1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 32 #include "scsi_priv.h" 33 #include "scsi_logging.h" 34 35 36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 37 #define SG_MEMPOOL_SIZE 2 38 39 struct scsi_host_sg_pool { 40 size_t size; 41 char *name; 42 struct kmem_cache *slab; 43 mempool_t *pool; 44 }; 45 46 #define SP(x) { x, "sgpool-" __stringify(x) } 47 #if (SCSI_MAX_SG_SEGMENTS < 32) 48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 49 #endif 50 static struct scsi_host_sg_pool scsi_sg_pools[] = { 51 SP(8), 52 SP(16), 53 #if (SCSI_MAX_SG_SEGMENTS > 32) 54 SP(32), 55 #if (SCSI_MAX_SG_SEGMENTS > 64) 56 SP(64), 57 #if (SCSI_MAX_SG_SEGMENTS > 128) 58 SP(128), 59 #if (SCSI_MAX_SG_SEGMENTS > 256) 60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 61 #endif 62 #endif 63 #endif 64 #endif 65 SP(SCSI_MAX_SG_SEGMENTS) 66 }; 67 #undef SP 68 69 struct kmem_cache *scsi_sdb_cache; 70 71 /* 72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 73 * not change behaviour from the previous unplug mechanism, experimentation 74 * may prove this needs changing. 75 */ 76 #define SCSI_QUEUE_DELAY 3 77 78 /** 79 * __scsi_queue_insert - private queue insertion 80 * @cmd: The SCSI command being requeued 81 * @reason: The reason for the requeue 82 * @unbusy: Whether the queue should be unbusied 83 * 84 * This is a private queue insertion. The public interface 85 * scsi_queue_insert() always assumes the queue should be unbusied 86 * because it's always called before the completion. This function is 87 * for a requeue after completion, which should only occur in this 88 * file. 89 */ 90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 91 { 92 struct Scsi_Host *host = cmd->device->host; 93 struct scsi_device *device = cmd->device; 94 struct scsi_target *starget = scsi_target(device); 95 struct request_queue *q = device->request_queue; 96 unsigned long flags; 97 98 SCSI_LOG_MLQUEUE(1, 99 printk("Inserting command %p into mlqueue\n", cmd)); 100 101 /* 102 * Set the appropriate busy bit for the device/host. 103 * 104 * If the host/device isn't busy, assume that something actually 105 * completed, and that we should be able to queue a command now. 106 * 107 * Note that the prior mid-layer assumption that any host could 108 * always queue at least one command is now broken. The mid-layer 109 * will implement a user specifiable stall (see 110 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 111 * if a command is requeued with no other commands outstanding 112 * either for the device or for the host. 113 */ 114 switch (reason) { 115 case SCSI_MLQUEUE_HOST_BUSY: 116 host->host_blocked = host->max_host_blocked; 117 break; 118 case SCSI_MLQUEUE_DEVICE_BUSY: 119 case SCSI_MLQUEUE_EH_RETRY: 120 device->device_blocked = device->max_device_blocked; 121 break; 122 case SCSI_MLQUEUE_TARGET_BUSY: 123 starget->target_blocked = starget->max_target_blocked; 124 break; 125 } 126 127 /* 128 * Decrement the counters, since these commands are no longer 129 * active on the host/device. 130 */ 131 if (unbusy) 132 scsi_device_unbusy(device); 133 134 /* 135 * Requeue this command. It will go before all other commands 136 * that are already in the queue. Schedule requeue work under 137 * lock such that the kblockd_schedule_work() call happens 138 * before blk_cleanup_queue() finishes. 139 */ 140 spin_lock_irqsave(q->queue_lock, flags); 141 blk_requeue_request(q, cmd->request); 142 kblockd_schedule_work(q, &device->requeue_work); 143 spin_unlock_irqrestore(q->queue_lock, flags); 144 } 145 146 /* 147 * Function: scsi_queue_insert() 148 * 149 * Purpose: Insert a command in the midlevel queue. 150 * 151 * Arguments: cmd - command that we are adding to queue. 152 * reason - why we are inserting command to queue. 153 * 154 * Lock status: Assumed that lock is not held upon entry. 155 * 156 * Returns: Nothing. 157 * 158 * Notes: We do this for one of two cases. Either the host is busy 159 * and it cannot accept any more commands for the time being, 160 * or the device returned QUEUE_FULL and can accept no more 161 * commands. 162 * Notes: This could be called either from an interrupt context or a 163 * normal process context. 164 */ 165 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 166 { 167 __scsi_queue_insert(cmd, reason, 1); 168 } 169 /** 170 * scsi_execute - insert request and wait for the result 171 * @sdev: scsi device 172 * @cmd: scsi command 173 * @data_direction: data direction 174 * @buffer: data buffer 175 * @bufflen: len of buffer 176 * @sense: optional sense buffer 177 * @timeout: request timeout in seconds 178 * @retries: number of times to retry request 179 * @flags: or into request flags; 180 * @resid: optional residual length 181 * 182 * returns the req->errors value which is the scsi_cmnd result 183 * field. 184 */ 185 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 186 int data_direction, void *buffer, unsigned bufflen, 187 unsigned char *sense, int timeout, int retries, u64 flags, 188 int *resid) 189 { 190 struct request *req; 191 int write = (data_direction == DMA_TO_DEVICE); 192 int ret = DRIVER_ERROR << 24; 193 194 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 195 if (!req) 196 return ret; 197 198 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 199 buffer, bufflen, __GFP_WAIT)) 200 goto out; 201 202 req->cmd_len = COMMAND_SIZE(cmd[0]); 203 memcpy(req->cmd, cmd, req->cmd_len); 204 req->sense = sense; 205 req->sense_len = 0; 206 req->retries = retries; 207 req->timeout = timeout; 208 req->cmd_type = REQ_TYPE_BLOCK_PC; 209 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 210 211 /* 212 * head injection *required* here otherwise quiesce won't work 213 */ 214 blk_execute_rq(req->q, NULL, req, 1); 215 216 /* 217 * Some devices (USB mass-storage in particular) may transfer 218 * garbage data together with a residue indicating that the data 219 * is invalid. Prevent the garbage from being misinterpreted 220 * and prevent security leaks by zeroing out the excess data. 221 */ 222 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 223 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 224 225 if (resid) 226 *resid = req->resid_len; 227 ret = req->errors; 228 out: 229 blk_put_request(req); 230 231 return ret; 232 } 233 EXPORT_SYMBOL(scsi_execute); 234 235 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd, 236 int data_direction, void *buffer, unsigned bufflen, 237 struct scsi_sense_hdr *sshdr, int timeout, int retries, 238 int *resid, u64 flags) 239 { 240 char *sense = NULL; 241 int result; 242 243 if (sshdr) { 244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 245 if (!sense) 246 return DRIVER_ERROR << 24; 247 } 248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 249 sense, timeout, retries, flags, resid); 250 if (sshdr) 251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 252 253 kfree(sense); 254 return result; 255 } 256 EXPORT_SYMBOL(scsi_execute_req_flags); 257 258 /* 259 * Function: scsi_init_cmd_errh() 260 * 261 * Purpose: Initialize cmd fields related to error handling. 262 * 263 * Arguments: cmd - command that is ready to be queued. 264 * 265 * Notes: This function has the job of initializing a number of 266 * fields related to error handling. Typically this will 267 * be called once for each command, as required. 268 */ 269 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 270 { 271 cmd->serial_number = 0; 272 scsi_set_resid(cmd, 0); 273 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 274 if (cmd->cmd_len == 0) 275 cmd->cmd_len = scsi_command_size(cmd->cmnd); 276 } 277 278 void scsi_device_unbusy(struct scsi_device *sdev) 279 { 280 struct Scsi_Host *shost = sdev->host; 281 struct scsi_target *starget = scsi_target(sdev); 282 unsigned long flags; 283 284 spin_lock_irqsave(shost->host_lock, flags); 285 shost->host_busy--; 286 starget->target_busy--; 287 if (unlikely(scsi_host_in_recovery(shost) && 288 (shost->host_failed || shost->host_eh_scheduled))) 289 scsi_eh_wakeup(shost); 290 spin_unlock(shost->host_lock); 291 spin_lock(sdev->request_queue->queue_lock); 292 sdev->device_busy--; 293 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 294 } 295 296 /* 297 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 298 * and call blk_run_queue for all the scsi_devices on the target - 299 * including current_sdev first. 300 * 301 * Called with *no* scsi locks held. 302 */ 303 static void scsi_single_lun_run(struct scsi_device *current_sdev) 304 { 305 struct Scsi_Host *shost = current_sdev->host; 306 struct scsi_device *sdev, *tmp; 307 struct scsi_target *starget = scsi_target(current_sdev); 308 unsigned long flags; 309 310 spin_lock_irqsave(shost->host_lock, flags); 311 starget->starget_sdev_user = NULL; 312 spin_unlock_irqrestore(shost->host_lock, flags); 313 314 /* 315 * Call blk_run_queue for all LUNs on the target, starting with 316 * current_sdev. We race with others (to set starget_sdev_user), 317 * but in most cases, we will be first. Ideally, each LU on the 318 * target would get some limited time or requests on the target. 