1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 static struct kmem_cache *scsi_sdb_cache; 44 static struct kmem_cache *scsi_sense_cache; 45 static struct kmem_cache *scsi_sense_isadma_cache; 46 static DEFINE_MUTEX(scsi_sense_cache_mutex); 47 48 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 49 50 static inline struct kmem_cache * 51 scsi_select_sense_cache(bool unchecked_isa_dma) 52 { 53 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 54 } 55 56 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 57 unsigned char *sense_buffer) 58 { 59 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 60 sense_buffer); 61 } 62 63 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 64 gfp_t gfp_mask, int numa_node) 65 { 66 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 67 gfp_mask, numa_node); 68 } 69 70 int scsi_init_sense_cache(struct Scsi_Host *shost) 71 { 72 struct kmem_cache *cache; 73 int ret = 0; 74 75 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 76 if (cache) 77 return 0; 78 79 mutex_lock(&scsi_sense_cache_mutex); 80 if (shost->unchecked_isa_dma) { 81 scsi_sense_isadma_cache = 82 kmem_cache_create("scsi_sense_cache(DMA)", 83 SCSI_SENSE_BUFFERSIZE, 0, 84 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 85 if (!scsi_sense_isadma_cache) 86 ret = -ENOMEM; 87 } else { 88 scsi_sense_cache = 89 kmem_cache_create_usercopy("scsi_sense_cache", 90 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 91 0, SCSI_SENSE_BUFFERSIZE, NULL); 92 if (!scsi_sense_cache) 93 ret = -ENOMEM; 94 } 95 96 mutex_unlock(&scsi_sense_cache_mutex); 97 return ret; 98 } 99 100 /* 101 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 102 * not change behaviour from the previous unplug mechanism, experimentation 103 * may prove this needs changing. 104 */ 105 #define SCSI_QUEUE_DELAY 3 106 107 static void 108 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 109 { 110 struct Scsi_Host *host = cmd->device->host; 111 struct scsi_device *device = cmd->device; 112 struct scsi_target *starget = scsi_target(device); 113 114 /* 115 * Set the appropriate busy bit for the device/host. 116 * 117 * If the host/device isn't busy, assume that something actually 118 * completed, and that we should be able to queue a command now. 119 * 120 * Note that the prior mid-layer assumption that any host could 121 * always queue at least one command is now broken. The mid-layer 122 * will implement a user specifiable stall (see 123 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 124 * if a command is requeued with no other commands outstanding 125 * either for the device or for the host. 126 */ 127 switch (reason) { 128 case SCSI_MLQUEUE_HOST_BUSY: 129 atomic_set(&host->host_blocked, host->max_host_blocked); 130 break; 131 case SCSI_MLQUEUE_DEVICE_BUSY: 132 case SCSI_MLQUEUE_EH_RETRY: 133 atomic_set(&device->device_blocked, 134 device->max_device_blocked); 135 break; 136 case SCSI_MLQUEUE_TARGET_BUSY: 137 atomic_set(&starget->target_blocked, 138 starget->max_target_blocked); 139 break; 140 } 141 } 142 143 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 144 { 145 if (cmd->request->rq_flags & RQF_DONTPREP) { 146 cmd->request->rq_flags &= ~RQF_DONTPREP; 147 scsi_mq_uninit_cmd(cmd); 148 } else { 149 WARN_ON_ONCE(true); 150 } 151 blk_mq_requeue_request(cmd->request, true); 152 } 153 154 /** 155 * __scsi_queue_insert - private queue insertion 156 * @cmd: The SCSI command being requeued 157 * @reason: The reason for the requeue 158 * @unbusy: Whether the queue should be unbusied 159 * 160 * This is a private queue insertion. The public interface 161 * scsi_queue_insert() always assumes the queue should be unbusied 162 * because it's always called before the completion. This function is 163 * for a requeue after completion, which should only occur in this 164 * file. 165 */ 166 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 167 { 168 struct scsi_device *device = cmd->device; 169 170 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 171 "Inserting command %p into mlqueue\n", cmd)); 172 173 scsi_set_blocked(cmd, reason); 174 175 /* 176 * Decrement the counters, since these commands are no longer 177 * active on the host/device. 178 */ 179 if (unbusy) 180 scsi_device_unbusy(device); 181 182 /* 183 * Requeue this command. It will go before all other commands 184 * that are already in the queue. Schedule requeue work under 185 * lock such that the kblockd_schedule_work() call happens 186 * before blk_cleanup_queue() finishes. 187 */ 188 cmd->result = 0; 189 190 blk_mq_requeue_request(cmd->request, true); 191 } 192 193 /* 194 * Function: scsi_queue_insert() 195 * 196 * Purpose: Insert a command in the midlevel queue. 197 * 198 * Arguments: cmd - command that we are adding to queue. 199 * reason - why we are inserting command to queue. 200 * 201 * Lock status: Assumed that lock is not held upon entry. 202 * 203 * Returns: Nothing. 204 * 205 * Notes: We do this for one of two cases. Either the host is busy 206 * and it cannot accept any more commands for the time being, 207 * or the device returned QUEUE_FULL and can accept no more 208 * commands. 209 * Notes: This could be called either from an interrupt context or a 210 * normal process context. 211 */ 212 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 213 { 214 __scsi_queue_insert(cmd, reason, true); 215 } 216 217 218 /** 219 * __scsi_execute - insert request and wait for the result 220 * @sdev: scsi device 221 * @cmd: scsi command 222 * @data_direction: data direction 223 * @buffer: data buffer 224 * @bufflen: len of buffer 225 * @sense: optional sense buffer 226 * @sshdr: optional decoded sense header 227 * @timeout: request timeout in seconds 228 * @retries: number of times to retry request 229 * @flags: flags for ->cmd_flags 230 * @rq_flags: flags for ->rq_flags 231 * @resid: optional residual length 232 * 233 * Returns the scsi_cmnd result field if a command was executed, or a negative 234 * Linux error code if we didn't get that far. 235 */ 236 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 237 int data_direction, void *buffer, unsigned bufflen, 238 unsigned char *sense, struct scsi_sense_hdr *sshdr, 239 int timeout, int retries, u64 flags, req_flags_t rq_flags, 240 int *resid) 241 { 242 struct request *req; 243 struct scsi_request *rq; 244 int ret = DRIVER_ERROR << 24; 245 246 req = blk_get_request(sdev->request_queue, 247 data_direction == DMA_TO_DEVICE ? 248 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 249 if (IS_ERR(req)) 250 return ret; 251 rq = scsi_req(req); 252 253 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 254 buffer, bufflen, GFP_NOIO)) 255 goto out; 256 257 rq->cmd_len = COMMAND_SIZE(cmd[0]); 258 memcpy(rq->cmd, cmd, rq->cmd_len); 259 rq->retries = retries; 260 req->timeout = timeout; 261 req->cmd_flags |= flags; 262 req->rq_flags |= rq_flags | RQF_QUIET; 263 264 /* 265 * head injection *required* here otherwise quiesce won't work 266 */ 267 blk_execute_rq(req->q, NULL, req, 1); 268 269 /* 270 * Some devices (USB mass-storage in particular) may transfer 271 * garbage data together with a residue indicating that the data 272 * is invalid. Prevent the garbage from being misinterpreted 273 * and prevent security leaks by zeroing out the excess data. 274 */ 275 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 276 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 277 278 if (resid) 279 *resid = rq->resid_len; 280 if (sense && rq->sense_len) 281 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 282 if (sshdr) 283 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 284 ret = rq->result; 285 out: 286 blk_put_request(req); 287 288 return ret; 289 } 290 EXPORT_SYMBOL(__scsi_execute); 291 292 /* 293 * Function: scsi_init_cmd_errh() 294 * 295 * Purpose: Initialize cmd fields related to error handling. 296 * 297 * Arguments: cmd - command that is ready to be queued. 298 * 299 * Notes: This function has the job of initializing a number of 300 * fields related to error handling. Typically this will 301 * be called once for each command, as required. 302 */ 303 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 304 { 305 scsi_set_resid(cmd, 0); 306 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 307 if (cmd->cmd_len == 0) 308 cmd->cmd_len = scsi_command_size(cmd->cmnd); 309 } 310 311 /* 312 * Decrement the host_busy counter and wake up the error handler if necessary. 313 * Avoid as follows that the error handler is not woken up if shost->host_busy 314 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 315 * with an RCU read lock in this function to ensure that this function in its 316 * entirety either finishes before scsi_eh_scmd_add() increases the 317 * host_failed counter or that it notices the shost state change made by 318 * scsi_eh_scmd_add(). 319 */ 320 static void scsi_dec_host_busy(struct Scsi_Host *shost) 321 { 322 unsigned long flags; 323 324 rcu_read_lock(); 325 atomic_dec(&shost->host_busy); 326 if (unlikely(scsi_host_in_recovery(shost))) { 327 spin_lock_irqsave(shost->host_lock, flags); 328 if (shost->host_failed || shost->host_eh_scheduled) 329 scsi_eh_wakeup(shost); 330 spin_unlock_irqrestore(shost->host_lock, flags); 331 } 332 rcu_read_unlock(); 333 } 334 335 void scsi_device_unbusy(struct scsi_device *sdev) 336 { 337 struct Scsi_Host *shost = sdev->host; 338 struct scsi_target *starget = scsi_target(sdev); 339 340 scsi_dec_host_busy(shost); 341 342 if (starget->can_queue > 0) 343 atomic_dec(&starget->target_busy); 344 345 atomic_dec(&sdev->device_busy); 346 } 347 348 static void scsi_kick_queue(struct request_queue *q) 349 { 350 blk_mq_run_hw_queues(q, false); 351 } 352 353 /* 354 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 355 * and call blk_run_queue for all the scsi_devices on the target - 356 * including current_sdev first. 357 * 358 * Called with *no* scsi locks held. 359 */ 360 static void scsi_single_lun_run(struct scsi_device *current_sdev) 361 { 362 struct Scsi_Host *shost = current_sdev->host; 363 struct scsi_device *sdev, *tmp; 364 struct scsi_target *starget = scsi_target(current_sdev); 365 unsigned long flags; 366 367 spin_lock_irqsave(shost->host_lock, flags); 368 starget->starget_sdev_user = NULL; 369 spin_unlock_irqrestore(shost->host_lock, flags); 370 371 /* 372 * Call blk_run_queue for all LUNs on the target, starting with 373 * current_sdev. We race with others (to set starget_sdev_user), 374 * but in most cases, we will be first. Ideally, each LU on the 375 * target would get some limited time or requests on the target. 