xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34 
35 #include <trace/events/scsi.h>
36 
37 #include "scsi_debugfs.h"
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40 
41 static struct kmem_cache *scsi_sdb_cache;
42 static struct kmem_cache *scsi_sense_cache;
43 static struct kmem_cache *scsi_sense_isadma_cache;
44 static DEFINE_MUTEX(scsi_sense_cache_mutex);
45 
46 static inline struct kmem_cache *
47 scsi_select_sense_cache(struct Scsi_Host *shost)
48 {
49 	return shost->unchecked_isa_dma ?
50 		scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52 
53 static void scsi_free_sense_buffer(struct Scsi_Host *shost,
54 		unsigned char *sense_buffer)
55 {
56 	kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer);
57 }
58 
59 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost,
60 	gfp_t gfp_mask, int numa_node)
61 {
62 	return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask,
63 			numa_node);
64 }
65 
66 int scsi_init_sense_cache(struct Scsi_Host *shost)
67 {
68 	struct kmem_cache *cache;
69 	int ret = 0;
70 
71 	cache = scsi_select_sense_cache(shost);
72 	if (cache)
73 		return 0;
74 
75 	mutex_lock(&scsi_sense_cache_mutex);
76 	if (shost->unchecked_isa_dma) {
77 		scsi_sense_isadma_cache =
78 			kmem_cache_create("scsi_sense_cache(DMA)",
79 			SCSI_SENSE_BUFFERSIZE, 0,
80 			SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
81 		if (!scsi_sense_isadma_cache)
82 			ret = -ENOMEM;
83 	} else {
84 		scsi_sense_cache =
85 			kmem_cache_create("scsi_sense_cache",
86 			SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
87 		if (!scsi_sense_cache)
88 			ret = -ENOMEM;
89 	}
90 
91 	mutex_unlock(&scsi_sense_cache_mutex);
92 	return ret;
93 }
94 
95 /*
96  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
97  * not change behaviour from the previous unplug mechanism, experimentation
98  * may prove this needs changing.
99  */
100 #define SCSI_QUEUE_DELAY	3
101 
102 static void
103 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
104 {
105 	struct Scsi_Host *host = cmd->device->host;
106 	struct scsi_device *device = cmd->device;
107 	struct scsi_target *starget = scsi_target(device);
108 
109 	/*
110 	 * Set the appropriate busy bit for the device/host.
111 	 *
112 	 * If the host/device isn't busy, assume that something actually
113 	 * completed, and that we should be able to queue a command now.
114 	 *
115 	 * Note that the prior mid-layer assumption that any host could
116 	 * always queue at least one command is now broken.  The mid-layer
117 	 * will implement a user specifiable stall (see
118 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
119 	 * if a command is requeued with no other commands outstanding
120 	 * either for the device or for the host.
121 	 */
122 	switch (reason) {
123 	case SCSI_MLQUEUE_HOST_BUSY:
124 		atomic_set(&host->host_blocked, host->max_host_blocked);
125 		break;
126 	case SCSI_MLQUEUE_DEVICE_BUSY:
127 	case SCSI_MLQUEUE_EH_RETRY:
128 		atomic_set(&device->device_blocked,
129 			   device->max_device_blocked);
130 		break;
131 	case SCSI_MLQUEUE_TARGET_BUSY:
132 		atomic_set(&starget->target_blocked,
133 			   starget->max_target_blocked);
134 		break;
135 	}
136 }
137 
138 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
139 {
140 	struct scsi_device *sdev = cmd->device;
141 
142 	blk_mq_requeue_request(cmd->request, true);
143 	put_device(&sdev->sdev_gendev);
144 }
145 
146 /**
147  * __scsi_queue_insert - private queue insertion
148  * @cmd: The SCSI command being requeued
149  * @reason:  The reason for the requeue
150  * @unbusy: Whether the queue should be unbusied
151  *
152  * This is a private queue insertion.  The public interface
153  * scsi_queue_insert() always assumes the queue should be unbusied
154  * because it's always called before the completion.  This function is
155  * for a requeue after completion, which should only occur in this
156  * file.
157  */
158 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
159 {
160 	struct scsi_device *device = cmd->device;
161 	struct request_queue *q = device->request_queue;
162 	unsigned long flags;
163 
164 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
165 		"Inserting command %p into mlqueue\n", cmd));
166 
167 	scsi_set_blocked(cmd, reason);
168 
169 	/*
170 	 * Decrement the counters, since these commands are no longer
171 	 * active on the host/device.
172 	 */
173 	if (unbusy)
174 		scsi_device_unbusy(device);
175 
176 	/*
177 	 * Requeue this command.  It will go before all other commands
178 	 * that are already in the queue. Schedule requeue work under
179 	 * lock such that the kblockd_schedule_work() call happens
180 	 * before blk_cleanup_queue() finishes.
181 	 */
182 	cmd->result = 0;
183 	if (q->mq_ops) {
184 		scsi_mq_requeue_cmd(cmd);
185 		return;
186 	}
187 	spin_lock_irqsave(q->queue_lock, flags);
188 	blk_requeue_request(q, cmd->request);
189 	kblockd_schedule_work(&device->requeue_work);
190 	spin_unlock_irqrestore(q->queue_lock, flags);
191 }
192 
193 /*
194  * Function:    scsi_queue_insert()
195  *
196  * Purpose:     Insert a command in the midlevel queue.
197  *
198  * Arguments:   cmd    - command that we are adding to queue.
199  *              reason - why we are inserting command to queue.
200  *
201  * Lock status: Assumed that lock is not held upon entry.
202  *
203  * Returns:     Nothing.
204  *
205  * Notes:       We do this for one of two cases.  Either the host is busy
206  *              and it cannot accept any more commands for the time being,
207  *              or the device returned QUEUE_FULL and can accept no more
208  *              commands.
209  * Notes:       This could be called either from an interrupt context or a
210  *              normal process context.
211  */
212 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
213 {
214 	__scsi_queue_insert(cmd, reason, 1);
215 }
216 
217 
218 /**
219  * scsi_execute - insert request and wait for the result
220  * @sdev:	scsi device
221  * @cmd:	scsi command
222  * @data_direction: data direction
223  * @buffer:	data buffer
224  * @bufflen:	len of buffer
225  * @sense:	optional sense buffer
226  * @sshdr:	optional decoded sense header
227  * @timeout:	request timeout in seconds
228  * @retries:	number of times to retry request
229  * @flags:	flags for ->cmd_flags
230  * @rq_flags:	flags for ->rq_flags
231  * @resid:	optional residual length
232  *
233  * Returns the scsi_cmnd result field if a command was executed, or a negative
234  * Linux error code if we didn't get that far.
235  */
236 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
237 		 int data_direction, void *buffer, unsigned bufflen,
238 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
239 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
240 		 int *resid)
241 {
242 	struct request *req;
243 	struct scsi_request *rq;
244 	int ret = DRIVER_ERROR << 24;
245 
246 	req = blk_get_request(sdev->request_queue,
247 			data_direction == DMA_TO_DEVICE ?
248 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
249 	if (IS_ERR(req))
250 		return ret;
251 	rq = scsi_req(req);
252 	scsi_req_init(req);
253 
254 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
255 					buffer, bufflen, __GFP_RECLAIM))
256 		goto out;
257 
258 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
259 	memcpy(rq->cmd, cmd, rq->cmd_len);
260 	rq->retries = retries;
261 	req->timeout = timeout;
262 	req->cmd_flags |= flags;
263 	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264 
265 	/*
266 	 * head injection *required* here otherwise quiesce won't work
267 	 */
268 	blk_execute_rq(req->q, NULL, req, 1);
269 
270 	/*
271 	 * Some devices (USB mass-storage in particular) may transfer
272 	 * garbage data together with a residue indicating that the data
273 	 * is invalid.  Prevent the garbage from being misinterpreted
274 	 * and prevent security leaks by zeroing out the excess data.
275 	 */
276 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278 
279 	if (resid)
280 		*resid = rq->resid_len;
281 	if (sense && rq->sense_len)
282 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283 	if (sshdr)
284 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285 	ret = rq->result;
286  out:
287 	blk_put_request(req);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292 
293 /*
294  * Function:    scsi_init_cmd_errh()
295  *
296  * Purpose:     Initialize cmd fields related to error handling.
297  *
298  * Arguments:   cmd	- command that is ready to be queued.
