV_QUIESCE: 2680 case SDEV_BLOCK: 2681 break; 2682 default: 2683 goto illegal; 2684 } 2685 break; 2686 2687 case SDEV_QUIESCE: 2688 switch (oldstate) { 2689 case SDEV_RUNNING: 2690 case SDEV_OFFLINE: 2691 case SDEV_TRANSPORT_OFFLINE: 2692 break; 2693 default: 2694 goto illegal; 2695 } 2696 break; 2697 2698 case SDEV_OFFLINE: 2699 case SDEV_TRANSPORT_OFFLINE: 2700 switch (oldstate) { 2701 case SDEV_CREATED: 2702 case SDEV_RUNNING: 2703 case SDEV_QUIESCE: 2704 case SDEV_BLOCK: 2705 break; 2706 default: 2707 goto illegal; 2708 } 2709 break; 2710 2711 case SDEV_BLOCK: 2712 switch (oldstate) { 2713 case SDEV_RUNNING: 2714 case SDEV_CREATED_BLOCK: 2715 break; 2716 default: 2717 goto illegal; 2718 } 2719 break; 2720 2721 case SDEV_CREATED_BLOCK: 2722 switch (oldstate) { 2723 case SDEV_CREATED: 2724 break; 2725 default: 2726 goto illegal; 2727 } 2728 break; 2729 2730 case SDEV_CANCEL: 2731 switch (oldstate) { 2732 case SDEV_CREATED: 2733 case SDEV_RUNNING: 2734 case SDEV_QUIESCE: 2735 case SDEV_OFFLINE: 2736 case SDEV_TRANSPORT_OFFLINE: 2737 break; 2738 default: 2739 goto illegal; 2740 } 2741 break; 2742 2743 case SDEV_DEL: 2744 switch (oldstate) { 2745 case SDEV_CREATED: 2746 case SDEV_RUNNING: 2747 case SDEV_OFFLINE: 2748 case SDEV_TRANSPORT_OFFLINE: 2749 case SDEV_CANCEL: 2750 case SDEV_BLOCK: 2751 case SDEV_CREATED_BLOCK: 2752 break; 2753 default: 2754 goto illegal; 2755 } 2756 break; 2757 2758 } 2759 sdev->sdev_state = state; 2760 return 0; 2761 2762 illegal: 2763 SCSI_LOG_ERROR_RECOVERY(1, 2764 sdev_printk(KERN_ERR, sdev, 2765 "Illegal state transition %s->%s", 2766 scsi_device_state_name(oldstate), 2767 scsi_device_state_name(state)) 2768 ); 2769 return -EINVAL; 2770 } 2771 EXPORT_SYMBOL(scsi_device_set_state); 2772 2773 /** 2774 * sdev_evt_emit - emit a single SCSI device uevent 2775 * @sdev: associated SCSI device 2776 * @evt: event to emit 2777 * 2778 * Send a single uevent (scsi_event) to the associated scsi_device. 2779 */ 2780 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2781 { 2782 int idx = 0; 2783 char *envp[3]; 2784 2785 switch (evt->evt_type) { 2786 case SDEV_EVT_MEDIA_CHANGE: 2787 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2788 break; 2789 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2790 scsi_rescan_device(&sdev->sdev_gendev); 2791 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2792 break; 2793 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2794 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2795 break; 2796 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2797 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2798 break; 2799 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2800 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2801 break; 2802 case SDEV_EVT_LUN_CHANGE_REPORTED: 2803 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2804 break; 2805 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2806 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2807 break; 2808 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2809 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2810 break; 2811 default: 2812 /* do nothing */ 2813 break; 2814 } 2815 2816 envp[idx++] = NULL; 2817 2818 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2819 } 2820 2821 /** 2822 * sdev_evt_thread - send a uevent for each scsi event 2823 * @work: work struct for scsi_device 2824 * 2825 * Dispatch queued events to their associated scsi_device kobjects 2826 * as uevents. 