xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision afb46f79)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY	3
77 
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92 	struct Scsi_Host *host = cmd->device->host;
93 	struct scsi_device *device = cmd->device;
94 	struct scsi_target *starget = scsi_target(device);
95 	struct request_queue *q = device->request_queue;
96 	unsigned long flags;
97 
98 	SCSI_LOG_MLQUEUE(1,
99 		 printk("Inserting command %p into mlqueue\n", cmd));
100 
101 	/*
102 	 * Set the appropriate busy bit for the device/host.
103 	 *
104 	 * If the host/device isn't busy, assume that something actually
105 	 * completed, and that we should be able to queue a command now.
106 	 *
107 	 * Note that the prior mid-layer assumption that any host could
108 	 * always queue at least one command is now broken.  The mid-layer
109 	 * will implement a user specifiable stall (see
110 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111 	 * if a command is requeued with no other commands outstanding
112 	 * either for the device or for the host.
113 	 */
114 	switch (reason) {
115 	case SCSI_MLQUEUE_HOST_BUSY:
116 		host->host_blocked = host->max_host_blocked;
117 		break;
118 	case SCSI_MLQUEUE_DEVICE_BUSY:
119 	case SCSI_MLQUEUE_EH_RETRY:
120 		device->device_blocked = device->max_device_blocked;
121 		break;
122 	case SCSI_MLQUEUE_TARGET_BUSY:
123 		starget->target_blocked = starget->max_target_blocked;
124 		break;
125 	}
126 
127 	/*
128 	 * Decrement the counters, since these commands are no longer
129 	 * active on the host/device.
130 	 */
131 	if (unbusy)
132 		scsi_device_unbusy(device);
133 
134 	/*
135 	 * Requeue this command.  It will go before all other commands
136 	 * that are already in the queue. Schedule requeue work under
137 	 * lock such that the kblockd_schedule_work() call happens
138 	 * before blk_cleanup_queue() finishes.
139 	 */
140 	spin_lock_irqsave(q->queue_lock, flags);
141 	blk_requeue_request(q, cmd->request);
142 	kblockd_schedule_work(q, &device->requeue_work);
143 	spin_unlock_irqrestore(q->queue_lock, flags);
144 }
145 
146 /*
147  * Function:    scsi_queue_insert()
148  *
149  * Purpose:     Insert a command in the midlevel queue.
150  *
151  * Arguments:   cmd    - command that we are adding to queue.
152  *              reason - why we are inserting command to queue.
153  *
154  * Lock status: Assumed that lock is not held upon entry.
155  *
156  * Returns:     Nothing.
157  *
158  * Notes:       We do this for one of two cases.  Either the host is busy
159  *              and it cannot accept any more commands for the time being,
160  *              or the device returned QUEUE_FULL and can accept no more
161  *              commands.
162  * Notes:       This could be called either from an interrupt context or a
163  *              normal process context.
164  */
165 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
166 {
167 	__scsi_queue_insert(cmd, reason, 1);
168 }
169 /**
170  * scsi_execute - insert request and wait for the result
171  * @sdev:	scsi device
172  * @cmd:	scsi command
173  * @data_direction: data direction
174  * @buffer:	data buffer
175  * @bufflen:	len of buffer
176  * @sense:	optional sense buffer
177  * @timeout:	request timeout in seconds
178  * @retries:	number of times to retry request
179  * @flags:	or into request flags;
180  * @resid:	optional residual length
181  *
182  * returns the req->errors value which is the scsi_cmnd result
183  * field.
184  */
185 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
186 		 int data_direction, void *buffer, unsigned bufflen,
187 		 unsigned char *sense, int timeout, int retries, u64 flags,
188 		 int *resid)
189 {
190 	struct request *req;
191 	int write = (data_direction == DMA_TO_DEVICE);
192 	int ret = DRIVER_ERROR << 24;
193 
194 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
195 	if (!req)
196 		return ret;
197 
198 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
199 					buffer, bufflen, __GFP_WAIT))
200 		goto out;
201 
202 	req->cmd_len = COMMAND_SIZE(cmd[0]);
203 	memcpy(req->cmd, cmd, req->cmd_len);
204 	req->sense = sense;
205 	req->sense_len = 0;
206 	req->retries = retries;
207 	req->timeout = timeout;
208 	req->cmd_type = REQ_TYPE_BLOCK_PC;
209 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
210 
211 	/*
212 	 * head injection *required* here otherwise quiesce won't work
213 	 */
214 	blk_execute_rq(req->q, NULL, req, 1);
215 
216 	/*
217 	 * Some devices (USB mass-storage in particular) may transfer
218 	 * garbage data together with a residue indicating that the data
219 	 * is invalid.  Prevent the garbage from being misinterpreted
220 	 * and prevent security leaks by zeroing out the excess data.
221 	 */
222 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
223 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
224 
225 	if (resid)
226 		*resid = req->resid_len;
227 	ret = req->errors;
228  out:
229 	blk_put_request(req);
230 
231 	return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234 
235 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
236 		     int data_direction, void *buffer, unsigned bufflen,
237 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
238 		     int *resid, u64 flags)
239 {
240 	char *sense = NULL;
241 	int result;
242 
243 	if (sshdr) {
244 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245 		if (!sense)
246 			return DRIVER_ERROR << 24;
247 	}
248 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 			      sense, timeout, retries, flags, resid);
250 	if (sshdr)
251 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252 
253 	kfree(sense);
254 	return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req_flags);
257 
258 /*
259  * Function:    scsi_init_cmd_errh()
260  *
261  * Purpose:     Initialize cmd fields related to error handling.
262  *
263  * Arguments:   cmd	- command that is ready to be queued.
264  *
265  * Notes:       This function has the job of initializing a number of
266  *              fields related to error handling.   Typically this will
267  *              be called once for each command, as required.
268  */
269 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
270 {
271 	cmd->serial_number = 0;
272 	scsi_set_resid(cmd, 0);
273 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
274 	if (cmd->cmd_len == 0)
275 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
276 }
277 
278 void scsi_device_unbusy(struct scsi_device *sdev)
279 {
280 	struct Scsi_Host *shost = sdev->host;
281 	struct scsi_target *starget = scsi_target(sdev);
282 	unsigned long flags;
283 
284 	spin_lock_irqsave(shost->host_lock, flags);
285 	shost->host_busy--;
286 	starget->target_busy--;
287 	if (unlikely(scsi_host_in_recovery(shost) &&
288 		     (shost->host_failed || shost->host_eh_scheduled)))
289 		scsi_eh_wakeup(shost);
290 	spin_unlock(shost->host_lock);
291 	spin_lock(sdev->request_queue->queue_lock);
292 	sdev->device_busy--;
293 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
294 }
295 
296 /*
297  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
298  * and call blk_run_queue for all the scsi_devices on the target -
299  * including current_sdev first.
300  *
301  * Called with *no* scsi locks held.
302  */
303 static void scsi_single_lun_run(struct scsi_device *current_sdev)
304 {
305 	struct Scsi_Host *shost = current_sdev->host;
306 	struct scsi_device *sdev, *tmp;
307 	struct scsi_target *starget = scsi_target(current_sdev);
308 	unsigned long flags;
309 
310 	spin_lock_irqsave(shost->host_lock, flags);
311 	starget->starget_sdev_user = NULL;
312 	spin_unlock_irqrestore(shost->host_lock, flags);
313 
314 	/*
315 	 * Call blk_run_queue for all LUNs on the target, starting with
316 	 * current_sdev. We race with others (to set starget_sdev_user),
317 	 * but in most cases, we will be first. Ideally, each LU on the
318 	 * target would get some limited time or requests on the target.
319 	 */
320 	blk_run_queue(current_sdev->request_queue);
321 
322 	spin_lock_irqsave(shost->host_lock, flags);
323 	if (starget->starget_sdev_user)
324 		goto out;
325 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
326 			same_target_siblings) {
327 		if (sdev == current_sdev)
328 			continue;
329 		if (scsi_device_get(sdev))
330 			continue;
331 
332 		spin_unlock_irqrestore(shost->host_lock, flags);
333 		blk_run_queue(sdev->request_queue);
334 		spin_lock_irqsave(shost->host_lock, flags);
335 
336 		scsi_device_put(sdev);
337 	}
338  out:
339 	spin_unlock_irqrestore(shost->host_lock, flags);
340 }
341 
342 static inline int scsi_device_is_busy(struct scsi_device *sdev)
343 {
344 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
345 		return 1;
346 
347 	return 0;
348 }
349 
350 static inline int scsi_target_is_busy(struct scsi_target *starget)
351 {
352 	return ((starget->can_queue > 0 &&
353 		 starget->target_busy >= starget->can_queue) ||
354 		 starget->target_blocked);
355 }
356 
357 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
358 {
359 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
360 	    shost->host_blocked || shost->host_self_blocked)
361 		return 1;
362 
363 	return 0;
364 }
365 
366 static void scsi_starved_list_run(struct Scsi_Host *shost)
367 {
368 	LIST_HEAD(starved_list);
369 	struct scsi_device *sdev;
370 	unsigned long flags;
371 
372 	spin_lock_irqsave(shost->host_lock, flags);
373 	list_splice_init(&shost->starved_list, &starved_list);
374 
375 	while (!list_empty(&starved_list)) {
376 		struct request_queue *slq;
377 
378 		/*
379 		 * As long as shost is accepting commands and we have
380 		 * starved queues, call blk_run_queue. scsi_request_fn
381 		 * drops the queue_lock and can add us back to the
382 		 * starved_list.
383 		 *
384 		 * host_lock protects the starved_list and starved_entry.
385 		 * scsi_request_fn must get the host_lock before checking
386 		 * or modifying starved_list or starved_entry.
