1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_dh.h> 34 35 #include <trace/events/scsi.h> 36 37 #include "scsi_debugfs.h" 38 #include "scsi_priv.h" 39 #include "scsi_logging.h" 40 41 static struct kmem_cache *scsi_sdb_cache; 42 static struct kmem_cache *scsi_sense_cache; 43 static struct kmem_cache *scsi_sense_isadma_cache; 44 static DEFINE_MUTEX(scsi_sense_cache_mutex); 45 46 static inline struct kmem_cache * 47 scsi_select_sense_cache(struct Scsi_Host *shost) 48 { 49 return shost->unchecked_isa_dma ? 50 scsi_sense_isadma_cache : scsi_sense_cache; 51 } 52 53 static void scsi_free_sense_buffer(struct Scsi_Host *shost, 54 unsigned char *sense_buffer) 55 { 56 kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer); 57 } 58 59 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost, 60 gfp_t gfp_mask, int numa_node) 61 { 62 return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask, 63 numa_node); 64 } 65 66 int scsi_init_sense_cache(struct Scsi_Host *shost) 67 { 68 struct kmem_cache *cache; 69 int ret = 0; 70 71 cache = scsi_select_sense_cache(shost); 72 if (cache) 73 return 0; 74 75 mutex_lock(&scsi_sense_cache_mutex); 76 if (shost->unchecked_isa_dma) { 77 scsi_sense_isadma_cache = 78 kmem_cache_create("scsi_sense_cache(DMA)", 79 SCSI_SENSE_BUFFERSIZE, 0, 80 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 81 if (!scsi_sense_isadma_cache) 82 ret = -ENOMEM; 83 } else { 84 scsi_sense_cache = 85 kmem_cache_create("scsi_sense_cache", 86 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL); 87 if (!scsi_sense_cache) 88 ret = -ENOMEM; 89 } 90 91 mutex_unlock(&scsi_sense_cache_mutex); 92 return ret; 93 } 94 95 /* 96 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 97 * not change behaviour from the previous unplug mechanism, experimentation 98 * may prove this needs changing. 99 */ 100 #define SCSI_QUEUE_DELAY 3 101 102 static void 103 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 104 { 105 struct Scsi_Host *host = cmd->device->host; 106 struct scsi_device *device = cmd->device; 107 struct scsi_target *starget = scsi_target(device); 108 109 /* 110 * Set the appropriate busy bit for the device/host. 111 * 112 * If the host/device isn't busy, assume that something actually 113 * completed, and that we should be able to queue a command now. 114 * 115 * Note that the prior mid-layer assumption that any host could 116 * always queue at least one command is now broken. The mid-layer 117 * will implement a user specifiable stall (see 118 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 119 * if a command is requeued with no other commands outstanding 120 * either for the device or for the host. 121 */ 122 switch (reason) { 123 case SCSI_MLQUEUE_HOST_BUSY: 124 atomic_set(&host->host_blocked, host->max_host_blocked); 125 break; 126 case SCSI_MLQUEUE_DEVICE_BUSY: 127 case SCSI_MLQUEUE_EH_RETRY: 128 atomic_set(&device->device_blocked, 129 device->max_device_blocked); 130 break; 131 case SCSI_MLQUEUE_TARGET_BUSY: 132 atomic_set(&starget->target_blocked, 133 starget->max_target_blocked); 134 break; 135 } 136 } 137 138 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 139 { 140 struct scsi_device *sdev = cmd->device; 141 142 blk_mq_requeue_request(cmd->request, true); 143 put_device(&sdev->sdev_gendev); 144 } 145 146 /** 147 * __scsi_queue_insert - private queue insertion 148 * @cmd: The SCSI command being requeued 149 * @reason: The reason for the requeue 150 * @unbusy: Whether the queue should be unbusied 151 * 152 * This is a private queue insertion. The public interface 153 * scsi_queue_insert() always assumes the queue should be unbusied 154 * because it's always called before the completion. This function is 155 * for a requeue after completion, which should only occur in this 156 * file. 157 */ 158 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 159 { 160 struct scsi_device *device = cmd->device; 161 struct request_queue *q = device->request_queue; 162 unsigned long flags; 163 164 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 165 "Inserting command %p into mlqueue\n", cmd)); 166 167 scsi_set_blocked(cmd, reason); 168 169 /* 170 * Decrement the counters, since these commands are no longer 171 * active on the host/device. 172 */ 173 if (unbusy) 174 scsi_device_unbusy(device); 175 176 /* 177 * Requeue this command. It will go before all other commands 178 * that are already in the queue. Schedule requeue work under 179 * lock such that the kblockd_schedule_work() call happens 180 * before blk_cleanup_queue() finishes. 181 */ 182 cmd->result = 0; 183 if (q->mq_ops) { 184 scsi_mq_requeue_cmd(cmd); 185 return; 186 } 187 spin_lock_irqsave(q->queue_lock, flags); 188 blk_requeue_request(q, cmd->request); 189 kblockd_schedule_work(&device->requeue_work); 190 spin_unlock_irqrestore(q->queue_lock, flags); 191 } 192 193 /* 194 * Function: scsi_queue_insert() 195 * 196 * Purpose: Insert a command in the midlevel queue. 197 * 198 * Arguments: cmd - command that we are adding to queue. 199 * reason - why we are inserting command to queue. 200 * 201 * Lock status: Assumed that lock is not held upon entry. 202 * 203 * Returns: Nothing. 204 * 205 * Notes: We do this for one of two cases. Either the host is busy 206 * and it cannot accept any more commands for the time being, 207 * or the device returned QUEUE_FULL and can accept no more 208 * commands. 209 * Notes: This could be called either from an interrupt context or a 210 * normal process context. 211 */ 212 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 213 { 214 __scsi_queue_insert(cmd, reason, 1); 215 } 216 217 218 /** 219 * scsi_execute - insert request and wait for the result 220 * @sdev: scsi device 221 * @cmd: scsi command 222 * @data_direction: data direction 223 * @buffer: data buffer 224 * @bufflen: len of buffer 225 * @sense: optional sense buffer 226 * @sshdr: optional decoded sense header 227 * @timeout: request timeout in seconds 228 * @retries: number of times to retry request 229 * @flags: flags for ->cmd_flags 230 * @rq_flags: flags for ->rq_flags 231 * @resid: optional residual length 232 * 233 * Returns the scsi_cmnd result field if a command was executed, or a negative 234 * Linux error code if we didn't get that far. 235 */ 236 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 237 int data_direction, void *buffer, unsigned bufflen, 238 unsigned char *sense, struct scsi_sense_hdr *sshdr, 239 int timeout, int retries, u64 flags, req_flags_t rq_flags, 240 int *resid) 241 { 242 struct request *req; 243 struct scsi_request *rq; 244 int ret = DRIVER_ERROR << 24; 245 246 req = blk_get_request(sdev->request_queue, 247 data_direction == DMA_TO_DEVICE ? 248 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 249 if (IS_ERR(req)) 250 return ret; 251 rq = scsi_req(req); 252 scsi_req_init(req); 253 254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 255 buffer, bufflen, __GFP_RECLAIM)) 256 goto out; 257 258 rq->cmd_len = COMMAND_SIZE(cmd[0]); 259 memcpy(rq->cmd, cmd, rq->cmd_len); 260 rq->retries = retries; 261 req->timeout = timeout; 262 req->cmd_flags |= flags; 263 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT; 264 265 /* 266 * head injection *required* here otherwise quiesce won't work 267 */ 268 blk_execute_rq(req->q, NULL, req, 1); 269 270 /* 271 * Some devices (USB mass-storage in particular) may transfer 272 * garbage data together with a residue indicating that the data 273 * is invalid. Prevent the garbage from being misinterpreted 274 * and prevent security leaks by zeroing out the excess data. 275 */ 276 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 277 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 278 279 if (resid) 280 *resid = rq->resid_len; 281 if (sense && rq->sense_len) 282 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 283 if (sshdr) 284 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 285 ret = rq->result; 286 out: 287 blk_put_request(req); 288 289 return ret; 290 } 291 EXPORT_SYMBOL(scsi_execute); 292 293 /* 294 * Function: scsi_init_cmd_errh() 295 * 296 * Purpose: Initialize cmd fields related to error handling. 297 * 298 * Arguments: cmd - command that is ready to be queued. 299 * 300 * Notes: This function has the job of initializing a number of 301 * fields related to error handling. Typically this will 302 * be called once for each command, as required. 303 */ 304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 305 { 306 cmd->serial_number = 0; 307 scsi_set_resid(cmd, 0); 308 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 309 if (cmd->cmd_len == 0) 310 cmd->cmd_len = scsi_command_size(cmd->cmnd); 311 } 312 313 void scsi_device_unbusy(struct scsi_device *sdev) 314 { 315 struct Scsi_Host *shost = sdev->host; 316 struct scsi_target *starget = scsi_target(sdev); 317 unsigned long flags; 318 319 atomic_dec(&shost->host_busy); 320 if (starget->can_queue > 0) 321 atomic_dec(&starget->target_busy); 322 323 if (unlikely(scsi_host_in_recovery(shost) && 324 (shost->host_failed || shost->host_eh_scheduled))) { 325 spin_lock_irqsave(shost->host_lock, flags); 326 scsi_eh_wakeup(shost); 327 spin_unlock_irqrestore(shost->host_lock, flags); 328 } 329 330 atomic_dec(&sdev->device_busy); 331 } 332 333 static void scsi_kick_queue(struct request_queue *q) 334 { 335 if (q->mq_ops) 336 blk_mq_start_hw_queues(q); 337 else 338 blk_run_queue(q); 339 } 340 341 /* 342 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 343 * and call blk_run_queue for all the scsi_devices on the target - 344 * including current_sdev first. 345 * 346 * Called with *no* scsi locks held. 347 */ 348 static void scsi_single_lun_run(struct scsi_device *current_sdev) 349 { 350 struct Scsi_Host *shost = current_sdev->host; 351 struct scsi_device *sdev, *tmp; 352 struct scsi_target *starget = scsi_target(current_sdev); 353 unsigned long flags; 354 355 spin_lock_irqsave(shost->host_lock, flags); 356 starget->starget_sdev_user = NULL; 357 spin_unlock_irqrestore(shost->host_lock, flags); 358 359 /* 360 * Call blk_run_queue for all LUNs on the target, starting with 361 * current_sdev. We race with others (to set starget_sdev_user), 362 * but in most cases, we will be first. Ideally, each LU on the 363 * target would get some limited time or requests on the target. 364 */ 365 scsi_kick_queue(current_sdev->request_queue); 366 367 spin_lock_irqsave(shost->host_lock, flags); 368 if (starget->starget_sdev_user) 369 goto out; 370 list_for_each_entry_safe(sdev, tmp, &starget->devices, 371 same_target_siblings) { 372 if (sdev == current_sdev) 373 continue; 374 if (scsi_device_get(sdev)) 375 continue; 376 377 spin_unlock_irqrestore(shost->host_lock, flags); 378 scsi_kick_queue(sdev->request_queue); 379 spin_lock_irqsave(shost->host_lock, flags); 380 381 scsi_device_put(sdev); 382 } 383 out: 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 } 386 387 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 388 { 389 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 390 return true; 391 if (atomic_read(&sdev->device_blocked) > 0) 392 return true; 393 return false; 394 } 395 396 static inline bool scsi_target_is_busy(struct scsi_target *starget) 397 { 398 if (starget->can_queue > 0) { 399 if (atomic_read(&starget->target_busy) >= starget->can_queue) 400 return true; 401 if (atomic_read(&starget->target_blocked) > 0) 402 return true; 403 } 404 return false; 405 } 406 407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 408 { 409 if (shost->can_queue > 0 && 410 atomic_read(&shost->host_busy) >= shost->can_queue) 411 return true; 412 if (atomic_read(&shost->host_blocked) > 0) 413 return true; 414 if (shost->host_self_blocked) 415 return true; 416 return false; 417 } 418 419 static void scsi_starved_list_run(struct Scsi_Host *shost) 420 { 421 LIST_HEAD(starved_list); 422 struct scsi_device *sdev; 423 unsigned long flags; 424 425 spin_lock_irqsave(shost->host_lock, flags); 426 list_splice_init(&shost->starved_list, &starved_list); 427 428 while (!list_empty(&starved_list)) { 429 struct request_queue *slq; 430 431 /* 432 * As long as shost is accepting commands and we have 433 * starved queues, call blk_run_queue. scsi_request_fn 434 * drops the queue_lock and can add us back to the 435 * starved_list. 436 * 437 * host_lock protects the starved_list and starved_entry. 