2827 */ 2828 void scsi_evt_thread(struct work_struct *work) 2829 { 2830 struct scsi_device *sdev; 2831 enum scsi_device_event evt_type; 2832 LIST_HEAD(event_list); 2833 2834 sdev = container_of(work, struct scsi_device, event_work); 2835 2836 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2837 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2838 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2839 2840 while (1) { 2841 struct scsi_event *evt; 2842 struct list_head *this, *tmp; 2843 unsigned long flags; 2844 2845 spin_lock_irqsave(&sdev->list_lock, flags); 2846 list_splice_init(&sdev->event_list, &event_list); 2847 spin_unlock_irqrestore(&sdev->list_lock, flags); 2848 2849 if (list_empty(&event_list)) 2850 break; 2851 2852 list_for_each_safe(this, tmp, &event_list) { 2853 evt = list_entry(this, struct scsi_event, node); 2854 list_del(&evt->node); 2855 scsi_evt_emit(sdev, evt); 2856 kfree(evt); 2857 } 2858 } 2859 } 2860 2861 /** 2862 * sdev_evt_send - send asserted event to uevent thread 2863 * @sdev: scsi_device event occurred on 2864 * @evt: event to send 2865 * 2866 * Assert scsi device event asynchronously. 2867 */ 2868 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2869 { 2870 unsigned long flags; 2871 2872 #if 0 2873 /* FIXME: currently this check eliminates all media change events 2874 * for polled devices. Need to update to discriminate between AN 2875 * and polled events */ 2876 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2877 kfree(evt); 2878 return; 2879 } 2880 #endif 2881 2882 spin_lock_irqsave(&sdev->list_lock, flags); 2883 list_add_tail(&evt->node, &sdev->event_list); 2884 schedule_work(&sdev->event_work); 2885 spin_unlock_irqrestore(&sdev->list_lock, flags); 2886 } 2887 EXPORT_SYMBOL_GPL(sdev_evt_send); 2888 2889 /** 2890 * sdev_evt_alloc - allocate a new scsi event 2891 * @evt_type: type of event to allocate 2892 * @gfpflags: GFP flags for allocation 2893 * 2894 * Allocates and returns a new scsi_event. 2895 */ 2896 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2897 gfp_t gfpflags) 2898 { 2899 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2900 if (!evt) 2901 return NULL; 2902 2903 evt->evt_type = evt_type; 2904 INIT_LIST_HEAD(&evt->node); 2905 2906 /* evt_type-specific initialization, if any */ 2907 switch (evt_type) { 2908 case SDEV_EVT_MEDIA_CHANGE: 2909 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2910 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2911 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2912 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2913 case SDEV_EVT_LUN_CHANGE_REPORTED: 2914 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2915 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2916 default: 2917 /* do nothing */ 2918 break; 2919 } 2920 2921 return evt; 2922 } 2923 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2924 2925 /** 2926 * sdev_evt_send_simple - send asserted event to uevent thread 2927 * @sdev: scsi_device event occurred on 2928 * @evt_type: type of event to send 2929 * @gfpflags: GFP flags for allocation 2930 * 2931 * Assert scsi device event asynchronously, given an event type. 2932 */ 2933 void sdev_evt_send_simple(struct scsi_device *sdev, 2934 enum scsi_device_event evt_type, gfp_t gfpflags) 2935 { 2936 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2937 if (!evt) { 2938 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2939 evt_type); 2940 return; 2941 } 2942 2943 sdev_evt_send(sdev, evt); 2944 } 2945 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2946 2947 /** 2948 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2949 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2950 */ 2951 static int scsi_request_fn_active(struct scsi_device *sdev) 2952 { 2953 struct request_queue *q = sdev->request_queue; 2954 int request_fn_active; 2955 2956 WARN_ON_ONCE(sdev->host->use_blk_mq); 2957 2958 spin_lock_irq(q->queue_lock); 2959 request_fn_active = q->request_fn_active; 2960 spin_unlock_irq(q->queue_lock); 2961 2962 return request_fn_active; 2963 } 2964 2965 /** 2966 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2967 * @sdev: SCSI device pointer. 