xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision b04b4f78)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1,
115 		 printk("Inserting command %p into mlqueue\n", cmd));
116 
117 	/*
118 	 * Set the appropriate busy bit for the device/host.
119 	 *
120 	 * If the host/device isn't busy, assume that something actually
121 	 * completed, and that we should be able to queue a command now.
122 	 *
123 	 * Note that the prior mid-layer assumption that any host could
124 	 * always queue at least one command is now broken.  The mid-layer
125 	 * will implement a user specifiable stall (see
126 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 	 * if a command is requeued with no other commands outstanding
128 	 * either for the device or for the host.
129 	 */
130 	switch (reason) {
131 	case SCSI_MLQUEUE_HOST_BUSY:
132 		host->host_blocked = host->max_host_blocked;
133 		break;
134 	case SCSI_MLQUEUE_DEVICE_BUSY:
135 		device->device_blocked = device->max_device_blocked;
136 		break;
137 	case SCSI_MLQUEUE_TARGET_BUSY:
138 		starget->target_blocked = starget->max_target_blocked;
139 		break;
140 	}
141 
142 	/*
143 	 * Decrement the counters, since these commands are no longer
144 	 * active on the host/device.
145 	 */
146 	if (unbusy)
147 		scsi_device_unbusy(device);
148 
149 	/*
150 	 * Requeue this command.  It will go before all other commands
151 	 * that are already in the queue.
152 	 *
153 	 * NOTE: there is magic here about the way the queue is plugged if
154 	 * we have no outstanding commands.
155 	 *
156 	 * Although we *don't* plug the queue, we call the request
157 	 * function.  The SCSI request function detects the blocked condition
158 	 * and plugs the queue appropriately.
159          */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
244 		memset(buffer + (bufflen - req->data_len), 0, req->data_len);
245 
246 	if (resid)
247 		*resid = req->data_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost = sdev->host;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	if (scsi_target(sdev)->single_lun)
408 		scsi_single_lun_run(sdev);
409 
410 	spin_lock_irqsave(shost->host_lock, flags);
411 	list_splice_init(&shost->starved_list, &starved_list);
412 
413 	while (!list_empty(&starved_list)) {
414 		int flagset;
415 
416 		/*
417 		 * As long as shost is accepting commands and we have
418 		 * starved queues, call blk_run_queue. scsi_request_fn
419 		 * drops the queue_lock and can add us back to the
420 		 * starved_list.
421 		 *
422 		 * host_lock protects the starved_list and starved_entry.
423 		 * scsi_request_fn must get the host_lock before checking
424 		 * or modifying starved_list or starved_entry.
425 		 */
426 		if (scsi_host_is_busy(shost))
427 			break;
428 
429 		sdev = list_entry(starved_list.next,
430 				  struct scsi_device, starved_entry);
431 		list_del_init(&sdev->starved_entry);
432 		if (scsi_target_is_busy(scsi_target(sdev))) {
433 			list_move_tail(&sdev->starved_entry,
434 				       &shost->starved_list);
435 			continue;
436 		}
437 
438 		spin_unlock(shost->host_lock);
439 
440 		spin_lock(sdev->request_queue->queue_lock);
441 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 				!test_bit(QUEUE_FLAG_REENTER,
443 					&sdev->request_queue->queue_flags);
444 		if (flagset)
445 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 		__blk_run_queue(sdev->request_queue);
447 		if (flagset)
448 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 		spin_unlock(sdev->request_queue->queue_lock);
450 
451 		spin_lock(shost->host_lock);
452 	}
453 	/* put any unprocessed entries back */
454 	list_splice(&starved_list, &shost->starved_list);
455 	spin_unlock_irqrestore(shost->host_lock, flags);
456 
457 	blk_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct request *req = cmd->request;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(q->queue_lock, flags);
484 	scsi_unprep_request(req);
485 	blk_requeue_request(q, req);
486 	spin_unlock_irqrestore(q->queue_lock, flags);
487 
488 	scsi_run_queue(q);
489 }
490 
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 	struct scsi_device *sdev = cmd->device;
494 	struct request_queue *q = sdev->request_queue;
495 
496 	/* need to hold a reference on the device before we let go of the cmd */
497 	get_device(&sdev->sdev_gendev);
498 
499 	scsi_put_command(cmd);
500 	scsi_run_queue(q);
501 
502 	/* ok to remove device now */
503 	put_device(&sdev->sdev_gendev);
504 }
505 
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 	struct scsi_device *sdev;
509 
510 	shost_for_each_device(sdev, shost)
511 		scsi_run_queue(sdev->request_queue);
512 }
513 
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515 
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *		of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd	 - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *		requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  *
534  *		We are guaranteeing that the request queue will be goosed
535  *		at some point during this call.
536  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 					  int bytes, int requeue)
540 {
541 	struct request_queue *q = cmd->device->request_queue;
542 	struct request *req = cmd->request;
543 
544 	/*
545 	 * If there are blocks left over at the end, set up the command
546 	 * to queue the remainder of them.
547 	 */
548 	if (blk_end_request(req, error, bytes)) {
549 		int leftover = (req->hard_nr_sectors << 9);
550 
551 		if (blk_pc_request(req))
552 			leftover = req->data_len;
553 
554 		/* kill remainder if no retrys */
555 		if (error && scsi_noretry_cmd(cmd))
556 			blk_end_request(req, error, leftover);
557 		else {
558 			if (requeue) {
559 				/*
560 				 * Bleah.  Leftovers again.  Stick the
561 				 * leftovers in the front of the
562 				 * queue, and goose the queue again.
563 				 */
564 				scsi_release_buffers(cmd);
565 				scsi_requeue_command(q, cmd);
566 				cmd = NULL;
567 			}
568 			return cmd;
569 		}
570 	}
571 
572 	/*
573 	 * This will goose the queue request function at the end, so we don't
574 	 * need to worry about launching another command.
575 	 */
576 	__scsi_release_buffers(cmd, 0);
577 	scsi_next_command(cmd);
578 	return NULL;
579 }
580 
581 static inline unsigned int scsi_sgtable_index(unsigned short nents)
582 {
583 	unsigned int index;
584 
585 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
586 
587 	if (nents <= 8)
588 		index = 0;
589 	else
590 		index = get_count_order(nents) - 3;
591 
592 	return index;
593 }
594 
595 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
596 {
597 	struct scsi_host_sg_pool *sgp;
598 
599 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
600 	mempool_free(sgl, sgp->pool);
601 }
602 
603 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
604 {
605 	struct scsi_host_sg_pool *sgp;
606 
607 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608 	return mempool_alloc(sgp->pool, gfp_mask);
609 }
610 
611 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
612 			      gfp_t gfp_mask)
613 {
614 	int ret;
615 
616 	BUG_ON(!nents);
617 
618 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 			       gfp_mask, scsi_sg_alloc);
620 	if (unlikely(ret))
621 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
622 				scsi_sg_free);
623 
624 	return ret;
625 }
626 
627 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
628 {
629 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
630 }
631 
632 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
633 {
634 
635 	if (cmd->sdb.table.nents)
636 		scsi_free_sgtable(&cmd->sdb);
637 
638 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639 
640 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
641 		struct scsi_data_buffer *bidi_sdb =
642 			cmd->request->next_rq->special;
643 		scsi_free_sgtable(bidi_sdb);
644 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
645 		cmd->request->next_rq->special = NULL;
646 	}
647 
648 	if (scsi_prot_sg_count(cmd))
649 		scsi_free_sgtable(cmd->prot_sdb);
650 }
651 
652 /*
653  * Function:    scsi_release_buffers()
654  *
655  * Purpose:     Completion processing for block device I/O requests.
656  *
657  * Arguments:   cmd	- command that we are bailing.
658  *
659  * Lock status: Assumed that no lock is held upon entry.
660  *
661  * Returns:     Nothing
662  *
663  * Notes:       In the event that an upper level driver rejects a
664  *		command, we must release resources allocated during
665  *		the __init_io() function.  Primarily this would involve
666  *		the scatter-gather table, and potentially any bounce
667  *		buffers.
668  */
669 void scsi_release_buffers(struct scsi_cmnd *cmd)
670 {
671 	__scsi_release_buffers(cmd, 1);
672 }
673 EXPORT_SYMBOL(scsi_release_buffers);
674 
675 /*
676  * Bidi commands Must be complete as a whole, both sides at once.
677  * If part of the bytes were written and lld returned
678  * scsi_in()->resid and/or scsi_out()->resid this information will be left
679  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
680  * decide what to do with this information.