319 */ 320 blk_run_queue(current_sdev->request_queue); 321 322 spin_lock_irqsave(shost->host_lock, flags); 323 if (starget->starget_sdev_user) 324 goto out; 325 list_for_each_entry_safe(sdev, tmp, &starget->devices, 326 same_target_siblings) { 327 if (sdev == current_sdev) 328 continue; 329 if (scsi_device_get(sdev)) 330 continue; 331 332 spin_unlock_irqrestore(shost->host_lock, flags); 333 blk_run_queue(sdev->request_queue); 334 spin_lock_irqsave(shost->host_lock, flags); 335 336 scsi_device_put(sdev); 337 } 338 out: 339 spin_unlock_irqrestore(shost->host_lock, flags); 340 } 341 342 static inline int scsi_device_is_busy(struct scsi_device *sdev) 343 { 344 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 345 return 1; 346 347 return 0; 348 } 349 350 static inline int scsi_target_is_busy(struct scsi_target *starget) 351 { 352 return ((starget->can_queue > 0 && 353 starget->target_busy >= starget->can_queue) || 354 starget->target_blocked); 355 } 356 357 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 358 { 359 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 360 shost->host_blocked || shost->host_self_blocked) 361 return 1; 362 363 return 0; 364 } 365 366 static void scsi_starved_list_run(struct Scsi_Host *shost) 367 { 368 LIST_HEAD(starved_list); 369 struct scsi_device *sdev; 370 unsigned long flags; 371 372 spin_lock_irqsave(shost->host_lock, flags); 373 list_splice_init(&shost->starved_list, &starved_list); 374 375 while (!list_empty(&starved_list)) { 376 struct request_queue *slq; 377 378 /* 379 * As long as shost is accepting commands and we have 380 * starved queues, call blk_run_queue. scsi_request_fn 381 * drops the queue_lock and can add us back to the 382 * starved_list. 383 * 384 * host_lock protects the starved_list and starved_entry. 385 * scsi_request_fn must get the host_lock before checking 386 * or modifying starved_list or starved_entry. 387 */ 388 if (scsi_host_is_busy(shost)) 389 break; 390 391 sdev = list_entry(starved_list.next, 392 struct scsi_device, starved_entry); 393 list_del_init(&sdev->starved_entry); 394 if (scsi_target_is_busy(scsi_target(sdev))) { 395 list_move_tail(&sdev->starved_entry, 396 &shost->starved_list); 397 continue; 398 } 399 400 /* 401 * Once we drop the host lock, a racing scsi_remove_device() 402 * call may remove the sdev from the starved list and destroy 403 * it and the queue. Mitigate by taking a reference to the 404 * queue and never touching the sdev again after we drop the 405 * host lock. Note: if __scsi_remove_device() invokes 406 * blk_cleanup_queue() before the queue is run from this 407 * function then blk_run_queue() will return immediately since 408 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 409 */ 410 slq = sdev->request_queue; 411 if (!blk_get_queue(slq)) 412 continue; 413 spin_unlock_irqrestore(shost->host_lock, flags); 414 415 blk_run_queue(slq); 416 blk_put_queue(slq); 417 418 spin_lock_irqsave(shost->host_lock, flags); 419 } 420 /* put any unprocessed entries back */ 421 list_splice(&starved_list, &shost->starved_list); 422 spin_unlock_irqrestore(shost->host_lock, flags); 423 } 424 425 /* 426 * Function: scsi_run_queue() 427 * 428 * Purpose: Select a proper request queue to serve next 429 * 430 * Arguments: q - last request's queue 431 * 432 * Returns: Nothing 433 * 434 * Notes: The previous command was completely finished, start 435 * a new one if possible. 436 */ 437 static void scsi_run_queue(struct request_queue *q) 438 { 439 struct scsi_device *sdev = q->queuedata; 440 441 if (scsi_target(sdev)->single_lun) 442 scsi_single_lun_run(sdev); 443 if (!list_empty(&sdev->host->starved_list)) 444 scsi_starved_list_run(sdev->host); 445 446 blk_run_queue(q); 447 } 448 449 void scsi_requeue_run_queue(struct work_struct *work) 450 { 451 struct scsi_device *sdev; 452 struct request_queue *q; 453 454 sdev = container_of(work, struct scsi_device, requeue_work); 455 q = sdev->request_queue; 456 scsi_run_queue(q); 457 } 458 459 /* 460 * Function: scsi_requeue_command() 461 * 462 * Purpose: Handle post-processing of completed commands. 463 * 464 * Arguments: q - queue to operate on 465 * cmd - command that may need to be requeued. 466 * 467 * Returns: Nothing 468 * 469 * Notes: After command completion, there may be blocks left 470 * over which weren't finished by the previous command 471 * this can be for a number of reasons - the main one is 472 * I/O errors in the middle of the request, in which case 473 * we need to request the blocks that come after the bad 474 * sector. 475 * Notes: Upon return, cmd is a stale pointer. 476 */ 477 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 478 { 479 struct scsi_device *sdev = cmd->device; 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 blk_unprep_request(req); 485 req->special = NULL; 486 scsi_put_command(cmd); 487 blk_requeue_request(q, req); 488 spin_unlock_irqrestore(q->queue_lock, flags); 489 490 scsi_run_queue(q); 491 492 put_device(&sdev->sdev_gendev); 493 } 494 495 void scsi_next_command(struct scsi_cmnd *cmd) 496 { 497 struct scsi_device *sdev = cmd->device; 498 struct request_queue *q = sdev->request_queue; 499 500 scsi_put_command(cmd); 501 scsi_run_queue(q); 502 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 /** 671 * __scsi_error_from_host_byte - translate SCSI error code into errno 672 * @cmd: SCSI command (unused) 673 * @result: scsi error code 674 * 675 * Translate SCSI error code into standard UNIX errno. 676 * Return values: 677 * -ENOLINK temporary transport failure 678 * -EREMOTEIO permanent target failure, do not retry 679 * -EBADE permanent nexus failure, retry on other path 680 * -ENOSPC No write space available 681 * -ENODATA Medium error 682 * -EIO unspecified I/O error 683 */ 684 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 685 { 686 int error = 0; 687 688 switch(host_byte(result)) { 689 case DID_TRANSPORT_FAILFAST: 690 error = -ENOLINK; 691 break; 692 case DID_TARGET_FAILURE: 693 set_host_byte(cmd, DID_OK); 694 error = -EREMOTEIO; 695 break; 696 case DID_NEXUS_FAILURE: 697 set_host_byte(cmd, DID_OK); 698 error = -EBADE; 699 break; 700 case DID_ALLOC_FAILURE: 701 set_host_byte(cmd, DID_OK); 702 error = -ENOSPC; 703 break; 704 case DID_MEDIUM_ERROR: 705 set_host_byte(cmd, DID_OK); 706 error = -ENODATA; 707 break; 708 default: 709 error = -EIO; 710 break; 711 } 712 713 return error; 714 } 715 716 /* 717 * Function: scsi_io_completion() 718 * 719 * Purpose: Completion processing for block device I/O requests. 720 * 721 * Arguments: cmd - command that is finished. 722 * 723 * Lock status: Assumed that no lock is held upon entry. 724 * 725 * Returns: Nothing 726 * 727 * Notes: This function is matched in terms of capabilities to 728 * the function that created the scatter-gather list. 729 * In other words, if there are no bounce buffers 730 * (the normal case for most drivers), we don't need 731 * the logic to deal with cleaning up afterwards. 732 * 733 * We must call scsi_end_request(). This will finish off 734 * the specified number of sectors. If we are done, the 735 * command block will be released and the queue function 736 * will be goosed. If we are not done then we have to 737 * figure out what to do next: 738 * 739 * a) We can call scsi_requeue_command(). The request 740 * will be unprepared and put back on the queue. Then 741 * a new command will be created for it. This should 742 * be used if we made forward progress, or if we want 743 * to switch from READ(10) to READ(6) for example. 744 * 745 * b) We can call scsi_queue_insert(). The request will 746 * be put back on the queue and retried using the same 747 * command as before, possibly after a delay. 748 * 749 * c) We can call blk_end_request() with -EIO to fail 750 * the remainder of the request. 