2968 * 2969 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2970 * invoked from scsi_request_fn() have finished. 2971 */ 2972 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2973 { 2974 WARN_ON_ONCE(sdev->host->use_blk_mq); 2975 2976 while (scsi_request_fn_active(sdev)) 2977 msleep(20); 2978 } 2979 2980 /** 2981 * scsi_device_quiesce - Block user issued commands. 2982 * @sdev: scsi device to quiesce. 2983 * 2984 * This works by trying to transition to the SDEV_QUIESCE state 2985 * (which must be a legal transition). When the device is in this 2986 * state, only special requests will be accepted, all others will 2987 * be deferred. Since special requests may also be requeued requests, 2988 * a successful return doesn't guarantee the device will be 2989 * totally quiescent. 2990 * 2991 * Must be called with user context, may sleep. 2992 * 2993 * Returns zero if unsuccessful or an error if not. 2994 */ 2995 int 2996 scsi_device_quiesce(struct scsi_device *sdev) 2997 { 2998 struct request_queue *q = sdev->request_queue; 2999 int err; 3000 3001 /* 3002 * It is allowed to call scsi_device_quiesce() multiple times from 3003 * the same context but concurrent scsi_device_quiesce() calls are 3004 * not allowed. 3005 */ 3006 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 3007 3008 blk_set_preempt_only(q); 3009 3010 blk_mq_freeze_queue(q); 3011 /* 3012 * Ensure that the effect of blk_set_preempt_only() will be visible 3013 * for percpu_ref_tryget() callers that occur after the queue 3014 * unfreeze even if the queue was already frozen before this function 3015 * was called. See also https://lwn.net/Articles/573497/. 3016 */ 3017 synchronize_rcu(); 3018 blk_mq_unfreeze_queue(q); 3019 3020 mutex_lock(&sdev->state_mutex); 3021 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 3022 if (err == 0) 3023 sdev->quiesced_by = current; 3024 else 3025 blk_clear_preempt_only(q); 3026 mutex_unlock(&sdev->state_mutex); 3027 3028 return err; 3029 } 3030 EXPORT_SYMBOL(scsi_device_quiesce); 3031 3032 /** 3033 * scsi_device_resume - Restart user issued commands to a quiesced device. 3034 * @sdev: scsi device to resume. 3035 * 3036 * Moves the device from quiesced back to running and restarts the 3037 * queues. 3038 * 3039 * Must be called with user context, may sleep. 3040 */ 3041 void scsi_device_resume(struct scsi_device *sdev) 3042 { 3043 /* check if the device state was mutated prior to resume, and if 3044 * so assume the state is being managed elsewhere (for example 3045 * device deleted during suspend) 3046 */ 3047 mutex_lock(&sdev->state_mutex); 3048 WARN_ON_ONCE(!sdev->quiesced_by); 3049 sdev->quiesced_by = NULL; 3050 blk_clear_preempt_only(sdev->request_queue); 3051 if (sdev->sdev_state == SDEV_QUIESCE) 3052 scsi_device_set_state(sdev, SDEV_RUNNING); 3053 mutex_unlock(&sdev->state_mutex); 3054 } 3055 EXPORT_SYMBOL(scsi_device_resume); 3056 3057 static void 3058 device_quiesce_fn(struct scsi_device *sdev, void *data) 3059 { 3060 scsi_device_quiesce(sdev); 3061 } 3062 3063 void 3064 scsi_target_quiesce(struct scsi_target *starget) 3065 { 3066 starget_for_each_device(starget, NULL, device_quiesce_fn); 