681  */
682 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
683 {
684 	struct request *req = cmd->request;
685 	unsigned int dlen = req->data_len;
686 	unsigned int next_dlen = req->next_rq->data_len;
687 
688 	req->data_len = scsi_out(cmd)->resid;
689 	req->next_rq->data_len = scsi_in(cmd)->resid;
690 
691 	/* The req and req->next_rq have not been completed */
692 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
693 
694 	scsi_release_buffers(cmd);
695 
696 	/*
697 	 * This will goose the queue request function at the end, so we don't
698 	 * need to worry about launching another command.
699 	 */
700 	scsi_next_command(cmd);
701 }
702 
703 /*
704  * Function:    scsi_io_completion()
705  *
706  * Purpose:     Completion processing for block device I/O requests.
707  *
708  * Arguments:   cmd   - command that is finished.
709  *
710  * Lock status: Assumed that no lock is held upon entry.
711  *
712  * Returns:     Nothing
713  *
714  * Notes:       This function is matched in terms of capabilities to
715  *              the function that created the scatter-gather list.
716  *              In other words, if there are no bounce buffers
717  *              (the normal case for most drivers), we don't need
718  *              the logic to deal with cleaning up afterwards.
719  *
720  *		We must call scsi_end_request().  This will finish off
721  *		the specified number of sectors.  If we are done, the
722  *		command block will be released and the queue function
723  *		will be goosed.  If we are not done then we have to
724  *		figure out what to do next:
725  *
726  *		a) We can call scsi_requeue_command().  The request
727  *		   will be unprepared and put back on the queue.  Then
728  *		   a new command will be created for it.  This should
729  *		   be used if we made forward progress, or if we want
730  *		   to switch from READ(10) to READ(6) for example.
731  *
732  *		b) We can call scsi_queue_insert().  The request will
733  *		   be put back on the queue and retried using the same
734  *		   command as before, possibly after a delay.
735  *
736  *		c) We can call blk_end_request() with -EIO to fail
737  *		   the remainder of the request.
738  */
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
740 {
741 	int result = cmd->result;
742 	int this_count;
743 	struct request_queue *q = cmd->device->request_queue;
744 	struct request *req = cmd->request;
745 	int error = 0;
746 	struct scsi_sense_hdr sshdr;
747 	int sense_valid = 0;
748 	int sense_deferred = 0;
749 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
750 	      ACTION_DELAYED_RETRY} action;
751 	char *description = NULL;
752 
753 	if (result) {
754 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
755 		if (sense_valid)
756 			sense_deferred = scsi_sense_is_deferred(&sshdr);
757 	}
758 
759 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
760 		req->errors = result;
761 		if (result) {
762 			if (sense_valid && req->sense) {
763 				/*
764 				 * SG_IO wants current and deferred errors
765 				 */
766 				int len = 8 + cmd->sense_buffer[7];
767 
768 				if (len > SCSI_SENSE_BUFFERSIZE)
769 					len = SCSI_SENSE_BUFFERSIZE;
770 				memcpy(req->sense, cmd->sense_buffer,  len);
771 				req->sense_len = len;
772 			}
773 			if (!sense_deferred)
774 				error = -EIO;
775 		}
776 		if (scsi_bidi_cmnd(cmd)) {
777 			/* will also release_buffers */
778 			scsi_end_bidi_request(cmd);
779 			return;
780 		}
781 		req->data_len = scsi_get_resid(cmd);
782 	}
783 
784 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
785 
786 	/*
787 	 * Next deal with any sectors which we were able to correctly
788 	 * handle.
789 	 */
790 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
791 				      "%d bytes done.\n",
792 				      req->nr_sectors, good_bytes));
793 
794 	/*
795 	 * Recovered errors need reporting, but they're always treated
796 	 * as success, so fiddle the result code here.  For BLOCK_PC
797 	 * we already took a copy of the original into rq->errors which
798 	 * is what gets returned to the user
799 	 */
800 	if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
801 		if (!(req->cmd_flags & REQ_QUIET))
802 			scsi_print_sense("", cmd);
803 		result = 0;
804 		/* BLOCK_PC may have set error */
805 		error = 0;
806 	}
807 
808 	/*
809 	 * A number of bytes were successfully read.  If there
810 	 * are leftovers and there is some kind of error
811 	 * (result != 0), retry the rest.
812 	 */
813 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
814 		return;
815 	this_count = blk_rq_bytes(req);
816 
817 	error = -EIO;
818 
819 	if (host_byte(result) == DID_RESET) {
820 		/* Third party bus reset or reset for error recovery
821 		 * reasons.  Just retry the command and see what
822 		 * happens.
823 		 */
824 		action = ACTION_RETRY;
825 	} else if (sense_valid && !sense_deferred) {
826 		switch (sshdr.sense_key) {
827 		case UNIT_ATTENTION:
828 			if (cmd->device->removable) {
829 				/* Detected disc change.  Set a bit
830 				 * and quietly refuse further access.
831 				 */
832 				cmd->device->changed = 1;
833 				description = "Media Changed";
834 				action = ACTION_FAIL;
835 			} else {
836 				/* Must have been a power glitch, or a
837 				 * bus reset.  Could not have been a
838 				 * media change, so we just retry the
839 				 * command and see what happens.
840 				 */
841 				action = ACTION_RETRY;
842 			}
843 			break;
844 		case ILLEGAL_REQUEST:
845 			/* If we had an ILLEGAL REQUEST returned, then
846 			 * we may have performed an unsupported
847 			 * command.  The only thing this should be
848 			 * would be a ten byte read where only a six
849 			 * byte read was supported.  Also, on a system
850 			 * where READ CAPACITY failed, we may have
851 			 * read past the end of the disk.
852 			 */
853 			if ((cmd->device->use_10_for_rw &&
854 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
855 			    (cmd->cmnd[0] == READ_10 ||
856 			     cmd->cmnd[0] == WRITE_10)) {
857 				/* This will issue a new 6-byte command. */
858 				cmd->device->use_10_for_rw = 0;
859 				action = ACTION_REPREP;
860 			} else if (sshdr.asc == 0x10) /* DIX */ {
861 				description = "Host Data Integrity Failure";
862 				action = ACTION_FAIL;
863 				error = -EILSEQ;
864 			} else
865 				action = ACTION_FAIL;
866 			break;
867 		case ABORTED_COMMAND:
868 			action = ACTION_FAIL;
869 			if (sshdr.asc == 0x10) { /* DIF */
870 				description = "Target Data Integrity Failure";
871 				error = -EILSEQ;
872 			}
873 			break;
874 		case NOT_READY:
875 			/* If the device is in the process of becoming
876 			 * ready, or has a temporary blockage, retry.
877 			 */
878 			if (sshdr.asc == 0x04) {
879 				switch (sshdr.ascq) {
880 				case 0x01: /* becoming ready */
881 				case 0x04: /* format in progress */
882 				case 0x05: /* rebuild in progress */
883 				case 0x06: /* recalculation in progress */
884 				case 0x07: /* operation in progress */
885 				case 0x08: /* Long write in progress */
886 				case 0x09: /* self test in progress */
887 					action = ACTION_DELAYED_RETRY;
888 					break;
889 				default:
890 					description = "Device not ready";
891 					action = ACTION_FAIL;
892 					break;
893 				}
894 			} else {
895 				description = "Device not ready";
896 				action = ACTION_FAIL;
897 			}
898 			break;
899 		case VOLUME_OVERFLOW:
900 			/* See SSC3rXX or current. */
901 			action = ACTION_FAIL;
902 			break;
903 		default:
904 			description = "Unhandled sense code";
905 			action = ACTION_FAIL;
906 			break;
907 		}
908 	} else {
909 		description = "Unhandled error code";
910 		action = ACTION_FAIL;
911 	}
912 
913 	switch (action) {
914 	case ACTION_FAIL:
915 		/* Give up and fail the remainder of the request */
916 		scsi_release_buffers(cmd);
917 		if (!(req->cmd_flags & REQ_QUIET)) {
918 			if (description)
919 				scmd_printk(KERN_INFO, cmd, "%s\n",
920 					    description);
921 			scsi_print_result(cmd);
922 			if (driver_byte(result) & DRIVER_SENSE)
923 				scsi_print_sense("", cmd);
924 		}
925 		blk_end_request(req, -EIO, blk_rq_bytes(req));
926 		scsi_next_command(cmd);
927 		break;
928 	case ACTION_REPREP:
929 		/* Unprep the request and put it back at the head of the queue.
930 		 * A new command will be prepared and issued.