299  *
300  * Notes:       This function has the job of initializing a number of
301  *              fields related to error handling.   Typically this will
302  *              be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 	cmd->serial_number = 0;
307 	scsi_set_resid(cmd, 0);
308 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309 	if (cmd->cmd_len == 0)
310 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312 
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315 	struct Scsi_Host *shost = sdev->host;
316 	struct scsi_target *starget = scsi_target(sdev);
317 	unsigned long flags;
318 
319 	atomic_dec(&shost->host_busy);
320 	if (starget->can_queue > 0)
321 		atomic_dec(&starget->target_busy);
322 
323 	if (unlikely(scsi_host_in_recovery(shost) &&
324 		     (shost->host_failed || shost->host_eh_scheduled))) {
325 		spin_lock_irqsave(shost->host_lock, flags);
326 		scsi_eh_wakeup(shost);
327 		spin_unlock_irqrestore(shost->host_lock, flags);
328 	}
329 
330 	atomic_dec(&sdev->device_busy);
331 }
332 
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 	if (q->mq_ops)
336 		blk_mq_start_hw_queues(q);
337 	else
338 		blk_run_queue(q);
339 }
340 
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 	struct Scsi_Host *shost = current_sdev->host;
351 	struct scsi_device *sdev, *tmp;
352 	struct scsi_target *starget = scsi_target(current_sdev);
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(shost->host_lock, flags);
356 	starget->starget_sdev_user = NULL;
357 	spin_unlock_irqrestore(shost->host_lock, flags);
358 
359 	/*
360 	 * Call blk_run_queue for all LUNs on the target, starting with
361 	 * current_sdev. We race with others (to set starget_sdev_user),
362 	 * but in most cases, we will be first. Ideally, each LU on the
363 	 * target would get some limited time or requests on the target.
364 	 */
365 	scsi_kick_queue(current_sdev->request_queue);
366 
367 	spin_lock_irqsave(shost->host_lock, flags);
368 	if (starget->starget_sdev_user)
369 		goto out;
370 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 			same_target_siblings) {
372 		if (sdev == current_sdev)
373 			continue;
374 		if (scsi_device_get(sdev))
375 			continue;
376 
377 		spin_unlock_irqrestore(shost->host_lock, flags);
378 		scsi_kick_queue(sdev->request_queue);
379 		spin_lock_irqsave(shost->host_lock, flags);
380 
381 		scsi_device_put(sdev);
382 	}
383  out:
384 	spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386 
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390 		return true;
391 	if (atomic_read(&sdev->device_blocked) > 0)
392 		return true;
393 	return false;
394 }
395 
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398 	if (starget->can_queue > 0) {
399 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
400 			return true;
401 		if (atomic_read(&starget->target_blocked) > 0)
402 			return true;
403 	}
404 	return false;
405 }
406 
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409 	if (shost->can_queue > 0 &&
410 	    atomic_read(&shost->host_busy) >= shost->can_queue)
411 		return true;
412 	if (atomic_read(&shost->host_blocked) > 0)
413 		return true;
414 	if (shost->host_self_blocked)
415 		return true;
416 	return false;
417 }
418 
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421 	LIST_HEAD(starved_list);
422 	struct scsi_device *sdev;
423 	unsigned long flags;
424 
425 	spin_lock_irqsave(shost->host_lock, flags);
426 	list_splice_init(&shost->starved_list, &starved_list);
427 
428 	while (!list_empty(&starved_list)) {
429 		struct request_queue *slq;
430 
431 		/*
432 		 * As long as shost is accepting commands and we have
433 		 * starved queues, call blk_run_queue. scsi_request_fn
434 		 * drops the queue_lock and can add us back to the
435 		 * starved_list.
436 		 *
437 		 * host_lock protects the starved_list and starved_entry.
438 		 * scsi_request_fn must get the host_lock before checking
439 		 * or modifying starved_list or starved_entry.
440 		 */
441 		if (scsi_host_is_busy(shost))
442 			break;
443 
444 		sdev = list_entry(starved_list.next,
445 				  struct scsi_device, starved_entry);
446 		list_del_init(&sdev->starved_entry);
447 		if (scsi_target_is_busy(scsi_target(sdev))) {
448 			list_move_tail(&sdev->starved_entry,
449 				       &shost->starved_list);
450 			continue;
451 		}
452 
453 		/*
454 		 * Once we drop the host lock, a racing scsi_remove_device()
455 		 * call may remove the sdev from the starved list and destroy
456 		 * it and the queue.  Mitigate by taking a reference to the
457 		 * queue and never touching the sdev again after we drop the
458 		 * host lock.  Note: if __scsi_remove_device() invokes
459 		 * blk_cleanup_queue() before the queue is run from this
460 		 * function then blk_run_queue() will return immediately since
461 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462 		 */
463 		slq = sdev->request_queue;
464 		if (!blk_get_queue(slq))
465 			continue;
466 		spin_unlock_irqrestore(shost->host_lock, flags);
467 
468 		scsi_kick_queue(slq);
469 		blk_put_queue(slq);
470 
471 		spin_lock_irqsave(shost->host_lock, flags);
472 	}
473 	/* put any unprocessed entries back */
474 	list_splice(&starved_list, &shost->starved_list);
475 	spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477 
478 /*
479  * Function:   scsi_run_queue()
480  *
481  * Purpose:    Select a proper request queue to serve next
482  *
483  * Arguments:  q       - last request's queue
484  *
485  * Returns:     Nothing
486  *
487  * Notes:      The previous command was completely finished, start
488  *             a new one if possible.
489  */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492 	struct scsi_device *sdev = q->queuedata;
493 
494 	if (scsi_target(sdev)->single_lun)
495 		scsi_single_lun_run(sdev);
496 	if (!list_empty(&sdev->host->starved_list))
497 		scsi_starved_list_run(sdev->host);
498 
499 	if (q->mq_ops)
500 		blk_mq_run_hw_queues(q, false);
501 	else
502 		blk_run_queue(q);
503 }
504 
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 	struct scsi_device *sdev;
508 	struct request_queue *q;
509 
510 	sdev = container_of(work, struct scsi_device, requeue_work);
511 	q = sdev->request_queue;
512 	scsi_run_queue(q);
513 }
514 
515 /*
516  * Function:	scsi_requeue_command()
517  *
518  * Purpose:	Handle post-processing of completed commands.
519  *
520  * Arguments:	q	- queue to operate on
521  *		cmd	- command that may need to be requeued.
522  *
523  * Returns:	Nothing
524  *
525  * Notes:	After command completion, there may be blocks left
526  *		over which weren't finished by the previous command
527  *		this can be for a number of reasons - the main one is
528  *		I/O errors in the middle of the request, in which case
529  *		we need to request the blocks that come after the bad
530  *		sector.
531  * Notes:	Upon return, cmd is a stale pointer.
532  */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535 	struct scsi_device *sdev = cmd->device;
536 	struct request *req = cmd->request;
537 	unsigned long flags;
538 
539 	spin_lock_irqsave(q->queue_lock, flags);
540 	blk_unprep_request(req);
541 	req->special = NULL;
542 	scsi_put_command(cmd);
543 	blk_requeue_request(q, req);
544 	spin_unlock_irqrestore(q->queue_lock, flags);
545 
546 	scsi_run_queue(q);
547 
548 	put_device(&sdev->sdev_gendev);
549 }
550 
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553 	struct scsi_device *sdev;
554 
555 	shost_for_each_device(sdev, shost)
556 		scsi_run_queue(sdev->request_queue);
557 }
558 
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561 	if (!blk_rq_is_passthrough(cmd->request)) {
562 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563 
564 		if (drv->uninit_command)
565 			drv->uninit_command(cmd);
566 	}
567 }
568 
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571 	struct scsi_data_buffer *sdb;
572 
573 	if (cmd->sdb.table.nents)
574 		sg_free_table_chained(&cmd->sdb.table, true);
575 	if (cmd->request->next_rq) {
576 		sdb = cmd->request->next_rq->special;
577 		if (sdb)
578 			sg_free_table_chained(&sdb->table, true);
579 	}
580 	if (scsi_prot_sg_count(cmd))
581 		sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583 
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 	struct scsi_device *sdev = cmd->device;
587 	struct Scsi_Host *shost = sdev->host;
588 	unsigned long flags;
589 
590 	scsi_mq_free_sgtables(cmd);
591 	scsi_uninit_cmd(cmd);
592 
593 	if (shost->use_cmd_list) {
594 		BUG_ON(list_empty(&cmd->list));
595 		spin_lock_irqsave(&sdev->list_lock, flags);
596 		list_del_init(&cmd->list);
597 		spin_unlock_irqrestore(&sdev->list_lock, flags);
598 	}
599 }
600 
601 /*
602  * Function:    scsi_release_buffers()
603  *
604  * Purpose:     Free resources allocate for a scsi_command.
605  *
606  * Arguments:   cmd	- command that we are bailing.
607  *
608  * Lock status: Assumed that no lock is held upon entry.
609  *
610  * Returns:     Nothing
611  *
612  * Notes:       In the event that an upper level driver rejects a
613  *		command, we must release resources allocated during
614  *		the __init_io() function.  Primarily this would involve
615  *		the scatter-gather table.
