1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sdb_cache; 56 static struct kmem_cache *scsi_sense_cache; 57 static struct kmem_cache *scsi_sense_isadma_cache; 58 static DEFINE_MUTEX(scsi_sense_cache_mutex); 59 60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 61 62 static inline struct kmem_cache * 63 scsi_select_sense_cache(bool unchecked_isa_dma) 64 { 65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 66 } 67 68 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 69 unsigned char *sense_buffer) 70 { 71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 72 sense_buffer); 73 } 74 75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 76 gfp_t gfp_mask, int numa_node) 77 { 78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 79 gfp_mask, numa_node); 80 } 81 82 int scsi_init_sense_cache(struct Scsi_Host *shost) 83 { 84 struct kmem_cache *cache; 85 int ret = 0; 86 87 mutex_lock(&scsi_sense_cache_mutex); 88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 89 if (cache) 90 goto exit; 91 92 if (shost->unchecked_isa_dma) { 93 scsi_sense_isadma_cache = 94 kmem_cache_create("scsi_sense_cache(DMA)", 95 SCSI_SENSE_BUFFERSIZE, 0, 96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 97 if (!scsi_sense_isadma_cache) 98 ret = -ENOMEM; 99 } else { 100 scsi_sense_cache = 101 kmem_cache_create_usercopy("scsi_sense_cache", 102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 103 0, SCSI_SENSE_BUFFERSIZE, NULL); 104 if (!scsi_sense_cache) 105 ret = -ENOMEM; 106 } 107 exit: 108 mutex_unlock(&scsi_sense_cache_mutex); 109 return ret; 110 } 111 112 /* 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 114 * not change behaviour from the previous unplug mechanism, experimentation 115 * may prove this needs changing. 116 */ 117 #define SCSI_QUEUE_DELAY 3 118 119 static void 120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 121 { 122 struct Scsi_Host *host = cmd->device->host; 123 struct scsi_device *device = cmd->device; 124 struct scsi_target *starget = scsi_target(device); 125 126 /* 127 * Set the appropriate busy bit for the device/host. 128 * 129 * If the host/device isn't busy, assume that something actually 130 * completed, and that we should be able to queue a command now. 131 * 132 * Note that the prior mid-layer assumption that any host could 133 * always queue at least one command is now broken. The mid-layer 134 * will implement a user specifiable stall (see 135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 136 * if a command is requeued with no other commands outstanding 137 * either for the device or for the host. 138 */ 139 switch (reason) { 140 case SCSI_MLQUEUE_HOST_BUSY: 141 atomic_set(&host->host_blocked, host->max_host_blocked); 142 break; 143 case SCSI_MLQUEUE_DEVICE_BUSY: 144 case SCSI_MLQUEUE_EH_RETRY: 145 atomic_set(&device->device_blocked, 146 device->max_device_blocked); 147 break; 148 case SCSI_MLQUEUE_TARGET_BUSY: 149 atomic_set(&starget->target_blocked, 150 starget->max_target_blocked); 151 break; 152 } 153 } 154 155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 156 { 157 if (cmd->request->rq_flags & RQF_DONTPREP) { 158 cmd->request->rq_flags &= ~RQF_DONTPREP; 159 scsi_mq_uninit_cmd(cmd); 160 } else { 161 WARN_ON_ONCE(true); 162 } 163 blk_mq_requeue_request(cmd->request, true); 164 } 165 166 /** 167 * __scsi_queue_insert - private queue insertion 168 * @cmd: The SCSI command being requeued 169 * @reason: The reason for the requeue 170 * @unbusy: Whether the queue should be unbusied 171 * 172 * This is a private queue insertion. The public interface 173 * scsi_queue_insert() always assumes the queue should be unbusied 174 * because it's always called before the completion. This function is 175 * for a requeue after completion, which should only occur in this 176 * file. 177 */ 178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 179 { 180 struct scsi_device *device = cmd->device; 181 182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 183 "Inserting command %p into mlqueue\n", cmd)); 184 185 scsi_set_blocked(cmd, reason); 186 187 /* 188 * Decrement the counters, since these commands are no longer 189 * active on the host/device. 190 */ 191 if (unbusy) 192 scsi_device_unbusy(device, cmd); 193 194 /* 195 * Requeue this command. It will go before all other commands 196 * that are already in the queue. Schedule requeue work under 197 * lock such that the kblockd_schedule_work() call happens 198 * before blk_cleanup_queue() finishes. 199 */ 200 cmd->result = 0; 201 202 blk_mq_requeue_request(cmd->request, true); 203 } 204 205 /** 206 * scsi_queue_insert - Reinsert a command in the queue. 207 * @cmd: command that we are adding to queue. 208 * @reason: why we are inserting command to queue. 209 * 210 * We do this for one of two cases. Either the host is busy and it cannot accept 211 * any more commands for the time being, or the device returned QUEUE_FULL and 212 * can accept no more commands. 213 * 214 * Context: This could be called either from an interrupt context or a normal 215 * process context. 216 */ 217 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 218 { 219 __scsi_queue_insert(cmd, reason, true); 220 } 221 222 223 /** 224 * __scsi_execute - insert request and wait for the result 225 * @sdev: scsi device 226 * @cmd: scsi command 227 * @data_direction: data direction 228 * @buffer: data buffer 229 * @bufflen: len of buffer 230 * @sense: optional sense buffer 231 * @sshdr: optional decoded sense header 232 * @timeout: request timeout in seconds 233 * @retries: number of times to retry request 234 * @flags: flags for ->cmd_flags 235 * @rq_flags: flags for ->rq_flags 236 * @resid: optional residual length 237 * 238 * Returns the scsi_cmnd result field if a command was executed, or a negative 239 * Linux error code if we didn't get that far. 240 */ 241 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 242 int data_direction, void *buffer, unsigned bufflen, 243 unsigned char *sense, struct scsi_sense_hdr *sshdr, 244 int timeout, int retries, u64 flags, req_flags_t rq_flags, 245 int *resid) 246 { 247 struct request *req; 248 struct scsi_request *rq; 249 int ret = DRIVER_ERROR << 24; 250 251 req = blk_get_request(sdev->request_queue, 252 data_direction == DMA_TO_DEVICE ? 253 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 254 if (IS_ERR(req)) 255 return ret; 256 rq = scsi_req(req); 257 258 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 259 buffer, bufflen, GFP_NOIO)) 260 goto out; 261 262 rq->cmd_len = COMMAND_SIZE(cmd[0]); 263 memcpy(rq->cmd, cmd, rq->cmd_len); 264 rq->retries = retries; 265 req->timeout = timeout; 266 req->cmd_flags |= flags; 267 req->rq_flags |= rq_flags | RQF_QUIET; 268 269 /* 270 * head injection *required* here otherwise quiesce won't work 271 */ 272 blk_execute_rq(req->q, NULL, req, 1); 273 274 /* 275 * Some devices (USB mass-storage in particular) may transfer 276 * garbage data together with a residue indicating that the data 277 * is invalid. Prevent the garbage from being misinterpreted 278 * and prevent security leaks by zeroing out the excess data. 279 */ 280 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 281 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 282 283 if (resid) 284 *resid = rq->resid_len; 285 if (sense && rq->sense_len) 286 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 287 if (sshdr) 288 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 289 ret = rq->result; 290 out: 291 blk_put_request(req); 292 293 return ret; 294 } 295 EXPORT_SYMBOL(__scsi_execute); 296 297 /** 298 * scsi_init_cmd_errh - Initialize cmd fields related to error handling. 299 * @cmd: command that is ready to be queued. 300 * 301 * This function has the job of initializing a number of fields related to error 302 * handling. Typically this will be called once for each command, as required. 303 */ 304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 305 { 306 scsi_set_resid(cmd, 0); 307 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 308 if (cmd->cmd_len == 0) 309 cmd->cmd_len = scsi_command_size(cmd->cmnd); 310 } 311 312 /* 313 * Wake up the error handler if necessary. Avoid as follows that the error 314 * handler is not woken up if host in-flight requests number == 315 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 316 * with an RCU read lock in this function to ensure that this function in 317 * its entirety either finishes before scsi_eh_scmd_add() increases the 318 * host_failed counter or that it notices the shost state change made by 319 * scsi_eh_scmd_add(). 320 */ 321 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 322 { 323 unsigned long flags; 324 325 rcu_read_lock(); 326 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 327 if (unlikely(scsi_host_in_recovery(shost))) { 328 spin_lock_irqsave(shost->host_lock, flags); 329 if (shost->host_failed || shost->host_eh_scheduled) 330 scsi_eh_wakeup(shost); 331 spin_unlock_irqrestore(shost->host_lock, flags); 332 } 333 rcu_read_unlock(); 334 } 335 336 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 337 { 338 struct Scsi_Host *shost = sdev->host; 339 struct scsi_target *starget = scsi_target(sdev); 340 341 scsi_dec_host_busy(shost, cmd); 342 343 if (starget->can_queue > 0) 344 atomic_dec(&starget->target_busy); 345 346 atomic_dec(&sdev->device_busy); 347 } 348 349 static void scsi_kick_queue(struct request_queue *q) 350 { 351 blk_mq_run_hw_queues(q, false); 352 } 353 354 /* 355 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 356 * and call blk_run_queue for all the scsi_devices on the target - 357 * including current_sdev first. 358 * 359 * Called with *no* scsi locks held. 360 */ 361 static void scsi_single_lun_run(struct scsi_device *current_sdev) 362 { 363 struct Scsi_Host *shost = current_sdev->host; 364 struct scsi_device *sdev, *tmp; 365 struct scsi_target *starget = scsi_target(current_sdev); 366 unsigned long flags; 367 368 spin_lock_irqsave(shost->host_lock, flags); 369 starget->starget_sdev_user = NULL; 370 spin_unlock_irqrestore(shost->host_lock, flags); 371 372 /* 373 * Call blk_run_queue for all LUNs on the target, starting with 374 * current_sdev. We race with others (to set starget_sdev_user), 375 * but in most cases, we will be first. Ideally, each LU on the 376 * target would get some limited time or requests on the target. 377 */ 378 scsi_kick_queue(current_sdev->request_queue); 379 380 spin_lock_irqsave(shost->host_lock, flags); 381 if (starget->starget_sdev_user) 382 goto out; 383 list_for_each_entry_safe(sdev, tmp, &starget->devices, 384 same_target_siblings) { 385 if (sdev == current_sdev) 386 continue; 387 if (scsi_device_get(sdev)) 388 continue; 389 390 spin_unlock_irqrestore(shost->host_lock, flags); 391 scsi_kick_queue(sdev->request_queue); 392 spin_lock_irqsave(shost->host_lock, flags); 393 394 scsi_device_put(sdev); 395 } 396 out: 397 spin_unlock_irqrestore(shost->host_lock, flags); 398 } 399 400 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 401 { 402 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 403 return true; 404 if (atomic_read(&sdev->device_blocked) > 0) 405 return true; 406 return false; 407 } 408 409 static inline bool scsi_target_is_busy(struct scsi_target *starget) 410 { 411 if (starget->can_queue > 0) { 412 if (atomic_read(&starget->target_busy) >= starget->can_queue) 413 return true; 414 if (atomic_read(&starget->target_blocked) > 0) 415 return true; 416 } 417 return false; 418 } 419 420 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 421 { 422 if (atomic_read(&shost->host_blocked) > 0) 423 return true; 424 if (shost->host_self_blocked) 425 return true; 426 return false; 427 } 428 429 static void scsi_starved_list_run(struct Scsi_Host *shost) 430 { 431 LIST_HEAD(starved_list); 432 struct scsi_device *sdev; 433 unsigned long flags; 434 435 spin_lock_irqsave(shost->host_lock, flags); 436 list_splice_init(&shost->starved_list, &starved_list); 437 438 while (!list_empty(&starved_list)) { 439 struct request_queue *slq; 440 441 /* 442 * As long as shost is accepting commands and we have 443 * starved queues, call blk_run_queue. scsi_request_fn 444 * drops the queue_lock and can add us back to the 445 * starved_list. 446 * 447 * host_lock protects the starved_list and starved_entry. 