751 */ 752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 753 { 754 int result = cmd->result; 755 struct request_queue *q = cmd->device->request_queue; 756 struct request *req = cmd->request; 757 int error = 0; 758 struct scsi_sense_hdr sshdr; 759 int sense_valid = 0; 760 int sense_deferred = 0; 761 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 762 ACTION_DELAYED_RETRY} action; 763 char *description = NULL; 764 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 765 766 if (result) { 767 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 768 if (sense_valid) 769 sense_deferred = scsi_sense_is_deferred(&sshdr); 770 } 771 772 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 773 if (result) { 774 if (sense_valid && req->sense) { 775 /* 776 * SG_IO wants current and deferred errors 777 */ 778 int len = 8 + cmd->sense_buffer[7]; 779 780 if (len > SCSI_SENSE_BUFFERSIZE) 781 len = SCSI_SENSE_BUFFERSIZE; 782 memcpy(req->sense, cmd->sense_buffer, len); 783 req->sense_len = len; 784 } 785 if (!sense_deferred) 786 error = __scsi_error_from_host_byte(cmd, result); 787 } 788 /* 789 * __scsi_error_from_host_byte may have reset the host_byte 790 */ 791 req->errors = cmd->result; 792 793 req->resid_len = scsi_get_resid(cmd); 794 795 if (scsi_bidi_cmnd(cmd)) { 796 /* 797 * Bidi commands Must be complete as a whole, 798 * both sides at once. 799 */ 800 req->next_rq->resid_len = scsi_in(cmd)->resid; 801 802 scsi_release_buffers(cmd); 803 blk_end_request_all(req, 0); 804 805 scsi_next_command(cmd); 806 return; 807 } 808 } 809 810 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 811 BUG_ON(blk_bidi_rq(req)); 812 813 /* 814 * Next deal with any sectors which we were able to correctly 815 * handle. 816 */ 817 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 818 "%d bytes done.\n", 819 blk_rq_sectors(req), good_bytes)); 820 821 /* 822 * Recovered errors need reporting, but they're always treated 823 * as success, so fiddle the result code here. For BLOCK_PC 824 * we already took a copy of the original into rq->errors which 825 * is what gets returned to the user 826 */ 827 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 828 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 829 * print since caller wants ATA registers. Only occurs on 830 * SCSI ATA PASS_THROUGH commands when CK_COND=1 831 */ 832 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 833 ; 834 else if (!(req->cmd_flags & REQ_QUIET)) 835 scsi_print_sense("", cmd); 836 result = 0; 837 /* BLOCK_PC may have set error */ 838 error = 0; 839 } 840 841 /* 842 * A number of bytes were successfully read. If there 843 * are leftovers and there is some kind of error 844 * (result != 0), retry the rest. 845 */ 846 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 847 return; 848 849 error = __scsi_error_from_host_byte(cmd, result); 850 851 if (host_byte(result) == DID_RESET) { 852 /* Third party bus reset or reset for error recovery 853 * reasons. Just retry the command and see what 854 * happens. 855 */ 856 action = ACTION_RETRY; 857 } else if (sense_valid && !sense_deferred) { 858 switch (sshdr.sense_key) { 859 case UNIT_ATTENTION: 860 if (cmd->device->removable) { 861 /* Detected disc change. Set a bit 862 * and quietly refuse further access. 863 */ 864 cmd->device->changed = 1; 865 description = "Media Changed"; 866 action = ACTION_FAIL; 867 } else { 868 /* Must have been a power glitch, or a 869 * bus reset. Could not have been a 870 * media change, so we just retry the 871 * command and see what happens. 872 */ 873 action = ACTION_RETRY; 874 } 875 break; 876 case ILLEGAL_REQUEST: 877 /* If we had an ILLEGAL REQUEST returned, then 878 * we may have performed an unsupported 879 * command. The only thing this should be 880 * would be a ten byte read where only a six 881 * byte read was supported. Also, on a system 882 * where READ CAPACITY failed, we may have 883 * read past the end of the disk. 884 */ 885 if ((cmd->device->use_10_for_rw && 886 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 887 (cmd->cmnd[0] == READ_10 || 888 cmd->cmnd[0] == WRITE_10)) { 889 /* This will issue a new 6-byte command. */ 890 cmd->device->use_10_for_rw = 0; 891 action = ACTION_REPREP; 892 } else if (sshdr.asc == 0x10) /* DIX */ { 893 description = "Host Data Integrity Failure"; 894 action = ACTION_FAIL; 895 error = -EILSEQ; 896 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 897 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 898 switch (cmd->cmnd[0]) { 899 case UNMAP: 900 description = "Discard failure"; 901 break; 902 case WRITE_SAME: 903 case WRITE_SAME_16: 904 if (cmd->cmnd[1] & 0x8) 905 description = "Discard failure"; 906 else 907 description = 908 "Write same failure"; 909 break; 910 default: 911 description = "Invalid command failure"; 912 break; 913 } 914 action = ACTION_FAIL; 915 error = -EREMOTEIO; 916 } else 917 action = ACTION_FAIL; 918 break; 919 case ABORTED_COMMAND: 920 action = ACTION_FAIL; 921 if (sshdr.asc == 0x10) { /* DIF */ 922 description = "Target Data Integrity Failure"; 923 error = -EILSEQ; 924 } 925 break; 926 case NOT_READY: 927 /* If the device is in the process of becoming 928 * ready, or has a temporary blockage, retry. 929 */ 930 if (sshdr.asc == 0x04) { 931 switch (sshdr.ascq) { 932 case 0x01: /* becoming ready */ 933 case 0x04: /* format in progress */ 934 case 0x05: /* rebuild in progress */ 935 case 0x06: /* recalculation in progress */ 936 case 0x07: /* operation in progress */ 937 case 0x08: /* Long write in progress */ 938 case 0x09: /* self test in progress */ 939 case 0x14: /* space allocation in progress */ 940 action = ACTION_DELAYED_RETRY; 941 break; 942 default: 943 description = "Device not ready"; 944 action = ACTION_FAIL; 945 break; 946 } 947 } else { 948 description = "Device not ready"; 949 action = ACTION_FAIL; 950 } 951 break; 952 case VOLUME_OVERFLOW: 953 /* See SSC3rXX or current. */ 954 action = ACTION_FAIL; 955 break; 956 default: 957 description = "Unhandled sense code"; 958 action = ACTION_FAIL; 959 break; 960 } 961 } else { 962 description = "Unhandled error code"; 963 action = ACTION_FAIL; 964 } 965 966 if (action != ACTION_FAIL && 967 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 968 action = ACTION_FAIL; 969 description = "Command timed out"; 970 } 971 972 switch (action) { 973 case ACTION_FAIL: 974 /* Give up and fail the remainder of the request */ 975 scsi_release_buffers(cmd); 976 if (!(req->cmd_flags & REQ_QUIET)) { 977 if (description) 978 scmd_printk(KERN_INFO, cmd, "%s\n", 979 description); 980 scsi_print_result(cmd); 981 if (driver_byte(result) & DRIVER_SENSE) 982 scsi_print_sense("", cmd); 983 scsi_print_command(cmd); 984 } 985 if (blk_end_request_err(req, error)) 986 scsi_requeue_command(q, cmd); 987 else 988 scsi_next_command(cmd); 989 break; 990 case ACTION_REPREP: 991 /* Unprep the request and put it back at the head of the queue. 992 * A new command will be prepared and issued. 993 */ 994 scsi_release_buffers(cmd); 995 scsi_requeue_command(q, cmd); 996 break; 997 case ACTION_RETRY: 998 /* Retry the same command immediately */ 999 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1000 break; 1001 case ACTION_DELAYED_RETRY: 1002 /* Retry the same command after a delay */ 1003 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1004 break; 1005 } 1006 } 1007 1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1009 gfp_t gfp_mask) 1010 { 1011 int count; 1012 1013 /* 1014 * If sg table allocation fails, requeue request later. 1015 */ 1016 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1017 gfp_mask))) { 1018 return BLKPREP_DEFER; 1019 } 1020 1021 req->buffer = NULL; 1022 1023 /* 1024 * Next, walk the list, and fill in the addresses and sizes of 1025 * each segment. 1026 */ 1027 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1028 BUG_ON(count > sdb->table.nents); 1029 sdb->table.nents = count; 1030 sdb->length = blk_rq_bytes(req); 1031 return BLKPREP_OK; 1032 } 1033 1034 /* 1035 * Function: scsi_init_io() 1036 * 1037 * Purpose: SCSI I/O initialize function. 1038 * 1039 * Arguments: cmd - Command descriptor we wish to initialize 1040 * 1041 * Returns: 0 on success 1042 * BLKPREP_DEFER if the failure is retryable 1043 * BLKPREP_KILL if the failure is fatal 1044 */ 1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1046 { 1047 struct request *rq = cmd->request; 1048 1049 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1050 if (error) 1051 goto err_exit; 1052 1053 if (blk_bidi_rq(rq)) { 1054 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1055 scsi_sdb_cache, GFP_ATOMIC); 1056 if (!bidi_sdb) { 1057 error = BLKPREP_DEFER; 1058 goto err_exit; 1059 } 1060 1061 rq->next_rq->special = bidi_sdb; 1062 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1063 if (error) 1064 goto err_exit; 1065 } 1066 1067 if (blk_integrity_rq(rq)) { 1068 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1069 int ivecs, count; 1070 1071 BUG_ON(prot_sdb == NULL); 1072 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1073 1074 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1075 error = BLKPREP_DEFER; 1076 goto err_exit; 1077 } 1078 1079 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1080 prot_sdb->table.sgl); 1081 BUG_ON(unlikely(count > ivecs)); 1082 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1083 1084 cmd->prot_sdb = prot_sdb; 1085 cmd->prot_sdb->table.nents = count; 1086 } 1087 1088 return BLKPREP_OK ; 1089 1090 err_exit: 1091 scsi_release_buffers(cmd); 1092 cmd->request->special = NULL; 1093 scsi_put_command(cmd); 1094 put_device(&cmd->device->sdev_gendev); 1095 return error; 1096 } 1097 EXPORT_SYMBOL(scsi_init_io); 