3067 } 3068 EXPORT_SYMBOL(scsi_target_quiesce); 3069 3070 static void 3071 device_resume_fn(struct scsi_device *sdev, void *data) 3072 { 3073 scsi_device_resume(sdev); 3074 } 3075 3076 void 3077 scsi_target_resume(struct scsi_target *starget) 3078 { 3079 starget_for_each_device(starget, NULL, device_resume_fn); 3080 } 3081 EXPORT_SYMBOL(scsi_target_resume); 3082 3083 /** 3084 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3085 * @sdev: device to block 3086 * 3087 * Pause SCSI command processing on the specified device. Does not sleep. 3088 * 3089 * Returns zero if successful or a negative error code upon failure. 3090 * 3091 * Notes: 3092 * This routine transitions the device to the SDEV_BLOCK state (which must be 3093 * a legal transition). When the device is in this state, command processing 3094 * is paused until the device leaves the SDEV_BLOCK state. See also 3095 * scsi_internal_device_unblock_nowait(). 3096 */ 3097 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3098 { 3099 struct request_queue *q = sdev->request_queue; 3100 unsigned long flags; 3101 int err = 0; 3102 3103 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3104 if (err) { 3105 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3106 3107 if (err) 3108 return err; 3109 } 3110 3111 /* 3112 * The device has transitioned to SDEV_BLOCK. Stop the 3113 * block layer from calling the midlayer with this device's 3114 * request queue. 3115 */ 3116 if (q->mq_ops) { 3117 blk_mq_quiesce_queue_nowait(q); 3118 } else { 3119 spin_lock_irqsave(q->queue_lock, flags); 3120 blk_stop_queue(q); 3121 spin_unlock_irqrestore(q->queue_lock, flags); 3122 } 3123 3124 return 0; 3125 } 3126 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3127 3128 /** 3129 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3130 * @sdev: device to block 3131 * 3132 * Pause SCSI command processing on the specified device and wait until all 3133 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3134 * 3135 * Returns zero if successful or a negative error code upon failure. 3136 * 3137 * Note: 3138 * This routine transitions the device to the SDEV_BLOCK state (which must be 3139 * a legal transition). When the device is in this state, command processing 3140 * is paused until the device leaves the SDEV_BLOCK state. See also 3141 * scsi_internal_device_unblock(). 3142 * 3143 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3144 * scsi_internal_device_block() has blocked a SCSI device and also 3145 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3146 */ 3147 static int scsi_internal_device_block(struct scsi_device *sdev) 3148 { 3149 struct request_queue *q = sdev->request_queue; 3150 int err; 3151 3152 mutex_lock(&sdev->state_mutex); 3153 err = scsi_internal_device_block_nowait(sdev); 3154 if (err == 0) { 3155 if (q->mq_ops) 3156 blk_mq_quiesce_queue(q); 3157 else 3158 scsi_wait_for_queuecommand(sdev); 3159 } 3160 mutex_unlock(&sdev->state_mutex); 3161 3162 return err; 3163 } 3164 3165 void scsi_start_queue(struct scsi_device *sdev) 3166 { 3167 struct request_queue *q = sdev->request_queue; 3168 unsigned long flags; 3169 3170 if (q->mq_ops) { 3171 blk_mq_unquiesce_queue(q); 3172 } else { 3173 spin_lock_irqsave(q->queue_lock, flags); 3174 blk_start_queue(q); 3175 spin_unlock_irqrestore(q->queue_lock, flags); 3176 } 3177 } 3178 3179 /** 3180 * scsi_internal_device_unblock_nowait - resume a device after a block request 3181 * @sdev: device to resume 3182 * @new_state: state to set the device to after unblocking 3183 * 3184 * Restart the device queue for a previously suspended SCSI device. Does not 3185 * sleep. 