438 * scsi_request_fn must get the host_lock before checking 439 * or modifying starved_list or starved_entry. 440 */ 441 if (scsi_host_is_busy(shost)) 442 break; 443 444 sdev = list_entry(starved_list.next, 445 struct scsi_device, starved_entry); 446 list_del_init(&sdev->starved_entry); 447 if (scsi_target_is_busy(scsi_target(sdev))) { 448 list_move_tail(&sdev->starved_entry, 449 &shost->starved_list); 450 continue; 451 } 452 453 /* 454 * Once we drop the host lock, a racing scsi_remove_device() 455 * call may remove the sdev from the starved list and destroy 456 * it and the queue. Mitigate by taking a reference to the 457 * queue and never touching the sdev again after we drop the 458 * host lock. Note: if __scsi_remove_device() invokes 459 * blk_cleanup_queue() before the queue is run from this 460 * function then blk_run_queue() will return immediately since 461 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 462 */ 463 slq = sdev->request_queue; 464 if (!blk_get_queue(slq)) 465 continue; 466 spin_unlock_irqrestore(shost->host_lock, flags); 467 468 scsi_kick_queue(slq); 469 blk_put_queue(slq); 470 471 spin_lock_irqsave(shost->host_lock, flags); 472 } 473 /* put any unprocessed entries back */ 474 list_splice(&starved_list, &shost->starved_list); 475 spin_unlock_irqrestore(shost->host_lock, flags); 476 } 477 478 /* 479 * Function: scsi_run_queue() 480 * 481 * Purpose: Select a proper request queue to serve next 482 * 483 * Arguments: q - last request's queue 484 * 485 * Returns: Nothing 486 * 487 * Notes: The previous command was completely finished, start 488 * a new one if possible. 489 */ 490 static void scsi_run_queue(struct request_queue *q) 491 { 492 struct scsi_device *sdev = q->queuedata; 493 494 if (scsi_target(sdev)->single_lun) 495 scsi_single_lun_run(sdev); 496 if (!list_empty(&sdev->host->starved_list)) 497 scsi_starved_list_run(sdev->host); 498 499 if (q->mq_ops) 500 blk_mq_run_hw_queues(q, false); 501 else 502 blk_run_queue(q); 503 } 504 505 void scsi_requeue_run_queue(struct work_struct *work) 506 { 507 struct scsi_device *sdev; 508 struct request_queue *q; 509 510 sdev = container_of(work, struct scsi_device, requeue_work); 511 q = sdev->request_queue; 512 scsi_run_queue(q); 513 } 514 515 /* 516 * Function: scsi_requeue_command() 517 * 518 * Purpose: Handle post-processing of completed commands. 519 * 520 * Arguments: q - queue to operate on 521 * cmd - command that may need to be requeued. 522 * 523 * Returns: Nothing 524 * 525 * Notes: After command completion, there may be blocks left 526 * over which weren't finished by the previous command 527 * this can be for a number of reasons - the main one is 528 * I/O errors in the middle of the request, in which case 529 * we need to request the blocks that come after the bad 530 * sector. 531 * Notes: Upon return, cmd is a stale pointer. 532 */ 533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 534 { 535 struct scsi_device *sdev = cmd->device; 536 struct request *req = cmd->request; 537 unsigned long flags; 538 539 spin_lock_irqsave(q->queue_lock, flags); 540 blk_unprep_request(req); 541 req->special = NULL; 542 scsi_put_command(cmd); 543 blk_requeue_request(q, req); 544 spin_unlock_irqrestore(q->queue_lock, flags); 545 546 scsi_run_queue(q); 547 548 put_device(&sdev->sdev_gendev); 549 } 550 551 void scsi_run_host_queues(struct Scsi_Host *shost) 552 { 553 struct scsi_device *sdev; 554 555 shost_for_each_device(sdev, shost) 556 scsi_run_queue(sdev->request_queue); 557 } 558 559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 560 { 561 if (!blk_rq_is_passthrough(cmd->request)) { 562 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 563 564 if (drv->uninit_command) 565 drv->uninit_command(cmd); 566 } 567 } 568 569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 570 { 571 struct scsi_data_buffer *sdb; 572 573 if (cmd->sdb.table.nents) 574 sg_free_table_chained(&cmd->sdb.table, true); 575 if (cmd->request->next_rq) { 576 sdb = cmd->request->next_rq->special; 577 if (sdb) 578 sg_free_table_chained(&sdb->table, true); 579 } 580 if (scsi_prot_sg_count(cmd)) 581 sg_free_table_chained(&cmd->prot_sdb->table, true); 582 } 583 584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 585 { 586 struct scsi_device *sdev = cmd->device; 587 struct Scsi_Host *shost = sdev->host; 588 unsigned long flags; 589 590 scsi_mq_free_sgtables(cmd); 591 scsi_uninit_cmd(cmd); 592 593 if (shost->use_cmd_list) { 594 BUG_ON(list_empty(&cmd->list)); 595 spin_lock_irqsave(&sdev->list_lock, flags); 596 list_del_init(&cmd->list); 597 spin_unlock_irqrestore(&sdev->list_lock, flags); 598 } 599 } 600 601 /* 602 * Function: scsi_release_buffers() 603 * 604 * Purpose: Free resources allocate for a scsi_command. 605 * 606 * Arguments: cmd - command that we are bailing. 607 * 608 * Lock status: Assumed that no lock is held upon entry. 609 * 610 * Returns: Nothing 611 * 612 * Notes: In the event that an upper level driver rejects a 613 * command, we must release resources allocated during 614 * the __init_io() function. Primarily this would involve 615 * the scatter-gather table. 616 */ 617 static void scsi_release_buffers(struct scsi_cmnd *cmd) 618 { 619 if (cmd->sdb.table.nents) 620 sg_free_table_chained(&cmd->sdb.table, false); 621 622 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 623 624 if (scsi_prot_sg_count(cmd)) 625 sg_free_table_chained(&cmd->prot_sdb->table, false); 626 } 627 628 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 629 { 630 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 631 632 sg_free_table_chained(&bidi_sdb->table, false); 633 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 634 cmd->request->next_rq->special = NULL; 635 } 636 637 static bool scsi_end_request(struct request *req, int error, 638 unsigned int bytes, unsigned int bidi_bytes) 639 { 640 struct scsi_cmnd *cmd = req->special; 641 struct scsi_device *sdev = cmd->device; 642 struct request_queue *q = sdev->request_queue; 643 644 if (blk_update_request(req, error, bytes)) 645 return true; 646 647 /* Bidi request must be completed as a whole */ 648 if (unlikely(bidi_bytes) && 649 blk_update_request(req->next_rq, error, bidi_bytes)) 650 return true; 651 652 if (blk_queue_add_random(q)) 653 add_disk_randomness(req->rq_disk); 654 655 if (req->mq_ctx) { 656 /* 657 * In the MQ case the command gets freed by __blk_mq_end_request, 658 * so we have to do all cleanup that depends on it earlier. 659 * 660 * We also can't kick the queues from irq context, so we 661 * will have to defer it to a workqueue. 662 */ 663 scsi_mq_uninit_cmd(cmd); 664 665 __blk_mq_end_request(req, error); 666 667 if (scsi_target(sdev)->single_lun || 668 !list_empty(&sdev->host->starved_list)) 669 kblockd_schedule_work(&sdev->requeue_work); 670 else 671 blk_mq_run_hw_queues(q, true); 672 } else { 673 unsigned long flags; 674 675 if (bidi_bytes) 676 scsi_release_bidi_buffers(cmd); 677 scsi_release_buffers(cmd); 678 scsi_put_command(cmd); 679 680 spin_lock_irqsave(q->queue_lock, flags); 681 blk_finish_request(req, error); 682 spin_unlock_irqrestore(q->queue_lock, flags); 683 684 scsi_run_queue(q); 685 } 686 687 put_device(&sdev->sdev_gendev); 688 return false; 689 } 690 691 /** 692 * __scsi_error_from_host_byte - translate SCSI error code into errno 693 * @cmd: SCSI command (unused) 694 * @result: scsi error code 695 * 696 * Translate SCSI error code into standard UNIX errno. 697 * Return values: 698 * -ENOLINK temporary transport failure 699 * -EREMOTEIO permanent target failure, do not retry 700 * -EBADE permanent nexus failure, retry on other path 701 * -ENOSPC No write space available 702 * -ENODATA Medium error 703 * -EIO unspecified I/O error 704 */ 705 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 706 { 707 int error = 0; 708 709 switch(host_byte(result)) { 710 case DID_TRANSPORT_FAILFAST: 711 error = -ENOLINK; 712 break; 713 case DID_TARGET_FAILURE: 714 set_host_byte(cmd, DID_OK); 715 error = -EREMOTEIO; 716 break; 717 case DID_NEXUS_FAILURE: 718 set_host_byte(cmd, DID_OK); 719 error = -EBADE; 720 break; 721 case DID_ALLOC_FAILURE: 722 set_host_byte(cmd, DID_OK); 723 error = -ENOSPC; 724 break; 725 case DID_MEDIUM_ERROR: 726 set_host_byte(cmd, DID_OK); 727 error = -ENODATA; 728 break; 729 default: 730 error = -EIO; 731 break; 732 } 733 734 return error; 735 } 736 737 /* 738 * Function: scsi_io_completion() 739 * 740 * Purpose: Completion processing for block device I/O requests. 741 * 742 * Arguments: cmd - command that is finished. 743 * 744 * Lock status: Assumed that no lock is held upon entry. 745 * 746 * Returns: Nothing 747 * 748 * Notes: We will finish off the specified number of sectors. If we 749 * are done, the command block will be released and the queue 750 * function will be goosed. If we are not done then we have to 751 * figure out what to do next: 752 * 753 * a) We can call scsi_requeue_command(). The request 754 * will be unprepared and put back on the queue. Then 755 * a new command will be created for it. This should 756 * be used if we made forward progress, or if we want 757 * to switch from READ(10) to READ(6) for example. 758 * 759 * b) We can call __scsi_queue_insert(). The request will 760 * be put back on the queue and retried using the same 761 * command as before, possibly after a delay. 762 * 763 * c) We can call scsi_end_request() with -EIO to fail 764 * the remainder of the request. 765 */ 766 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 767 { 768 int result = cmd->result; 769 struct request_queue *q = cmd->device->request_queue; 770 struct request *req = cmd->request; 771 int error = 0; 772 struct scsi_sense_hdr sshdr; 773 bool sense_valid = false; 774 int sense_deferred = 0, level = 0; 775 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 776 ACTION_DELAYED_RETRY} action; 777 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 778 779 if (result) { 780 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 781 if (sense_valid) 782 sense_deferred = scsi_sense_is_deferred(&sshdr); 783 } 784 785 if (blk_rq_is_passthrough(req)) { 786 if (result) { 787 if (sense_valid) { 788 /* 789 * SG_IO wants current and deferred errors 790 */ 791 scsi_req(req)->sense_len = 792 min(8 + cmd->sense_buffer[7], 793 SCSI_SENSE_BUFFERSIZE); 794 } 795 if (!sense_deferred) 796 error = __scsi_error_from_host_byte(cmd, result); 797 } 798 /* 799 * __scsi_error_from_host_byte may have reset the host_byte 800 */ 801 scsi_req(req)->result = cmd->result; 802 scsi_req(req)->resid_len = scsi_get_resid(cmd); 803 804 if (scsi_bidi_cmnd(cmd)) { 805 /* 806 * Bidi commands Must be complete as a whole, 807 * both sides at once. 808 */ 809 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 810 if (scsi_end_request(req, 0, blk_rq_bytes(req), 811 blk_rq_bytes(req->next_rq))) 812 BUG(); 813 return; 814 } 815 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 816 /* 817 * Flush commands do not transfers any data, and thus cannot use 818 * good_bytes != blk_rq_bytes(req) as the signal for an error. 819 * This sets the error explicitly for the problem case. 820 */ 821 error = __scsi_error_from_host_byte(cmd, result); 822 } 823 824 /* no bidi support for !blk_rq_is_passthrough yet */ 825 BUG_ON(blk_bidi_rq(req)); 826 827 /* 828 * Next deal with any sectors which we were able to correctly 829 * handle. 830 */ 831 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 832 "%u sectors total, %d bytes done.