xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision a971b42c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59 
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61 
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67 
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 				   unsigned char *sense_buffer)
70 {
71 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 			sense_buffer);
73 }
74 
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 	gfp_t gfp_mask, int numa_node)
77 {
78 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 				     gfp_mask, numa_node);
80 }
81 
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 	struct kmem_cache *cache;
85 	int ret = 0;
86 
87 	mutex_lock(&scsi_sense_cache_mutex);
88 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89 	if (cache)
90 		goto exit;
91 
92 	if (shost->unchecked_isa_dma) {
93 		scsi_sense_isadma_cache =
94 			kmem_cache_create("scsi_sense_cache(DMA)",
95 				SCSI_SENSE_BUFFERSIZE, 0,
96 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 		if (!scsi_sense_isadma_cache)
98 			ret = -ENOMEM;
99 	} else {
100 		scsi_sense_cache =
101 			kmem_cache_create_usercopy("scsi_sense_cache",
102 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 				0, SCSI_SENSE_BUFFERSIZE, NULL);
104 		if (!scsi_sense_cache)
105 			ret = -ENOMEM;
106 	}
107  exit:
108 	mutex_unlock(&scsi_sense_cache_mutex);
109 	return ret;
110 }
111 
112 /*
113  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114  * not change behaviour from the previous unplug mechanism, experimentation
115  * may prove this needs changing.
116  */
117 #define SCSI_QUEUE_DELAY	3
118 
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct scsi_target *starget = scsi_target(device);
125 
126 	/*
127 	 * Set the appropriate busy bit for the device/host.
128 	 *
129 	 * If the host/device isn't busy, assume that something actually
130 	 * completed, and that we should be able to queue a command now.
131 	 *
132 	 * Note that the prior mid-layer assumption that any host could
133 	 * always queue at least one command is now broken.  The mid-layer
134 	 * will implement a user specifiable stall (see
135 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 	 * if a command is requeued with no other commands outstanding
137 	 * either for the device or for the host.
138 	 */
139 	switch (reason) {
140 	case SCSI_MLQUEUE_HOST_BUSY:
141 		atomic_set(&host->host_blocked, host->max_host_blocked);
142 		break;
143 	case SCSI_MLQUEUE_DEVICE_BUSY:
144 	case SCSI_MLQUEUE_EH_RETRY:
145 		atomic_set(&device->device_blocked,
146 			   device->max_device_blocked);
147 		break;
148 	case SCSI_MLQUEUE_TARGET_BUSY:
149 		atomic_set(&starget->target_blocked,
150 			   starget->max_target_blocked);
151 		break;
152 	}
153 }
154 
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 	if (cmd->request->rq_flags & RQF_DONTPREP) {
158 		cmd->request->rq_flags &= ~RQF_DONTPREP;
159 		scsi_mq_uninit_cmd(cmd);
160 	} else {
161 		WARN_ON_ONCE(true);
162 	}
163 	blk_mq_requeue_request(cmd->request, true);
164 }
165 
166 /**
167  * __scsi_queue_insert - private queue insertion
168  * @cmd: The SCSI command being requeued
169  * @reason:  The reason for the requeue
170  * @unbusy: Whether the queue should be unbusied
171  *
172  * This is a private queue insertion.  The public interface
173  * scsi_queue_insert() always assumes the queue should be unbusied
174  * because it's always called before the completion.  This function is
175  * for a requeue after completion, which should only occur in this
176  * file.
177  */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 	struct scsi_device *device = cmd->device;
181 
182 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 		"Inserting command %p into mlqueue\n", cmd));
184 
185 	scsi_set_blocked(cmd, reason);
186 
187 	/*
188 	 * Decrement the counters, since these commands are no longer
189 	 * active on the host/device.
190 	 */
191 	if (unbusy)
192 		scsi_device_unbusy(device, cmd);
193 
194 	/*
195 	 * Requeue this command.  It will go before all other commands
196 	 * that are already in the queue. Schedule requeue work under
197 	 * lock such that the kblockd_schedule_work() call happens
198 	 * before blk_cleanup_queue() finishes.
199 	 */
200 	cmd->result = 0;
201 
202 	blk_mq_requeue_request(cmd->request, true);
203 }
204 
205 /**
206  * scsi_queue_insert - Reinsert a command in the queue.
207  * @cmd:    command that we are adding to queue.
208  * @reason: why we are inserting command to queue.
209  *
210  * We do this for one of two cases. Either the host is busy and it cannot accept
211  * any more commands for the time being, or the device returned QUEUE_FULL and
212  * can accept no more commands.
213  *
214  * Context: This could be called either from an interrupt context or a normal
215  * process context.
216  */
217 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
218 {
219 	__scsi_queue_insert(cmd, reason, true);
220 }
221 
222 
223 /**
224  * __scsi_execute - insert request and wait for the result
225  * @sdev:	scsi device
226  * @cmd:	scsi command
227  * @data_direction: data direction
228  * @buffer:	data buffer
229  * @bufflen:	len of buffer
230  * @sense:	optional sense buffer
231  * @sshdr:	optional decoded sense header
232  * @timeout:	request timeout in seconds
233  * @retries:	number of times to retry request
234  * @flags:	flags for ->cmd_flags
235  * @rq_flags:	flags for ->rq_flags
236  * @resid:	optional residual length
237  *
238  * Returns the scsi_cmnd result field if a command was executed, or a negative
239  * Linux error code if we didn't get that far.
240  */
241 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
242 		 int data_direction, void *buffer, unsigned bufflen,
243 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
244 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
245 		 int *resid)
246 {
247 	struct request *req;
248 	struct scsi_request *rq;
249 	int ret = DRIVER_ERROR << 24;
250 
251 	req = blk_get_request(sdev->request_queue,
252 			data_direction == DMA_TO_DEVICE ?
253 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
254 	if (IS_ERR(req))
255 		return ret;
256 	rq = scsi_req(req);
257 
258 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
259 					buffer, bufflen, GFP_NOIO))
260 		goto out;
261 
262 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 	memcpy(rq->cmd, cmd, rq->cmd_len);
264 	rq->retries = retries;
265 	req->timeout = timeout;
266 	req->cmd_flags |= flags;
267 	req->rq_flags |= rq_flags | RQF_QUIET;
268 
269 	/*
270 	 * head injection *required* here otherwise quiesce won't work
271 	 */
272 	blk_execute_rq(req->q, NULL, req, 1);
273 
274 	/*
275 	 * Some devices (USB mass-storage in particular) may transfer
276 	 * garbage data together with a residue indicating that the data
277 	 * is invalid.  Prevent the garbage from being misinterpreted
278 	 * and prevent security leaks by zeroing out the excess data.
279 	 */
280 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282 
283 	if (resid)
284 		*resid = rq->resid_len;
285 	if (sense && rq->sense_len)
286 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 	if (sshdr)
288 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 	ret = rq->result;
290  out:
291 	blk_put_request(req);
292 
293 	return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296 
297 /**
298  * scsi_init_cmd_errh - Initialize cmd fields related to error handling.
299  * @cmd:  command that is ready to be queued.
300  *
301  * This function has the job of initializing a number of fields related to error
302  * handling. Typically this will be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 	scsi_set_resid(cmd, 0);
307 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
308 	if (cmd->cmd_len == 0)
309 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
310 }
311 
312 /*
313  * Wake up the error handler if necessary. Avoid as follows that the error
314  * handler is not woken up if host in-flight requests number ==
315  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
316  * with an RCU read lock in this function to ensure that this function in
317  * its entirety either finishes before scsi_eh_scmd_add() increases the
318  * host_failed counter or that it notices the shost state change made by
319  * scsi_eh_scmd_add().
320  */
321 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
322 {
323 	unsigned long flags;
324 
325 	rcu_read_lock();
326 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
327 	if (unlikely(scsi_host_in_recovery(shost))) {
328 		spin_lock_irqsave(shost->host_lock, flags);
329 		if (shost->host_failed || shost->host_eh_scheduled)
330 			scsi_eh_wakeup(shost);
331 		spin_unlock_irqrestore(shost->host_lock, flags);
332 	}
333 	rcu_read_unlock();
334 }
335 
336 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
337 {
338 	struct Scsi_Host *shost = sdev->host;
339 	struct scsi_target *starget = scsi_target(sdev);
340 
341 	scsi_dec_host_busy(shost, cmd);
342 
343 	if (starget->can_queue > 0)
344 		atomic_dec(&starget->target_busy);
345 
346 	atomic_dec(&sdev->device_busy);
347 }
348 
349 static void scsi_kick_queue(struct request_queue *q)
350 {
351 	blk_mq_run_hw_queues(q, false);
352 }
353 
354 /*
355  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
356  * and call blk_run_queue for all the scsi_devices on the target -
357  * including current_sdev first.
358  *
359  * Called with *no* scsi locks held.
360  */
361 static void scsi_single_lun_run(struct scsi_device *current_sdev)
362 {
363 	struct Scsi_Host *shost = current_sdev->host;
364 	struct scsi_device *sdev, *tmp;
365 	struct scsi_target *starget = scsi_target(current_sdev);
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(shost->host_lock, flags);
369 	starget->starget_sdev_user = NULL;
370 	spin_unlock_irqrestore(shost->host_lock, flags);
371 
372 	/*
373 	 * Call blk_run_queue for all LUNs on the target, starting with
374 	 * current_sdev. We race with others (to set starget_sdev_user),
375 	 * but in most cases, we will be first. Ideally, each LU on the
376 	 * target would get some limited time or requests on the target.
377 	 */
378 	scsi_kick_queue(current_sdev->request_queue);
379 
380 	spin_lock_irqsave(shost->host_lock, flags);
381 	if (starget->starget_sdev_user)
382 		goto out;
383 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
384 			same_target_siblings) {
385 		if (sdev == current_sdev)
386 			continue;
387 		if (scsi_device_get(sdev))
388 			continue;
389 
390 		spin_unlock_irqrestore(shost->host_lock, flags);
391 		scsi_kick_queue(sdev->request_queue);
392 		spin_lock_irqsave(shost->host_lock, flags);
393 
394 		scsi_device_put(sdev);
395 	}
396  out:
397 	spin_unlock_irqrestore(shost->host_lock, flags);
398 }
399 
400 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
401 {
402 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
403 		return true;
404 	if (atomic_read(&sdev->device_blocked) > 0)
405 		return true;
406 	return false;
407 }
408 
409 static inline bool scsi_target_is_busy(struct scsi_target *starget)
410 {
411 	if (starget->can_queue > 0) {
412 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
413 			return true;
414 		if (atomic_read(&starget->target_blocked) > 0)
415 			return true;
416 	}
417 	return false;
418 }
419 
420 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
421 {
422 	if (atomic_read(&shost->host_blocked) > 0)
423 		return true;
424 	if (shost->host_self_blocked)
425 		return true;
426 	return false;
427 }
428 
429 static void scsi_starved_list_run(struct Scsi_Host *shost)
430 {
431 	LIST_HEAD(starved_list);
432 	struct scsi_device *sdev;
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(shost->host_lock, flags);
436 	list_splice_init(&shost->starved_list, &starved_list);
437 
438 	while (!list_empty(&starved_list)) {
439 		struct request_queue *slq;
440 
441 		/*
442 		 * As long as shost is accepting commands and we have
443 		 * starved queues, call blk_run_queue. scsi_request_fn
444 		 * drops the queue_lock and can add us back to the
445 		 * starved_list.
446 		 *
447 		 * host_lock protects the starved_list and starved_entry.
448 		 * scsi_request_fn must get the host_lock before checking
449 		 * or modifying starved_list or starved_entry.