931 		 */
932 		scsi_release_buffers(cmd);
933 		scsi_requeue_command(q, cmd);
934 		break;
935 	case ACTION_RETRY:
936 		/* Retry the same command immediately */
937 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
938 		break;
939 	case ACTION_DELAYED_RETRY:
940 		/* Retry the same command after a delay */
941 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
942 		break;
943 	}
944 }
945 
946 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
947 			     gfp_t gfp_mask)
948 {
949 	int count;
950 
951 	/*
952 	 * If sg table allocation fails, requeue request later.
953 	 */
954 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
955 					gfp_mask))) {
956 		return BLKPREP_DEFER;
957 	}
958 
959 	req->buffer = NULL;
960 
961 	/*
962 	 * Next, walk the list, and fill in the addresses and sizes of
963 	 * each segment.
964 	 */
965 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
966 	BUG_ON(count > sdb->table.nents);
967 	sdb->table.nents = count;
968 	if (blk_pc_request(req))
969 		sdb->length = req->data_len;
970 	else
971 		sdb->length = req->nr_sectors << 9;
972 	return BLKPREP_OK;
973 }
974 
975 /*
976  * Function:    scsi_init_io()
977  *
978  * Purpose:     SCSI I/O initialize function.
979  *
980  * Arguments:   cmd   - Command descriptor we wish to initialize
981  *
982  * Returns:     0 on success
983  *		BLKPREP_DEFER if the failure is retryable
984  *		BLKPREP_KILL if the failure is fatal
985  */
986 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
987 {
988 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
989 	if (error)
990 		goto err_exit;
991 
992 	if (blk_bidi_rq(cmd->request)) {
993 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
994 			scsi_sdb_cache, GFP_ATOMIC);
995 		if (!bidi_sdb) {
996 			error = BLKPREP_DEFER;
997 			goto err_exit;
998 		}
999 
1000 		cmd->request->next_rq->special = bidi_sdb;
1001 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1002 								    GFP_ATOMIC);
1003 		if (error)
1004 			goto err_exit;
1005 	}
1006 
1007 	if (blk_integrity_rq(cmd->request)) {
1008 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1009 		int ivecs, count;
1010 
1011 		BUG_ON(prot_sdb == NULL);
1012 		ivecs = blk_rq_count_integrity_sg(cmd->request);
1013 
1014 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1015 			error = BLKPREP_DEFER;
1016 			goto err_exit;
1017 		}
1018 
1019 		count = blk_rq_map_integrity_sg(cmd->request,
1020 						prot_sdb->table.sgl);
1021 		BUG_ON(unlikely(count > ivecs));
1022 
1023 		cmd->prot_sdb = prot_sdb;
1024 		cmd->prot_sdb->table.nents = count;
1025 	}
1026 
1027 	return BLKPREP_OK ;
1028 
1029 err_exit:
1030 	scsi_release_buffers(cmd);
1031 	if (error == BLKPREP_KILL)
1032 		scsi_put_command(cmd);
1033 	else /* BLKPREP_DEFER */
1034 		scsi_unprep_request(cmd->request);
1035 
1036 	return error;
1037 }
1038 EXPORT_SYMBOL(scsi_init_io);
1039 
1040 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1041 		struct request *req)
1042 {
1043 	struct scsi_cmnd *cmd;
1044 
1045 	if (!req->special) {
1046 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1047 		if (unlikely(!cmd))
1048 			return NULL;
1049 		req->special = cmd;
1050 	} else {
1051 		cmd = req->special;
1052 	}
1053 
1054 	/* pull a tag out of the request if we have one */
1055 	cmd->tag = req->tag;
1056 	cmd->request = req;
1057 
1058 	cmd->cmnd = req->cmd;
1059 
1060 	return cmd;
1061 }
1062 
1063 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1064 {
1065 	struct scsi_cmnd *cmd;
1066 	int ret = scsi_prep_state_check(sdev, req);
1067 
1068 	if (ret != BLKPREP_OK)
1069 		return ret;
1070 
1071 	cmd = scsi_get_cmd_from_req(sdev, req);
1072 	if (unlikely(!cmd))
1073 		return BLKPREP_DEFER;
1074 
1075 	/*
1076 	 * BLOCK_PC requests may transfer data, in which case they must
1077 	 * a bio attached to them.  Or they might contain a SCSI command
1078 	 * that does not transfer data, in which case they may optionally
1079 	 * submit a request without an attached bio.
1080 	 */
1081 	if (req->bio) {
1082 		int ret;
1083 
1084 		BUG_ON(!req->nr_phys_segments);
1085 
1086 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1087 		if (unlikely(ret))
1088 			return ret;
1089 	} else {
1090 		BUG_ON(req->data_len);
1091 		BUG_ON(req->data);
1092 
1093 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1094 		req->buffer = NULL;
1095 	}
1096 
1097 	cmd->cmd_len = req->cmd_len;
1098 	if (!req->data_len)
1099 		cmd->sc_data_direction = DMA_NONE;
1100 	else if (rq_data_dir(req) == WRITE)
1101 		cmd->sc_data_direction = DMA_TO_DEVICE;
1102 	else
1103 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1104 
1105 	cmd->transfersize = req->data_len;
1106 	cmd->allowed = req->retries;
1107 	return BLKPREP_OK;
1108 }
1109 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1110 
1111 /*
1112  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1113  * from filesystems that still need to be translated to SCSI CDBs from
1114  * the ULD.
1115  */
1116 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1117 {
1118 	struct scsi_cmnd *cmd;
1119 	int ret = scsi_prep_state_check(sdev, req);
1120 
1121 	if (ret != BLKPREP_OK)
1122 		return ret;
1123 
1124 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1125 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1126 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1127 		if (ret != BLKPREP_OK)
1128 			return ret;
1129 	}
1130 
1131 	/*
1132 	 * Filesystem requests must transfer data.
1133 	 */
1134 	BUG_ON(!req->nr_phys_segments);
1135 
1136 	cmd = scsi_get_cmd_from_req(sdev, req);
1137 	if (unlikely(!cmd))
1138 		return BLKPREP_DEFER;
1139 
1140 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1141 	return scsi_init_io(cmd, GFP_ATOMIC);
1142 }
1143 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1144 
1145 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1146 {
1147 	int ret = BLKPREP_OK;
1148 
1149 	/*
1150 	 * If the device is not in running state we will reject some
1151 	 * or all commands.
1152 	 */
1153 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1154 		switch (sdev->sdev_state) {
1155 		case SDEV_OFFLINE:
1156 			/*
1157 			 * If the device is offline we refuse to process any
1158 			 * commands.  The device must be brought online
1159 			 * before trying any recovery commands.
1160 			 */
1161 			sdev_printk(KERN_ERR, sdev,
1162 				    "rejecting I/O to offline device\n");
1163 			ret = BLKPREP_KILL;
1164 			break;
1165 		case SDEV_DEL:
1166 			/*
1167 			 * If the device is fully deleted, we refuse to
1168 			 * process any commands as well.
1169 			 */
1170 			sdev_printk(KERN_ERR, sdev,
1171 				    "rejecting I/O to dead device\n");
1172 			ret = BLKPREP_KILL;
1173 			break;
1174 		case SDEV_QUIESCE:
1175 		case SDEV_BLOCK:
1176 		case SDEV_CREATED_BLOCK:
1177 			/*
1178 			 * If the devices is blocked we defer normal commands.
1179 			 */
1180 			if (!(req->cmd_flags & REQ_PREEMPT))
1181 				ret = BLKPREP_DEFER;
1182 			break;
1183 		default:
1184 			/*
1185 			 * For any other not fully online state we only allow
1186 			 * special commands.  In particular any user initiated
1187 			 * command is not allowed.
1188 			 */
1189 			if (!(req->cmd_flags & REQ_PREEMPT))
1190 				ret = BLKPREP_KILL;
1191 			break;
1192 		}
1193 	}
1194 	return ret;
1195 }
1196 EXPORT_SYMBOL(scsi_prep_state_check);
1197 
1198 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1199 {
1200 	struct scsi_device *sdev = q->queuedata;
1201 
1202 	switch (ret) {
1203 	case BLKPREP_KILL:
1204 		req->errors = DID_NO_CONNECT << 16;
1205 		/* release the command and kill it */
1206 		if (req->special) {
1207 			struct scsi_cmnd *cmd = req->special;
1208 			scsi_release_buffers(cmd);
1209 			scsi_put_command(cmd);
1210 			req->special = NULL;
1211 		}
1212 		break;
1213 	case BLKPREP_DEFER:
1214 		/*
1215 		 * If we defer, the elv_next_request() returns NULL, but the
1216 		 * queue must be restarted, so we plug here if no returning
1217 		 * command will automatically do that.