387 		 */
388 		if (scsi_host_is_busy(shost))
389 			break;
390 
391 		sdev = list_entry(starved_list.next,
392 				  struct scsi_device, starved_entry);
393 		list_del_init(&sdev->starved_entry);
394 		if (scsi_target_is_busy(scsi_target(sdev))) {
395 			list_move_tail(&sdev->starved_entry,
396 				       &shost->starved_list);
397 			continue;
398 		}
399 
400 		/*
401 		 * Once we drop the host lock, a racing scsi_remove_device()
402 		 * call may remove the sdev from the starved list and destroy
403 		 * it and the queue.  Mitigate by taking a reference to the
404 		 * queue and never touching the sdev again after we drop the
405 		 * host lock.  Note: if __scsi_remove_device() invokes
406 		 * blk_cleanup_queue() before the queue is run from this
407 		 * function then blk_run_queue() will return immediately since
408 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
409 		 */
410 		slq = sdev->request_queue;
411 		if (!blk_get_queue(slq))
412 			continue;
413 		spin_unlock_irqrestore(shost->host_lock, flags);
414 
415 		blk_run_queue(slq);
416 		blk_put_queue(slq);
417 
418 		spin_lock_irqsave(shost->host_lock, flags);
419 	}
420 	/* put any unprocessed entries back */
421 	list_splice(&starved_list, &shost->starved_list);
422 	spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424 
425 /*
426  * Function:   scsi_run_queue()
427  *
428  * Purpose:    Select a proper request queue to serve next
429  *
430  * Arguments:  q       - last request's queue
431  *
432  * Returns:     Nothing
433  *
434  * Notes:      The previous command was completely finished, start
435  *             a new one if possible.
436  */
437 static void scsi_run_queue(struct request_queue *q)
438 {
439 	struct scsi_device *sdev = q->queuedata;
440 
441 	if (scsi_target(sdev)->single_lun)
442 		scsi_single_lun_run(sdev);
443 	if (!list_empty(&sdev->host->starved_list))
444 		scsi_starved_list_run(sdev->host);
445 
446 	blk_run_queue(q);
447 }
448 
449 void scsi_requeue_run_queue(struct work_struct *work)
450 {
451 	struct scsi_device *sdev;
452 	struct request_queue *q;
453 
454 	sdev = container_of(work, struct scsi_device, requeue_work);
455 	q = sdev->request_queue;
456 	scsi_run_queue(q);
457 }
458 
459 /*
460  * Function:	scsi_requeue_command()
461  *
462  * Purpose:	Handle post-processing of completed commands.
463  *
464  * Arguments:	q	- queue to operate on
465  *		cmd	- command that may need to be requeued.
466  *
467  * Returns:	Nothing
468  *
469  * Notes:	After command completion, there may be blocks left
470  *		over which weren't finished by the previous command
471  *		this can be for a number of reasons - the main one is
472  *		I/O errors in the middle of the request, in which case
473  *		we need to request the blocks that come after the bad
474  *		sector.
475  * Notes:	Upon return, cmd is a stale pointer.
476  */
477 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
478 {
479 	struct scsi_device *sdev = cmd->device;
480 	struct request *req = cmd->request;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(q->queue_lock, flags);
484 	blk_unprep_request(req);
485 	req->special = NULL;
486 	scsi_put_command(cmd);
487 	blk_requeue_request(q, req);
488 	spin_unlock_irqrestore(q->queue_lock, flags);
489 
490 	scsi_run_queue(q);
491 
492 	put_device(&sdev->sdev_gendev);
493 }
494 
495 void scsi_next_command(struct scsi_cmnd *cmd)
496 {
497 	struct scsi_device *sdev = cmd->device;
498 	struct request_queue *q = sdev->request_queue;
499 
500 	scsi_put_command(cmd);
501 	scsi_run_queue(q);
502 
503 	put_device(&sdev->sdev_gendev);
504 }
505 
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 	struct scsi_device *sdev;
509 
510 	shost_for_each_device(sdev, shost)
511 		scsi_run_queue(sdev->request_queue);
512 }
513 
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515 
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *		of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd	 - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *		requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  *
534  *		We are guaranteeing that the request queue will be goosed
535  *		at some point during this call.
536  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 					  int bytes, int requeue)
540 {
541 	struct request_queue *q = cmd->device->request_queue;
542 	struct request *req = cmd->request;
543 
544 	/*
545 	 * If there are blocks left over at the end, set up the command
546 	 * to queue the remainder of them.
547 	 */
548 	if (blk_end_request(req, error, bytes)) {
549 		/* kill remainder if no retrys */
550 		if (error && scsi_noretry_cmd(cmd))
551 			blk_end_request_all(req, error);
552 		else {
553 			if (requeue) {
554 				/*
555 				 * Bleah.  Leftovers again.  Stick the
556 				 * leftovers in the front of the
557 				 * queue, and goose the queue again.
558 				 */
559 				scsi_release_buffers(cmd);
560 				scsi_requeue_command(q, cmd);
561 				cmd = NULL;
562 			}
563 			return cmd;
564 		}
565 	}
566 
567 	/*
568 	 * This will goose the queue request function at the end, so we don't
569 	 * need to worry about launching another command.
570 	 */
571 	__scsi_release_buffers(cmd, 0);
572 	scsi_next_command(cmd);
573 	return NULL;
574 }
575 
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 	unsigned int index;
579 
580 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581 
582 	if (nents <= 8)
583 		index = 0;
584 	else
585 		index = get_count_order(nents) - 3;
586 
587 	return index;
588 }
589 
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 	struct scsi_host_sg_pool *sgp;
593 
594 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 	mempool_free(sgl, sgp->pool);
596 }
597 
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 	struct scsi_host_sg_pool *sgp;
601 
602 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 	return mempool_alloc(sgp->pool, gfp_mask);
604 }
605 
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 			      gfp_t gfp_mask)
608 {
609 	int ret;
610 
611 	BUG_ON(!nents);
612 
613 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 			       gfp_mask, scsi_sg_alloc);
615 	if (unlikely(ret))
616 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 				scsi_sg_free);
618 
619 	return ret;
620 }
621 
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626 
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629 
630 	if (cmd->sdb.table.nents)
631 		scsi_free_sgtable(&cmd->sdb);
632 
633 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634 
635 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 		struct scsi_data_buffer *bidi_sdb =
637 			cmd->request->next_rq->special;
638 		scsi_free_sgtable(bidi_sdb);
639 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 		cmd->request->next_rq->special = NULL;
641 	}
642 
643 	if (scsi_prot_sg_count(cmd))
644 		scsi_free_sgtable(cmd->prot_sdb);
645 }
646 
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd	- command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *		command, we must release resources allocated during
660  *		the __init_io() function.  Primarily this would involve
661  *		the scatter-gather table, and potentially any bounce
662  *		buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 	__scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669 
670 /**
671  * __scsi_error_from_host_byte - translate SCSI error code into errno
672  * @cmd:	SCSI command (unused)
673  * @result:	scsi error code
674  *
675  * Translate SCSI error code into standard UNIX errno.
676  * Return values:
677  * -ENOLINK	temporary transport failure
678  * -EREMOTEIO	permanent target failure, do not retry
679  * -EBADE	permanent nexus failure, retry on other path
680  * -ENOSPC	No write space available
681  * -ENODATA	Medium error
682  * -EIO		unspecified I/O error
683  */
684 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
685 {
686 	int error = 0;
687 
688 	switch(host_byte(result)) {
689 	case DID_TRANSPORT_FAILFAST:
690 		error = -ENOLINK;
691 		break;
692 	case DID_TARGET_FAILURE:
693 		set_host_byte(cmd, DID_OK);
694 		error = -EREMOTEIO;
695 		break;
696 	case DID_NEXUS_FAILURE:
697 		set_host_byte(cmd, DID_OK);
698 		error = -EBADE;
699 		break;
700 	case DID_ALLOC_FAILURE:
701 		set_host_byte(cmd, DID_OK);
702 		error = -ENOSPC;
703 		break;
704 	case DID_MEDIUM_ERROR:
705 		set_host_byte(cmd, DID_OK);
706 		error = -ENODATA;
707 		break;
708 	default:
709 		error = -EIO;
710 		break;
711 	}
712 
713 	return error;
714 }
715 
716 /*
717  * Function:    scsi_io_completion()
718  *
719  * Purpose:     Completion processing for block device I/O requests.
720  *
721  * Arguments:   cmd   - command that is finished.
722  *
723  * Lock status: Assumed that no lock is held upon entry.
724  *
725  * Returns:     Nothing
726  *
727  * Notes:       This function is matched in terms of capabilities to
728  *              the function that created the scatter-gather list.
729  *              In other words, if there are no bounce buffers
730  *              (the normal case for most drivers), we don't need
731  *              the logic to deal with cleaning up afterwards.
732  *
733  *		We must call scsi_end_request().  This will finish off
734  *		the specified number of sectors.  If we are done, the
735  *		command block will be released and the queue function
736  *		will be goosed.  If we are not done then we have to
737  *		figure out what to do next:
738  *
739  *		a) We can call scsi_requeue_command().  The request
740  *		   will be unprepared and put back on the queue.  Then
741  *		   a new command will be created for it.  This should
742  *		   be used if we made forward progress, or if we want
743  *		   to switch from READ(10) to READ(6) for example.
744  *
745  *		b) We can call scsi_queue_insert().  The request will
746  *		   be put back on the queue and retried using the same
747  *		   command as before, possibly after a delay.
748  *
749  *		c) We can call blk_end_request() with -EIO to fail
750  *		   the remainder of the request.