\n", 833 blk_rq_sectors(req), good_bytes)); 834 835 /* 836 * Recovered errors need reporting, but they're always treated as 837 * success, so fiddle the result code here. For passthrough requests 838 * we already took a copy of the original into sreq->result which 839 * is what gets returned to the user 840 */ 841 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 842 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 843 * print since caller wants ATA registers. Only occurs on 844 * SCSI ATA PASS_THROUGH commands when CK_COND=1 845 */ 846 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 847 ; 848 else if (!(req->rq_flags & RQF_QUIET)) 849 scsi_print_sense(cmd); 850 result = 0; 851 /* for passthrough error may be set */ 852 error = 0; 853 } 854 855 /* 856 * special case: failed zero length commands always need to 857 * drop down into the retry code. Otherwise, if we finished 858 * all bytes in the request we are done now. 859 */ 860 if (!(blk_rq_bytes(req) == 0 && error) && 861 !scsi_end_request(req, error, good_bytes, 0)) 862 return; 863 864 /* 865 * Kill remainder if no retrys. 866 */ 867 if (error && scsi_noretry_cmd(cmd)) { 868 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 869 BUG(); 870 return; 871 } 872 873 /* 874 * If there had been no error, but we have leftover bytes in the 875 * requeues just queue the command up again. 876 */ 877 if (result == 0) 878 goto requeue; 879 880 error = __scsi_error_from_host_byte(cmd, result); 881 882 if (host_byte(result) == DID_RESET) { 883 /* Third party bus reset or reset for error recovery 884 * reasons. Just retry the command and see what 885 * happens. 886 */ 887 action = ACTION_RETRY; 888 } else if (sense_valid && !sense_deferred) { 889 switch (sshdr.sense_key) { 890 case UNIT_ATTENTION: 891 if (cmd->device->removable) { 892 /* Detected disc change. Set a bit 893 * and quietly refuse further access. 894 */ 895 cmd->device->changed = 1; 896 action = ACTION_FAIL; 897 } else { 898 /* Must have been a power glitch, or a 899 * bus reset. Could not have been a 900 * media change, so we just retry the 901 * command and see what happens. 902 */ 903 action = ACTION_RETRY; 904 } 905 break; 906 case ILLEGAL_REQUEST: 907 /* If we had an ILLEGAL REQUEST returned, then 908 * we may have performed an unsupported 909 * command. The only thing this should be 910 * would be a ten byte read where only a six 911 * byte read was supported. Also, on a system 912 * where READ CAPACITY failed, we may have 913 * read past the end of the disk. 914 */ 915 if ((cmd->device->use_10_for_rw && 916 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 917 (cmd->cmnd[0] == READ_10 || 918 cmd->cmnd[0] == WRITE_10)) { 919 /* This will issue a new 6-byte command. */ 920 cmd->device->use_10_for_rw = 0; 921 action = ACTION_REPREP; 922 } else if (sshdr.asc == 0x10) /* DIX */ { 923 action = ACTION_FAIL; 924 error = -EILSEQ; 925 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 926 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 927 action = ACTION_FAIL; 928 error = -EREMOTEIO; 929 } else 930 action = ACTION_FAIL; 931 break; 932 case ABORTED_COMMAND: 933 action = ACTION_FAIL; 934 if (sshdr.asc == 0x10) /* DIF */ 935 error = -EILSEQ; 936 break; 937 case NOT_READY: 938 /* If the device is in the process of becoming 939 * ready, or has a temporary blockage, retry. 940 */ 941 if (sshdr.asc == 0x04) { 942 switch (sshdr.ascq) { 943 case 0x01: /* becoming ready */ 944 case 0x04: /* format in progress */ 945 case 0x05: /* rebuild in progress */ 946 case 0x06: /* recalculation in progress */ 947 case 0x07: /* operation in progress */ 948 case 0x08: /* Long write in progress */ 949 case 0x09: /* self test in progress */ 950 case 0x14: /* space allocation in progress */ 951 action = ACTION_DELAYED_RETRY; 952 break; 953 default: 954 action = ACTION_FAIL; 955 break; 956 } 957 } else 958 action = ACTION_FAIL; 959 break; 960 case VOLUME_OVERFLOW: 961 /* See SSC3rXX or current. */ 962 action = ACTION_FAIL; 963 break; 964 default: 965 action = ACTION_FAIL; 966 break; 967 } 968 } else 969 action = ACTION_FAIL; 970 971 if (action != ACTION_FAIL && 972 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 973 action = ACTION_FAIL; 974 975 switch (action) { 976 case ACTION_FAIL: 977 /* Give up and fail the remainder of the request */ 978 if (!(req->rq_flags & RQF_QUIET)) { 979 static DEFINE_RATELIMIT_STATE(_rs, 980 DEFAULT_RATELIMIT_INTERVAL, 981 DEFAULT_RATELIMIT_BURST); 982 983 if (unlikely(scsi_logging_level)) 984 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 985 SCSI_LOG_MLCOMPLETE_BITS); 986 987 /* 988 * if logging is enabled the failure will be printed 989 * in scsi_log_completion(), so avoid duplicate messages 990 */ 991 if (!level && __ratelimit(&_rs)) { 992 scsi_print_result(cmd, NULL, FAILED); 993 if (driver_byte(result) & DRIVER_SENSE) 994 scsi_print_sense(cmd); 995 scsi_print_command(cmd); 996 } 997 } 998 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 999 return; 1000 /*FALLTHRU*/ 1001 case ACTION_REPREP: 1002 requeue: 1003 /* Unprep the request and put it back at the head of the queue. 1004 * A new command will be prepared and issued. 1005 */ 1006 if (q->mq_ops) { 1007 cmd->request->rq_flags &= ~RQF_DONTPREP; 1008 scsi_mq_uninit_cmd(cmd); 1009 scsi_mq_requeue_cmd(cmd); 1010 } else { 1011 scsi_release_buffers(cmd); 1012 scsi_requeue_command(q, cmd); 1013 } 1014 break; 1015 case ACTION_RETRY: 1016 /* Retry the same command immediately */ 1017 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1018 break; 1019 case ACTION_DELAYED_RETRY: 1020 /* Retry the same command after a delay */ 1021 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1022 break; 1023 } 1024 } 1025 1026 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1027 { 1028 int count; 1029 1030 /* 1031 * If sg table allocation fails, requeue request later. 1032 */ 1033 if (unlikely(sg_alloc_table_chained(&sdb->table, 1034 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1035 return BLKPREP_DEFER; 1036 1037 /* 1038 * Next, walk the list, and fill in the addresses and sizes of 1039 * each segment. 1040 */ 1041 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1042 BUG_ON(count > sdb->table.nents); 1043 sdb->table.nents = count; 1044 sdb->length = blk_rq_payload_bytes(req); 1045 return BLKPREP_OK; 1046 } 1047 1048 /* 1049 * Function: scsi_init_io() 1050 * 1051 * Purpose: SCSI I/O initialize function. 1052 * 1053 * Arguments: cmd - Command descriptor we wish to initialize 1054 * 1055 * Returns: 0 on success 1056 * BLKPREP_DEFER if the failure is retryable 1057 * BLKPREP_KILL if the failure is fatal 1058 */ 1059 int scsi_init_io(struct scsi_cmnd *cmd) 1060 { 1061 struct scsi_device *sdev = cmd->device; 1062 struct request *rq = cmd->request; 1063 bool is_mq = (rq->mq_ctx != NULL); 1064 int error = BLKPREP_KILL; 1065 1066 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1067 goto err_exit; 1068 1069 error = scsi_init_sgtable(rq, &cmd->sdb); 1070 if (error) 1071 goto err_exit; 1072 1073 if (blk_bidi_rq(rq)) { 1074 if (!rq->q->mq_ops) { 1075 struct scsi_data_buffer *bidi_sdb = 1076 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1077 if (!bidi_sdb) { 1078 error = BLKPREP_DEFER; 1079 goto err_exit; 1080 } 1081 1082 rq->next_rq->special = bidi_sdb; 1083 } 1084 1085 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1086 if (error) 1087 goto err_exit; 1088 } 1089 1090 if (blk_integrity_rq(rq)) { 1091 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1092 int ivecs, count; 1093 1094 if (prot_sdb == NULL) { 1095 /* 1096 * This can happen if someone (e.g. multipath) 1097 * queues a command to a device on an adapter 1098 * that does not support DIX. 1099 */ 1100 WARN_ON_ONCE(1); 1101 error = BLKPREP_KILL; 1102 goto err_exit; 1103 } 1104 1105 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1106 1107 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1108 prot_sdb->table.sgl)) { 1109 error = BLKPREP_DEFER; 1110 goto err_exit; 1111 } 1112 1113 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1114 prot_sdb->table.sgl); 1115 BUG_ON(unlikely(count > ivecs)); 1116 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1117 1118 cmd->prot_sdb = prot_sdb; 1119 cmd->prot_sdb->table.nents = count; 1120 } 1121 1122 return BLKPREP_OK; 1123 err_exit: 1124 if (is_mq) { 1125 scsi_mq_free_sgtables(cmd); 1126 } else { 1127 scsi_release_buffers(cmd); 1128 cmd->request->special = NULL; 1129 scsi_put_command(cmd); 1130 put_device(&sdev->sdev_gendev); 1131 } 1132 return error; 1133 } 1134 EXPORT_SYMBOL(scsi_init_io); 1135 1136 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1137 { 1138 void *buf = cmd->sense_buffer; 1139 void *prot = cmd->prot_sdb; 1140 unsigned long flags; 1141 1142 /* zero out the cmd, except for the embedded scsi_request */ 1143 memset((char *)cmd + sizeof(cmd->req), 0, 1144 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1145 1146 cmd->device = dev; 1147 cmd->sense_buffer = buf; 1148 cmd->prot_sdb = prot; 1149 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1150 cmd->jiffies_at_alloc = jiffies; 1151 1152 spin_lock_irqsave(&dev->list_lock, flags); 1153 list_add_tail(&cmd->list, &dev->cmd_list); 1154 spin_unlock_irqrestore(&dev->list_lock, flags); 1155 } 1156 1157 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1158 { 1159 struct scsi_cmnd *cmd = req->special; 1160 1161 /* 1162 * Passthrough requests may transfer data, in which case they must 1163 * a bio attached to them. Or they might contain a SCSI command 1164 * that does not transfer data, in which case they may optionally 1165 * submit a request without an attached bio. 1166 */ 1167 if (req->bio) { 1168 int ret = scsi_init_io(cmd); 1169 if (unlikely(ret)) 1170 return ret; 1171 } else { 1172 BUG_ON(blk_rq_bytes(req)); 1173 1174 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1175 } 1176 1177 cmd->cmd_len = scsi_req(req)->cmd_len; 1178 cmd->cmnd = scsi_req(req)->cmd; 1179 cmd->transfersize = blk_rq_bytes(req); 1180 cmd->allowed = scsi_req(req)->retries; 1181 return BLKPREP_OK; 1182 } 1183 1184 /* 1185 * Setup a normal block command. These are simple request from filesystems 1186 * that still need to be translated to SCSI CDBs from the ULD. 1187 */ 1188 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1189 { 1190 struct scsi_cmnd *cmd = req->special; 1191 1192 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1193 int ret = sdev->handler->prep_fn(sdev, req); 1194 if (ret != BLKPREP_OK) 1195 return ret; 1196 } 1197 1198 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1199 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1200 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1201 } 1202 1203 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1204 { 1205 struct scsi_cmnd *cmd = req->special; 1206 1207 if (!blk_rq_bytes(req)) 1208 cmd->sc_data_direction = DMA_NONE; 1209 else if (rq_data_dir(req) == WRITE) 1210 cmd->sc_data_direction = DMA_TO_DEVICE; 1211 else 1212 cmd->sc_data_direction = DMA_FROM_DEVICE; 1213 1214 if (blk_rq_is_scsi(req)) 1215 return scsi_setup_scsi_cmnd(sdev, req); 1216 else 1217 return scsi_setup_fs_cmnd(sdev, req); 1218 } 1219 1220 static int 1221 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1222 { 1223 int ret = BLKPREP_OK; 1224 1225 /* 1226 * If the device is not in running state we will reject some 1227 * or all commands. 1228 */ 1229 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1230 switch (sdev->sdev_state) { 1231 case SDEV_OFFLINE: 1232 case SDEV_TRANSPORT_OFFLINE: 1233 /* 1234 * If the device is offline we refuse to process any 1235 * commands. The device must be brought online 1236 * before trying any recovery commands. 1237 */ 1238 sdev_printk(KERN_ERR, sdev, 1239 "rejecting I/O to offline device\n"); 1240 ret = BLKPREP_KILL; 1241 break; 1242 case SDEV_DEL: 1243 /* 1244 * If the device is fully deleted, we refuse to 1245 * process any commands as well. 1246 */ 1247 sdev_printk(KERN_ERR, sdev, 1248 "rejecting I/O to dead device\n"); 1249 ret = BLKPREP_KILL; 1250 break; 1251 case SDEV_BLOCK: 1252 case SDEV_CREATED_BLOCK: 1253 ret = BLKPREP_DEFER; 1254 break; 1255 case SDEV_QUIESCE: 1256 /* 1257 * If the devices is blocked we defer normal commands. 1258 */ 1259 if (!