1218 		 */
1219 		if (sdev->device_busy == 0)
1220 			blk_plug_device(q);
1221 		break;
1222 	default:
1223 		req->cmd_flags |= REQ_DONTPREP;
1224 	}
1225 
1226 	return ret;
1227 }
1228 EXPORT_SYMBOL(scsi_prep_return);
1229 
1230 int scsi_prep_fn(struct request_queue *q, struct request *req)
1231 {
1232 	struct scsi_device *sdev = q->queuedata;
1233 	int ret = BLKPREP_KILL;
1234 
1235 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1236 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1237 	return scsi_prep_return(q, req, ret);
1238 }
1239 
1240 /*
1241  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1242  * return 0.
1243  *
1244  * Called with the queue_lock held.
1245  */
1246 static inline int scsi_dev_queue_ready(struct request_queue *q,
1247 				  struct scsi_device *sdev)
1248 {
1249 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1250 		/*
1251 		 * unblock after device_blocked iterates to zero
1252 		 */
1253 		if (--sdev->device_blocked == 0) {
1254 			SCSI_LOG_MLQUEUE(3,
1255 				   sdev_printk(KERN_INFO, sdev,
1256 				   "unblocking device at zero depth\n"));
1257 		} else {
1258 			blk_plug_device(q);
1259 			return 0;
1260 		}
1261 	}
1262 	if (scsi_device_is_busy(sdev))
1263 		return 0;
1264 
1265 	return 1;
1266 }
1267 
1268 
1269 /*
1270  * scsi_target_queue_ready: checks if there we can send commands to target
1271  * @sdev: scsi device on starget to check.
1272  *
1273  * Called with the host lock held.
1274  */
1275 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1276 					   struct scsi_device *sdev)
1277 {
1278 	struct scsi_target *starget = scsi_target(sdev);
1279 
1280 	if (starget->single_lun) {
1281 		if (starget->starget_sdev_user &&
1282 		    starget->starget_sdev_user != sdev)
1283 			return 0;
1284 		starget->starget_sdev_user = sdev;
1285 	}
1286 
1287 	if (starget->target_busy == 0 && starget->target_blocked) {
1288 		/*
1289 		 * unblock after target_blocked iterates to zero
1290 		 */
1291 		if (--starget->target_blocked == 0) {
1292 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1293 					 "unblocking target at zero depth\n"));
1294 		} else
1295 			return 0;
1296 	}
1297 
1298 	if (scsi_target_is_busy(starget)) {
1299 		if (list_empty(&sdev->starved_entry)) {
1300 			list_add_tail(&sdev->starved_entry,
1301 				      &shost->starved_list);
1302 			return 0;
1303 		}
1304 	}
1305 
1306 	/* We're OK to process the command, so we can't be starved */
1307 	if (!list_empty(&sdev->starved_entry))
1308 		list_del_init(&sdev->starved_entry);
1309 	return 1;
1310 }
1311 
1312 /*
1313  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1314  * return 0. We must end up running the queue again whenever 0 is
1315  * returned, else IO can hang.
1316  *
1317  * Called with host_lock held.
1318  */
1319 static inline int scsi_host_queue_ready(struct request_queue *q,
1320 				   struct Scsi_Host *shost,
1321 				   struct scsi_device *sdev)
1322 {
1323 	if (scsi_host_in_recovery(shost))
1324 		return 0;
1325 	if (shost->host_busy == 0 && shost->host_blocked) {
1326 		/*
1327 		 * unblock after host_blocked iterates to zero
1328 		 */
1329 		if (--shost->host_blocked == 0) {
1330 			SCSI_LOG_MLQUEUE(3,
1331 				printk("scsi%d unblocking host at zero depth\n",
1332 					shost->host_no));
1333 		} else {
1334 			return 0;
1335 		}
1336 	}
1337 	if (scsi_host_is_busy(shost)) {
1338 		if (list_empty(&sdev->starved_entry))
1339 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1340 		return 0;
1341 	}
1342 
1343 	/* We're OK to process the command, so we can't be starved */
1344 	if (!list_empty(&sdev->starved_entry))
1345 		list_del_init(&sdev->starved_entry);
1346 
1347 	return 1;
1348 }
1349 
1350 /*
1351  * Busy state exporting function for request stacking drivers.
1352  *
1353  * For efficiency, no lock is taken to check the busy state of
1354  * shost/starget/sdev, since the returned value is not guaranteed and
1355  * may be changed after request stacking drivers call the function,
1356  * regardless of taking lock or not.
1357  *
1358  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1359  * (e.g. !sdev), scsi needs to return 'not busy'.
1360  * Otherwise, request stacking drivers may hold requests forever.
1361  */
1362 static int scsi_lld_busy(struct request_queue *q)
1363 {
1364 	struct scsi_device *sdev = q->queuedata;
1365 	struct Scsi_Host *shost;
1366 	struct scsi_target *starget;
1367 
1368 	if (!sdev)
1369 		return 0;
1370 
1371 	shost = sdev->host;
1372 	starget = scsi_target(sdev);
1373 
1374 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1375 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1376 		return 1;
1377 
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Kill a request for a dead device
1383  */
1384 static void scsi_kill_request(struct request *req, struct request_queue *q)
1385 {
1386 	struct scsi_cmnd *cmd = req->special;
1387 	struct scsi_device *sdev = cmd->device;
1388 	struct scsi_target *starget = scsi_target(sdev);
1389 	struct Scsi_Host *shost = sdev->host;
1390 
1391 	blkdev_dequeue_request(req);
1392 
1393 	if (unlikely(cmd == NULL)) {
1394 		printk(KERN_CRIT "impossible request in %s.\n",
1395 				 __func__);
1396 		BUG();
1397 	}
1398 
1399 	scsi_init_cmd_errh(cmd);
1400 	cmd->result = DID_NO_CONNECT << 16;
1401 	atomic_inc(&cmd->device->iorequest_cnt);
1402 
1403 	/*
1404 	 * SCSI request completion path will do scsi_device_unbusy(),
1405 	 * bump busy counts.  To bump the counters, we need to dance
1406 	 * with the locks as normal issue path does.
1407 	 */
1408 	sdev->device_busy++;
1409 	spin_unlock(sdev->request_queue->queue_lock);
1410 	spin_lock(shost->host_lock);
1411 	shost->host_busy++;
1412 	starget->target_busy++;
1413 	spin_unlock(shost->host_lock);
1414 	spin_lock(sdev->request_queue->queue_lock);
1415 
1416 	blk_complete_request(req);
1417 }
1418 
1419 static void scsi_softirq_done(struct request *rq)
1420 {
1421 	struct scsi_cmnd *cmd = rq->special;
1422 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1423 	int disposition;
1424 
1425 	INIT_LIST_HEAD(&cmd->eh_entry);
1426 
1427 	/*
1428 	 * Set the serial numbers back to zero
1429 	 */
1430 	cmd->serial_number = 0;
1431 
1432 	atomic_inc(&cmd->device->iodone_cnt);
1433 	if (cmd->result)
1434 		atomic_inc(&cmd->device->ioerr_cnt);
1435 
1436 	disposition = scsi_decide_disposition(cmd);
1437 	if (disposition != SUCCESS &&
1438 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1439 		sdev_printk(KERN_ERR, cmd->device,
1440 			    "timing out command, waited %lus\n",
1441 			    wait_for/HZ);
1442 		disposition = SUCCESS;
1443 	}
1444 
1445 	scsi_log_completion(cmd, disposition);
1446 
1447 	switch (disposition) {
1448 		case SUCCESS:
1449 			scsi_finish_command(cmd);
1450 			break;
1451 		case NEEDS_RETRY:
1452 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1453 			break;
1454 		case ADD_TO_MLQUEUE:
1455 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1456 			break;
1457 		default:
1458 			if (!scsi_eh_scmd_add(cmd, 0))
1459 				scsi_finish_command(cmd);
1460 	}
1461 }
1462 
1463 /*
1464  * Function:    scsi_request_fn()
1465  *
1466  * Purpose:     Main strategy routine for SCSI.
1467  *
1468  * Arguments:   q       - Pointer to actual queue.
1469  *
1470  * Returns:     Nothing
1471  *
1472  * Lock status: IO request lock assumed to be held when called.
1473  */
1474 static void scsi_request_fn(struct request_queue *q)
1475 {
1476 	struct scsi_device *sdev = q->queuedata;
1477 	struct Scsi_Host *shost;
1478 	struct scsi_cmnd *cmd;
1479 	struct request *req;
1480 
1481 	if (!sdev) {
1482 		printk("scsi: killing requests for dead queue\n");
1483 		while ((req = elv_next_request(q)) != NULL)
1484 			scsi_kill_request(req, q);
1485 		return;
1486 	}
1487 
1488 	if(!get_device(&sdev->sdev_gendev))
1489 		/* We must be tearing the block queue down already */
1490 		return;
1491 
1492 	/*
1493 	 * To start with, we keep looping until the queue is empty, or until
1494 	 * the host is no longer able to accept any more requests.