751  */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754 	int result = cmd->result;
755 	struct request_queue *q = cmd->device->request_queue;
756 	struct request *req = cmd->request;
757 	int error = 0;
758 	struct scsi_sense_hdr sshdr;
759 	int sense_valid = 0;
760 	int sense_deferred = 0;
761 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762 	      ACTION_DELAYED_RETRY} action;
763 	char *description = NULL;
764 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
765 
766 	if (result) {
767 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
768 		if (sense_valid)
769 			sense_deferred = scsi_sense_is_deferred(&sshdr);
770 	}
771 
772 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
773 		if (result) {
774 			if (sense_valid && req->sense) {
775 				/*
776 				 * SG_IO wants current and deferred errors
777 				 */
778 				int len = 8 + cmd->sense_buffer[7];
779 
780 				if (len > SCSI_SENSE_BUFFERSIZE)
781 					len = SCSI_SENSE_BUFFERSIZE;
782 				memcpy(req->sense, cmd->sense_buffer,  len);
783 				req->sense_len = len;
784 			}
785 			if (!sense_deferred)
786 				error = __scsi_error_from_host_byte(cmd, result);
787 		}
788 		/*
789 		 * __scsi_error_from_host_byte may have reset the host_byte
790 		 */
791 		req->errors = cmd->result;
792 
793 		req->resid_len = scsi_get_resid(cmd);
794 
795 		if (scsi_bidi_cmnd(cmd)) {
796 			/*
797 			 * Bidi commands Must be complete as a whole,
798 			 * both sides at once.
799 			 */
800 			req->next_rq->resid_len = scsi_in(cmd)->resid;
801 
802 			scsi_release_buffers(cmd);
803 			blk_end_request_all(req, 0);
804 
805 			scsi_next_command(cmd);
806 			return;
807 		}
808 	}
809 
810 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
811 	BUG_ON(blk_bidi_rq(req));
812 
813 	/*
814 	 * Next deal with any sectors which we were able to correctly
815 	 * handle.
816 	 */
817 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
818 				      "%d bytes done.\n",
819 				      blk_rq_sectors(req), good_bytes));
820 
821 	/*
822 	 * Recovered errors need reporting, but they're always treated
823 	 * as success, so fiddle the result code here.  For BLOCK_PC
824 	 * we already took a copy of the original into rq->errors which
825 	 * is what gets returned to the user
826 	 */
827 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829 		 * print since caller wants ATA registers. Only occurs on
830 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
831 		 */
832 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833 			;
834 		else if (!(req->cmd_flags & REQ_QUIET))
835 			scsi_print_sense("", cmd);
836 		result = 0;
837 		/* BLOCK_PC may have set error */
838 		error = 0;
839 	}
840 
841 	/*
842 	 * A number of bytes were successfully read.  If there
843 	 * are leftovers and there is some kind of error
844 	 * (result != 0), retry the rest.
845 	 */
846 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
847 		return;
848 
849 	error = __scsi_error_from_host_byte(cmd, result);
850 
851 	if (host_byte(result) == DID_RESET) {
852 		/* Third party bus reset or reset for error recovery
853 		 * reasons.  Just retry the command and see what
854 		 * happens.
855 		 */
856 		action = ACTION_RETRY;
857 	} else if (sense_valid && !sense_deferred) {
858 		switch (sshdr.sense_key) {
859 		case UNIT_ATTENTION:
860 			if (cmd->device->removable) {
861 				/* Detected disc change.  Set a bit
862 				 * and quietly refuse further access.
863 				 */
864 				cmd->device->changed = 1;
865 				description = "Media Changed";
866 				action = ACTION_FAIL;
867 			} else {
868 				/* Must have been a power glitch, or a
869 				 * bus reset.  Could not have been a
870 				 * media change, so we just retry the
871 				 * command and see what happens.
872 				 */
873 				action = ACTION_RETRY;
874 			}
875 			break;
876 		case ILLEGAL_REQUEST:
877 			/* If we had an ILLEGAL REQUEST returned, then
878 			 * we may have performed an unsupported
879 			 * command.  The only thing this should be
880 			 * would be a ten byte read where only a six
881 			 * byte read was supported.  Also, on a system
882 			 * where READ CAPACITY failed, we may have
883 			 * read past the end of the disk.
884 			 */
885 			if ((cmd->device->use_10_for_rw &&
886 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
887 			    (cmd->cmnd[0] == READ_10 ||
888 			     cmd->cmnd[0] == WRITE_10)) {
889 				/* This will issue a new 6-byte command. */
890 				cmd->device->use_10_for_rw = 0;
891 				action = ACTION_REPREP;
892 			} else if (sshdr.asc == 0x10) /* DIX */ {
893 				description = "Host Data Integrity Failure";
894 				action = ACTION_FAIL;
895 				error = -EILSEQ;
896 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
897 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
898 				switch (cmd->cmnd[0]) {
899 				case UNMAP:
900 					description = "Discard failure";
901 					break;
902 				case WRITE_SAME:
903 				case WRITE_SAME_16:
904 					if (cmd->cmnd[1] & 0x8)
905 						description = "Discard failure";
906 					else
907 						description =
908 							"Write same failure";
909 					break;
910 				default:
911 					description = "Invalid command failure";
912 					break;
913 				}
914 				action = ACTION_FAIL;
915 				error = -EREMOTEIO;
916 			} else
917 				action = ACTION_FAIL;
918 			break;
919 		case ABORTED_COMMAND:
920 			action = ACTION_FAIL;
921 			if (sshdr.asc == 0x10) { /* DIF */
922 				description = "Target Data Integrity Failure";
923 				error = -EILSEQ;
924 			}
925 			break;
926 		case NOT_READY:
927 			/* If the device is in the process of becoming
928 			 * ready, or has a temporary blockage, retry.
929 			 */
930 			if (sshdr.asc == 0x04) {
931 				switch (sshdr.ascq) {
932 				case 0x01: /* becoming ready */
933 				case 0x04: /* format in progress */
934 				case 0x05: /* rebuild in progress */
935 				case 0x06: /* recalculation in progress */
936 				case 0x07: /* operation in progress */
937 				case 0x08: /* Long write in progress */
938 				case 0x09: /* self test in progress */
939 				case 0x14: /* space allocation in progress */
940 					action = ACTION_DELAYED_RETRY;
941 					break;
942 				default:
943 					description = "Device not ready";
944 					action = ACTION_FAIL;
945 					break;
946 				}
947 			} else {
948 				description = "Device not ready";
949 				action = ACTION_FAIL;
950 			}
951 			break;
952 		case VOLUME_OVERFLOW:
953 			/* See SSC3rXX or current. */
954 			action = ACTION_FAIL;
955 			break;
956 		default:
957 			description = "Unhandled sense code";
958 			action = ACTION_FAIL;
959 			break;
960 		}
961 	} else {
962 		description = "Unhandled error code";
963 		action = ACTION_FAIL;
964 	}
965 
966 	if (action != ACTION_FAIL &&
967 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
968 		action = ACTION_FAIL;
969 		description = "Command timed out";
970 	}
971 
972 	switch (action) {
973 	case ACTION_FAIL:
974 		/* Give up and fail the remainder of the request */
975 		scsi_release_buffers(cmd);
976 		if (!(req->cmd_flags & REQ_QUIET)) {
977 			if (description)
978 				scmd_printk(KERN_INFO, cmd, "%s\n",
979 					    description);
980 			scsi_print_result(cmd);
981 			if (driver_byte(result) & DRIVER_SENSE)
982 				scsi_print_sense("", cmd);
983 			scsi_print_command(cmd);
984 		}
985 		if (blk_end_request_err(req, error))
986 			scsi_requeue_command(q, cmd);
987 		else
988 			scsi_next_command(cmd);
989 		break;
990 	case ACTION_REPREP:
991 		/* Unprep the request and put it back at the head of the queue.
992 		 * A new command will be prepared and issued.
993 		 */
994 		scsi_release_buffers(cmd);
995 		scsi_requeue_command(q, cmd);
996 		break;
997 	case ACTION_RETRY:
998 		/* Retry the same command immediately */
999 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1000 		break;
1001 	case ACTION_DELAYED_RETRY:
1002 		/* Retry the same command after a delay */
1003 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1004 		break;
1005 	}
1006 }
1007 
1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1009 			     gfp_t gfp_mask)
1010 {
1011 	int count;
1012 
1013 	/*
1014 	 * If sg table allocation fails, requeue request later.
1015 	 */
1016 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1017 					gfp_mask))) {
1018 		return BLKPREP_DEFER;
1019 	}
1020 
1021 	req->buffer = NULL;
1022 
1023 	/*
1024 	 * Next, walk the list, and fill in the addresses and sizes of
1025 	 * each segment.
1026 	 */
1027 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028 	BUG_ON(count > sdb->table.nents);
1029 	sdb->table.nents = count;
1030 	sdb->length = blk_rq_bytes(req);
1031 	return BLKPREP_OK;
1032 }
1033 
1034 /*
1035  * Function:    scsi_init_io()
1036  *
1037  * Purpose:     SCSI I/O initialize function.