1098 1099 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1100 struct request *req) 1101 { 1102 struct scsi_cmnd *cmd; 1103 1104 if (!req->special) { 1105 /* Bail if we can't get a reference to the device */ 1106 if (!get_device(&sdev->sdev_gendev)) 1107 return NULL; 1108 1109 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1110 if (unlikely(!cmd)) { 1111 put_device(&sdev->sdev_gendev); 1112 return NULL; 1113 } 1114 req->special = cmd; 1115 } else { 1116 cmd = req->special; 1117 } 1118 1119 /* pull a tag out of the request if we have one */ 1120 cmd->tag = req->tag; 1121 cmd->request = req; 1122 1123 cmd->cmnd = req->cmd; 1124 cmd->prot_op = SCSI_PROT_NORMAL; 1125 1126 return cmd; 1127 } 1128 1129 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1130 { 1131 struct scsi_cmnd *cmd; 1132 int ret = scsi_prep_state_check(sdev, req); 1133 1134 if (ret != BLKPREP_OK) 1135 return ret; 1136 1137 cmd = scsi_get_cmd_from_req(sdev, req); 1138 if (unlikely(!cmd)) 1139 return BLKPREP_DEFER; 1140 1141 /* 1142 * BLOCK_PC requests may transfer data, in which case they must 1143 * a bio attached to them. Or they might contain a SCSI command 1144 * that does not transfer data, in which case they may optionally 1145 * submit a request without an attached bio. 1146 */ 1147 if (req->bio) { 1148 int ret; 1149 1150 BUG_ON(!req->nr_phys_segments); 1151 1152 ret = scsi_init_io(cmd, GFP_ATOMIC); 1153 if (unlikely(ret)) 1154 return ret; 1155 } else { 1156 BUG_ON(blk_rq_bytes(req)); 1157 1158 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1159 req->buffer = NULL; 1160 } 1161 1162 cmd->cmd_len = req->cmd_len; 1163 if (!blk_rq_bytes(req)) 1164 cmd->sc_data_direction = DMA_NONE; 1165 else if (rq_data_dir(req) == WRITE) 1166 cmd->sc_data_direction = DMA_TO_DEVICE; 1167 else 1168 cmd->sc_data_direction = DMA_FROM_DEVICE; 1169 1170 cmd->transfersize = blk_rq_bytes(req); 1171 cmd->allowed = req->retries; 1172 return BLKPREP_OK; 1173 } 1174 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1175 1176 /* 1177 * Setup a REQ_TYPE_FS command. These are simple read/write request 1178 * from filesystems that still need to be translated to SCSI CDBs from 1179 * the ULD. 1180 */ 1181 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1182 { 1183 struct scsi_cmnd *cmd; 1184 int ret = scsi_prep_state_check(sdev, req); 1185 1186 if (ret != BLKPREP_OK) 1187 return ret; 1188 1189 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1190 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1191 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1192 if (ret != BLKPREP_OK) 1193 return ret; 1194 } 1195 1196 /* 1197 * Filesystem requests must transfer data. 1198 */ 1199 BUG_ON(!req->nr_phys_segments); 1200 1201 cmd = scsi_get_cmd_from_req(sdev, req); 1202 if (unlikely(!cmd)) 1203 return BLKPREP_DEFER; 1204 1205 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1206 return scsi_init_io(cmd, GFP_ATOMIC); 1207 } 1208 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1209 1210 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1211 { 1212 int ret = BLKPREP_OK; 1213 1214 /* 1215 * If the device is not in running state we will reject some 1216 * or all commands. 1217 */ 1218 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1219 switch (sdev->sdev_state) { 1220 case SDEV_OFFLINE: 1221 case SDEV_TRANSPORT_OFFLINE: 1222 /* 1223 * If the device is offline we refuse to process any 1224 * commands. The device must be brought online 1225 * before trying any recovery commands. 1226 */ 1227 sdev_printk(KERN_ERR, sdev, 1228 "rejecting I/O to offline device\n"); 1229 ret = BLKPREP_KILL; 1230 break; 1231 case SDEV_DEL: 1232 /* 1233 * If the device is fully deleted, we refuse to 1234 * process any commands as well. 1235 */ 1236 sdev_printk(KERN_ERR, sdev, 1237 "rejecting I/O to dead device\n"); 1238 ret = BLKPREP_KILL; 1239 break; 1240 case SDEV_QUIESCE: 1241 case SDEV_BLOCK: 1242 case SDEV_CREATED_BLOCK: 1243 /* 1244 * If the devices is blocked we defer normal commands. 1245 */ 1246 if (!(req->cmd_flags & REQ_PREEMPT)) 1247 ret = BLKPREP_DEFER; 1248 break; 1249 default: 1250 /* 1251 * For any other not fully online state we only allow 1252 * special commands. In particular any user initiated 1253 * command is not allowed. 1254 */ 1255 if (!(req->cmd_flags & REQ_PREEMPT)) 1256 ret = BLKPREP_KILL; 1257 break; 1258 } 1259 } 1260 return ret; 1261 } 1262 EXPORT_SYMBOL(scsi_prep_state_check); 1263 1264 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1265 { 1266 struct scsi_device *sdev = q->queuedata; 1267 1268 switch (ret) { 1269 case BLKPREP_KILL: 1270 req->errors = DID_NO_CONNECT << 16; 1271 /* release the command and kill it */ 1272 if (req->special) { 1273 struct scsi_cmnd *cmd = req->special; 1274 scsi_release_buffers(cmd); 1275 scsi_put_command(cmd); 1276 put_device(&cmd->device->sdev_gendev); 1277 req->special = NULL; 1278 } 1279 break; 1280 case BLKPREP_DEFER: 1281 /* 1282 * If we defer, the blk_peek_request() returns NULL, but the 1283 * queue must be restarted, so we schedule a callback to happen 1284 * shortly. 1285 */ 1286 if (sdev->device_busy == 0) 1287 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1288 break; 1289 default: 1290 req->cmd_flags |= REQ_DONTPREP; 1291 } 1292 1293 return ret; 1294 } 1295 EXPORT_SYMBOL(scsi_prep_return); 1296 1297 int scsi_prep_fn(struct request_queue *q, struct request *req) 1298 { 1299 struct scsi_device *sdev = q->queuedata; 1300 int ret = BLKPREP_KILL; 1301 1302 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1303 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1304 return scsi_prep_return(q, req, ret); 1305 } 1306 EXPORT_SYMBOL(scsi_prep_fn); 1307 1308 /* 1309 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1310 * return 0. 1311 * 1312 * Called with the queue_lock held. 1313 */ 1314 static inline int scsi_dev_queue_ready(struct request_queue *q, 1315 struct scsi_device *sdev) 1316 { 1317 if (sdev->device_busy == 0 && sdev->device_blocked) { 1318 /* 1319 * unblock after device_blocked iterates to zero 1320 */ 1321 if (--sdev->device_blocked == 0) { 1322 SCSI_LOG_MLQUEUE(3, 1323 sdev_printk(KERN_INFO, sdev, 1324 "unblocking device at zero depth\n")); 1325 } else { 1326 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1327 return 0; 1328 } 1329 } 1330 if (scsi_device_is_busy(sdev)) 1331 return 0; 1332 1333 return 1; 1334 } 1335 1336 1337 /* 1338 * scsi_target_queue_ready: checks if there we can send commands to target 1339 * @sdev: scsi device on starget to check. 1340 * 1341 * Called with the host lock held. 1342 */ 1343 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1344 struct scsi_device *sdev) 1345 { 1346 struct scsi_target *starget = scsi_target(sdev); 1347 1348 if (starget->single_lun) { 1349 if (starget->starget_sdev_user && 1350 starget->starget_sdev_user != sdev) 1351 return 0; 1352 starget->starget_sdev_user = sdev; 1353 } 1354 1355 if (starget->target_busy == 0 && starget->target_blocked) { 1356 /* 1357 * unblock after target_blocked iterates to zero 1358 */ 1359 if (--starget->target_blocked == 0) { 1360 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1361 "unblocking target at zero depth\n")); 1362 } else 1363 return 0; 1364 } 1365 1366 if (scsi_target_is_busy(starget)) { 1367 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1368 return 0; 1369 } 1370 1371 return 1; 1372 } 1373 1374 /* 1375 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1376 * return 0. We must end up running the queue again whenever 0 is 1377 * returned, else IO can hang. 1378 * 1379 * Called with host_lock held. 1380 */ 1381 static inline int scsi_host_queue_ready(struct request_queue *q, 1382 struct Scsi_Host *shost, 1383 struct scsi_device *sdev) 1384 { 1385 if (scsi_host_in_recovery(shost)) 1386 return 0; 1387 if (shost->host_busy == 0 && shost->host_blocked) { 1388 /* 1389 * unblock after host_blocked iterates to zero 1390 */ 1391 if (--shost->host_blocked == 0) { 1392 SCSI_LOG_MLQUEUE(3, 1393 printk("scsi%d unblocking host at zero depth\n", 1394 shost->host_no)); 1395 } else { 1396 return 0; 1397 } 1398 } 1399 if (scsi_host_is_busy(shost)) { 1400 if (list_empty(&sdev->starved_entry)) 1401 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1402 return 0; 1403 } 1404 1405 /* We're OK to process the command, so we can't be starved */ 1406 if (!list_empty(&sdev->starved_entry)) 1407 list_del_init(&sdev->starved_entry); 1408 1409 return 1; 1410 } 1411 1412 /* 1413 * Busy state exporting function for request stacking drivers. 1414 * 1415 * For efficiency, no lock is taken to check the busy state of 1416 * shost/starget/sdev, since the returned value is not guaranteed and 1417 * may be changed after request stacking drivers call the function, 1418 * regardless of taking lock or not. 1419 * 1420 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1421 * needs to return 'not busy'. Otherwise, request stacking drivers 1422 * may hold requests forever. 