3186 * 3187 * Returns zero if successful or a negative error code upon failure. 3188 * 3189 * Notes: 3190 * This routine transitions the device to the SDEV_RUNNING state or to one of 3191 * the offline states (which must be a legal transition) allowing the midlayer 3192 * to goose the queue for this device. 3193 */ 3194 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3195 enum scsi_device_state new_state) 3196 { 3197 /* 3198 * Try to transition the scsi device to SDEV_RUNNING or one of the 3199 * offlined states and goose the device queue if successful. 3200 */ 3201 switch (sdev->sdev_state) { 3202 case SDEV_BLOCK: 3203 case SDEV_TRANSPORT_OFFLINE: 3204 sdev->sdev_state = new_state; 3205 break; 3206 case SDEV_CREATED_BLOCK: 3207 if (new_state == SDEV_TRANSPORT_OFFLINE || 3208 new_state == SDEV_OFFLINE) 3209 sdev->sdev_state = new_state; 3210 else 3211 sdev->sdev_state = SDEV_CREATED; 3212 break; 3213 case SDEV_CANCEL: 3214 case SDEV_OFFLINE: 3215 break; 3216 default: 3217 return -EINVAL; 3218 } 3219 scsi_start_queue(sdev); 3220 3221 return 0; 3222 } 3223 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3224 3225 /** 3226 * scsi_internal_device_unblock - resume a device after a block request 3227 * @sdev: device to resume 3228 * @new_state: state to set the device to after unblocking 3229 * 3230 * Restart the device queue for a previously suspended SCSI device. May sleep. 3231 * 3232 * Returns zero if successful or a negative error code upon failure. 3233 * 3234 * Notes: 3235 * This routine transitions the device to the SDEV_RUNNING state or to one of 3236 * the offline states (which must be a legal transition) allowing the midlayer 3237 * to goose the queue for this device. 3238 */ 3239 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3240 enum scsi_device_state new_state) 3241 { 3242 int ret; 3243 3244 mutex_lock(&sdev->state_mutex); 3245 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3246 mutex_unlock(&sdev->state_mutex); 3247 3248 return ret; 3249 } 3250 3251 static void 3252 device_block(struct scsi_device *sdev, void *data) 3253 { 3254 scsi_internal_device_block(sdev); 3255 } 3256 3257 static int 3258 target_block(struct device *dev, void *data) 3259 { 3260 if (scsi_is_target_device(dev)) 3261 starget_for_each_device(to_scsi_target(dev), NULL, 3262 device_block); 3263 return 0; 3264 } 3265 3266 void 3267 scsi_target_block(struct device *dev) 3268 { 3269 if (scsi_is_target_device(dev)) 3270 starget_for_each_device(to_scsi_target(dev), NULL, 3271 device_block); 3272 else 3273 device_for_each_child(dev, NULL, target_block); 3274 } 3275 EXPORT_SYMBOL_GPL(scsi_target_block); 3276 3277 static void 3278 device_unblock(struct scsi_device *sdev, void *data) 3279 { 3280 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3281 } 3282 3283 static int 3284 target_unblock(struct device *dev, void *data) 3285 { 3286 if (scsi_is_target_device(dev)) 3287 starget_for_each_device(to_scsi_target(dev), data, 3288 device_unblock); 3289 return 0; 3290 } 3291 3292 void 3293 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3294 { 3295 if (scsi_is_target_device(dev)) 3296 starget_for_each_device(to_scsi_target(dev), &new_state, 3297 device_unblock); 3298 else 3299 device_for_each_child(dev, &new_state, target_unblock); 3300 } 3301 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3302 3303 /** 3304 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3305 * @sgl: scatter-gather list 3306 * @sg_count: number of segments in sg 3307 * @offset: offset in bytes into sg, on return offset