448 * scsi_request_fn must get the host_lock before checking 449 * or modifying starved_list or starved_entry. 450 */ 451 if (scsi_host_is_busy(shost)) 452 break; 453 454 sdev = list_entry(starved_list.next, 455 struct scsi_device, starved_entry); 456 list_del_init(&sdev->starved_entry); 457 if (scsi_target_is_busy(scsi_target(sdev))) { 458 list_move_tail(&sdev->starved_entry, 459 &shost->starved_list); 460 continue; 461 } 462 463 /* 464 * Once we drop the host lock, a racing scsi_remove_device() 465 * call may remove the sdev from the starved list and destroy 466 * it and the queue. Mitigate by taking a reference to the 467 * queue and never touching the sdev again after we drop the 468 * host lock. Note: if __scsi_remove_device() invokes 469 * blk_cleanup_queue() before the queue is run from this 470 * function then blk_run_queue() will return immediately since 471 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 472 */ 473 slq = sdev->request_queue; 474 if (!blk_get_queue(slq)) 475 continue; 476 spin_unlock_irqrestore(shost->host_lock, flags); 477 478 scsi_kick_queue(slq); 479 blk_put_queue(slq); 480 481 spin_lock_irqsave(shost->host_lock, flags); 482 } 483 /* put any unprocessed entries back */ 484 list_splice(&starved_list, &shost->starved_list); 485 spin_unlock_irqrestore(shost->host_lock, flags); 486 } 487 488 /** 489 * scsi_run_queue - Select a proper request queue to serve next. 490 * @q: last request's queue 491 * 492 * The previous command was completely finished, start a new one if possible. 493 */ 494 static void scsi_run_queue(struct request_queue *q) 495 { 496 struct scsi_device *sdev = q->queuedata; 497 498 if (scsi_target(sdev)->single_lun) 499 scsi_single_lun_run(sdev); 500 if (!list_empty(&sdev->host->starved_list)) 501 scsi_starved_list_run(sdev->host); 502 503 blk_mq_run_hw_queues(q, false); 504 } 505 506 void scsi_requeue_run_queue(struct work_struct *work) 507 { 508 struct scsi_device *sdev; 509 struct request_queue *q; 510 511 sdev = container_of(work, struct scsi_device, requeue_work); 512 q = sdev->request_queue; 513 scsi_run_queue(q); 514 } 515 516 void scsi_run_host_queues(struct Scsi_Host *shost) 517 { 518 struct scsi_device *sdev; 519 520 shost_for_each_device(sdev, shost) 521 scsi_run_queue(sdev->request_queue); 522 } 523 524 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 525 { 526 if (!blk_rq_is_passthrough(cmd->request)) { 527 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 528 529 if (drv->uninit_command) 530 drv->uninit_command(cmd); 531 } 532 } 533 534 static void scsi_free_sgtables(struct scsi_cmnd *cmd) 535 { 536 if (cmd->sdb.table.nents) 537 sg_free_table_chained(&cmd->sdb.table, 538 SCSI_INLINE_SG_CNT); 539 if (scsi_prot_sg_count(cmd)) 540 sg_free_table_chained(&cmd->prot_sdb->table, 541 SCSI_INLINE_PROT_SG_CNT); 542 } 543 544 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 545 { 546 scsi_free_sgtables(cmd); 547 scsi_uninit_cmd(cmd); 548 } 549 550 static void scsi_run_queue_async(struct scsi_device *sdev) 551 { 552 if (scsi_target(sdev)->single_lun || 553 !list_empty(&sdev->host->starved_list)) 554 kblockd_schedule_work(&sdev->requeue_work); 555 else 556 blk_mq_run_hw_queues(sdev->request_queue, true); 557 } 558 559 /* Returns false when no more bytes to process, true if there are more */ 560 static bool scsi_end_request(struct request *req, blk_status_t error, 561 unsigned int bytes) 562 { 563 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 564 struct scsi_device *sdev = cmd->device; 565 struct request_queue *q = sdev->request_queue; 566 567 if (blk_update_request(req, error, bytes)) 568 return true; 569 570 if (blk_queue_add_random(q)) 571 add_disk_randomness(req->rq_disk); 572 573 if (!blk_rq_is_scsi(req)) { 574 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 575 cmd->flags &= ~SCMD_INITIALIZED; 576 } 577 578 /* 579 * Calling rcu_barrier() is not necessary here because the 580 * SCSI error handler guarantees that the function called by 581 * call_rcu() has been called before scsi_end_request() is 582 * called. 583 */ 584 destroy_rcu_head(&cmd->rcu); 585 586 /* 587 * In the MQ case the command gets freed by __blk_mq_end_request, 588 * so we have to do all cleanup that depends on it earlier. 589 * 590 * We also can't kick the queues from irq context, so we 591 * will have to defer it to a workqueue. 592 */ 593 scsi_mq_uninit_cmd(cmd); 594 595 /* 596 * queue is still alive, so grab the ref for preventing it 597 * from being cleaned up during running queue. 598 */ 599 percpu_ref_get(&q->q_usage_counter); 600 601 __blk_mq_end_request(req, error); 602 603 scsi_run_queue_async(sdev); 604 605 percpu_ref_put(&q->q_usage_counter); 606 return false; 607 } 608 609 /** 610 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 611 * @cmd: SCSI command 612 * @result: scsi error code 613 * 614 * Translate a SCSI result code into a blk_status_t value. May reset the host 615 * byte of @cmd->result. 616 */ 617 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 618 { 619 switch (host_byte(result)) { 620 case DID_OK: 621 /* 622 * Also check the other bytes than the status byte in result 623 * to handle the case when a SCSI LLD sets result to 624 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 625 */ 626 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 627 return BLK_STS_OK; 628 return BLK_STS_IOERR; 629 case DID_TRANSPORT_FAILFAST: 630 return BLK_STS_TRANSPORT; 631 case DID_TARGET_FAILURE: 632 set_host_byte(cmd, DID_OK); 633 return BLK_STS_TARGET; 634 case DID_NEXUS_FAILURE: 635 set_host_byte(cmd, DID_OK); 636 return BLK_STS_NEXUS; 637 case DID_ALLOC_FAILURE: 638 set_host_byte(cmd, DID_OK); 639 return BLK_STS_NOSPC; 640 case DID_MEDIUM_ERROR: 641 set_host_byte(cmd, DID_OK); 642 return BLK_STS_MEDIUM; 643 default: 644 return BLK_STS_IOERR; 645 } 646 } 647 648 /* Helper for scsi_io_completion() when "reprep" action required. */ 649 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 650 struct request_queue *q) 651 { 652 /* A new command will be prepared and issued. */ 653 scsi_mq_requeue_cmd(cmd); 654 } 655 656 /* Helper for scsi_io_completion() when special action required. */ 657 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 658 { 659 struct request_queue *q = cmd->device->request_queue; 660 struct request *req = cmd->request; 661 int level = 0; 662 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 663 ACTION_DELAYED_RETRY} action; 664 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 665 struct scsi_sense_hdr sshdr; 666 bool sense_valid; 667 bool sense_current = true; /* false implies "deferred sense" */ 668 blk_status_t blk_stat; 669 670 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 671 if (sense_valid) 672 sense_current = !scsi_sense_is_deferred(&sshdr); 673 674 blk_stat = scsi_result_to_blk_status(cmd, result); 675 676 if (host_byte(result) == DID_RESET) { 677 /* Third party bus reset or reset for error recovery 678 * reasons. Just retry the command and see what 679 * happens. 680 */ 681 action = ACTION_RETRY; 682 } else if (sense_valid && sense_current) { 683 switch (sshdr.sense_key) { 684 case UNIT_ATTENTION: 685 if (cmd->device->removable) { 686 /* Detected disc change. Set a bit 687 * and quietly refuse further access. 688 */ 689 cmd->device->changed = 1; 690 action = ACTION_FAIL; 691 } else { 692 /* Must have been a power glitch, or a 693 * bus reset. Could not have been a 694 * media change, so we just retry the 695 * command and see what happens. 696 */ 697 action = ACTION_RETRY; 698 } 699 break; 700 case ILLEGAL_REQUEST: 701 /* If we had an ILLEGAL REQUEST returned, then 702 * we may have performed an unsupported 703 * command. The only thing this should be 704 * would be a ten byte read where only a six 705 * byte read was supported. Also, on a system 706 * where READ CAPACITY failed, we may have 707 * read past the end of the disk. 708 */ 709 if ((cmd->device->use_10_for_rw && 710 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 711 (cmd->cmnd[0] == READ_10 || 712 cmd->cmnd[0] == WRITE_10)) { 713 /* This will issue a new 6-byte command. */ 714 cmd->device->use_10_for_rw = 0; 715 action = ACTION_REPREP; 716 } else if (sshdr.asc == 0x10) /* DIX */ { 717 action = ACTION_FAIL; 718 blk_stat = BLK_STS_PROTECTION; 719 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 720 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 721 action = ACTION_FAIL; 722 blk_stat = BLK_STS_TARGET; 723 } else 724 action = ACTION_FAIL; 725 break; 726 case ABORTED_COMMAND: 727 action = ACTION_FAIL; 728 if (sshdr.asc == 0x10) /* DIF */ 729 blk_stat = BLK_STS_PROTECTION; 730 break; 731 case NOT_READY: 732 /* If the device is in the process of becoming 733 * ready, or has a temporary blockage, retry. 734 */ 735 if (sshdr.asc == 0x04) { 736 switch (sshdr.ascq) { 737 case 0x01: /* becoming ready */ 738 case 0x04: /* format in progress */ 739 case 0x05: /* rebuild in progress */ 740 case 0x06: /* recalculation in progress */ 741 case 0x07: /* operation in progress */ 742 case 0x08: /* Long write in progress */ 743 case 0x09: /* self test in progress */ 744 case 0x14: /* space allocation in progress */ 745 case 0x1a: /* start stop unit in progress */ 746 case 0x1b: /* sanitize in progress */ 747 case 0x1d: /* configuration in progress */ 748 case 0x24: /* depopulation in progress */ 749 action = ACTION_DELAYED_RETRY; 750 break; 751 default: 752 action = ACTION_FAIL; 753 break; 754 } 755 } else 756 action = ACTION_FAIL; 757 break; 758 case VOLUME_OVERFLOW: 759 /* See SSC3rXX or current. */ 760 action = ACTION_FAIL; 761 break; 762 default: 763 action = ACTION_FAIL; 764 break; 765 } 766 } else 767 action = ACTION_FAIL; 768 769 if (action != ACTION_FAIL && 770 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 771 action = ACTION_FAIL; 772 773 switch (action) { 774 case ACTION_FAIL: 775 /* Give up and fail the remainder of the request */ 776 if (!(req->rq_flags & RQF_QUIET)) { 777 static DEFINE_RATELIMIT_STATE(_rs, 778 DEFAULT_RATELIMIT_INTERVAL, 779 DEFAULT_RATELIMIT_BURST); 780 781 if (unlikely(scsi_logging_level)) 782 level = 783 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 784 SCSI_LOG_MLCOMPLETE_BITS); 785 786 /* 787 * if logging is enabled the failure will be printed 788 * in scsi_log_completion(), so avoid duplicate messages 789 */ 790 if (!level && __ratelimit(&_rs)) { 791 scsi_print_result(cmd, NULL, FAILED); 792 if (driver_byte(result) == DRIVER_SENSE) 793 scsi_print_sense(cmd); 794 scsi_print_command(cmd); 795 } 796 } 797 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 798 return; 799 /*FALLTHRU*/ 800 case ACTION_REPREP: 801 scsi_io_completion_reprep(cmd, q); 802 break; 803 case ACTION_RETRY: 804 /* Retry the same command immediately */ 805 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 806 break; 807 case ACTION_DELAYED_RETRY: 808 /* Retry the same command after a delay */ 809 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 810 break; 811 } 812 } 813 814 /* 815 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 816 * new result that may suppress further error checking. Also modifies 817 * *blk_statp in some cases. 