1423 */ 1424 static int scsi_lld_busy(struct request_queue *q) 1425 { 1426 struct scsi_device *sdev = q->queuedata; 1427 struct Scsi_Host *shost; 1428 1429 if (blk_queue_dying(q)) 1430 return 0; 1431 1432 shost = sdev->host; 1433 1434 /* 1435 * Ignore host/starget busy state. 1436 * Since block layer does not have a concept of fairness across 1437 * multiple queues, congestion of host/starget needs to be handled 1438 * in SCSI layer. 1439 */ 1440 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1441 return 1; 1442 1443 return 0; 1444 } 1445 1446 /* 1447 * Kill a request for a dead device 1448 */ 1449 static void scsi_kill_request(struct request *req, struct request_queue *q) 1450 { 1451 struct scsi_cmnd *cmd = req->special; 1452 struct scsi_device *sdev; 1453 struct scsi_target *starget; 1454 struct Scsi_Host *shost; 1455 1456 blk_start_request(req); 1457 1458 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1459 1460 sdev = cmd->device; 1461 starget = scsi_target(sdev); 1462 shost = sdev->host; 1463 scsi_init_cmd_errh(cmd); 1464 cmd->result = DID_NO_CONNECT << 16; 1465 atomic_inc(&cmd->device->iorequest_cnt); 1466 1467 /* 1468 * SCSI request completion path will do scsi_device_unbusy(), 1469 * bump busy counts. To bump the counters, we need to dance 1470 * with the locks as normal issue path does. 1471 */ 1472 sdev->device_busy++; 1473 spin_unlock(sdev->request_queue->queue_lock); 1474 spin_lock(shost->host_lock); 1475 shost->host_busy++; 1476 starget->target_busy++; 1477 spin_unlock(shost->host_lock); 1478 spin_lock(sdev->request_queue->queue_lock); 1479 1480 blk_complete_request(req); 1481 } 1482 1483 static void scsi_softirq_done(struct request *rq) 1484 { 1485 struct scsi_cmnd *cmd = rq->special; 1486 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1487 int disposition; 1488 1489 INIT_LIST_HEAD(&cmd->eh_entry); 1490 1491 atomic_inc(&cmd->device->iodone_cnt); 1492 if (cmd->result) 1493 atomic_inc(&cmd->device->ioerr_cnt); 1494 1495 disposition = scsi_decide_disposition(cmd); 1496 if (disposition != SUCCESS && 1497 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1498 sdev_printk(KERN_ERR, cmd->device, 1499 "timing out command, waited %lus\n", 1500 wait_for/HZ); 1501 disposition = SUCCESS; 1502 } 1503 1504 scsi_log_completion(cmd, disposition); 1505 1506 switch (disposition) { 1507 case SUCCESS: 1508 scsi_finish_command(cmd); 1509 break; 1510 case NEEDS_RETRY: 1511 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1512 break; 1513 case ADD_TO_MLQUEUE: 1514 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1515 break; 1516 default: 1517 if (!scsi_eh_scmd_add(cmd, 0)) 1518 scsi_finish_command(cmd); 1519 } 1520 } 1521 1522 /* 1523 * Function: scsi_request_fn() 1524 * 1525 * Purpose: Main strategy routine for SCSI. 1526 * 1527 * Arguments: q - Pointer to actual queue. 1528 * 1529 * Returns: Nothing 1530 * 1531 * Lock status: IO request lock assumed to be held when called. 1532 */ 1533 static void scsi_request_fn(struct request_queue *q) 1534 __releases(q->queue_lock) 1535 __acquires(q->queue_lock) 1536 { 1537 struct scsi_device *sdev = q->queuedata; 1538 struct Scsi_Host *shost; 1539 struct scsi_cmnd *cmd; 1540 struct request *req; 1541 1542 /* 1543 * To start with, we keep looping until the queue is empty, or until 1544 * the host is no longer able to accept any more requests. 1545 */ 1546 shost = sdev->host; 1547 for (;;) { 1548 int rtn; 1549 /* 1550 * get next queueable request. We do this early to make sure 1551 * that the request is fully prepared even if we cannot 1552 * accept it. 1553 */ 1554 req = blk_peek_request(q); 1555 if (!req || !scsi_dev_queue_ready(q, sdev)) 1556 break; 1557 1558 if (unlikely(!scsi_device_online(sdev))) { 1559 sdev_printk(KERN_ERR, sdev, 1560 "rejecting I/O to offline device\n"); 1561 scsi_kill_request(req, q); 1562 continue; 1563 } 1564 1565 1566 /* 1567 * Remove the request from the request list. 1568 */ 1569 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1570 blk_start_request(req); 1571 sdev->device_busy++; 1572 1573 spin_unlock(q->queue_lock); 1574 cmd = req->special; 1575 if (unlikely(cmd == NULL)) { 1576 printk(KERN_CRIT "impossible request in %s.\n" 1577 "please mail a stack trace to " 1578 "linux-scsi@vger.kernel.org\n", 1579 __func__); 1580 blk_dump_rq_flags(req, "foo"); 1581 BUG(); 1582 } 1583 spin_lock(shost->host_lock); 1584 1585 /* 1586 * We hit this when the driver is using a host wide 1587 * tag map. For device level tag maps the queue_depth check 1588 * in the device ready fn would prevent us from trying 1589 * to allocate a tag. Since the map is a shared host resource 1590 * we add the dev to the starved list so it eventually gets 1591 * a run when a tag is freed. 1592 */ 1593 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1594 if (list_empty(&sdev->starved_entry)) 1595 list_add_tail(&sdev->starved_entry, 1596 &shost->starved_list); 1597 goto not_ready; 1598 } 1599 1600 if (!scsi_target_queue_ready(shost, sdev)) 1601 goto not_ready; 1602 1603 if (!scsi_host_queue_ready(q, shost, sdev)) 1604 goto not_ready; 1605 1606 scsi_target(sdev)->target_busy++; 1607 shost->host_busy++; 1608 1609 /* 1610 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1611 * take the lock again. 1612 */ 1613 spin_unlock_irq(shost->host_lock); 1614 1615 /* 1616 * Finally, initialize any error handling parameters, and set up 1617 * the timers for timeouts. 1618 */ 1619 scsi_init_cmd_errh(cmd); 1620 1621 /* 1622 * Dispatch the command to the low-level driver. 1623 */ 1624 rtn = scsi_dispatch_cmd(cmd); 1625 spin_lock_irq(q->queue_lock); 1626 if (rtn) 1627 goto out_delay; 1628 } 1629 1630 return; 1631 1632 not_ready: 1633 spin_unlock_irq(shost->host_lock); 1634 1635 /* 1636 * lock q, handle tag, requeue req, and decrement device_busy. We 1637 * must return with queue_lock held. 1638 * 1639 * Decrementing device_busy without checking it is OK, as all such 1640 * cases (host limits or settings) should run the queue at some 1641 * later time. 1642 */ 1643 spin_lock_irq(q->queue_lock); 1644 blk_requeue_request(q, req); 1645 sdev->device_busy--; 1646 out_delay: 1647 if (sdev->device_busy == 0) 1648 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1649 } 1650 1651 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1652 { 1653 struct device *host_dev; 1654 u64 bounce_limit = 0xffffffff; 1655 1656 if (shost->unchecked_isa_dma) 1657 return BLK_BOUNCE_ISA; 1658 /* 1659 * Platforms with virtual-DMA translation 1660 * hardware have no practical limit. 1661 */ 1662 if (!PCI_DMA_BUS_IS_PHYS) 1663 return BLK_BOUNCE_ANY; 1664 1665 host_dev = scsi_get_device(shost); 1666 if (host_dev && host_dev->dma_mask) 1667 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 1668 1669 return bounce_limit; 1670 } 1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1672 1673 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1674 request_fn_proc *request_fn) 1675 { 1676 struct request_queue *q; 1677 struct device *dev = shost->dma_dev; 1678 1679 q = blk_init_queue(request_fn, NULL); 1680 if (!q) 1681 return NULL; 1682 1683 /* 1684 * this limit is imposed by hardware restrictions 1685 */ 1686 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1687 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1688 1689 if (scsi_host_prot_dma(shost)) { 1690 shost->sg_prot_tablesize = 1691 min_not_zero(shost->sg_prot_tablesize, 1692 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1693 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1694 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1695 } 1696 1697 blk_queue_max_hw_sectors(q, shost->max_sectors); 1698 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1699 blk_queue_segment_boundary(q, shost->dma_boundary); 1700 dma_set_seg_boundary(dev, shost->dma_boundary); 1701 1702 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1703 1704 if (!shost->use_clustering) 1705 q->limits.cluster = 0; 1706 1707 /* 1708 * set a reasonable default alignment on word boundaries: the 1709 * host and device may alter it using 1710 * blk_queue_update_dma_alignment() later. 1711 */ 1712 blk_queue_dma_alignment(q, 0x03); 1713 1714 return q; 1715 } 1716 EXPORT_SYMBOL(__scsi_alloc_queue); 1717 1718 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1719 { 1720 struct request_queue *q; 1721 1722 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1723 if (!q) 1724 return NULL; 1725 1726 blk_queue_prep_rq(q, scsi_prep_fn); 1727 blk_queue_softirq_done(q, scsi_softirq_done); 1728 blk_queue_rq_timed_out(q, scsi_times_out); 1729 blk_queue_lld_busy(q, scsi_lld_busy); 1730 return q; 1731 } 1732 1733 /* 1734 * Function: scsi_block_requests() 1735 * 1736 * Purpose: Utility function used by low-level drivers to prevent further 1737 * commands from being queued to the device. 