616  */
617 static void scsi_release_buffers(struct scsi_cmnd *cmd)
618 {
619 	if (cmd->sdb.table.nents)
620 		sg_free_table_chained(&cmd->sdb.table, false);
621 
622 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
623 
624 	if (scsi_prot_sg_count(cmd))
625 		sg_free_table_chained(&cmd->prot_sdb->table, false);
626 }
627 
628 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
629 {
630 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
631 
632 	sg_free_table_chained(&bidi_sdb->table, false);
633 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
634 	cmd->request->next_rq->special = NULL;
635 }
636 
637 static bool scsi_end_request(struct request *req, int error,
638 		unsigned int bytes, unsigned int bidi_bytes)
639 {
640 	struct scsi_cmnd *cmd = req->special;
641 	struct scsi_device *sdev = cmd->device;
642 	struct request_queue *q = sdev->request_queue;
643 
644 	if (blk_update_request(req, error, bytes))
645 		return true;
646 
647 	/* Bidi request must be completed as a whole */
648 	if (unlikely(bidi_bytes) &&
649 	    blk_update_request(req->next_rq, error, bidi_bytes))
650 		return true;
651 
652 	if (blk_queue_add_random(q))
653 		add_disk_randomness(req->rq_disk);
654 
655 	if (req->mq_ctx) {
656 		/*
657 		 * In the MQ case the command gets freed by __blk_mq_end_request,
658 		 * so we have to do all cleanup that depends on it earlier.
659 		 *
660 		 * We also can't kick the queues from irq context, so we
661 		 * will have to defer it to a workqueue.
662 		 */
663 		scsi_mq_uninit_cmd(cmd);
664 
665 		__blk_mq_end_request(req, error);
666 
667 		if (scsi_target(sdev)->single_lun ||
668 		    !list_empty(&sdev->host->starved_list))
669 			kblockd_schedule_work(&sdev->requeue_work);
670 		else
671 			blk_mq_run_hw_queues(q, true);
672 	} else {
673 		unsigned long flags;
674 
675 		if (bidi_bytes)
676 			scsi_release_bidi_buffers(cmd);
677 		scsi_release_buffers(cmd);
678 		scsi_put_command(cmd);
679 
680 		spin_lock_irqsave(q->queue_lock, flags);
681 		blk_finish_request(req, error);
682 		spin_unlock_irqrestore(q->queue_lock, flags);
683 
684 		scsi_run_queue(q);
685 	}
686 
687 	put_device(&sdev->sdev_gendev);
688 	return false;
689 }
690 
691 /**
692  * __scsi_error_from_host_byte - translate SCSI error code into errno
693  * @cmd:	SCSI command (unused)
694  * @result:	scsi error code
695  *
696  * Translate SCSI error code into standard UNIX errno.
697  * Return values:
698  * -ENOLINK	temporary transport failure
699  * -EREMOTEIO	permanent target failure, do not retry
700  * -EBADE	permanent nexus failure, retry on other path
701  * -ENOSPC	No write space available
702  * -ENODATA	Medium error
703  * -EIO		unspecified I/O error
704  */
705 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
706 {
707 	int error = 0;
708 
709 	switch(host_byte(result)) {
710 	case DID_TRANSPORT_FAILFAST:
711 		error = -ENOLINK;
712 		break;
713 	case DID_TARGET_FAILURE:
714 		set_host_byte(cmd, DID_OK);
715 		error = -EREMOTEIO;
716 		break;
717 	case DID_NEXUS_FAILURE:
718 		set_host_byte(cmd, DID_OK);
719 		error = -EBADE;
720 		break;
721 	case DID_ALLOC_FAILURE:
722 		set_host_byte(cmd, DID_OK);
723 		error = -ENOSPC;
724 		break;
725 	case DID_MEDIUM_ERROR:
726 		set_host_byte(cmd, DID_OK);
727 		error = -ENODATA;
728 		break;
729 	default:
730 		error = -EIO;
731 		break;
732 	}
733 
734 	return error;
735 }
736 
737 /*
738  * Function:    scsi_io_completion()
739  *
740  * Purpose:     Completion processing for block device I/O requests.
741  *
742  * Arguments:   cmd   - command that is finished.
743  *
744  * Lock status: Assumed that no lock is held upon entry.
745  *
746  * Returns:     Nothing
747  *
748  * Notes:       We will finish off the specified number of sectors.  If we
749  *		are done, the command block will be released and the queue
750  *		function will be goosed.  If we are not done then we have to
751  *		figure out what to do next:
752  *
753  *		a) We can call scsi_requeue_command().  The request
754  *		   will be unprepared and put back on the queue.  Then
755  *		   a new command will be created for it.  This should
756  *		   be used if we made forward progress, or if we want
757  *		   to switch from READ(10) to READ(6) for example.
758  *
759  *		b) We can call __scsi_queue_insert().  The request will
760  *		   be put back on the queue and retried using the same
761  *		   command as before, possibly after a delay.
762  *
763  *		c) We can call scsi_end_request() with -EIO to fail
764  *		   the remainder of the request.
765  */
766 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
767 {
768 	int result = cmd->result;
769 	struct request_queue *q = cmd->device->request_queue;
770 	struct request *req = cmd->request;
771 	int error = 0;
772 	struct scsi_sense_hdr sshdr;
773 	bool sense_valid = false;
774 	int sense_deferred = 0, level = 0;
775 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
776 	      ACTION_DELAYED_RETRY} action;
777 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
778 
779 	if (result) {
780 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
781 		if (sense_valid)
782 			sense_deferred = scsi_sense_is_deferred(&sshdr);
783 	}
784 
785 	if (blk_rq_is_passthrough(req)) {
786 		if (result) {
787 			if (sense_valid) {
788 				/*
789 				 * SG_IO wants current and deferred errors
790 				 */
791 				scsi_req(req)->sense_len =
792 					min(8 + cmd->sense_buffer[7],
793 					    SCSI_SENSE_BUFFERSIZE);
794 			}
795 			if (!sense_deferred)
796 				error = __scsi_error_from_host_byte(cmd, result);
797 		}
798 		/*
799 		 * __scsi_error_from_host_byte may have reset the host_byte
800 		 */
801 		scsi_req(req)->result = cmd->result;
802 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
803 
804 		if (scsi_bidi_cmnd(cmd)) {
805 			/*
806 			 * Bidi commands Must be complete as a whole,
807 			 * both sides at once.
808 			 */
809 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
810 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
811 					blk_rq_bytes(req->next_rq)))
812 				BUG();
813 			return;
814 		}
815 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
816 		/*
817 		 * Flush commands do not transfers any data, and thus cannot use
818 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
819 		 * This sets the error explicitly for the problem case.
820 		 */
821 		error = __scsi_error_from_host_byte(cmd, result);
822 	}
823 
824 	/* no bidi support for !blk_rq_is_passthrough yet */
825 	BUG_ON(blk_bidi_rq(req));
826 
827 	/*
828 	 * Next deal with any sectors which we were able to correctly
829 	 * handle.
830 	 */
831 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
832 		"%u sectors total, %d bytes done.\n",
833 		blk_rq_sectors(req), good_bytes));
834 
835 	/*
836 	 * Recovered errors need reporting, but they're always treated as
837 	 * success, so fiddle the result code here.  For passthrough requests
838 	 * we already took a copy of the original into sreq->result which
839 	 * is what gets returned to the user
840 	 */
841 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
842 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
843 		 * print since caller wants ATA registers. Only occurs on
844 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
845 		 */
846 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
847 			;
848 		else if (!(req->rq_flags & RQF_QUIET))
849 			scsi_print_sense(cmd);
850 		result = 0;
851 		/* for passthrough error may be set */
852 		error = 0;
853 	}
854 
855 	/*
856 	 * special case: failed zero length commands always need to
857 	 * drop down into the retry code. Otherwise, if we finished
858 	 * all bytes in the request we are done now.
859 	 */
860 	if (!(blk_rq_bytes(req) == 0 && error) &&
861 	    !scsi_end_request(req, error, good_bytes, 0))
862 		return;
863 
864 	/*
865 	 * Kill remainder if no retrys.
866 	 */
867 	if (error && scsi_noretry_cmd(cmd)) {
868 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
869 			BUG();
870 		return;
871 	}
872 
873 	/*
874 	 * If there had been no error, but we have leftover bytes in the
875 	 * requeues just queue the command up again.
876 	 */
877 	if (result == 0)
878 		goto requeue;
879 
880 	error = __scsi_error_from_host_byte(cmd, result);
881 
882 	if (host_byte(result) == DID_RESET) {
883 		/* Third party bus reset or reset for error recovery
884 		 * reasons.  Just retry the command and see what
885 		 * happens.
886 		 */
887 		action = ACTION_RETRY;
888 	} else if (sense_valid && !sense_deferred) {
889 		switch (sshdr.sense_key) {
890 		case UNIT_ATTENTION:
891 			if (cmd->device->removable) {
892 				/* Detected disc change.  Set a bit
893 				 * and quietly refuse further access.
894 				 */
895 				cmd->device->changed = 1;
896 				action = ACTION_FAIL;
897 			} else {
898 				/* Must have been a power glitch, or a
899 				 * bus reset.  Could not have been a
900 				 * media change, so we just retry the
901 				 * command and see what happens.
902 				 */
903 				action = ACTION_RETRY;
904 			}
905 			break;
906 		case ILLEGAL_REQUEST:
907 			/* If we had an ILLEGAL REQUEST returned, then
908 			 * we may have performed an unsupported
909 			 * command.  The only thing this should be
910 			 * would be a ten byte read where only a six
911 			 * byte read was supported.  Also, on a system
912 			 * where READ CAPACITY failed, we may have
913 			 * read past the end of the disk.