(req->rq_flags & RQF_PREEMPT)) 1260 ret = BLKPREP_DEFER; 1261 break; 1262 default: 1263 /* 1264 * For any other not fully online state we only allow 1265 * special commands. In particular any user initiated 1266 * command is not allowed. 1267 */ 1268 if (!(req->rq_flags & RQF_PREEMPT)) 1269 ret = BLKPREP_KILL; 1270 break; 1271 } 1272 } 1273 return ret; 1274 } 1275 1276 static int 1277 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1278 { 1279 struct scsi_device *sdev = q->queuedata; 1280 1281 switch (ret) { 1282 case BLKPREP_KILL: 1283 case BLKPREP_INVALID: 1284 scsi_req(req)->result = DID_NO_CONNECT << 16; 1285 /* release the command and kill it */ 1286 if (req->special) { 1287 struct scsi_cmnd *cmd = req->special; 1288 scsi_release_buffers(cmd); 1289 scsi_put_command(cmd); 1290 put_device(&sdev->sdev_gendev); 1291 req->special = NULL; 1292 } 1293 break; 1294 case BLKPREP_DEFER: 1295 /* 1296 * If we defer, the blk_peek_request() returns NULL, but the 1297 * queue must be restarted, so we schedule a callback to happen 1298 * shortly. 1299 */ 1300 if (atomic_read(&sdev->device_busy) == 0) 1301 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1302 break; 1303 default: 1304 req->rq_flags |= RQF_DONTPREP; 1305 } 1306 1307 return ret; 1308 } 1309 1310 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1311 { 1312 struct scsi_device *sdev = q->queuedata; 1313 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1314 int ret; 1315 1316 ret = scsi_prep_state_check(sdev, req); 1317 if (ret != BLKPREP_OK) 1318 goto out; 1319 1320 if (!req->special) { 1321 /* Bail if we can't get a reference to the device */ 1322 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1323 ret = BLKPREP_DEFER; 1324 goto out; 1325 } 1326 1327 scsi_init_command(sdev, cmd); 1328 req->special = cmd; 1329 } 1330 1331 cmd->tag = req->tag; 1332 cmd->request = req; 1333 cmd->prot_op = SCSI_PROT_NORMAL; 1334 1335 ret = scsi_setup_cmnd(sdev, req); 1336 out: 1337 return scsi_prep_return(q, req, ret); 1338 } 1339 1340 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1341 { 1342 scsi_uninit_cmd(req->special); 1343 } 1344 1345 /* 1346 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1347 * return 0. 1348 * 1349 * Called with the queue_lock held. 1350 */ 1351 static inline int scsi_dev_queue_ready(struct request_queue *q, 1352 struct scsi_device *sdev) 1353 { 1354 unsigned int busy; 1355 1356 busy = atomic_inc_return(&sdev->device_busy) - 1; 1357 if (atomic_read(&sdev->device_blocked)) { 1358 if (busy) 1359 goto out_dec; 1360 1361 /* 1362 * unblock after device_blocked iterates to zero 1363 */ 1364 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1365 /* 1366 * For the MQ case we take care of this in the caller. 1367 */ 1368 if (!q->mq_ops) 1369 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1370 goto out_dec; 1371 } 1372 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1373 "unblocking device at zero depth\n")); 1374 } 1375 1376 if (busy >= sdev->queue_depth) 1377 goto out_dec; 1378 1379 return 1; 1380 out_dec: 1381 atomic_dec(&sdev->device_busy); 1382 return 0; 1383 } 1384 1385 /* 1386 * scsi_target_queue_ready: checks if there we can send commands to target 1387 * @sdev: scsi device on starget to check. 1388 */ 1389 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1390 struct scsi_device *sdev) 1391 { 1392 struct scsi_target *starget = scsi_target(sdev); 1393 unsigned int busy; 1394 1395 if (starget->single_lun) { 1396 spin_lock_irq(shost->host_lock); 1397 if (starget->starget_sdev_user && 1398 starget->starget_sdev_user != sdev) { 1399 spin_unlock_irq(shost->host_lock); 1400 return 0; 1401 } 1402 starget->starget_sdev_user = sdev; 1403 spin_unlock_irq(shost->host_lock); 1404 } 1405 1406 if (starget->can_queue <= 0) 1407 return 1; 1408 1409 busy = atomic_inc_return(&starget->target_busy) - 1; 1410 if (atomic_read(&starget->target_blocked) > 0) { 1411 if (busy) 1412 goto starved; 1413 1414 /* 1415 * unblock after target_blocked iterates to zero 1416 */ 1417 if (atomic_dec_return(&starget->target_blocked) > 0) 1418 goto out_dec; 1419 1420 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1421 "unblocking target at zero depth\n")); 1422 } 1423 1424 if (busy >= starget->can_queue) 1425 goto starved; 1426 1427 return 1; 1428 1429 starved: 1430 spin_lock_irq(shost->host_lock); 1431 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1432 spin_unlock_irq(shost->host_lock); 1433 out_dec: 1434 if (starget->can_queue > 0) 1435 atomic_dec(&starget->target_busy); 1436 return 0; 1437 } 1438 1439 /* 1440 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1441 * return 0. We must end up running the queue again whenever 0 is 1442 * returned, else IO can hang. 1443 */ 1444 static inline int scsi_host_queue_ready(struct request_queue *q, 1445 struct Scsi_Host *shost, 1446 struct scsi_device *sdev) 1447 { 1448 unsigned int busy; 1449 1450 if (scsi_host_in_recovery(shost)) 1451 return 0; 1452 1453 busy = atomic_inc_return(&shost->host_busy) - 1; 1454 if (atomic_read(&shost->host_blocked) > 0) { 1455 if (busy) 1456 goto starved; 1457 1458 /* 1459 * unblock after host_blocked iterates to zero 1460 */ 1461 if (atomic_dec_return(&shost->host_blocked) > 0) 1462 goto out_dec; 1463 1464 SCSI_LOG_MLQUEUE(3, 1465 shost_printk(KERN_INFO, shost, 1466 "unblocking host at zero depth\n")); 1467 } 1468 1469 if (shost->can_queue > 0 && busy >= shost->can_queue) 1470 goto starved; 1471 if (shost->host_self_blocked) 1472 goto starved; 1473 1474 /* We're OK to process the command, so we can't be starved */ 1475 if (!list_empty(&sdev->starved_entry)) { 1476 spin_lock_irq(shost->host_lock); 1477 if (!list_empty(&sdev->starved_entry)) 1478 list_del_init(&sdev->starved_entry); 1479 spin_unlock_irq(shost->host_lock); 1480 } 1481 1482 return 1; 1483 1484 starved: 1485 spin_lock_irq(shost->host_lock); 1486 if (list_empty(&sdev->starved_entry)) 1487 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1488 spin_unlock_irq(shost->host_lock); 1489 out_dec: 1490 atomic_dec(&shost->host_busy); 1491 return 0; 1492 } 1493 1494 /* 1495 * Busy state exporting function for request stacking drivers. 1496 * 1497 * For efficiency, no lock is taken to check the busy state of 1498 * shost/starget/sdev, since the returned value is not guaranteed and 1499 * may be changed after request stacking drivers call the function, 1500 * regardless of taking lock or not. 1501 * 1502 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1503 * needs to return 'not busy'. Otherwise, request stacking drivers 1504 * may hold requests forever. 1505 */ 1506 static int scsi_lld_busy(struct request_queue *q) 1507 { 1508 struct scsi_device *sdev = q->queuedata; 1509 struct Scsi_Host *shost; 1510 1511 if (blk_queue_dying(q)) 1512 return 0; 1513 1514 shost = sdev->host; 1515 1516 /* 1517 * Ignore host/starget busy state. 1518 * Since block layer does not have a concept of fairness across 1519 * multiple queues, congestion of host/starget needs to be handled 1520 * in SCSI layer. 1521 */ 1522 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1523 return 1; 1524 1525 return 0; 1526 } 1527 1528 /* 1529 * Kill a request for a dead device 1530 */ 1531 static void scsi_kill_request(struct request *req, struct request_queue *q) 1532 { 1533 struct scsi_cmnd *cmd = req->special; 1534 struct scsi_device *sdev; 1535 struct scsi_target *starget; 1536 struct Scsi_Host *shost; 1537 1538 blk_start_request(req); 1539 1540 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1541 1542 sdev = cmd->device; 1543 starget = scsi_target(sdev); 1544 shost = sdev->host; 1545 scsi_init_cmd_errh(cmd); 1546 cmd->result = DID_NO_CONNECT << 16; 1547 atomic_inc(&cmd->device->iorequest_cnt); 1548 1549 /* 1550 * SCSI request completion path will do scsi_device_unbusy(), 1551 * bump busy counts. To bump the counters, we need to dance 1552 * with the locks as normal issue path does. 1553 */ 1554 atomic_inc(&sdev->device_busy); 1555 atomic_inc(&shost->host_busy); 1556 if (starget->can_queue > 0) 1557 atomic_inc(&starget->target_busy); 1558 1559 blk_complete_request(req); 1560 } 1561 1562 static void scsi_softirq_done(struct request *rq) 1563 { 1564 struct scsi_cmnd *cmd = rq->special; 1565 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1566 int disposition; 1567 1568 INIT_LIST_HEAD(&cmd->eh_entry); 1569 1570 atomic_inc(&cmd->device->iodone_cnt); 1571 if (cmd->result) 1572 atomic_inc(&cmd->device->ioerr_cnt); 1573 1574 disposition = scsi_decide_disposition(cmd); 1575 if (disposition != SUCCESS && 1576 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1577 sdev_printk(KERN_ERR, cmd->device, 1578 "timing out command, waited %lus\n", 1579 wait_for/HZ); 1580 disposition = SUCCESS; 1581 } 1582 1583 scsi_log_completion(cmd, disposition); 1584 1585 switch (disposition) { 1586 case SUCCESS: 1587 scsi_finish_command(cmd); 1588 break; 1589 case NEEDS_RETRY: 1590 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1591 break; 1592 case ADD_TO_MLQUEUE: 1593 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1594 break; 1595 default: 1596 scsi_eh_scmd_add(cmd); 1597 break; 1598 } 1599 } 1600 1601 /** 1602 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1603 * @cmd: command block we are dispatching. 1604 * 1605 * Return: nonzero return request was rejected and device's queue needs to be 1606 * plugged. 1607 */ 1608 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1609 { 1610 struct Scsi_Host *host = cmd->device->host; 1611 int rtn = 0; 1612 1613 atomic_inc(&cmd->device->iorequest_cnt); 1614 1615 /* check if the device is still usable */ 1616 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1617 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1618 * returns an immediate error upwards, and signals 1619 * that the device is no longer present */ 1620 cmd->result = DID_NO_CONNECT << 16; 1621 goto done; 1622 } 1623 1624 /* Check to see if the scsi lld made this device blocked. */ 1625 if (unlikely(scsi_device_blocked(cmd->device))) { 1626 /* 1627 * in blocked state, the command is just put back on 1628 * the device queue. The suspend state has already 1629 * blocked the queue so future requests should not 1630 * occur until the device transitions out of the 1631 * suspend state. 1632 */ 1633 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1634 "queuecommand : device blocked\n")); 1635 return SCSI_MLQUEUE_DEVICE_BUSY; 1636 } 1637 1638 /* Store the LUN value in cmnd, if needed. */ 1639 if (cmd->device->lun_in_cdb) 1640 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1641 (cmd->device->lun << 5 & 0xe0); 1642 1643 scsi_log_send(cmd); 1644 1645 /* 1646 * Before we queue this command, check if the command 1647 * length exceeds what the host adapter can handle. 1648 */ 1649 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1650 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1651 "queuecommand : command too long. " 1652 "cdb_size=%d host->max_cmd_len=%d\n", 1653 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1654 cmd->result = (DID_ABORT << 16); 1655 goto done; 1656 } 1657 1658 if (unlikely(host->shost_state == SHOST_DEL)) { 1659 cmd->result = (DID_NO_CONNECT << 16); 1660 goto done; 1661 1662 } 1663 1664 trace_scsi_dispatch_cmd_start(cmd); 1665 rtn = host->hostt->queuecommand(host, cmd); 1666 if (rtn) { 1667 trace_scsi_dispatch_cmd_error(cmd, rtn); 1668 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1669 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1670 rtn = SCSI_MLQUEUE_HOST_BUSY; 1671 1672 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1673 "queuecommand : request rejected\n")); 1674 } 1675 1676 return rtn; 1677 done: 1678 cmd->scsi_done(cmd); 1679 return 0; 1680 } 1681 1682 /** 1683 * scsi_done - Invoke completion on finished SCSI command. 1684 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1685 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1686 * 1687 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1688 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1689 * calls blk_complete_request() for further processing. 