1738 * 1739 * Arguments: shost - Host in question 1740 * 1741 * Returns: Nothing 1742 * 1743 * Lock status: No locks are assumed held. 1744 * 1745 * Notes: There is no timer nor any other means by which the requests 1746 * get unblocked other than the low-level driver calling 1747 * scsi_unblock_requests(). 1748 */ 1749 void scsi_block_requests(struct Scsi_Host *shost) 1750 { 1751 shost->host_self_blocked = 1; 1752 } 1753 EXPORT_SYMBOL(scsi_block_requests); 1754 1755 /* 1756 * Function: scsi_unblock_requests() 1757 * 1758 * Purpose: Utility function used by low-level drivers to allow further 1759 * commands from being queued to the device. 1760 * 1761 * Arguments: shost - Host in question 1762 * 1763 * Returns: Nothing 1764 * 1765 * Lock status: No locks are assumed held. 1766 * 1767 * Notes: There is no timer nor any other means by which the requests 1768 * get unblocked other than the low-level driver calling 1769 * scsi_unblock_requests(). 1770 * 1771 * This is done as an API function so that changes to the 1772 * internals of the scsi mid-layer won't require wholesale 1773 * changes to drivers that use this feature. 1774 */ 1775 void scsi_unblock_requests(struct Scsi_Host *shost) 1776 { 1777 shost->host_self_blocked = 0; 1778 scsi_run_host_queues(shost); 1779 } 1780 EXPORT_SYMBOL(scsi_unblock_requests); 1781 1782 int __init scsi_init_queue(void) 1783 { 1784 int i; 1785 1786 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1787 sizeof(struct scsi_data_buffer), 1788 0, 0, NULL); 1789 if (!scsi_sdb_cache) { 1790 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1791 return -ENOMEM; 1792 } 1793 1794 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1795 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1796 int size = sgp->size * sizeof(struct scatterlist); 1797 1798 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1799 SLAB_HWCACHE_ALIGN, NULL); 1800 if (!sgp->slab) { 1801 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1802 sgp->name); 1803 goto cleanup_sdb; 1804 } 1805 1806 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1807 sgp->slab); 1808 if (!sgp->pool) { 1809 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1810 sgp->name); 1811 goto cleanup_sdb; 1812 } 1813 } 1814 1815 return 0; 1816 1817 cleanup_sdb: 1818 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1819 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1820 if (sgp->pool) 1821 mempool_destroy(sgp->pool); 1822 if (sgp->slab) 1823 kmem_cache_destroy(sgp->slab); 1824 } 1825 kmem_cache_destroy(scsi_sdb_cache); 1826 1827 return -ENOMEM; 1828 } 1829 1830 void scsi_exit_queue(void) 1831 { 1832 int i; 1833 1834 kmem_cache_destroy(scsi_sdb_cache); 1835 1836 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1837 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1838 mempool_destroy(sgp->pool); 1839 kmem_cache_destroy(sgp->slab); 1840 } 1841 } 1842 1843 /** 1844 * scsi_mode_select - issue a mode select 1845 * @sdev: SCSI device to be queried 1846 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1847 * @sp: Save page bit (0 == don't save, 1 == save) 1848 * @modepage: mode page being requested 1849 * @buffer: request buffer (may not be smaller than eight bytes) 1850 * @len: length of request buffer. 1851 * @timeout: command timeout 1852 * @retries: number of retries before failing 1853 * @data: returns a structure abstracting the mode header data 1854 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1855 * must be SCSI_SENSE_BUFFERSIZE big. 1856 * 1857 * Returns zero if successful; negative error number or scsi 1858 * status on error 1859 * 1860 */ 1861 int 1862 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1863 unsigned char *buffer, int len, int timeout, int retries, 1864 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1865 { 1866 unsigned char cmd[10]; 1867 unsigned char *real_buffer; 1868 int ret; 1869 1870 memset(cmd, 0, sizeof(cmd)); 1871 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1872 1873 if (sdev->use_10_for_ms) { 1874 if (len > 65535) 1875 return -EINVAL; 1876 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1877 if (!real_buffer) 1878 return -ENOMEM; 1879 memcpy(real_buffer + 8, buffer, len); 1880 len += 8; 1881 real_buffer[0] = 0; 1882 real_buffer[1] = 0; 1883 real_buffer[2] = data->medium_type; 1884 real_buffer[3] = data->device_specific; 1885 real_buffer[4] = data->longlba ? 0x01 : 0; 1886 real_buffer[5] = 0; 1887 real_buffer[6] = data->block_descriptor_length >> 8; 1888 real_buffer[7] = data->block_descriptor_length; 1889 1890 cmd[0] = MODE_SELECT_10; 1891 cmd[7] = len >> 8; 1892 cmd[8] = len; 1893 } else { 1894 if (len > 255 || data->block_descriptor_length > 255 || 1895 data->longlba) 1896 return -EINVAL; 1897 1898 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1899 if (!real_buffer) 1900 return -ENOMEM; 1901 memcpy(real_buffer + 4, buffer, len); 1902 len += 4; 1903 real_buffer[0] = 0; 1904 real_buffer[1] = data->medium_type; 1905 real_buffer[2] = data->device_specific; 1906 real_buffer[3] = data->block_descriptor_length; 1907 1908 1909 cmd[0] = MODE_SELECT; 1910 cmd[4] = len; 1911 } 1912 1913 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1914 sshdr, timeout, retries, NULL); 1915 kfree(real_buffer); 1916 return ret; 1917 } 1918 EXPORT_SYMBOL_GPL(scsi_mode_select); 1919 1920 /** 1921 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1922 * @sdev: SCSI device to be queried 1923 * @dbd: set if mode sense will allow block descriptors to be returned 1924 * @modepage: mode page being requested 1925 * @buffer: request buffer (may not be smaller than eight bytes) 1926 * @len: length of request buffer. 1927 * @timeout: command timeout 1928 * @retries: number of retries before failing 1929 * @data: returns a structure abstracting the mode header data 1930 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1931 * must be SCSI_SENSE_BUFFERSIZE big. 1932 * 1933 * Returns zero if unsuccessful, or the header offset (either 4 1934 * or 8 depending on whether a six or ten byte command was 1935 * issued) if successful. 1936 */ 1937 int 1938 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1939 unsigned char *buffer, int len, int timeout, int retries, 1940 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1941 { 1942 unsigned char cmd[12]; 1943 int use_10_for_ms; 1944 int header_length; 1945 int result; 1946 struct scsi_sense_hdr my_sshdr; 1947 1948 memset(data, 0, sizeof(*data)); 1949 memset(&cmd[0], 0, 12); 1950 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1951 cmd[2] = modepage; 1952 1953 /* caller might not be interested in sense, but we need it */ 1954 if (!sshdr) 1955 sshdr = &my_sshdr; 1956 1957 retry: 1958 use_10_for_ms = sdev->use_10_for_ms; 1959 1960 if (use_10_for_ms) { 1961 if (len < 8) 1962 len = 8; 1963 1964 cmd[0] = MODE_SENSE_10; 1965 cmd[8] = len; 1966 header_length = 8; 1967 } else { 1968 if (len < 4) 1969 len = 4; 1970 1971 cmd[0] = MODE_SENSE; 1972 cmd[4] = len; 1973 header_length = 4; 1974 } 1975 1976 memset(buffer, 0, len); 1977 1978 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1979 sshdr, timeout, retries, NULL); 1980 1981 /* This code looks awful: what it's doing is making sure an 1982 * ILLEGAL REQUEST sense return identifies the actual command 1983 * byte as the problem. MODE_SENSE commands can return 1984 * ILLEGAL REQUEST if the code page isn't supported */ 1985 1986 if (use_10_for_ms && !scsi_status_is_good(result) && 1987 (driver_byte(result) & DRIVER_SENSE)) { 1988 if (scsi_sense_valid(sshdr)) { 1989 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1990 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1991 /* 1992 * Invalid command operation code 1993 */ 1994 sdev->use_10_for_ms = 0; 1995 goto retry; 1996 } 1997 } 1998 } 1999 2000 if(scsi_status_is_good(result)) { 2001 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2002 (modepage == 6 || modepage == 8))) { 2003 /* Initio breakage? */ 2004 header_length = 0; 2005 data->length = 13; 2006 data->medium_type = 0; 2007 data->device_specific = 0; 2008 data->longlba = 0; 2009 data->block_descriptor_length = 0; 2010 } else if(use_10_for_ms) { 2011 data->length = buffer[0]*256 + buffer[1] + 2; 2012 data->medium_type = buffer[2]; 2013 data->device_specific = buffer[3]; 2014 data->longlba = buffer[4] & 0x01; 2015 data->block_descriptor_length = buffer[6]*256 2016 + buffer[7]; 2017 } else { 2018 data->length = buffer[0] + 1; 2019 data->medium_type = buffer[1]; 2020 data->device_specific = buffer[2]; 2021 data->block_descriptor_length = buffer[3]; 2022 } 2023 data->header_length = header_length; 2024 } 2025 2026 return result; 2027 } 2028 EXPORT_SYMBOL(scsi_mode_sense); 2029 2030 /** 2031 * scsi_test_unit_ready - test if unit is ready 2032 * @sdev: scsi