1038  *
1039  * Arguments:   cmd   - Command descriptor we wish to initialize
1040  *
1041  * Returns:     0 on success
1042  *		BLKPREP_DEFER if the failure is retryable
1043  *		BLKPREP_KILL if the failure is fatal
1044  */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047 	struct request *rq = cmd->request;
1048 
1049 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1050 	if (error)
1051 		goto err_exit;
1052 
1053 	if (blk_bidi_rq(rq)) {
1054 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1055 			scsi_sdb_cache, GFP_ATOMIC);
1056 		if (!bidi_sdb) {
1057 			error = BLKPREP_DEFER;
1058 			goto err_exit;
1059 		}
1060 
1061 		rq->next_rq->special = bidi_sdb;
1062 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1063 		if (error)
1064 			goto err_exit;
1065 	}
1066 
1067 	if (blk_integrity_rq(rq)) {
1068 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069 		int ivecs, count;
1070 
1071 		BUG_ON(prot_sdb == NULL);
1072 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073 
1074 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1075 			error = BLKPREP_DEFER;
1076 			goto err_exit;
1077 		}
1078 
1079 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1080 						prot_sdb->table.sgl);
1081 		BUG_ON(unlikely(count > ivecs));
1082 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1083 
1084 		cmd->prot_sdb = prot_sdb;
1085 		cmd->prot_sdb->table.nents = count;
1086 	}
1087 
1088 	return BLKPREP_OK ;
1089 
1090 err_exit:
1091 	scsi_release_buffers(cmd);
1092 	cmd->request->special = NULL;
1093 	scsi_put_command(cmd);
1094 	put_device(&cmd->device->sdev_gendev);
1095 	return error;
1096 }
1097 EXPORT_SYMBOL(scsi_init_io);
1098 
1099 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1100 		struct request *req)
1101 {
1102 	struct scsi_cmnd *cmd;
1103 
1104 	if (!req->special) {
1105 		/* Bail if we can't get a reference to the device */
1106 		if (!get_device(&sdev->sdev_gendev))
1107 			return NULL;
1108 
1109 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110 		if (unlikely(!cmd)) {
1111 			put_device(&sdev->sdev_gendev);
1112 			return NULL;
1113 		}
1114 		req->special = cmd;
1115 	} else {
1116 		cmd = req->special;
1117 	}
1118 
1119 	/* pull a tag out of the request if we have one */
1120 	cmd->tag = req->tag;
1121 	cmd->request = req;
1122 
1123 	cmd->cmnd = req->cmd;
1124 	cmd->prot_op = SCSI_PROT_NORMAL;
1125 
1126 	return cmd;
1127 }
1128 
1129 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1130 {
1131 	struct scsi_cmnd *cmd;
1132 	int ret = scsi_prep_state_check(sdev, req);
1133 
1134 	if (ret != BLKPREP_OK)
1135 		return ret;
1136 
1137 	cmd = scsi_get_cmd_from_req(sdev, req);
1138 	if (unlikely(!cmd))
1139 		return BLKPREP_DEFER;
1140 
1141 	/*
1142 	 * BLOCK_PC requests may transfer data, in which case they must
1143 	 * a bio attached to them.  Or they might contain a SCSI command
1144 	 * that does not transfer data, in which case they may optionally
1145 	 * submit a request without an attached bio.
1146 	 */
1147 	if (req->bio) {
1148 		int ret;
1149 
1150 		BUG_ON(!req->nr_phys_segments);
1151 
1152 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1153 		if (unlikely(ret))
1154 			return ret;
1155 	} else {
1156 		BUG_ON(blk_rq_bytes(req));
1157 
1158 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1159 		req->buffer = NULL;
1160 	}
1161 
1162 	cmd->cmd_len = req->cmd_len;
1163 	if (!blk_rq_bytes(req))
1164 		cmd->sc_data_direction = DMA_NONE;
1165 	else if (rq_data_dir(req) == WRITE)
1166 		cmd->sc_data_direction = DMA_TO_DEVICE;
1167 	else
1168 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1169 
1170 	cmd->transfersize = blk_rq_bytes(req);
1171 	cmd->allowed = req->retries;
1172 	return BLKPREP_OK;
1173 }
1174 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1175 
1176 /*
1177  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1178  * from filesystems that still need to be translated to SCSI CDBs from
1179  * the ULD.
1180  */
1181 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1182 {
1183 	struct scsi_cmnd *cmd;
1184 	int ret = scsi_prep_state_check(sdev, req);
1185 
1186 	if (ret != BLKPREP_OK)
1187 		return ret;
1188 
1189 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1190 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1191 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1192 		if (ret != BLKPREP_OK)
1193 			return ret;
1194 	}
1195 
1196 	/*
1197 	 * Filesystem requests must transfer data.
1198 	 */
1199 	BUG_ON(!req->nr_phys_segments);
1200 
1201 	cmd = scsi_get_cmd_from_req(sdev, req);
1202 	if (unlikely(!cmd))
1203 		return BLKPREP_DEFER;
1204 
1205 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1206 	return scsi_init_io(cmd, GFP_ATOMIC);
1207 }
1208 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1209 
1210 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1211 {
1212 	int ret = BLKPREP_OK;
1213 
1214 	/*
1215 	 * If the device is not in running state we will reject some
1216 	 * or all commands.
1217 	 */
1218 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1219 		switch (sdev->sdev_state) {
1220 		case SDEV_OFFLINE:
1221 		case SDEV_TRANSPORT_OFFLINE:
1222 			/*
1223 			 * If the device is offline we refuse to process any
1224 			 * commands.  The device must be brought online
1225 			 * before trying any recovery commands.
1226 			 */
1227 			sdev_printk(KERN_ERR, sdev,
1228 				    "rejecting I/O to offline device\n");
1229 			ret = BLKPREP_KILL;
1230 			break;
1231 		case SDEV_DEL:
1232 			/*
1233 			 * If the device is fully deleted, we refuse to
1234 			 * process any commands as well.
1235 			 */
1236 			sdev_printk(KERN_ERR, sdev,
1237 				    "rejecting I/O to dead device\n");
1238 			ret = BLKPREP_KILL;
1239 			break;
1240 		case SDEV_QUIESCE:
1241 		case SDEV_BLOCK:
1242 		case SDEV_CREATED_BLOCK:
1243 			/*
1244 			 * If the devices is blocked we defer normal commands.
1245 			 */
1246 			if (!(req->cmd_flags & REQ_PREEMPT))
1247 				ret = BLKPREP_DEFER;
1248 			break;
1249 		default:
1250 			/*
1251 			 * For any other not fully online state we only allow
1252 			 * special commands.  In particular any user initiated
1253 			 * command is not allowed.
1254 			 */
1255 			if (!(req->cmd_flags & REQ_PREEMPT))
1256 				ret = BLKPREP_KILL;
1257 			break;
1258 		}
1259 	}
1260 	return ret;
1261 }
1262 EXPORT_SYMBOL(scsi_prep_state_check);
1263 
1264 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1265 {
1266 	struct scsi_device *sdev = q->queuedata;
1267 
1268 	switch (ret) {
1269 	case BLKPREP_KILL:
1270 		req->errors = DID_NO_CONNECT << 16;
1271 		/* release the command and kill it */
1272 		if (req->special) {
1273 			struct scsi_cmnd *cmd = req->special;
1274 			scsi_release_buffers(cmd);
1275 			scsi_put_command(cmd);
1276 			put_device(&cmd->device->sdev_gendev);
1277 			req->special = NULL;
1278 		}
1279 		break;
1280 	case BLKPREP_DEFER:
1281 		/*
1282 		 * If we defer, the blk_peek_request() returns NULL, but the
1283 		 * queue must be restarted, so we schedule a callback to happen
1284 		 * shortly.
1285 		 */
1286 		if (sdev->device_busy == 0)
1287 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1288 		break;
1289 	default:
1290 		req->cmd_flags |= REQ_DONTPREP;
1291 	}
1292 
1293 	return ret;
1294 }
1295 EXPORT_SYMBOL(scsi_prep_return);
1296 
1297 int scsi_prep_fn(struct request_queue *q, struct request *req)
1298 {
1299 	struct scsi_device *sdev = q->queuedata;
1300 	int ret = BLKPREP_KILL;
1301 
1302 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1303 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1304 	return scsi_prep_return(q, req, ret);
1305 }
1306 EXPORT_SYMBOL(scsi_prep_fn);
1307 
1308 /*
1309  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1310  * return 0.
1311  *
1312  * Called with the queue_lock held.
1313  */
1314 static inline int scsi_dev_queue_ready(struct request_queue *q,
1315 				  struct scsi_device *sdev)
1316 {
1317 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1318 		/*
1319 		 * unblock after device_blocked iterates to zero
1320 		 */
1321 		if (--sdev->device_blocked == 0) {
1322 			SCSI_LOG_MLQUEUE(3,
1323 				   sdev_printk(KERN_INFO, sdev,
1324 				   "unblocking device at zero depth\n"));
1325 		} else {
1326 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1327 			return 0;
1328 		}
1329 	}
1330 	if (scsi_device_is_busy(sdev))
1331 		return 0;
1332 
1333 	return 1;
1334 }
1335 
1336 
1337 /*
1338  * scsi_target_queue_ready: checks if there we can send commands to target
1339  * @sdev: scsi device on starget to check.
1340  *
1341  * Called with the host lock held.
1342  */
1343 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1344 					   struct scsi_device *sdev)
1345 {
1346 	struct scsi_target *starget = scsi_target(sdev);
1347 
1348 	if (starget->single_lun) {
1349 		if (starget->starget_sdev_user &&
1350 		    starget->starget_sdev_user != sdev)
1351 			return 0;
1352 		starget->starget_sdev_user = sdev;
1353 	}
1354 
1355 	if (starget->target_busy == 0 && starget->target_blocked) {
1356 		/*
1357 		 * unblock after target_blocked iterates to zero
1358 		 */
1359 		if (--starget->target_blocked == 0) {
1360 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1361 					 "unblocking target at zero depth\n"));
1362 		} else
1363 			return 0;
1364 	}
1365 
1366 	if (scsi_target_is_busy(starget)) {
1367 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1368 		return 0;
1369 	}
1370 
1371 	return 1;
1372 }
1373 
1374 /*
1375  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1376  * return 0. We must end up running the queue again whenever 0 is
1377  * returned, else IO can hang.
1378  *
1379  * Called with host_lock held.
1380  */
1381 static inline int scsi_host_queue_ready(struct request_queue *q,
1382 				   struct Scsi_Host *shost,
1383 				   struct scsi_device *sdev)
1384 {
1385 	if (scsi_host_in_recovery(shost))
1386 		return 0;
1387 	if (shost->host_busy == 0 && shost->host_blocked) {
1388 		/*
1389 		 * unblock after host_blocked iterates to zero
1390 		 */
1391 		if (--shost->host_blocked == 0) {
1392 			SCSI_LOG_MLQUEUE(3,
1393 				printk("scsi%d unblocking host at zero depth\n",
1394 					shost->host_no));
1395 		} else {
1396 			return 0;
1397 		}
1398 	}
1399 	if (scsi_host_is_busy(shost)) {
1400 		if (list_empty(&sdev->starved_entry))
1401 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1402 		return 0;
1403 	}
1404 
1405 	/* We're OK to process the command, so we can't be starved */
1406 	if (!list_empty(&sdev->starved_entry))
1407 		list_del_init(&sdev->starved_entry);
1408 
1409 	return 1;
1410 }
1411 
1412 /*
1413  * Busy state exporting function for request stacking drivers.