into the mapped area 3308 * @len: bytes to map, on return number of bytes mapped 3309 * 3310 * Returns virtual address of the start of the mapped page 3311 */ 3312 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3313 size_t *offset, size_t *len) 3314 { 3315 int i; 3316 size_t sg_len = 0, len_complete = 0; 3317 struct scatterlist *sg; 3318 struct page *page; 3319 3320 WARN_ON(!irqs_disabled()); 3321 3322 for_each_sg(sgl, sg, sg_count, i) { 3323 len_complete = sg_len; /* Complete sg-entries */ 3324 sg_len += sg->length; 3325 if (sg_len > *offset) 3326 break; 3327 } 3328 3329 if (unlikely(i == sg_count)) { 3330 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3331 "elements %d\n", 3332 __func__, sg_len, *offset, sg_count); 3333 WARN_ON(1); 3334 return NULL; 3335 } 3336 3337 /* Offset starting from the beginning of first page in this sg-entry */ 3338 *offset = *offset - len_complete + sg->offset; 3339 3340 /* Assumption: contiguous pages can be accessed as "page + i" */ 3341 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3342 *offset &= ~PAGE_MASK; 3343 3344 /* Bytes in this sg-entry from *offset to the end of the page */ 3345 sg_len = PAGE_SIZE - *offset; 3346 if (*len > sg_len) 3347 *len = sg_len; 3348 3349 return kmap_atomic(page); 3350 } 3351 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3352 3353 /** 3354 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3355 * @virt: virtual address to be unmapped 3356 */ 3357 void scsi_kunmap_atomic_sg(void *virt) 3358 { 3359 kunmap_atomic(virt); 3360 } 3361 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3362 3363 void sdev_disable_disk_events(struct scsi_device *sdev) 3364 { 3365 atomic_inc(&sdev->disk_events_disable_depth); 3366 } 3367 EXPORT_SYMBOL(sdev_disable_disk_events); 3368 3369 void sdev_enable_disk_events(struct scsi_device *sdev) 3370 { 3371 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3372 return; 3373 atomic_dec(&sdev->disk_events_disable_depth); 3374 } 3375 EXPORT_SYMBOL(sdev_enable_disk_events); 3376 3377 /** 3378 * scsi_vpd_lun_id - return a unique device identification 3379 * @sdev: SCSI device 3380 * @id: buffer for the identification 3381 * @id_len: length of the buffer 3382 * 3383 * Copies a unique device identification into @id based 3384 * on the information in the VPD page 0x83 of the device. 3385 * The string will be formatted as a SCSI name string. 3386 * 3387 * Returns the length of the identification or error on failure. 3388 * If the identifier is longer than the supplied buffer the actual 3389 * identifier length is returned and the buffer is not zero-padded. 3390 */ 3391 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3392 { 3393 u8 cur_id_type = 0xff; 3394 u8 cur_id_size = 0; 3395 const unsigned char *d, *cur_id_str; 3396 const struct scsi_vpd *vpd_pg83; 3397 int id_size = -EINVAL; 3398 3399 rcu_read_lock(); 3400 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3401 if (!vpd_pg83) { 3402 rcu_read_unlock(); 3403 return -ENXIO; 3404 } 3405 3406 /* 3407 * Look for the correct descriptor. 3408 * Order of preference for lun descriptor: 3409 * - SCSI name string 3410 * - NAA IEEE Registered Extended 3411 * - EUI-64 based 16-byte 3412 * - EUI-64 based 12-byte 3413 * - NAA IEEE Registered 3414 * - NAA IEEE Extended 3415 * - T10 Vendor ID 3416 * as longer descriptors reduce the likelyhood 3417 * of identification clashes. 