device to change the state of. 2033 * @timeout: command timeout 2034 * @retries: number of retries before failing 2035 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2036 * returning sense. Make sure that this is cleared before passing 2037 * in. 2038 * 2039 * Returns zero if unsuccessful or an error if TUR failed. For 2040 * removable media, UNIT_ATTENTION sets ->changed flag. 2041 **/ 2042 int 2043 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2044 struct scsi_sense_hdr *sshdr_external) 2045 { 2046 char cmd[] = { 2047 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2048 }; 2049 struct scsi_sense_hdr *sshdr; 2050 int result; 2051 2052 if (!sshdr_external) 2053 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2054 else 2055 sshdr = sshdr_external; 2056 2057 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2058 do { 2059 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2060 timeout, retries, NULL); 2061 if (sdev->removable && scsi_sense_valid(sshdr) && 2062 sshdr->sense_key == UNIT_ATTENTION) 2063 sdev->changed = 1; 2064 } while (scsi_sense_valid(sshdr) && 2065 sshdr->sense_key == UNIT_ATTENTION && --retries); 2066 2067 if (!sshdr_external) 2068 kfree(sshdr); 2069 return result; 2070 } 2071 EXPORT_SYMBOL(scsi_test_unit_ready); 2072 2073 /** 2074 * scsi_device_set_state - Take the given device through the device state model. 2075 * @sdev: scsi device to change the state of. 2076 * @state: state to change to. 2077 * 2078 * Returns zero if unsuccessful or an error if the requested 2079 * transition is illegal. 2080 */ 2081 int 2082 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2083 { 2084 enum scsi_device_state oldstate = sdev->sdev_state; 2085 2086 if (state == oldstate) 2087 return 0; 2088 2089 switch (state) { 2090 case SDEV_CREATED: 2091 switch (oldstate) { 2092 case SDEV_CREATED_BLOCK: 2093 break; 2094 default: 2095 goto illegal; 2096 } 2097 break; 2098 2099 case SDEV_RUNNING: 2100 switch (oldstate) { 2101 case SDEV_CREATED: 2102 case SDEV_OFFLINE: 2103 case SDEV_TRANSPORT_OFFLINE: 2104 case SDEV_QUIESCE: 2105 case SDEV_BLOCK: 2106 break; 2107 default: 2108 goto illegal; 2109 } 2110 break; 2111 2112 case SDEV_QUIESCE: 2113 switch (oldstate) { 2114 case SDEV_RUNNING: 2115 case SDEV_OFFLINE: 2116 case SDEV_TRANSPORT_OFFLINE: 2117 break; 2118 default: 2119 goto illegal; 2120 } 2121 break; 2122 2123 case SDEV_OFFLINE: 2124 case SDEV_TRANSPORT_OFFLINE: 2125 switch (oldstate) { 2126 case SDEV_CREATED: 2127 case SDEV_RUNNING: 2128 case SDEV_QUIESCE: 2129 case SDEV_BLOCK: 2130 break; 2131 default: 2132 goto illegal; 2133 } 2134 break; 2135 2136 case SDEV_BLOCK: 2137 switch (oldstate) { 2138 case SDEV_RUNNING: 2139 case SDEV_CREATED_BLOCK: 2140 break; 2141 default: 2142 goto illegal; 2143 } 2144 break; 2145 2146 case SDEV_CREATED_BLOCK: 2147 switch (oldstate) { 2148 case SDEV_CREATED: 2149 break; 2150 default: 2151 goto illegal; 2152 } 2153 break; 2154 2155 case SDEV_CANCEL: 2156 switch (oldstate) { 2157 case SDEV_CREATED: 2158 case SDEV_RUNNING: 2159 case SDEV_QUIESCE: 2160 case SDEV_OFFLINE: 2161 case SDEV_TRANSPORT_OFFLINE: 2162 case SDEV_BLOCK: 2163 break; 2164 default: 2165 goto illegal; 2166 } 2167 break; 2168 2169 case SDEV_DEL: 2170 switch (oldstate) { 2171 case SDEV_CREATED: 2172 case SDEV_RUNNING: 2173 case SDEV_OFFLINE: 2174 case SDEV_TRANSPORT_OFFLINE: 2175 case SDEV_CANCEL: 2176 case SDEV_CREATED_BLOCK: 2177 break; 2178 default: 2179 goto illegal; 2180 } 2181 break; 2182 2183 } 2184 sdev->sdev_state = state; 2185 return 0; 2186 2187 illegal: 2188 SCSI_LOG_ERROR_RECOVERY(1, 2189 sdev_printk(KERN_ERR, sdev, 2190 "Illegal state transition %s->%s\n", 2191 scsi_device_state_name(oldstate), 2192 scsi_device_state_name(state)) 2193 ); 2194 return -EINVAL; 2195 } 2196 EXPORT_SYMBOL(scsi_device_set_state); 2197 2198 /** 2199 * sdev_evt_emit - emit a single SCSI device uevent 2200 * @sdev: associated SCSI device 2201 * @evt: event to emit 2202 * 2203 * Send a single uevent (scsi_event) to the associated scsi_device. 2204 */ 2205 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2206 { 2207 int idx = 0; 2208 char *envp[3]; 2209 2210 switch (evt->evt_type) { 2211 case SDEV_EVT_MEDIA_CHANGE: 2212 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2213 break; 2214 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2215 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2216 break; 2217 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2218 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2219 break; 2220 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2221 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2222 break; 2223 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2224 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2225 break; 2226 case SDEV_EVT_LUN_CHANGE_REPORTED: 2227 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2228 break; 2229 default: 2230 /* do nothing */ 2231 break; 2232 } 2233 2234 envp[idx++] = NULL; 2235 2236 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2237 } 2238 2239 /** 2240 * sdev_evt_thread - send a uevent for each scsi event 2241 * @work: work struct for scsi_device 2242 * 2243 * Dispatch queued events to their associated scsi_device kobjects 2244 * as uevents. 2245 */ 2246 void scsi_evt_thread(struct work_struct *work) 2247 { 2248 struct scsi_device *sdev; 2249 enum scsi_device_event evt_type; 2250 LIST_HEAD(event_list); 2251 2252 sdev = container_of(work, struct scsi_device, event_work); 2253 2254 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2255 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2256 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2257 2258 while (1) { 2259 struct scsi_event *evt; 2260 struct list_head *this, *tmp; 2261 unsigned long flags; 2262 2263 spin_lock_irqsave(&sdev->list_lock, flags); 2264 list_splice_init(&sdev->event_list, &event_list); 2265 spin_unlock_irqrestore(&sdev->list_lock, flags); 2266 2267 if (list_empty(&event_list)) 2268 break; 2269 2270 list_for_each_safe(this, tmp, &event_list) { 2271 evt = list_entry(this, struct scsi_event, node); 2272 list_del(&evt->node); 2273 scsi_evt_emit(sdev, evt); 2274 kfree(evt); 2275 } 2276 } 2277 } 2278 2279 /** 2280 * sdev_evt_send - send asserted event to uevent thread 2281 * @sdev: scsi_device event occurred on 2282 * @evt: event to send 2283 * 2284 * Assert scsi device event asynchronously. 2285 */ 2286 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2287 { 2288 unsigned long flags; 2289 2290 #if 0 2291 /* FIXME: currently this check eliminates all media change events 2292 * for polled devices. Need to update to discriminate between AN 2293 * and polled events */ 2294 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2295 kfree(evt); 2296 return; 2297 } 2298 #endif 2299 2300 spin_lock_irqsave(&sdev->list_lock, flags); 2301 list_add_tail(&evt->node, &sdev->event_list); 2302 schedule_work(&sdev->event_work); 2303 spin_unlock_irqrestore(&sdev->list_lock, flags); 2304 } 2305 EXPORT_SYMBOL_GPL(sdev_evt_send); 2306 2307 /** 2308 * sdev_evt_alloc - allocate a new scsi event 2309 * @evt_type: type of event to allocate 2310 * @gfpflags: GFP flags for allocation 2311 * 2312 * Allocates and returns a new scsi_event. 2313 */ 2314 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2315 gfp_t gfpflags) 2316 { 2317 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2318 if (!evt) 2319 return NULL; 2320 2321 evt->evt_type = evt_type; 2322 INIT_LIST_HEAD(&evt->node); 2323 2324 /* evt_type-specific initialization, if any */ 2325 switch (evt_type) { 2326 case SDEV_EVT_MEDIA_CHANGE: 2327 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2328 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2329 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2330 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2331 case SDEV_EVT_LUN_CHANGE_REPORTED: 2332 default: 2333 /* do nothing */ 2334 break; 2335 } 2336 2337 return evt; 2338 } 2339 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2340 2341 /** 2342 * sdev_evt_send_simple - send asserted event to uevent thread 2343 * @sdev: scsi_device event occurred on 2344 * @evt_type: type of event to send 2345 * @gfpflags: GFP flags for allocation 2346 * 2347 * Assert scsi device event asynchronously, given an event type. 2348 */ 2349 void sdev_evt_send_simple(struct scsi_device *sdev, 2350 enum scsi_device_event evt_type, gfp_t gfpflags) 2351 { 2352 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2353 if (!evt) { 2354 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2355 evt_type); 2356 return; 2357 } 2358 2359 sdev_evt_send(sdev, evt); 2360 } 2361 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2362 2363 /** 2364 * scsi_device_quiesce - Block user issued commands. 2365 * @sdev: scsi device to quiesce. 