450 		 */
451 		if (scsi_host_is_busy(shost))
452 			break;
453 
454 		sdev = list_entry(starved_list.next,
455 				  struct scsi_device, starved_entry);
456 		list_del_init(&sdev->starved_entry);
457 		if (scsi_target_is_busy(scsi_target(sdev))) {
458 			list_move_tail(&sdev->starved_entry,
459 				       &shost->starved_list);
460 			continue;
461 		}
462 
463 		/*
464 		 * Once we drop the host lock, a racing scsi_remove_device()
465 		 * call may remove the sdev from the starved list and destroy
466 		 * it and the queue.  Mitigate by taking a reference to the
467 		 * queue and never touching the sdev again after we drop the
468 		 * host lock.  Note: if __scsi_remove_device() invokes
469 		 * blk_cleanup_queue() before the queue is run from this
470 		 * function then blk_run_queue() will return immediately since
471 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
472 		 */
473 		slq = sdev->request_queue;
474 		if (!blk_get_queue(slq))
475 			continue;
476 		spin_unlock_irqrestore(shost->host_lock, flags);
477 
478 		scsi_kick_queue(slq);
479 		blk_put_queue(slq);
480 
481 		spin_lock_irqsave(shost->host_lock, flags);
482 	}
483 	/* put any unprocessed entries back */
484 	list_splice(&starved_list, &shost->starved_list);
485 	spin_unlock_irqrestore(shost->host_lock, flags);
486 }
487 
488 /**
489  * scsi_run_queue - Select a proper request queue to serve next.
490  * @q:  last request's queue
491  *
492  * The previous command was completely finished, start a new one if possible.
493  */
494 static void scsi_run_queue(struct request_queue *q)
495 {
496 	struct scsi_device *sdev = q->queuedata;
497 
498 	if (scsi_target(sdev)->single_lun)
499 		scsi_single_lun_run(sdev);
500 	if (!list_empty(&sdev->host->starved_list))
501 		scsi_starved_list_run(sdev->host);
502 
503 	blk_mq_run_hw_queues(q, false);
504 }
505 
506 void scsi_requeue_run_queue(struct work_struct *work)
507 {
508 	struct scsi_device *sdev;
509 	struct request_queue *q;
510 
511 	sdev = container_of(work, struct scsi_device, requeue_work);
512 	q = sdev->request_queue;
513 	scsi_run_queue(q);
514 }
515 
516 void scsi_run_host_queues(struct Scsi_Host *shost)
517 {
518 	struct scsi_device *sdev;
519 
520 	shost_for_each_device(sdev, shost)
521 		scsi_run_queue(sdev->request_queue);
522 }
523 
524 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
525 {
526 	if (!blk_rq_is_passthrough(cmd->request)) {
527 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
528 
529 		if (drv->uninit_command)
530 			drv->uninit_command(cmd);
531 	}
532 }
533 
534 static void scsi_free_sgtables(struct scsi_cmnd *cmd)
535 {
536 	if (cmd->sdb.table.nents)
537 		sg_free_table_chained(&cmd->sdb.table,
538 				SCSI_INLINE_SG_CNT);
539 	if (scsi_prot_sg_count(cmd))
540 		sg_free_table_chained(&cmd->prot_sdb->table,
541 				SCSI_INLINE_PROT_SG_CNT);
542 }
543 
544 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
545 {
546 	scsi_free_sgtables(cmd);
547 	scsi_uninit_cmd(cmd);
548 }
549 
550 static void scsi_run_queue_async(struct scsi_device *sdev)
551 {
552 	if (scsi_target(sdev)->single_lun ||
553 	    !list_empty(&sdev->host->starved_list))
554 		kblockd_schedule_work(&sdev->requeue_work);
555 	else
556 		blk_mq_run_hw_queues(sdev->request_queue, true);
557 }
558 
559 /* Returns false when no more bytes to process, true if there are more */
560 static bool scsi_end_request(struct request *req, blk_status_t error,
561 		unsigned int bytes)
562 {
563 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
564 	struct scsi_device *sdev = cmd->device;
565 	struct request_queue *q = sdev->request_queue;
566 
567 	if (blk_update_request(req, error, bytes))
568 		return true;
569 
570 	if (blk_queue_add_random(q))
571 		add_disk_randomness(req->rq_disk);
572 
573 	if (!blk_rq_is_scsi(req)) {
574 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
575 		cmd->flags &= ~SCMD_INITIALIZED;
576 	}
577 
578 	/*
579 	 * Calling rcu_barrier() is not necessary here because the
580 	 * SCSI error handler guarantees that the function called by
581 	 * call_rcu() has been called before scsi_end_request() is
582 	 * called.
583 	 */
584 	destroy_rcu_head(&cmd->rcu);
585 
586 	/*
587 	 * In the MQ case the command gets freed by __blk_mq_end_request,
588 	 * so we have to do all cleanup that depends on it earlier.
589 	 *
590 	 * We also can't kick the queues from irq context, so we
591 	 * will have to defer it to a workqueue.
592 	 */
593 	scsi_mq_uninit_cmd(cmd);
594 
595 	/*
596 	 * queue is still alive, so grab the ref for preventing it
597 	 * from being cleaned up during running queue.
598 	 */
599 	percpu_ref_get(&q->q_usage_counter);
600 
601 	__blk_mq_end_request(req, error);
602 
603 	scsi_run_queue_async(sdev);
604 
605 	percpu_ref_put(&q->q_usage_counter);
606 	return false;
607 }
608 
609 /**
610  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
611  * @cmd:	SCSI command
612  * @result:	scsi error code
613  *
614  * Translate a SCSI result code into a blk_status_t value. May reset the host
615  * byte of @cmd->result.
616  */
617 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
618 {
619 	switch (host_byte(result)) {
620 	case DID_OK:
621 		/*
622 		 * Also check the other bytes than the status byte in result
623 		 * to handle the case when a SCSI LLD sets result to
624 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
625 		 */
626 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
627 			return BLK_STS_OK;
628 		return BLK_STS_IOERR;
629 	case DID_TRANSPORT_FAILFAST:
630 		return BLK_STS_TRANSPORT;
631 	case DID_TARGET_FAILURE:
632 		set_host_byte(cmd, DID_OK);
633 		return BLK_STS_TARGET;
634 	case DID_NEXUS_FAILURE:
635 		set_host_byte(cmd, DID_OK);
636 		return BLK_STS_NEXUS;
637 	case DID_ALLOC_FAILURE:
638 		set_host_byte(cmd, DID_OK);
639 		return BLK_STS_NOSPC;
640 	case DID_MEDIUM_ERROR:
641 		set_host_byte(cmd, DID_OK);
642 		return BLK_STS_MEDIUM;
643 	default:
644 		return BLK_STS_IOERR;
645 	}
646 }
647 
648 /* Helper for scsi_io_completion() when "reprep" action required. */
649 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
650 				      struct request_queue *q)
651 {
652 	/* A new command will be prepared and issued. */
653 	scsi_mq_requeue_cmd(cmd);
654 }
655 
656 /* Helper for scsi_io_completion() when special action required. */
657 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
658 {
659 	struct request_queue *q = cmd->device->request_queue;
660 	struct request *req = cmd->request;
661 	int level = 0;
662 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
663 	      ACTION_DELAYED_RETRY} action;
664 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
665 	struct scsi_sense_hdr sshdr;
666 	bool sense_valid;
667 	bool sense_current = true;      /* false implies "deferred sense" */
668 	blk_status_t blk_stat;
669 
670 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
671 	if (sense_valid)
672 		sense_current = !scsi_sense_is_deferred(&sshdr);
673 
674 	blk_stat = scsi_result_to_blk_status(cmd, result);
675 
676 	if (host_byte(result) == DID_RESET) {
677 		/* Third party bus reset or reset for error recovery
678 		 * reasons.  Just retry the command and see what
679 		 * happens.
680 		 */
681 		action = ACTION_RETRY;
682 	} else if (sense_valid && sense_current) {
683 		switch (sshdr.sense_key) {
684 		case UNIT_ATTENTION:
685 			if (cmd->device->removable) {
686 				/* Detected disc change.  Set a bit
687 				 * and quietly refuse further access.
688 				 */
689 				cmd->device->changed = 1;
690 				action = ACTION_FAIL;
691 			} else {
692 				/* Must have been a power glitch, or a
693 				 * bus reset.  Could not have been a
694 				 * media change, so we just retry the
695 				 * command and see what happens.
696 				 */
697 				action = ACTION_RETRY;
698 			}
699 			break;
700 		case ILLEGAL_REQUEST:
701 			/* If we had an ILLEGAL REQUEST returned, then
702 			 * we may have performed an unsupported
703 			 * command.  The only thing this should be
704 			 * would be a ten byte read where only a six
705 			 * byte read was supported.  Also, on a system
706 			 * where READ CAPACITY failed, we may have
707 			 * read past the end of the disk.
708 			 */
709 			if ((cmd->device->use_10_for_rw &&
710 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
711 			    (cmd->cmnd[0] == READ_10 ||
712 			     cmd->cmnd[0] == WRITE_10)) {
713 				/* This will issue a new 6-byte command. */
714 				cmd->device->use_10_for_rw = 0;
715 				action = ACTION_REPREP;
716 			} else if (sshdr.asc == 0x10) /* DIX */ {
717 				action = ACTION_FAIL;
718 				blk_stat = BLK_STS_PROTECTION;
719 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
720 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
721 				action = ACTION_FAIL;
722 				blk_stat = BLK_STS_TARGET;
723 			} else
724 				action = ACTION_FAIL;
725 			break;
726 		case ABORTED_COMMAND:
727 			action = ACTION_FAIL;
728 			if (sshdr.asc == 0x10) /* DIF */
729 				blk_stat = BLK_STS_PROTECTION;
730 			break;
731 		case NOT_READY:
732 			/* If the device is in the process of becoming
733 			 * ready, or has a temporary blockage, retry.
734 			 */
735 			if (sshdr.asc == 0x04) {
736 				switch (sshdr.ascq) {
737 				case 0x01: /* becoming ready */
738 				case 0x04: /* format in progress */
739 				case 0x05: /* rebuild in progress */
740 				case 0x06: /* recalculation in progress */
741 				case 0x07: /* operation in progress */
742 				case 0x08: /* Long write in progress */
743 				case 0x09: /* self test in progress */
744 				case 0x14: /* space allocation in progress */
745 				case 0x1a: /* start stop unit in progress */
746 				case 0x1b: /* sanitize in progress */
747 				case 0x1d: /* configuration in progress */
748 				case 0x24: /* depopulation in progress */
749 					action = ACTION_DELAYED_RETRY;
750 					break;
751 				default:
752 					action = ACTION_FAIL;
753 					break;
754 				}
755 			} else
756 				action = ACTION_FAIL;
757 			break;
758 		case VOLUME_OVERFLOW:
759 			/* See SSC3rXX or current. */
760 			action = ACTION_FAIL;
761 			break;
762 		default:
763 			action = ACTION_FAIL;
764 			break;
765 		}
766 	} else
767 		action = ACTION_FAIL;
768 
769 	if (action != ACTION_FAIL &&
770 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
771 		action = ACTION_FAIL;
772 
773 	switch (action) {
774 	case ACTION_FAIL:
775 		/* Give up and fail the remainder of the request */
776 		if (!(req->rq_flags & RQF_QUIET)) {
777 			static DEFINE_RATELIMIT_STATE(_rs,
778 					DEFAULT_RATELIMIT_INTERVAL,
779 					DEFAULT_RATELIMIT_BURST);
780 
781 			if (unlikely(scsi_logging_level))
782 				level =
783 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
784 						    SCSI_LOG_MLCOMPLETE_BITS);
785 
786 			/*
787 			 * if logging is enabled the failure will be printed
788 			 * in scsi_log_completion(), so avoid duplicate messages
789 			 */
790 			if (!level && __ratelimit(&_rs)) {
791 				scsi_print_result(cmd, NULL, FAILED);
792 				if (driver_byte(result) == DRIVER_SENSE)
793 					scsi_print_sense(cmd);
794 				scsi_print_command(cmd);
795 			}
796 		}
797 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
798 			return;
799 		/*FALLTHRU*/
800 	case ACTION_REPREP:
801 		scsi_io_completion_reprep(cmd, q);
802 		break;
803 	case ACTION_RETRY:
804 		/* Retry the same command immediately */
805 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
806 		break;
807 	case ACTION_DELAYED_RETRY:
808 		/* Retry the same command after a delay */
809 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
810 		break;
811 	}
812 }
813 
814 /*
815  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
816  * new result that may suppress further error checking. Also modifies
817  * *blk_statp in some cases.