3418 */ 3419 3420 /* The id string must be at least 20 bytes + terminating NULL byte */ 3421 if (id_len < 21) { 3422 rcu_read_unlock(); 3423 return -EINVAL; 3424 } 3425 3426 memset(id, 0, id_len); 3427 d = vpd_pg83->data + 4; 3428 while (d < vpd_pg83->data + vpd_pg83->len) { 3429 /* Skip designators not referring to the LUN */ 3430 if ((d[1] & 0x30) != 0x00) 3431 goto next_desig; 3432 3433 switch (d[1] & 0xf) { 3434 case 0x1: 3435 /* T10 Vendor ID */ 3436 if (cur_id_size > d[3]) 3437 break; 3438 /* Prefer anything */ 3439 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3440 break; 3441 cur_id_size = d[3]; 3442 if (cur_id_size + 4 > id_len) 3443 cur_id_size = id_len - 4; 3444 cur_id_str = d + 4; 3445 cur_id_type = d[1] & 0xf; 3446 id_size = snprintf(id, id_len, "t10.%*pE", 3447 cur_id_size, cur_id_str); 3448 break; 3449 case 0x2: 3450 /* EUI-64 */ 3451 if (cur_id_size > d[3]) 3452 break; 3453 /* Prefer NAA IEEE Registered Extended */ 3454 if (cur_id_type == 0x3 && 3455 cur_id_size == d[3]) 3456 break; 3457 cur_id_size = d[3]; 3458 cur_id_str = d + 4; 3459 cur_id_type = d[1] & 0xf; 3460 switch (cur_id_size) { 3461 case 8: 3462 id_size = snprintf(id, id_len, 3463 "eui.%8phN", 3464 cur_id_str); 3465 break; 3466 case 12: 3467 id_size = snprintf(id, id_len, 3468 "eui.%12phN", 3469 cur_id_str); 3470 break; 3471 case 16: 3472 id_size = snprintf(id, id_len, 3473 "eui.%16phN", 3474 cur_id_str); 3475 break; 3476 default: 3477 cur_id_size = 0; 3478 break; 3479 } 3480 break; 3481 case 0x3: 3482 /* NAA */ 3483 if (cur_id_size > d[3]) 3484 break; 3485 cur_id_size = d[3]; 3486 cur_id_str = d + 4; 3487 cur_id_type = d[1] & 0xf; 3488 switch (cur_id_size) { 3489 case 8: 3490 id_size = snprintf(id, id_len, 3491 "naa.%8phN", 3492 cur_id_str); 3493 break; 3494 case 16: 3495 id_size = snprintf(id, id_len, 3496 "naa.%16phN", 3497 cur_id_str); 3498 break; 3499 default: 3500 cur_id_size = 0; 3501 break; 3502 } 3503 break; 3504 case 0x8: 3505 /* SCSI name string */ 3506 if (cur_id_size + 4 > d[3]) 3507 break; 3508 /* Prefer others for truncated descriptor */ 3509 if (cur_id_size && d[3] > id_len) 3510 break; 3511 cur_id_size = id_size = d[3]; 3512 cur_id_str = d + 4; 3513 cur_id_type = d[1] & 0xf; 3514 if (cur_id_size >= id_len) 3515 cur_id_size = id_len - 1; 3516 memcpy(id, cur_id_str, cur_id_size); 3517 /* Decrease priority for truncated descriptor */ 3518 if (cur_id_size != id_size) 3519 cur_id_size = 6; 3520 break; 3521 default: 3522 break; 3523 } 3524 next_desig: 3525 d += d[3] + 4; 3526 } 3527 rcu_read_unlock(); 3528 3529 return id_size; 3530 } 3531 EXPORT_SYMBOL(scsi_vpd_lun_id); 3532 3533 /* 3534 * scsi_vpd_tpg_id - return a target port group identifier 3535 * @sdev: SCSI device 3536 * 3537 * Returns the Target Port Group identifier from the information 3538 * froom VPD page 0x83 of the device. 3539 * 3540 * Returns the identifier or error on failure. 3541 */ 3542 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3543 { 3544 const unsigned char *d; 3545 const struct scsi_vpd *vpd_pg83; 3546 int group_id = -EAGAIN, rel_port = -1; 3547 3548 rcu_read_lock(); 3549 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3550 if (!vpd_pg83) { 3551 rcu_read_unlock(); 3552 return -ENXIO; 3553 } 3554 3555 d = vpd_pg83->data + 4; 3556 while (d < vpd_pg83->data + vpd_pg83->len) { 3557 switch (d[1] & 0xf) { 3558 case 0x4: 3559 /* Relative target port */ 3560 rel_port = get_unaligned_be16(&d[6]); 3561 break; 3562 case 0x5: 3563 /* Target port group */ 3564 group_id = get_unaligned_be16(&d[6]); 3565 break; 3566 default: 3567 break; 3568 } 3569 d += d[3] + 4; 3570 } 3571 rcu_read_unlock(); 3572 3573 if (group_id >= 0 && rel_id && rel_port != -1) 3574 *rel_id = rel_port; 3575 3576 return group_id; 3577 } 3578 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3579