2366 * 2367 * This works by trying to transition to the SDEV_QUIESCE state 2368 * (which must be a legal transition). When the device is in this 2369 * state, only special requests will be accepted, all others will 2370 * be deferred. Since special requests may also be requeued requests, 2371 * a successful return doesn't guarantee the device will be 2372 * totally quiescent. 2373 * 2374 * Must be called with user context, may sleep. 2375 * 2376 * Returns zero if unsuccessful or an error if not. 2377 */ 2378 int 2379 scsi_device_quiesce(struct scsi_device *sdev) 2380 { 2381 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2382 if (err) 2383 return err; 2384 2385 scsi_run_queue(sdev->request_queue); 2386 while (sdev->device_busy) { 2387 msleep_interruptible(200); 2388 scsi_run_queue(sdev->request_queue); 2389 } 2390 return 0; 2391 } 2392 EXPORT_SYMBOL(scsi_device_quiesce); 2393 2394 /** 2395 * scsi_device_resume - Restart user issued commands to a quiesced device. 2396 * @sdev: scsi device to resume. 2397 * 2398 * Moves the device from quiesced back to running and restarts the 2399 * queues. 2400 * 2401 * Must be called with user context, may sleep. 2402 */ 2403 void scsi_device_resume(struct scsi_device *sdev) 2404 { 2405 /* check if the device state was mutated prior to resume, and if 2406 * so assume the state is being managed elsewhere (for example 2407 * device deleted during suspend) 2408 */ 2409 if (sdev->sdev_state != SDEV_QUIESCE || 2410 scsi_device_set_state(sdev, SDEV_RUNNING)) 2411 return; 2412 scsi_run_queue(sdev->request_queue); 2413 } 2414 EXPORT_SYMBOL(scsi_device_resume); 2415 2416 static void 2417 device_quiesce_fn(struct scsi_device *sdev, void *data) 2418 { 2419 scsi_device_quiesce(sdev); 2420 } 2421 2422 void 2423 scsi_target_quiesce(struct scsi_target *starget) 2424 { 2425 starget_for_each_device(starget, NULL, device_quiesce_fn); 2426 } 2427 EXPORT_SYMBOL(scsi_target_quiesce); 2428 2429 static void 2430 device_resume_fn(struct scsi_device *sdev, void *data) 2431 { 2432 scsi_device_resume(sdev); 2433 } 2434 2435 void 2436 scsi_target_resume(struct scsi_target *starget) 2437 { 2438 starget_for_each_device(starget, NULL, device_resume_fn); 2439 } 2440 EXPORT_SYMBOL(scsi_target_resume); 2441 2442 /** 2443 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2444 * @sdev: device to block 2445 * 2446 * Block request made by scsi lld's to temporarily stop all 2447 * scsi commands on the specified device. Called from interrupt 2448 * or normal process context. 2449 * 2450 * Returns zero if successful or error if not 2451 * 2452 * Notes: 2453 * This routine transitions the device to the SDEV_BLOCK state 2454 * (which must be a legal transition). When the device is in this 2455 * state, all commands are deferred until the scsi lld reenables 2456 * the device with scsi_device_unblock or device_block_tmo fires. 2457 */ 2458 int 2459 scsi_internal_device_block(struct scsi_device *sdev) 2460 { 2461 struct request_queue *q = sdev->request_queue; 2462 unsigned long flags; 2463 int err = 0; 2464 2465 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2466 if (err) { 2467 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2468 2469 if (err) 2470 return err; 2471 } 2472 2473 /* 2474 * The device has transitioned to SDEV_BLOCK. Stop the 2475 * block layer from calling the midlayer with this device's 2476 * request queue. 2477 */ 2478 spin_lock_irqsave(q->queue_lock, flags); 2479 blk_stop_queue(q); 2480 spin_unlock_irqrestore(q->queue_lock, flags); 2481 2482 return 0; 2483 } 2484 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2485 2486 /** 2487 * scsi_internal_device_unblock - resume a device after a block request 2488 * @sdev: device to resume 2489 * @new_state: state to set devices to after unblocking 2490 * 2491 * Called by scsi lld's or the midlayer to restart the device queue 2492 * for the previously suspended scsi device. Called from interrupt or 2493 * normal process context. 2494 * 2495 * Returns zero if successful or error if not. 2496 * 2497 * Notes: 2498 * This routine transitions the device to the SDEV_RUNNING state 2499 * or to one of the offline states (which must be a legal transition) 2500 * allowing the midlayer to goose the queue for this device. 2501 */ 2502 int 2503 scsi_internal_device_unblock(struct scsi_device *sdev, 2504 enum scsi_device_state new_state) 2505 { 2506 struct request_queue *q = sdev->request_queue; 2507 unsigned long flags; 2508 2509 /* 2510 * Try to transition the scsi device to SDEV_RUNNING or one of the 2511 * offlined states and goose the device queue if successful. 2512 */ 2513 if ((sdev->sdev_state == SDEV_BLOCK) || 2514 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 2515 sdev->sdev_state = new_state; 2516 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2517 if (new_state == SDEV_TRANSPORT_OFFLINE || 2518 new_state == SDEV_OFFLINE) 2519 sdev->sdev_state = new_state; 2520 else 2521 sdev->sdev_state = SDEV_CREATED; 2522 } else if (sdev->sdev_state != SDEV_CANCEL && 2523 sdev->sdev_state != SDEV_OFFLINE) 2524 return -EINVAL; 2525 2526 spin_lock_irqsave(q->queue_lock, flags); 2527 blk_start_queue(q); 2528 spin_unlock_irqrestore(q->queue_lock, flags); 2529 2530 return 0; 2531 } 2532 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2533 2534 static void 2535 device_block(struct scsi_device *sdev, void *data) 2536 { 2537 scsi_internal_device_block(sdev); 2538 } 2539 2540 static int 2541 target_block(struct device *dev, void *data) 2542 { 2543 if (scsi_is_target_device(dev)) 2544 starget_for_each_device(to_scsi_target(dev), NULL, 2545 device_block); 2546 return 0; 2547 } 2548 2549 void 2550 scsi_target_block(struct device *dev) 2551 { 2552 if (scsi_is_target_device(dev)) 2553 starget_for_each_device(to_scsi_target(dev), NULL, 2554 device_block); 2555 else 2556 device_for_each_child(dev, NULL, target_block); 2557 } 2558 EXPORT_SYMBOL_GPL(scsi_target_block); 2559 2560 static void 2561 device_unblock(struct scsi_device *sdev, void *data) 2562 { 2563 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2564 } 2565 2566 static int 2567 target_unblock(struct device *dev, void *data) 2568 { 2569 if (scsi_is_target_device(dev)) 2570 starget_for_each_device(to_scsi_target(dev), data, 2571 device_unblock); 2572 return 0; 2573 } 2574 2575 void 2576 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2577 { 2578 if (scsi_is_target_device(dev)) 2579 starget_for_each_device(to_scsi_target(dev), &new_state, 2580 device_unblock); 2581 else 2582 device_for_each_child(dev, &new_state, target_unblock); 2583 } 2584 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2585 2586 /** 2587 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2588 * @sgl: scatter-gather list 2589 * @sg_count: number of segments in sg 2590 * @offset: offset in bytes into sg, on return offset into the mapped area 2591 * @len: bytes to map, on return number of bytes mapped 2592 * 2593 * Returns virtual address of the start of the mapped page 2594 */ 2595 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2596 size_t *offset, size_t *len) 2597 { 2598 int i; 2599 size_t sg_len = 0, len_complete = 0; 2600 struct scatterlist *sg; 2601 struct page *page; 2602 2603 WARN_ON(!irqs_disabled()); 2604 2605 for_each_sg(sgl, sg, sg_count, i) { 2606 len_complete = sg_len; /* Complete sg-entries */ 2607 sg_len += sg->length; 2608 if (sg_len > *offset) 2609 break; 2610 } 2611 2612 if (unlikely(i == sg_count)) { 2613 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2614 "elements %d\n", 2615 __func__, sg_len, *offset, sg_count); 2616 WARN_ON(1); 2617 return NULL; 2618 } 2619 2620 /* Offset starting from the beginning of first page in this sg-entry */ 2621 *offset = *offset - len_complete + sg->offset; 2622 2623 /* Assumption: contiguous pages can be accessed as "page + i" */ 2624 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2625 *offset &= ~PAGE_MASK; 2626 2627 /* Bytes in this sg-entry from *offset to the end of the page */ 2628 sg_len = PAGE_SIZE - *offset; 2629 if (*len > sg_len) 2630 *len = sg_len; 2631 2632 return kmap_atomic(page); 2633 } 2634 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2635 2636 /** 2637 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2638 * @virt: virtual address to be unmapped 2639 */ 2640 void scsi_kunmap_atomic_sg(void *virt) 2641 { 2642 kunmap_atomic(virt); 2643 } 2644 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2645 2646 void sdev_disable_disk_events(struct scsi_device *sdev) 2647 { 2648 atomic_inc(&sdev->disk_events_disable_depth); 2649 } 2650 EXPORT_SYMBOL(sdev_disable_disk_events); 2651 2652 void sdev_enable_disk_events(struct scsi_device *sdev) 2653 { 2654 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2655 return; 2656 atomic_dec(&sdev->disk_events_disable_depth); 2657 } 2658 EXPORT_SYMBOL(sdev_enable_disk_events); 2659