818 */ 819 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 820 blk_status_t *blk_statp) 821 { 822 bool sense_valid; 823 bool sense_current = true; /* false implies "deferred sense" */ 824 struct request *req = cmd->request; 825 struct scsi_sense_hdr sshdr; 826 827 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 828 if (sense_valid) 829 sense_current = !scsi_sense_is_deferred(&sshdr); 830 831 if (blk_rq_is_passthrough(req)) { 832 if (sense_valid) { 833 /* 834 * SG_IO wants current and deferred errors 835 */ 836 scsi_req(req)->sense_len = 837 min(8 + cmd->sense_buffer[7], 838 SCSI_SENSE_BUFFERSIZE); 839 } 840 if (sense_current) 841 *blk_statp = scsi_result_to_blk_status(cmd, result); 842 } else if (blk_rq_bytes(req) == 0 && sense_current) { 843 /* 844 * Flush commands do not transfers any data, and thus cannot use 845 * good_bytes != blk_rq_bytes(req) as the signal for an error. 846 * This sets *blk_statp explicitly for the problem case. 847 */ 848 *blk_statp = scsi_result_to_blk_status(cmd, result); 849 } 850 /* 851 * Recovered errors need reporting, but they're always treated as 852 * success, so fiddle the result code here. For passthrough requests 853 * we already took a copy of the original into sreq->result which 854 * is what gets returned to the user 855 */ 856 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 857 bool do_print = true; 858 /* 859 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 860 * skip print since caller wants ATA registers. Only occurs 861 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 862 */ 863 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 864 do_print = false; 865 else if (req->rq_flags & RQF_QUIET) 866 do_print = false; 867 if (do_print) 868 scsi_print_sense(cmd); 869 result = 0; 870 /* for passthrough, *blk_statp may be set */ 871 *blk_statp = BLK_STS_OK; 872 } 873 /* 874 * Another corner case: the SCSI status byte is non-zero but 'good'. 875 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 876 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 877 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 878 * intermediate statuses (both obsolete in SAM-4) as good. 879 */ 880 if (status_byte(result) && scsi_status_is_good(result)) { 881 result = 0; 882 *blk_statp = BLK_STS_OK; 883 } 884 return result; 885 } 886 887 /** 888 * scsi_io_completion - Completion processing for SCSI commands. 889 * @cmd: command that is finished. 890 * @good_bytes: number of processed bytes. 891 * 892 * We will finish off the specified number of sectors. If we are done, the 893 * command block will be released and the queue function will be goosed. If we 894 * are not done then we have to figure out what to do next: 895 * 896 * a) We can call scsi_io_completion_reprep(). The request will be 897 * unprepared and put back on the queue. Then a new command will 898 * be created for it. This should be used if we made forward 899 * progress, or if we want to switch from READ(10) to READ(6) for 900 * example. 901 * 902 * b) We can call scsi_io_completion_action(). The request will be 903 * put back on the queue and retried using the same command as 904 * before, possibly after a delay. 905 * 906 * c) We can call scsi_end_request() with blk_stat other than 907 * BLK_STS_OK, to fail the remainder of the request. 908 */ 909 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 910 { 911 int result = cmd->result; 912 struct request_queue *q = cmd->device->request_queue; 913 struct request *req = cmd->request; 914 blk_status_t blk_stat = BLK_STS_OK; 915 916 if (unlikely(result)) /* a nz result may or may not be an error */ 917 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 918 919 if (unlikely(blk_rq_is_passthrough(req))) { 920 /* 921 * scsi_result_to_blk_status may have reset the host_byte 922 */ 923 scsi_req(req)->result = cmd->result; 924 } 925 926 /* 927 * Next deal with any sectors which we were able to correctly 928 * handle. 929 */ 930 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 931 "%u sectors total, %d bytes done.\n", 932 blk_rq_sectors(req), good_bytes)); 933 934 /* 935 * Failed, zero length commands always need to drop down 936 * to retry code. Fast path should return in this block. 937 */ 938 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 939 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 940 return; /* no bytes remaining */ 941 } 942 943 /* Kill remainder if no retries. */ 944 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 945 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 946 WARN_ONCE(true, 947 "Bytes remaining after failed, no-retry command"); 948 return; 949 } 950 951 /* 952 * If there had been no error, but we have leftover bytes in the 953 * requeues just queue the command up again. 954 */ 955 if (likely(result == 0)) 956 scsi_io_completion_reprep(cmd, q); 957 else 958 scsi_io_completion_action(cmd, result); 959 } 960 961 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 962 struct request *rq) 963 { 964 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 965 !op_is_write(req_op(rq)) && 966 sdev->host->hostt->dma_need_drain(rq); 967 } 968 969 /** 970 * scsi_init_io - SCSI I/O initialization function. 971 * @cmd: command descriptor we wish to initialize 972 * 973 * Returns: 974 * * BLK_STS_OK - on success 975 * * BLK_STS_RESOURCE - if the failure is retryable 976 * * BLK_STS_IOERR - if the failure is fatal 977 */ 978 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 979 { 980 struct scsi_device *sdev = cmd->device; 981 struct request *rq = cmd->request; 982 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 983 struct scatterlist *last_sg = NULL; 984 blk_status_t ret; 985 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 986 int count; 987 988 if (WARN_ON_ONCE(!nr_segs)) 989 return BLK_STS_IOERR; 990 991 /* 992 * Make sure there is space for the drain. The driver must adjust 993 * max_hw_segments to be prepared for this. 994 */ 995 if (need_drain) 996 nr_segs++; 997 998 /* 999 * If sg table allocation fails, requeue request later. 1000 */ 1001 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1002 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1003 return BLK_STS_RESOURCE; 1004 1005 /* 1006 * Next, walk the list, and fill in the addresses and sizes of 1007 * each segment. 1008 */ 1009 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1010 1011 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1012 unsigned int pad_len = 1013 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1014 1015 last_sg->length += pad_len; 1016 cmd->extra_len += pad_len; 1017 } 1018 1019 if (need_drain) { 1020 sg_unmark_end(last_sg); 1021 last_sg = sg_next(last_sg); 1022 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1023 sg_mark_end(last_sg); 1024 1025 cmd->extra_len += sdev->dma_drain_len; 1026 count++; 1027 } 1028 1029 BUG_ON(count > cmd->sdb.table.nents); 1030 cmd->sdb.table.nents = count; 1031 cmd->sdb.length = blk_rq_payload_bytes(rq); 1032 1033 if (blk_integrity_rq(rq)) { 1034 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1035 int ivecs; 1036 1037 if (WARN_ON_ONCE(!prot_sdb)) { 1038 /* 1039 * This can happen if someone (e.g. multipath) 1040 * queues a command to a device on an adapter 1041 * that does not support DIX. 1042 */ 1043 ret = BLK_STS_IOERR; 1044 goto out_free_sgtables; 1045 } 1046 1047 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1048 1049 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1050 prot_sdb->table.sgl, 1051 SCSI_INLINE_PROT_SG_CNT)) { 1052 ret = BLK_STS_RESOURCE; 1053 goto out_free_sgtables; 1054 } 1055 1056 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1057 prot_sdb->table.sgl); 1058 BUG_ON(count > ivecs); 1059 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1060 1061 cmd->prot_sdb = prot_sdb; 1062 cmd->prot_sdb->table.nents = count; 1063 } 1064 1065 return BLK_STS_OK; 1066 out_free_sgtables: 1067 scsi_free_sgtables(cmd); 1068 return ret; 1069 } 1070 EXPORT_SYMBOL(scsi_init_io); 1071 1072 /** 1073 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1074 * @rq: Request associated with the SCSI command to be initialized. 1075 * 1076 * This function initializes the members of struct scsi_cmnd that must be 1077 * initialized before request processing starts and that won't be 1078 * reinitialized if a SCSI command is requeued. 1079 * 1080 * Called from inside blk_get_request() for pass-through requests and from 1081 * inside scsi_init_command() for filesystem requests. 1082 */ 1083 static void scsi_initialize_rq(struct request *rq) 1084 { 1085 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1086 1087 scsi_req_init(&cmd->req); 1088 init_rcu_head(&cmd->rcu); 1089 cmd->jiffies_at_alloc = jiffies; 1090 cmd->retries = 0; 1091 } 1092 1093 /* 1094 * Only called when the request isn't completed by SCSI, and not freed by 1095 * SCSI 1096 */ 1097 static void scsi_cleanup_rq(struct request *rq) 1098 { 1099 if (rq->rq_flags & RQF_DONTPREP) { 1100 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1101 rq->rq_flags &= ~RQF_DONTPREP; 1102 } 1103 } 1104 1105 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1106 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1107 { 1108 void *buf = cmd->sense_buffer; 1109 void *prot = cmd->prot_sdb; 1110 struct request *rq = blk_mq_rq_from_pdu(cmd); 1111 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1112 unsigned long jiffies_at_alloc; 1113 int retries, to_clear; 1114 bool in_flight; 1115 1116 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1117 flags |= SCMD_INITIALIZED; 1118 scsi_initialize_rq(rq); 1119 } 1120 1121 jiffies_at_alloc = cmd->jiffies_at_alloc; 1122 retries = cmd->retries; 1123 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1124 /* 1125 * Zero out the cmd, except for the embedded scsi_request. Only clear 1126 * the driver-private command data if the LLD does not supply a 1127 * function to initialize that data. 1128 */ 1129 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1130 if (!dev->host->hostt->init_cmd_priv) 1131 to_clear += dev->host->hostt->cmd_size; 1132 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1133 1134 cmd->device = dev; 1135 cmd->sense_buffer = buf; 1136 cmd->prot_sdb = prot; 1137 cmd->flags = flags; 1138 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1139 cmd->jiffies_at_alloc = jiffies_at_alloc; 1140 cmd->retries = retries; 1141 if (in_flight) 1142 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1143 1144 } 1145 1146 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1147 struct request *req) 1148 { 1149 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1150 1151 /* 1152 * Passthrough requests may transfer data, in which case they must 1153 * a bio attached to them. Or they might contain a SCSI command 1154 * that does not transfer data, in which case they may optionally 1155 * submit a request without an attached bio. 1156 */ 1157 if (req->bio) { 1158 blk_status_t ret = scsi_init_io(cmd); 1159 if (unlikely(ret != BLK_STS_OK)) 1160 return ret; 1161 } else { 1162 BUG_ON(blk_rq_bytes(req)); 1163 1164 