818  */
819 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
820 					blk_status_t *blk_statp)
821 {
822 	bool sense_valid;
823 	bool sense_current = true;	/* false implies "deferred sense" */
824 	struct request *req = cmd->request;
825 	struct scsi_sense_hdr sshdr;
826 
827 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
828 	if (sense_valid)
829 		sense_current = !scsi_sense_is_deferred(&sshdr);
830 
831 	if (blk_rq_is_passthrough(req)) {
832 		if (sense_valid) {
833 			/*
834 			 * SG_IO wants current and deferred errors
835 			 */
836 			scsi_req(req)->sense_len =
837 				min(8 + cmd->sense_buffer[7],
838 				    SCSI_SENSE_BUFFERSIZE);
839 		}
840 		if (sense_current)
841 			*blk_statp = scsi_result_to_blk_status(cmd, result);
842 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
843 		/*
844 		 * Flush commands do not transfers any data, and thus cannot use
845 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
846 		 * This sets *blk_statp explicitly for the problem case.
847 		 */
848 		*blk_statp = scsi_result_to_blk_status(cmd, result);
849 	}
850 	/*
851 	 * Recovered errors need reporting, but they're always treated as
852 	 * success, so fiddle the result code here.  For passthrough requests
853 	 * we already took a copy of the original into sreq->result which
854 	 * is what gets returned to the user
855 	 */
856 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
857 		bool do_print = true;
858 		/*
859 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
860 		 * skip print since caller wants ATA registers. Only occurs
861 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
862 		 */
863 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
864 			do_print = false;
865 		else if (req->rq_flags & RQF_QUIET)
866 			do_print = false;
867 		if (do_print)
868 			scsi_print_sense(cmd);
869 		result = 0;
870 		/* for passthrough, *blk_statp may be set */
871 		*blk_statp = BLK_STS_OK;
872 	}
873 	/*
874 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
875 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
876 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
877 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
878 	 * intermediate statuses (both obsolete in SAM-4) as good.
879 	 */
880 	if (status_byte(result) && scsi_status_is_good(result)) {
881 		result = 0;
882 		*blk_statp = BLK_STS_OK;
883 	}
884 	return result;
885 }
886 
887 /**
888  * scsi_io_completion - Completion processing for SCSI commands.
889  * @cmd:	command that is finished.
890  * @good_bytes:	number of processed bytes.
891  *
892  * We will finish off the specified number of sectors. If we are done, the
893  * command block will be released and the queue function will be goosed. If we
894  * are not done then we have to figure out what to do next:
895  *
896  *   a) We can call scsi_io_completion_reprep().  The request will be
897  *	unprepared and put back on the queue.  Then a new command will
898  *	be created for it.  This should be used if we made forward
899  *	progress, or if we want to switch from READ(10) to READ(6) for
900  *	example.
901  *
902  *   b) We can call scsi_io_completion_action().  The request will be
903  *	put back on the queue and retried using the same command as
904  *	before, possibly after a delay.
905  *
906  *   c) We can call scsi_end_request() with blk_stat other than
907  *	BLK_STS_OK, to fail the remainder of the request.
908  */
909 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
910 {
911 	int result = cmd->result;
912 	struct request_queue *q = cmd->device->request_queue;
913 	struct request *req = cmd->request;
914 	blk_status_t blk_stat = BLK_STS_OK;
915 
916 	if (unlikely(result))	/* a nz result may or may not be an error */
917 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
918 
919 	if (unlikely(blk_rq_is_passthrough(req))) {
920 		/*
921 		 * scsi_result_to_blk_status may have reset the host_byte
922 		 */
923 		scsi_req(req)->result = cmd->result;
924 	}
925 
926 	/*
927 	 * Next deal with any sectors which we were able to correctly
928 	 * handle.
929 	 */
930 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
931 		"%u sectors total, %d bytes done.\n",
932 		blk_rq_sectors(req), good_bytes));
933 
934 	/*
935 	 * Failed, zero length commands always need to drop down
936 	 * to retry code. Fast path should return in this block.
937 	 */
938 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
939 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
940 			return; /* no bytes remaining */
941 	}
942 
943 	/* Kill remainder if no retries. */
944 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
945 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
946 			WARN_ONCE(true,
947 			    "Bytes remaining after failed, no-retry command");
948 		return;
949 	}
950 
951 	/*
952 	 * If there had been no error, but we have leftover bytes in the
953 	 * requeues just queue the command up again.
954 	 */
955 	if (likely(result == 0))
956 		scsi_io_completion_reprep(cmd, q);
957 	else
958 		scsi_io_completion_action(cmd, result);
959 }
960 
961 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
962 		struct request *rq)
963 {
964 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
965 	       !op_is_write(req_op(rq)) &&
966 	       sdev->host->hostt->dma_need_drain(rq);
967 }
968 
969 /**
970  * scsi_init_io - SCSI I/O initialization function.
971  * @cmd:  command descriptor we wish to initialize
972  *
973  * Returns:
974  * * BLK_STS_OK       - on success
975  * * BLK_STS_RESOURCE - if the failure is retryable
976  * * BLK_STS_IOERR    - if the failure is fatal
977  */
978 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
979 {
980 	struct scsi_device *sdev = cmd->device;
981 	struct request *rq = cmd->request;
982 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
983 	struct scatterlist *last_sg = NULL;
984 	blk_status_t ret;
985 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
986 	int count;
987 
988 	if (WARN_ON_ONCE(!nr_segs))
989 		return BLK_STS_IOERR;
990 
991 	/*
992 	 * Make sure there is space for the drain.  The driver must adjust
993 	 * max_hw_segments to be prepared for this.
994 	 */
995 	if (need_drain)
996 		nr_segs++;
997 
998 	/*
999 	 * If sg table allocation fails, requeue request later.
1000 	 */
1001 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1002 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1003 		return BLK_STS_RESOURCE;
1004 
1005 	/*
1006 	 * Next, walk the list, and fill in the addresses and sizes of
1007 	 * each segment.
1008 	 */
1009 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1010 
1011 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1012 		unsigned int pad_len =
1013 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1014 
1015 		last_sg->length += pad_len;
1016 		cmd->extra_len += pad_len;
1017 	}
1018 
1019 	if (need_drain) {
1020 		sg_unmark_end(last_sg);
1021 		last_sg = sg_next(last_sg);
1022 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1023 		sg_mark_end(last_sg);
1024 
1025 		cmd->extra_len += sdev->dma_drain_len;
1026 		count++;
1027 	}
1028 
1029 	BUG_ON(count > cmd->sdb.table.nents);
1030 	cmd->sdb.table.nents = count;
1031 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1032 
1033 	if (blk_integrity_rq(rq)) {
1034 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1035 		int ivecs;
1036 
1037 		if (WARN_ON_ONCE(!prot_sdb)) {
1038 			/*
1039 			 * This can happen if someone (e.g. multipath)
1040 			 * queues a command to a device on an adapter
1041 			 * that does not support DIX.
1042 			 */
1043 			ret = BLK_STS_IOERR;
1044 			goto out_free_sgtables;
1045 		}
1046 
1047 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1048 
1049 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1050 				prot_sdb->table.sgl,
1051 				SCSI_INLINE_PROT_SG_CNT)) {
1052 			ret = BLK_STS_RESOURCE;
1053 			goto out_free_sgtables;
1054 		}
1055 
1056 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1057 						prot_sdb->table.sgl);
1058 		BUG_ON(count > ivecs);
1059 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1060 
1061 		cmd->prot_sdb = prot_sdb;
1062 		cmd->prot_sdb->table.nents = count;
1063 	}
1064 
1065 	return BLK_STS_OK;
1066 out_free_sgtables:
1067 	scsi_free_sgtables(cmd);
1068 	return ret;
1069 }
1070 EXPORT_SYMBOL(scsi_init_io);
1071 
1072 /**
1073  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1074  * @rq: Request associated with the SCSI command to be initialized.
1075  *
1076  * This function initializes the members of struct scsi_cmnd that must be
1077  * initialized before request processing starts and that won't be
1078  * reinitialized if a SCSI command is requeued.
1079  *
1080  * Called from inside blk_get_request() for pass-through requests and from
1081  * inside scsi_init_command() for filesystem requests.
1082  */
1083 static void scsi_initialize_rq(struct request *rq)
1084 {
1085 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1086 
1087 	scsi_req_init(&cmd->req);
1088 	init_rcu_head(&cmd->rcu);
1089 	cmd->jiffies_at_alloc = jiffies;
1090 	cmd->retries = 0;
1091 }
1092 
1093 /*
1094  * Only called when the request isn't completed by SCSI, and not freed by
1095  * SCSI
1096  */
1097 static void scsi_cleanup_rq(struct request *rq)
1098 {
1099 	if (rq->rq_flags & RQF_DONTPREP) {
1100 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1101 		rq->rq_flags &= ~RQF_DONTPREP;
1102 	}
1103 }
1104 
1105 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1106 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1107 {
1108 	void *buf = cmd->sense_buffer;
1109 	void *prot = cmd->prot_sdb;
1110 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1111 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1112 	unsigned long jiffies_at_alloc;
1113 	int retries, to_clear;
1114 	bool in_flight;
1115 
1116 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1117 		flags |= SCMD_INITIALIZED;
1118 		scsi_initialize_rq(rq);
1119 	}
1120 
1121 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1122 	retries = cmd->retries;
1123 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1124 	/*
1125 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1126 	 * the driver-private command data if the LLD does not supply a
1127 	 * function to initialize that data.
1128 	 */
1129 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1130 	if (!dev->host->hostt->init_cmd_priv)
1131 		to_clear += dev->host->hostt->cmd_size;
1132 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1133 
1134 	cmd->device = dev;
1135 	cmd->sense_buffer = buf;
1136 	cmd->prot_sdb = prot;
1137 	cmd->flags = flags;
1138 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1139 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1140 	cmd->retries = retries;
1141 	if (in_flight)
1142 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1143 
1144 }
1145 
1146 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1147 		struct request *req)
1148 {
1149 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1150 
1151 	/*
1152 	 * Passthrough requests may transfer data, in which case they must
1153 	 * a bio attached to them.  Or they might contain a SCSI command
1154 	 * that does not transfer data, in which case they may optionally
1155 	 * submit a request without an attached bio.
1156 	 */
1157 	if (req->bio) {
1158 		blk_status_t ret = scsi_init_io(cmd);
1159 		if (unlikely(ret != BLK_STS_OK))
1160 			return ret;
1161 	} else {
1162 		BUG_ON(blk_rq_bytes(req));
1163 
1164 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1165 	}
1166 
1167 	cmd->cmd_len = scsi_req(req)->cmd_len;
1168 	cmd->cmnd = scsi_req(req)->cmd;
1169 	cmd->transfersize = blk_rq_bytes(req);
1170 	cmd->allowed = scsi_req(req)->retries;
1171 	return BLK_STS_OK;
1172 }
1173 
1174 /*
1175  * Setup a normal block command.  These are simple request from filesystems
1176  * that still need to be translated to SCSI CDBs from the ULD.
1177  */
1178 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1179 		struct request *req)
1180 {
1181 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1182 
1183 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1184 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1185 		if (ret != BLK_STS_OK)
1186 			return ret;
1187 	}
1188 
1189 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1190 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1191 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1192 }
1193 
1194 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1195 		struct request *req)
1196 {
1197 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1198 	blk_status_t ret;
1199 
1200 	if (!blk_rq_bytes(req))
1201 		cmd->sc_data_direction = DMA_NONE;
1202 	else if (rq_data_dir(req) == WRITE)
1203 		cmd->sc_data_direction = DMA_TO_DEVICE;
1204 	else
1205 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1206 
1207 	if (blk_rq_is_scsi(req))
1208 		ret = scsi_setup_scsi_cmnd(sdev, req);
1209 	else
1210 		ret = scsi_setup_fs_cmnd(sdev, req);
1211 
1212 	if (ret != BLK_STS_OK)
1213 		scsi_free_sgtables(cmd);
1214 
1215 	return ret;
1216 }
1217 
1218 static blk_status_t
1219 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1220 {
1221 	switch (sdev->sdev_state) {
1222 	case SDEV_OFFLINE:
1223 	case SDEV_TRANSPORT_OFFLINE:
1224 		/*
1225 		 * If the device is offline we refuse to process any
1226 		 * commands.  The device must be brought online
1227 		 * before trying any recovery commands.