914 			 */
915 			if ((cmd->device->use_10_for_rw &&
916 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
917 			    (cmd->cmnd[0] == READ_10 ||
918 			     cmd->cmnd[0] == WRITE_10)) {
919 				/* This will issue a new 6-byte command. */
920 				cmd->device->use_10_for_rw = 0;
921 				action = ACTION_REPREP;
922 			} else if (sshdr.asc == 0x10) /* DIX */ {
923 				action = ACTION_FAIL;
924 				error = -EILSEQ;
925 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
926 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
927 				action = ACTION_FAIL;
928 				error = -EREMOTEIO;
929 			} else
930 				action = ACTION_FAIL;
931 			break;
932 		case ABORTED_COMMAND:
933 			action = ACTION_FAIL;
934 			if (sshdr.asc == 0x10) /* DIF */
935 				error = -EILSEQ;
936 			break;
937 		case NOT_READY:
938 			/* If the device is in the process of becoming
939 			 * ready, or has a temporary blockage, retry.
940 			 */
941 			if (sshdr.asc == 0x04) {
942 				switch (sshdr.ascq) {
943 				case 0x01: /* becoming ready */
944 				case 0x04: /* format in progress */
945 				case 0x05: /* rebuild in progress */
946 				case 0x06: /* recalculation in progress */
947 				case 0x07: /* operation in progress */
948 				case 0x08: /* Long write in progress */
949 				case 0x09: /* self test in progress */
950 				case 0x14: /* space allocation in progress */
951 					action = ACTION_DELAYED_RETRY;
952 					break;
953 				default:
954 					action = ACTION_FAIL;
955 					break;
956 				}
957 			} else
958 				action = ACTION_FAIL;
959 			break;
960 		case VOLUME_OVERFLOW:
961 			/* See SSC3rXX or current. */
962 			action = ACTION_FAIL;
963 			break;
964 		default:
965 			action = ACTION_FAIL;
966 			break;
967 		}
968 	} else
969 		action = ACTION_FAIL;
970 
971 	if (action != ACTION_FAIL &&
972 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
973 		action = ACTION_FAIL;
974 
975 	switch (action) {
976 	case ACTION_FAIL:
977 		/* Give up and fail the remainder of the request */
978 		if (!(req->rq_flags & RQF_QUIET)) {
979 			static DEFINE_RATELIMIT_STATE(_rs,
980 					DEFAULT_RATELIMIT_INTERVAL,
981 					DEFAULT_RATELIMIT_BURST);
982 
983 			if (unlikely(scsi_logging_level))
984 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
985 						       SCSI_LOG_MLCOMPLETE_BITS);
986 
987 			/*
988 			 * if logging is enabled the failure will be printed
989 			 * in scsi_log_completion(), so avoid duplicate messages
990 			 */
991 			if (!level && __ratelimit(&_rs)) {
992 				scsi_print_result(cmd, NULL, FAILED);
993 				if (driver_byte(result) & DRIVER_SENSE)
994 					scsi_print_sense(cmd);
995 				scsi_print_command(cmd);
996 			}
997 		}
998 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
999 			return;
1000 		/*FALLTHRU*/
1001 	case ACTION_REPREP:
1002 	requeue:
1003 		/* Unprep the request and put it back at the head of the queue.
1004 		 * A new command will be prepared and issued.
1005 		 */
1006 		if (q->mq_ops) {
1007 			cmd->request->rq_flags &= ~RQF_DONTPREP;
1008 			scsi_mq_uninit_cmd(cmd);
1009 			scsi_mq_requeue_cmd(cmd);
1010 		} else {
1011 			scsi_release_buffers(cmd);
1012 			scsi_requeue_command(q, cmd);
1013 		}
1014 		break;
1015 	case ACTION_RETRY:
1016 		/* Retry the same command immediately */
1017 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1018 		break;
1019 	case ACTION_DELAYED_RETRY:
1020 		/* Retry the same command after a delay */
1021 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1022 		break;
1023 	}
1024 }
1025 
1026 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1027 {
1028 	int count;
1029 
1030 	/*
1031 	 * If sg table allocation fails, requeue request later.
1032 	 */
1033 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1034 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1035 		return BLKPREP_DEFER;
1036 
1037 	/*
1038 	 * Next, walk the list, and fill in the addresses and sizes of
1039 	 * each segment.
1040 	 */
1041 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1042 	BUG_ON(count > sdb->table.nents);
1043 	sdb->table.nents = count;
1044 	sdb->length = blk_rq_payload_bytes(req);
1045 	return BLKPREP_OK;
1046 }
1047 
1048 /*
1049  * Function:    scsi_init_io()
1050  *
1051  * Purpose:     SCSI I/O initialize function.
1052  *
1053  * Arguments:   cmd   - Command descriptor we wish to initialize
1054  *
1055  * Returns:     0 on success
1056  *		BLKPREP_DEFER if the failure is retryable
1057  *		BLKPREP_KILL if the failure is fatal
1058  */
1059 int scsi_init_io(struct scsi_cmnd *cmd)
1060 {
1061 	struct scsi_device *sdev = cmd->device;
1062 	struct request *rq = cmd->request;
1063 	bool is_mq = (rq->mq_ctx != NULL);
1064 	int error = BLKPREP_KILL;
1065 
1066 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1067 		goto err_exit;
1068 
1069 	error = scsi_init_sgtable(rq, &cmd->sdb);
1070 	if (error)
1071 		goto err_exit;
1072 
1073 	if (blk_bidi_rq(rq)) {
1074 		if (!rq->q->mq_ops) {
1075 			struct scsi_data_buffer *bidi_sdb =
1076 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1077 			if (!bidi_sdb) {
1078 				error = BLKPREP_DEFER;
1079 				goto err_exit;
1080 			}
1081 
1082 			rq->next_rq->special = bidi_sdb;
1083 		}
1084 
1085 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1086 		if (error)
1087 			goto err_exit;
1088 	}
1089 
1090 	if (blk_integrity_rq(rq)) {
1091 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1092 		int ivecs, count;
1093 
1094 		if (prot_sdb == NULL) {
1095 			/*
1096 			 * This can happen if someone (e.g. multipath)
1097 			 * queues a command to a device on an adapter
1098 			 * that does not support DIX.
1099 			 */
1100 			WARN_ON_ONCE(1);
1101 			error = BLKPREP_KILL;
1102 			goto err_exit;
1103 		}
1104 
1105 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1106 
1107 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1108 				prot_sdb->table.sgl)) {
1109 			error = BLKPREP_DEFER;
1110 			goto err_exit;
1111 		}
1112 
1113 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1114 						prot_sdb->table.sgl);
1115 		BUG_ON(unlikely(count > ivecs));
1116 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1117 
1118 		cmd->prot_sdb = prot_sdb;
1119 		cmd->prot_sdb->table.nents = count;
1120 	}
1121 
1122 	return BLKPREP_OK;
1123 err_exit:
1124 	if (is_mq) {
1125 		scsi_mq_free_sgtables(cmd);
1126 	} else {
1127 		scsi_release_buffers(cmd);
1128 		cmd->request->special = NULL;
1129 		scsi_put_command(cmd);
1130 		put_device(&sdev->sdev_gendev);
1131 	}
1132 	return error;
1133 }
1134 EXPORT_SYMBOL(scsi_init_io);
1135 
1136 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1137 {
1138 	void *buf = cmd->sense_buffer;
1139 	void *prot = cmd->prot_sdb;
1140 	unsigned long flags;
1141 
1142 	/* zero out the cmd, except for the embedded scsi_request */
1143 	memset((char *)cmd + sizeof(cmd->req), 0,
1144 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1145 
1146 	cmd->device = dev;
1147 	cmd->sense_buffer = buf;
1148 	cmd->prot_sdb = prot;
1149 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1150 	cmd->jiffies_at_alloc = jiffies;
1151 
1152 	spin_lock_irqsave(&dev->list_lock, flags);
1153 	list_add_tail(&cmd->list, &dev->cmd_list);
1154 	spin_unlock_irqrestore(&dev->list_lock, flags);
1155 }
1156 
1157 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1158 {
1159 	struct scsi_cmnd *cmd = req->special;
1160 
1161 	/*
1162 	 * Passthrough requests may transfer data, in which case they must
1163 	 * a bio attached to them.  Or they might contain a SCSI command
1164 	 * that does not transfer data, in which case they may optionally
1165 	 * submit a request without an attached bio.
1166 	 */
1167 	if (req->bio) {
1168 		int ret = scsi_init_io(cmd);
1169 		if (unlikely(ret))
1170 			return ret;
1171 	} else {
1172 		BUG_ON(blk_rq_bytes(req));
1173 
1174 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1175 	}
1176 
1177 	cmd->cmd_len = scsi_req(req)->cmd_len;
1178 	cmd->cmnd = scsi_req(req)->cmd;
1179 	cmd->transfersize = blk_rq_bytes(req);
1180 	cmd->allowed = scsi_req(req)->retries;
1181 	return BLKPREP_OK;
1182 }
1183 
1184 /*
1185  * Setup a normal block command.  These are simple request from filesystems
1186  * that still need to be translated to SCSI CDBs from the ULD.