376 */ 377 scsi_kick_queue(current_sdev->request_queue); 378 379 spin_lock_irqsave(shost->host_lock, flags); 380 if (starget->starget_sdev_user) 381 goto out; 382 list_for_each_entry_safe(sdev, tmp, &starget->devices, 383 same_target_siblings) { 384 if (sdev == current_sdev) 385 continue; 386 if (scsi_device_get(sdev)) 387 continue; 388 389 spin_unlock_irqrestore(shost->host_lock, flags); 390 scsi_kick_queue(sdev->request_queue); 391 spin_lock_irqsave(shost->host_lock, flags); 392 393 scsi_device_put(sdev); 394 } 395 out: 396 spin_unlock_irqrestore(shost->host_lock, flags); 397 } 398 399 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 400 { 401 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 402 return true; 403 if (atomic_read(&sdev->device_blocked) > 0) 404 return true; 405 return false; 406 } 407 408 static inline bool scsi_target_is_busy(struct scsi_target *starget) 409 { 410 if (starget->can_queue > 0) { 411 if (atomic_read(&starget->target_busy) >= starget->can_queue) 412 return true; 413 if (atomic_read(&starget->target_blocked) > 0) 414 return true; 415 } 416 return false; 417 } 418 419 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 420 { 421 if (shost->can_queue > 0 && 422 atomic_read(&shost->host_busy) >= shost->can_queue) 423 return true; 424 if (atomic_read(&shost->host_blocked) > 0) 425 return true; 426 if (shost->host_self_blocked) 427 return true; 428 return false; 429 } 430 431 static void scsi_starved_list_run(struct Scsi_Host *shost) 432 { 433 LIST_HEAD(starved_list); 434 struct scsi_device *sdev; 435 unsigned long flags; 436 437 spin_lock_irqsave(shost->host_lock, flags); 438 list_splice_init(&shost->starved_list, &starved_list); 439 440 while (!list_empty(&starved_list)) { 441 struct request_queue *slq; 442 443 /* 444 * As long as shost is accepting commands and we have 445 * starved queues, call blk_run_queue. scsi_request_fn 446 * drops the queue_lock and can add us back to the 447 * starved_list. 448 * 449 * host_lock protects the starved_list and starved_entry. 450 * scsi_request_fn must get the host_lock before checking 451 * or modifying starved_list or starved_entry. 452 */ 453 if (scsi_host_is_busy(shost)) 454 break; 455 456 sdev = list_entry(starved_list.next, 457 struct scsi_device, starved_entry); 458 list_del_init(&sdev->starved_entry); 459 if (scsi_target_is_busy(scsi_target(sdev))) { 460 list_move_tail(&sdev->starved_entry, 461 &shost->starved_list); 462 continue; 463 } 464 465 /* 466 * Once we drop the host lock, a racing scsi_remove_device() 467 * call may remove the sdev from the starved list and destroy 468 * it and the queue. Mitigate by taking a reference to the 469 * queue and never touching the sdev again after we drop the 470 * host lock. Note: if __scsi_remove_device() invokes 471 * blk_cleanup_queue() before the queue is run from this 472 * function then blk_run_queue() will return immediately since 473 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 474 */ 475 slq = sdev->request_queue; 476 if (!blk_get_queue(slq)) 477 continue; 478 spin_unlock_irqrestore(shost->host_lock, flags); 479 480 scsi_kick_queue(slq); 481 blk_put_queue(slq); 482 483 spin_lock_irqsave(shost->host_lock, flags); 484 } 485 /* put any unprocessed entries back */ 486 list_splice(&starved_list, &shost->starved_list); 487 spin_unlock_irqrestore(shost->host_lock, flags); 488 } 489 490 /* 491 * Function: scsi_run_queue() 492 * 493 * Purpose: Select a proper request queue to serve next 494 * 495 * Arguments: q - last request's queue 496 * 497 * Returns: Nothing 498 * 499 * Notes: The previous command was completely finished, start 500 * a new one if possible. 501 */ 502 static void scsi_run_queue(struct request_queue *q) 503 { 504 struct scsi_device *sdev = q->queuedata; 505 506 if (scsi_target(sdev)->single_lun) 507 scsi_single_lun_run(sdev); 508 if (!list_empty(&sdev->host->starved_list)) 509 scsi_starved_list_run(sdev->host); 510 511 blk_mq_run_hw_queues(q, false); 512 } 513 514 void scsi_requeue_run_queue(struct work_struct *work) 515 { 516 struct scsi_device *sdev; 517 struct request_queue *q; 518 519 sdev = container_of(work, struct scsi_device, requeue_work); 520 q = sdev->request_queue; 521 scsi_run_queue(q); 522 } 523 524 void scsi_run_host_queues(struct Scsi_Host *shost) 525 { 526 struct scsi_device *sdev; 527 528 shost_for_each_device(sdev, shost) 529 scsi_run_queue(sdev->request_queue); 530 } 531 532 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 533 { 534 if (!blk_rq_is_passthrough(cmd->request)) { 535 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 536 537 if (drv->uninit_command) 538 drv->uninit_command(cmd); 539 } 540 } 541 542 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 543 { 544 if (cmd->sdb.table.nents) 545 sg_free_table_chained(&cmd->sdb.table, true); 546 if (scsi_prot_sg_count(cmd)) 547 sg_free_table_chained(&cmd->prot_sdb->table, true); 548 } 549 550 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 551 { 552 scsi_mq_free_sgtables(cmd); 553 scsi_uninit_cmd(cmd); 554 scsi_del_cmd_from_list(cmd); 555 } 556 557 /* Returns false when no more bytes to process, true if there are more */ 558 static bool scsi_end_request(struct request *req, blk_status_t error, 559 unsigned int bytes) 560 { 561 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 562 struct scsi_device *sdev = cmd->device; 563 struct request_queue *q = sdev->request_queue; 564 565 if (blk_update_request(req, error, bytes)) 566 return true; 567 568 if (blk_queue_add_random(q)) 569 add_disk_randomness(req->rq_disk); 570 571 if (!blk_rq_is_scsi(req)) { 572 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 573 cmd->flags &= ~SCMD_INITIALIZED; 574 } 575 576 /* 577 * Calling rcu_barrier() is not necessary here because the 578 * SCSI error handler guarantees that the function called by 579 * call_rcu() has been called before scsi_end_request() is 580 * called. 581 */ 582 destroy_rcu_head(&cmd->rcu); 583 584 /* 585 * In the MQ case the command gets freed by __blk_mq_end_request, 586 * so we have to do all cleanup that depends on it earlier. 587 * 588 * We also can't kick the queues from irq context, so we 589 * will have to defer it to a workqueue. 590 */ 591 scsi_mq_uninit_cmd(cmd); 592 593 /* 594 * queue is still alive, so grab the ref for preventing it 595 * from being cleaned up during running queue. 596 */ 597 percpu_ref_get(&q->q_usage_counter); 598 599 __blk_mq_end_request(req, error); 600 601 if (scsi_target(sdev)->single_lun || 602 !list_empty(&sdev->host->starved_list)) 603 kblockd_schedule_work(&sdev->requeue_work); 604 else 605 blk_mq_run_hw_queues(q, true); 606 607 percpu_ref_put(&q->q_usage_counter); 608 return false; 609 } 610 611 /** 612 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 613 * @cmd: SCSI command 614 * @result: scsi error code 615 * 616 * Translate a SCSI result code into a blk_status_t value. May reset the host 617 * byte of @cmd->result. 618 */ 619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 620 { 621 switch (host_byte(result)) { 622 case DID_OK: 623 /* 624 * Also check the other bytes than the status byte in result 625 * to handle the case when a SCSI LLD sets result to 626 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 627 */ 628 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 629 return BLK_STS_OK; 630 return BLK_STS_IOERR; 631 case DID_TRANSPORT_FAILFAST: 632 return BLK_STS_TRANSPORT; 633 case DID_TARGET_FAILURE: 634 set_host_byte(cmd, DID_OK); 635 return BLK_STS_TARGET; 636 case DID_NEXUS_FAILURE: 637 set_host_byte(cmd, DID_OK); 638 return BLK_STS_NEXUS; 639 case DID_ALLOC_FAILURE: 640 set_host_byte(cmd, DID_OK); 641 return BLK_STS_NOSPC; 642 case DID_MEDIUM_ERROR: 643 set_host_byte(cmd, DID_OK); 644 return BLK_STS_MEDIUM; 645 default: 646 return BLK_STS_IOERR; 647 } 648 } 649 650 /* Helper for scsi_io_completion() when "reprep" action required. */ 651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 652 struct request_queue *q) 653 { 654 /* A new command will be prepared and issued. */ 655 scsi_mq_requeue_cmd(cmd); 656 } 657 658 /* Helper for scsi_io_completion() when special action required. */ 659 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 660 { 661 struct request_queue *q = cmd->device->request_queue; 662 struct request *req = cmd->request; 663 int level = 0; 664 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 665 ACTION_DELAYED_RETRY} action; 666 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 667 struct scsi_sense_hdr sshdr; 668 bool sense_valid; 669 bool sense_current = true; /* false implies "deferred sense" */ 670 blk_status_t blk_stat; 671 672 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 673 if (sense_valid) 674 sense_current = !scsi_sense_is_deferred(&sshdr); 675 676 blk_stat = scsi_result_to_blk_status(cmd, result); 677 678 if (host_byte(result) == DID_RESET) { 679 /* Third party bus reset or reset for error recovery 680 * reasons. Just retry the command and see what 681 * happens. 682 */ 683 action = ACTION_RETRY; 684 } else if (sense_valid && sense_current) { 685 switch (sshdr.sense_key) { 686 case UNIT_ATTENTION: 687 if (cmd->device->removable) { 688 /* Detected disc change. Set a bit 689 * and quietly refuse further access. 690 */ 691 cmd->device->changed = 1; 692 action = ACTION_FAIL; 693 } else { 694 /* Must have been a power glitch, or a 695 * bus reset. Could not have been a 696 * media change, so we just retry the 697 * command and see what happens. 698 */ 699 action = ACTION_RETRY; 700 } 701 break; 702 case ILLEGAL_REQUEST: 703 /* If we had an ILLEGAL REQUEST returned, then 704 * we may have performed an unsupported 705 * command. The only thing this should be 706 * would be a ten byte read where only a six 707 * byte read was supported. Also, on a system 708 * where READ CAPACITY failed, we may have 709 * read past the end of the disk. 710 */ 711 if ((cmd->device->use_10_for_rw && 712 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 713 (cmd->cmnd[0] == READ_10 || 714 cmd->cmnd[0] == WRITE_10)) { 715 /* This will issue a new 6-byte command. */ 716 cmd->device->use_10_for_rw = 0; 717 action = ACTION_REPREP; 718 } else if (sshdr.asc == 0x10) /* DIX */ { 719 action = ACTION_FAIL; 720 blk_stat = BLK_STS_PROTECTION; 721 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 722 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 723 action = ACTION_FAIL; 724 blk_stat = BLK_STS_TARGET; 725 } else 726 action = ACTION_FAIL; 727 break; 728 case ABORTED_COMMAND: 729 action = ACTION_FAIL; 730 if (sshdr.asc == 0x10) /* DIF */ 731 blk_stat = BLK_STS_PROTECTION; 732 break; 733 case NOT_READY: 734 /* If the device is in the process of becoming 735 * ready, or has a temporary blockage, retry. 736 */ 737 if (sshdr.asc == 0x04) { 738 switch (sshdr.ascq) { 739 case 0x01: /* becoming ready */ 740 case 0x04: /* format in progress */ 741 case 0x05: /* rebuild in progress */ 742 case 0x06: /* recalculation in progress */ 743 case 0x07: /* operation in progress */ 744 case 0x08: /* Long write in progress */ 745 case 0x09: /* self test in progress */ 746 case 0x14: /* space allocation in progress */ 747 case 0x1a: /* start stop unit in progress */ 748 case 0x1b: /* sanitize in progress */ 749 case 0x1d: /* configuration in progress */ 750 case 0x24: /* depopulation in progress */ 751 action = ACTION_DELAYED_RETRY; 752 break; 753 default: 754 action = ACTION_FAIL; 755 break; 756 } 757 } else 758 action = ACTION_FAIL; 759 break; 760 case VOLUME_OVERFLOW: 761 /* See SSC3rXX or current. */ 762 action = ACTION_FAIL; 763 break; 764 default: 765 action = ACTION_FAIL; 766 break; 767 } 768 } else 769 action = ACTION_FAIL; 770 771 if (action != ACTION_FAIL && 772 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 773 action = ACTION_FAIL; 774 775 switch (action) { 776 case ACTION_FAIL: 777 /* Give up and fail the remainder of the request */ 778 if (!