1228 		 */
1229 		if (!sdev->offline_already) {
1230 			sdev->offline_already = true;
1231 			sdev_printk(KERN_ERR, sdev,
1232 				    "rejecting I/O to offline device\n");
1233 		}
1234 		return BLK_STS_IOERR;
1235 	case SDEV_DEL:
1236 		/*
1237 		 * If the device is fully deleted, we refuse to
1238 		 * process any commands as well.
1239 		 */
1240 		sdev_printk(KERN_ERR, sdev,
1241 			    "rejecting I/O to dead device\n");
1242 		return BLK_STS_IOERR;
1243 	case SDEV_BLOCK:
1244 	case SDEV_CREATED_BLOCK:
1245 		return BLK_STS_RESOURCE;
1246 	case SDEV_QUIESCE:
1247 		/*
1248 		 * If the devices is blocked we defer normal commands.
1249 		 */
1250 		if (req && !(req->rq_flags & RQF_PREEMPT))
1251 			return BLK_STS_RESOURCE;
1252 		return BLK_STS_OK;
1253 	default:
1254 		/*
1255 		 * For any other not fully online state we only allow
1256 		 * special commands.  In particular any user initiated
1257 		 * command is not allowed.
1258 		 */
1259 		if (req && !(req->rq_flags & RQF_PREEMPT))
1260 			return BLK_STS_IOERR;
1261 		return BLK_STS_OK;
1262 	}
1263 }
1264 
1265 /*
1266  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1267  * return 0.
1268  *
1269  * Called with the queue_lock held.
1270  */
1271 static inline int scsi_dev_queue_ready(struct request_queue *q,
1272 				  struct scsi_device *sdev)
1273 {
1274 	unsigned int busy;
1275 
1276 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1277 	if (atomic_read(&sdev->device_blocked)) {
1278 		if (busy)
1279 			goto out_dec;
1280 
1281 		/*
1282 		 * unblock after device_blocked iterates to zero
1283 		 */
1284 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1285 			goto out_dec;
1286 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1287 				   "unblocking device at zero depth\n"));
1288 	}
1289 
1290 	if (busy >= sdev->queue_depth)
1291 		goto out_dec;
1292 
1293 	return 1;
1294 out_dec:
1295 	atomic_dec(&sdev->device_busy);
1296 	return 0;
1297 }
1298 
1299 /*
1300  * scsi_target_queue_ready: checks if there we can send commands to target
1301  * @sdev: scsi device on starget to check.
1302  */
1303 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1304 					   struct scsi_device *sdev)
1305 {
1306 	struct scsi_target *starget = scsi_target(sdev);
1307 	unsigned int busy;
1308 
1309 	if (starget->single_lun) {
1310 		spin_lock_irq(shost->host_lock);
1311 		if (starget->starget_sdev_user &&
1312 		    starget->starget_sdev_user != sdev) {
1313 			spin_unlock_irq(shost->host_lock);
1314 			return 0;
1315 		}
1316 		starget->starget_sdev_user = sdev;
1317 		spin_unlock_irq(shost->host_lock);
1318 	}
1319 
1320 	if (starget->can_queue <= 0)
1321 		return 1;
1322 
1323 	busy = atomic_inc_return(&starget->target_busy) - 1;
1324 	if (atomic_read(&starget->target_blocked) > 0) {
1325 		if (busy)
1326 			goto starved;
1327 
1328 		/*
1329 		 * unblock after target_blocked iterates to zero
1330 		 */
1331 		if (atomic_dec_return(&starget->target_blocked) > 0)
1332 			goto out_dec;
1333 
1334 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1335 				 "unblocking target at zero depth\n"));
1336 	}
1337 
1338 	if (busy >= starget->can_queue)
1339 		goto starved;
1340 
1341 	return 1;
1342 
1343 starved:
1344 	spin_lock_irq(shost->host_lock);
1345 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1346 	spin_unlock_irq(shost->host_lock);
1347 out_dec:
1348 	if (starget->can_queue > 0)
1349 		atomic_dec(&starget->target_busy);
1350 	return 0;
1351 }
1352 
1353 /*
1354  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1355  * return 0. We must end up running the queue again whenever 0 is
1356  * returned, else IO can hang.
1357  */
1358 static inline int scsi_host_queue_ready(struct request_queue *q,
1359 				   struct Scsi_Host *shost,
1360 				   struct scsi_device *sdev,
1361 				   struct scsi_cmnd *cmd)
1362 {
1363 	if (scsi_host_in_recovery(shost))
1364 		return 0;
1365 
1366 	if (atomic_read(&shost->host_blocked) > 0) {
1367 		if (scsi_host_busy(shost) > 0)
1368 			goto starved;
1369 
1370 		/*
1371 		 * unblock after host_blocked iterates to zero
1372 		 */
1373 		if (atomic_dec_return(&shost->host_blocked) > 0)
1374 			goto out_dec;
1375 
1376 		SCSI_LOG_MLQUEUE(3,
1377 			shost_printk(KERN_INFO, shost,
1378 				     "unblocking host at zero depth\n"));
1379 	}
1380 
1381 	if (shost->host_self_blocked)
1382 		goto starved;
1383 
1384 	/* We're OK to process the command, so we can't be starved */
1385 	if (!list_empty(&sdev->starved_entry)) {
1386 		spin_lock_irq(shost->host_lock);
1387 		if (!list_empty(&sdev->starved_entry))
1388 			list_del_init(&sdev->starved_entry);
1389 		spin_unlock_irq(shost->host_lock);
1390 	}
1391 
1392 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1393 
1394 	return 1;
1395 
1396 starved:
1397 	spin_lock_irq(shost->host_lock);
1398 	if (list_empty(&sdev->starved_entry))
1399 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1400 	spin_unlock_irq(shost->host_lock);
1401 out_dec:
1402 	scsi_dec_host_busy(shost, cmd);
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Busy state exporting function for request stacking drivers.
1408  *
1409  * For efficiency, no lock is taken to check the busy state of
1410  * shost/starget/sdev, since the returned value is not guaranteed and
1411  * may be changed after request stacking drivers call the function,
1412  * regardless of taking lock or not.
1413  *
1414  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1415  * needs to return 'not busy'. Otherwise, request stacking drivers
1416  * may hold requests forever.
1417  */
1418 static bool scsi_mq_lld_busy(struct request_queue *q)
1419 {
1420 	struct scsi_device *sdev = q->queuedata;
1421 	struct Scsi_Host *shost;
1422 
1423 	if (blk_queue_dying(q))
1424 		return false;
1425 
1426 	shost = sdev->host;
1427 
1428 	/*
1429 	 * Ignore host/starget busy state.
1430 	 * Since block layer does not have a concept of fairness across
1431 	 * multiple queues, congestion of host/starget needs to be handled
1432 	 * in SCSI layer.
1433 	 */
1434 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1435 		return true;
1436 
1437 	return false;
1438 }
1439 
1440 static void scsi_softirq_done(struct request *rq)
1441 {
1442 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1443 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1444 	int disposition;
1445 
1446 	INIT_LIST_HEAD(&cmd->eh_entry);
1447 
1448 	atomic_inc(&cmd->device->iodone_cnt);
1449 	if (cmd->result)
1450 		atomic_inc(&cmd->device->ioerr_cnt);
1451 
1452 	disposition = scsi_decide_disposition(cmd);
1453 	if (disposition != SUCCESS &&
1454 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1455 		scmd_printk(KERN_ERR, cmd,
1456 			    "timing out command, waited %lus\n",
1457 			    wait_for/HZ);
1458 		disposition = SUCCESS;
1459 	}
1460 
1461 	scsi_log_completion(cmd, disposition);
1462 
1463 	switch (disposition) {
1464 		case SUCCESS:
1465 			scsi_finish_command(cmd);
1466 			break;
1467 		case NEEDS_RETRY:
1468 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1469 			break;
1470 		case ADD_TO_MLQUEUE:
1471 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1472 			break;
1473 		default:
1474 			scsi_eh_scmd_add(cmd);
1475 			break;
1476 	}
1477 }
1478 
1479 /**
1480  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1481  * @cmd: command block we are dispatching.
1482  *
1483  * Return: nonzero return request was rejected and device's queue needs to be
1484  * plugged.
1485  */
1486 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1487 {
1488 	struct Scsi_Host *host = cmd->device->host;
1489 	int rtn = 0;
1490 
1491 	atomic_inc(&cmd->device->iorequest_cnt);
1492 
1493 	/* check if the device is still usable */
1494 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1495 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1496 		 * returns an immediate error upwards, and signals
1497 		 * that the device is no longer present */
1498 		cmd->result = DID_NO_CONNECT << 16;
1499 		goto done;
1500 	}
1501 
1502 	/* Check to see if the scsi lld made this device blocked. */
1503 	if (unlikely(scsi_device_blocked(cmd->device))) {
1504 		/*
1505 		 * in blocked state, the command is just put back on
1506 		 * the device queue.  The suspend state has already
1507 		 * blocked the queue so future requests should not
1508 		 * occur until the device transitions out of the
1509 		 * suspend state.
1510 		 */
1511 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512 			"queuecommand : device blocked\n"));
1513 		return SCSI_MLQUEUE_DEVICE_BUSY;
1514 	}
1515 
1516 	/* Store the LUN value in cmnd, if needed. */
1517 	if (cmd->device->lun_in_cdb)
1518 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1519 			       (cmd->device->lun << 5 & 0xe0);
1520 
1521 	scsi_log_send(cmd);
1522 
1523 	/*
1524 	 * Before we queue this command, check if the command
1525 	 * length exceeds what the host adapter can handle.
1526 	 */
1527 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1528 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1529 			       "queuecommand : command too long. "
1530 			       "cdb_size=%d host->max_cmd_len=%d\n",
1531 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1532 		cmd->result = (DID_ABORT << 16);
1533 		goto done;
1534 	}
1535 
1536 	if (unlikely(host->shost_state == SHOST_DEL)) {
1537 		cmd->result = (DID_NO_CONNECT << 16);
1538 		goto done;
1539 
1540 	}
1541 
1542 	trace_scsi_dispatch_cmd_start(cmd);
1543 	rtn = host->hostt->queuecommand(host, cmd);
1544 	if (rtn) {
1545 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1546 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1547 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1548 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1549 
1550 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1551 			"queuecommand : request rejected\n"));
1552 	}
1553 
1554 	return rtn;
1555  done:
1556 	cmd->scsi_done(cmd);
1557 	return 0;
1558 }
1559 
1560 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1561 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1562 {
1563 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1564 		sizeof(struct scatterlist);
1565 }
1566 
1567 static blk_status_t scsi_mq_prep_fn(struct request *req)
1568 {
1569 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1570 	struct scsi_device *sdev = req->q->queuedata;
1571 	struct Scsi_Host *shost = sdev->host;
1572 	struct scatterlist *sg;
1573 
1574 	scsi_init_command(sdev, cmd);
1575 
1576 	cmd->request = req;
1577 	cmd->tag = req->tag;
1578 	cmd->prot_op = SCSI_PROT_NORMAL;
1579 
1580 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1581 	cmd->sdb.table.sgl = sg;
1582 
1583 	if (scsi_host_get_prot(shost)) {
1584 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1585 
1586 		cmd->prot_sdb->table.sgl =
1587 			(struct scatterlist *)(cmd->prot_sdb + 1);
1588 	}
1589 
1590 	blk_mq_start_request(req);
1591 
1592 	return scsi_setup_cmnd(sdev, req);
1593 }
1594 
1595 static void scsi_mq_done(struct scsi_cmnd *cmd)
1596 {
1597 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1598 		return;
1599 	trace_scsi_dispatch_cmd_done(cmd);
1600 
1601 	/*
1602 	 * If the block layer didn't complete the request due to a timeout
1603 	 * injection, scsi must clear its internal completed state so that the
1604 	 * timeout handler will see it needs to escalate its own error
1605 	 * recovery.