1414  *
1415  * For efficiency, no lock is taken to check the busy state of
1416  * shost/starget/sdev, since the returned value is not guaranteed and
1417  * may be changed after request stacking drivers call the function,
1418  * regardless of taking lock or not.
1419  *
1420  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1421  * needs to return 'not busy'. Otherwise, request stacking drivers
1422  * may hold requests forever.
1423  */
1424 static int scsi_lld_busy(struct request_queue *q)
1425 {
1426 	struct scsi_device *sdev = q->queuedata;
1427 	struct Scsi_Host *shost;
1428 
1429 	if (blk_queue_dying(q))
1430 		return 0;
1431 
1432 	shost = sdev->host;
1433 
1434 	/*
1435 	 * Ignore host/starget busy state.
1436 	 * Since block layer does not have a concept of fairness across
1437 	 * multiple queues, congestion of host/starget needs to be handled
1438 	 * in SCSI layer.
1439 	 */
1440 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1441 		return 1;
1442 
1443 	return 0;
1444 }
1445 
1446 /*
1447  * Kill a request for a dead device
1448  */
1449 static void scsi_kill_request(struct request *req, struct request_queue *q)
1450 {
1451 	struct scsi_cmnd *cmd = req->special;
1452 	struct scsi_device *sdev;
1453 	struct scsi_target *starget;
1454 	struct Scsi_Host *shost;
1455 
1456 	blk_start_request(req);
1457 
1458 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1459 
1460 	sdev = cmd->device;
1461 	starget = scsi_target(sdev);
1462 	shost = sdev->host;
1463 	scsi_init_cmd_errh(cmd);
1464 	cmd->result = DID_NO_CONNECT << 16;
1465 	atomic_inc(&cmd->device->iorequest_cnt);
1466 
1467 	/*
1468 	 * SCSI request completion path will do scsi_device_unbusy(),
1469 	 * bump busy counts.  To bump the counters, we need to dance
1470 	 * with the locks as normal issue path does.
1471 	 */
1472 	sdev->device_busy++;
1473 	spin_unlock(sdev->request_queue->queue_lock);
1474 	spin_lock(shost->host_lock);
1475 	shost->host_busy++;
1476 	starget->target_busy++;
1477 	spin_unlock(shost->host_lock);
1478 	spin_lock(sdev->request_queue->queue_lock);
1479 
1480 	blk_complete_request(req);
1481 }
1482 
1483 static void scsi_softirq_done(struct request *rq)
1484 {
1485 	struct scsi_cmnd *cmd = rq->special;
1486 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1487 	int disposition;
1488 
1489 	INIT_LIST_HEAD(&cmd->eh_entry);
1490 
1491 	atomic_inc(&cmd->device->iodone_cnt);
1492 	if (cmd->result)
1493 		atomic_inc(&cmd->device->ioerr_cnt);
1494 
1495 	disposition = scsi_decide_disposition(cmd);
1496 	if (disposition != SUCCESS &&
1497 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1498 		sdev_printk(KERN_ERR, cmd->device,
1499 			    "timing out command, waited %lus\n",
1500 			    wait_for/HZ);
1501 		disposition = SUCCESS;
1502 	}
1503 
1504 	scsi_log_completion(cmd, disposition);
1505 
1506 	switch (disposition) {
1507 		case SUCCESS:
1508 			scsi_finish_command(cmd);
1509 			break;
1510 		case NEEDS_RETRY:
1511 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1512 			break;
1513 		case ADD_TO_MLQUEUE:
1514 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1515 			break;
1516 		default:
1517 			if (!scsi_eh_scmd_add(cmd, 0))
1518 				scsi_finish_command(cmd);
1519 	}
1520 }
1521 
1522 /*
1523  * Function:    scsi_request_fn()
1524  *
1525  * Purpose:     Main strategy routine for SCSI.
1526  *
1527  * Arguments:   q       - Pointer to actual queue.
1528  *
1529  * Returns:     Nothing
1530  *
1531  * Lock status: IO request lock assumed to be held when called.
1532  */
1533 static void scsi_request_fn(struct request_queue *q)
1534 	__releases(q->queue_lock)
1535 	__acquires(q->queue_lock)
1536 {
1537 	struct scsi_device *sdev = q->queuedata;
1538 	struct Scsi_Host *shost;
1539 	struct scsi_cmnd *cmd;
1540 	struct request *req;
1541 
1542 	/*
1543 	 * To start with, we keep looping until the queue is empty, or until
1544 	 * the host is no longer able to accept any more requests.
1545 	 */
1546 	shost = sdev->host;
1547 	for (;;) {
1548 		int rtn;
1549 		/*
1550 		 * get next queueable request.  We do this early to make sure
1551 		 * that the request is fully prepared even if we cannot
1552 		 * accept it.
1553 		 */
1554 		req = blk_peek_request(q);
1555 		if (!req || !scsi_dev_queue_ready(q, sdev))
1556 			break;
1557 
1558 		if (unlikely(!scsi_device_online(sdev))) {
1559 			sdev_printk(KERN_ERR, sdev,
1560 				    "rejecting I/O to offline device\n");
1561 			scsi_kill_request(req, q);
1562 			continue;
1563 		}
1564 
1565 
1566 		/*
1567 		 * Remove the request from the request list.
1568 		 */
1569 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1570 			blk_start_request(req);
1571 		sdev->device_busy++;
1572 
1573 		spin_unlock(q->queue_lock);
1574 		cmd = req->special;
1575 		if (unlikely(cmd == NULL)) {
1576 			printk(KERN_CRIT "impossible request in %s.\n"
1577 					 "please mail a stack trace to "
1578 					 "linux-scsi@vger.kernel.org\n",
1579 					 __func__);
1580 			blk_dump_rq_flags(req, "foo");
1581 			BUG();
1582 		}
1583 		spin_lock(shost->host_lock);
1584 
1585 		/*
1586 		 * We hit this when the driver is using a host wide
1587 		 * tag map. For device level tag maps the queue_depth check
1588 		 * in the device ready fn would prevent us from trying
1589 		 * to allocate a tag. Since the map is a shared host resource
1590 		 * we add the dev to the starved list so it eventually gets
1591 		 * a run when a tag is freed.
1592 		 */
1593 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1594 			if (list_empty(&sdev->starved_entry))
1595 				list_add_tail(&sdev->starved_entry,
1596 					      &shost->starved_list);
1597 			goto not_ready;
1598 		}
1599 
1600 		if (!scsi_target_queue_ready(shost, sdev))
1601 			goto not_ready;
1602 
1603 		if (!scsi_host_queue_ready(q, shost, sdev))
1604 			goto not_ready;
1605 
1606 		scsi_target(sdev)->target_busy++;
1607 		shost->host_busy++;
1608 
1609 		/*
1610 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1611 		 *		take the lock again.
1612 		 */
1613 		spin_unlock_irq(shost->host_lock);
1614 
1615 		/*
1616 		 * Finally, initialize any error handling parameters, and set up
1617 		 * the timers for timeouts.
1618 		 */
1619 		scsi_init_cmd_errh(cmd);
1620 
1621 		/*
1622 		 * Dispatch the command to the low-level driver.
1623 		 */
1624 		rtn = scsi_dispatch_cmd(cmd);
1625 		spin_lock_irq(q->queue_lock);
1626 		if (rtn)
1627 			goto out_delay;
1628 	}
1629 
1630 	return;
1631 
1632  not_ready:
1633 	spin_unlock_irq(shost->host_lock);
1634 
1635 	/*
1636 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1637 	 * must return with queue_lock held.
1638 	 *
1639 	 * Decrementing device_busy without checking it is OK, as all such
1640 	 * cases (host limits or settings) should run the queue at some
1641 	 * later time.
1642 	 */
1643 	spin_lock_irq(q->queue_lock);
1644 	blk_requeue_request(q, req);
1645 	sdev->device_busy--;
1646 out_delay:
1647 	if (sdev->device_busy == 0)
1648 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1649 }
1650 
1651 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1652 {
1653 	struct device *host_dev;
1654 	u64 bounce_limit = 0xffffffff;
1655 
1656 	if (shost->unchecked_isa_dma)
1657 		return BLK_BOUNCE_ISA;
1658 	/*
1659 	 * Platforms with virtual-DMA translation
1660 	 * hardware have no practical limit.
1661 	 */
1662 	if (!PCI_DMA_BUS_IS_PHYS)
1663 		return BLK_BOUNCE_ANY;
1664 
1665 	host_dev = scsi_get_device(shost);
1666 	if (host_dev && host_dev->dma_mask)
1667 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1668 
1669 	return bounce_limit;
1670 }
1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1672 
1673 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1674 					 request_fn_proc *request_fn)
1675 {
1676 	struct request_queue *q;
1677 	struct device *dev = shost->dma_dev;
1678 
1679 	q = blk_init_queue(request_fn, NULL);
1680 	if (!q)
1681 		return NULL;
1682 
1683 	/*
1684 	 * this limit is imposed by hardware restrictions
1685 	 */
1686 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1687 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1688 
1689 	if (scsi_host_prot_dma(shost)) {
1690 		shost->sg_prot_tablesize =
1691 			min_not_zero(shost->sg_prot_tablesize,
1692 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1693 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1694 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1695 	}
1696 
1697 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1698 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1699 	blk_queue_segment_boundary(q, shost->dma_boundary);
1700 	dma_set_seg_boundary(dev, shost->dma_boundary);
1701 
1702 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1703 
1704 	if (!shost->use_clustering)
1705 		q->limits.cluster = 0;
1706 
1707 	/*
1708 	 * set a reasonable default alignment on word boundaries: the
1709 	 * host and device may alter it using
1710 	 * blk_queue_update_dma_alignment() later.