(req->rq_flags & RQF_QUIET)) { 779 static DEFINE_RATELIMIT_STATE(_rs, 780 DEFAULT_RATELIMIT_INTERVAL, 781 DEFAULT_RATELIMIT_BURST); 782 783 if (unlikely(scsi_logging_level)) 784 level = 785 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 786 SCSI_LOG_MLCOMPLETE_BITS); 787 788 /* 789 * if logging is enabled the failure will be printed 790 * in scsi_log_completion(), so avoid duplicate messages 791 */ 792 if (!level && __ratelimit(&_rs)) { 793 scsi_print_result(cmd, NULL, FAILED); 794 if (driver_byte(result) == DRIVER_SENSE) 795 scsi_print_sense(cmd); 796 scsi_print_command(cmd); 797 } 798 } 799 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 800 return; 801 /*FALLTHRU*/ 802 case ACTION_REPREP: 803 scsi_io_completion_reprep(cmd, q); 804 break; 805 case ACTION_RETRY: 806 /* Retry the same command immediately */ 807 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 808 break; 809 case ACTION_DELAYED_RETRY: 810 /* Retry the same command after a delay */ 811 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 812 break; 813 } 814 } 815 816 /* 817 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 818 * new result that may suppress further error checking. Also modifies 819 * *blk_statp in some cases. 820 */ 821 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 822 blk_status_t *blk_statp) 823 { 824 bool sense_valid; 825 bool sense_current = true; /* false implies "deferred sense" */ 826 struct request *req = cmd->request; 827 struct scsi_sense_hdr sshdr; 828 829 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 830 if (sense_valid) 831 sense_current = !scsi_sense_is_deferred(&sshdr); 832 833 if (blk_rq_is_passthrough(req)) { 834 if (sense_valid) { 835 /* 836 * SG_IO wants current and deferred errors 837 */ 838 scsi_req(req)->sense_len = 839 min(8 + cmd->sense_buffer[7], 840 SCSI_SENSE_BUFFERSIZE); 841 } 842 if (sense_current) 843 *blk_statp = scsi_result_to_blk_status(cmd, result); 844 } else if (blk_rq_bytes(req) == 0 && sense_current) { 845 /* 846 * Flush commands do not transfers any data, and thus cannot use 847 * good_bytes != blk_rq_bytes(req) as the signal for an error. 848 * This sets *blk_statp explicitly for the problem case. 849 */ 850 *blk_statp = scsi_result_to_blk_status(cmd, result); 851 } 852 /* 853 * Recovered errors need reporting, but they're always treated as 854 * success, so fiddle the result code here. For passthrough requests 855 * we already took a copy of the original into sreq->result which 856 * is what gets returned to the user 857 */ 858 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 859 bool do_print = true; 860 /* 861 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 862 * skip print since caller wants ATA registers. Only occurs 863 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 864 */ 865 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 866 do_print = false; 867 else if (req->rq_flags & RQF_QUIET) 868 do_print = false; 869 if (do_print) 870 scsi_print_sense(cmd); 871 result = 0; 872 /* for passthrough, *blk_statp may be set */ 873 *blk_statp = BLK_STS_OK; 874 } 875 /* 876 * Another corner case: the SCSI status byte is non-zero but 'good'. 877 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 878 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 879 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 880 * intermediate statuses (both obsolete in SAM-4) as good. 881 */ 882 if (status_byte(result) && scsi_status_is_good(result)) { 883 result = 0; 884 *blk_statp = BLK_STS_OK; 885 } 886 return result; 887 } 888 889 /* 890 * Function: scsi_io_completion() 891 * 892 * Purpose: Completion processing for block device I/O requests. 893 * 894 * Arguments: cmd - command that is finished. 895 * 896 * Lock status: Assumed that no lock is held upon entry. 897 * 898 * Returns: Nothing 899 * 900 * Notes: We will finish off the specified number of sectors. If we 901 * are done, the command block will be released and the queue 902 * function will be goosed. If we are not done then we have to 903 * figure out what to do next: 904 * 905 * a) We can call scsi_requeue_command(). The request 906 * will be unprepared and put back on the queue. Then 907 * a new command will be created for it. This should 908 * be used if we made forward progress, or if we want 909 * to switch from READ(10) to READ(6) for example. 910 * 911 * b) We can call __scsi_queue_insert(). The request will 912 * be put back on the queue and retried using the same 913 * command as before, possibly after a delay. 914 * 915 * c) We can call scsi_end_request() with blk_stat other than 916 * BLK_STS_OK, to fail the remainder of the request. 917 */ 918 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 919 { 920 int result = cmd->result; 921 struct request_queue *q = cmd->device->request_queue; 922 struct request *req = cmd->request; 923 blk_status_t blk_stat = BLK_STS_OK; 924 925 if (unlikely(result)) /* a nz result may or may not be an error */ 926 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 927 928 if (unlikely(blk_rq_is_passthrough(req))) { 929 /* 930 * scsi_result_to_blk_status may have reset the host_byte 931 */ 932 scsi_req(req)->result = cmd->result; 933 } 934 935 /* 936 * Next deal with any sectors which we were able to correctly 937 * handle. 938 */ 939 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 940 "%u sectors total, %d bytes done.\n", 941 blk_rq_sectors(req), good_bytes)); 942 943 /* 944 * Next deal with any sectors which we were able to correctly 945 * handle. Failed, zero length commands always need to drop down 946 * to retry code. Fast path should return in this block. 947 */ 948 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 949 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 950 return; /* no bytes remaining */ 951 } 952 953 /* Kill remainder if no retries. */ 954 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 955 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 956 WARN_ONCE(true, 957 "Bytes remaining after failed, no-retry command"); 958 return; 959 } 960 961 /* 962 * If there had been no error, but we have leftover bytes in the 963 * requeues just queue the command up again. 964 */ 965 if (likely(result == 0)) 966 scsi_io_completion_reprep(cmd, q); 967 else 968 scsi_io_completion_action(cmd, result); 969 } 970 971 static blk_status_t scsi_init_sgtable(struct request *req, 972 struct scsi_data_buffer *sdb) 973 { 974 int count; 975 976 /* 977 * If sg table allocation fails, requeue request later. 978 */ 979 if (unlikely(sg_alloc_table_chained(&sdb->table, 980 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 981 return BLK_STS_RESOURCE; 982 983 /* 984 * Next, walk the list, and fill in the addresses and sizes of 985 * each segment. 986 */ 987 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 988 BUG_ON(count > sdb->table.nents); 989 sdb->table.nents = count; 990 sdb->length = blk_rq_payload_bytes(req); 991 return BLK_STS_OK; 992 } 993 994 /* 995 * Function: scsi_init_io() 996 * 997 * Purpose: SCSI I/O initialize function. 998 * 999 * Arguments: cmd - Command descriptor we wish to initialize 1000 * 1001 * Returns: BLK_STS_OK on success 1002 * BLK_STS_RESOURCE if the failure is retryable 1003 * BLK_STS_IOERR if the failure is fatal 1004 */ 1005 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1006 { 1007 struct request *rq = cmd->request; 1008 blk_status_t ret; 1009 1010 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1011 return BLK_STS_IOERR; 1012 1013 ret = scsi_init_sgtable(rq, &cmd->sdb); 1014 if (ret) 1015 return ret; 1016 1017 if (blk_integrity_rq(rq)) { 1018 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1019 int ivecs, count; 1020 1021 if (WARN_ON_ONCE(!prot_sdb)) { 1022 /* 1023 * This can happen if someone (e.g. multipath) 1024 * queues a command to a device on an adapter 1025 * that does not support DIX. 1026 */ 1027 ret = BLK_STS_IOERR; 1028 goto out_free_sgtables; 1029 } 1030 1031 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1032 1033 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1034 prot_sdb->table.sgl)) { 1035 ret = BLK_STS_RESOURCE; 1036 goto out_free_sgtables; 1037 } 1038 1039 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1040 prot_sdb->table.sgl); 1041 BUG_ON(count > ivecs); 1042 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1043 1044 cmd->prot_sdb = prot_sdb; 1045 cmd->prot_sdb->table.nents = count; 1046 } 1047 1048 return BLK_STS_OK; 1049 out_free_sgtables: 1050 scsi_mq_free_sgtables(cmd); 1051 return ret; 1052 } 1053 EXPORT_SYMBOL(scsi_init_io); 1054 1055 /** 1056 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1057 * @rq: Request associated with the SCSI command to be initialized. 1058 * 1059 * This function initializes the members of struct scsi_cmnd that must be 1060 * initialized before request processing starts and that won't be 1061 * reinitialized if a SCSI command is requeued. 1062 * 1063 * Called from inside blk_get_request() for pass-through requests and from 1064 * inside scsi_init_command() for filesystem requests. 1065 */ 1066 static void scsi_initialize_rq(struct request *rq) 1067 { 1068 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1069 1070 scsi_req_init(&cmd->req); 1071 init_rcu_head(&cmd->rcu); 1072 cmd->jiffies_at_alloc = jiffies; 1073 cmd->retries = 0; 1074 } 1075 1076 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1077 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1078 { 1079 struct scsi_device *sdev = cmd->device; 1080 struct Scsi_Host *shost = sdev->host; 1081 unsigned long flags; 1082 1083 if (shost->use_cmd_list) { 1084 spin_lock_irqsave(&sdev->list_lock, flags); 1085 list_add_tail(&cmd->list, &sdev->cmd_list); 1086 spin_unlock_irqrestore(&sdev->list_lock, flags); 1087 } 1088 } 1089 1090 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1091 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1092 { 1093 struct scsi_device *sdev = cmd->device; 1094 struct Scsi_Host *shost = sdev->host; 1095 unsigned long flags; 1096 1097 if (shost->use_cmd_list) { 1098 spin_lock_irqsave(&sdev->list_lock, flags); 1099 BUG_ON(list_empty(&cmd->list)); 1100 list_del_init(&cmd->list); 1101 spin_unlock_irqrestore(&sdev->list_lock, flags); 1102 } 1103 } 1104 1105 /* Called after a request has been started. */ 1106 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1107 { 1108 void *buf = cmd->sense_buffer; 1109 void *prot = cmd->prot_sdb; 1110 struct request *rq = blk_mq_rq_from_pdu(cmd); 1111 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1112 unsigned long jiffies_at_alloc; 1113 int retries; 1114 1115 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1116 flags |= SCMD_INITIALIZED; 1117 scsi_initialize_rq(rq); 1118 } 1119 1120 jiffies_at_alloc = cmd->jiffies_at_alloc; 1121 retries = cmd->retries; 1122 /* zero out the cmd, except for the embedded scsi_request */ 1123 memset((char *)cmd + sizeof(cmd->req), 0, 1124 