1606 	 */
1607 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1608 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1609 }
1610 
1611 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1612 {
1613 	struct request_queue *q = hctx->queue;
1614 	struct scsi_device *sdev = q->queuedata;
1615 
1616 	atomic_dec(&sdev->device_busy);
1617 }
1618 
1619 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1620 {
1621 	struct request_queue *q = hctx->queue;
1622 	struct scsi_device *sdev = q->queuedata;
1623 
1624 	return scsi_dev_queue_ready(q, sdev);
1625 }
1626 
1627 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1628 			 const struct blk_mq_queue_data *bd)
1629 {
1630 	struct request *req = bd->rq;
1631 	struct request_queue *q = req->q;
1632 	struct scsi_device *sdev = q->queuedata;
1633 	struct Scsi_Host *shost = sdev->host;
1634 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1635 	blk_status_t ret;
1636 	int reason;
1637 
1638 	/*
1639 	 * If the device is not in running state we will reject some or all
1640 	 * commands.
1641 	 */
1642 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1643 		ret = scsi_prep_state_check(sdev, req);
1644 		if (ret != BLK_STS_OK)
1645 			goto out_put_budget;
1646 	}
1647 
1648 	ret = BLK_STS_RESOURCE;
1649 	if (!scsi_target_queue_ready(shost, sdev))
1650 		goto out_put_budget;
1651 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1652 		goto out_dec_target_busy;
1653 
1654 	if (!(req->rq_flags & RQF_DONTPREP)) {
1655 		ret = scsi_mq_prep_fn(req);
1656 		if (ret != BLK_STS_OK)
1657 			goto out_dec_host_busy;
1658 		req->rq_flags |= RQF_DONTPREP;
1659 	} else {
1660 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1661 		blk_mq_start_request(req);
1662 	}
1663 
1664 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1665 	if (sdev->simple_tags)
1666 		cmd->flags |= SCMD_TAGGED;
1667 	if (bd->last)
1668 		cmd->flags |= SCMD_LAST;
1669 
1670 	scsi_init_cmd_errh(cmd);
1671 	cmd->scsi_done = scsi_mq_done;
1672 
1673 	reason = scsi_dispatch_cmd(cmd);
1674 	if (reason) {
1675 		scsi_set_blocked(cmd, reason);
1676 		ret = BLK_STS_RESOURCE;
1677 		goto out_dec_host_busy;
1678 	}
1679 
1680 	return BLK_STS_OK;
1681 
1682 out_dec_host_busy:
1683 	scsi_dec_host_busy(shost, cmd);
1684 out_dec_target_busy:
1685 	if (scsi_target(sdev)->can_queue > 0)
1686 		atomic_dec(&scsi_target(sdev)->target_busy);
1687 out_put_budget:
1688 	scsi_mq_put_budget(hctx);
1689 	switch (ret) {
1690 	case BLK_STS_OK:
1691 		break;
1692 	case BLK_STS_RESOURCE:
1693 	case BLK_STS_ZONE_RESOURCE:
1694 		if (atomic_read(&sdev->device_busy) ||
1695 		    scsi_device_blocked(sdev))
1696 			ret = BLK_STS_DEV_RESOURCE;
1697 		break;
1698 	default:
1699 		if (unlikely(!scsi_device_online(sdev)))
1700 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1701 		else
1702 			scsi_req(req)->result = DID_ERROR << 16;
1703 		/*
1704 		 * Make sure to release all allocated resources when
1705 		 * we hit an error, as we will never see this command
1706 		 * again.
1707 		 */
1708 		if (req->rq_flags & RQF_DONTPREP)
1709 			scsi_mq_uninit_cmd(cmd);
1710 		scsi_run_queue_async(sdev);
1711 		break;
1712 	}
1713 	return ret;
1714 }
1715 
1716 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1717 		bool reserved)
1718 {
1719 	if (reserved)
1720 		return BLK_EH_RESET_TIMER;
1721 	return scsi_times_out(req);
1722 }
1723 
1724 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1725 				unsigned int hctx_idx, unsigned int numa_node)
1726 {
1727 	struct Scsi_Host *shost = set->driver_data;
1728 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1729 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1730 	struct scatterlist *sg;
1731 	int ret = 0;
1732 
1733 	if (unchecked_isa_dma)
1734 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1735 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1736 						    GFP_KERNEL, numa_node);
1737 	if (!cmd->sense_buffer)
1738 		return -ENOMEM;
1739 	cmd->req.sense = cmd->sense_buffer;
1740 
1741 	if (scsi_host_get_prot(shost)) {
1742 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1743 			shost->hostt->cmd_size;
1744 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1745 	}
1746 
1747 	if (shost->hostt->init_cmd_priv) {
1748 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1749 		if (ret < 0)
1750 			scsi_free_sense_buffer(unchecked_isa_dma,
1751 					       cmd->sense_buffer);
1752 	}
1753 
1754 	return ret;
1755 }
1756 
1757 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1758 				 unsigned int hctx_idx)
1759 {
1760 	struct Scsi_Host *shost = set->driver_data;
1761 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1762 
1763 	if (shost->hostt->exit_cmd_priv)
1764 		shost->hostt->exit_cmd_priv(shost, cmd);
1765 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1766 			       cmd->sense_buffer);
1767 }
1768 
1769 static int scsi_map_queues(struct blk_mq_tag_set *set)
1770 {
1771 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1772 
1773 	if (shost->hostt->map_queues)
1774 		return shost->hostt->map_queues(shost);
1775 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1776 }
1777 
1778 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1779 {
1780 	struct device *dev = shost->dma_dev;
1781 
1782 	/*
1783 	 * this limit is imposed by hardware restrictions
1784 	 */
1785 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1786 					SG_MAX_SEGMENTS));
1787 
1788 	if (scsi_host_prot_dma(shost)) {
1789 		shost->sg_prot_tablesize =
1790 			min_not_zero(shost->sg_prot_tablesize,
1791 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1792 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1793 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1794 	}
1795 
1796 	if (dev->dma_mask) {
1797 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1798 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1799 	}
1800 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1801 	if (shost->unchecked_isa_dma)
1802 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1803 	blk_queue_segment_boundary(q, shost->dma_boundary);
1804 	dma_set_seg_boundary(dev, shost->dma_boundary);
1805 
1806 	blk_queue_max_segment_size(q, shost->max_segment_size);
1807 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1808 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1809 
1810 	/*
1811 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1812 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1813 	 * which is set by the platform.
1814 	 *
1815 	 * Devices that require a bigger alignment can increase it later.
1816 	 */
1817 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1818 }
1819 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1820 
1821 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1822 	.get_budget	= scsi_mq_get_budget,
1823 	.put_budget	= scsi_mq_put_budget,
1824 	.queue_rq	= scsi_queue_rq,
1825 	.complete	= scsi_softirq_done,
1826 	.timeout	= scsi_timeout,
1827 #ifdef CONFIG_BLK_DEBUG_FS
1828 	.show_rq	= scsi_show_rq,
1829 #endif
1830 	.init_request	= scsi_mq_init_request,
1831 	.exit_request	= scsi_mq_exit_request,
1832 	.initialize_rq_fn = scsi_initialize_rq,
1833 	.cleanup_rq	= scsi_cleanup_rq,
1834 	.busy		= scsi_mq_lld_busy,
1835 	.map_queues	= scsi_map_queues,
1836 };
1837 
1838 
1839 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1840 {
1841 	struct request_queue *q = hctx->queue;
1842 	struct scsi_device *sdev = q->queuedata;
1843 	struct Scsi_Host *shost = sdev->host;
1844 
1845 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1846 }
1847 
1848 static const struct blk_mq_ops scsi_mq_ops = {
1849 	.get_budget	= scsi_mq_get_budget,
1850 	.put_budget	= scsi_mq_put_budget,
1851 	.queue_rq	= scsi_queue_rq,
1852 	.commit_rqs	= scsi_commit_rqs,
1853 	.complete	= scsi_softirq_done,
1854 	.timeout	= scsi_timeout,
1855 #ifdef CONFIG_BLK_DEBUG_FS
1856 	.show_rq	= scsi_show_rq,
1857 #endif
1858 	.init_request	= scsi_mq_init_request,
1859 	.exit_request	= scsi_mq_exit_request,
1860 	.initialize_rq_fn = scsi_initialize_rq,
1861 	.cleanup_rq	= scsi_cleanup_rq,
1862 	.busy		= scsi_mq_lld_busy,
1863 	.map_queues	= scsi_map_queues,
1864 };
1865 
1866 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1867 {
1868 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1869 	if (IS_ERR(sdev->request_queue))
1870 		return NULL;
1871 
1872 	sdev->request_queue->queuedata = sdev;
1873 	__scsi_init_queue(sdev->host, sdev->request_queue);
1874 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1875 	return sdev->request_queue;
1876 }
1877 
1878 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1879 {
1880 	unsigned int cmd_size, sgl_size;
1881 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1882 
1883 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1884 				scsi_mq_inline_sgl_size(shost));
1885 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1886 	if (scsi_host_get_prot(shost))
1887 		cmd_size += sizeof(struct scsi_data_buffer) +
1888 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1889 
1890 	memset(tag_set, 0, sizeof(*tag_set));
1891 	if (shost->hostt->commit_rqs)
1892 		tag_set->ops = &scsi_mq_ops;
1893 	else
1894 		tag_set->ops = &scsi_mq_ops_no_commit;
1895 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1896 	tag_set->queue_depth = shost->can_queue;
1897 	tag_set->cmd_size = cmd_size;
1898 	tag_set->numa_node = NUMA_NO_NODE;
1899 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1900 	tag_set->flags |=
1901 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1902 	tag_set->driver_data = shost;
1903 
1904 	return blk_mq_alloc_tag_set(tag_set);
1905 }
1906 
1907 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1908 {
1909 	blk_mq_free_tag_set(&shost->tag_set);
1910 }
1911 
1912 /**
1913  * scsi_device_from_queue - return sdev associated with a request_queue
1914  * @q: The request queue to return the sdev from
1915  *
1916  * Return the sdev associated with a request queue or NULL if the
1917  * request_queue does not reference a SCSI device.
1918  */
1919 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1920 {
1921 	struct scsi_device *sdev = NULL;
1922 
1923 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1924 	    q->mq_ops == &scsi_mq_ops)
1925 		sdev = q->queuedata;
1926 	if (!sdev || !get_device(&sdev->sdev_gendev))
1927 		sdev = NULL;
1928 
1929 	return sdev;
1930 }
1931 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1932 
1933 /**
1934  * scsi_block_requests - Utility function used by low-level drivers to prevent
1935  * further commands from being queued to the device.
1936  * @shost:  host in question
1937  *
1938  * There is no timer nor any other means by which the requests get unblocked
1939  * other than the low-level driver calling scsi_unblock_requests().
1940  */
1941 void scsi_block_requests(struct Scsi_Host *shost)
1942 {
1943 	shost->host_self_blocked = 1;
1944 }
1945 EXPORT_SYMBOL(scsi_block_requests);
1946 
1947 /**
1948  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1949  * further commands to be queued to the device.
1950  * @shost:  host in question
1951  *
1952  * There is no timer nor any other means by which the requests get unblocked
1953  * other than the low-level driver calling scsi_unblock_requests(). This is done
1954  * as an API function so that changes to the internals of the scsi mid-layer
1955  * won't require wholesale changes to drivers that use this feature.
1956  */
1957 void scsi_unblock_requests(struct Scsi_Host *shost)
1958 {
1959 	shost->host_self_blocked = 0;
1960 	scsi_run_host_queues(shost);
1961 }
1962 EXPORT_SYMBOL(scsi_unblock_requests);
1963 
1964 int __init scsi_init_queue(void)
1965 {
1966 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1967 					   sizeof(struct scsi_data_buffer),
1968 					   0, 0, NULL);
1969 	if (!scsi_sdb_cache) {
1970 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1971 		return -ENOMEM;
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 void scsi_exit_queue(void)
1978 {
1979 	kmem_cache_destroy(scsi_sense_cache);
1980 	kmem_cache_destroy(scsi_sense_isadma_cache);
1981 	kmem_cache_destroy(scsi_sdb_cache);
1982 }
1983 
1984 /**
1985  *	scsi_mode_select - issue a mode select
1986  *	@sdev:	SCSI device to be queried
1987  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1988  *	@sp:	Save page bit (0 == don't save, 1 == save)
1989  *	@modepage: mode page being requested
1990  *	@buffer: request buffer (may not be smaller than eight bytes)
1991  *	@len:	length of request buffer.