1187  */
1188 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1189 {
1190 	struct scsi_cmnd *cmd = req->special;
1191 
1192 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1193 		int ret = sdev->handler->prep_fn(sdev, req);
1194 		if (ret != BLKPREP_OK)
1195 			return ret;
1196 	}
1197 
1198 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1199 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1200 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1201 }
1202 
1203 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1204 {
1205 	struct scsi_cmnd *cmd = req->special;
1206 
1207 	if (!blk_rq_bytes(req))
1208 		cmd->sc_data_direction = DMA_NONE;
1209 	else if (rq_data_dir(req) == WRITE)
1210 		cmd->sc_data_direction = DMA_TO_DEVICE;
1211 	else
1212 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1213 
1214 	if (blk_rq_is_scsi(req))
1215 		return scsi_setup_scsi_cmnd(sdev, req);
1216 	else
1217 		return scsi_setup_fs_cmnd(sdev, req);
1218 }
1219 
1220 static int
1221 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1222 {
1223 	int ret = BLKPREP_OK;
1224 
1225 	/*
1226 	 * If the device is not in running state we will reject some
1227 	 * or all commands.
1228 	 */
1229 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1230 		switch (sdev->sdev_state) {
1231 		case SDEV_OFFLINE:
1232 		case SDEV_TRANSPORT_OFFLINE:
1233 			/*
1234 			 * If the device is offline we refuse to process any
1235 			 * commands.  The device must be brought online
1236 			 * before trying any recovery commands.
1237 			 */
1238 			sdev_printk(KERN_ERR, sdev,
1239 				    "rejecting I/O to offline device\n");
1240 			ret = BLKPREP_KILL;
1241 			break;
1242 		case SDEV_DEL:
1243 			/*
1244 			 * If the device is fully deleted, we refuse to
1245 			 * process any commands as well.
1246 			 */
1247 			sdev_printk(KERN_ERR, sdev,
1248 				    "rejecting I/O to dead device\n");
1249 			ret = BLKPREP_KILL;
1250 			break;
1251 		case SDEV_BLOCK:
1252 		case SDEV_CREATED_BLOCK:
1253 			ret = BLKPREP_DEFER;
1254 			break;
1255 		case SDEV_QUIESCE:
1256 			/*
1257 			 * If the devices is blocked we defer normal commands.
1258 			 */
1259 			if (!(req->rq_flags & RQF_PREEMPT))
1260 				ret = BLKPREP_DEFER;
1261 			break;
1262 		default:
1263 			/*
1264 			 * For any other not fully online state we only allow
1265 			 * special commands.  In particular any user initiated
1266 			 * command is not allowed.
1267 			 */
1268 			if (!(req->rq_flags & RQF_PREEMPT))
1269 				ret = BLKPREP_KILL;
1270 			break;
1271 		}
1272 	}
1273 	return ret;
1274 }
1275 
1276 static int
1277 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1278 {
1279 	struct scsi_device *sdev = q->queuedata;
1280 
1281 	switch (ret) {
1282 	case BLKPREP_KILL:
1283 	case BLKPREP_INVALID:
1284 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1285 		/* release the command and kill it */
1286 		if (req->special) {
1287 			struct scsi_cmnd *cmd = req->special;
1288 			scsi_release_buffers(cmd);
1289 			scsi_put_command(cmd);
1290 			put_device(&sdev->sdev_gendev);
1291 			req->special = NULL;
1292 		}
1293 		break;
1294 	case BLKPREP_DEFER:
1295 		/*
1296 		 * If we defer, the blk_peek_request() returns NULL, but the
1297 		 * queue must be restarted, so we schedule a callback to happen
1298 		 * shortly.
1299 		 */
1300 		if (atomic_read(&sdev->device_busy) == 0)
1301 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1302 		break;
1303 	default:
1304 		req->rq_flags |= RQF_DONTPREP;
1305 	}
1306 
1307 	return ret;
1308 }
1309 
1310 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1311 {
1312 	struct scsi_device *sdev = q->queuedata;
1313 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1314 	int ret;
1315 
1316 	ret = scsi_prep_state_check(sdev, req);
1317 	if (ret != BLKPREP_OK)
1318 		goto out;
1319 
1320 	if (!req->special) {
1321 		/* Bail if we can't get a reference to the device */
1322 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1323 			ret = BLKPREP_DEFER;
1324 			goto out;
1325 		}
1326 
1327 		scsi_init_command(sdev, cmd);
1328 		req->special = cmd;
1329 	}
1330 
1331 	cmd->tag = req->tag;
1332 	cmd->request = req;
1333 	cmd->prot_op = SCSI_PROT_NORMAL;
1334 
1335 	ret = scsi_setup_cmnd(sdev, req);
1336 out:
1337 	return scsi_prep_return(q, req, ret);
1338 }
1339 
1340 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1341 {
1342 	scsi_uninit_cmd(req->special);
1343 }
1344 
1345 /*
1346  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1347  * return 0.
1348  *
1349  * Called with the queue_lock held.
1350  */
1351 static inline int scsi_dev_queue_ready(struct request_queue *q,
1352 				  struct scsi_device *sdev)
1353 {
1354 	unsigned int busy;
1355 
1356 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1357 	if (atomic_read(&sdev->device_blocked)) {
1358 		if (busy)
1359 			goto out_dec;
1360 
1361 		/*
1362 		 * unblock after device_blocked iterates to zero
1363 		 */
1364 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1365 			/*
1366 			 * For the MQ case we take care of this in the caller.
1367 			 */
1368 			if (!q->mq_ops)
1369 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1370 			goto out_dec;
1371 		}
1372 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1373 				   "unblocking device at zero depth\n"));
1374 	}
1375 
1376 	if (busy >= sdev->queue_depth)
1377 		goto out_dec;
1378 
1379 	return 1;
1380 out_dec:
1381 	atomic_dec(&sdev->device_busy);
1382 	return 0;
1383 }
1384 
1385 /*
1386  * scsi_target_queue_ready: checks if there we can send commands to target
1387  * @sdev: scsi device on starget to check.
1388  */
1389 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1390 					   struct scsi_device *sdev)
1391 {
1392 	struct scsi_target *starget = scsi_target(sdev);
1393 	unsigned int busy;
1394 
1395 	if (starget->single_lun) {
1396 		spin_lock_irq(shost->host_lock);
1397 		if (starget->starget_sdev_user &&
1398 		    starget->starget_sdev_user != sdev) {
1399 			spin_unlock_irq(shost->host_lock);
1400 			return 0;
1401 		}
1402 		starget->starget_sdev_user = sdev;
1403 		spin_unlock_irq(shost->host_lock);
1404 	}
1405 
1406 	if (starget->can_queue <= 0)
1407 		return 1;
1408 
1409 	busy = atomic_inc_return(&starget->target_busy) - 1;
1410 	if (atomic_read(&starget->target_blocked) > 0) {
1411 		if (busy)
1412 			goto starved;
1413 
1414 		/*
1415 		 * unblock after target_blocked iterates to zero
1416 		 */
1417 		if (atomic_dec_return(&starget->target_blocked) > 0)
1418 			goto out_dec;
1419 
1420 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1421 				 "unblocking target at zero depth\n"));
1422 	}
1423 
1424 	if (busy >= starget->can_queue)
1425 		goto starved;
1426 
1427 	return 1;
1428 
1429 starved:
1430 	spin_lock_irq(shost->host_lock);
1431 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1432 	spin_unlock_irq(shost->host_lock);
1433 out_dec:
1434 	if (starget->can_queue > 0)
1435 		atomic_dec(&starget->target_busy);
1436 	return 0;
1437 }
1438 
1439 /*
1440  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1441  * return 0. We must end up running the queue again whenever 0 is
1442  * returned, else IO can hang.
1443  */
1444 static inline int scsi_host_queue_ready(struct request_queue *q,
1445 				   struct Scsi_Host *shost,
1446 				   struct scsi_device *sdev)
1447 {
1448 	unsigned int busy;
1449 
1450 	if (scsi_host_in_recovery(shost))
1451 		return 0;
1452 
1453 	busy = atomic_inc_return(&shost->host_busy) - 1;
1454 	if (atomic_read(&shost->host_blocked) > 0) {
1455 		if (busy)
1456 			goto starved;
1457 
1458 		/*
1459 		 * unblock after host_blocked iterates to zero
1460 		 */
1461 		if (atomic_dec_return(&shost->host_blocked) > 0)
1462 			goto out_dec;
1463 
1464 		SCSI_LOG_MLQUEUE(3,
1465 			shost_printk(KERN_INFO, shost,
1466 				     "unblocking host at zero depth\n"));
1467 	}
1468 
1469 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1470 		goto starved;
1471 	if (shost->host_self_blocked)
1472 		goto starved;
1473 
1474 	/* We're OK to process the command, so we can't be starved */
1475 	if (!list_empty(&sdev->starved_entry)) {
1476 		spin_lock_irq(shost->host_lock);
1477 		if (!list_empty(&sdev->starved_entry))
1478 			list_del_init(&sdev->starved_entry);
1479 		spin_unlock_irq(shost->host_lock);
1480 	}
1481 
1482 	return 1;
1483 
1484 starved:
1485 	spin_lock_irq(shost->host_lock);
1486 	if (list_empty(&sdev->starved_entry))
1487 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1488 	spin_unlock_irq(shost->host_lock);
1489 out_dec:
1490 	atomic_dec(&shost->host_busy);
1491 	return 0;
1492 }
1493 
1494 /*
1495  * Busy state exporting function for request stacking drivers.