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1125 1126 cmd->device = dev; 1127 cmd->sense_buffer = buf; 1128 cmd->prot_sdb = prot; 1129 cmd->flags = flags; 1130 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1131 cmd->jiffies_at_alloc = jiffies_at_alloc; 1132 cmd->retries = retries; 1133 1134 scsi_add_cmd_to_list(cmd); 1135 } 1136 1137 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1138 struct request *req) 1139 { 1140 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1141 1142 /* 1143 * Passthrough requests may transfer data, in which case they must 1144 * a bio attached to them. Or they might contain a SCSI command 1145 * that does not transfer data, in which case they may optionally 1146 * submit a request without an attached bio. 1147 */ 1148 if (req->bio) { 1149 blk_status_t ret = scsi_init_io(cmd); 1150 if (unlikely(ret != BLK_STS_OK)) 1151 return ret; 1152 } else { 1153 BUG_ON(blk_rq_bytes(req)); 1154 1155 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1156 } 1157 1158 cmd->cmd_len = scsi_req(req)->cmd_len; 1159 cmd->cmnd = scsi_req(req)->cmd; 1160 cmd->transfersize = blk_rq_bytes(req); 1161 cmd->allowed = scsi_req(req)->retries; 1162 return BLK_STS_OK; 1163 } 1164 1165 /* 1166 * Setup a normal block command. These are simple request from filesystems 1167 * that still need to be translated to SCSI CDBs from the ULD. 1168 */ 1169 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1170 struct request *req) 1171 { 1172 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1173 1174 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1175 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1176 if (ret != BLK_STS_OK) 1177 return ret; 1178 } 1179 1180 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1181 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1182 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1183 } 1184 1185 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1186 struct request *req) 1187 { 1188 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1189 1190 if (!blk_rq_bytes(req)) 1191 cmd->sc_data_direction = DMA_NONE; 1192 else if (rq_data_dir(req) == WRITE) 1193 cmd->sc_data_direction = DMA_TO_DEVICE; 1194 else 1195 cmd->sc_data_direction = DMA_FROM_DEVICE; 1196 1197 if (blk_rq_is_scsi(req)) 1198 return scsi_setup_scsi_cmnd(sdev, req); 1199 else 1200 return scsi_setup_fs_cmnd(sdev, req); 1201 } 1202 1203 static blk_status_t 1204 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1205 { 1206 switch (sdev->sdev_state) { 1207 case SDEV_OFFLINE: 1208 case SDEV_TRANSPORT_OFFLINE: 1209 /* 1210 * If the device is offline we refuse to process any 1211 * commands. The device must be brought online 1212 * before trying any recovery commands. 1213 */ 1214 sdev_printk(KERN_ERR, sdev, 1215 "rejecting I/O to offline device\n"); 1216 return BLK_STS_IOERR; 1217 case SDEV_DEL: 1218 /* 1219 * If the device is fully deleted, we refuse to 1220 * process any commands as well. 1221 */ 1222 sdev_printk(KERN_ERR, sdev, 1223 "rejecting I/O to dead device\n"); 1224 return BLK_STS_IOERR; 1225 case SDEV_BLOCK: 1226 case SDEV_CREATED_BLOCK: 1227 return BLK_STS_RESOURCE; 1228 case SDEV_QUIESCE: 1229 /* 1230 * If the devices is blocked we defer normal commands. 1231 */ 1232 if (req && !(req->rq_flags & RQF_PREEMPT)) 1233 return BLK_STS_RESOURCE; 1234 return BLK_STS_OK; 1235 default: 1236 /* 1237 * For any other not fully online state we only allow 1238 * special commands. In particular any user initiated 1239 * command is not allowed. 1240 */ 1241 if (req && !(req->rq_flags & RQF_PREEMPT)) 1242 return BLK_STS_IOERR; 1243 return BLK_STS_OK; 1244 } 1245 } 1246 1247 /* 1248 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1249 * return 0. 1250 * 1251 * Called with the queue_lock held. 1252 */ 1253 static inline int scsi_dev_queue_ready(struct request_queue *q, 1254 struct scsi_device *sdev) 1255 { 1256 unsigned int busy; 1257 1258 busy = atomic_inc_return(&sdev->device_busy) - 1; 1259 if (atomic_read(&sdev->device_blocked)) { 1260 if (busy) 1261 goto out_dec; 1262 1263 /* 1264 * unblock after device_blocked iterates to zero 1265 */ 1266 if (atomic_dec_return(&sdev->device_blocked) > 0) 1267 goto out_dec; 1268 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1269 "unblocking device at zero depth\n")); 1270 } 1271 1272 if (busy >= sdev->queue_depth) 1273 goto out_dec; 1274 1275 return 1; 1276 out_dec: 1277 atomic_dec(&sdev->device_busy); 1278 return 0; 1279 } 1280 1281 /* 1282 * scsi_target_queue_ready: checks if there we can send commands to target 1283 * @sdev: scsi device on starget to check. 1284 */ 1285 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1286 struct scsi_device *sdev) 1287 { 1288 struct scsi_target *starget = scsi_target(sdev); 1289 unsigned int busy; 1290 1291 if (starget->single_lun) { 1292 spin_lock_irq(shost->host_lock); 1293 if (starget->starget_sdev_user && 1294 starget->starget_sdev_user != sdev) { 1295 spin_unlock_irq(shost->host_lock); 1296 return 0; 1297 } 1298 starget->starget_sdev_user = sdev; 1299 spin_unlock_irq(shost->host_lock); 1300 } 1301 1302 if (starget->can_queue <= 0) 1303 return 1; 1304 1305 busy = atomic_inc_return(&starget->target_busy) - 1; 1306 if (atomic_read(&starget->target_blocked) > 0) { 1307 if (busy) 1308 goto starved; 1309 1310 /* 1311 * unblock after target_blocked iterates to zero 1312 */ 1313 if (atomic_dec_return(&starget->target_blocked) > 0) 1314 goto out_dec; 1315 1316 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1317 "unblocking target at zero depth\n")); 1318 } 1319 1320 if (busy >= starget->can_queue) 1321 goto starved; 1322 1323 return 1; 1324 1325 starved: 1326 spin_lock_irq(shost->host_lock); 1327 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1328 spin_unlock_irq(shost->host_lock); 1329 out_dec: 1330 if (starget->can_queue > 0) 1331 atomic_dec(&starget->target_busy); 1332 return 0; 1333 } 1334 1335 /* 1336 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1337 * return 0. We must end up running the queue again whenever 0 is 1338 * returned, else IO can hang. 1339 */ 1340 static inline int scsi_host_queue_ready(struct request_queue *q, 1341 struct Scsi_Host *shost, 1342 struct scsi_device *sdev) 1343 { 1344 unsigned int busy; 1345 1346 if (scsi_host_in_recovery(shost)) 1347 return 0; 1348 1349 busy = atomic_inc_return(&shost->host_busy) - 1; 1350 if (atomic_read(&shost->host_blocked) > 0) { 1351 if (busy) 1352 goto starved; 1353 1354 /* 1355 * unblock after host_blocked iterates to zero 1356 */ 1357 if (atomic_dec_return(&shost->host_blocked) > 0) 1358 goto out_dec; 1359 1360 SCSI_LOG_MLQUEUE(3, 1361 shost_printk(KERN_INFO, shost, 1362 "unblocking host at zero depth\n")); 1363 } 1364 1365 if (shost->can_queue > 0 && busy >= shost->can_queue) 1366 goto starved; 1367 if (shost->host_self_blocked) 1368 goto starved; 1369 1370 /* We're OK to process the command, so we can't be starved */ 1371 if (!list_empty(&sdev->starved_entry)) { 1372 spin_lock_irq(shost->host_lock); 1373 if (!list_empty(&sdev->starved_entry)) 1374 list_del_init(&sdev->starved_entry); 1375 spin_unlock_irq(shost->host_lock); 1376 } 1377 1378 return 1; 1379 1380 starved: 1381 spin_lock_irq(shost->host_lock); 1382 if (list_empty(&sdev->starved_entry)) 1383 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1384 spin_unlock_irq(shost->host_lock); 1385 out_dec: 1386 scsi_dec_host_busy(shost); 1387 return 0; 1388 } 1389 1390 /* 1391 * Busy state exporting function for request stacking drivers. 1392 * 1393 * For efficiency, no lock is taken to check the busy state of 1394 * shost/starget/sdev, since the returned value is not guaranteed and 1395 * may be changed after request stacking drivers call the function, 1396 * regardless of taking lock or not. 1397 * 1398 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1399 * needs to return 'not busy'. Otherwise, request stacking drivers 1400 * may hold requests forever. 1401 */ 1402 static bool scsi_mq_lld_busy(struct request_queue *q) 1403 { 1404 struct scsi_device *sdev = q->queuedata; 1405 struct Scsi_Host *shost; 1406 1407 if (blk_queue_dying(q)) 1408 return false; 1409 1410 shost = sdev->host; 1411 1412 /* 1413 * Ignore host/starget busy state. 1414 * Since block layer does not have a concept of fairness across 1415 * multiple queues, congestion of host/starget needs to be handled 1416 * in SCSI layer. 1417 */ 1418 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1419 return true; 1420 1421 return false; 1422 } 1423 1424 static void scsi_softirq_done(struct request *rq) 1425 { 1426 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1427 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1428 int disposition; 1429 1430 INIT_LIST_HEAD(&cmd->eh_entry); 1431 1432 atomic_inc(&cmd->device->iodone_cnt); 1433 if (cmd->result) 1434 atomic_inc(&cmd->device->ioerr_cnt); 1435 1436 disposition = scsi_decide_disposition(cmd); 1437 if (disposition != SUCCESS && 1438 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1439 sdev_printk(KERN_ERR, cmd->device, 1440 "timing out command, waited %lus\n", 1441 wait_for/HZ); 1442 disposition = SUCCESS; 1443 } 1444 1445 scsi_log_completion(cmd, disposition); 1446 1447 switch (disposition) { 1448 case SUCCESS: 1449 scsi_finish_command(cmd); 1450 break; 1451 case NEEDS_RETRY: 1452 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1453 break; 1454 case ADD_TO_MLQUEUE: 1455 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1456 break; 1457 default: 1458 scsi_eh_scmd_add(cmd); 1459 break; 1460 } 1461 } 1462 1463 /** 1464 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1465 * @cmd: command block we are dispatching. 1466 * 1467 * Return: nonzero return request was rejected and device's queue needs to be 1468 * plugged. 1469 */ 1470 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1471 { 1472 struct Scsi_Host *host = cmd->device->host; 1473 int rtn = 0; 1474 1475 atomic_inc(&cmd->device->iorequest_cnt); 1476 1477 /* check if the device is still usable */ 1478 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1479 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1480 * returns an immediate error upwards, and signals 1481 * that the device is no longer present */ 1482 cmd->result = DID_NO_CONNECT << 16; 1483 goto done; 1484 } 1485 1486 /* Check to see if the scsi lld made this device blocked. */ 1487 if (unlikely(scsi_device_blocked(cmd->device))) { 1488 /* 1489 * in blocked state, the command is just put back on 1490 * the device queue. The suspend state has already 1491 * blocked the queue so future requests should not 1492 * occur until the device transitions out of the 1493 * suspend state. 1494 */ 1495 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1496 "queuecommand : device blocked\n")); 1497 return SCSI_MLQUEUE_DEVICE_BUSY; 1498 } 1499 1500 /* Store the LUN value in cmnd, if needed. */ 1501 if (cmd->device->lun_in_cdb) 1502 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1503 (cmd->device->lun << 5 & 0xe0); 1504 1505 scsi_log_send(cmd); 1506 1507 /* 1508 * Before we queue this command, check if the command 1509 * length exceeds what the host adapter can handle. 