1495 	 */
1496 	shost = sdev->host;
1497 	while (!blk_queue_plugged(q)) {
1498 		int rtn;
1499 		/*
1500 		 * get next queueable request.  We do this early to make sure
1501 		 * that the request is fully prepared even if we cannot
1502 		 * accept it.
1503 		 */
1504 		req = elv_next_request(q);
1505 		if (!req || !scsi_dev_queue_ready(q, sdev))
1506 			break;
1507 
1508 		if (unlikely(!scsi_device_online(sdev))) {
1509 			sdev_printk(KERN_ERR, sdev,
1510 				    "rejecting I/O to offline device\n");
1511 			scsi_kill_request(req, q);
1512 			continue;
1513 		}
1514 
1515 
1516 		/*
1517 		 * Remove the request from the request list.
1518 		 */
1519 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1520 			blkdev_dequeue_request(req);
1521 		sdev->device_busy++;
1522 
1523 		spin_unlock(q->queue_lock);
1524 		cmd = req->special;
1525 		if (unlikely(cmd == NULL)) {
1526 			printk(KERN_CRIT "impossible request in %s.\n"
1527 					 "please mail a stack trace to "
1528 					 "linux-scsi@vger.kernel.org\n",
1529 					 __func__);
1530 			blk_dump_rq_flags(req, "foo");
1531 			BUG();
1532 		}
1533 		spin_lock(shost->host_lock);
1534 
1535 		/*
1536 		 * We hit this when the driver is using a host wide
1537 		 * tag map. For device level tag maps the queue_depth check
1538 		 * in the device ready fn would prevent us from trying
1539 		 * to allocate a tag. Since the map is a shared host resource
1540 		 * we add the dev to the starved list so it eventually gets
1541 		 * a run when a tag is freed.
1542 		 */
1543 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1544 			if (list_empty(&sdev->starved_entry))
1545 				list_add_tail(&sdev->starved_entry,
1546 					      &shost->starved_list);
1547 			goto not_ready;
1548 		}
1549 
1550 		if (!scsi_target_queue_ready(shost, sdev))
1551 			goto not_ready;
1552 
1553 		if (!scsi_host_queue_ready(q, shost, sdev))
1554 			goto not_ready;
1555 
1556 		scsi_target(sdev)->target_busy++;
1557 		shost->host_busy++;
1558 
1559 		/*
1560 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1561 		 *		take the lock again.
1562 		 */
1563 		spin_unlock_irq(shost->host_lock);
1564 
1565 		/*
1566 		 * Finally, initialize any error handling parameters, and set up
1567 		 * the timers for timeouts.
1568 		 */
1569 		scsi_init_cmd_errh(cmd);
1570 
1571 		/*
1572 		 * Dispatch the command to the low-level driver.
1573 		 */
1574 		rtn = scsi_dispatch_cmd(cmd);
1575 		spin_lock_irq(q->queue_lock);
1576 		if(rtn) {
1577 			/* we're refusing the command; because of
1578 			 * the way locks get dropped, we need to
1579 			 * check here if plugging is required */
1580 			if(sdev->device_busy == 0)
1581 				blk_plug_device(q);
1582 
1583 			break;
1584 		}
1585 	}
1586 
1587 	goto out;
1588 
1589  not_ready:
1590 	spin_unlock_irq(shost->host_lock);
1591 
1592 	/*
1593 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1594 	 * must return with queue_lock held.
1595 	 *
1596 	 * Decrementing device_busy without checking it is OK, as all such
1597 	 * cases (host limits or settings) should run the queue at some
1598 	 * later time.
1599 	 */
1600 	spin_lock_irq(q->queue_lock);
1601 	blk_requeue_request(q, req);
1602 	sdev->device_busy--;
1603 	if(sdev->device_busy == 0)
1604 		blk_plug_device(q);
1605  out:
1606 	/* must be careful here...if we trigger the ->remove() function
1607 	 * we cannot be holding the q lock */
1608 	spin_unlock_irq(q->queue_lock);
1609 	put_device(&sdev->sdev_gendev);
1610 	spin_lock_irq(q->queue_lock);
1611 }
1612 
1613 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1614 {
1615 	struct device *host_dev;
1616 	u64 bounce_limit = 0xffffffff;
1617 
1618 	if (shost->unchecked_isa_dma)
1619 		return BLK_BOUNCE_ISA;
1620 	/*
1621 	 * Platforms with virtual-DMA translation
1622 	 * hardware have no practical limit.
1623 	 */
1624 	if (!PCI_DMA_BUS_IS_PHYS)
1625 		return BLK_BOUNCE_ANY;
1626 
1627 	host_dev = scsi_get_device(shost);
1628 	if (host_dev && host_dev->dma_mask)
1629 		bounce_limit = *host_dev->dma_mask;
1630 
1631 	return bounce_limit;
1632 }
1633 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1634 
1635 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1636 					 request_fn_proc *request_fn)
1637 {
1638 	struct request_queue *q;
1639 	struct device *dev = shost->shost_gendev.parent;
1640 
1641 	q = blk_init_queue(request_fn, NULL);
1642 	if (!q)
1643 		return NULL;
1644 
1645 	/*
1646 	 * this limit is imposed by hardware restrictions
1647 	 */
1648 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1649 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1650 
1651 	blk_queue_max_sectors(q, shost->max_sectors);
1652 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1653 	blk_queue_segment_boundary(q, shost->dma_boundary);
1654 	dma_set_seg_boundary(dev, shost->dma_boundary);
1655 
1656 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1657 
1658 	/* New queue, no concurrency on queue_flags */
1659 	if (!shost->use_clustering)
1660 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1661 
1662 	/*
1663 	 * set a reasonable default alignment on word boundaries: the
1664 	 * host and device may alter it using
1665 	 * blk_queue_update_dma_alignment() later.
1666 	 */
1667 	blk_queue_dma_alignment(q, 0x03);
1668 
1669 	return q;
1670 }
1671 EXPORT_SYMBOL(__scsi_alloc_queue);
1672 
1673 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1674 {
1675 	struct request_queue *q;
1676 
1677 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1678 	if (!q)
1679 		return NULL;
1680 
1681 	blk_queue_prep_rq(q, scsi_prep_fn);
1682 	blk_queue_softirq_done(q, scsi_softirq_done);
1683 	blk_queue_rq_timed_out(q, scsi_times_out);
1684 	blk_queue_lld_busy(q, scsi_lld_busy);
1685 	return q;
1686 }
1687 
1688 void scsi_free_queue(struct request_queue *q)
1689 {
1690 	blk_cleanup_queue(q);
1691 }
1692 
1693 /*
1694  * Function:    scsi_block_requests()
1695  *
1696  * Purpose:     Utility function used by low-level drivers to prevent further
1697  *		commands from being queued to the device.
1698  *
1699  * Arguments:   shost       - Host in question
1700  *
1701  * Returns:     Nothing
1702  *
1703  * Lock status: No locks are assumed held.
1704  *
1705  * Notes:       There is no timer nor any other means by which the requests
1706  *		get unblocked other than the low-level driver calling
1707  *		scsi_unblock_requests().
1708  */
1709 void scsi_block_requests(struct Scsi_Host *shost)
1710 {
1711 	shost->host_self_blocked = 1;
1712 }
1713 EXPORT_SYMBOL(scsi_block_requests);
1714 
1715 /*
1716  * Function:    scsi_unblock_requests()
1717  *
1718  * Purpose:     Utility function used by low-level drivers to allow further
1719  *		commands from being queued to the device.
1720  *
1721  * Arguments:   shost       - Host in question
1722  *
1723  * Returns:     Nothing
1724  *
1725  * Lock status: No locks are assumed held.
1726  *
1727  * Notes:       There is no timer nor any other means by which the requests
1728  *		get unblocked other than the low-level driver calling
1729  *		scsi_unblock_requests().
1730  *
1731  *		This is done as an API function so that changes to the
1732  *		internals of the scsi mid-layer won't require wholesale
1733  *		changes to drivers that use this feature.