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1165 } 1166 1167 cmd->cmd_len = scsi_req(req)->cmd_len; 1168 cmd->cmnd = scsi_req(req)->cmd; 1169 cmd->transfersize = blk_rq_bytes(req); 1170 cmd->allowed = scsi_req(req)->retries; 1171 return BLK_STS_OK; 1172 } 1173 1174 /* 1175 * Setup a normal block command. These are simple request from filesystems 1176 * that still need to be translated to SCSI CDBs from the ULD. 1177 */ 1178 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1179 struct request *req) 1180 { 1181 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1182 1183 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1184 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1185 if (ret != BLK_STS_OK) 1186 return ret; 1187 } 1188 1189 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1190 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1191 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1192 } 1193 1194 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1195 struct request *req) 1196 { 1197 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1198 blk_status_t ret; 1199 1200 if (!blk_rq_bytes(req)) 1201 cmd->sc_data_direction = DMA_NONE; 1202 else if (rq_data_dir(req) == WRITE) 1203 cmd->sc_data_direction = DMA_TO_DEVICE; 1204 else 1205 cmd->sc_data_direction = DMA_FROM_DEVICE; 1206 1207 if (blk_rq_is_scsi(req)) 1208 ret = scsi_setup_scsi_cmnd(sdev, req); 1209 else 1210 ret = scsi_setup_fs_cmnd(sdev, req); 1211 1212 if (ret != BLK_STS_OK) 1213 scsi_free_sgtables(cmd); 1214 1215 return ret; 1216 } 1217 1218 static blk_status_t 1219 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1220 { 1221 switch (sdev->sdev_state) { 1222 case SDEV_OFFLINE: 1223 case SDEV_TRANSPORT_OFFLINE: 1224 /* 1225 * If the device is offline we refuse to process any 1226 * commands. The device must be brought online 1227 * before trying any recovery commands. 1228 */ 1229 if (!sdev->offline_already) { 1230 sdev->offline_already = true; 1231 sdev_printk(KERN_ERR, sdev, 1232 "rejecting I/O to offline device\n"); 1233 } 1234 return BLK_STS_IOERR; 1235 case SDEV_DEL: 1236 /* 1237 * If the device is fully deleted, we refuse to 1238 * process any commands as well. 1239 */ 1240 sdev_printk(KERN_ERR, sdev, 1241 "rejecting I/O to dead device\n"); 1242 return BLK_STS_IOERR; 1243 case SDEV_BLOCK: 1244 case SDEV_CREATED_BLOCK: 1245 return BLK_STS_RESOURCE; 1246 case SDEV_QUIESCE: 1247 /* 1248 * If the devices is blocked we defer normal commands. 1249 */ 1250 if (req && !(req->rq_flags & RQF_PREEMPT)) 1251 return BLK_STS_RESOURCE; 1252 return BLK_STS_OK; 1253 default: 1254 /* 1255 * For any other not fully online state we only allow 1256 * special commands. In particular any user initiated 1257 * command is not allowed. 1258 */ 1259 if (req && !(req->rq_flags & RQF_PREEMPT)) 1260 return BLK_STS_IOERR; 1261 return BLK_STS_OK; 1262 } 1263 } 1264 1265 /* 1266 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1267 * return 0. 1268 * 1269 * Called with the queue_lock held. 1270 */ 1271 static inline int scsi_dev_queue_ready(struct request_queue *q, 1272 struct scsi_device *sdev) 1273 { 1274 unsigned int busy; 1275 1276 busy = atomic_inc_return(&sdev->device_busy) - 1; 1277 if (atomic_read(&sdev->device_blocked)) { 1278 if (busy) 1279 goto out_dec; 1280 1281 /* 1282 * unblock after device_blocked iterates to zero 1283 */ 1284 if (atomic_dec_return(&sdev->device_blocked) > 0) 1285 goto out_dec; 1286 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1287 "unblocking device at zero depth\n")); 1288 } 1289 1290 if (busy >= sdev->queue_depth) 1291 goto out_dec; 1292 1293 return 1; 1294 out_dec: 1295 atomic_dec(&sdev->device_busy); 1296 return 0; 1297 } 1298 1299 /* 1300 * scsi_target_queue_ready: checks if there we can send commands to target 1301 * @sdev: scsi device on starget to check. 1302 */ 1303 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1304 struct scsi_device *sdev) 1305 { 1306 struct scsi_target *starget = scsi_target(sdev); 1307 unsigned int busy; 1308 1309 if (starget->single_lun) { 1310 spin_lock_irq(shost->host_lock); 1311 if (starget->starget_sdev_user && 1312 starget->starget_sdev_user != sdev) { 1313 spin_unlock_irq(shost->host_lock); 1314 return 0; 1315 } 1316 starget->starget_sdev_user = sdev; 1317 spin_unlock_irq(shost->host_lock); 1318 } 1319 1320 if (starget->can_queue <= 0) 1321 return 1; 1322 1323 busy = atomic_inc_return(&starget->target_busy) - 1; 1324 if (atomic_read(&starget->target_blocked) > 0) { 1325 if (busy) 1326 goto starved; 1327 1328 /* 1329 * unblock after target_blocked iterates to zero 1330 */ 1331 if (atomic_dec_return(&starget->target_blocked) > 0) 1332 goto out_dec; 1333 1334 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1335 "unblocking target at zero depth\n")); 1336 } 1337 1338 if (busy >= starget->can_queue) 1339 goto starved; 1340 1341 return 1; 1342 1343 starved: 1344 spin_lock_irq(shost->host_lock); 1345 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1346 spin_unlock_irq(shost->host_lock); 1347 out_dec: 1348 if (starget->can_queue > 0) 1349 atomic_dec(&starget->target_busy); 1350 return 0; 1351 } 1352 1353 /* 1354 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1355 * return 0. We must end up running the queue again whenever 0 is 1356 * returned, else IO can hang. 1357 */ 1358 static inline int scsi_host_queue_ready(struct request_queue *q, 1359 struct Scsi_Host *shost, 1360 struct scsi_device *sdev, 1361 struct scsi_cmnd *cmd) 1362 { 1363 if (scsi_host_in_recovery(shost)) 1364 return 0; 1365 1366 if (atomic_read(&shost->host_blocked) > 0) { 1367 if (scsi_host_busy(shost) > 0) 1368 goto starved; 1369 1370 /* 1371 * unblock after host_blocked iterates to zero 1372 */ 1373 if (atomic_dec_return(&shost->host_blocked) > 0) 1374 goto out_dec; 1375 1376 SCSI_LOG_MLQUEUE(3, 1377 shost_printk(KERN_INFO, shost, 1378 "unblocking host at zero depth\n")); 1379 } 1380 1381 if (shost->host_self_blocked) 1382 goto starved; 1383 1384 /* We're OK to process the command, so we can't be starved */ 1385 if (!list_empty(&sdev->starved_entry)) { 1386 spin_lock_irq(shost->host_lock); 1387 if (!list_empty(&sdev->starved_entry)) 1388 list_del_init(&sdev->starved_entry); 1389 spin_unlock_irq(shost->host_lock); 1390 } 1391 1392 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1393 1394 return 1; 1395 1396 starved: 1397 spin_lock_irq(shost->host_lock); 1398 if (list_empty(&sdev->starved_entry)) 1399 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1400 spin_unlock_irq(shost->host_lock); 1401 out_dec: 1402 scsi_dec_host_busy(shost, cmd); 1403 return 0; 1404 } 1405 1406 /* 1407 * Busy state exporting function for request stacking drivers. 1408 * 1409 * For efficiency, no lock is taken to check the busy state of 1410 * shost/starget/sdev, since the returned value is not guaranteed and 1411 * may be changed after request stacking drivers call the function, 1412 * regardless of taking lock or not. 1413 * 1414 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1415 * needs to return 'not busy'. Otherwise, request stacking drivers 1416 * may hold requests forever. 1417 */ 1418 static bool scsi_mq_lld_busy(struct request_queue *q) 1419 { 1420 struct scsi_device *sdev = q->queuedata; 1421 struct Scsi_Host *shost; 1422 1423 if (blk_queue_dying(q)) 1424 return false; 1425 1426 shost = sdev->host; 1427 1428 /* 1429 * Ignore host/starget busy state. 1430 * Since block layer does not have a concept of fairness across 1431 * multiple queues, congestion of host/starget needs to be handled 1432 * in SCSI layer. 1433 */ 1434 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1435 return true; 1436 1437 return false; 1438 } 1439 1440 static void scsi_softirq_done(struct request *rq) 1441 { 1442 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1443 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1444 int disposition; 1445 1446 INIT_LIST_HEAD(&cmd->eh_entry); 1447 1448 atomic_inc(&cmd->device->iodone_cnt); 1449 if (cmd->result) 1450 atomic_inc(&cmd->device->ioerr_cnt); 1451 1452 disposition = scsi_decide_disposition(cmd); 1453 if (disposition != SUCCESS && 1454 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1455 scmd_printk(KERN_ERR, cmd, 1456 "timing out command, waited %lus\n", 1457 wait_for/HZ); 1458 disposition = SUCCESS; 1459 } 1460 1461 scsi_log_completion(cmd, disposition); 1462 1463 switch (disposition) { 1464 case SUCCESS: 1465 scsi_finish_command(cmd); 1466 break; 1467 case NEEDS_RETRY: 1468 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1469 break; 1470 case ADD_TO_MLQUEUE: 1471 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1472 break; 1473 default: 1474 scsi_eh_scmd_add(cmd); 1475 break; 1476 } 1477 } 1478 1479 /** 1480 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1481 * @cmd: command block we are dispatching. 1482 * 1483 * Return: nonzero return request was rejected and device's queue needs to be 1484 * plugged. 1485 */ 1486 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1487 { 1488 struct Scsi_Host *host = cmd->device->host; 1489 int rtn = 0; 1490 1491 atomic_inc(&cmd->device->iorequest_cnt); 1492 1493 /* check if the device is still usable */ 1494 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1495 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1496 * returns an immediate error upwards, and signals 1497 * that the device is no longer present */ 1498 cmd->result = DID_NO_CONNECT << 16; 1499 goto done; 1500 } 1501 1502 /* Check to see if the scsi lld made this device blocked. */ 1503 if (unlikely(scsi_device_blocked(cmd->device))) { 1504 /* 1505 * in blocked state, the command is just put back on 1506 * the device queue. The suspend state has already 1507 * blocked the queue so future requests should not 1508 * occur until the device transitions out of the 1509 * suspend state. 1510 */ 1511 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1512 "queuecommand : device blocked\n")); 1513 return SCSI_MLQUEUE_DEVICE_BUSY; 1514 } 1515 1516 /* Store the LUN value in cmnd, if needed. */ 1517 if (cmd->device->lun_in_cdb) 1518 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1519 (cmd->device->lun << 5 & 0xe0); 1520 1521 scsi_log_send(cmd); 1522 1523 /* 1524 * Before we queue this command, check if the command 1525 * length exceeds what the host adapter can handle. 