1510 */ 1511 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1512 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1513 "queuecommand : command too long. " 1514 "cdb_size=%d host->max_cmd_len=%d\n", 1515 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1516 cmd->result = (DID_ABORT << 16); 1517 goto done; 1518 } 1519 1520 if (unlikely(host->shost_state == SHOST_DEL)) { 1521 cmd->result = (DID_NO_CONNECT << 16); 1522 goto done; 1523 1524 } 1525 1526 trace_scsi_dispatch_cmd_start(cmd); 1527 rtn = host->hostt->queuecommand(host, cmd); 1528 if (rtn) { 1529 trace_scsi_dispatch_cmd_error(cmd, rtn); 1530 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1531 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1532 rtn = SCSI_MLQUEUE_HOST_BUSY; 1533 1534 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1535 "queuecommand : request rejected\n")); 1536 } 1537 1538 return rtn; 1539 done: 1540 cmd->scsi_done(cmd); 1541 return 0; 1542 } 1543 1544 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1545 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1546 { 1547 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1548 sizeof(struct scatterlist); 1549 } 1550 1551 static blk_status_t scsi_mq_prep_fn(struct request *req) 1552 { 1553 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1554 struct scsi_device *sdev = req->q->queuedata; 1555 struct Scsi_Host *shost = sdev->host; 1556 struct scatterlist *sg; 1557 1558 scsi_init_command(sdev, cmd); 1559 1560 cmd->request = req; 1561 cmd->tag = req->tag; 1562 cmd->prot_op = SCSI_PROT_NORMAL; 1563 1564 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1565 cmd->sdb.table.sgl = sg; 1566 1567 if (scsi_host_get_prot(shost)) { 1568 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1569 1570 cmd->prot_sdb->table.sgl = 1571 (struct scatterlist *)(cmd->prot_sdb + 1); 1572 } 1573 1574 blk_mq_start_request(req); 1575 1576 return scsi_setup_cmnd(sdev, req); 1577 } 1578 1579 static void scsi_mq_done(struct scsi_cmnd *cmd) 1580 { 1581 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1582 return; 1583 trace_scsi_dispatch_cmd_done(cmd); 1584 1585 /* 1586 * If the block layer didn't complete the request due to a timeout 1587 * injection, scsi must clear its internal completed state so that the 1588 * timeout handler will see it needs to escalate its own error 1589 * recovery. 1590 */ 1591 if (unlikely(!blk_mq_complete_request(cmd->request))) 1592 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1593 } 1594 1595 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1596 { 1597 struct request_queue *q = hctx->queue; 1598 struct scsi_device *sdev = q->queuedata; 1599 1600 atomic_dec(&sdev->device_busy); 1601 } 1602 1603 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1604 { 1605 struct request_queue *q = hctx->queue; 1606 struct scsi_device *sdev = q->queuedata; 1607 1608 if (scsi_dev_queue_ready(q, sdev)) 1609 return true; 1610 1611 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1612 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1613 return false; 1614 } 1615 1616 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1617 const struct blk_mq_queue_data *bd) 1618 { 1619 struct request *req = bd->rq; 1620 struct request_queue *q = req->q; 1621 struct scsi_device *sdev = q->queuedata; 1622 struct Scsi_Host *shost = sdev->host; 1623 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1624 blk_status_t ret; 1625 int reason; 1626 1627 /* 1628 * If the device is not in running state we will reject some or all 1629 * commands. 1630 */ 1631 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1632 ret = scsi_prep_state_check(sdev, req); 1633 if (ret != BLK_STS_OK) 1634 goto out_put_budget; 1635 } 1636 1637 ret = BLK_STS_RESOURCE; 1638 if (!scsi_target_queue_ready(shost, sdev)) 1639 goto out_put_budget; 1640 if (!scsi_host_queue_ready(q, shost, sdev)) 1641 goto out_dec_target_busy; 1642 1643 if (!(req->rq_flags & RQF_DONTPREP)) { 1644 ret = scsi_mq_prep_fn(req); 1645 if (ret != BLK_STS_OK) 1646 goto out_dec_host_busy; 1647 req->rq_flags |= RQF_DONTPREP; 1648 } else { 1649 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1650 blk_mq_start_request(req); 1651 } 1652 1653 if (sdev->simple_tags) 1654 cmd->flags |= SCMD_TAGGED; 1655 else 1656 cmd->flags &= ~SCMD_TAGGED; 1657 1658 scsi_init_cmd_errh(cmd); 1659 cmd->scsi_done = scsi_mq_done; 1660 1661 reason = scsi_dispatch_cmd(cmd); 1662 if (reason) { 1663 scsi_set_blocked(cmd, reason); 1664 ret = BLK_STS_RESOURCE; 1665 goto out_dec_host_busy; 1666 } 1667 1668 return BLK_STS_OK; 1669 1670 out_dec_host_busy: 1671 scsi_dec_host_busy(shost); 1672 out_dec_target_busy: 1673 if (scsi_target(sdev)->can_queue > 0) 1674 atomic_dec(&scsi_target(sdev)->target_busy); 1675 out_put_budget: 1676 scsi_mq_put_budget(hctx); 1677 switch (ret) { 1678 case BLK_STS_OK: 1679 break; 1680 case BLK_STS_RESOURCE: 1681 if (atomic_read(&sdev->device_busy) || 1682 scsi_device_blocked(sdev)) 1683 ret = BLK_STS_DEV_RESOURCE; 1684 break; 1685 default: 1686 if (unlikely(!scsi_device_online(sdev))) 1687 scsi_req(req)->result = DID_NO_CONNECT << 16; 1688 else 1689 scsi_req(req)->result = DID_ERROR << 16; 1690 /* 1691 * Make sure to release all allocated resources when 1692 * we hit an error, as we will never see this command 1693 * again. 1694 */ 1695 if (req->rq_flags & RQF_DONTPREP) 1696 scsi_mq_uninit_cmd(cmd); 1697 break; 1698 } 1699 return ret; 1700 } 1701 1702 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1703 bool reserved) 1704 { 1705 if (reserved) 1706 return BLK_EH_RESET_TIMER; 1707 return scsi_times_out(req); 1708 } 1709 1710 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1711 unsigned int hctx_idx, unsigned int numa_node) 1712 { 1713 struct Scsi_Host *shost = set->driver_data; 1714 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1715 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1716 struct scatterlist *sg; 1717 1718 if (unchecked_isa_dma) 1719 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1720 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1721 GFP_KERNEL, numa_node); 1722 if (!cmd->sense_buffer) 1723 return -ENOMEM; 1724 cmd->req.sense = cmd->sense_buffer; 1725 1726 if (scsi_host_get_prot(shost)) { 1727 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1728 shost->hostt->cmd_size; 1729 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 1730 } 1731 1732 return 0; 1733 } 1734 1735 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1736 unsigned int hctx_idx) 1737 { 1738 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1739 1740 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1741 cmd->sense_buffer); 1742 } 1743 1744 static int scsi_map_queues(struct blk_mq_tag_set *set) 1745 { 1746 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1747 1748 if (shost->hostt->map_queues) 1749 return shost->hostt->map_queues(shost); 1750 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1751 } 1752 1753 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1754 { 1755 struct device *dev = shost->dma_dev; 1756 1757 /* 1758 * this limit is imposed by hardware restrictions 1759 */ 1760 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1761 SG_MAX_SEGMENTS)); 1762 1763 if (scsi_host_prot_dma(shost)) { 1764 shost->sg_prot_tablesize = 1765 min_not_zero(shost->sg_prot_tablesize, 1766 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1767 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1768 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1769 } 1770 1771 blk_queue_max_hw_sectors(q, shost->max_sectors); 1772 if (shost->unchecked_isa_dma) 1773 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1774 blk_queue_segment_boundary(q, shost->dma_boundary); 1775 dma_set_seg_boundary(dev, shost->dma_boundary); 1776 1777 blk_queue_max_segment_size(q, shost->max_segment_size); 1778 dma_set_max_seg_size(dev, shost->max_segment_size); 1779 1780 /* 1781 * Set a reasonable default alignment: The larger of 32-byte (dword), 1782 * which is a common minimum for HBAs, and the minimum DMA alignment, 1783 * which is set by the platform. 1784 * 1785 * Devices that require a bigger alignment can increase it later. 1786 */ 1787 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1788 } 1789 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1790 1791 static const struct blk_mq_ops scsi_mq_ops = { 1792 .get_budget = scsi_mq_get_budget, 1793 .put_budget = scsi_mq_put_budget, 1794 .queue_rq = scsi_queue_rq, 1795 .complete = scsi_softirq_done, 1796 .timeout = scsi_timeout, 1797 #ifdef CONFIG_BLK_DEBUG_FS 1798 .show_rq = scsi_show_rq, 1799 #endif 1800 .init_request = scsi_mq_init_request, 1801 .exit_request = scsi_mq_exit_request, 1802 .initialize_rq_fn = scsi_initialize_rq, 1803 .busy = scsi_mq_lld_busy, 1804 .map_queues = scsi_map_queues, 1805 }; 1806 1807 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1808 { 1809 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1810 if (IS_ERR(sdev->request_queue)) 1811 return NULL; 1812 1813 sdev->request_queue->queuedata = sdev; 1814 __scsi_init_queue(sdev->host, sdev->request_queue); 1815 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1816 return sdev->request_queue; 1817 } 1818 1819 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1820 { 1821 unsigned int cmd_size, sgl_size; 1822 1823 sgl_size = scsi_mq_sgl_size(shost); 1824 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1825 if (scsi_host_get_prot(shost)) 1826 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 1827 1828 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1829 shost->tag_set.ops = &scsi_mq_ops; 1830 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1831 shost->tag_set.queue_depth = shost->can_queue; 1832 shost->tag_set.cmd_size = cmd_size; 1833 shost->tag_set.numa_node = NUMA_NO_NODE; 1834 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1835 shost->tag_set.flags |= 1836 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1837 shost->tag_set.driver_data = shost; 1838 1839 return blk_mq_alloc_tag_set(&shost->tag_set); 1840 } 1841 1842 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1843 { 1844 blk_mq_free_tag_set(&shost->tag_set); 1845 } 1846 1847 /** 1848 * scsi_device_from_queue - return sdev associated with a request_queue 1849 * @q: The request queue to return the sdev from 1850 * 1851 * Return the sdev associated with a request queue or NULL if the 1852 * request_queue does not reference a SCSI device. 1853 */ 1854 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1855 { 1856 struct scsi_device *sdev = NULL; 1857 1858 if (q->mq_ops == &scsi_mq_ops) 1859 sdev = q->queuedata; 1860 if (!sdev || !get_device(&sdev->sdev_gendev)) 1861 sdev = NULL; 1862 1863 return sdev; 1864 } 1865 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1866 1867 /* 1868 * Function: scsi_block_requests() 1869 * 1870 * Purpose: Utility function used by low-level drivers to prevent further 1871 * commands from being queued to the device. 