1992  *	@timeout: command timeout
1993  *	@retries: number of retries before failing
1994  *	@data: returns a structure abstracting the mode header data
1995  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1996  *		must be SCSI_SENSE_BUFFERSIZE big.
1997  *
1998  *	Returns zero if successful; negative error number or scsi
1999  *	status on error
2000  *
2001  */
2002 int
2003 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2004 		 unsigned char *buffer, int len, int timeout, int retries,
2005 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2006 {
2007 	unsigned char cmd[10];
2008 	unsigned char *real_buffer;
2009 	int ret;
2010 
2011 	memset(cmd, 0, sizeof(cmd));
2012 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2013 
2014 	if (sdev->use_10_for_ms) {
2015 		if (len > 65535)
2016 			return -EINVAL;
2017 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2018 		if (!real_buffer)
2019 			return -ENOMEM;
2020 		memcpy(real_buffer + 8, buffer, len);
2021 		len += 8;
2022 		real_buffer[0] = 0;
2023 		real_buffer[1] = 0;
2024 		real_buffer[2] = data->medium_type;
2025 		real_buffer[3] = data->device_specific;
2026 		real_buffer[4] = data->longlba ? 0x01 : 0;
2027 		real_buffer[5] = 0;
2028 		real_buffer[6] = data->block_descriptor_length >> 8;
2029 		real_buffer[7] = data->block_descriptor_length;
2030 
2031 		cmd[0] = MODE_SELECT_10;
2032 		cmd[7] = len >> 8;
2033 		cmd[8] = len;
2034 	} else {
2035 		if (len > 255 || data->block_descriptor_length > 255 ||
2036 		    data->longlba)
2037 			return -EINVAL;
2038 
2039 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2040 		if (!real_buffer)
2041 			return -ENOMEM;
2042 		memcpy(real_buffer + 4, buffer, len);
2043 		len += 4;
2044 		real_buffer[0] = 0;
2045 		real_buffer[1] = data->medium_type;
2046 		real_buffer[2] = data->device_specific;
2047 		real_buffer[3] = data->block_descriptor_length;
2048 
2049 
2050 		cmd[0] = MODE_SELECT;
2051 		cmd[4] = len;
2052 	}
2053 
2054 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2055 			       sshdr, timeout, retries, NULL);
2056 	kfree(real_buffer);
2057 	return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(scsi_mode_select);
2060 
2061 /**
2062  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2063  *	@sdev:	SCSI device to be queried
2064  *	@dbd:	set if mode sense will allow block descriptors to be returned
2065  *	@modepage: mode page being requested
2066  *	@buffer: request buffer (may not be smaller than eight bytes)
2067  *	@len:	length of request buffer.
2068  *	@timeout: command timeout
2069  *	@retries: number of retries before failing
2070  *	@data: returns a structure abstracting the mode header data
2071  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2072  *		must be SCSI_SENSE_BUFFERSIZE big.
2073  *
2074  *	Returns zero if unsuccessful, or the header offset (either 4
2075  *	or 8 depending on whether a six or ten byte command was
2076  *	issued) if successful.
2077  */
2078 int
2079 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2080 		  unsigned char *buffer, int len, int timeout, int retries,
2081 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2082 {
2083 	unsigned char cmd[12];
2084 	int use_10_for_ms;
2085 	int header_length;
2086 	int result, retry_count = retries;
2087 	struct scsi_sense_hdr my_sshdr;
2088 
2089 	memset(data, 0, sizeof(*data));
2090 	memset(&cmd[0], 0, 12);
2091 
2092 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2093 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2094 	cmd[2] = modepage;
2095 
2096 	/* caller might not be interested in sense, but we need it */
2097 	if (!sshdr)
2098 		sshdr = &my_sshdr;
2099 
2100  retry:
2101 	use_10_for_ms = sdev->use_10_for_ms;
2102 
2103 	if (use_10_for_ms) {
2104 		if (len < 8)
2105 			len = 8;
2106 
2107 		cmd[0] = MODE_SENSE_10;
2108 		cmd[8] = len;
2109 		header_length = 8;
2110 	} else {
2111 		if (len < 4)
2112 			len = 4;
2113 
2114 		cmd[0] = MODE_SENSE;
2115 		cmd[4] = len;
2116 		header_length = 4;
2117 	}
2118 
2119 	memset(buffer, 0, len);
2120 
2121 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2122 				  sshdr, timeout, retries, NULL);
2123 
2124 	/* This code looks awful: what it's doing is making sure an
2125 	 * ILLEGAL REQUEST sense return identifies the actual command
2126 	 * byte as the problem.  MODE_SENSE commands can return
2127 	 * ILLEGAL REQUEST if the code page isn't supported */
2128 
2129 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2130 	    driver_byte(result) == DRIVER_SENSE) {
2131 		if (scsi_sense_valid(sshdr)) {
2132 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2133 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2134 				/*
2135 				 * Invalid command operation code
2136 				 */
2137 				sdev->use_10_for_ms = 0;
2138 				goto retry;
2139 			}
2140 		}
2141 	}
2142 
2143 	if(scsi_status_is_good(result)) {
2144 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2145 			     (modepage == 6 || modepage == 8))) {
2146 			/* Initio breakage? */
2147 			header_length = 0;
2148 			data->length = 13;
2149 			data->medium_type = 0;
2150 			data->device_specific = 0;
2151 			data->longlba = 0;
2152 			data->block_descriptor_length = 0;
2153 		} else if(use_10_for_ms) {
2154 			data->length = buffer[0]*256 + buffer[1] + 2;
2155 			data->medium_type = buffer[2];
2156 			data->device_specific = buffer[3];
2157 			data->longlba = buffer[4] & 0x01;
2158 			data->block_descriptor_length = buffer[6]*256
2159 				+ buffer[7];
2160 		} else {
2161 			data->length = buffer[0] + 1;
2162 			data->medium_type = buffer[1];
2163 			data->device_specific = buffer[2];
2164 			data->block_descriptor_length = buffer[3];
2165 		}
2166 		data->header_length = header_length;
2167 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2168 		   scsi_sense_valid(sshdr) &&
2169 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2170 		retry_count--;
2171 		goto retry;
2172 	}
2173 
2174 	return result;
2175 }
2176 EXPORT_SYMBOL(scsi_mode_sense);
2177 
2178 /**
2179  *	scsi_test_unit_ready - test if unit is ready
2180  *	@sdev:	scsi device to change the state of.
2181  *	@timeout: command timeout
2182  *	@retries: number of retries before failing
2183  *	@sshdr: outpout pointer for decoded sense information.
2184  *
2185  *	Returns zero if unsuccessful or an error if TUR failed.  For
2186  *	removable media, UNIT_ATTENTION sets ->changed flag.
2187  **/
2188 int
2189 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2190 		     struct scsi_sense_hdr *sshdr)
2191 {
2192 	char cmd[] = {
2193 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2194 	};
2195 	int result;
2196 
2197 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2198 	do {
2199 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2200 					  timeout, 1, NULL);
2201 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2202 		    sshdr->sense_key == UNIT_ATTENTION)
2203 			sdev->changed = 1;
2204 	} while (scsi_sense_valid(sshdr) &&
2205 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2206 
2207 	return result;
2208 }
2209 EXPORT_SYMBOL(scsi_test_unit_ready);
2210 
2211 /**
2212  *	scsi_device_set_state - Take the given device through the device state model.
2213  *	@sdev:	scsi device to change the state of.
2214  *	@state:	state to change to.
2215  *
2216  *	Returns zero if successful or an error if the requested
2217  *	transition is illegal.
2218  */
2219 int
2220 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2221 {
2222 	enum scsi_device_state oldstate = sdev->sdev_state;
2223 
2224 	if (state == oldstate)
2225 		return 0;
2226 
2227 	switch (state) {
2228 	case SDEV_CREATED:
2229 		switch (oldstate) {
2230 		case SDEV_CREATED_BLOCK:
2231 			break;
2232 		default:
2233 			goto illegal;
2234 		}
2235 		break;
2236 
2237 	case SDEV_RUNNING:
2238 		switch (oldstate) {
2239 		case SDEV_CREATED:
2240 		case SDEV_OFFLINE:
2241 		case SDEV_TRANSPORT_OFFLINE:
2242 		case SDEV_QUIESCE:
2243 		case SDEV_BLOCK:
2244 			break;
2245 		default:
2246 			goto illegal;
2247 		}
2248 		break;
2249 
2250 	case SDEV_QUIESCE:
2251 		switch (oldstate) {
2252 		case SDEV_RUNNING:
2253 		case SDEV_OFFLINE:
2254 		case SDEV_TRANSPORT_OFFLINE:
2255 			break;
2256 		default:
2257 			goto illegal;
2258 		}
2259 		break;
2260 
2261 	case SDEV_OFFLINE:
2262 	case SDEV_TRANSPORT_OFFLINE:
2263 		switch (oldstate) {
2264 		case SDEV_CREATED:
2265 		case SDEV_RUNNING:
2266 		case SDEV_QUIESCE:
2267 		case SDEV_BLOCK:
2268 			break;
2269 		default:
2270 			goto illegal;
2271 		}
2272 		break;
2273 
2274 	case SDEV_BLOCK:
2275 		switch (oldstate) {
2276 		case SDEV_RUNNING:
2277 		case SDEV_CREATED_BLOCK:
2278 		case SDEV_QUIESCE:
2279 		case SDEV_OFFLINE:
2280 			break;
2281 		default:
2282 			goto illegal;
2283 		}
2284 		break;
2285 
2286 	case SDEV_CREATED_BLOCK:
2287 		switch (oldstate) {
2288 		case SDEV_CREATED:
2289 			break;
2290 		default:
2291 			goto illegal;
2292 		}
2293 		break;
2294 
2295 	case SDEV_CANCEL:
2296 		switch (oldstate) {
2297 		case SDEV_CREATED:
2298 		case SDEV_RUNNING:
2299 		case SDEV_QUIESCE:
2300 		case SDEV_OFFLINE:
2301 		case SDEV_TRANSPORT_OFFLINE:
2302 			break;
2303 		default:
2304 			goto illegal;
2305 		}
2306 		break;
2307 
2308 	case SDEV_DEL:
2309 		switch (oldstate) {
2310 		case SDEV_CREATED:
2311 		case SDEV_RUNNING:
2312 		case SDEV_OFFLINE:
2313 		case SDEV_TRANSPORT_OFFLINE:
2314 		case SDEV_CANCEL:
2315 		case SDEV_BLOCK:
2316 		case SDEV_CREATED_BLOCK:
2317 			break;
2318 		default:
2319 			goto illegal;
2320 		}
2321 		break;
2322 
2323 	}
2324 	sdev->offline_already = false;
2325 	sdev->sdev_state = state;
2326 	return 0;
2327 
2328  illegal:
2329 	SCSI_LOG_ERROR_RECOVERY(1,
2330 				sdev_printk(KERN_ERR, sdev,
2331 					    "Illegal state transition %s->%s",
2332 					    scsi_device_state_name(oldstate),
2333 					    scsi_device_state_name(state))
2334 				);
2335 	return -EINVAL;
2336 }
2337 EXPORT_SYMBOL(scsi_device_set_state);
2338 
2339 /**
2340  * 	sdev_evt_emit - emit a single SCSI device uevent
2341  *	@sdev: associated SCSI device
2342  *	@evt: event to emit
2343  *
2344  *	Send a single uevent (scsi_event) to the associated scsi_device.
2345  */
2346 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2347 {
2348 	int idx = 0;
2349 	char *envp[3];
2350 
2351 	switch (evt->evt_type) {
2352 	case SDEV_EVT_MEDIA_CHANGE:
2353 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2354 		break;
2355 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2356 		scsi_rescan_device(&sdev->sdev_gendev);
2357 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2358 		break;
2359 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2360 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2361 		break;
2362 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2363 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2364 		break;
2365 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2366 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2367 		break;
2368 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2369 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2370 		break;
2371 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2372 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2373 		break;
2374 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2375 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2376 		break;
2377 	default:
2378 		/* do nothing */
2379 		break;
2380 	}
2381 
2382 	envp[idx++] = NULL;
2383 
2384 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2385 }
2386 
2387 /**
2388  * 	sdev_evt_thread - send a uevent for each scsi event
2389  *	@work: work struct for scsi_device
2390  *
2391  *	Dispatch queued events to their associated scsi_device kobjects
2392  *	as uevents.