1690 * 1691 * This function is interrupt context safe. 1692 */ 1693 static void scsi_done(struct scsi_cmnd *cmd) 1694 { 1695 trace_scsi_dispatch_cmd_done(cmd); 1696 blk_complete_request(cmd->request); 1697 } 1698 1699 /* 1700 * Function: scsi_request_fn() 1701 * 1702 * Purpose: Main strategy routine for SCSI. 1703 * 1704 * Arguments: q - Pointer to actual queue. 1705 * 1706 * Returns: Nothing 1707 * 1708 * Lock status: IO request lock assumed to be held when called. 1709 */ 1710 static void scsi_request_fn(struct request_queue *q) 1711 __releases(q->queue_lock) 1712 __acquires(q->queue_lock) 1713 { 1714 struct scsi_device *sdev = q->queuedata; 1715 struct Scsi_Host *shost; 1716 struct scsi_cmnd *cmd; 1717 struct request *req; 1718 1719 /* 1720 * To start with, we keep looping until the queue is empty, or until 1721 * the host is no longer able to accept any more requests. 1722 */ 1723 shost = sdev->host; 1724 for (;;) { 1725 int rtn; 1726 /* 1727 * get next queueable request. We do this early to make sure 1728 * that the request is fully prepared even if we cannot 1729 * accept it. 1730 */ 1731 req = blk_peek_request(q); 1732 if (!req) 1733 break; 1734 1735 if (unlikely(!scsi_device_online(sdev))) { 1736 sdev_printk(KERN_ERR, sdev, 1737 "rejecting I/O to offline device\n"); 1738 scsi_kill_request(req, q); 1739 continue; 1740 } 1741 1742 if (!scsi_dev_queue_ready(q, sdev)) 1743 break; 1744 1745 /* 1746 * Remove the request from the request list. 1747 */ 1748 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1749 blk_start_request(req); 1750 1751 spin_unlock_irq(q->queue_lock); 1752 cmd = req->special; 1753 if (unlikely(cmd == NULL)) { 1754 printk(KERN_CRIT "impossible request in %s.\n" 1755 "please mail a stack trace to " 1756 "linux-scsi@vger.kernel.org\n", 1757 __func__); 1758 blk_dump_rq_flags(req, "foo"); 1759 BUG(); 1760 } 1761 1762 /* 1763 * We hit this when the driver is using a host wide 1764 * tag map. For device level tag maps the queue_depth check 1765 * in the device ready fn would prevent us from trying 1766 * to allocate a tag. Since the map is a shared host resource 1767 * we add the dev to the starved list so it eventually gets 1768 * a run when a tag is freed. 1769 */ 1770 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1771 spin_lock_irq(shost->host_lock); 1772 if (list_empty(&sdev->starved_entry)) 1773 list_add_tail(&sdev->starved_entry, 1774 &shost->starved_list); 1775 spin_unlock_irq(shost->host_lock); 1776 goto not_ready; 1777 } 1778 1779 if (!scsi_target_queue_ready(shost, sdev)) 1780 goto not_ready; 1781 1782 if (!scsi_host_queue_ready(q, shost, sdev)) 1783 goto host_not_ready; 1784 1785 if (sdev->simple_tags) 1786 cmd->flags |= SCMD_TAGGED; 1787 else 1788 cmd->flags &= ~SCMD_TAGGED; 1789 1790 /* 1791 * Finally, initialize any error handling parameters, and set up 1792 * the timers for timeouts. 1793 */ 1794 scsi_init_cmd_errh(cmd); 1795 1796 /* 1797 * Dispatch the command to the low-level driver. 1798 */ 1799 cmd->scsi_done = scsi_done; 1800 rtn = scsi_dispatch_cmd(cmd); 1801 if (rtn) { 1802 scsi_queue_insert(cmd, rtn); 1803 spin_lock_irq(q->queue_lock); 1804 goto out_delay; 1805 } 1806 spin_lock_irq(q->queue_lock); 1807 } 1808 1809 return; 1810 1811 host_not_ready: 1812 if (scsi_target(sdev)->can_queue > 0) 1813 atomic_dec(&scsi_target(sdev)->target_busy); 1814 not_ready: 1815 /* 1816 * lock q, handle tag, requeue req, and decrement device_busy. We 1817 * must return with queue_lock held. 1818 * 1819 * Decrementing device_busy without checking it is OK, as all such 1820 * cases (host limits or settings) should run the queue at some 1821 * later time. 1822 */ 1823 spin_lock_irq(q->queue_lock); 1824 blk_requeue_request(q, req); 1825 atomic_dec(&sdev->device_busy); 1826 out_delay: 1827 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1828 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1829 } 1830 1831 static inline int prep_to_mq(int ret) 1832 { 1833 switch (ret) { 1834 case BLKPREP_OK: 1835 return BLK_MQ_RQ_QUEUE_OK; 1836 case BLKPREP_DEFER: 1837 return BLK_MQ_RQ_QUEUE_BUSY; 1838 default: 1839 return BLK_MQ_RQ_QUEUE_ERROR; 1840 } 1841 } 1842 1843 static int scsi_mq_prep_fn(struct request *req) 1844 { 1845 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1846 struct scsi_device *sdev = req->q->queuedata; 1847 struct Scsi_Host *shost = sdev->host; 1848 unsigned char *sense_buf = cmd->sense_buffer; 1849 struct scatterlist *sg; 1850 1851 /* zero out the cmd, except for the embedded scsi_request */ 1852 memset((char *)cmd + sizeof(cmd->req), 0, 1853 sizeof(*cmd) - sizeof(cmd->req)); 1854 1855 req->special = cmd; 1856 1857 cmd->request = req; 1858 cmd->device = sdev; 1859 cmd->sense_buffer = sense_buf; 1860 1861 cmd->tag = req->tag; 1862 1863 cmd->prot_op = SCSI_PROT_NORMAL; 1864 1865 INIT_LIST_HEAD(&cmd->list); 1866 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1867 cmd->jiffies_at_alloc = jiffies; 1868 1869 if (shost->use_cmd_list) { 1870 spin_lock_irq(&sdev->list_lock); 1871 list_add_tail(&cmd->list, &sdev->cmd_list); 1872 spin_unlock_irq(&sdev->list_lock); 1873 } 1874 1875 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1876 cmd->sdb.table.sgl = sg; 1877 1878 if (scsi_host_get_prot(shost)) { 1879 cmd->prot_sdb = (void *)sg + 1880 min_t(unsigned int, 1881 shost->sg_tablesize, SG_CHUNK_SIZE) * 1882 sizeof(struct scatterlist); 1883 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1884 1885 cmd->prot_sdb->table.sgl = 1886 (struct scatterlist *)(cmd->prot_sdb + 1); 1887 } 1888 1889 if (blk_bidi_rq(req)) { 1890 struct request *next_rq = req->next_rq; 1891 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1892 1893 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1894 bidi_sdb->table.sgl = 1895 (struct scatterlist *)(bidi_sdb + 1); 1896 1897 next_rq->special = bidi_sdb; 1898 } 1899 1900 blk_mq_start_request(req); 1901 1902 return scsi_setup_cmnd(sdev, req); 1903 } 1904 1905 static void scsi_mq_done(struct scsi_cmnd *cmd) 1906 { 1907 trace_scsi_dispatch_cmd_done(cmd); 1908 blk_mq_complete_request(cmd->request); 1909 } 1910 1911 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1912 const struct blk_mq_queue_data *bd) 1913 { 1914 struct request *req = bd->rq; 1915 struct request_queue *q = req->q; 1916 struct scsi_device *sdev = q->queuedata; 1917 struct Scsi_Host *shost = sdev->host; 1918 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1919 int ret; 1920 int reason; 1921 1922 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 1923 if (ret != BLK_MQ_RQ_QUEUE_OK) 1924 goto out; 1925 1926 ret = BLK_MQ_RQ_QUEUE_BUSY; 1927 if (!get_device(&sdev->sdev_gendev)) 1928 goto out; 1929 1930 if (!scsi_dev_queue_ready(q, sdev)) 1931 goto out_put_device; 1932 if (!scsi_target_queue_ready(shost, sdev)) 1933 goto out_dec_device_busy; 1934 if (!scsi_host_queue_ready(q, shost, sdev)) 1935 goto out_dec_target_busy; 1936 1937 if (!(req->rq_flags & RQF_DONTPREP)) { 1938 ret = prep_to_mq(scsi_mq_prep_fn(req)); 1939 if (ret != BLK_MQ_RQ_QUEUE_OK) 1940 goto out_dec_host_busy; 1941 req->rq_flags |= RQF_DONTPREP; 1942 } else { 1943 blk_mq_start_request(req); 1944 } 1945 1946 if (sdev->simple_tags) 1947 cmd->flags |= SCMD_TAGGED; 1948 else 1949 cmd->flags &= ~SCMD_TAGGED; 1950 1951 scsi_init_cmd_errh(cmd); 1952 cmd->scsi_done = scsi_mq_done; 1953 1954 reason = scsi_dispatch_cmd(cmd); 1955 if (reason) { 1956 scsi_set_blocked(cmd, reason); 1957 ret = BLK_MQ_RQ_QUEUE_BUSY; 1958 goto out_dec_host_busy; 1959 } 1960 1961 return BLK_MQ_RQ_QUEUE_OK; 1962 1963 out_dec_host_busy: 1964 atomic_dec(&shost->host_busy); 1965 out_dec_target_busy: 1966 if (scsi_target(sdev)->can_queue > 0) 1967 atomic_dec(&scsi_target(sdev)->target_busy); 1968 out_dec_device_busy: 1969 atomic_dec(&sdev->device_busy); 1970 out_put_device: 1971 put_device(&sdev->sdev_gendev); 1972 out: 1973 switch (ret) { 1974 case BLK_MQ_RQ_QUEUE_BUSY: 1975 if (atomic_read(&sdev->device_busy) == 0 && 1976 !scsi_device_blocked(sdev)) 1977 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1978 break; 1979 case BLK_MQ_RQ_QUEUE_ERROR: 1980 /* 1981 * Make sure to release all allocated ressources when 1982 * we hit an error, as we will never see this command 1983 * again. 1984 */ 1985 if (req->rq_flags & RQF_DONTPREP) 1986 scsi_mq_uninit_cmd(cmd); 1987 break; 1988 default: 1989 break; 1990 } 1991 return ret; 1992 } 1993 1994 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1995 bool reserved) 1996 { 1997 if (reserved) 1998 return BLK_EH_RESET_TIMER; 1999 return scsi_times_out(req); 2000 } 2001 2002 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq, 2003 unsigned int hctx_idx, unsigned int numa_node) 2004 { 2005 struct Scsi_Host *shost = set->driver_data; 2006 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2007 2008 cmd->sense_buffer = 2009 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node); 2010 if (!cmd->sense_buffer) 2011 return -ENOMEM; 2012 cmd->req.sense = cmd->sense_buffer; 2013 return 0; 2014 } 2015 2016 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2017 unsigned int hctx_idx) 2018 { 2019 struct Scsi_Host *shost = set->driver_data; 2020 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2021 2022 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2023 } 2024 2025 static int scsi_map_queues(struct blk_mq_tag_set *set) 2026 { 2027 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2028 2029 if (shost->hostt->map_queues) 2030 return shost->hostt->map_queues(shost); 2031 return blk_mq_map_queues(set); 2032 } 2033 2034 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2035 { 2036 struct device *host_dev; 2037 u64 bounce_limit = 0xffffffff; 2038 2039 if (shost->unchecked_isa_dma) 2040 return BLK_BOUNCE_ISA; 2041 /* 2042 * Platforms with virtual-DMA translation 2043 * hardware have no practical limit. 2044 */ 2045 if (!PCI_DMA_BUS_IS_PHYS) 2046 return BLK_BOUNCE_ANY; 2047 2048 host_dev = scsi_get_device(shost); 2049 if (host_dev && host_dev->dma_mask) 2050 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2051 2052 return bounce_limit; 2053 } 2054 2055 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2056 { 2057 struct device *dev = shost->dma_dev; 2058 2059 /* 2060 * this limit is imposed by hardware restrictions 2061 */ 2062 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2063 SG_MAX_SEGMENTS)); 2064 2065 if (scsi_host_prot_dma(shost)) { 2066 shost->sg_prot_tablesize = 2067 min_not_zero(shost->sg_prot_tablesize, 2068 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2069 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2070 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2071 } 2072 2073 blk_queue_max_hw_sectors(q, shost->max_sectors); 2074 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2075 blk_queue_segment_boundary(q, shost->dma_boundary); 2076 dma_set_seg_boundary(dev, shost->dma_boundary); 2077 2078 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2079 2080 if (!shost->use_clustering) 2081 q->limits.cluster = 0; 2082 2083 /* 2084 * set a reasonable default alignment on word boundaries: the 2085 * host and device may alter it using 2086 * blk_queue_update_dma_alignment() later. 