1872 * 1873 * Arguments: shost - Host in question 1874 * 1875 * Returns: Nothing 1876 * 1877 * Lock status: No locks are assumed held. 1878 * 1879 * Notes: There is no timer nor any other means by which the requests 1880 * get unblocked other than the low-level driver calling 1881 * scsi_unblock_requests(). 1882 */ 1883 void scsi_block_requests(struct Scsi_Host *shost) 1884 { 1885 shost->host_self_blocked = 1; 1886 } 1887 EXPORT_SYMBOL(scsi_block_requests); 1888 1889 /* 1890 * Function: scsi_unblock_requests() 1891 * 1892 * Purpose: Utility function used by low-level drivers to allow further 1893 * commands from being queued to the device. 1894 * 1895 * Arguments: shost - Host in question 1896 * 1897 * Returns: Nothing 1898 * 1899 * Lock status: No locks are assumed held. 1900 * 1901 * Notes: There is no timer nor any other means by which the requests 1902 * get unblocked other than the low-level driver calling 1903 * scsi_unblock_requests(). 1904 * 1905 * This is done as an API function so that changes to the 1906 * internals of the scsi mid-layer won't require wholesale 1907 * changes to drivers that use this feature. 1908 */ 1909 void scsi_unblock_requests(struct Scsi_Host *shost) 1910 { 1911 shost->host_self_blocked = 0; 1912 scsi_run_host_queues(shost); 1913 } 1914 EXPORT_SYMBOL(scsi_unblock_requests); 1915 1916 int __init scsi_init_queue(void) 1917 { 1918 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1919 sizeof(struct scsi_data_buffer), 1920 0, 0, NULL); 1921 if (!scsi_sdb_cache) { 1922 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1923 return -ENOMEM; 1924 } 1925 1926 return 0; 1927 } 1928 1929 void scsi_exit_queue(void) 1930 { 1931 kmem_cache_destroy(scsi_sense_cache); 1932 kmem_cache_destroy(scsi_sense_isadma_cache); 1933 kmem_cache_destroy(scsi_sdb_cache); 1934 } 1935 1936 /** 1937 * scsi_mode_select - issue a mode select 1938 * @sdev: SCSI device to be queried 1939 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1940 * @sp: Save page bit (0 == don't save, 1 == save) 1941 * @modepage: mode page being requested 1942 * @buffer: request buffer (may not be smaller than eight bytes) 1943 * @len: length of request buffer. 1944 * @timeout: command timeout 1945 * @retries: number of retries before failing 1946 * @data: returns a structure abstracting the mode header data 1947 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1948 * must be SCSI_SENSE_BUFFERSIZE big. 1949 * 1950 * Returns zero if successful; negative error number or scsi 1951 * status on error 1952 * 1953 */ 1954 int 1955 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1956 unsigned char *buffer, int len, int timeout, int retries, 1957 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1958 { 1959 unsigned char cmd[10]; 1960 unsigned char *real_buffer; 1961 int ret; 1962 1963 memset(cmd, 0, sizeof(cmd)); 1964 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1965 1966 if (sdev->use_10_for_ms) { 1967 if (len > 65535) 1968 return -EINVAL; 1969 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1970 if (!real_buffer) 1971 return -ENOMEM; 1972 memcpy(real_buffer + 8, buffer, len); 1973 len += 8; 1974 real_buffer[0] = 0; 1975 real_buffer[1] = 0; 1976 real_buffer[2] = data->medium_type; 1977 real_buffer[3] = data->device_specific; 1978 real_buffer[4] = data->longlba ? 0x01 : 0; 1979 real_buffer[5] = 0; 1980 real_buffer[6] = data->block_descriptor_length >> 8; 1981 real_buffer[7] = data->block_descriptor_length; 1982 1983 cmd[0] = MODE_SELECT_10; 1984 cmd[7] = len >> 8; 1985 cmd[8] = len; 1986 } else { 1987 if (len > 255 || data->block_descriptor_length > 255 || 1988 data->longlba) 1989 return -EINVAL; 1990 1991 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1992 if (!real_buffer) 1993 return -ENOMEM; 1994 memcpy(real_buffer + 4, buffer, len); 1995 len += 4; 1996 real_buffer[0] = 0; 1997 real_buffer[1] = data->medium_type; 1998 real_buffer[2] = data->device_specific; 1999 real_buffer[3] = data->block_descriptor_length; 2000 2001 2002 cmd[0] = MODE_SELECT; 2003 cmd[4] = len; 2004 } 2005 2006 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2007 sshdr, timeout, retries, NULL); 2008 kfree(real_buffer); 2009 return ret; 2010 } 2011 EXPORT_SYMBOL_GPL(scsi_mode_select); 2012 2013 /** 2014 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2015 * @sdev: SCSI device to be queried 2016 * @dbd: set if mode sense will allow block descriptors to be returned 2017 * @modepage: mode page being requested 2018 * @buffer: request buffer (may not be smaller than eight bytes) 2019 * @len: length of request buffer. 2020 * @timeout: command timeout 2021 * @retries: number of retries before failing 2022 * @data: returns a structure abstracting the mode header data 2023 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2024 * must be SCSI_SENSE_BUFFERSIZE big. 2025 * 2026 * Returns zero if unsuccessful, or the header offset (either 4 2027 * or 8 depending on whether a six or ten byte command was 2028 * issued) if successful. 2029 */ 2030 int 2031 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2032 unsigned char *buffer, int len, int timeout, int retries, 2033 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2034 { 2035 unsigned char cmd[12]; 2036 int use_10_for_ms; 2037 int header_length; 2038 int result, retry_count = retries; 2039 struct scsi_sense_hdr my_sshdr; 2040 2041 memset(data, 0, sizeof(*data)); 2042 memset(&cmd[0], 0, 12); 2043 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2044 cmd[2] = modepage; 2045 2046 /* caller might not be interested in sense, but we need it */ 2047 if (!sshdr) 2048 sshdr = &my_sshdr; 2049 2050 retry: 2051 use_10_for_ms = sdev->use_10_for_ms; 2052 2053 if (use_10_for_ms) { 2054 if (len < 8) 2055 len = 8; 2056 2057 cmd[0] = MODE_SENSE_10; 2058 cmd[8] = len; 2059 header_length = 8; 2060 } else { 2061 if (len < 4) 2062 len = 4; 2063 2064 cmd[0] = MODE_SENSE; 2065 cmd[4] = len; 2066 header_length = 4; 2067 } 2068 2069 memset(buffer, 0, len); 2070 2071 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2072 sshdr, timeout, retries, NULL); 2073 2074 /* This code looks awful: what it's doing is making sure an 2075 * ILLEGAL REQUEST sense return identifies the actual command 2076 * byte as the problem. MODE_SENSE commands can return 2077 * ILLEGAL REQUEST if the code page isn't supported */ 2078 2079 if (use_10_for_ms && !scsi_status_is_good(result) && 2080 driver_byte(result) == DRIVER_SENSE) { 2081 if (scsi_sense_valid(sshdr)) { 2082 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2083 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2084 /* 2085 * Invalid command operation code 2086 */ 2087 sdev->use_10_for_ms = 0; 2088 goto retry; 2089 } 2090 } 2091 } 2092 2093 if(scsi_status_is_good(result)) { 2094 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2095 (modepage == 6 || modepage == 8))) { 2096 /* Initio breakage? */ 2097 header_length = 0; 2098 data->length = 13; 2099 data->medium_type = 0; 2100 data->device_specific = 0; 2101 data->longlba = 0; 2102 data->block_descriptor_length = 0; 2103 } else if(use_10_for_ms) { 2104 data->length = buffer[0]*256 + buffer[1] + 2; 2105 data->medium_type = buffer[2]; 2106 data->device_specific = buffer[3]; 2107 data->longlba = buffer[4] & 0x01; 2108 data->block_descriptor_length = buffer[6]*256 2109 + buffer[7]; 2110 } else { 2111 data->length = buffer[0] + 1; 2112 data->medium_type = buffer[1]; 2113 data->device_specific = buffer[2]; 2114 data->block_descriptor_length = buffer[3]; 2115 } 2116 data->header_length = header_length; 2117 } else if ((status_byte(result) == CHECK_CONDITION) && 2118 scsi_sense_valid(sshdr) && 2119 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2120 retry_count--; 2121 goto retry; 2122 } 2123 2124 return result; 2125 } 2126 EXPORT_SYMBOL(scsi_mode_sense); 2127 2128 /** 2129 * scsi_test_unit_ready - test if unit is ready 2130 * @sdev: scsi device to change the state of. 2131 * @timeout: command timeout 2132 * @retries: number of retries before failing 2133 * @sshdr: outpout pointer for decoded sense information. 2134 * 2135 * Returns zero if unsuccessful or an error if TUR failed. For 2136 * removable media, UNIT_ATTENTION sets ->changed flag. 2137 **/ 2138 int 2139 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2140 struct scsi_sense_hdr *sshdr) 2141 { 2142 char cmd[] = { 2143 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2144 }; 2145 int result; 2146 2147 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2148 do { 2149 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2150 timeout, 1, NULL); 2151 if (sdev->removable && scsi_sense_valid(sshdr) && 2152 sshdr->sense_key == UNIT_ATTENTION) 2153 sdev->changed = 1; 2154 } while (scsi_sense_valid(sshdr) && 2155 sshdr->sense_key == UNIT_ATTENTION && --retries); 2156 2157 return result; 2158 } 2159 EXPORT_SYMBOL(scsi_test_unit_ready); 2160 2161 /** 2162 * scsi_device_set_state - Take the given device through the device state model. 2163 * @sdev: scsi device to change the state of. 2164 * @state: state to change to. 2165 * 2166 * Returns zero if successful or an error if the requested 2167 * transition is illegal. 2168 */ 2169 int 2170 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2171 { 2172 enum scsi_device_state oldstate = sdev->sdev_state; 2173 2174 if (state == oldstate) 2175 return 0; 2176 2177 switch (state) { 2178 case SDEV_CREATED: 2179 switch (oldstate) { 2180 case SDEV_CREATED_BLOCK: 2181 break; 2182 default: 2183 goto illegal; 2184 } 2185 break; 2186 2187 case SDEV_RUNNING: 2188 switch (oldstate) { 2189 case SDEV_CREATED: 2190 case SDEV_OFFLINE: 2191 case SDEV_TRANSPORT_OFFLINE: 2192 case SDEV_QUIESCE: 2193 case SDEV_BLOCK: 2194 break; 2195 default: 2196 goto illegal; 2197 } 2198 break; 2199 2200 case SDEV_QUIESCE: 2201 switch (oldstate) { 2202 case SDEV_RUNNING: 2203 case SDEV_OFFLINE: 2204 case SDEV_TRANSPORT_OFFLINE: 2205 break; 2206 default: 2207 goto illegal; 2208 } 2209 break; 2210 2211 case SDEV_OFFLINE: 2212 case SDEV_TRANSPORT_OFFLINE: 2213 switch (oldstate) { 2214 case SDEV_CREATED: 2215 case SDEV_RUNNING: 2216 case SDEV_QUIESCE: 2217 case SDEV_BLOCK: 2218 break; 2219 default: 2220 goto illegal; 2221 } 2222 break; 2223 2224 case SDEV_BLOCK: 2225 switch (oldstate) { 2226 case SDEV_RUNNING: 2227 case SDEV_CREATED_BLOCK: 2228 case SDEV_OFFLINE: 2229 break; 2230 default: 2231 goto illegal; 2232 } 2233 break; 2234 2235 case SDEV_CREATED_BLOCK: 2236 switch (oldstate) { 2237 case SDEV_CREATED: 2238 break; 2239 default: 2240 goto illegal; 2241 } 2242 break; 2243 2244 case SDEV_CANCEL: 2245 switch (oldstate) { 2246 case SDEV_CREATED: 2247 case SDEV_RUNNING: 2248 case SDEV_QUIESCE: 2249 case SDEV_OFFLINE: 2250 case SDEV_TRANSPORT_OFFLINE: 2251 break; 2252 default: 2253 goto illegal; 2254 } 2255 break; 2256 2257 case SDEV_DEL: 2258 switch (oldstate) { 2259 case SDEV_CREATED: 2260 case SDEV_RUNNING: 2261 case SDEV_OFFLINE: 2262 case SDEV_TRANSPORT_OFFLINE: 2263 case SDEV_CANCEL: 2264 case SDEV_BLOCK: 2265 case SDEV_CREATED_BLOCK: 2266 break; 2267 default: 2268 goto illegal; 2269 } 2270 break; 2271 2272 } 2273 sdev->sdev_state = state; 2274 return 0; 2275 2276 illegal: 2277 SCSI_LOG_ERROR_RECOVERY(1, 2278 sdev_printk(KERN_ERR, sdev, 2279 "Illegal state transition %s->%s", 2280 scsi_device_state_name(oldstate), 2281 scsi_device_state_name(state)) 2282 ); 2283 return -EINVAL; 2284 } 2285 EXPORT_SYMBOL(scsi_device_set_state); 2286 2287 /** 2288 * sdev_evt_emit - emit a single SCSI device uevent 2289 * @sdev: associated SCSI device 2290 * @evt: event to emit 2291 * 2292 * Send a single uevent (scsi_event) to the associated scsi_device. 