1496  *
1497  * For efficiency, no lock is taken to check the busy state of
1498  * shost/starget/sdev, since the returned value is not guaranteed and
1499  * may be changed after request stacking drivers call the function,
1500  * regardless of taking lock or not.
1501  *
1502  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1503  * needs to return 'not busy'. Otherwise, request stacking drivers
1504  * may hold requests forever.
1505  */
1506 static int scsi_lld_busy(struct request_queue *q)
1507 {
1508 	struct scsi_device *sdev = q->queuedata;
1509 	struct Scsi_Host *shost;
1510 
1511 	if (blk_queue_dying(q))
1512 		return 0;
1513 
1514 	shost = sdev->host;
1515 
1516 	/*
1517 	 * Ignore host/starget busy state.
1518 	 * Since block layer does not have a concept of fairness across
1519 	 * multiple queues, congestion of host/starget needs to be handled
1520 	 * in SCSI layer.
1521 	 */
1522 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1523 		return 1;
1524 
1525 	return 0;
1526 }
1527 
1528 /*
1529  * Kill a request for a dead device
1530  */
1531 static void scsi_kill_request(struct request *req, struct request_queue *q)
1532 {
1533 	struct scsi_cmnd *cmd = req->special;
1534 	struct scsi_device *sdev;
1535 	struct scsi_target *starget;
1536 	struct Scsi_Host *shost;
1537 
1538 	blk_start_request(req);
1539 
1540 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1541 
1542 	sdev = cmd->device;
1543 	starget = scsi_target(sdev);
1544 	shost = sdev->host;
1545 	scsi_init_cmd_errh(cmd);
1546 	cmd->result = DID_NO_CONNECT << 16;
1547 	atomic_inc(&cmd->device->iorequest_cnt);
1548 
1549 	/*
1550 	 * SCSI request completion path will do scsi_device_unbusy(),
1551 	 * bump busy counts.  To bump the counters, we need to dance
1552 	 * with the locks as normal issue path does.
1553 	 */
1554 	atomic_inc(&sdev->device_busy);
1555 	atomic_inc(&shost->host_busy);
1556 	if (starget->can_queue > 0)
1557 		atomic_inc(&starget->target_busy);
1558 
1559 	blk_complete_request(req);
1560 }
1561 
1562 static void scsi_softirq_done(struct request *rq)
1563 {
1564 	struct scsi_cmnd *cmd = rq->special;
1565 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1566 	int disposition;
1567 
1568 	INIT_LIST_HEAD(&cmd->eh_entry);
1569 
1570 	atomic_inc(&cmd->device->iodone_cnt);
1571 	if (cmd->result)
1572 		atomic_inc(&cmd->device->ioerr_cnt);
1573 
1574 	disposition = scsi_decide_disposition(cmd);
1575 	if (disposition != SUCCESS &&
1576 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1577 		sdev_printk(KERN_ERR, cmd->device,
1578 			    "timing out command, waited %lus\n",
1579 			    wait_for/HZ);
1580 		disposition = SUCCESS;
1581 	}
1582 
1583 	scsi_log_completion(cmd, disposition);
1584 
1585 	switch (disposition) {
1586 		case SUCCESS:
1587 			scsi_finish_command(cmd);
1588 			break;
1589 		case NEEDS_RETRY:
1590 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1591 			break;
1592 		case ADD_TO_MLQUEUE:
1593 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1594 			break;
1595 		default:
1596 			scsi_eh_scmd_add(cmd);
1597 			break;
1598 	}
1599 }
1600 
1601 /**
1602  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1603  * @cmd: command block we are dispatching.
1604  *
1605  * Return: nonzero return request was rejected and device's queue needs to be
1606  * plugged.
1607  */
1608 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1609 {
1610 	struct Scsi_Host *host = cmd->device->host;
1611 	int rtn = 0;
1612 
1613 	atomic_inc(&cmd->device->iorequest_cnt);
1614 
1615 	/* check if the device is still usable */
1616 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1617 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1618 		 * returns an immediate error upwards, and signals
1619 		 * that the device is no longer present */
1620 		cmd->result = DID_NO_CONNECT << 16;
1621 		goto done;
1622 	}
1623 
1624 	/* Check to see if the scsi lld made this device blocked. */
1625 	if (unlikely(scsi_device_blocked(cmd->device))) {
1626 		/*
1627 		 * in blocked state, the command is just put back on
1628 		 * the device queue.  The suspend state has already
1629 		 * blocked the queue so future requests should not
1630 		 * occur until the device transitions out of the
1631 		 * suspend state.
1632 		 */
1633 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1634 			"queuecommand : device blocked\n"));
1635 		return SCSI_MLQUEUE_DEVICE_BUSY;
1636 	}
1637 
1638 	/* Store the LUN value in cmnd, if needed. */
1639 	if (cmd->device->lun_in_cdb)
1640 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1641 			       (cmd->device->lun << 5 & 0xe0);
1642 
1643 	scsi_log_send(cmd);
1644 
1645 	/*
1646 	 * Before we queue this command, check if the command
1647 	 * length exceeds what the host adapter can handle.
1648 	 */
1649 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1650 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1651 			       "queuecommand : command too long. "
1652 			       "cdb_size=%d host->max_cmd_len=%d\n",
1653 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1654 		cmd->result = (DID_ABORT << 16);
1655 		goto done;
1656 	}
1657 
1658 	if (unlikely(host->shost_state == SHOST_DEL)) {
1659 		cmd->result = (DID_NO_CONNECT << 16);
1660 		goto done;
1661 
1662 	}
1663 
1664 	trace_scsi_dispatch_cmd_start(cmd);
1665 	rtn = host->hostt->queuecommand(host, cmd);
1666 	if (rtn) {
1667 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1668 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1669 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1670 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1671 
1672 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1673 			"queuecommand : request rejected\n"));
1674 	}
1675 
1676 	return rtn;
1677  done:
1678 	cmd->scsi_done(cmd);
1679 	return 0;
1680 }
1681 
1682 /**
1683  * scsi_done - Invoke completion on finished SCSI command.
1684  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1685  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1686  *
1687  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1688  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1689  * calls blk_complete_request() for further processing.
1690  *
1691  * This function is interrupt context safe.
1692  */
1693 static void scsi_done(struct scsi_cmnd *cmd)
1694 {
1695 	trace_scsi_dispatch_cmd_done(cmd);
1696 	blk_complete_request(cmd->request);
1697 }
1698 
1699 /*
1700  * Function:    scsi_request_fn()
1701  *
1702  * Purpose:     Main strategy routine for SCSI.
1703  *
1704  * Arguments:   q       - Pointer to actual queue.
1705  *
1706  * Returns:     Nothing
1707  *
1708  * Lock status: IO request lock assumed to be held when called.
1709  */
1710 static void scsi_request_fn(struct request_queue *q)
1711 	__releases(q->queue_lock)
1712 	__acquires(q->queue_lock)
1713 {
1714 	struct scsi_device *sdev = q->queuedata;
1715 	struct Scsi_Host *shost;
1716 	struct scsi_cmnd *cmd;
1717 	struct request *req;
1718 
1719 	/*
1720 	 * To start with, we keep looping until the queue is empty, or until
1721 	 * the host is no longer able to accept any more requests.
1722 	 */
1723 	shost = sdev->host;
1724 	for (;;) {
1725 		int rtn;
1726 		/*
1727 		 * get next queueable request.  We do this early to make sure
1728 		 * that the request is fully prepared even if we cannot
1729 		 * accept it.
1730 		 */
1731 		req = blk_peek_request(q);
1732 		if (!req)
1733 			break;
1734 
1735 		if (unlikely(!scsi_device_online(sdev))) {
1736 			sdev_printk(KERN_ERR, sdev,
1737 				    "rejecting I/O to offline device\n");
1738 			scsi_kill_request(req, q);
1739 			continue;
1740 		}
1741 
1742 		if (!scsi_dev_queue_ready(q, sdev))
1743 			break;
1744 
1745 		/*
1746 		 * Remove the request from the request list.