1711 	 */
1712 	blk_queue_dma_alignment(q, 0x03);
1713 
1714 	return q;
1715 }
1716 EXPORT_SYMBOL(__scsi_alloc_queue);
1717 
1718 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1719 {
1720 	struct request_queue *q;
1721 
1722 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1723 	if (!q)
1724 		return NULL;
1725 
1726 	blk_queue_prep_rq(q, scsi_prep_fn);
1727 	blk_queue_softirq_done(q, scsi_softirq_done);
1728 	blk_queue_rq_timed_out(q, scsi_times_out);
1729 	blk_queue_lld_busy(q, scsi_lld_busy);
1730 	return q;
1731 }
1732 
1733 /*
1734  * Function:    scsi_block_requests()
1735  *
1736  * Purpose:     Utility function used by low-level drivers to prevent further
1737  *		commands from being queued to the device.
1738  *
1739  * Arguments:   shost       - Host in question
1740  *
1741  * Returns:     Nothing
1742  *
1743  * Lock status: No locks are assumed held.
1744  *
1745  * Notes:       There is no timer nor any other means by which the requests
1746  *		get unblocked other than the low-level driver calling
1747  *		scsi_unblock_requests().
1748  */
1749 void scsi_block_requests(struct Scsi_Host *shost)
1750 {
1751 	shost->host_self_blocked = 1;
1752 }
1753 EXPORT_SYMBOL(scsi_block_requests);
1754 
1755 /*
1756  * Function:    scsi_unblock_requests()
1757  *
1758  * Purpose:     Utility function used by low-level drivers to allow further
1759  *		commands from being queued to the device.
1760  *
1761  * Arguments:   shost       - Host in question
1762  *
1763  * Returns:     Nothing
1764  *
1765  * Lock status: No locks are assumed held.
1766  *
1767  * Notes:       There is no timer nor any other means by which the requests
1768  *		get unblocked other than the low-level driver calling
1769  *		scsi_unblock_requests().
1770  *
1771  *		This is done as an API function so that changes to the
1772  *		internals of the scsi mid-layer won't require wholesale
1773  *		changes to drivers that use this feature.
1774  */
1775 void scsi_unblock_requests(struct Scsi_Host *shost)
1776 {
1777 	shost->host_self_blocked = 0;
1778 	scsi_run_host_queues(shost);
1779 }
1780 EXPORT_SYMBOL(scsi_unblock_requests);
1781 
1782 int __init scsi_init_queue(void)
1783 {
1784 	int i;
1785 
1786 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1787 					   sizeof(struct scsi_data_buffer),
1788 					   0, 0, NULL);
1789 	if (!scsi_sdb_cache) {
1790 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1791 		return -ENOMEM;
1792 	}
1793 
1794 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1795 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1796 		int size = sgp->size * sizeof(struct scatterlist);
1797 
1798 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1799 				SLAB_HWCACHE_ALIGN, NULL);
1800 		if (!sgp->slab) {
1801 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1802 					sgp->name);
1803 			goto cleanup_sdb;
1804 		}
1805 
1806 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1807 						     sgp->slab);
1808 		if (!sgp->pool) {
1809 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1810 					sgp->name);
1811 			goto cleanup_sdb;
1812 		}
1813 	}
1814 
1815 	return 0;
1816 
1817 cleanup_sdb:
1818 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1819 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1820 		if (sgp->pool)
1821 			mempool_destroy(sgp->pool);
1822 		if (sgp->slab)
1823 			kmem_cache_destroy(sgp->slab);
1824 	}
1825 	kmem_cache_destroy(scsi_sdb_cache);
1826 
1827 	return -ENOMEM;
1828 }
1829 
1830 void scsi_exit_queue(void)
1831 {
1832 	int i;
1833 
1834 	kmem_cache_destroy(scsi_sdb_cache);
1835 
1836 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1837 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1838 		mempool_destroy(sgp->pool);
1839 		kmem_cache_destroy(sgp->slab);
1840 	}
1841 }
1842 
1843 /**
1844  *	scsi_mode_select - issue a mode select
1845  *	@sdev:	SCSI device to be queried
1846  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1847  *	@sp:	Save page bit (0 == don't save, 1 == save)
1848  *	@modepage: mode page being requested
1849  *	@buffer: request buffer (may not be smaller than eight bytes)
1850  *	@len:	length of request buffer.
1851  *	@timeout: command timeout
1852  *	@retries: number of retries before failing
1853  *	@data: returns a structure abstracting the mode header data
1854  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1855  *		must be SCSI_SENSE_BUFFERSIZE big.
1856  *
1857  *	Returns zero if successful; negative error number or scsi
1858  *	status on error
1859  *
1860  */
1861 int
1862 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1863 		 unsigned char *buffer, int len, int timeout, int retries,
1864 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1865 {
1866 	unsigned char cmd[10];
1867 	unsigned char *real_buffer;
1868 	int ret;
1869 
1870 	memset(cmd, 0, sizeof(cmd));
1871 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1872 
1873 	if (sdev->use_10_for_ms) {
1874 		if (len > 65535)
1875 			return -EINVAL;
1876 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1877 		if (!real_buffer)
1878 			return -ENOMEM;
1879 		memcpy(real_buffer + 8, buffer, len);
1880 		len += 8;
1881 		real_buffer[0] = 0;
1882 		real_buffer[1] = 0;
1883 		real_buffer[2] = data->medium_type;
1884 		real_buffer[3] = data->device_specific;
1885 		real_buffer[4] = data->longlba ? 0x01 : 0;
1886 		real_buffer[5] = 0;
1887 		real_buffer[6] = data->block_descriptor_length >> 8;
1888 		real_buffer[7] = data->block_descriptor_length;
1889 
1890 		cmd[0] = MODE_SELECT_10;
1891 		cmd[7] = len >> 8;
1892 		cmd[8] = len;
1893 	} else {
1894 		if (len > 255 || data->block_descriptor_length > 255 ||
1895 		    data->longlba)
1896 			return -EINVAL;
1897 
1898 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1899 		if (!real_buffer)
1900 			return -ENOMEM;
1901 		memcpy(real_buffer + 4, buffer, len);
1902 		len += 4;
1903 		real_buffer[0] = 0;
1904 		real_buffer[1] = data->medium_type;
1905 		real_buffer[2] = data->device_specific;
1906 		real_buffer[3] = data->block_descriptor_length;
1907 
1908 
1909 		cmd[0] = MODE_SELECT;
1910 		cmd[4] = len;
1911 	}
1912 
1913 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1914 			       sshdr, timeout, retries, NULL);
1915 	kfree(real_buffer);
1916 	return ret;
1917 }
1918 EXPORT_SYMBOL_GPL(scsi_mode_select);
1919 
1920 /**
1921  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1922  *	@sdev:	SCSI device to be queried
1923  *	@dbd:	set if mode sense will allow block descriptors to be returned
1924  *	@modepage: mode page being requested
1925  *	@buffer: request buffer (may not be smaller than eight bytes)
1926  *	@len:	length of request buffer.
1927  *	@timeout: command timeout
1928  *	@retries: number of retries before failing
1929  *	@data: returns a structure abstracting the mode header data
1930  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1931  *		must be SCSI_SENSE_BUFFERSIZE big.
1932  *
1933  *	Returns zero if unsuccessful, or the header offset (either 4
1934  *	or 8 depending on whether a six or ten byte command was
1935  *	issued) if successful.
1936  */
1937 int
1938 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1939 		  unsigned char *buffer, int len, int timeout, int retries,
1940 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1941 {
1942 	unsigned char cmd[12];
1943 	int use_10_for_ms;
1944 	int header_length;
1945 	int result;
1946 	struct scsi_sense_hdr my_sshdr;
1947 
1948 	memset(data, 0, sizeof(*data));
1949 	memset(&cmd[0], 0, 12);
1950 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1951 	cmd[2] = modepage;
1952 
1953 	/* caller might not be interested in sense, but we need it */
1954 	if (!sshdr)
1955 		sshdr = &my_sshdr;
1956 
1957  retry:
1958 	use_10_for_ms = sdev->use_10_for_ms;
1959 
1960 	if (use_10_for_ms) {
1961 		if (len < 8)
1962 			len = 8;
1963 
1964 		cmd[0] = MODE_SENSE_10;
1965 		cmd[8] = len;
1966 		header_length = 8;
1967 	} else {
1968 		if (len < 4)
1969 			len = 4;
1970 
1971 		cmd[0] = MODE_SENSE;
1972 		cmd[4] = len;
1973 		header_length = 4;
1974 	}
1975 
1976 	memset(buffer, 0, len);
1977 
1978 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1979 				  sshdr, timeout, retries, NULL);
1980 
1981 	/* This code looks awful: what it's doing is making sure an
1982 	 * ILLEGAL REQUEST sense return identifies the actual command
1983 	 * byte as the problem.  MODE_SENSE commands can return
1984 	 * ILLEGAL REQUEST if the code page isn't supported */
1985 
1986 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1987 	    (driver_byte(result) & DRIVER_SENSE)) {
1988 		if (scsi_sense_valid(sshdr)) {
1989 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1990 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1991 				/*
1992 				 * Invalid command operation code
1993 				 */
1994 				sdev->use_10_for_ms = 0;
1995 				goto retry;
1996 			}
1997 		}
1998 	}
1999 
2000 	if(scsi_status_is_good(result)) {
2001 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2002 			     (modepage == 6 || modepage == 8))) {
2003 			/* Initio breakage? */
2004 			header_length = 0;
2005 			data->length = 13;
2006 			data->medium_type = 0;
2007 			data->device_specific = 0;
2008 			data->longlba = 0;
2009 			data->block_descriptor_length = 0;
2010 		} else if(use_10_for_ms) {
2011 			data->length = buffer[0]*256 + buffer[1] + 2;
2012 			data->medium_type = buffer[2];
2013 			data->device_specific = buffer[3];
2014 			data->longlba = buffer[4] & 0x01;
2015 			data->block_descriptor_length = buffer[6]*256
2016 				+ buffer[7];
2017 		} else {
2018 			data->length = buffer[0] + 1;
2019 			data->medium_type = buffer[1];
2020 			data->device_specific = buffer[2];
2021 			data->block_descriptor_length = buffer[3];
2022 		}
2023 		data->header_length = header_length;
2024 	}
2025 
2026 	return result;
2027 }
2028 EXPORT_SYMBOL(scsi_mode_sense);
2029 
2030 /**
2031  *	scsi_test_unit_ready - test if unit is ready
2032  *	@sdev:	scsi device to change the state of.