2293 */ 2294 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2295 { 2296 int idx = 0; 2297 char *envp[3]; 2298 2299 switch (evt->evt_type) { 2300 case SDEV_EVT_MEDIA_CHANGE: 2301 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2302 break; 2303 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2304 scsi_rescan_device(&sdev->sdev_gendev); 2305 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2306 break; 2307 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2308 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2309 break; 2310 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2311 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2312 break; 2313 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2314 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2315 break; 2316 case SDEV_EVT_LUN_CHANGE_REPORTED: 2317 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2318 break; 2319 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2320 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2321 break; 2322 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2323 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2324 break; 2325 default: 2326 /* do nothing */ 2327 break; 2328 } 2329 2330 envp[idx++] = NULL; 2331 2332 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2333 } 2334 2335 /** 2336 * sdev_evt_thread - send a uevent for each scsi event 2337 * @work: work struct for scsi_device 2338 * 2339 * Dispatch queued events to their associated scsi_device kobjects 2340 * as uevents. 2341 */ 2342 void scsi_evt_thread(struct work_struct *work) 2343 { 2344 struct scsi_device *sdev; 2345 enum scsi_device_event evt_type; 2346 LIST_HEAD(event_list); 2347 2348 sdev = container_of(work, struct scsi_device, event_work); 2349 2350 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2351 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2352 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2353 2354 while (1) { 2355 struct scsi_event *evt; 2356 struct list_head *this, *tmp; 2357 unsigned long flags; 2358 2359 spin_lock_irqsave(&sdev->list_lock, flags); 2360 list_splice_init(&sdev->event_list, &event_list); 2361 spin_unlock_irqrestore(&sdev->list_lock, flags); 2362 2363 if (list_empty(&event_list)) 2364 break; 2365 2366 list_for_each_safe(this, tmp, &event_list) { 2367 evt = list_entry(this, struct scsi_event, node); 2368 list_del(&evt->node); 2369 scsi_evt_emit(sdev, evt); 2370 kfree(evt); 2371 } 2372 } 2373 } 2374 2375 /** 2376 * sdev_evt_send - send asserted event to uevent thread 2377 * @sdev: scsi_device event occurred on 2378 * @evt: event to send 2379 * 2380 * Assert scsi device event asynchronously. 2381 */ 2382 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2383 { 2384 unsigned long flags; 2385 2386 #if 0 2387 /* FIXME: currently this check eliminates all media change events 2388 * for polled devices. Need to update to discriminate between AN 2389 * and polled events */ 2390 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2391 kfree(evt); 2392 return; 2393 } 2394 #endif 2395 2396 spin_lock_irqsave(&sdev->list_lock, flags); 2397 list_add_tail(&evt->node, &sdev->event_list); 2398 schedule_work(&sdev->event_work); 2399 spin_unlock_irqrestore(&sdev->list_lock, flags); 2400 } 2401 EXPORT_SYMBOL_GPL(sdev_evt_send); 2402 2403 /** 2404 * sdev_evt_alloc - allocate a new scsi event 2405 * @evt_type: type of event to allocate 2406 * @gfpflags: GFP flags for allocation 2407 * 2408 * Allocates and returns a new scsi_event. 2409 */ 2410 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2411 gfp_t gfpflags) 2412 { 2413 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2414 if (!evt) 2415 return NULL; 2416 2417 evt->evt_type = evt_type; 2418 INIT_LIST_HEAD(&evt->node); 2419 2420 /* evt_type-specific initialization, if any */ 2421 switch (evt_type) { 2422 case SDEV_EVT_MEDIA_CHANGE: 2423 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2424 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2425 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2426 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2427 case SDEV_EVT_LUN_CHANGE_REPORTED: 2428 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2429 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2430 default: 2431 /* do nothing */ 2432 break; 2433 } 2434 2435 return evt; 2436 } 2437 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2438 2439 /** 2440 * sdev_evt_send_simple - send asserted event to uevent thread 2441 * @sdev: scsi_device event occurred on 2442 * @evt_type: type of event to send 2443 * @gfpflags: GFP flags for allocation 2444 * 2445 * Assert scsi device event asynchronously, given an event type. 2446 */ 2447 void sdev_evt_send_simple(struct scsi_device *sdev, 2448 enum scsi_device_event evt_type, gfp_t gfpflags) 2449 { 2450 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2451 if (!evt) { 2452 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2453 evt_type); 2454 return; 2455 } 2456 2457 sdev_evt_send(sdev, evt); 2458 } 2459 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2460 2461 /** 2462 * scsi_device_quiesce - Block user issued commands. 2463 * @sdev: scsi device to quiesce. 2464 * 2465 * This works by trying to transition to the SDEV_QUIESCE state 2466 * (which must be a legal transition). When the device is in this 2467 * state, only special requests will be accepted, all others will 2468 * be deferred. Since special requests may also be requeued requests, 2469 * a successful return doesn't guarantee the device will be 2470 * totally quiescent. 2471 * 2472 * Must be called with user context, may sleep. 2473 * 2474 * Returns zero if unsuccessful or an error if not. 2475 */ 2476 int 2477 scsi_device_quiesce(struct scsi_device *sdev) 2478 { 2479 struct request_queue *q = sdev->request_queue; 2480 int err; 2481 2482 /* 2483 * It is allowed to call scsi_device_quiesce() multiple times from 2484 * the same context but concurrent scsi_device_quiesce() calls are 2485 * not allowed. 2486 */ 2487 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2488 2489 if (sdev->quiesced_by == current) 2490 return 0; 2491 2492 blk_set_pm_only(q); 2493 2494 blk_mq_freeze_queue(q); 2495 /* 2496 * Ensure that the effect of blk_set_pm_only() will be visible 2497 * for percpu_ref_tryget() callers that occur after the queue 2498 * unfreeze even if the queue was already frozen before this function 2499 * was called. See also https://lwn.net/Articles/573497/. 2500 */ 2501 synchronize_rcu(); 2502 blk_mq_unfreeze_queue(q); 2503 2504 mutex_lock(&sdev->state_mutex); 2505 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2506 if (err == 0) 2507 sdev->quiesced_by = current; 2508 else 2509 blk_clear_pm_only(q); 2510 mutex_unlock(&sdev->state_mutex); 2511 2512 return err; 2513 } 2514 EXPORT_SYMBOL(scsi_device_quiesce); 2515 2516 /** 2517 * scsi_device_resume - Restart user issued commands to a quiesced device. 2518 * @sdev: scsi device to resume. 2519 * 2520 * Moves the device from quiesced back to running and restarts the 2521 * queues. 2522 * 2523 * Must be called with user context, may sleep. 2524 */ 2525 void scsi_device_resume(struct scsi_device *sdev) 2526 { 2527 /* check if the device state was mutated prior to resume, and if 2528 * so assume the state is being managed elsewhere (for example 2529 * device deleted during suspend) 2530 */ 2531 mutex_lock(&sdev->state_mutex); 2532 if (sdev->quiesced_by) { 2533 sdev->quiesced_by = NULL; 2534 blk_clear_pm_only(sdev->request_queue); 2535 } 2536 if (sdev->sdev_state == SDEV_QUIESCE) 2537 scsi_device_set_state(sdev, SDEV_RUNNING); 2538 mutex_unlock(&sdev->state_mutex); 2539 } 2540 EXPORT_SYMBOL(scsi_device_resume); 2541 2542 static void 2543 device_quiesce_fn(struct scsi_device *sdev, void *data) 2544 { 2545 scsi_device_quiesce(sdev); 2546 } 2547 2548 void 2549 scsi_target_quiesce(struct scsi_target *starget) 2550 { 2551 starget_for_each_device(starget, NULL, device_quiesce_fn); 2552 } 2553 EXPORT_SYMBOL(scsi_target_quiesce); 2554 2555 static void 2556 device_resume_fn(struct scsi_device *sdev, void *data) 2557 { 2558 scsi_device_resume(sdev); 2559 } 2560 2561 void 2562 scsi_target_resume(struct scsi_target *starget) 2563 { 2564 starget_for_each_device(starget, NULL, device_resume_fn); 2565 } 2566 EXPORT_SYMBOL(scsi_target_resume); 2567 2568 /** 2569 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2570 * @sdev: device to block 2571 * 2572 * Pause SCSI command processing on the specified device. Does not sleep. 2573 * 2574 * Returns zero if successful or a negative error code upon failure. 2575 * 2576 * Notes: 2577 * This routine transitions the device to the SDEV_BLOCK state (which must be 2578 * a legal transition). When the device is in this state, command processing 2579 * is paused until the device leaves the SDEV_BLOCK state. See also 2580 * scsi_internal_device_unblock_nowait(). 2581 */ 2582 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2583 { 2584 struct request_queue *q = sdev->request_queue; 2585 int err = 0; 2586 2587 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2588 if (err) { 2589 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2590 2591 if (err) 2592 return err; 2593 } 2594 2595 /* 2596 * The device has transitioned to SDEV_BLOCK. Stop the 2597 * block layer from calling the midlayer with this device's 2598 * request queue. 2599 */ 2600 blk_mq_quiesce_queue_nowait(q); 2601 return 0; 2602 } 2603 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2604 2605 /** 2606 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2607 * @sdev: device to block 2608 * 2609 * Pause SCSI command processing on the specified device and wait until all 2610 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2611 * 2612 * Returns zero if successful or a negative error code upon failure. 2613 * 2614 * Note: 2615 * This routine transitions the device to the SDEV_BLOCK state (which must be 2616 * a legal transition). When the device is in this state, command processing 2617 * is paused until the device leaves the SDEV_BLOCK state. See also 2618 * scsi_internal_device_unblock(). 2619 * 2620 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2621 * scsi_internal_device_block() has blocked a SCSI device and also 2622 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2623 */ 2624 static int scsi_internal_device_block(struct scsi_device *sdev) 2625 { 2626 struct request_queue *q = sdev->request_queue; 2627 int err; 2628 2629 mutex_lock(&sdev->state_mutex); 2630 err = scsi_internal_device_block_nowait(sdev); 2631 if (err == 0) 2632 blk_mq_quiesce_queue(q); 2633 mutex_unlock(&sdev->state_mutex); 2634 2635 return err; 2636 } 2637 2638 void scsi_start_queue(struct scsi_device *sdev) 2639 { 2640 struct request_queue *q = sdev->request_queue; 2641 2642 blk_mq_unquiesce_queue(q); 2643 } 2644 2645 /** 2646 * scsi_internal_device_unblock_nowait - resume a device after a block request 2647 * @sdev: device to resume 2648 * @new_state: state to set the device to after unblocking 2649 * 2650 * Restart the device queue for a previously suspended SCSI device. Does not 2651 * sleep. 