1747 		 */
1748 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1749 			blk_start_request(req);
1750 
1751 		spin_unlock_irq(q->queue_lock);
1752 		cmd = req->special;
1753 		if (unlikely(cmd == NULL)) {
1754 			printk(KERN_CRIT "impossible request in %s.\n"
1755 					 "please mail a stack trace to "
1756 					 "linux-scsi@vger.kernel.org\n",
1757 					 __func__);
1758 			blk_dump_rq_flags(req, "foo");
1759 			BUG();
1760 		}
1761 
1762 		/*
1763 		 * We hit this when the driver is using a host wide
1764 		 * tag map. For device level tag maps the queue_depth check
1765 		 * in the device ready fn would prevent us from trying
1766 		 * to allocate a tag. Since the map is a shared host resource
1767 		 * we add the dev to the starved list so it eventually gets
1768 		 * a run when a tag is freed.
1769 		 */
1770 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1771 			spin_lock_irq(shost->host_lock);
1772 			if (list_empty(&sdev->starved_entry))
1773 				list_add_tail(&sdev->starved_entry,
1774 					      &shost->starved_list);
1775 			spin_unlock_irq(shost->host_lock);
1776 			goto not_ready;
1777 		}
1778 
1779 		if (!scsi_target_queue_ready(shost, sdev))
1780 			goto not_ready;
1781 
1782 		if (!scsi_host_queue_ready(q, shost, sdev))
1783 			goto host_not_ready;
1784 
1785 		if (sdev->simple_tags)
1786 			cmd->flags |= SCMD_TAGGED;
1787 		else
1788 			cmd->flags &= ~SCMD_TAGGED;
1789 
1790 		/*
1791 		 * Finally, initialize any error handling parameters, and set up
1792 		 * the timers for timeouts.
1793 		 */
1794 		scsi_init_cmd_errh(cmd);
1795 
1796 		/*
1797 		 * Dispatch the command to the low-level driver.
1798 		 */
1799 		cmd->scsi_done = scsi_done;
1800 		rtn = scsi_dispatch_cmd(cmd);
1801 		if (rtn) {
1802 			scsi_queue_insert(cmd, rtn);
1803 			spin_lock_irq(q->queue_lock);
1804 			goto out_delay;
1805 		}
1806 		spin_lock_irq(q->queue_lock);
1807 	}
1808 
1809 	return;
1810 
1811  host_not_ready:
1812 	if (scsi_target(sdev)->can_queue > 0)
1813 		atomic_dec(&scsi_target(sdev)->target_busy);
1814  not_ready:
1815 	/*
1816 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1817 	 * must return with queue_lock held.
1818 	 *
1819 	 * Decrementing device_busy without checking it is OK, as all such
1820 	 * cases (host limits or settings) should run the queue at some
1821 	 * later time.
1822 	 */
1823 	spin_lock_irq(q->queue_lock);
1824 	blk_requeue_request(q, req);
1825 	atomic_dec(&sdev->device_busy);
1826 out_delay:
1827 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1828 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1829 }
1830 
1831 static inline int prep_to_mq(int ret)
1832 {
1833 	switch (ret) {
1834 	case BLKPREP_OK:
1835 		return BLK_MQ_RQ_QUEUE_OK;
1836 	case BLKPREP_DEFER:
1837 		return BLK_MQ_RQ_QUEUE_BUSY;
1838 	default:
1839 		return BLK_MQ_RQ_QUEUE_ERROR;
1840 	}
1841 }
1842 
1843 static int scsi_mq_prep_fn(struct request *req)
1844 {
1845 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1846 	struct scsi_device *sdev = req->q->queuedata;
1847 	struct Scsi_Host *shost = sdev->host;
1848 	unsigned char *sense_buf = cmd->sense_buffer;
1849 	struct scatterlist *sg;
1850 
1851 	/* zero out the cmd, except for the embedded scsi_request */
1852 	memset((char *)cmd + sizeof(cmd->req), 0,
1853 		sizeof(*cmd) - sizeof(cmd->req));
1854 
1855 	req->special = cmd;
1856 
1857 	cmd->request = req;
1858 	cmd->device = sdev;
1859 	cmd->sense_buffer = sense_buf;
1860 
1861 	cmd->tag = req->tag;
1862 
1863 	cmd->prot_op = SCSI_PROT_NORMAL;
1864 
1865 	INIT_LIST_HEAD(&cmd->list);
1866 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1867 	cmd->jiffies_at_alloc = jiffies;
1868 
1869 	if (shost->use_cmd_list) {
1870 		spin_lock_irq(&sdev->list_lock);
1871 		list_add_tail(&cmd->list, &sdev->cmd_list);
1872 		spin_unlock_irq(&sdev->list_lock);
1873 	}
1874 
1875 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1876 	cmd->sdb.table.sgl = sg;
1877 
1878 	if (scsi_host_get_prot(shost)) {
1879 		cmd->prot_sdb = (void *)sg +
1880 			min_t(unsigned int,
1881 			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1882 			sizeof(struct scatterlist);
1883 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1884 
1885 		cmd->prot_sdb->table.sgl =
1886 			(struct scatterlist *)(cmd->prot_sdb + 1);
1887 	}
1888 
1889 	if (blk_bidi_rq(req)) {
1890 		struct request *next_rq = req->next_rq;
1891 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1892 
1893 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1894 		bidi_sdb->table.sgl =
1895 			(struct scatterlist *)(bidi_sdb + 1);
1896 
1897 		next_rq->special = bidi_sdb;
1898 	}
1899 
1900 	blk_mq_start_request(req);
1901 
1902 	return scsi_setup_cmnd(sdev, req);
1903 }
1904 
1905 static void scsi_mq_done(struct scsi_cmnd *cmd)
1906 {
1907 	trace_scsi_dispatch_cmd_done(cmd);
1908 	blk_mq_complete_request(cmd->request);
1909 }
1910 
1911 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1912 			 const struct blk_mq_queue_data *bd)
1913 {
1914 	struct request *req = bd->rq;
1915 	struct request_queue *q = req->q;
1916 	struct scsi_device *sdev = q->queuedata;
1917 	struct Scsi_Host *shost = sdev->host;
1918 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1919 	int ret;
1920 	int reason;
1921 
1922 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1923 	if (ret != BLK_MQ_RQ_QUEUE_OK)
1924 		goto out;
1925 
1926 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1927 	if (!get_device(&sdev->sdev_gendev))
1928 		goto out;
1929 
1930 	if (!scsi_dev_queue_ready(q, sdev))
1931 		goto out_put_device;
1932 	if (!scsi_target_queue_ready(shost, sdev))
1933 		goto out_dec_device_busy;
1934 	if (!scsi_host_queue_ready(q, shost, sdev))
1935 		goto out_dec_target_busy;
1936 
1937 	if (!(req->rq_flags & RQF_DONTPREP)) {
1938 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1939 		if (ret != BLK_MQ_RQ_QUEUE_OK)
1940 			goto out_dec_host_busy;
1941 		req->rq_flags |= RQF_DONTPREP;
1942 	} else {
1943 		blk_mq_start_request(req);
1944 	}
1945 
1946 	if (sdev->simple_tags)
1947 		cmd->flags |= SCMD_TAGGED;
1948 	else
1949 		cmd->flags &= ~SCMD_TAGGED;
1950 
1951 	scsi_init_cmd_errh(cmd);
1952 	cmd->scsi_done = scsi_mq_done;
1953 
1954 	reason = scsi_dispatch_cmd(cmd);
1955 	if (reason) {
1956 		scsi_set_blocked(cmd, reason);
1957 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1958 		goto out_dec_host_busy;
1959 	}
1960 
1961 	return BLK_MQ_RQ_QUEUE_OK;
1962 
1963 out_dec_host_busy:
1964 	atomic_dec(&shost->host_busy);
1965 out_dec_target_busy:
1966 	if (scsi_target(sdev)->can_queue > 0)
1967 		atomic_dec(&scsi_target(sdev)->target_busy);
1968 out_dec_device_busy:
1969 	atomic_dec(&sdev->device_busy);
1970 out_put_device:
1971 	put_device(&sdev->sdev_gendev);
1972 out:
1973 	switch (ret) {
1974 	case BLK_MQ_RQ_QUEUE_BUSY:
1975 		if (atomic_read(&sdev->device_busy) == 0 &&
1976 		    !scsi_device_blocked(sdev))
1977 			blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1978 		break;
1979 	case BLK_MQ_RQ_QUEUE_ERROR:
1980 		/*
1981 		 * Make sure to release all allocated ressources when
1982 		 * we hit an error, as we will never see this command
1983 		 * again.