1526 */ 1527 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1528 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1529 "queuecommand : command too long. " 1530 "cdb_size=%d host->max_cmd_len=%d\n", 1531 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1532 cmd->result = (DID_ABORT << 16); 1533 goto done; 1534 } 1535 1536 if (unlikely(host->shost_state == SHOST_DEL)) { 1537 cmd->result = (DID_NO_CONNECT << 16); 1538 goto done; 1539 1540 } 1541 1542 trace_scsi_dispatch_cmd_start(cmd); 1543 rtn = host->hostt->queuecommand(host, cmd); 1544 if (rtn) { 1545 trace_scsi_dispatch_cmd_error(cmd, rtn); 1546 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1547 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1548 rtn = SCSI_MLQUEUE_HOST_BUSY; 1549 1550 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1551 "queuecommand : request rejected\n")); 1552 } 1553 1554 return rtn; 1555 done: 1556 cmd->scsi_done(cmd); 1557 return 0; 1558 } 1559 1560 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1561 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1562 { 1563 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1564 sizeof(struct scatterlist); 1565 } 1566 1567 static blk_status_t scsi_mq_prep_fn(struct request *req) 1568 { 1569 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1570 struct scsi_device *sdev = req->q->queuedata; 1571 struct Scsi_Host *shost = sdev->host; 1572 struct scatterlist *sg; 1573 1574 scsi_init_command(sdev, cmd); 1575 1576 cmd->request = req; 1577 cmd->tag = req->tag; 1578 cmd->prot_op = SCSI_PROT_NORMAL; 1579 1580 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1581 cmd->sdb.table.sgl = sg; 1582 1583 if (scsi_host_get_prot(shost)) { 1584 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1585 1586 cmd->prot_sdb->table.sgl = 1587 (struct scatterlist *)(cmd->prot_sdb + 1); 1588 } 1589 1590 blk_mq_start_request(req); 1591 1592 return scsi_setup_cmnd(sdev, req); 1593 } 1594 1595 static void scsi_mq_done(struct scsi_cmnd *cmd) 1596 { 1597 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1598 return; 1599 trace_scsi_dispatch_cmd_done(cmd); 1600 1601 /* 1602 * If the block layer didn't complete the request due to a timeout 1603 * injection, scsi must clear its internal completed state so that the 1604 * timeout handler will see it needs to escalate its own error 1605 * recovery. 1606 */ 1607 if (unlikely(!blk_mq_complete_request(cmd->request))) 1608 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1609 } 1610 1611 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1612 { 1613 struct request_queue *q = hctx->queue; 1614 struct scsi_device *sdev = q->queuedata; 1615 1616 atomic_dec(&sdev->device_busy); 1617 } 1618 1619 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1620 { 1621 struct request_queue *q = hctx->queue; 1622 struct scsi_device *sdev = q->queuedata; 1623 1624 return scsi_dev_queue_ready(q, sdev); 1625 } 1626 1627 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1628 const struct blk_mq_queue_data *bd) 1629 { 1630 struct request *req = bd->rq; 1631 struct request_queue *q = req->q; 1632 struct scsi_device *sdev = q->queuedata; 1633 struct Scsi_Host *shost = sdev->host; 1634 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1635 blk_status_t ret; 1636 int reason; 1637 1638 /* 1639 * If the device is not in running state we will reject some or all 1640 * commands. 1641 */ 1642 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1643 ret = scsi_prep_state_check(sdev, req); 1644 if (ret != BLK_STS_OK) 1645 goto out_put_budget; 1646 } 1647 1648 ret = BLK_STS_RESOURCE; 1649 if (!scsi_target_queue_ready(shost, sdev)) 1650 goto out_put_budget; 1651 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1652 goto out_dec_target_busy; 1653 1654 if (!(req->rq_flags & RQF_DONTPREP)) { 1655 ret = scsi_mq_prep_fn(req); 1656 if (ret != BLK_STS_OK) 1657 goto out_dec_host_busy; 1658 req->rq_flags |= RQF_DONTPREP; 1659 } else { 1660 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1661 blk_mq_start_request(req); 1662 } 1663 1664 cmd->flags &= SCMD_PRESERVED_FLAGS; 1665 if (sdev->simple_tags) 1666 cmd->flags |= SCMD_TAGGED; 1667 if (bd->last) 1668 cmd->flags |= SCMD_LAST; 1669 1670 scsi_init_cmd_errh(cmd); 1671 cmd->scsi_done = scsi_mq_done; 1672 1673 reason = scsi_dispatch_cmd(cmd); 1674 if (reason) { 1675 scsi_set_blocked(cmd, reason); 1676 ret = BLK_STS_RESOURCE; 1677 goto out_dec_host_busy; 1678 } 1679 1680 return BLK_STS_OK; 1681 1682 out_dec_host_busy: 1683 scsi_dec_host_busy(shost, cmd); 1684 out_dec_target_busy: 1685 if (scsi_target(sdev)->can_queue > 0) 1686 atomic_dec(&scsi_target(sdev)->target_busy); 1687 out_put_budget: 1688 scsi_mq_put_budget(hctx); 1689 switch (ret) { 1690 case BLK_STS_OK: 1691 break; 1692 case BLK_STS_RESOURCE: 1693 case BLK_STS_ZONE_RESOURCE: 1694 if (atomic_read(&sdev->device_busy) || 1695 scsi_device_blocked(sdev)) 1696 ret = BLK_STS_DEV_RESOURCE; 1697 break; 1698 default: 1699 if (unlikely(!scsi_device_online(sdev))) 1700 scsi_req(req)->result = DID_NO_CONNECT << 16; 1701 else 1702 scsi_req(req)->result = DID_ERROR << 16; 1703 /* 1704 * Make sure to release all allocated resources when 1705 * we hit an error, as we will never see this command 1706 * again. 1707 */ 1708 if (req->rq_flags & RQF_DONTPREP) 1709 scsi_mq_uninit_cmd(cmd); 1710 scsi_run_queue_async(sdev); 1711 break; 1712 } 1713 return ret; 1714 } 1715 1716 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1717 bool reserved) 1718 { 1719 if (reserved) 1720 return BLK_EH_RESET_TIMER; 1721 return scsi_times_out(req); 1722 } 1723 1724 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1725 unsigned int hctx_idx, unsigned int numa_node) 1726 { 1727 struct Scsi_Host *shost = set->driver_data; 1728 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1729 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1730 struct scatterlist *sg; 1731 int ret = 0; 1732 1733 if (unchecked_isa_dma) 1734 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1735 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1736 GFP_KERNEL, numa_node); 1737 if (!cmd->sense_buffer) 1738 return -ENOMEM; 1739 cmd->req.sense = cmd->sense_buffer; 1740 1741 if (scsi_host_get_prot(shost)) { 1742 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1743 shost->hostt->cmd_size; 1744 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1745 } 1746 1747 if (shost->hostt->init_cmd_priv) { 1748 ret = shost->hostt->init_cmd_priv(shost, cmd); 1749 if (ret < 0) 1750 scsi_free_sense_buffer(unchecked_isa_dma, 1751 cmd->sense_buffer); 1752 } 1753 1754 return ret; 1755 } 1756 1757 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1758 unsigned int hctx_idx) 1759 { 1760 struct Scsi_Host *shost = set->driver_data; 1761 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1762 1763 if (shost->hostt->exit_cmd_priv) 1764 shost->hostt->exit_cmd_priv(shost, cmd); 1765 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1766 cmd->sense_buffer); 1767 } 1768 1769 static int scsi_map_queues(struct blk_mq_tag_set *set) 1770 { 1771 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1772 1773 if (shost->hostt->map_queues) 1774 return shost->hostt->map_queues(shost); 1775 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1776 } 1777 1778 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1779 { 1780 struct device *dev = shost->dma_dev; 1781 1782 /* 1783 * this limit is imposed by hardware restrictions 1784 */ 1785 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1786 SG_MAX_SEGMENTS)); 1787 1788 if (scsi_host_prot_dma(shost)) { 1789 shost->sg_prot_tablesize = 1790 min_not_zero(shost->sg_prot_tablesize, 1791 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1792 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1793 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1794 } 1795 1796 if (dev->dma_mask) { 1797 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1798 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1799 } 1800 blk_queue_max_hw_sectors(q, shost->max_sectors); 1801 if (shost->unchecked_isa_dma) 1802 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1803 blk_queue_segment_boundary(q, shost->dma_boundary); 1804 dma_set_seg_boundary(dev, shost->dma_boundary); 1805 1806 blk_queue_max_segment_size(q, shost->max_segment_size); 1807 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1808 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1809 1810 /* 1811 * Set a reasonable default alignment: The larger of 32-byte (dword), 1812 * which is a common minimum for HBAs, and the minimum DMA alignment, 1813 * which is set by the platform. 1814 * 1815 * Devices that require a bigger alignment can increase it later. 1816 */ 1817 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1818 } 1819 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1820 1821 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1822 .get_budget = scsi_mq_get_budget, 1823 .put_budget = scsi_mq_put_budget, 1824 .queue_rq = scsi_queue_rq, 1825 .complete = scsi_softirq_done, 1826 .timeout = scsi_timeout, 1827 #ifdef CONFIG_BLK_DEBUG_FS 1828 .show_rq = scsi_show_rq, 1829 #endif 1830 .init_request = scsi_mq_init_request, 1831 .exit_request = scsi_mq_exit_request, 1832 .initialize_rq_fn = scsi_initialize_rq, 1833 .cleanup_rq = scsi_cleanup_rq, 1834 .busy = scsi_mq_lld_busy, 1835 .map_queues = scsi_map_queues, 1836 }; 1837 1838 1839 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1840 { 1841 struct request_queue *q = hctx->queue; 1842 struct scsi_device *sdev = q->queuedata; 1843 struct Scsi_Host *shost = sdev->host; 1844 1845 shost->hostt->commit_rqs(shost, hctx->queue_num); 1846 } 1847 1848 static const struct blk_mq_ops scsi_mq_ops = { 1849 .get_budget = scsi_mq_get_budget, 1850 .put_budget = scsi_mq_put_budget, 1851 .queue_rq = scsi_queue_rq, 1852 .commit_rqs = scsi_commit_rqs, 1853 .complete = scsi_softirq_done, 1854 .timeout = scsi_timeout, 1855 #ifdef CONFIG_BLK_DEBUG_FS 1856 .show_rq = scsi_show_rq, 1857 #endif 1858 .init_request = scsi_mq_init_request, 1859 .exit_request = scsi_mq_exit_request, 1860 .initialize_rq_fn = scsi_initialize_rq, 1861 .cleanup_rq = scsi_cleanup_rq, 1862 .busy = scsi_mq_lld_busy, 1863 .map_queues = scsi_map_queues, 1864 }; 1865 1866 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1867 { 1868 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1869 if (IS_ERR(sdev->request_queue)) 1870 return NULL; 1871 1872 sdev->request_queue->queuedata = sdev; 1873 __scsi_init_queue(sdev->host, sdev->request_queue); 1874 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1875 return sdev->request_queue; 1876 } 1877 1878 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1879 { 1880 unsigned int cmd_size, sgl_size; 1881 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1882 1883 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1884 scsi_mq_inline_sgl_size(shost)); 1885 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1886 if (scsi_host_get_prot(shost)) 1887 cmd_size += sizeof(struct scsi_data_buffer) + 1888 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1889 1890 memset(tag_set, 0, sizeof(*tag_set)); 1891 if (shost->hostt->commit_rqs) 1892 tag_set->ops = &scsi_mq_ops; 1893 else 1894 tag_set->ops = &scsi_mq_ops_no_commit; 1895 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1896 tag_set->queue_depth = shost->can_queue; 1897 tag_set->cmd_size = cmd_size; 1898 tag_set->numa_node = NUMA_NO_NODE; 1899 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1900 tag_set->flags |= 1901 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1902 tag_set->driver_data = shost; 1903 1904 return blk_mq_alloc_tag_set(tag_set); 1905 } 1906 1907 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1908 { 1909 blk_mq_free_tag_set(&shost->tag_set); 1910 } 1911 1912 /** 1913 * scsi_device_from_queue - return sdev associated with a request_queue 1914 * @q: The request queue to return the sdev from 1915 * 1916 * Return the sdev associated with a request queue or NULL if the 1917 * request_queue does not reference a SCSI device. 1918 */ 1919 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1920 { 1921 struct scsi_device *sdev = NULL; 1922 1923 if (q->mq_ops == &scsi_mq_ops_no_commit || 1924 q->mq_ops == &scsi_mq_ops) 1925 sdev = q->queuedata; 1926 if (!sdev || !get_device(&sdev->sdev_gendev)) 1927 sdev = NULL; 1928 1929 return sdev; 1930 } 1931 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1932 1933 /** 1934 * scsi_block_requests - Utility function used by low-level drivers to prevent 1935 * further commands from being queued to the device. 