1734  */
1735 void scsi_unblock_requests(struct Scsi_Host *shost)
1736 {
1737 	shost->host_self_blocked = 0;
1738 	scsi_run_host_queues(shost);
1739 }
1740 EXPORT_SYMBOL(scsi_unblock_requests);
1741 
1742 int __init scsi_init_queue(void)
1743 {
1744 	int i;
1745 
1746 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1747 					   sizeof(struct scsi_data_buffer),
1748 					   0, 0, NULL);
1749 	if (!scsi_sdb_cache) {
1750 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1751 		return -ENOMEM;
1752 	}
1753 
1754 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1755 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1756 		int size = sgp->size * sizeof(struct scatterlist);
1757 
1758 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1759 				SLAB_HWCACHE_ALIGN, NULL);
1760 		if (!sgp->slab) {
1761 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1762 					sgp->name);
1763 			goto cleanup_sdb;
1764 		}
1765 
1766 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1767 						     sgp->slab);
1768 		if (!sgp->pool) {
1769 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1770 					sgp->name);
1771 			goto cleanup_sdb;
1772 		}
1773 	}
1774 
1775 	return 0;
1776 
1777 cleanup_sdb:
1778 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1779 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1780 		if (sgp->pool)
1781 			mempool_destroy(sgp->pool);
1782 		if (sgp->slab)
1783 			kmem_cache_destroy(sgp->slab);
1784 	}
1785 	kmem_cache_destroy(scsi_sdb_cache);
1786 
1787 	return -ENOMEM;
1788 }
1789 
1790 void scsi_exit_queue(void)
1791 {
1792 	int i;
1793 
1794 	kmem_cache_destroy(scsi_sdb_cache);
1795 
1796 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1798 		mempool_destroy(sgp->pool);
1799 		kmem_cache_destroy(sgp->slab);
1800 	}
1801 }
1802 
1803 /**
1804  *	scsi_mode_select - issue a mode select
1805  *	@sdev:	SCSI device to be queried
1806  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1807  *	@sp:	Save page bit (0 == don't save, 1 == save)
1808  *	@modepage: mode page being requested
1809  *	@buffer: request buffer (may not be smaller than eight bytes)
1810  *	@len:	length of request buffer.
1811  *	@timeout: command timeout
1812  *	@retries: number of retries before failing
1813  *	@data: returns a structure abstracting the mode header data
1814  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1815  *		must be SCSI_SENSE_BUFFERSIZE big.
1816  *
1817  *	Returns zero if successful; negative error number or scsi
1818  *	status on error
1819  *
1820  */
1821 int
1822 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1823 		 unsigned char *buffer, int len, int timeout, int retries,
1824 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1825 {
1826 	unsigned char cmd[10];
1827 	unsigned char *real_buffer;
1828 	int ret;
1829 
1830 	memset(cmd, 0, sizeof(cmd));
1831 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1832 
1833 	if (sdev->use_10_for_ms) {
1834 		if (len > 65535)
1835 			return -EINVAL;
1836 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1837 		if (!real_buffer)
1838 			return -ENOMEM;
1839 		memcpy(real_buffer + 8, buffer, len);
1840 		len += 8;
1841 		real_buffer[0] = 0;
1842 		real_buffer[1] = 0;
1843 		real_buffer[2] = data->medium_type;
1844 		real_buffer[3] = data->device_specific;
1845 		real_buffer[4] = data->longlba ? 0x01 : 0;
1846 		real_buffer[5] = 0;
1847 		real_buffer[6] = data->block_descriptor_length >> 8;
1848 		real_buffer[7] = data->block_descriptor_length;
1849 
1850 		cmd[0] = MODE_SELECT_10;
1851 		cmd[7] = len >> 8;
1852 		cmd[8] = len;
1853 	} else {
1854 		if (len > 255 || data->block_descriptor_length > 255 ||
1855 		    data->longlba)
1856 			return -EINVAL;
1857 
1858 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1859 		if (!real_buffer)
1860 			return -ENOMEM;
1861 		memcpy(real_buffer + 4, buffer, len);
1862 		len += 4;
1863 		real_buffer[0] = 0;
1864 		real_buffer[1] = data->medium_type;
1865 		real_buffer[2] = data->device_specific;
1866 		real_buffer[3] = data->block_descriptor_length;
1867 
1868 
1869 		cmd[0] = MODE_SELECT;
1870 		cmd[4] = len;
1871 	}
1872 
1873 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1874 			       sshdr, timeout, retries, NULL);
1875 	kfree(real_buffer);
1876 	return ret;
1877 }
1878 EXPORT_SYMBOL_GPL(scsi_mode_select);
1879 
1880 /**
1881  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1882  *	@sdev:	SCSI device to be queried
1883  *	@dbd:	set if mode sense will allow block descriptors to be returned
1884  *	@modepage: mode page being requested
1885  *	@buffer: request buffer (may not be smaller than eight bytes)
1886  *	@len:	length of request buffer.
1887  *	@timeout: command timeout
1888  *	@retries: number of retries before failing
1889  *	@data: returns a structure abstracting the mode header data
1890  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1891  *		must be SCSI_SENSE_BUFFERSIZE big.
1892  *
1893  *	Returns zero if unsuccessful, or the header offset (either 4
1894  *	or 8 depending on whether a six or ten byte command was
1895  *	issued) if successful.
1896  */
1897 int
1898 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1899 		  unsigned char *buffer, int len, int timeout, int retries,
1900 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1901 {
1902 	unsigned char cmd[12];
1903 	int use_10_for_ms;
1904 	int header_length;
1905 	int result;
1906 	struct scsi_sense_hdr my_sshdr;
1907 
1908 	memset(data, 0, sizeof(*data));
1909 	memset(&cmd[0], 0, 12);
1910 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1911 	cmd[2] = modepage;
1912 
1913 	/* caller might not be interested in sense, but we need it */
1914 	if (!sshdr)
1915 		sshdr = &my_sshdr;
1916 
1917  retry:
1918 	use_10_for_ms = sdev->use_10_for_ms;
1919 
1920 	if (use_10_for_ms) {
1921 		if (len < 8)
1922 			len = 8;
1923 
1924 		cmd[0] = MODE_SENSE_10;
1925 		cmd[8] = len;
1926 		header_length = 8;
1927 	} else {
1928 		if (len < 4)
1929 			len = 4;
1930 
1931 		cmd[0] = MODE_SENSE;
1932 		cmd[4] = len;
1933 		header_length = 4;
1934 	}
1935 
1936 	memset(buffer, 0, len);
1937 
1938 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1939 				  sshdr, timeout, retries, NULL);
1940 
1941 	/* This code looks awful: what it's doing is making sure an
1942 	 * ILLEGAL REQUEST sense return identifies the actual command
1943 	 * byte as the problem.  MODE_SENSE commands can return
1944 	 * ILLEGAL REQUEST if the code page isn't supported */
1945 
1946 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1947 	    (driver_byte(result) & DRIVER_SENSE)) {
1948 		if (scsi_sense_valid(sshdr)) {
1949 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1950 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1951 				/*
1952 				 * Invalid command operation code
1953 				 */
1954 				sdev->use_10_for_ms = 0;
1955 				goto retry;
1956 			}
1957 		}
1958 	}
1959 
1960 	if(scsi_status_is_good(result)) {
1961 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1962 			     (modepage == 6 || modepage == 8))) {
1963 			/* Initio breakage? */
1964 			header_length = 0;
1965 			data->length = 13;
1966 			data->medium_type = 0;
1967 			data->device_specific = 0;
1968 			data->longlba = 0;
1969 			data->block_descriptor_length = 0;
1970 		} else if(use_10_for_ms) {
1971 			data->length = buffer[0]*256 + buffer[1] + 2;
1972 			data->medium_type = buffer[2];
1973 			data->device_specific = buffer[3];
1974 			data->longlba = buffer[4] & 0x01;
1975 			data->block_descriptor_length = buffer[6]*256
1976 				+ buffer[7];
1977 		} else {
1978 			data->length = buffer[0] + 1;
1979 			data->medium_type = buffer[1];
1980 			data->device_specific = buffer[2];
1981 			data->block_descriptor_length = buffer[3];
1982 		}
1983 		data->header_length = header_length;
1984 	}
1985 
1986 	return result;
1987 }
1988 EXPORT_SYMBOL(scsi_mode_sense);
1989 
1990 /**
1991  *	scsi_test_unit_ready - test if unit is ready
1992  *	@sdev:	scsi device to change the state of.
1993  *	@timeout: command timeout
1994  *	@retries: number of retries before failing
1995  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1996  *		returning sense. Make sure that this is cleared before passing
1997  *		in.
1998  *
1999  *	Returns zero if unsuccessful or an error if TUR failed.  For
2000  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
2001  *	translated to success, with the ->changed flag updated.