2033  *	@timeout: command timeout
2034  *	@retries: number of retries before failing
2035  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2036  *		returning sense. Make sure that this is cleared before passing
2037  *		in.
2038  *
2039  *	Returns zero if unsuccessful or an error if TUR failed.  For
2040  *	removable media, UNIT_ATTENTION sets ->changed flag.
2041  **/
2042 int
2043 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2044 		     struct scsi_sense_hdr *sshdr_external)
2045 {
2046 	char cmd[] = {
2047 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2048 	};
2049 	struct scsi_sense_hdr *sshdr;
2050 	int result;
2051 
2052 	if (!sshdr_external)
2053 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2054 	else
2055 		sshdr = sshdr_external;
2056 
2057 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2058 	do {
2059 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2060 					  timeout, retries, NULL);
2061 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2062 		    sshdr->sense_key == UNIT_ATTENTION)
2063 			sdev->changed = 1;
2064 	} while (scsi_sense_valid(sshdr) &&
2065 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2066 
2067 	if (!sshdr_external)
2068 		kfree(sshdr);
2069 	return result;
2070 }
2071 EXPORT_SYMBOL(scsi_test_unit_ready);
2072 
2073 /**
2074  *	scsi_device_set_state - Take the given device through the device state model.
2075  *	@sdev:	scsi device to change the state of.
2076  *	@state:	state to change to.
2077  *
2078  *	Returns zero if unsuccessful or an error if the requested
2079  *	transition is illegal.
2080  */
2081 int
2082 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2083 {
2084 	enum scsi_device_state oldstate = sdev->sdev_state;
2085 
2086 	if (state == oldstate)
2087 		return 0;
2088 
2089 	switch (state) {
2090 	case SDEV_CREATED:
2091 		switch (oldstate) {
2092 		case SDEV_CREATED_BLOCK:
2093 			break;
2094 		default:
2095 			goto illegal;
2096 		}
2097 		break;
2098 
2099 	case SDEV_RUNNING:
2100 		switch (oldstate) {
2101 		case SDEV_CREATED:
2102 		case SDEV_OFFLINE:
2103 		case SDEV_TRANSPORT_OFFLINE:
2104 		case SDEV_QUIESCE:
2105 		case SDEV_BLOCK:
2106 			break;
2107 		default:
2108 			goto illegal;
2109 		}
2110 		break;
2111 
2112 	case SDEV_QUIESCE:
2113 		switch (oldstate) {
2114 		case SDEV_RUNNING:
2115 		case SDEV_OFFLINE:
2116 		case SDEV_TRANSPORT_OFFLINE:
2117 			break;
2118 		default:
2119 			goto illegal;
2120 		}
2121 		break;
2122 
2123 	case SDEV_OFFLINE:
2124 	case SDEV_TRANSPORT_OFFLINE:
2125 		switch (oldstate) {
2126 		case SDEV_CREATED:
2127 		case SDEV_RUNNING:
2128 		case SDEV_QUIESCE:
2129 		case SDEV_BLOCK:
2130 			break;
2131 		default:
2132 			goto illegal;
2133 		}
2134 		break;
2135 
2136 	case SDEV_BLOCK:
2137 		switch (oldstate) {
2138 		case SDEV_RUNNING:
2139 		case SDEV_CREATED_BLOCK:
2140 			break;
2141 		default:
2142 			goto illegal;
2143 		}
2144 		break;
2145 
2146 	case SDEV_CREATED_BLOCK:
2147 		switch (oldstate) {
2148 		case SDEV_CREATED:
2149 			break;
2150 		default:
2151 			goto illegal;
2152 		}
2153 		break;
2154 
2155 	case SDEV_CANCEL:
2156 		switch (oldstate) {
2157 		case SDEV_CREATED:
2158 		case SDEV_RUNNING:
2159 		case SDEV_QUIESCE:
2160 		case SDEV_OFFLINE:
2161 		case SDEV_TRANSPORT_OFFLINE:
2162 		case SDEV_BLOCK:
2163 			break;
2164 		default:
2165 			goto illegal;
2166 		}
2167 		break;
2168 
2169 	case SDEV_DEL:
2170 		switch (oldstate) {
2171 		case SDEV_CREATED:
2172 		case SDEV_RUNNING:
2173 		case SDEV_OFFLINE:
2174 		case SDEV_TRANSPORT_OFFLINE:
2175 		case SDEV_CANCEL:
2176 		case SDEV_CREATED_BLOCK:
2177 			break;
2178 		default:
2179 			goto illegal;
2180 		}
2181 		break;
2182 
2183 	}
2184 	sdev->sdev_state = state;
2185 	return 0;
2186 
2187  illegal:
2188 	SCSI_LOG_ERROR_RECOVERY(1,
2189 				sdev_printk(KERN_ERR, sdev,
2190 					    "Illegal state transition %s->%s\n",
2191 					    scsi_device_state_name(oldstate),
2192 					    scsi_device_state_name(state))
2193 				);
2194 	return -EINVAL;
2195 }
2196 EXPORT_SYMBOL(scsi_device_set_state);
2197 
2198 /**
2199  * 	sdev_evt_emit - emit a single SCSI device uevent
2200  *	@sdev: associated SCSI device
2201  *	@evt: event to emit
2202  *
2203  *	Send a single uevent (scsi_event) to the associated scsi_device.
2204  */
2205 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2206 {
2207 	int idx = 0;
2208 	char *envp[3];
2209 
2210 	switch (evt->evt_type) {
2211 	case SDEV_EVT_MEDIA_CHANGE:
2212 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2213 		break;
2214 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2215 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2216 		break;
2217 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2218 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2219 		break;
2220 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2221 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2222 		break;
2223 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2224 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2225 		break;
2226 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2227 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2228 		break;
2229 	default:
2230 		/* do nothing */
2231 		break;
2232 	}
2233 
2234 	envp[idx++] = NULL;
2235 
2236 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2237 }
2238 
2239 /**
2240  * 	sdev_evt_thread - send a uevent for each scsi event
2241  *	@work: work struct for scsi_device
2242  *
2243  *	Dispatch queued events to their associated scsi_device kobjects
2244  *	as uevents.
2245  */
2246 void scsi_evt_thread(struct work_struct *work)
2247 {
2248 	struct scsi_device *sdev;
2249 	enum scsi_device_event evt_type;
2250 	LIST_HEAD(event_list);
2251 
2252 	sdev = container_of(work, struct scsi_device, event_work);
2253 
2254 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2255 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2256 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2257 
2258 	while (1) {
2259 		struct scsi_event *evt;
2260 		struct list_head *this, *tmp;
2261 		unsigned long flags;
2262 
2263 		spin_lock_irqsave(&sdev->list_lock, flags);
2264 		list_splice_init(&sdev->event_list, &event_list);
2265 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2266 
2267 		if (list_empty(&event_list))
2268 			break;
2269 
2270 		list_for_each_safe(this, tmp, &event_list) {
2271 			evt = list_entry(this, struct scsi_event, node);
2272 			list_del(&evt->node);
2273 			scsi_evt_emit(sdev, evt);
2274 			kfree(evt);
2275 		}
2276 	}
2277 }
2278 
2279 /**
2280  * 	sdev_evt_send - send asserted event to uevent thread
2281  *	@sdev: scsi_device event occurred on
2282  *	@evt: event to send
2283  *
2284  *	Assert scsi device event asynchronously.
2285  */
2286 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2287 {
2288 	unsigned long flags;
2289 
2290 #if 0
2291 	/* FIXME: currently this check eliminates all media change events
2292 	 * for polled devices.  Need to update to discriminate between AN
2293 	 * and polled events */
2294 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2295 		kfree(evt);
2296 		return;
2297 	}
2298 #endif
2299 
2300 	spin_lock_irqsave(&sdev->list_lock, flags);
2301 	list_add_tail(&evt->node, &sdev->event_list);
2302 	schedule_work(&sdev->event_work);
2303 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2304 }
2305 EXPORT_SYMBOL_GPL(sdev_evt_send);
2306 
2307 /**
2308  * 	sdev_evt_alloc - allocate a new scsi event
2309  *	@evt_type: type of event to allocate
2310  *	@gfpflags: GFP flags for allocation
2311  *
2312  *	Allocates and returns a new scsi_event.
2313  */
2314 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2315 				  gfp_t gfpflags)
2316 {
2317 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2318 	if (!evt)
2319 		return NULL;
2320 
2321 	evt->evt_type = evt_type;
2322 	INIT_LIST_HEAD(&evt->node);
2323 
2324 	/* evt_type-specific initialization, if any */
2325 	switch (evt_type) {
2326 	case SDEV_EVT_MEDIA_CHANGE:
2327 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2328 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2329 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2330 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2331 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2332 	default:
2333 		/* do nothing */
2334 		break;
2335 	}
2336 
2337 	return evt;
2338 }
2339 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2340 
2341 /**
2342  * 	sdev_evt_send_simple - send asserted event to uevent thread
2343  *	@sdev: scsi_device event occurred on
2344  *	@evt_type: type of event to send
2345  *	@gfpflags: GFP flags for allocation
2346  *
2347  *	Assert scsi device event asynchronously, given an event type.