2652 * 2653 * Returns zero if successful or a negative error code upon failure. 2654 * 2655 * Notes: 2656 * This routine transitions the device to the SDEV_RUNNING state or to one of 2657 * the offline states (which must be a legal transition) allowing the midlayer 2658 * to goose the queue for this device. 2659 */ 2660 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2661 enum scsi_device_state new_state) 2662 { 2663 /* 2664 * Try to transition the scsi device to SDEV_RUNNING or one of the 2665 * offlined states and goose the device queue if successful. 2666 */ 2667 switch (sdev->sdev_state) { 2668 case SDEV_BLOCK: 2669 case SDEV_TRANSPORT_OFFLINE: 2670 sdev->sdev_state = new_state; 2671 break; 2672 case SDEV_CREATED_BLOCK: 2673 if (new_state == SDEV_TRANSPORT_OFFLINE || 2674 new_state == SDEV_OFFLINE) 2675 sdev->sdev_state = new_state; 2676 else 2677 sdev->sdev_state = SDEV_CREATED; 2678 break; 2679 case SDEV_CANCEL: 2680 case SDEV_OFFLINE: 2681 break; 2682 default: 2683 return -EINVAL; 2684 } 2685 scsi_start_queue(sdev); 2686 2687 return 0; 2688 } 2689 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2690 2691 /** 2692 * scsi_internal_device_unblock - resume a device after a block request 2693 * @sdev: device to resume 2694 * @new_state: state to set the device to after unblocking 2695 * 2696 * Restart the device queue for a previously suspended SCSI device. May sleep. 2697 * 2698 * Returns zero if successful or a negative error code upon failure. 2699 * 2700 * Notes: 2701 * This routine transitions the device to the SDEV_RUNNING state or to one of 2702 * the offline states (which must be a legal transition) allowing the midlayer 2703 * to goose the queue for this device. 2704 */ 2705 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2706 enum scsi_device_state new_state) 2707 { 2708 int ret; 2709 2710 mutex_lock(&sdev->state_mutex); 2711 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2712 mutex_unlock(&sdev->state_mutex); 2713 2714 return ret; 2715 } 2716 2717 static void 2718 device_block(struct scsi_device *sdev, void *data) 2719 { 2720 scsi_internal_device_block(sdev); 2721 } 2722 2723 static int 2724 target_block(struct device *dev, void *data) 2725 { 2726 if (scsi_is_target_device(dev)) 2727 starget_for_each_device(to_scsi_target(dev), NULL, 2728 device_block); 2729 return 0; 2730 } 2731 2732 void 2733 scsi_target_block(struct device *dev) 2734 { 2735 if (scsi_is_target_device(dev)) 2736 starget_for_each_device(to_scsi_target(dev), NULL, 2737 device_block); 2738 else 2739 device_for_each_child(dev, NULL, target_block); 2740 } 2741 EXPORT_SYMBOL_GPL(scsi_target_block); 2742 2743 static void 2744 device_unblock(struct scsi_device *sdev, void *data) 2745 { 2746 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2747 } 2748 2749 static int 2750 target_unblock(struct device *dev, void *data) 2751 { 2752 if (scsi_is_target_device(dev)) 2753 starget_for_each_device(to_scsi_target(dev), data, 2754 device_unblock); 2755 return 0; 2756 } 2757 2758 void 2759 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2760 { 2761 if (scsi_is_target_device(dev)) 2762 starget_for_each_device(to_scsi_target(dev), &new_state, 2763 device_unblock); 2764 else 2765 device_for_each_child(dev, &new_state, target_unblock); 2766 } 2767 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2768 2769 /** 2770 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2771 * @sgl: scatter-gather list 2772 * @sg_count: number of segments in sg 2773 * @offset: offset in bytes into sg, on return offset into the mapped area 2774 * @len: bytes to map, on return number of bytes mapped 2775 * 2776 * Returns virtual address of the start of the mapped page 2777 */ 2778 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2779 size_t *offset, size_t *len) 2780 { 2781 int i; 2782 size_t sg_len = 0, len_complete = 0; 2783 struct scatterlist *sg; 2784 struct page *page; 2785 2786 WARN_ON(!irqs_disabled()); 2787 2788 for_each_sg(sgl, sg, sg_count, i) { 2789 len_complete = sg_len; /* Complete sg-entries */ 2790 sg_len += sg->length; 2791 if (sg_len > *offset) 2792 break; 2793 } 2794 2795 if (unlikely(i == sg_count)) { 2796 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2797 "elements %d\n", 2798 __func__, sg_len, *offset, sg_count); 2799 WARN_ON(1); 2800 return NULL; 2801 } 2802 2803 /* Offset starting from the beginning of first page in this sg-entry */ 2804 *offset = *offset - len_complete + sg->offset; 2805 2806 /* Assumption: contiguous pages can be accessed as "page + i" */ 2807 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2808 *offset &= ~PAGE_MASK; 2809 2810 /* Bytes in this sg-entry from *offset to the end of the page */ 2811 sg_len = PAGE_SIZE - *offset; 2812 if (*len > sg_len) 2813 *len = sg_len; 2814 2815 return kmap_atomic(page); 2816 } 2817 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2818 2819 /** 2820 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2821 * @virt: virtual address to be unmapped 2822 */ 2823 void scsi_kunmap_atomic_sg(void *virt) 2824 { 2825 kunmap_atomic(virt); 2826 } 2827 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2828 2829 void sdev_disable_disk_events(struct scsi_device *sdev) 2830 { 2831 atomic_inc(&sdev->disk_events_disable_depth); 2832 } 2833 EXPORT_SYMBOL(sdev_disable_disk_events); 2834 2835 void sdev_enable_disk_events(struct scsi_device *sdev) 2836 { 2837 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2838 return; 2839 atomic_dec(&sdev->disk_events_disable_depth); 2840 } 2841 EXPORT_SYMBOL(sdev_enable_disk_events); 2842 2843 /** 2844 * scsi_vpd_lun_id - return a unique device identification 2845 * @sdev: SCSI device 2846 * @id: buffer for the identification 2847 * @id_len: length of the buffer 2848 * 2849 * Copies a unique device identification into @id based 2850 * on the information in the VPD page 0x83 of the device. 2851 * The string will be formatted as a SCSI name string. 2852 * 2853 * Returns the length of the identification or error on failure. 2854 * If the identifier is longer than the supplied buffer the actual 2855 * identifier length is returned and the buffer is not zero-padded. 2856 */ 2857 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2858 { 2859 u8 cur_id_type = 0xff; 2860 u8 cur_id_size = 0; 2861 const unsigned char *d, *cur_id_str; 2862 const struct scsi_vpd *vpd_pg83; 2863 int id_size = -EINVAL; 2864 2865 rcu_read_lock(); 2866 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2867 if (!vpd_pg83) { 2868 rcu_read_unlock(); 2869 return -ENXIO; 2870 } 2871 2872 /* 2873 * Look for the correct descriptor. 2874 * Order of preference for lun descriptor: 2875 * - SCSI name string 2876 * - NAA IEEE Registered Extended 2877 * - EUI-64 based 16-byte 2878 * - EUI-64 based 12-byte 2879 * - NAA IEEE Registered 2880 * - NAA IEEE Extended 2881 * - T10 Vendor ID 2882 * as longer descriptors reduce the likelyhood 2883 * of identification clashes. 2884 */ 2885 2886 /* The id string must be at least 20 bytes + terminating NULL byte */ 2887 if (id_len < 21) { 2888 rcu_read_unlock(); 2889 return -EINVAL; 2890 } 2891 2892 memset(id, 0, id_len); 2893 d = vpd_pg83->data + 4; 2894 while (d < vpd_pg83->data + vpd_pg83->len) { 2895 /* Skip designators not referring to the LUN */ 2896 if ((d[1] & 0x30) != 0x00) 2897 goto next_desig; 2898 2899 switch (d[1] & 0xf) { 2900 case 0x1: 2901 /* T10 Vendor ID */ 2902 if (cur_id_size > d[3]) 2903 break; 2904 /* Prefer anything */ 2905 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2906 break; 2907 cur_id_size = d[3]; 2908 if (cur_id_size + 4 > id_len) 2909 cur_id_size = id_len - 4; 2910 cur_id_str = d + 4; 2911 cur_id_type = d[1] & 0xf; 2912 id_size = snprintf(id, id_len, "t10.%*pE", 2913 cur_id_size, cur_id_str); 2914 break; 2915 case 0x2: 2916 /* EUI-64 */ 2917 if (cur_id_size > d[3]) 2918 break; 2919 /* Prefer NAA IEEE Registered Extended */ 2920 if (cur_id_type == 0x3 && 2921 cur_id_size == d[3]) 2922 break; 2923 cur_id_size = d[3]; 2924 cur_id_str = d + 4; 2925 cur_id_type = d[1] & 0xf; 2926 switch (cur_id_size) { 2927 case 8: 2928 id_size = snprintf(id, id_len, 2929 "eui.%8phN", 2930 cur_id_str); 2931 break; 2932 case 12: 2933 id_size = snprintf(id, id_len, 2934 "eui.%12phN", 2935 cur_id_str); 2936 break; 2937 case 16: 2938 id_size = snprintf(id, id_len, 2939 "eui.%16phN", 2940 cur_id_str); 2941 break; 2942 default: 2943 cur_id_size = 0; 2944 break; 2945 } 2946 break; 2947 case 0x3: 2948 /* NAA */ 2949 if (cur_id_size > d[3]) 2950 break; 2951 cur_id_size = d[3]; 2952 cur_id_str = d + 4; 2953 cur_id_type = d[1] & 0xf; 2954 switch (cur_id_size) { 2955 case 8: 2956 id_size = snprintf(id, id_len, 2957 "naa.%8phN", 2958 cur_id_str); 2959 break; 2960 case 16: 2961 id_size = snprintf(id, id_len, 2962 "naa.%16phN", 2963 cur_id_str); 2964 break; 2965 default: 2966 cur_id_size = 0; 2967 break; 2968 } 2969 break; 2970 case 0x8: 2971 /* SCSI name string */ 2972 if (cur_id_size + 4 > d[3]) 2973 break; 2974 /* Prefer others for truncated descriptor */ 2975 if (cur_id_size && d[3] > id_len) 2976 break; 2977 cur_id_size = id_size = d[3]; 2978 cur_id_str = d + 4; 2979 cur_id_type = d[1] & 0xf; 2980 if (cur_id_size >= id_len) 2981 cur_id_size = id_len - 1; 2982 memcpy(id, cur_id_str, cur_id_size); 2983 /* Decrease priority for truncated descriptor */ 2984 if (cur_id_size != id_size) 2985 cur_id_size = 6; 2986 break; 2987 default: 2988 break; 2989 } 2990 next_desig: 2991 d += d[3] + 4; 2992 } 2993 rcu_read_unlock(); 2994 2995 return id_size; 2996 } 2997 EXPORT_SYMBOL(scsi_vpd_lun_id); 2998 2999 /* 3000 * scsi_vpd_tpg_id - return a target port group identifier 3001 * @sdev: SCSI device 3002 * 3003 * Returns the Target Port Group identifier from the information 3004 * froom VPD page 0x83 of the device. 3005 * 3006 * Returns the identifier or error on failure. 3007 */ 3008 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3009 { 3010 const unsigned char *d; 3011 const struct scsi_vpd *vpd_pg83; 3012 int group_id = -EAGAIN, rel_port = -1; 3013 3014 rcu_read_lock(); 3015 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3016 if (!vpd_pg83) { 3017 rcu_read_unlock(); 3018 return -ENXIO; 3019 } 3020 3021 d = vpd_pg83->data + 4; 3022 while (d < vpd_pg83->data + vpd_pg83->len) { 3023 switch (d[1] & 0xf) { 3024 case 0x4: 3025 /* Relative target port */ 3026 rel_port = get_unaligned_be16(&d[6]); 3027 break; 3028 case 0x5: 3029 /* Target port group */ 3030 group_id = get_unaligned_be16(&d[6]); 3031 break; 3032 default: 3033 break; 3034 } 3035 d += d[3] + 4; 3036 } 3037 rcu_read_unlock(); 3038 3039 if (group_id >= 0 && rel_id && rel_port != -1) 3040 *rel_id = rel_port; 3041 3042 return group_id; 3043 } 3044 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3045