2393  */
2394 void scsi_evt_thread(struct work_struct *work)
2395 {
2396 	struct scsi_device *sdev;
2397 	enum scsi_device_event evt_type;
2398 	LIST_HEAD(event_list);
2399 
2400 	sdev = container_of(work, struct scsi_device, event_work);
2401 
2402 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2403 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2404 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2405 
2406 	while (1) {
2407 		struct scsi_event *evt;
2408 		struct list_head *this, *tmp;
2409 		unsigned long flags;
2410 
2411 		spin_lock_irqsave(&sdev->list_lock, flags);
2412 		list_splice_init(&sdev->event_list, &event_list);
2413 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2414 
2415 		if (list_empty(&event_list))
2416 			break;
2417 
2418 		list_for_each_safe(this, tmp, &event_list) {
2419 			evt = list_entry(this, struct scsi_event, node);
2420 			list_del(&evt->node);
2421 			scsi_evt_emit(sdev, evt);
2422 			kfree(evt);
2423 		}
2424 	}
2425 }
2426 
2427 /**
2428  * 	sdev_evt_send - send asserted event to uevent thread
2429  *	@sdev: scsi_device event occurred on
2430  *	@evt: event to send
2431  *
2432  *	Assert scsi device event asynchronously.
2433  */
2434 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2435 {
2436 	unsigned long flags;
2437 
2438 #if 0
2439 	/* FIXME: currently this check eliminates all media change events
2440 	 * for polled devices.  Need to update to discriminate between AN
2441 	 * and polled events */
2442 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2443 		kfree(evt);
2444 		return;
2445 	}
2446 #endif
2447 
2448 	spin_lock_irqsave(&sdev->list_lock, flags);
2449 	list_add_tail(&evt->node, &sdev->event_list);
2450 	schedule_work(&sdev->event_work);
2451 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2452 }
2453 EXPORT_SYMBOL_GPL(sdev_evt_send);
2454 
2455 /**
2456  * 	sdev_evt_alloc - allocate a new scsi event
2457  *	@evt_type: type of event to allocate
2458  *	@gfpflags: GFP flags for allocation
2459  *
2460  *	Allocates and returns a new scsi_event.
2461  */
2462 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2463 				  gfp_t gfpflags)
2464 {
2465 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2466 	if (!evt)
2467 		return NULL;
2468 
2469 	evt->evt_type = evt_type;
2470 	INIT_LIST_HEAD(&evt->node);
2471 
2472 	/* evt_type-specific initialization, if any */
2473 	switch (evt_type) {
2474 	case SDEV_EVT_MEDIA_CHANGE:
2475 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2476 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2477 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2478 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2479 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2480 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2481 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2482 	default:
2483 		/* do nothing */
2484 		break;
2485 	}
2486 
2487 	return evt;
2488 }
2489 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2490 
2491 /**
2492  * 	sdev_evt_send_simple - send asserted event to uevent thread
2493  *	@sdev: scsi_device event occurred on
2494  *	@evt_type: type of event to send
2495  *	@gfpflags: GFP flags for allocation
2496  *
2497  *	Assert scsi device event asynchronously, given an event type.
2498  */
2499 void sdev_evt_send_simple(struct scsi_device *sdev,
2500 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2501 {
2502 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2503 	if (!evt) {
2504 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2505 			    evt_type);
2506 		return;
2507 	}
2508 
2509 	sdev_evt_send(sdev, evt);
2510 }
2511 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2512 
2513 /**
2514  *	scsi_device_quiesce - Block user issued commands.
2515  *	@sdev:	scsi device to quiesce.
2516  *
2517  *	This works by trying to transition to the SDEV_QUIESCE state
2518  *	(which must be a legal transition).  When the device is in this
2519  *	state, only special requests will be accepted, all others will
2520  *	be deferred.  Since special requests may also be requeued requests,
2521  *	a successful return doesn't guarantee the device will be
2522  *	totally quiescent.
2523  *
2524  *	Must be called with user context, may sleep.
2525  *
2526  *	Returns zero if unsuccessful or an error if not.
2527  */
2528 int
2529 scsi_device_quiesce(struct scsi_device *sdev)
2530 {
2531 	struct request_queue *q = sdev->request_queue;
2532 	int err;
2533 
2534 	/*
2535 	 * It is allowed to call scsi_device_quiesce() multiple times from
2536 	 * the same context but concurrent scsi_device_quiesce() calls are
2537 	 * not allowed.
2538 	 */
2539 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2540 
2541 	if (sdev->quiesced_by == current)
2542 		return 0;
2543 
2544 	blk_set_pm_only(q);
2545 
2546 	blk_mq_freeze_queue(q);
2547 	/*
2548 	 * Ensure that the effect of blk_set_pm_only() will be visible
2549 	 * for percpu_ref_tryget() callers that occur after the queue
2550 	 * unfreeze even if the queue was already frozen before this function
2551 	 * was called. See also https://lwn.net/Articles/573497/.
2552 	 */
2553 	synchronize_rcu();
2554 	blk_mq_unfreeze_queue(q);
2555 
2556 	mutex_lock(&sdev->state_mutex);
2557 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2558 	if (err == 0)
2559 		sdev->quiesced_by = current;
2560 	else
2561 		blk_clear_pm_only(q);
2562 	mutex_unlock(&sdev->state_mutex);
2563 
2564 	return err;
2565 }
2566 EXPORT_SYMBOL(scsi_device_quiesce);
2567 
2568 /**
2569  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2570  *	@sdev:	scsi device to resume.
2571  *
2572  *	Moves the device from quiesced back to running and restarts the
2573  *	queues.
2574  *
2575  *	Must be called with user context, may sleep.
2576  */
2577 void scsi_device_resume(struct scsi_device *sdev)
2578 {
2579 	/* check if the device state was mutated prior to resume, and if
2580 	 * so assume the state is being managed elsewhere (for example
2581 	 * device deleted during suspend)
2582 	 */
2583 	mutex_lock(&sdev->state_mutex);
2584 	if (sdev->quiesced_by) {
2585 		sdev->quiesced_by = NULL;
2586 		blk_clear_pm_only(sdev->request_queue);
2587 	}
2588 	if (sdev->sdev_state == SDEV_QUIESCE)
2589 		scsi_device_set_state(sdev, SDEV_RUNNING);
2590 	mutex_unlock(&sdev->state_mutex);
2591 }
2592 EXPORT_SYMBOL(scsi_device_resume);
2593 
2594 static void
2595 device_quiesce_fn(struct scsi_device *sdev, void *data)
2596 {
2597 	scsi_device_quiesce(sdev);
2598 }
2599 
2600 void
2601 scsi_target_quiesce(struct scsi_target *starget)
2602 {
2603 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2604 }
2605 EXPORT_SYMBOL(scsi_target_quiesce);
2606 
2607 static void
2608 device_resume_fn(struct scsi_device *sdev, void *data)
2609 {
2610 	scsi_device_resume(sdev);
2611 }
2612 
2613 void
2614 scsi_target_resume(struct scsi_target *starget)
2615 {
2616 	starget_for_each_device(starget, NULL, device_resume_fn);
2617 }
2618 EXPORT_SYMBOL(scsi_target_resume);
2619 
2620 /**
2621  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2622  * @sdev: device to block
2623  *
2624  * Pause SCSI command processing on the specified device. Does not sleep.
2625  *
2626  * Returns zero if successful or a negative error code upon failure.
2627  *
2628  * Notes:
2629  * This routine transitions the device to the SDEV_BLOCK state (which must be
2630  * a legal transition). When the device is in this state, command processing
2631  * is paused until the device leaves the SDEV_BLOCK state. See also
2632  * scsi_internal_device_unblock_nowait().
2633  */
2634 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2635 {
2636 	struct request_queue *q = sdev->request_queue;
2637 	int err = 0;
2638 
2639 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2640 	if (err) {
2641 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2642 
2643 		if (err)
2644 			return err;
2645 	}
2646 
2647 	/*
2648 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2649 	 * block layer from calling the midlayer with this device's
2650 	 * request queue.
2651 	 */
2652 	blk_mq_quiesce_queue_nowait(q);
2653 	return 0;
2654 }
2655 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2656 
2657 /**
2658  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2659  * @sdev: device to block
2660  *
2661  * Pause SCSI command processing on the specified device and wait until all
2662  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2663  *
2664  * Returns zero if successful or a negative error code upon failure.
2665  *
2666  * Note:
2667  * This routine transitions the device to the SDEV_BLOCK state (which must be
2668  * a legal transition). When the device is in this state, command processing
2669  * is paused until the device leaves the SDEV_BLOCK state. See also
2670  * scsi_internal_device_unblock().
2671  */
2672 static int scsi_internal_device_block(struct scsi_device *sdev)
2673 {
2674 	struct request_queue *q = sdev->request_queue;
2675 	int err;
2676 
2677 	mutex_lock(&sdev->state_mutex);
2678 	err = scsi_internal_device_block_nowait(sdev);
2679 	if (err == 0)
2680 		blk_mq_quiesce_queue(q);
2681 	mutex_unlock(&sdev->state_mutex);
2682 
2683 	return err;
2684 }
2685 
2686 void scsi_start_queue(struct scsi_device *sdev)
2687 {
2688 	struct request_queue *q = sdev->request_queue;
2689 
2690 	blk_mq_unquiesce_queue(q);
2691 }
2692 
2693 /**
2694  * scsi_internal_device_unblock_nowait - resume a device after a block request
2695  * @sdev:	device to resume
2696  * @new_state:	state to set the device to after unblocking
2697  *
2698  * Restart the device queue for a previously suspended SCSI device. Does not
2699  * sleep.
2700  *
2701  * Returns zero if successful or a negative error code upon failure.
2702  *
2703  * Notes:
2704  * This routine transitions the device to the SDEV_RUNNING state or to one of
2705  * the offline states (which must be a legal transition) allowing the midlayer
2706  * to goose the queue for this device.
2707  */
2708 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2709 					enum scsi_device_state new_state)
2710 {
2711 	switch (new_state) {
2712 	case SDEV_RUNNING:
2713 	case SDEV_TRANSPORT_OFFLINE:
2714 		break;
2715 	default:
2716 		return -EINVAL;
2717 	}
2718 
2719 	/*
2720 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2721 	 * offlined states and goose the device queue if successful.
2722 	 */
2723 	switch (sdev->sdev_state) {
2724 	case SDEV_BLOCK:
2725 	case SDEV_TRANSPORT_OFFLINE:
2726 		sdev->sdev_state = new_state;
2727 		break;
2728 	case SDEV_CREATED_BLOCK:
2729 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2730 		    new_state == SDEV_OFFLINE)
2731 			sdev->sdev_state = new_state;
2732 		else
2733 			sdev->sdev_state = SDEV_CREATED;
2734 		break;
2735 	case SDEV_CANCEL:
2736 	case SDEV_OFFLINE:
2737 		break;
2738 	default:
2739 		return -EINVAL;
2740 	}
2741 	scsi_start_queue(sdev);
2742 
2743 	return 0;
2744 }
2745 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2746 
2747 /**
2748  * scsi_internal_device_unblock - resume a device after a block request
2749  * @sdev:	device to resume
2750  * @new_state:	state to set the device to after unblocking
2751  *
2752  * Restart the device queue for a previously suspended SCSI device. May sleep.
2753  *
2754  * Returns zero if successful or a negative error code upon failure.
2755  *
2756  * Notes:
2757  * This routine transitions the device to the SDEV_RUNNING state or to one of
2758  * the offline states (which must be a legal transition) allowing the midlayer
2759  * to goose the queue for this device.