2348  */
2349 void sdev_evt_send_simple(struct scsi_device *sdev,
2350 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2351 {
2352 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2353 	if (!evt) {
2354 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2355 			    evt_type);
2356 		return;
2357 	}
2358 
2359 	sdev_evt_send(sdev, evt);
2360 }
2361 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2362 
2363 /**
2364  *	scsi_device_quiesce - Block user issued commands.
2365  *	@sdev:	scsi device to quiesce.
2366  *
2367  *	This works by trying to transition to the SDEV_QUIESCE state
2368  *	(which must be a legal transition).  When the device is in this
2369  *	state, only special requests will be accepted, all others will
2370  *	be deferred.  Since special requests may also be requeued requests,
2371  *	a successful return doesn't guarantee the device will be
2372  *	totally quiescent.
2373  *
2374  *	Must be called with user context, may sleep.
2375  *
2376  *	Returns zero if unsuccessful or an error if not.
2377  */
2378 int
2379 scsi_device_quiesce(struct scsi_device *sdev)
2380 {
2381 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2382 	if (err)
2383 		return err;
2384 
2385 	scsi_run_queue(sdev->request_queue);
2386 	while (sdev->device_busy) {
2387 		msleep_interruptible(200);
2388 		scsi_run_queue(sdev->request_queue);
2389 	}
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(scsi_device_quiesce);
2393 
2394 /**
2395  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2396  *	@sdev:	scsi device to resume.
2397  *
2398  *	Moves the device from quiesced back to running and restarts the
2399  *	queues.
2400  *
2401  *	Must be called with user context, may sleep.
2402  */
2403 void scsi_device_resume(struct scsi_device *sdev)
2404 {
2405 	/* check if the device state was mutated prior to resume, and if
2406 	 * so assume the state is being managed elsewhere (for example
2407 	 * device deleted during suspend)
2408 	 */
2409 	if (sdev->sdev_state != SDEV_QUIESCE ||
2410 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2411 		return;
2412 	scsi_run_queue(sdev->request_queue);
2413 }
2414 EXPORT_SYMBOL(scsi_device_resume);
2415 
2416 static void
2417 device_quiesce_fn(struct scsi_device *sdev, void *data)
2418 {
2419 	scsi_device_quiesce(sdev);
2420 }
2421 
2422 void
2423 scsi_target_quiesce(struct scsi_target *starget)
2424 {
2425 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2426 }
2427 EXPORT_SYMBOL(scsi_target_quiesce);
2428 
2429 static void
2430 device_resume_fn(struct scsi_device *sdev, void *data)
2431 {
2432 	scsi_device_resume(sdev);
2433 }
2434 
2435 void
2436 scsi_target_resume(struct scsi_target *starget)
2437 {
2438 	starget_for_each_device(starget, NULL, device_resume_fn);
2439 }
2440 EXPORT_SYMBOL(scsi_target_resume);
2441 
2442 /**
2443  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2444  * @sdev:	device to block
2445  *
2446  * Block request made by scsi lld's to temporarily stop all
2447  * scsi commands on the specified device.  Called from interrupt
2448  * or normal process context.
2449  *
2450  * Returns zero if successful or error if not
2451  *
2452  * Notes:
2453  *	This routine transitions the device to the SDEV_BLOCK state
2454  *	(which must be a legal transition).  When the device is in this
2455  *	state, all commands are deferred until the scsi lld reenables
2456  *	the device with scsi_device_unblock or device_block_tmo fires.
2457  */
2458 int
2459 scsi_internal_device_block(struct scsi_device *sdev)
2460 {
2461 	struct request_queue *q = sdev->request_queue;
2462 	unsigned long flags;
2463 	int err = 0;
2464 
2465 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2466 	if (err) {
2467 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2468 
2469 		if (err)
2470 			return err;
2471 	}
2472 
2473 	/*
2474 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2475 	 * block layer from calling the midlayer with this device's
2476 	 * request queue.
2477 	 */
2478 	spin_lock_irqsave(q->queue_lock, flags);
2479 	blk_stop_queue(q);
2480 	spin_unlock_irqrestore(q->queue_lock, flags);
2481 
2482 	return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2485 
2486 /**
2487  * scsi_internal_device_unblock - resume a device after a block request
2488  * @sdev:	device to resume
2489  * @new_state:	state to set devices to after unblocking
2490  *
2491  * Called by scsi lld's or the midlayer to restart the device queue
2492  * for the previously suspended scsi device.  Called from interrupt or
2493  * normal process context.
2494  *
2495  * Returns zero if successful or error if not.
2496  *
2497  * Notes:
2498  *	This routine transitions the device to the SDEV_RUNNING state
2499  *	or to one of the offline states (which must be a legal transition)
2500  *	allowing the midlayer to goose the queue for this device.
2501  */
2502 int
2503 scsi_internal_device_unblock(struct scsi_device *sdev,
2504 			     enum scsi_device_state new_state)
2505 {
2506 	struct request_queue *q = sdev->request_queue;
2507 	unsigned long flags;
2508 
2509 	/*
2510 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2511 	 * offlined states and goose the device queue if successful.
2512 	 */
2513 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2514 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2515 		sdev->sdev_state = new_state;
2516 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2517 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2518 		    new_state == SDEV_OFFLINE)
2519 			sdev->sdev_state = new_state;
2520 		else
2521 			sdev->sdev_state = SDEV_CREATED;
2522 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2523 		 sdev->sdev_state != SDEV_OFFLINE)
2524 		return -EINVAL;
2525 
2526 	spin_lock_irqsave(q->queue_lock, flags);
2527 	blk_start_queue(q);
2528 	spin_unlock_irqrestore(q->queue_lock, flags);
2529 
2530 	return 0;
2531 }
2532 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2533 
2534 static void
2535 device_block(struct scsi_device *sdev, void *data)
2536 {
2537 	scsi_internal_device_block(sdev);
2538 }
2539 
2540 static int
2541 target_block(struct device *dev, void *data)
2542 {
2543 	if (scsi_is_target_device(dev))
2544 		starget_for_each_device(to_scsi_target(dev), NULL,
2545 					device_block);
2546 	return 0;
2547 }
2548 
2549 void
2550 scsi_target_block(struct device *dev)
2551 {
2552 	if (scsi_is_target_device(dev))
2553 		starget_for_each_device(to_scsi_target(dev), NULL,
2554 					device_block);
2555 	else
2556 		device_for_each_child(dev, NULL, target_block);
2557 }
2558 EXPORT_SYMBOL_GPL(scsi_target_block);
2559 
2560 static void
2561 device_unblock(struct scsi_device *sdev, void *data)
2562 {
2563 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2564 }
2565 
2566 static int
2567 target_unblock(struct device *dev, void *data)
2568 {
2569 	if (scsi_is_target_device(dev))
2570 		starget_for_each_device(to_scsi_target(dev), data,
2571 					device_unblock);
2572 	return 0;
2573 }
2574 
2575 void
2576 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2577 {
2578 	if (scsi_is_target_device(dev))
2579 		starget_for_each_device(to_scsi_target(dev), &new_state,
2580 					device_unblock);
2581 	else
2582 		device_for_each_child(dev, &new_state, target_unblock);
2583 }
2584 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2585 
2586 /**
2587  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2588  * @sgl:	scatter-gather list
2589  * @sg_count:	number of segments in sg
2590  * @offset:	offset in bytes into sg, on return offset into the mapped area
2591  * @len:	bytes to map, on return number of bytes mapped
2592  *
2593  * Returns virtual address of the start of the mapped page
2594  */
2595 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2596 			  size_t *offset, size_t *len)
2597 {
2598 	int i;
2599 	size_t sg_len = 0, len_complete = 0;
2600 	struct scatterlist *sg;
2601 	struct page *page;
2602 
2603 	WARN_ON(!irqs_disabled());
2604 
2605 	for_each_sg(sgl, sg, sg_count, i) {
2606 		len_complete = sg_len; /* Complete sg-entries */
2607 		sg_len += sg->length;
2608 		if (sg_len > *offset)
2609 			break;
2610 	}
2611 
2612 	if (unlikely(i == sg_count)) {
2613 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2614 			"elements %d\n",
2615 		       __func__, sg_len, *offset, sg_count);
2616 		WARN_ON(1);
2617 		return NULL;
2618 	}
2619 
2620 	/* Offset starting from the beginning of first page in this sg-entry */
2621 	*offset = *offset - len_complete + sg->offset;
2622 
2623 	/* Assumption: contiguous pages can be accessed as "page + i" */
2624 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2625 	*offset &= ~PAGE_MASK;
2626 
2627 	/* Bytes in this sg-entry from *offset to the end of the page */
2628 	sg_len = PAGE_SIZE - *offset;
2629 	if (*len > sg_len)
2630 		*len = sg_len;
2631 
2632 	return kmap_atomic(page);
2633 }
2634 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2635 
2636 /**
2637  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2638  * @virt:	virtual address to be unmapped
2639  */
2640 void scsi_kunmap_atomic_sg(void *virt)
2641 {
2642 	kunmap_atomic(virt);
2643 }
2644 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2645 
2646 void sdev_disable_disk_events(struct scsi_device *sdev)
2647 {
2648 	atomic_inc(&sdev->disk_events_disable_depth);
2649 }
2650 EXPORT_SYMBOL(sdev_disable_disk_events);
2651 
2652 void sdev_enable_disk_events(struct scsi_device *sdev)
2653 {
2654 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2655 		return;
2656 	atomic_dec(&sdev->disk_events_disable_depth);
2657 }
2658 EXPORT_SYMBOL(sdev_enable_disk_events);
2659