2002  **/
2003 int
2004 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2005 		     struct scsi_sense_hdr *sshdr_external)
2006 {
2007 	char cmd[] = {
2008 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2009 	};
2010 	struct scsi_sense_hdr *sshdr;
2011 	int result;
2012 
2013 	if (!sshdr_external)
2014 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2015 	else
2016 		sshdr = sshdr_external;
2017 
2018 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2019 	do {
2020 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2021 					  timeout, retries, NULL);
2022 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2023 		    sshdr->sense_key == UNIT_ATTENTION)
2024 			sdev->changed = 1;
2025 	} while (scsi_sense_valid(sshdr) &&
2026 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2027 
2028 	if (!sshdr)
2029 		/* could not allocate sense buffer, so can't process it */
2030 		return result;
2031 
2032 	if (sdev->removable && scsi_sense_valid(sshdr) &&
2033 	    (sshdr->sense_key == UNIT_ATTENTION ||
2034 	     sshdr->sense_key == NOT_READY)) {
2035 		sdev->changed = 1;
2036 		result = 0;
2037 	}
2038 	if (!sshdr_external)
2039 		kfree(sshdr);
2040 	return result;
2041 }
2042 EXPORT_SYMBOL(scsi_test_unit_ready);
2043 
2044 /**
2045  *	scsi_device_set_state - Take the given device through the device state model.
2046  *	@sdev:	scsi device to change the state of.
2047  *	@state:	state to change to.
2048  *
2049  *	Returns zero if unsuccessful or an error if the requested
2050  *	transition is illegal.
2051  */
2052 int
2053 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2054 {
2055 	enum scsi_device_state oldstate = sdev->sdev_state;
2056 
2057 	if (state == oldstate)
2058 		return 0;
2059 
2060 	switch (state) {
2061 	case SDEV_CREATED:
2062 		switch (oldstate) {
2063 		case SDEV_CREATED_BLOCK:
2064 			break;
2065 		default:
2066 			goto illegal;
2067 		}
2068 		break;
2069 
2070 	case SDEV_RUNNING:
2071 		switch (oldstate) {
2072 		case SDEV_CREATED:
2073 		case SDEV_OFFLINE:
2074 		case SDEV_QUIESCE:
2075 		case SDEV_BLOCK:
2076 			break;
2077 		default:
2078 			goto illegal;
2079 		}
2080 		break;
2081 
2082 	case SDEV_QUIESCE:
2083 		switch (oldstate) {
2084 		case SDEV_RUNNING:
2085 		case SDEV_OFFLINE:
2086 			break;
2087 		default:
2088 			goto illegal;
2089 		}
2090 		break;
2091 
2092 	case SDEV_OFFLINE:
2093 		switch (oldstate) {
2094 		case SDEV_CREATED:
2095 		case SDEV_RUNNING:
2096 		case SDEV_QUIESCE:
2097 		case SDEV_BLOCK:
2098 			break;
2099 		default:
2100 			goto illegal;
2101 		}
2102 		break;
2103 
2104 	case SDEV_BLOCK:
2105 		switch (oldstate) {
2106 		case SDEV_RUNNING:
2107 		case SDEV_CREATED_BLOCK:
2108 			break;
2109 		default:
2110 			goto illegal;
2111 		}
2112 		break;
2113 
2114 	case SDEV_CREATED_BLOCK:
2115 		switch (oldstate) {
2116 		case SDEV_CREATED:
2117 			break;
2118 		default:
2119 			goto illegal;
2120 		}
2121 		break;
2122 
2123 	case SDEV_CANCEL:
2124 		switch (oldstate) {
2125 		case SDEV_CREATED:
2126 		case SDEV_RUNNING:
2127 		case SDEV_QUIESCE:
2128 		case SDEV_OFFLINE:
2129 		case SDEV_BLOCK:
2130 			break;
2131 		default:
2132 			goto illegal;
2133 		}
2134 		break;
2135 
2136 	case SDEV_DEL:
2137 		switch (oldstate) {
2138 		case SDEV_CREATED:
2139 		case SDEV_RUNNING:
2140 		case SDEV_OFFLINE:
2141 		case SDEV_CANCEL:
2142 			break;
2143 		default:
2144 			goto illegal;
2145 		}
2146 		break;
2147 
2148 	}
2149 	sdev->sdev_state = state;
2150 	return 0;
2151 
2152  illegal:
2153 	SCSI_LOG_ERROR_RECOVERY(1,
2154 				sdev_printk(KERN_ERR, sdev,
2155 					    "Illegal state transition %s->%s\n",
2156 					    scsi_device_state_name(oldstate),
2157 					    scsi_device_state_name(state))
2158 				);
2159 	return -EINVAL;
2160 }
2161 EXPORT_SYMBOL(scsi_device_set_state);
2162 
2163 /**
2164  * 	sdev_evt_emit - emit a single SCSI device uevent
2165  *	@sdev: associated SCSI device
2166  *	@evt: event to emit
2167  *
2168  *	Send a single uevent (scsi_event) to the associated scsi_device.
2169  */
2170 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2171 {
2172 	int idx = 0;
2173 	char *envp[3];
2174 
2175 	switch (evt->evt_type) {
2176 	case SDEV_EVT_MEDIA_CHANGE:
2177 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2178 		break;
2179 
2180 	default:
2181 		/* do nothing */
2182 		break;
2183 	}
2184 
2185 	envp[idx++] = NULL;
2186 
2187 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2188 }
2189 
2190 /**
2191  * 	sdev_evt_thread - send a uevent for each scsi event
2192  *	@work: work struct for scsi_device
2193  *
2194  *	Dispatch queued events to their associated scsi_device kobjects
2195  *	as uevents.
2196  */
2197 void scsi_evt_thread(struct work_struct *work)
2198 {
2199 	struct scsi_device *sdev;
2200 	LIST_HEAD(event_list);
2201 
2202 	sdev = container_of(work, struct scsi_device, event_work);
2203 
2204 	while (1) {
2205 		struct scsi_event *evt;
2206 		struct list_head *this, *tmp;
2207 		unsigned long flags;
2208 
2209 		spin_lock_irqsave(&sdev->list_lock, flags);
2210 		list_splice_init(&sdev->event_list, &event_list);
2211 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2212 
2213 		if (list_empty(&event_list))
2214 			break;
2215 
2216 		list_for_each_safe(this, tmp, &event_list) {
2217 			evt = list_entry(this, struct scsi_event, node);
2218 			list_del(&evt->node);
2219 			scsi_evt_emit(sdev, evt);
2220 			kfree(evt);
2221 		}
2222 	}
2223 }
2224 
2225 /**
2226  * 	sdev_evt_send - send asserted event to uevent thread
2227  *	@sdev: scsi_device event occurred on
2228  *	@evt: event to send
2229  *
2230  *	Assert scsi device event asynchronously.
2231  */
2232 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2233 {
2234 	unsigned long flags;
2235 
2236 #if 0
2237 	/* FIXME: currently this check eliminates all media change events
2238 	 * for polled devices.  Need to update to discriminate between AN
2239 	 * and polled events */
2240 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2241 		kfree(evt);
2242 		return;
2243 	}
2244 #endif
2245 
2246 	spin_lock_irqsave(&sdev->list_lock, flags);
2247 	list_add_tail(&evt->node, &sdev->event_list);
2248 	schedule_work(&sdev->event_work);
2249 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2250 }
2251 EXPORT_SYMBOL_GPL(sdev_evt_send);
2252 
2253 /**
2254  * 	sdev_evt_alloc - allocate a new scsi event
2255  *	@evt_type: type of event to allocate
2256  *	@gfpflags: GFP flags for allocation
2257  *
2258  *	Allocates and returns a new scsi_event.
2259  */
2260 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2261 				  gfp_t gfpflags)
2262 {
2263 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2264 	if (!evt)
2265 		return NULL;
2266 
2267 	evt->evt_type = evt_type;
2268 	INIT_LIST_HEAD(&evt->node);
2269 
2270 	/* evt_type-specific initialization, if any */
2271 	switch (evt_type) {
2272 	case SDEV_EVT_MEDIA_CHANGE:
2273 	default:
2274 		/* do nothing */
2275 		break;
2276 	}
2277 
2278 	return evt;
2279 }
2280 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2281 
2282 /**
2283  * 	sdev_evt_send_simple - send asserted event to uevent thread
2284  *	@sdev: scsi_device event occurred on
2285  *	@evt_type: type of event to send
2286  *	@gfpflags: GFP flags for allocation
2287  *
2288  *	Assert scsi device event asynchronously, given an event type.
2289  */
2290 void sdev_evt_send_simple(struct scsi_device *sdev,
2291 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2292 {
2293 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2294 	if (!evt) {
2295 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2296 			    evt_type);
2297 		return;
2298 	}
2299 
2300 	sdev_evt_send(sdev, evt);
2301 }
2302 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2303 
2304 /**
2305  *	scsi_device_quiesce - Block user issued commands.