2087 */ 2088 blk_queue_dma_alignment(q, 0x03); 2089 } 2090 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2091 2092 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp) 2093 { 2094 struct Scsi_Host *shost = q->rq_alloc_data; 2095 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2096 2097 memset(cmd, 0, sizeof(*cmd)); 2098 2099 cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE); 2100 if (!cmd->sense_buffer) 2101 goto fail; 2102 cmd->req.sense = cmd->sense_buffer; 2103 2104 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2105 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2106 if (!cmd->prot_sdb) 2107 goto fail_free_sense; 2108 } 2109 2110 return 0; 2111 2112 fail_free_sense: 2113 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2114 fail: 2115 return -ENOMEM; 2116 } 2117 2118 static void scsi_exit_rq(struct request_queue *q, struct request *rq) 2119 { 2120 struct Scsi_Host *shost = q->rq_alloc_data; 2121 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2122 2123 if (cmd->prot_sdb) 2124 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2125 scsi_free_sense_buffer(shost, cmd->sense_buffer); 2126 } 2127 2128 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 2129 { 2130 struct Scsi_Host *shost = sdev->host; 2131 struct request_queue *q; 2132 2133 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2134 if (!q) 2135 return NULL; 2136 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2137 q->rq_alloc_data = shost; 2138 q->request_fn = scsi_request_fn; 2139 q->init_rq_fn = scsi_init_rq; 2140 q->exit_rq_fn = scsi_exit_rq; 2141 2142 if (blk_init_allocated_queue(q) < 0) { 2143 blk_cleanup_queue(q); 2144 return NULL; 2145 } 2146 2147 __scsi_init_queue(shost, q); 2148 blk_queue_prep_rq(q, scsi_prep_fn); 2149 blk_queue_unprep_rq(q, scsi_unprep_fn); 2150 blk_queue_softirq_done(q, scsi_softirq_done); 2151 blk_queue_rq_timed_out(q, scsi_times_out); 2152 blk_queue_lld_busy(q, scsi_lld_busy); 2153 return q; 2154 } 2155 2156 static const struct blk_mq_ops scsi_mq_ops = { 2157 .queue_rq = scsi_queue_rq, 2158 .complete = scsi_softirq_done, 2159 .timeout = scsi_timeout, 2160 #ifdef CONFIG_BLK_DEBUG_FS 2161 .show_rq = scsi_show_rq, 2162 #endif 2163 .init_request = scsi_init_request, 2164 .exit_request = scsi_exit_request, 2165 .map_queues = scsi_map_queues, 2166 }; 2167 2168 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2169 { 2170 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2171 if (IS_ERR(sdev->request_queue)) 2172 return NULL; 2173 2174 sdev->request_queue->queuedata = sdev; 2175 __scsi_init_queue(sdev->host, sdev->request_queue); 2176 return sdev->request_queue; 2177 } 2178 2179 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2180 { 2181 unsigned int cmd_size, sgl_size, tbl_size; 2182 2183 tbl_size = shost->sg_tablesize; 2184 if (tbl_size > SG_CHUNK_SIZE) 2185 tbl_size = SG_CHUNK_SIZE; 2186 sgl_size = tbl_size * sizeof(struct scatterlist); 2187 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2188 if (scsi_host_get_prot(shost)) 2189 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2190 2191 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2192 shost->tag_set.ops = &scsi_mq_ops; 2193 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2194 shost->tag_set.queue_depth = shost->can_queue; 2195 shost->tag_set.cmd_size = cmd_size; 2196 shost->tag_set.numa_node = NUMA_NO_NODE; 2197 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2198 shost->tag_set.flags |= 2199 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2200 shost->tag_set.driver_data = shost; 2201 2202 return blk_mq_alloc_tag_set(&shost->tag_set); 2203 } 2204 2205 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2206 { 2207 blk_mq_free_tag_set(&shost->tag_set); 2208 } 2209 2210 /** 2211 * scsi_device_from_queue - return sdev associated with a request_queue 2212 * @q: The request queue to return the sdev from 2213 * 2214 * Return the sdev associated with a request queue or NULL if the 2215 * request_queue does not reference a SCSI device. 2216 */ 2217 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2218 { 2219 struct scsi_device *sdev = NULL; 2220 2221 if (q->mq_ops) { 2222 if (q->mq_ops == &scsi_mq_ops) 2223 sdev = q->queuedata; 2224 } else if (q->request_fn == scsi_request_fn) 2225 sdev = q->queuedata; 2226 if (!sdev || !get_device(&sdev->sdev_gendev)) 2227 sdev = NULL; 2228 2229 return sdev; 2230 } 2231 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2232 2233 /* 2234 * Function: scsi_block_requests() 2235 * 2236 * Purpose: Utility function used by low-level drivers to prevent further 2237 * commands from being queued to the device. 2238 * 2239 * Arguments: shost - Host in question 2240 * 2241 * Returns: Nothing 2242 * 2243 * Lock status: No locks are assumed held. 2244 * 2245 * Notes: There is no timer nor any other means by which the requests 2246 * get unblocked other than the low-level driver calling 2247 * scsi_unblock_requests(). 2248 */ 2249 void scsi_block_requests(struct Scsi_Host *shost) 2250 { 2251 shost->host_self_blocked = 1; 2252 } 2253 EXPORT_SYMBOL(scsi_block_requests); 2254 2255 /* 2256 * Function: scsi_unblock_requests() 2257 * 2258 * Purpose: Utility function used by low-level drivers to allow further 2259 * commands from being queued to the device. 2260 * 2261 * Arguments: shost - Host in question 2262 * 2263 * Returns: Nothing 2264 * 2265 * Lock status: No locks are assumed held. 2266 * 2267 * Notes: There is no timer nor any other means by which the requests 2268 * get unblocked other than the low-level driver calling 2269 * scsi_unblock_requests(). 2270 * 2271 * This is done as an API function so that changes to the 2272 * internals of the scsi mid-layer won't require wholesale 2273 * changes to drivers that use this feature. 2274 */ 2275 void scsi_unblock_requests(struct Scsi_Host *shost) 2276 { 2277 shost->host_self_blocked = 0; 2278 scsi_run_host_queues(shost); 2279 } 2280 EXPORT_SYMBOL(scsi_unblock_requests); 2281 2282 int __init scsi_init_queue(void) 2283 { 2284 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2285 sizeof(struct scsi_data_buffer), 2286 0, 0, NULL); 2287 if (!scsi_sdb_cache) { 2288 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2289 return -ENOMEM; 2290 } 2291 2292 return 0; 2293 } 2294 2295 void scsi_exit_queue(void) 2296 { 2297 kmem_cache_destroy(scsi_sense_cache); 2298 kmem_cache_destroy(scsi_sense_isadma_cache); 2299 kmem_cache_destroy(scsi_sdb_cache); 2300 } 2301 2302 /** 2303 * scsi_mode_select - issue a mode select 2304 * @sdev: SCSI device to be queried 2305 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2306 * @sp: Save page bit (0 == don't save, 1 == save) 2307 * @modepage: mode page being requested 2308 * @buffer: request buffer (may not be smaller than eight bytes) 2309 * @len: length of request buffer. 2310 * @timeout: command timeout 2311 * @retries: number of retries before failing 2312 * @data: returns a structure abstracting the mode header data 2313 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2314 * must be SCSI_SENSE_BUFFERSIZE big. 2315 * 2316 * Returns zero if successful; negative error number or scsi 2317 * status on error 2318 * 2319 */ 2320 int 2321 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2322 unsigned char *buffer, int len, int timeout, int retries, 2323 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2324 { 2325 unsigned char cmd[10]; 2326 unsigned char *real_buffer; 2327 int ret; 2328 2329 memset(cmd, 0, sizeof(cmd)); 2330 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2331 2332 if (sdev->use_10_for_ms) { 2333 if (len > 65535) 2334 return -EINVAL; 2335 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2336 if (!real_buffer) 2337 return -ENOMEM; 2338 memcpy(real_buffer + 8, buffer, len); 2339 len += 8; 2340 real_buffer[0] = 0; 2341 real_buffer[1] = 0; 2342 real_buffer[2] = data->medium_type; 2343 real_buffer[3] = data->device_specific; 2344 real_buffer[4] = data->longlba ? 0x01 : 0; 2345 real_buffer[5] = 0; 2346 real_buffer[6] = data->block_descriptor_length >> 8; 2347 real_buffer[7] = data->block_descriptor_length; 2348 2349 cmd[0] = MODE_SELECT_10; 2350 cmd[7] = len >> 8; 2351 cmd[8] = len; 2352 } else { 2353 if (len > 255 || data->block_descriptor_length > 255 || 2354 data->longlba) 2355 return -EINVAL; 2356 2357 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2358 if (!real_buffer) 2359 return -ENOMEM; 2360 memcpy(real_buffer + 4, buffer, len); 2361 len += 4; 2362 real_buffer[0] = 0; 2363 real_buffer[1] = data->medium_type; 2364 real_buffer[2] = data->device_specific; 2365 real_buffer[3] = data->block_descriptor_length; 2366 2367 2368 cmd[0] = MODE_SELECT; 2369 cmd[4] = len; 2370 } 2371 2372 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2373 sshdr, timeout, retries, NULL); 2374 kfree(real_buffer); 2375 return ret; 2376 } 2377 EXPORT_SYMBOL_GPL(scsi_mode_select); 2378 2379 /** 2380 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2381 * @sdev: SCSI device to be queried 2382 * @dbd: set if mode sense will allow block descriptors to be returned 2383 * @modepage: mode page being requested 2384 * @buffer: request buffer (may not be smaller than eight bytes) 2385 * @len: length of request buffer. 2386 * @timeout: command timeout 2387 * @retries: number of retries before failing 2388 * @data: returns a structure abstracting the mode header data 2389 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2390 * must be SCSI_SENSE_BUFFERSIZE big. 2391 * 2392 * Returns zero if unsuccessful, or the header offset (either 4 2393 * or 8 depending on whether a six or ten byte command was 2394 * issued) if successful. 2395 */ 2396 int 2397 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2398 unsigned char *buffer, int len, int timeout, int retries, 2399 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2400 { 2401 unsigned char cmd[12]; 2402 int use_10_for_ms; 2403 int header_length; 2404 int result, retry_count = retries; 2405 struct scsi_sense_hdr my_sshdr; 2406 2407 memset(data, 0, sizeof(*data)); 2408 memset(&cmd[0], 0, 12); 2409 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2410 cmd[2] = modepage; 2411 2412 /* caller might not be interested in sense, but we need it */ 2413 if (!sshdr) 2414 sshdr = &my_sshdr; 2415 2416 retry: 2417 use_10_for_ms = sdev->use_10_for_ms; 2418 2419 if (use_10_for_ms) { 2420 if (len < 8) 2421 len = 8; 2422 2423 cmd[0] = MODE_SENSE_10; 2424 cmd[8] = len; 2425 header_length = 8; 2426 } else { 2427 if (len < 4) 2428 len = 4; 2429 2430 cmd[0] = MODE_SENSE; 2431 cmd[4] = len; 2432 header_length = 4; 2433 } 2434 2435 memset(buffer, 0, len); 2436 2437 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2438 sshdr, timeout, retries, NULL); 2439 2440 /* This code looks awful: what it's doing is making sure an 2441 * ILLEGAL REQUEST sense return identifies the actual command 2442 * byte as the problem. MODE_SENSE commands can return 2443 * ILLEGAL REQUEST if the code page isn't supported */ 2444 2445 if (use_10_for_ms && !scsi_status_is_good(result) && 2446 (driver_byte(result) & DRIVER_SENSE)) { 2447 if (scsi_sense_valid(sshdr)) { 2448 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2449 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2450 /* 2451 * Invalid command operation code 2452 */ 2453 sdev->use_10_for_ms = 0; 2454 goto retry; 2455 } 2456 } 2457 } 2458 2459 if(scsi_status_is_good(result)) { 2460 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2461 (modepage == 6 || modepage == 8))) { 2462 /* Initio breakage? */ 2463 header_length = 0; 2464 data->length = 13; 2465 data->medium_type = 0; 2466 data->device_specific = 0; 2467 data->longlba = 0; 2468 data->block_descriptor_length = 0; 2469 } else if(use_10_for_ms) { 2470 data->length = buffer[0]*256 + buffer[1] + 2; 2471 data->medium_type = buffer[2]; 2472 data->device_specific = buffer[3]; 2473 data->longlba = buffer[4] & 0x01; 2474 data->block_descriptor_length = buffer[6]*256 2475 + buffer[7]; 2476 } else { 2477 data->length = buffer[0] + 1; 2478 data->medium_type = buffer[1]; 2479 data->device_specific = buffer[2]; 2480 data->block_descriptor_length = buffer[3]; 2481 } 2482 data->header_length = header_length; 2483 } else if ((status_byte(result) == CHECK_CONDITION) && 2484 scsi_sense_valid(sshdr) && 2485 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2486 retry_count--; 2487 goto retry; 2488 } 2489 2490 return result; 2491 } 2492 EXPORT_SYMBOL(scsi_mode_sense); 2493 2494 /** 2495 * scsi_test_unit_ready - test if unit is ready 2496 * @sdev: scsi device to change the state of. 2497 * @timeout: command timeout 2498 * @retries: number of retries before failing 2499 * @sshdr: outpout pointer for decoded sense information. 