2760  */
2761 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2762 					enum scsi_device_state new_state)
2763 {
2764 	int ret;
2765 
2766 	mutex_lock(&sdev->state_mutex);
2767 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2768 	mutex_unlock(&sdev->state_mutex);
2769 
2770 	return ret;
2771 }
2772 
2773 static void
2774 device_block(struct scsi_device *sdev, void *data)
2775 {
2776 	int ret;
2777 
2778 	ret = scsi_internal_device_block(sdev);
2779 
2780 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2781 		  dev_name(&sdev->sdev_gendev), ret);
2782 }
2783 
2784 static int
2785 target_block(struct device *dev, void *data)
2786 {
2787 	if (scsi_is_target_device(dev))
2788 		starget_for_each_device(to_scsi_target(dev), NULL,
2789 					device_block);
2790 	return 0;
2791 }
2792 
2793 void
2794 scsi_target_block(struct device *dev)
2795 {
2796 	if (scsi_is_target_device(dev))
2797 		starget_for_each_device(to_scsi_target(dev), NULL,
2798 					device_block);
2799 	else
2800 		device_for_each_child(dev, NULL, target_block);
2801 }
2802 EXPORT_SYMBOL_GPL(scsi_target_block);
2803 
2804 static void
2805 device_unblock(struct scsi_device *sdev, void *data)
2806 {
2807 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2808 }
2809 
2810 static int
2811 target_unblock(struct device *dev, void *data)
2812 {
2813 	if (scsi_is_target_device(dev))
2814 		starget_for_each_device(to_scsi_target(dev), data,
2815 					device_unblock);
2816 	return 0;
2817 }
2818 
2819 void
2820 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2821 {
2822 	if (scsi_is_target_device(dev))
2823 		starget_for_each_device(to_scsi_target(dev), &new_state,
2824 					device_unblock);
2825 	else
2826 		device_for_each_child(dev, &new_state, target_unblock);
2827 }
2828 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2829 
2830 int
2831 scsi_host_block(struct Scsi_Host *shost)
2832 {
2833 	struct scsi_device *sdev;
2834 	int ret = 0;
2835 
2836 	/*
2837 	 * Call scsi_internal_device_block_nowait so we can avoid
2838 	 * calling synchronize_rcu() for each LUN.
2839 	 */
2840 	shost_for_each_device(sdev, shost) {
2841 		mutex_lock(&sdev->state_mutex);
2842 		ret = scsi_internal_device_block_nowait(sdev);
2843 		mutex_unlock(&sdev->state_mutex);
2844 		if (ret)
2845 			break;
2846 	}
2847 
2848 	/*
2849 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2850 	 * calling synchronize_rcu() once is enough.
2851 	 */
2852 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2853 
2854 	if (!ret)
2855 		synchronize_rcu();
2856 
2857 	return ret;
2858 }
2859 EXPORT_SYMBOL_GPL(scsi_host_block);
2860 
2861 int
2862 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2863 {
2864 	struct scsi_device *sdev;
2865 	int ret = 0;
2866 
2867 	shost_for_each_device(sdev, shost) {
2868 		ret = scsi_internal_device_unblock(sdev, new_state);
2869 		if (ret) {
2870 			scsi_device_put(sdev);
2871 			break;
2872 		}
2873 	}
2874 	return ret;
2875 }
2876 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2877 
2878 /**
2879  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2880  * @sgl:	scatter-gather list
2881  * @sg_count:	number of segments in sg
2882  * @offset:	offset in bytes into sg, on return offset into the mapped area
2883  * @len:	bytes to map, on return number of bytes mapped
2884  *
2885  * Returns virtual address of the start of the mapped page
2886  */
2887 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2888 			  size_t *offset, size_t *len)
2889 {
2890 	int i;
2891 	size_t sg_len = 0, len_complete = 0;
2892 	struct scatterlist *sg;
2893 	struct page *page;
2894 
2895 	WARN_ON(!irqs_disabled());
2896 
2897 	for_each_sg(sgl, sg, sg_count, i) {
2898 		len_complete = sg_len; /* Complete sg-entries */
2899 		sg_len += sg->length;
2900 		if (sg_len > *offset)
2901 			break;
2902 	}
2903 
2904 	if (unlikely(i == sg_count)) {
2905 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2906 			"elements %d\n",
2907 		       __func__, sg_len, *offset, sg_count);
2908 		WARN_ON(1);
2909 		return NULL;
2910 	}
2911 
2912 	/* Offset starting from the beginning of first page in this sg-entry */
2913 	*offset = *offset - len_complete + sg->offset;
2914 
2915 	/* Assumption: contiguous pages can be accessed as "page + i" */
2916 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2917 	*offset &= ~PAGE_MASK;
2918 
2919 	/* Bytes in this sg-entry from *offset to the end of the page */
2920 	sg_len = PAGE_SIZE - *offset;
2921 	if (*len > sg_len)
2922 		*len = sg_len;
2923 
2924 	return kmap_atomic(page);
2925 }
2926 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2927 
2928 /**
2929  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2930  * @virt:	virtual address to be unmapped
2931  */
2932 void scsi_kunmap_atomic_sg(void *virt)
2933 {
2934 	kunmap_atomic(virt);
2935 }
2936 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2937 
2938 void sdev_disable_disk_events(struct scsi_device *sdev)
2939 {
2940 	atomic_inc(&sdev->disk_events_disable_depth);
2941 }
2942 EXPORT_SYMBOL(sdev_disable_disk_events);
2943 
2944 void sdev_enable_disk_events(struct scsi_device *sdev)
2945 {
2946 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2947 		return;
2948 	atomic_dec(&sdev->disk_events_disable_depth);
2949 }
2950 EXPORT_SYMBOL(sdev_enable_disk_events);
2951 
2952 /**
2953  * scsi_vpd_lun_id - return a unique device identification
2954  * @sdev: SCSI device
2955  * @id:   buffer for the identification
2956  * @id_len:  length of the buffer
2957  *
2958  * Copies a unique device identification into @id based
2959  * on the information in the VPD page 0x83 of the device.
2960  * The string will be formatted as a SCSI name string.
2961  *
2962  * Returns the length of the identification or error on failure.
2963  * If the identifier is longer than the supplied buffer the actual
2964  * identifier length is returned and the buffer is not zero-padded.
2965  */
2966 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2967 {
2968 	u8 cur_id_type = 0xff;
2969 	u8 cur_id_size = 0;
2970 	const unsigned char *d, *cur_id_str;
2971 	const struct scsi_vpd *vpd_pg83;
2972 	int id_size = -EINVAL;
2973 
2974 	rcu_read_lock();
2975 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2976 	if (!vpd_pg83) {
2977 		rcu_read_unlock();
2978 		return -ENXIO;
2979 	}
2980 
2981 	/*
2982 	 * Look for the correct descriptor.
2983 	 * Order of preference for lun descriptor:
2984 	 * - SCSI name string
2985 	 * - NAA IEEE Registered Extended
2986 	 * - EUI-64 based 16-byte
2987 	 * - EUI-64 based 12-byte
2988 	 * - NAA IEEE Registered
2989 	 * - NAA IEEE Extended
2990 	 * - T10 Vendor ID
2991 	 * as longer descriptors reduce the likelyhood
2992 	 * of identification clashes.
2993 	 */
2994 
2995 	/* The id string must be at least 20 bytes + terminating NULL byte */
2996 	if (id_len < 21) {
2997 		rcu_read_unlock();
2998 		return -EINVAL;
2999 	}
3000 
3001 	memset(id, 0, id_len);
3002 	d = vpd_pg83->data + 4;
3003 	while (d < vpd_pg83->data + vpd_pg83->len) {
3004 		/* Skip designators not referring to the LUN */
3005 		if ((d[1] & 0x30) != 0x00)
3006 			goto next_desig;
3007 
3008 		switch (d[1] & 0xf) {
3009 		case 0x1:
3010 			/* T10 Vendor ID */
3011 			if (cur_id_size > d[3])
3012 				break;
3013 			/* Prefer anything */
3014 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3015 				break;
3016 			cur_id_size = d[3];
3017 			if (cur_id_size + 4 > id_len)
3018 				cur_id_size = id_len - 4;
3019 			cur_id_str = d + 4;
3020 			cur_id_type = d[1] & 0xf;
3021 			id_size = snprintf(id, id_len, "t10.%*pE",
3022 					   cur_id_size, cur_id_str);
3023 			break;
3024 		case 0x2:
3025 			/* EUI-64 */
3026 			if (cur_id_size > d[3])
3027 				break;
3028 			/* Prefer NAA IEEE Registered Extended */
3029 			if (cur_id_type == 0x3 &&
3030 			    cur_id_size == d[3])
3031 				break;
3032 			cur_id_size = d[3];
3033 			cur_id_str = d + 4;
3034 			cur_id_type = d[1] & 0xf;
3035 			switch (cur_id_size) {
3036 			case 8:
3037 				id_size = snprintf(id, id_len,
3038 						   "eui.%8phN",
3039 						   cur_id_str);
3040 				break;
3041 			case 12:
3042 				id_size = snprintf(id, id_len,
3043 						   "eui.%12phN",
3044 						   cur_id_str);
3045 				break;
3046 			case 16:
3047 				id_size = snprintf(id, id_len,
3048 						   "eui.%16phN",
3049 						   cur_id_str);
3050 				break;
3051 			default:
3052 				cur_id_size = 0;
3053 				break;
3054 			}
3055 			break;
3056 		case 0x3:
3057 			/* NAA */
3058 			if (cur_id_size > d[3])
3059 				break;
3060 			cur_id_size = d[3];
3061 			cur_id_str = d + 4;
3062 			cur_id_type = d[1] & 0xf;
3063 			switch (cur_id_size) {
3064 			case 8:
3065 				id_size = snprintf(id, id_len,
3066 						   "naa.%8phN",
3067 						   cur_id_str);
3068 				break;
3069 			case 16:
3070 				id_size = snprintf(id, id_len,
3071 						   "naa.%16phN",
3072 						   cur_id_str);
3073 				break;
3074 			default:
3075 				cur_id_size = 0;
3076 				break;
3077 			}
3078 			break;
3079 		case 0x8:
3080 			/* SCSI name string */
3081 			if (cur_id_size + 4 > d[3])
3082 				break;
3083 			/* Prefer others for truncated descriptor */
3084 			if (cur_id_size && d[3] > id_len)
3085 				break;
3086 			cur_id_size = id_size = d[3];
3087 			cur_id_str = d + 4;
3088 			cur_id_type = d[1] & 0xf;
3089 			if (cur_id_size >= id_len)
3090 				cur_id_size = id_len - 1;
3091 			memcpy(id, cur_id_str, cur_id_size);
3092 			/* Decrease priority for truncated descriptor */
3093 			if (cur_id_size != id_size)
3094 				cur_id_size = 6;
3095 			break;
3096 		default:
3097 			break;
3098 		}
3099 next_desig:
3100 		d += d[3] + 4;
3101 	}
3102 	rcu_read_unlock();
3103 
3104 	return id_size;
3105 }
3106 EXPORT_SYMBOL(scsi_vpd_lun_id);
3107 
3108 /*
3109  * scsi_vpd_tpg_id - return a target port group identifier
3110  * @sdev: SCSI device
3111  *
3112  * Returns the Target Port Group identifier from the information
3113  * froom VPD page 0x83 of the device.
3114  *
3115  * Returns the identifier or error on failure.
3116  */
3117 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3118 {
3119 	const unsigned char *d;
3120 	const struct scsi_vpd *vpd_pg83;
3121 	int group_id = -EAGAIN, rel_port = -1;
3122 
3123 	rcu_read_lock();
3124 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3125 	if (!vpd_pg83) {
3126 		rcu_read_unlock();
3127 		return -ENXIO;
3128 	}
3129 
3130 	d = vpd_pg83->data + 4;
3131 	while (d < vpd_pg83->data + vpd_pg83->len) {
3132 		switch (d[1] & 0xf) {
3133 		case 0x4:
3134 			/* Relative target port */
3135 			rel_port = get_unaligned_be16(&d[6]);
3136 			break;
3137 		case 0x5:
3138 			/* Target port group */
3139 			group_id = get_unaligned_be16(&d[6]);
3140 			break;
3141 		default:
3142 			break;
3143 		}
3144 		d += d[3] + 4;
3145 	}
3146 	rcu_read_unlock();
3147 
3148 	if (group_id >= 0 && rel_id && rel_port != -1)
3149 		*rel_id = rel_port;
3150 
3151 	return group_id;
3152 }
3153 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3154