2306  *	@sdev:	scsi device to quiesce.
2307  *
2308  *	This works by trying to transition to the SDEV_QUIESCE state
2309  *	(which must be a legal transition).  When the device is in this
2310  *	state, only special requests will be accepted, all others will
2311  *	be deferred.  Since special requests may also be requeued requests,
2312  *	a successful return doesn't guarantee the device will be
2313  *	totally quiescent.
2314  *
2315  *	Must be called with user context, may sleep.
2316  *
2317  *	Returns zero if unsuccessful or an error if not.
2318  */
2319 int
2320 scsi_device_quiesce(struct scsi_device *sdev)
2321 {
2322 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2323 	if (err)
2324 		return err;
2325 
2326 	scsi_run_queue(sdev->request_queue);
2327 	while (sdev->device_busy) {
2328 		msleep_interruptible(200);
2329 		scsi_run_queue(sdev->request_queue);
2330 	}
2331 	return 0;
2332 }
2333 EXPORT_SYMBOL(scsi_device_quiesce);
2334 
2335 /**
2336  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2337  *	@sdev:	scsi device to resume.
2338  *
2339  *	Moves the device from quiesced back to running and restarts the
2340  *	queues.
2341  *
2342  *	Must be called with user context, may sleep.
2343  */
2344 void
2345 scsi_device_resume(struct scsi_device *sdev)
2346 {
2347 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2348 		return;
2349 	scsi_run_queue(sdev->request_queue);
2350 }
2351 EXPORT_SYMBOL(scsi_device_resume);
2352 
2353 static void
2354 device_quiesce_fn(struct scsi_device *sdev, void *data)
2355 {
2356 	scsi_device_quiesce(sdev);
2357 }
2358 
2359 void
2360 scsi_target_quiesce(struct scsi_target *starget)
2361 {
2362 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2363 }
2364 EXPORT_SYMBOL(scsi_target_quiesce);
2365 
2366 static void
2367 device_resume_fn(struct scsi_device *sdev, void *data)
2368 {
2369 	scsi_device_resume(sdev);
2370 }
2371 
2372 void
2373 scsi_target_resume(struct scsi_target *starget)
2374 {
2375 	starget_for_each_device(starget, NULL, device_resume_fn);
2376 }
2377 EXPORT_SYMBOL(scsi_target_resume);
2378 
2379 /**
2380  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2381  * @sdev:	device to block
2382  *
2383  * Block request made by scsi lld's to temporarily stop all
2384  * scsi commands on the specified device.  Called from interrupt
2385  * or normal process context.
2386  *
2387  * Returns zero if successful or error if not
2388  *
2389  * Notes:
2390  *	This routine transitions the device to the SDEV_BLOCK state
2391  *	(which must be a legal transition).  When the device is in this
2392  *	state, all commands are deferred until the scsi lld reenables
2393  *	the device with scsi_device_unblock or device_block_tmo fires.
2394  *	This routine assumes the host_lock is held on entry.
2395  */
2396 int
2397 scsi_internal_device_block(struct scsi_device *sdev)
2398 {
2399 	struct request_queue *q = sdev->request_queue;
2400 	unsigned long flags;
2401 	int err = 0;
2402 
2403 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2404 	if (err) {
2405 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2406 
2407 		if (err)
2408 			return err;
2409 	}
2410 
2411 	/*
2412 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2413 	 * block layer from calling the midlayer with this device's
2414 	 * request queue.
2415 	 */
2416 	spin_lock_irqsave(q->queue_lock, flags);
2417 	blk_stop_queue(q);
2418 	spin_unlock_irqrestore(q->queue_lock, flags);
2419 
2420 	return 0;
2421 }
2422 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2423 
2424 /**
2425  * scsi_internal_device_unblock - resume a device after a block request
2426  * @sdev:	device to resume
2427  *
2428  * Called by scsi lld's or the midlayer to restart the device queue
2429  * for the previously suspended scsi device.  Called from interrupt or
2430  * normal process context.
2431  *
2432  * Returns zero if successful or error if not.
2433  *
2434  * Notes:
2435  *	This routine transitions the device to the SDEV_RUNNING state
2436  *	(which must be a legal transition) allowing the midlayer to
2437  *	goose the queue for this device.  This routine assumes the
2438  *	host_lock is held upon entry.
2439  */
2440 int
2441 scsi_internal_device_unblock(struct scsi_device *sdev)
2442 {
2443 	struct request_queue *q = sdev->request_queue;
2444 	int err;
2445 	unsigned long flags;
2446 
2447 	/*
2448 	 * Try to transition the scsi device to SDEV_RUNNING
2449 	 * and goose the device queue if successful.
2450 	 */
2451 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2452 	if (err) {
2453 		err = scsi_device_set_state(sdev, SDEV_CREATED);
2454 
2455 		if (err)
2456 			return err;
2457 	}
2458 
2459 	spin_lock_irqsave(q->queue_lock, flags);
2460 	blk_start_queue(q);
2461 	spin_unlock_irqrestore(q->queue_lock, flags);
2462 
2463 	return 0;
2464 }
2465 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2466 
2467 static void
2468 device_block(struct scsi_device *sdev, void *data)
2469 {
2470 	scsi_internal_device_block(sdev);
2471 }
2472 
2473 static int
2474 target_block(struct device *dev, void *data)
2475 {
2476 	if (scsi_is_target_device(dev))
2477 		starget_for_each_device(to_scsi_target(dev), NULL,
2478 					device_block);
2479 	return 0;
2480 }
2481 
2482 void
2483 scsi_target_block(struct device *dev)
2484 {
2485 	if (scsi_is_target_device(dev))
2486 		starget_for_each_device(to_scsi_target(dev), NULL,
2487 					device_block);
2488 	else
2489 		device_for_each_child(dev, NULL, target_block);
2490 }
2491 EXPORT_SYMBOL_GPL(scsi_target_block);
2492 
2493 static void
2494 device_unblock(struct scsi_device *sdev, void *data)
2495 {
2496 	scsi_internal_device_unblock(sdev);
2497 }
2498 
2499 static int
2500 target_unblock(struct device *dev, void *data)
2501 {
2502 	if (scsi_is_target_device(dev))
2503 		starget_for_each_device(to_scsi_target(dev), NULL,
2504 					device_unblock);
2505 	return 0;
2506 }
2507 
2508 void
2509 scsi_target_unblock(struct device *dev)
2510 {
2511 	if (scsi_is_target_device(dev))
2512 		starget_for_each_device(to_scsi_target(dev), NULL,
2513 					device_unblock);
2514 	else
2515 		device_for_each_child(dev, NULL, target_unblock);
2516 }
2517 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2518 
2519 /**
2520  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2521  * @sgl:	scatter-gather list
2522  * @sg_count:	number of segments in sg
2523  * @offset:	offset in bytes into sg, on return offset into the mapped area
2524  * @len:	bytes to map, on return number of bytes mapped
2525  *
2526  * Returns virtual address of the start of the mapped page
2527  */
2528 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2529 			  size_t *offset, size_t *len)
2530 {
2531 	int i;
2532 	size_t sg_len = 0, len_complete = 0;
2533 	struct scatterlist *sg;
2534 	struct page *page;
2535 
2536 	WARN_ON(!irqs_disabled());
2537 
2538 	for_each_sg(sgl, sg, sg_count, i) {
2539 		len_complete = sg_len; /* Complete sg-entries */
2540 		sg_len += sg->length;
2541 		if (sg_len > *offset)
2542 			break;
2543 	}
2544 
2545 	if (unlikely(i == sg_count)) {
2546 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2547 			"elements %d\n",
2548 		       __func__, sg_len, *offset, sg_count);
2549 		WARN_ON(1);
2550 		return NULL;
2551 	}
2552 
2553 	/* Offset starting from the beginning of first page in this sg-entry */
2554 	*offset = *offset - len_complete + sg->offset;
2555 
2556 	/* Assumption: contiguous pages can be accessed as "page + i" */
2557 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2558 	*offset &= ~PAGE_MASK;
2559 
2560 	/* Bytes in this sg-entry from *offset to the end of the page */
2561 	sg_len = PAGE_SIZE - *offset;
2562 	if (*len > sg_len)
2563 		*len = sg_len;
2564 
2565 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2566 }
2567 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2568 
2569 /**
2570  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2571  * @virt:	virtual address to be unmapped
2572  */
2573 void scsi_kunmap_atomic_sg(void *virt)
2574 {
2575 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2576 }
2577 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2578