2500 * 2501 * Returns zero if unsuccessful or an error if TUR failed. For 2502 * removable media, UNIT_ATTENTION sets ->changed flag. 2503 **/ 2504 int 2505 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2506 struct scsi_sense_hdr *sshdr) 2507 { 2508 char cmd[] = { 2509 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2510 }; 2511 int result; 2512 2513 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2514 do { 2515 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2516 timeout, retries, NULL); 2517 if (sdev->removable && scsi_sense_valid(sshdr) && 2518 sshdr->sense_key == UNIT_ATTENTION) 2519 sdev->changed = 1; 2520 } while (scsi_sense_valid(sshdr) && 2521 sshdr->sense_key == UNIT_ATTENTION && --retries); 2522 2523 return result; 2524 } 2525 EXPORT_SYMBOL(scsi_test_unit_ready); 2526 2527 /** 2528 * scsi_device_set_state - Take the given device through the device state model. 2529 * @sdev: scsi device to change the state of. 2530 * @state: state to change to. 2531 * 2532 * Returns zero if unsuccessful or an error if the requested 2533 * transition is illegal. 2534 */ 2535 int 2536 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2537 { 2538 enum scsi_device_state oldstate = sdev->sdev_state; 2539 2540 if (state == oldstate) 2541 return 0; 2542 2543 switch (state) { 2544 case SDEV_CREATED: 2545 switch (oldstate) { 2546 case SDEV_CREATED_BLOCK: 2547 break; 2548 default: 2549 goto illegal; 2550 } 2551 break; 2552 2553 case SDEV_RUNNING: 2554 switch (oldstate) { 2555 case SDEV_CREATED: 2556 case SDEV_OFFLINE: 2557 case SDEV_TRANSPORT_OFFLINE: 2558 case SDEV_QUIESCE: 2559 case SDEV_BLOCK: 2560 break; 2561 default: 2562 goto illegal; 2563 } 2564 break; 2565 2566 case SDEV_QUIESCE: 2567 switch (oldstate) { 2568 case SDEV_RUNNING: 2569 case SDEV_OFFLINE: 2570 case SDEV_TRANSPORT_OFFLINE: 2571 break; 2572 default: 2573 goto illegal; 2574 } 2575 break; 2576 2577 case SDEV_OFFLINE: 2578 case SDEV_TRANSPORT_OFFLINE: 2579 switch (oldstate) { 2580 case SDEV_CREATED: 2581 case SDEV_RUNNING: 2582 case SDEV_QUIESCE: 2583 case SDEV_BLOCK: 2584 break; 2585 default: 2586 goto illegal; 2587 } 2588 break; 2589 2590 case SDEV_BLOCK: 2591 switch (oldstate) { 2592 case SDEV_RUNNING: 2593 case SDEV_CREATED_BLOCK: 2594 break; 2595 default: 2596 goto illegal; 2597 } 2598 break; 2599 2600 case SDEV_CREATED_BLOCK: 2601 switch (oldstate) { 2602 case SDEV_CREATED: 2603 break; 2604 default: 2605 goto illegal; 2606 } 2607 break; 2608 2609 case SDEV_CANCEL: 2610 switch (oldstate) { 2611 case SDEV_CREATED: 2612 case SDEV_RUNNING: 2613 case SDEV_QUIESCE: 2614 case SDEV_OFFLINE: 2615 case SDEV_TRANSPORT_OFFLINE: 2616 case SDEV_BLOCK: 2617 break; 2618 default: 2619 goto illegal; 2620 } 2621 break; 2622 2623 case SDEV_DEL: 2624 switch (oldstate) { 2625 case SDEV_CREATED: 2626 case SDEV_RUNNING: 2627 case SDEV_OFFLINE: 2628 case SDEV_TRANSPORT_OFFLINE: 2629 case SDEV_CANCEL: 2630 case SDEV_CREATED_BLOCK: 2631 break; 2632 default: 2633 goto illegal; 2634 } 2635 break; 2636 2637 } 2638 sdev->sdev_state = state; 2639 return 0; 2640 2641 illegal: 2642 SCSI_LOG_ERROR_RECOVERY(1, 2643 sdev_printk(KERN_ERR, sdev, 2644 "Illegal state transition %s->%s", 2645 scsi_device_state_name(oldstate), 2646 scsi_device_state_name(state)) 2647 ); 2648 return -EINVAL; 2649 } 2650 EXPORT_SYMBOL(scsi_device_set_state); 2651 2652 /** 2653 * sdev_evt_emit - emit a single SCSI device uevent 2654 * @sdev: associated SCSI device 2655 * @evt: event to emit 2656 * 2657 * Send a single uevent (scsi_event) to the associated scsi_device. 2658 */ 2659 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2660 { 2661 int idx = 0; 2662 char *envp[3]; 2663 2664 switch (evt->evt_type) { 2665 case SDEV_EVT_MEDIA_CHANGE: 2666 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2667 break; 2668 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2669 scsi_rescan_device(&sdev->sdev_gendev); 2670 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2671 break; 2672 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2673 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2674 break; 2675 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2676 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2677 break; 2678 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2679 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2680 break; 2681 case SDEV_EVT_LUN_CHANGE_REPORTED: 2682 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2683 break; 2684 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2685 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2686 break; 2687 default: 2688 /* do nothing */ 2689 break; 2690 } 2691 2692 envp[idx++] = NULL; 2693 2694 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2695 } 2696 2697 /** 2698 * sdev_evt_thread - send a uevent for each scsi event 2699 * @work: work struct for scsi_device 2700 * 2701 * Dispatch queued events to their associated scsi_device kobjects 2702 * as uevents. 2703 */ 2704 void scsi_evt_thread(struct work_struct *work) 2705 { 2706 struct scsi_device *sdev; 2707 enum scsi_device_event evt_type; 2708 LIST_HEAD(event_list); 2709 2710 sdev = container_of(work, struct scsi_device, event_work); 2711 2712 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2713 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2714 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2715 2716 while (1) { 2717 struct scsi_event *evt; 2718 struct list_head *this, *tmp; 2719 unsigned long flags; 2720 2721 spin_lock_irqsave(&sdev->list_lock, flags); 2722 list_splice_init(&sdev->event_list, &event_list); 2723 spin_unlock_irqrestore(&sdev->list_lock, flags); 2724 2725 if (list_empty(&event_list)) 2726 break; 2727 2728 list_for_each_safe(this, tmp, &event_list) { 2729 evt = list_entry(this, struct scsi_event, node); 2730 list_del(&evt->node); 2731 scsi_evt_emit(sdev, evt); 2732 kfree(evt); 2733 } 2734 } 2735 } 2736 2737 /** 2738 * sdev_evt_send - send asserted event to uevent thread 2739 * @sdev: scsi_device event occurred on 2740 * @evt: event to send 2741 * 2742 * Assert scsi device event asynchronously. 2743 */ 2744 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2745 { 2746 unsigned long flags; 2747 2748 #if 0 2749 /* FIXME: currently this check eliminates all media change events 2750 * for polled devices. Need to update to discriminate between AN 2751 * and polled events */ 2752 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2753 kfree(evt); 2754 return; 2755 } 2756 #endif 2757 2758 spin_lock_irqsave(&sdev->list_lock, flags); 2759 list_add_tail(&evt->node, &sdev->event_list); 2760 schedule_work(&sdev->event_work); 2761 spin_unlock_irqrestore(&sdev->list_lock, flags); 2762 } 2763 EXPORT_SYMBOL_GPL(sdev_evt_send); 2764 2765 /** 2766 * sdev_evt_alloc - allocate a new scsi event 2767 * @evt_type: type of event to allocate 2768 * @gfpflags: GFP flags for allocation 2769 * 2770 * Allocates and returns a new scsi_event. 2771 */ 2772 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2773 gfp_t gfpflags) 2774 { 2775 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2776 if (!evt) 2777 return NULL; 2778 2779 evt->evt_type = evt_type; 2780 INIT_LIST_HEAD(&evt->node); 2781 2782 /* evt_type-specific initialization, if any */ 2783 switch (evt_type) { 2784 case SDEV_EVT_MEDIA_CHANGE: 2785 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2786 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2787 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2788 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2789 case SDEV_EVT_LUN_CHANGE_REPORTED: 2790 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2791 default: 2792 /* do nothing */ 2793 break; 2794 } 2795 2796 return evt; 2797 } 2798 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2799 2800 /** 2801 * sdev_evt_send_simple - send asserted event to uevent thread 2802 * @sdev: scsi_device event occurred on 2803 * @evt_type: type of event to send 2804 * @gfpflags: GFP flags for allocation 2805 * 2806 * Assert scsi device event asynchronously, given an event type. 2807 */ 2808 void sdev_evt_send_simple(struct scsi_device *sdev, 2809 enum scsi_device_event evt_type, gfp_t gfpflags) 2810 { 2811 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2812 if (!evt) { 2813 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2814 evt_type); 2815 return; 2816 } 2817 2818 sdev_evt_send(sdev, evt); 2819 } 2820 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2821 2822 /** 2823 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2824 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2825 */ 2826 static int scsi_request_fn_active(struct scsi_device *sdev) 2827 { 2828 struct request_queue *q = sdev->request_queue; 2829 int request_fn_active; 2830 2831 WARN_ON_ONCE(sdev->host->use_blk_mq); 2832 2833 spin_lock_irq(q->queue_lock); 2834 request_fn_active = q->request_fn_active; 2835 spin_unlock_irq(q->queue_lock); 2836 2837 return request_fn_active; 2838 } 2839 2840 /** 2841 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2842 * @sdev: SCSI device pointer. 2843 * 2844 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2845 * invoked from scsi_request_fn() have finished. 2846 */ 2847 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2848 { 2849 WARN_ON_ONCE(sdev->host->use_blk_mq); 2850 2851 while (scsi_request_fn_active(sdev)) 2852 msleep(20); 2853 } 2854 2855 /** 2856 * scsi_device_quiesce - Block user issued commands. 2857 * @sdev: scsi device to quiesce. 2858 * 2859 * This works by trying to transition to the SDEV_QUIESCE state 2860 * (which must be a legal transition). When the device is in this 2861 * state, only special requests will be accepted, all others will 2862 * be deferred. Since special requests may also be requeued requests, 2863 * a successful return doesn't guarantee the device will be 2864 * totally quiescent. 2865 * 2866 * Must be called with user context, may sleep. 2867 * 2868 * Returns zero if unsuccessful or an error if not. 2869 */ 2870 int 2871 scsi_device_quiesce(struct scsi_device *sdev) 2872 { 2873 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2874 if (err) 2875 return err; 2876 2877 scsi_run_queue(sdev->request_queue); 2878 while (atomic_read(&sdev->device_busy)) { 2879 msleep_interruptible(200); 2880 scsi_run_queue(sdev->request_queue); 2881 } 2882 return 0; 2883 } 2884 EXPORT_SYMBOL(scsi_device_quiesce); 2885 2886 /** 2887 * scsi_device_resume - Restart user issued commands to a quiesced device. 2888 * @sdev: scsi device to resume. 2889 * 2890 * Moves the device from quiesced back to running and restarts the 2891 * queues. 2892 * 2893 * Must be called with user context, may sleep. 2894 */ 2895 void scsi_device_resume(struct scsi_device *sdev) 2896 { 2897 /* check if the device state was mutated prior to resume, and if 2898 * so assume the state is being managed elsewhere (for example 2899 * device deleted during suspend) 2900 */ 2901 if (sdev->sdev_state != SDEV_QUIESCE || 2902 scsi_device_set_state(sdev, SDEV_RUNNING)) 2903 return; 2904 scsi_run_queue(sdev->request_queue); 2905 } 2906 EXPORT_SYMBOL(scsi_device_resume); 2907 2908 static void 2909 device_quiesce_fn(struct scsi_device *sdev, void *data) 2910 { 2911 scsi_device_quiesce(sdev); 2912 } 2913 2914 void 2915 scsi_target_quiesce(struct scsi_target *starget) 2916 { 2917 starget_for_each_device(starget, NULL, device_quiesce_fn); 2918 } 2919 EXPORT_SYMBOL(scsi_target_quiesce); 2920 2921 static void 2922 device_resume_fn(struct scsi_device *sdev, void *data) 2923 { 2924 scsi_device_resume(sdev); 2925 } 2926 2927 void 2928 scsi_target_resume(struct scsi_target *starget) 2929 { 2930 starget_for_each_device(starget, NULL, device_resume_fn); 2931 } 2932 EXPORT_SYMBOL(scsi_target_resume); 2933 2934 /** 2935 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2936 * @sdev: device to block 2937 * @wait: Whether or not to wait until ongoing .queuecommand() / 2938 * .queue_rq() calls have finished. 2939 * 2940 * Block request made by scsi lld's to temporarily stop all 2941 * scsi commands on the specified device. May sleep. 