1936 * @shost: host in question 1937 * 1938 * There is no timer nor any other means by which the requests get unblocked 1939 * other than the low-level driver calling scsi_unblock_requests(). 1940 */ 1941 void scsi_block_requests(struct Scsi_Host *shost) 1942 { 1943 shost->host_self_blocked = 1; 1944 } 1945 EXPORT_SYMBOL(scsi_block_requests); 1946 1947 /** 1948 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1949 * further commands to be queued to the device. 1950 * @shost: host in question 1951 * 1952 * There is no timer nor any other means by which the requests get unblocked 1953 * other than the low-level driver calling scsi_unblock_requests(). This is done 1954 * as an API function so that changes to the internals of the scsi mid-layer 1955 * won't require wholesale changes to drivers that use this feature. 1956 */ 1957 void scsi_unblock_requests(struct Scsi_Host *shost) 1958 { 1959 shost->host_self_blocked = 0; 1960 scsi_run_host_queues(shost); 1961 } 1962 EXPORT_SYMBOL(scsi_unblock_requests); 1963 1964 int __init scsi_init_queue(void) 1965 { 1966 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1967 sizeof(struct scsi_data_buffer), 1968 0, 0, NULL); 1969 if (!scsi_sdb_cache) { 1970 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1971 return -ENOMEM; 1972 } 1973 1974 return 0; 1975 } 1976 1977 void scsi_exit_queue(void) 1978 { 1979 kmem_cache_destroy(scsi_sense_cache); 1980 kmem_cache_destroy(scsi_sense_isadma_cache); 1981 kmem_cache_destroy(scsi_sdb_cache); 1982 } 1983 1984 /** 1985 * scsi_mode_select - issue a mode select 1986 * @sdev: SCSI device to be queried 1987 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1988 * @sp: Save page bit (0 == don't save, 1 == save) 1989 * @modepage: mode page being requested 1990 * @buffer: request buffer (may not be smaller than eight bytes) 1991 * @len: length of request buffer. 1992 * @timeout: command timeout 1993 * @retries: number of retries before failing 1994 * @data: returns a structure abstracting the mode header data 1995 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1996 * must be SCSI_SENSE_BUFFERSIZE big. 1997 * 1998 * Returns zero if successful; negative error number or scsi 1999 * status on error 2000 * 2001 */ 2002 int 2003 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2004 unsigned char *buffer, int len, int timeout, int retries, 2005 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2006 { 2007 unsigned char cmd[10]; 2008 unsigned char *real_buffer; 2009 int ret; 2010 2011 memset(cmd, 0, sizeof(cmd)); 2012 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2013 2014 if (sdev->use_10_for_ms) { 2015 if (len > 65535) 2016 return -EINVAL; 2017 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2018 if (!real_buffer) 2019 return -ENOMEM; 2020 memcpy(real_buffer + 8, buffer, len); 2021 len += 8; 2022 real_buffer[0] = 0; 2023 real_buffer[1] = 0; 2024 real_buffer[2] = data->medium_type; 2025 real_buffer[3] = data->device_specific; 2026 real_buffer[4] = data->longlba ? 0x01 : 0; 2027 real_buffer[5] = 0; 2028 real_buffer[6] = data->block_descriptor_length >> 8; 2029 real_buffer[7] = data->block_descriptor_length; 2030 2031 cmd[0] = MODE_SELECT_10; 2032 cmd[7] = len >> 8; 2033 cmd[8] = len; 2034 } else { 2035 if (len > 255 || data->block_descriptor_length > 255 || 2036 data->longlba) 2037 return -EINVAL; 2038 2039 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2040 if (!real_buffer) 2041 return -ENOMEM; 2042 memcpy(real_buffer + 4, buffer, len); 2043 len += 4; 2044 real_buffer[0] = 0; 2045 real_buffer[1] = data->medium_type; 2046 real_buffer[2] = data->device_specific; 2047 real_buffer[3] = data->block_descriptor_length; 2048 2049 2050 cmd[0] = MODE_SELECT; 2051 cmd[4] = len; 2052 } 2053 2054 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2055 sshdr, timeout, retries, NULL); 2056 kfree(real_buffer); 2057 return ret; 2058 } 2059 EXPORT_SYMBOL_GPL(scsi_mode_select); 2060 2061 /** 2062 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2063 * @sdev: SCSI device to be queried 2064 * @dbd: set if mode sense will allow block descriptors to be returned 2065 * @modepage: mode page being requested 2066 * @buffer: request buffer (may not be smaller than eight bytes) 2067 * @len: length of request buffer. 2068 * @timeout: command timeout 2069 * @retries: number of retries before failing 2070 * @data: returns a structure abstracting the mode header data 2071 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2072 * must be SCSI_SENSE_BUFFERSIZE big. 2073 * 2074 * Returns zero if unsuccessful, or the header offset (either 4 2075 * or 8 depending on whether a six or ten byte command was 2076 * issued) if successful. 2077 */ 2078 int 2079 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2080 unsigned char *buffer, int len, int timeout, int retries, 2081 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2082 { 2083 unsigned char cmd[12]; 2084 int use_10_for_ms; 2085 int header_length; 2086 int result, retry_count = retries; 2087 struct scsi_sense_hdr my_sshdr; 2088 2089 memset(data, 0, sizeof(*data)); 2090 memset(&cmd[0], 0, 12); 2091 2092 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2093 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2094 cmd[2] = modepage; 2095 2096 /* caller might not be interested in sense, but we need it */ 2097 if (!sshdr) 2098 sshdr = &my_sshdr; 2099 2100 retry: 2101 use_10_for_ms = sdev->use_10_for_ms; 2102 2103 if (use_10_for_ms) { 2104 if (len < 8) 2105 len = 8; 2106 2107 cmd[0] = MODE_SENSE_10; 2108 cmd[8] = len; 2109 header_length = 8; 2110 } else { 2111 if (len < 4) 2112 len = 4; 2113 2114 cmd[0] = MODE_SENSE; 2115 cmd[4] = len; 2116 header_length = 4; 2117 } 2118 2119 memset(buffer, 0, len); 2120 2121 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2122 sshdr, timeout, retries, NULL); 2123 2124 /* This code looks awful: what it's doing is making sure an 2125 * ILLEGAL REQUEST sense return identifies the actual command 2126 * byte as the problem. MODE_SENSE commands can return 2127 * ILLEGAL REQUEST if the code page isn't supported */ 2128 2129 if (use_10_for_ms && !scsi_status_is_good(result) && 2130 driver_byte(result) == DRIVER_SENSE) { 2131 if (scsi_sense_valid(sshdr)) { 2132 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2133 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2134 /* 2135 * Invalid command operation code 2136 */ 2137 sdev->use_10_for_ms = 0; 2138 goto retry; 2139 } 2140 } 2141 } 2142 2143 if(scsi_status_is_good(result)) { 2144 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2145 (modepage == 6 || modepage == 8))) { 2146 /* Initio breakage? */ 2147 header_length = 0; 2148 data->length = 13; 2149 data->medium_type = 0; 2150 data->device_specific = 0; 2151 data->longlba = 0; 2152 data->block_descriptor_length = 0; 2153 } else if(use_10_for_ms) { 2154 data->length = buffer[0]*256 + buffer[1] + 2; 2155 data->medium_type = buffer[2]; 2156 data->device_specific = buffer[3]; 2157 data->longlba = buffer[4] & 0x01; 2158 data->block_descriptor_length = buffer[6]*256 2159 + buffer[7]; 2160 } else { 2161 data->length = buffer[0] + 1; 2162 data->medium_type = buffer[1]; 2163 data->device_specific = buffer[2]; 2164 data->block_descriptor_length = buffer[3]; 2165 } 2166 data->header_length = header_length; 2167 } else if ((status_byte(result) == CHECK_CONDITION) && 2168 scsi_sense_valid(sshdr) && 2169 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2170 retry_count--; 2171 goto retry; 2172 } 2173 2174 return result; 2175 } 2176 EXPORT_SYMBOL(scsi_mode_sense); 2177 2178 /** 2179 * scsi_test_unit_ready - test if unit is ready 2180 * @sdev: scsi device to change the state of. 2181 * @timeout: command timeout 2182 * @retries: number of retries before failing 2183 * @sshdr: outpout pointer for decoded sense information. 2184 * 2185 * Returns zero if unsuccessful or an error if TUR failed. For 2186 * removable media, UNIT_ATTENTION sets ->changed flag. 2187 **/ 2188 int 2189 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2190 struct scsi_sense_hdr *sshdr) 2191 { 2192 char cmd[] = { 2193 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2194 }; 2195 int result; 2196 2197 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2198 do { 2199 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2200 timeout, 1, NULL); 2201 if (sdev->removable && scsi_sense_valid(sshdr) && 2202 sshdr->sense_key == UNIT_ATTENTION) 2203 sdev->changed = 1; 2204 } while (scsi_sense_valid(sshdr) && 2205 sshdr->sense_key == UNIT_ATTENTION && --retries); 2206 2207 return result; 2208 } 2209 EXPORT_SYMBOL(scsi_test_unit_ready); 2210 2211 /** 2212 * scsi_device_set_state - Take the given device through the device state model. 2213 * @sdev: scsi device to change the state of. 2214 * @state: state to change to. 2215 * 2216 * Returns zero if successful or an error if the requested 2217 * transition is illegal. 2218 */ 2219 int 2220 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2221 { 2222 enum scsi_device_state oldstate = sdev->sdev_state; 2223 2224 if (state == oldstate) 2225 return 0; 2226 2227 switch (state) { 2228 case SDEV_CREATED: 2229 switch (oldstate) { 2230 case SDEV_CREATED_BLOCK: 2231 break; 2232 default: 2233 goto illegal; 2234 } 2235 break; 2236 2237 case SDEV_RUNNING: 2238 switch (oldstate) { 2239 case SDEV_CREATED: 2240 case SDEV_OFFLINE: 2241 case SDEV_TRANSPORT_OFFLINE: 2242 case SDEV_QUIESCE: 2243 case SDEV_BLOCK: 2244 break; 2245 default: 2246 goto illegal; 2247 } 2248 break; 2249 2250 case SDEV_QUIESCE: 2251 switch (oldstate) { 2252 case SDEV_RUNNING: 2253 case SDEV_OFFLINE: 2254 case SDEV_TRANSPORT_OFFLINE: 2255 break; 2256 default: 2257 goto illegal; 2258 } 2259 break; 2260 2261 case SDEV_OFFLINE: 2262 case SDEV_TRANSPORT_OFFLINE: 2263 switch (oldstate) { 2264 case SDEV_CREATED: 2265 case SDEV_RUNNING: 2266 case SDEV_QUIESCE: 2267 case SDEV_BLOCK: 2268 break; 2269 default: 2270 goto illegal; 2271 } 2272 break; 2273 2274 case SDEV_BLOCK: 2275 switch (oldstate) { 2276 case SDEV_RUNNING: 2277 case SDEV_CREATED_BLOCK: 2278 case SDEV_QUIESCE: 2279 case SDEV_OFFLINE: 2280 break; 2281 default: 2282 goto illegal; 2283 } 2284 break; 2285 2286 case SDEV_CREATED_BLOCK: 2287 switch (oldstate) { 2288 case SDEV_CREATED: 2289 break; 2290 default: 2291 goto illegal; 2292 } 2293 break; 2294 2295 case SDEV_CANCEL: 2296 switch (oldstate) { 2297 case SDEV_CREATED: 2298 case SDEV_RUNNING: 2299 case SDEV_QUIESCE: 2300 case SDEV_OFFLINE: 2301 case SDEV_TRANSPORT_OFFLINE: 2302 break; 2303 default: 2304 goto illegal; 2305 } 2306 break; 2307 2308 case SDEV_DEL: 2309 switch (oldstate) { 2310 case SDEV_CREATED: 2311 case SDEV_RUNNING: 2312 case SDEV_OFFLINE: 2313 case SDEV_TRANSPORT_OFFLINE: 2314 case SDEV_CANCEL: 2315 case SDEV_BLOCK: 2316 case SDEV_CREATED_BLOCK: 2317 break; 2318 default: 2319 goto illegal; 2320 } 2321 break; 2322 2323 } 2324 sdev->offline_already = false; 2325 sdev->sdev_state = state; 2326 return 0; 2327 2328 illegal: 2329 SCSI_LOG_ERROR_RECOVERY(1, 2330 sdev_printk(KERN_ERR, sdev, 2331 "Illegal state transition %s->%s", 2332 scsi_device_state_name(oldstate), 2333 scsi_device_state_name(state)) 2334 ); 2335 return -EINVAL; 2336 } 2337 EXPORT_SYMBOL(scsi_device_set_state); 2338 2339 /** 2340 * sdev_evt_emit - emit a single SCSI device uevent 2341 * @sdev: associated SCSI device 2342 * @evt: event to emit 2343 * 2344 * Send a single uevent (scsi_event) to the associated scsi_device. 