2942 * 2943 * Returns zero if successful or error if not 2944 * 2945 * Notes: 2946 * This routine transitions the device to the SDEV_BLOCK state 2947 * (which must be a legal transition). When the device is in this 2948 * state, all commands are deferred until the scsi lld reenables 2949 * the device with scsi_device_unblock or device_block_tmo fires. 2950 * 2951 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2952 * scsi_internal_device_block() has blocked a SCSI device and also 2953 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2954 */ 2955 int 2956 scsi_internal_device_block(struct scsi_device *sdev, bool wait) 2957 { 2958 struct request_queue *q = sdev->request_queue; 2959 unsigned long flags; 2960 int err = 0; 2961 2962 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2963 if (err) { 2964 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2965 2966 if (err) 2967 return err; 2968 } 2969 2970 /* 2971 * The device has transitioned to SDEV_BLOCK. Stop the 2972 * block layer from calling the midlayer with this device's 2973 * request queue. 2974 */ 2975 if (q->mq_ops) { 2976 if (wait) 2977 blk_mq_quiesce_queue(q); 2978 else 2979 blk_mq_stop_hw_queues(q); 2980 } else { 2981 spin_lock_irqsave(q->queue_lock, flags); 2982 blk_stop_queue(q); 2983 spin_unlock_irqrestore(q->queue_lock, flags); 2984 if (wait) 2985 scsi_wait_for_queuecommand(sdev); 2986 } 2987 2988 return 0; 2989 } 2990 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2991 2992 /** 2993 * scsi_internal_device_unblock - resume a device after a block request 2994 * @sdev: device to resume 2995 * @new_state: state to set devices to after unblocking 2996 * 2997 * Called by scsi lld's or the midlayer to restart the device queue 2998 * for the previously suspended scsi device. Called from interrupt or 2999 * normal process context. 3000 * 3001 * Returns zero if successful or error if not. 3002 * 3003 * Notes: 3004 * This routine transitions the device to the SDEV_RUNNING state 3005 * or to one of the offline states (which must be a legal transition) 3006 * allowing the midlayer to goose the queue for this device. 3007 */ 3008 int 3009 scsi_internal_device_unblock(struct scsi_device *sdev, 3010 enum scsi_device_state new_state) 3011 { 3012 struct request_queue *q = sdev->request_queue; 3013 unsigned long flags; 3014 3015 /* 3016 * Try to transition the scsi device to SDEV_RUNNING or one of the 3017 * offlined states and goose the device queue if successful. 3018 */ 3019 if ((sdev->sdev_state == SDEV_BLOCK) || 3020 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 3021 sdev->sdev_state = new_state; 3022 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 3023 if (new_state == SDEV_TRANSPORT_OFFLINE || 3024 new_state == SDEV_OFFLINE) 3025 sdev->sdev_state = new_state; 3026 else 3027 sdev->sdev_state = SDEV_CREATED; 3028 } else if (sdev->sdev_state != SDEV_CANCEL && 3029 sdev->sdev_state != SDEV_OFFLINE) 3030 return -EINVAL; 3031 3032 if (q->mq_ops) { 3033 blk_mq_start_stopped_hw_queues(q, false); 3034 } else { 3035 spin_lock_irqsave(q->queue_lock, flags); 3036 blk_start_queue(q); 3037 spin_unlock_irqrestore(q->queue_lock, flags); 3038 } 3039 3040 return 0; 3041 } 3042 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 3043 3044 static void 3045 device_block(struct scsi_device *sdev, void *data) 3046 { 3047 scsi_internal_device_block(sdev, true); 3048 } 3049 3050 static int 3051 target_block(struct device *dev, void *data) 3052 { 3053 if (scsi_is_target_device(dev)) 3054 starget_for_each_device(to_scsi_target(dev), NULL, 3055 device_block); 3056 return 0; 3057 } 3058 3059 void 3060 scsi_target_block(struct device *dev) 3061 { 3062 if (scsi_is_target_device(dev)) 3063 starget_for_each_device(to_scsi_target(dev), NULL, 3064 device_block); 3065 else 3066 device_for_each_child(dev, NULL, target_block); 3067 } 3068 EXPORT_SYMBOL_GPL(scsi_target_block); 3069 3070 static void 3071 device_unblock(struct scsi_device *sdev, void *data) 3072 { 3073 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3074 } 3075 3076 static int 3077 target_unblock(struct device *dev, void *data) 3078 { 3079 if (scsi_is_target_device(dev)) 3080 starget_for_each_device(to_scsi_target(dev), data, 3081 device_unblock); 3082 return 0; 3083 } 3084 3085 void 3086 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3087 { 3088 if (scsi_is_target_device(dev)) 3089 starget_for_each_device(to_scsi_target(dev), &new_state, 3090 device_unblock); 3091 else 3092 device_for_each_child(dev, &new_state, target_unblock); 3093 } 3094 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3095 3096 /** 3097 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3098 * @sgl: scatter-gather list 3099 * @sg_count: number of segments in sg 3100 * @offset: offset in bytes into sg, on return offset into the mapped area 3101 * @len: bytes to map, on return number of bytes mapped 3102 * 3103 * Returns virtual address of the start of the mapped page 3104 */ 3105 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3106 size_t *offset, size_t *len) 3107 { 3108 int i; 3109 size_t sg_len = 0, len_complete = 0; 3110 struct scatterlist *sg; 3111 struct page *page; 3112 3113 WARN_ON(!irqs_disabled()); 3114 3115 for_each_sg(sgl, sg, sg_count, i) { 3116 len_complete = sg_len; /* Complete sg-entries */ 3117 sg_len += sg->length; 3118 if (sg_len > *offset) 3119 break; 3120 } 3121 3122 if (unlikely(i == sg_count)) { 3123 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3124 "elements %d\n", 3125 __func__, sg_len, *offset, sg_count); 3126 WARN_ON(1); 3127 return NULL; 3128 } 3129 3130 /* Offset starting from the beginning of first page in this sg-entry */ 3131 *offset = *offset - len_complete + sg->offset; 3132 3133 /* Assumption: contiguous pages can be accessed as "page + i" */ 3134 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3135 *offset &= ~PAGE_MASK; 3136 3137 /* Bytes in this sg-entry from *offset to the end of the page */ 3138 sg_len = PAGE_SIZE - *offset; 3139 if (*len > sg_len) 3140 *len = sg_len; 3141 3142 return kmap_atomic(page); 3143 } 3144 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3145 3146 /** 3147 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3148 * @virt: virtual address to be unmapped 3149 */ 3150 void scsi_kunmap_atomic_sg(void *virt) 3151 { 3152 kunmap_atomic(virt); 3153 } 3154 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3155 3156 void sdev_disable_disk_events(struct scsi_device *sdev) 3157 { 3158 atomic_inc(&sdev->disk_events_disable_depth); 3159 } 3160 EXPORT_SYMBOL(sdev_disable_disk_events); 3161 3162 void sdev_enable_disk_events(struct scsi_device *sdev) 3163 { 3164 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3165 return; 3166 atomic_dec(&sdev->disk_events_disable_depth); 3167 } 3168 EXPORT_SYMBOL(sdev_enable_disk_events); 3169 3170 /** 3171 * scsi_vpd_lun_id - return a unique device identification 3172 * @sdev: SCSI device 3173 * @id: buffer for the identification 3174 * @id_len: length of the buffer 3175 * 3176 * Copies a unique device identification into @id based 3177 * on the information in the VPD page 0x83 of the device. 3178 * The string will be formatted as a SCSI name string. 3179 * 3180 * Returns the length of the identification or error on failure. 3181 * If the identifier is longer than the supplied buffer the actual 3182 * identifier length is returned and the buffer is not zero-padded. 3183 */ 3184 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3185 { 3186 u8 cur_id_type = 0xff; 3187 u8 cur_id_size = 0; 3188 unsigned char *d, *cur_id_str; 3189 unsigned char __rcu *vpd_pg83; 3190 int id_size = -EINVAL; 3191 3192 rcu_read_lock(); 3193 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3194 if (!vpd_pg83) { 3195 rcu_read_unlock(); 3196 return -ENXIO; 3197 } 3198 3199 /* 3200 * Look for the correct descriptor. 3201 * Order of preference for lun descriptor: 3202 * - SCSI name string 3203 * - NAA IEEE Registered Extended 3204 * - EUI-64 based 16-byte 3205 * - EUI-64 based 12-byte 3206 * - NAA IEEE Registered 3207 * - NAA IEEE Extended 3208 * - T10 Vendor ID 3209 * as longer descriptors reduce the likelyhood 3210 * of identification clashes. 3211 */ 3212 3213 /* The id string must be at least 20 bytes + terminating NULL byte */ 3214 if (id_len < 21) { 3215 rcu_read_unlock(); 3216 return -EINVAL; 3217 } 3218 3219 memset(id, 0, id_len); 3220 d = vpd_pg83 + 4; 3221 while (d < vpd_pg83 + sdev->vpd_pg83_len) { 3222 /* Skip designators not referring to the LUN */ 3223 if ((d[1] & 0x30) != 0x00) 3224 goto next_desig; 3225 3226 switch (d[1] & 0xf) { 3227 case 0x1: 3228 /* T10 Vendor ID */ 3229 if (cur_id_size > d[3]) 3230 break; 3231 /* Prefer anything */ 3232 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3233 break; 3234 cur_id_size = d[3]; 3235 if (cur_id_size + 4 > id_len) 3236 cur_id_size = id_len - 4; 3237 cur_id_str = d + 4; 3238 cur_id_type = d[1] & 0xf; 3239 id_size = snprintf(id, id_len, "t10.%*pE", 3240 cur_id_size, cur_id_str); 3241 break; 3242 case 0x2: 3243 /* EUI-64 */ 3244 if (cur_id_size > d[3]) 3245 break; 3246 /* Prefer NAA IEEE Registered Extended */ 3247 if (cur_id_type == 0x3 && 3248 cur_id_size == d[3]) 3249 break; 3250 cur_id_size = d[3]; 3251 cur_id_str = d + 4; 3252 cur_id_type = d[1] & 0xf; 3253 switch (cur_id_size) { 3254 case 8: 3255 id_size = snprintf(id, id_len, 3256 "eui.%8phN", 3257 cur_id_str); 3258 break; 3259 case 12: 3260 id_size = snprintf(id, id_len, 3261 "eui.%12phN", 3262 cur_id_str); 3263 break; 3264 case 16: 3265 id_size = snprintf(id, id_len, 3266 "eui.%16phN", 3267 cur_id_str); 3268 break; 3269 default: 3270 cur_id_size = 0; 3271 break; 3272 } 3273 break; 3274 case 0x3: 3275 /* NAA */ 3276 if (cur_id_size > d[3]) 3277 break; 3278 cur_id_size = d[3]; 3279 cur_id_str = d + 4; 3280 cur_id_type = d[1] & 0xf; 3281 switch (cur_id_size) { 3282 case 8: 3283 id_size = snprintf(id, id_len, 3284 "naa.%8phN", 3285 cur_id_str); 3286 break; 3287 case 16: 3288 id_size = snprintf(id, id_len, 3289 "naa.%16phN", 3290 cur_id_str); 3291 break; 3292 default: 3293 cur_id_size = 0; 3294 break; 3295 } 3296 break; 3297 case 0x8: 3298 /* SCSI name string */ 3299 if (cur_id_size + 4 > d[3]) 3300 break; 3301 /* Prefer others for truncated descriptor */ 3302 if (cur_id_size && d[3] > id_len) 3303 break; 3304 cur_id_size = id_size = d[3]; 3305 cur_id_str = d + 4; 3306 cur_id_type = d[1] & 0xf; 3307 if (cur_id_size >= id_len) 3308 cur_id_size = id_len - 1; 3309 memcpy(id, cur_id_str, cur_id_size); 3310 /* Decrease priority for truncated descriptor */ 3311 if (cur_id_size != id_size) 3312 cur_id_size = 6; 3313 break; 3314 default: 3315 break; 3316 } 3317 next_desig: 3318 d += d[3] + 4; 3319 } 3320 rcu_read_unlock(); 3321 3322 return id_size; 3323 } 3324 EXPORT_SYMBOL(scsi_vpd_lun_id); 3325 3326 /* 3327 * scsi_vpd_tpg_id - return a target port group identifier 3328 * @sdev: SCSI device 3329 * 3330 * Returns the Target Port Group identifier from the information 3331 * froom VPD page 0x83 of the device. 3332 * 3333 * Returns the identifier or error on failure. 3334 */ 3335 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3336 { 3337 unsigned char *d; 3338 unsigned char __rcu *vpd_pg83; 3339 int group_id = -EAGAIN, rel_port = -1; 3340 3341 rcu_read_lock(); 3342 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3343 if (!vpd_pg83) { 3344 rcu_read_unlock(); 3345 return -ENXIO; 3346 } 3347 3348 d = sdev->vpd_pg83 + 4; 3349 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) { 3350 switch (d[1] & 0xf) { 3351 case 0x4: 3352 /* Relative target port */ 3353 rel_port = get_unaligned_be16(&d[6]); 3354 break; 3355 case 0x5: 3356 /* Target port group */ 3357 group_id = get_unaligned_be16(&d[6]); 3358 break; 3359 default: 3360 break; 3361 } 3362 d += d[3] + 4; 3363 } 3364 rcu_read_unlock(); 3365 3366 if (group_id >= 0 && rel_id && rel_port != -1) 3367 *rel_id = rel_port; 3368 3369 return group_id; 3370 } 3371 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3372