2345 */ 2346 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2347 { 2348 int idx = 0; 2349 char *envp[3]; 2350 2351 switch (evt->evt_type) { 2352 case SDEV_EVT_MEDIA_CHANGE: 2353 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2354 break; 2355 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2356 scsi_rescan_device(&sdev->sdev_gendev); 2357 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2358 break; 2359 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2360 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2361 break; 2362 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2363 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2364 break; 2365 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2366 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2367 break; 2368 case SDEV_EVT_LUN_CHANGE_REPORTED: 2369 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2370 break; 2371 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2372 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2373 break; 2374 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2375 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2376 break; 2377 default: 2378 /* do nothing */ 2379 break; 2380 } 2381 2382 envp[idx++] = NULL; 2383 2384 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2385 } 2386 2387 /** 2388 * sdev_evt_thread - send a uevent for each scsi event 2389 * @work: work struct for scsi_device 2390 * 2391 * Dispatch queued events to their associated scsi_device kobjects 2392 * as uevents. 2393 */ 2394 void scsi_evt_thread(struct work_struct *work) 2395 { 2396 struct scsi_device *sdev; 2397 enum scsi_device_event evt_type; 2398 LIST_HEAD(event_list); 2399 2400 sdev = container_of(work, struct scsi_device, event_work); 2401 2402 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2403 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2404 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2405 2406 while (1) { 2407 struct scsi_event *evt; 2408 struct list_head *this, *tmp; 2409 unsigned long flags; 2410 2411 spin_lock_irqsave(&sdev->list_lock, flags); 2412 list_splice_init(&sdev->event_list, &event_list); 2413 spin_unlock_irqrestore(&sdev->list_lock, flags); 2414 2415 if (list_empty(&event_list)) 2416 break; 2417 2418 list_for_each_safe(this, tmp, &event_list) { 2419 evt = list_entry(this, struct scsi_event, node); 2420 list_del(&evt->node); 2421 scsi_evt_emit(sdev, evt); 2422 kfree(evt); 2423 } 2424 } 2425 } 2426 2427 /** 2428 * sdev_evt_send - send asserted event to uevent thread 2429 * @sdev: scsi_device event occurred on 2430 * @evt: event to send 2431 * 2432 * Assert scsi device event asynchronously. 2433 */ 2434 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2435 { 2436 unsigned long flags; 2437 2438 #if 0 2439 /* FIXME: currently this check eliminates all media change events 2440 * for polled devices. Need to update to discriminate between AN 2441 * and polled events */ 2442 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2443 kfree(evt); 2444 return; 2445 } 2446 #endif 2447 2448 spin_lock_irqsave(&sdev->list_lock, flags); 2449 list_add_tail(&evt->node, &sdev->event_list); 2450 schedule_work(&sdev->event_work); 2451 spin_unlock_irqrestore(&sdev->list_lock, flags); 2452 } 2453 EXPORT_SYMBOL_GPL(sdev_evt_send); 2454 2455 /** 2456 * sdev_evt_alloc - allocate a new scsi event 2457 * @evt_type: type of event to allocate 2458 * @gfpflags: GFP flags for allocation 2459 * 2460 * Allocates and returns a new scsi_event. 2461 */ 2462 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2463 gfp_t gfpflags) 2464 { 2465 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2466 if (!evt) 2467 return NULL; 2468 2469 evt->evt_type = evt_type; 2470 INIT_LIST_HEAD(&evt->node); 2471 2472 /* evt_type-specific initialization, if any */ 2473 switch (evt_type) { 2474 case SDEV_EVT_MEDIA_CHANGE: 2475 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2476 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2477 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2478 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2479 case SDEV_EVT_LUN_CHANGE_REPORTED: 2480 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2481 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2482 default: 2483 /* do nothing */ 2484 break; 2485 } 2486 2487 return evt; 2488 } 2489 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2490 2491 /** 2492 * sdev_evt_send_simple - send asserted event to uevent thread 2493 * @sdev: scsi_device event occurred on 2494 * @evt_type: type of event to send 2495 * @gfpflags: GFP flags for allocation 2496 * 2497 * Assert scsi device event asynchronously, given an event type. 2498 */ 2499 void sdev_evt_send_simple(struct scsi_device *sdev, 2500 enum scsi_device_event evt_type, gfp_t gfpflags) 2501 { 2502 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2503 if (!evt) { 2504 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2505 evt_type); 2506 return; 2507 } 2508 2509 sdev_evt_send(sdev, evt); 2510 } 2511 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2512 2513 /** 2514 * scsi_device_quiesce - Block user issued commands. 2515 * @sdev: scsi device to quiesce. 2516 * 2517 * This works by trying to transition to the SDEV_QUIESCE state 2518 * (which must be a legal transition). When the device is in this 2519 * state, only special requests will be accepted, all others will 2520 * be deferred. Since special requests may also be requeued requests, 2521 * a successful return doesn't guarantee the device will be 2522 * totally quiescent. 2523 * 2524 * Must be called with user context, may sleep. 2525 * 2526 * Returns zero if unsuccessful or an error if not. 2527 */ 2528 int 2529 scsi_device_quiesce(struct scsi_device *sdev) 2530 { 2531 struct request_queue *q = sdev->request_queue; 2532 int err; 2533 2534 /* 2535 * It is allowed to call scsi_device_quiesce() multiple times from 2536 * the same context but concurrent scsi_device_quiesce() calls are 2537 * not allowed. 2538 */ 2539 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2540 2541 if (sdev->quiesced_by == current) 2542 return 0; 2543 2544 blk_set_pm_only(q); 2545 2546 blk_mq_freeze_queue(q); 2547 /* 2548 * Ensure that the effect of blk_set_pm_only() will be visible 2549 * for percpu_ref_tryget() callers that occur after the queue 2550 * unfreeze even if the queue was already frozen before this function 2551 * was called. See also https://lwn.net/Articles/573497/. 2552 */ 2553 synchronize_rcu(); 2554 blk_mq_unfreeze_queue(q); 2555 2556 mutex_lock(&sdev->state_mutex); 2557 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2558 if (err == 0) 2559 sdev->quiesced_by = current; 2560 else 2561 blk_clear_pm_only(q); 2562 mutex_unlock(&sdev->state_mutex); 2563 2564 return err; 2565 } 2566 EXPORT_SYMBOL(scsi_device_quiesce); 2567 2568 /** 2569 * scsi_device_resume - Restart user issued commands to a quiesced device. 2570 * @sdev: scsi device to resume. 2571 * 2572 * Moves the device from quiesced back to running and restarts the 2573 * queues. 2574 * 2575 * Must be called with user context, may sleep. 2576 */ 2577 void scsi_device_resume(struct scsi_device *sdev) 2578 { 2579 /* check if the device state was mutated prior to resume, and if 2580 * so assume the state is being managed elsewhere (for example 2581 * device deleted during suspend) 2582 */ 2583 mutex_lock(&sdev->state_mutex); 2584 if (sdev->quiesced_by) { 2585 sdev->quiesced_by = NULL; 2586 blk_clear_pm_only(sdev->request_queue); 2587 } 2588 if (sdev->sdev_state == SDEV_QUIESCE) 2589 scsi_device_set_state(sdev, SDEV_RUNNING); 2590 mutex_unlock(&sdev->state_mutex); 2591 } 2592 EXPORT_SYMBOL(scsi_device_resume); 2593 2594 static void 2595 device_quiesce_fn(struct scsi_device *sdev, void *data) 2596 { 2597 scsi_device_quiesce(sdev); 2598 } 2599 2600 void 2601 scsi_target_quiesce(struct scsi_target *starget) 2602 { 2603 starget_for_each_device(starget, NULL, device_quiesce_fn); 2604 } 2605 EXPORT_SYMBOL(scsi_target_quiesce); 2606 2607 static void 2608 device_resume_fn(struct scsi_device *sdev, void *data) 2609 { 2610 scsi_device_resume(sdev); 2611 } 2612 2613 void 2614 scsi_target_resume(struct scsi_target *starget) 2615 { 2616 starget_for_each_device(starget, NULL, device_resume_fn); 2617 } 2618 EXPORT_SYMBOL(scsi_target_resume); 2619 2620 /** 2621 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2622 * @sdev: device to block 2623 * 2624 * Pause SCSI command processing on the specified device. Does not sleep. 2625 * 2626 * Returns zero if successful or a negative error code upon failure. 2627 * 2628 * Notes: 2629 * This routine transitions the device to the SDEV_BLOCK state (which must be 2630 * a legal transition). When the device is in this state, command processing 2631 * is paused until the device leaves the SDEV_BLOCK state. See also 2632 * scsi_internal_device_unblock_nowait(). 2633 */ 2634 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2635 { 2636 struct request_queue *q = sdev->request_queue; 2637 int err = 0; 2638 2639 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2640 if (err) { 2641 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2642 2643 if (err) 2644 return err; 2645 } 2646 2647 /* 2648 * The device has transitioned to SDEV_BLOCK. Stop the 2649 * block layer from calling the midlayer with this device's 2650 * request queue. 2651 */ 2652 blk_mq_quiesce_queue_nowait(q); 2653 return 0; 2654 } 2655 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2656 2657 /** 2658 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2659 * @sdev: device to block 2660 * 2661 * Pause SCSI command processing on the specified device and wait until all 2662 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2663 * 2664 * Returns zero if successful or a negative error code upon failure. 2665 * 2666 * Note: 2667 * This routine transitions the device to the SDEV_BLOCK state (which must be 2668 * a legal transition). When the device is in this state, command processing 2669 * is paused until the device leaves the SDEV_BLOCK state. See also 2670 * scsi_internal_device_unblock(). 2671 */ 2672 static int scsi_internal_device_block(struct scsi_device *sdev) 2673 { 2674 struct request_queue *q = sdev->request_queue; 2675 int err; 2676 2677 mutex_lock(&sdev->state_mutex); 2678 err = scsi_internal_device_block_nowait(sdev); 2679 if (err == 0) 2680 blk_mq_quiesce_queue(q); 2681 mutex_unlock(&sdev->state_mutex); 2682 2683 return err; 2684 } 2685 2686 void scsi_start_queue(struct scsi_device *sdev) 2687 { 2688 struct request_queue *q = sdev->request_queue; 2689 2690 blk_mq_unquiesce_queue(q); 2691 } 2692 2693 /** 2694 * scsi_internal_device_unblock_nowait - resume a device after a block request 2695 * @sdev: device to resume 2696 * @new_state: state to set the device to after unblocking 2697 * 2698 * Restart the device queue for a previously suspended SCSI device. Does not 2699 * sleep. 2700 * 2701 * Returns zero if successful or a negative error code upon failure. 2702 * 2703 * Notes: 2704 * This routine transitions the device to the SDEV_RUNNING state or to one of 2705 * the offline states (which must be a legal transition) allowing the midlayer 2706 * to goose the queue for this device. 2707 */ 2708 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2709 enum scsi_device_state new_state) 2710 { 2711 switch (new_state) { 2712 case SDEV_RUNNING: 2713 case SDEV_TRANSPORT_OFFLINE: 2714 break; 2715 default: 2716 return -EINVAL; 2717 } 2718 2719 /* 2720 * Try to transition the scsi device to SDEV_RUNNING or one of the 2721 * offlined states and goose the device queue if successful. 2722 */ 2723 switch (sdev->sdev_state) { 2724 case SDEV_BLOCK: 2725 case SDEV_TRANSPORT_OFFLINE: 2726 sdev->sdev_state = new_state; 2727 break; 2728 case SDEV_CREATED_BLOCK: 2729 if (new_state == SDEV_TRANSPORT_OFFLINE || 2730 new_state == SDEV_OFFLINE) 2731 sdev->sdev_state = new_state; 2732 else 2733 sdev->sdev_state = SDEV_CREATED; 2734 break; 2735 case SDEV_CANCEL: 2736 case SDEV_OFFLINE: 2737 break; 2738 default: 2739 return -EINVAL; 2740 } 2741 scsi_start_queue(sdev); 2742 2743 return 0; 2744 } 2745 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2746 2747 /** 2748 * scsi_internal_device_unblock - resume a device after a block request 2749 * @sdev: device to resume 2750 * @new_state: state to set the device to after unblocking 2751 * 2752 * Restart the device queue for a previously suspended SCSI device. May sleep. 2753 * 2754 * Returns zero if successful or a negative error code upon failure. 2755 * 2756 * Notes: 2757 * This routine transitions the device to the SDEV_RUNNING state or to one of 2758 * the offline states (which must be a legal transition) allowing the midlayer 2759 * to goose the queue for this device. 2760 */ 2761 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2762 enum scsi_device_state new_state) 2763 { 2764 int ret; 2765 2766 mutex_lock(&sdev->state_mutex); 2767 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2768 mutex_unlock(&sdev->state_mutex); 2769 2770 return ret; 2771 } 2772 2773 static void 2774 device_block(struct scsi_device *sdev, void *data) 2775 { 2776 int ret; 2777 2778 ret = scsi_internal_device_block(sdev); 2779 2780 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2781 dev_name(&sdev->sdev_gendev), ret); 2782 } 2783 2784 static int 2785 target_block(struct device *dev, void *data) 2786 { 2787 if (scsi_is_target_device(dev)) 2788 starget_for_each_device(to_scsi_target(dev), NULL, 2789 device_block); 2790 return 0; 2791 } 2792 2793 void 2794 scsi_target_block(struct device *dev) 2795 { 2796 if (scsi_is_target_device(dev)) 2797 starget_for_each_device(to_scsi_target(dev), NULL, 2798 device_block); 2799 else 2800 device_for_each_child(dev, NULL, target_block); 2801 } 2802 EXPORT_SYMBOL_GPL(scsi_target_block); 2803 2804 static void 2805 device_unblock(struct scsi_device *sdev, void *data) 2806 { 2807 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2808 } 2809 2810 static int 2811 target_unblock(struct device *dev, void *data) 2812 { 2813 if (scsi_is_target_device(dev)) 2814 starget_for_each_device(to_scsi_target(dev), data, 2815 device_unblock); 2816 return 0; 2817 } 2818 2819 void 2820 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2821 { 2822 if (scsi_is_target_device(dev)) 2823 starget_for_each_device(to_scsi_target(dev), &new_state, 2824 device_unblock); 2825 else 2826 device_for_each_child(dev, &new_state, target_unblock); 2827 } 2828 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2829 2830 int 2831 scsi_host_block(struct Scsi_Host *shost) 2832 { 2833 struct scsi_device *sdev; 2834 int ret = 0; 2835 2836 /* 2837 * Call scsi_internal_device_block_nowait so we can avoid 2838 * calling synchronize_rcu() for each LUN. 2839 */ 2840 shost_for_each_device(sdev, shost) { 2841 mutex_lock(&sdev->state_mutex); 2842 ret = scsi_internal_device_block_nowait(sdev); 2843 mutex_unlock(&sdev->state_mutex); 2844 if (ret) 2845 break; 2846 } 2847 2848 /* 2849 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2850 * calling synchronize_rcu() once is enough. 2851 */ 2852 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2853 2854 if (!ret) 2855 synchronize_rcu(); 2856 2857 return ret; 2858 } 2859 EXPORT_SYMBOL_GPL(scsi_host_block); 2860 2861 int 2862 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2863 { 2864 struct scsi_device *sdev; 2865 int ret = 0; 2866 2867 shost_for_each_device(sdev, shost) { 2868 ret = scsi_internal_device_unblock(sdev, new_state); 2869 if (ret) { 2870 scsi_device_put(sdev); 2871 break; 2872 } 2873 } 2874 return ret; 2875 } 2876 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2877 2878 /** 2879 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2880 * @sgl: scatter-gather list 2881 * @sg_count: number of segments in sg 2882 * @offset: offset in bytes into sg, on return offset into the mapped area 2883 * @len: bytes to map, on return number of bytes mapped 2884 * 2885 * Returns virtual address of the start of the mapped page 2886 */ 2887 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2888 size_t *offset, size_t *len) 2889 { 2890 int i; 2891 size_t sg_len = 0, len_complete = 0; 2892 struct scatterlist *sg; 2893 struct page *page; 2894 2895 WARN_ON(!irqs_disabled()); 2896 2897 for_each_sg(sgl, sg, sg_count, i) { 2898 len_complete = sg_len; /* Complete sg-entries */ 2899 sg_len += sg->length; 2900 if (sg_len > *offset) 2901 break; 2902 } 2903 2904 if (unlikely(i == sg_count)) { 2905 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2906 "elements %d\n", 2907 __func__, sg_len, *offset, sg_count); 2908 WARN_ON(1); 2909 return NULL; 2910 } 2911 2912 /* Offset starting from the beginning of first page in this sg-entry */ 2913 *offset = *offset - len_complete + sg->offset; 2914 2915 /* Assumption: contiguous pages can be accessed as "page + i" */ 2916 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2917 *offset &= ~PAGE_MASK; 2918 2919 /* Bytes in this sg-entry from *offset to the end of the page */ 2920 sg_len = PAGE_SIZE - *offset; 2921 if (*len > sg_len) 2922 *len = sg_len; 2923 2924 return kmap_atomic(page); 2925 } 2926 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2927 2928 /** 2929 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2930 * @virt: virtual address to be unmapped 2931 */ 2932 void scsi_kunmap_atomic_sg(void *virt) 2933 { 2934 kunmap_atomic(virt); 2935 } 2936 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2937 2938 void sdev_disable_disk_events(struct scsi_device *sdev) 2939 { 2940 atomic_inc(&sdev->disk_events_disable_depth); 2941 } 2942 EXPORT_SYMBOL(sdev_disable_disk_events); 2943 2944 void sdev_enable_disk_events(struct scsi_device *sdev) 2945 { 2946 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2947 return; 2948 atomic_dec(&sdev->disk_events_disable_depth); 2949 } 2950 EXPORT_SYMBOL(sdev_enable_disk_events); 2951 2952 /** 2953 * scsi_vpd_lun_id - return a unique device identification 2954 * @sdev: SCSI device 2955 * @id: buffer for the identification 2956 * @id_len: length of the buffer 2957 * 2958 * Copies a unique device identification into @id based 2959 * on the information in the VPD page 0x83 of the device. 2960 * The string will be formatted as a SCSI name string. 2961 * 2962 * Returns the length of the identification or error on failure. 2963 * If the identifier is longer than the supplied buffer the actual 2964 * identifier length is returned and the buffer is not zero-padded. 2965 */ 2966 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2967 { 2968 u8 cur_id_type = 0xff; 2969 u8 cur_id_size = 0; 2970 const unsigned char *d, *cur_id_str; 2971 const struct scsi_vpd *vpd_pg83; 2972 int id_size = -EINVAL; 2973 2974 rcu_read_lock(); 2975 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2976 if (!vpd_pg83) { 2977 rcu_read_unlock(); 2978 return -ENXIO; 2979 } 2980 2981 /* 2982 * Look for the correct descriptor. 2983 * Order of preference for lun descriptor: 2984 * - SCSI name string 2985 * - NAA IEEE Registered Extended 2986 * - EUI-64 based 16-byte 2987 * - EUI-64 based 12-byte 2988 * - NAA IEEE Registered 2989 * - NAA IEEE Extended 2990 * - T10 Vendor ID 2991 * as longer descriptors reduce the likelyhood 2992 * of identification clashes. 2993 */ 2994 2995 /* The id string must be at least 20 bytes + terminating NULL byte */ 2996 if (id_len < 21) { 2997 rcu_read_unlock(); 2998 return -EINVAL; 2999 } 3000 3001 memset(id, 0, id_len); 3002 d = vpd_pg83->data + 4; 3003 while (d < vpd_pg83->data + vpd_pg83->len) { 3004 /* Skip designators not referring to the LUN */ 3005 if ((d[1] & 0x30) != 0x00) 3006 goto next_desig; 3007 3008 switch (d[1] & 0xf) { 3009 case 0x1: 3010 /* T10 Vendor ID */ 3011 if (cur_id_size > d[3]) 3012 break; 3013 /* Prefer anything */ 3014 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3015 break; 3016 cur_id_size = d[3]; 3017 if (cur_id_size + 4 > id_len) 3018 cur_id_size = id_len - 4; 3019 cur_id_str = d + 4; 3020 cur_id_type = d[1] & 0xf; 3021 id_size = snprintf(id, id_len, "t10.%*pE", 3022 cur_id_size, cur_id_str); 3023 break; 3024 case 0x2: 3025 /* EUI-64 */ 3026 if (cur_id_size > d[3]) 3027 break; 3028 /* Prefer NAA IEEE Registered Extended */ 3029 if (cur_id_type == 0x3 && 3030 cur_id_size == d[3]) 3031 break; 3032 cur_id_size = d[3]; 3033 cur_id_str = d + 4; 3034 cur_id_type = d[1] & 0xf; 3035 switch (cur_id_size) { 3036 case 8: 3037 id_size = snprintf(id, id_len, 3038 "eui.%8phN", 3039 cur_id_str); 3040 break; 3041 case 12: 3042 id_size = snprintf(id, id_len, 3043 "eui.%12phN", 3044 cur_id_str); 3045 break; 3046 case 16: 3047 id_size = snprintf(id, id_len, 3048 "eui.%16phN", 3049 cur_id_str); 3050 break; 3051 default: 3052 cur_id_size = 0; 3053 break; 3054 } 3055 break; 3056 case 0x3: 3057 /* NAA */ 3058 if (cur_id_size > d[3]) 3059 break; 3060 cur_id_size = d[3]; 3061 cur_id_str = d + 4; 3062 cur_id_type = d[1] & 0xf; 3063 switch (cur_id_size) { 3064 case 8: 3065 id_size = snprintf(id, id_len, 3066 "naa.%8phN", 3067 cur_id_str); 3068 break; 3069 case 16: 3070 id_size = snprintf(id, id_len, 3071 "naa.%16phN", 3072 cur_id_str); 3073 break; 3074 default: 3075 cur_id_size = 0; 3076 break; 3077 } 3078 break; 3079 case 0x8: 3080 /* SCSI name string */ 3081 if (cur_id_size + 4 > d[3]) 3082 break; 3083 /* Prefer others for truncated descriptor */ 3084 if (cur_id_size && d[3] > id_len) 3085 break; 3086 cur_id_size = id_size = d[3]; 3087 cur_id_str = d + 4; 3088 cur_id_type = d[1] & 0xf; 3089 if (cur_id_size >= id_len) 3090 cur_id_size = id_len - 1; 3091 memcpy(id, cur_id_str, cur_id_size); 3092 /* Decrease priority for truncated descriptor */ 3093 if (cur_id_size != id_size) 3094 cur_id_size = 6; 3095 break; 3096 default: 3097 break; 3098 } 3099 next_desig: 3100 d += d[3] + 4; 3101 } 3102 rcu_read_unlock(); 3103 3104 return id_size; 3105 } 3106 EXPORT_SYMBOL(scsi_vpd_lun_id); 3107 3108 /* 3109 * scsi_vpd_tpg_id - return a target port group identifier 3110 * @sdev: SCSI device 3111 * 3112 * Returns the Target Port Group identifier from the information 3113 * froom VPD page 0x83 of the device. 3114 * 3115 * Returns the identifier or error on failure. 3116 */ 3117 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3118 { 3119 const unsigned char *d; 3120 const struct scsi_vpd *vpd_pg83; 3121 int group_id = -EAGAIN, rel_port = -1; 3122 3123 rcu_read_lock(); 3124 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3125 if (!vpd_pg83) { 3126 rcu_read_unlock(); 3127 return -ENXIO; 3128 } 3129 3130 d = vpd_pg83->data + 4; 3131 while (d < vpd_pg83->data + vpd_pg83->len) { 3132 switch (d[1] & 0xf) { 3133 case 0x4: 3134 /* Relative target port */ 3135 rel_port = get_unaligned_be16(&d[6]); 3136 break; 3137 case 0x5: 3138 /* Target port group */ 3139 group_id = get_unaligned_be16(&d[6]); 3140 break; 3141 default: 3142 break; 3143 } 3144 d += d[3] + 4; 3145 } 3146 rcu_read_unlock(); 3147 3148 if (group_id >= 0 && rel_id && rel_port != -1) 3149 *rel_id = rel_port; 3150 3151 return group_id; 3152 } 3153 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3154