1984 		 */
1985 		if (req->rq_flags & RQF_DONTPREP)
1986 			scsi_mq_uninit_cmd(cmd);
1987 		break;
1988 	default:
1989 		break;
1990 	}
1991 	return ret;
1992 }
1993 
1994 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1995 		bool reserved)
1996 {
1997 	if (reserved)
1998 		return BLK_EH_RESET_TIMER;
1999 	return scsi_times_out(req);
2000 }
2001 
2002 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2003 		unsigned int hctx_idx, unsigned int numa_node)
2004 {
2005 	struct Scsi_Host *shost = set->driver_data;
2006 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2007 
2008 	cmd->sense_buffer =
2009 		scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node);
2010 	if (!cmd->sense_buffer)
2011 		return -ENOMEM;
2012 	cmd->req.sense = cmd->sense_buffer;
2013 	return 0;
2014 }
2015 
2016 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2017 		unsigned int hctx_idx)
2018 {
2019 	struct Scsi_Host *shost = set->driver_data;
2020 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2021 
2022 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2023 }
2024 
2025 static int scsi_map_queues(struct blk_mq_tag_set *set)
2026 {
2027 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2028 
2029 	if (shost->hostt->map_queues)
2030 		return shost->hostt->map_queues(shost);
2031 	return blk_mq_map_queues(set);
2032 }
2033 
2034 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2035 {
2036 	struct device *host_dev;
2037 	u64 bounce_limit = 0xffffffff;
2038 
2039 	if (shost->unchecked_isa_dma)
2040 		return BLK_BOUNCE_ISA;
2041 	/*
2042 	 * Platforms with virtual-DMA translation
2043 	 * hardware have no practical limit.
2044 	 */
2045 	if (!PCI_DMA_BUS_IS_PHYS)
2046 		return BLK_BOUNCE_ANY;
2047 
2048 	host_dev = scsi_get_device(shost);
2049 	if (host_dev && host_dev->dma_mask)
2050 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2051 
2052 	return bounce_limit;
2053 }
2054 
2055 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2056 {
2057 	struct device *dev = shost->dma_dev;
2058 
2059 	/*
2060 	 * this limit is imposed by hardware restrictions
2061 	 */
2062 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2063 					SG_MAX_SEGMENTS));
2064 
2065 	if (scsi_host_prot_dma(shost)) {
2066 		shost->sg_prot_tablesize =
2067 			min_not_zero(shost->sg_prot_tablesize,
2068 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2069 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2070 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2071 	}
2072 
2073 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2074 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2075 	blk_queue_segment_boundary(q, shost->dma_boundary);
2076 	dma_set_seg_boundary(dev, shost->dma_boundary);
2077 
2078 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2079 
2080 	if (!shost->use_clustering)
2081 		q->limits.cluster = 0;
2082 
2083 	/*
2084 	 * set a reasonable default alignment on word boundaries: the
2085 	 * host and device may alter it using
2086 	 * blk_queue_update_dma_alignment() later.
2087 	 */
2088 	blk_queue_dma_alignment(q, 0x03);
2089 }
2090 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2091 
2092 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2093 {
2094 	struct Scsi_Host *shost = q->rq_alloc_data;
2095 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2096 
2097 	memset(cmd, 0, sizeof(*cmd));
2098 
2099 	cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE);
2100 	if (!cmd->sense_buffer)
2101 		goto fail;
2102 	cmd->req.sense = cmd->sense_buffer;
2103 
2104 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2105 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2106 		if (!cmd->prot_sdb)
2107 			goto fail_free_sense;
2108 	}
2109 
2110 	return 0;
2111 
2112 fail_free_sense:
2113 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2114 fail:
2115 	return -ENOMEM;
2116 }
2117 
2118 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2119 {
2120 	struct Scsi_Host *shost = q->rq_alloc_data;
2121 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2122 
2123 	if (cmd->prot_sdb)
2124 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2125 	scsi_free_sense_buffer(shost, cmd->sense_buffer);
2126 }
2127 
2128 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2129 {
2130 	struct Scsi_Host *shost = sdev->host;
2131 	struct request_queue *q;
2132 
2133 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2134 	if (!q)
2135 		return NULL;
2136 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2137 	q->rq_alloc_data = shost;
2138 	q->request_fn = scsi_request_fn;
2139 	q->init_rq_fn = scsi_init_rq;
2140 	q->exit_rq_fn = scsi_exit_rq;
2141 
2142 	if (blk_init_allocated_queue(q) < 0) {
2143 		blk_cleanup_queue(q);
2144 		return NULL;
2145 	}
2146 
2147 	__scsi_init_queue(shost, q);
2148 	blk_queue_prep_rq(q, scsi_prep_fn);
2149 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2150 	blk_queue_softirq_done(q, scsi_softirq_done);
2151 	blk_queue_rq_timed_out(q, scsi_times_out);
2152 	blk_queue_lld_busy(q, scsi_lld_busy);
2153 	return q;
2154 }
2155 
2156 static const struct blk_mq_ops scsi_mq_ops = {
2157 	.queue_rq	= scsi_queue_rq,
2158 	.complete	= scsi_softirq_done,
2159 	.timeout	= scsi_timeout,
2160 #ifdef CONFIG_BLK_DEBUG_FS
2161 	.show_rq	= scsi_show_rq,
2162 #endif
2163 	.init_request	= scsi_init_request,
2164 	.exit_request	= scsi_exit_request,
2165 	.map_queues	= scsi_map_queues,
2166 };
2167 
2168 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2169 {
2170 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2171 	if (IS_ERR(sdev->request_queue))
2172 		return NULL;
2173 
2174 	sdev->request_queue->queuedata = sdev;
2175 	__scsi_init_queue(sdev->host, sdev->request_queue);
2176 	return sdev->request_queue;
2177 }
2178 
2179 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2180 {
2181 	unsigned int cmd_size, sgl_size, tbl_size;
2182 
2183 	tbl_size = shost->sg_tablesize;
2184 	if (tbl_size > SG_CHUNK_SIZE)
2185 		tbl_size = SG_CHUNK_SIZE;
2186 	sgl_size = tbl_size * sizeof(struct scatterlist);
2187 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2188 	if (scsi_host_get_prot(shost))
2189 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2190 
2191 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2192 	shost->tag_set.ops = &scsi_mq_ops;
2193 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2194 	shost->tag_set.queue_depth = shost->can_queue;
2195 	shost->tag_set.cmd_size = cmd_size;
2196 	shost->tag_set.numa_node = NUMA_NO_NODE;
2197 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2198 	shost->tag_set.flags |=
2199 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2200 	shost->tag_set.driver_data = shost;
2201 
2202 	return blk_mq_alloc_tag_set(&shost->tag_set);
2203 }
2204 
2205 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2206 {
2207 	blk_mq_free_tag_set(&shost->tag_set);
2208 }
2209 
2210 /**
2211  * scsi_device_from_queue - return sdev associated with a request_queue
2212  * @q: The request queue to return the sdev from
2213  *
2214  * Return the sdev associated with a request queue or NULL if the
2215  * request_queue does not reference a SCSI device.
2216  */
2217 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2218 {
2219 	struct scsi_device *sdev = NULL;
2220 
2221 	if (q->mq_ops) {
2222 		if (q->mq_ops == &scsi_mq_ops)
2223 			sdev = q->queuedata;
2224 	} else if (q->request_fn == scsi_request_fn)
2225 		sdev = q->queuedata;
2226 	if (!sdev || !get_device(&sdev->sdev_gendev))
2227 		sdev = NULL;
2228 
2229 	return sdev;
2230 }
2231 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2232 
2233 /*
2234  * Function:    scsi_block_requests()
2235  *
2236  * Purpose:     Utility function used by low-level drivers to prevent further
2237  *		commands from being queued to the device.
2238  *
2239  * Arguments:   shost       - Host in question
2240  *
2241  * Returns:     Nothing
2242  *
2243  * Lock status: No locks are assumed held.
2244  *
2245  * Notes:       There is no timer nor any other means by which the requests
2246  *		get unblocked other than the low-level driver calling
2247  *		scsi_unblock_requests().
2248  */
2249 void scsi_block_requests(struct Scsi_Host *shost)
2250 {
2251 	shost->host_self_blocked = 1;
2252 }
2253 EXPORT_SYMBOL(scsi_block_requests);
2254 
2255 /*
2256  * Function:    scsi_unblock_requests()
2257  *
2258  * Purpose:     Utility function used by low-level drivers to allow further
2259  *		commands from being queued to the device.
2260  *
2261  * Arguments:   shost       - Host in question
2262  *
2263  * Returns:     Nothing
2264  *
2265  * Lock status: No locks are assumed held.
2266  *
2267  * Notes:       There is no timer nor any other means by which the requests
2268  *		get unblocked other than the low-level driver calling
2269  *		scsi_unblock_requests().
2270  *
2271  *		This is done as an API function so that changes to the
2272  *		internals of the scsi mid-layer won't require wholesale
2273  *		changes to drivers that use this feature.
2274  */
2275 void scsi_unblock_requests(struct Scsi_Host *shost)
2276 {
2277 	shost->host_self_blocked = 0;
2278 	scsi_run_host_queues(shost);
2279 }
2280 EXPORT_SYMBOL(scsi_unblock_requests);
2281 
2282 int __init scsi_init_queue(void)
2283 {
2284 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2285 					   sizeof(struct scsi_data_buffer),
2286 					   0, 0, NULL);
2287 	if (!scsi_sdb_cache) {
2288 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2289 		return -ENOMEM;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 void scsi_exit_queue(void)
2296 {
2297 	kmem_cache_destroy(scsi_sense_cache);
2298 	kmem_cache_destroy(scsi_sense_isadma_cache);
2299 	kmem_cache_destroy(scsi_sdb_cache);
2300 }
2301 
2302 /**
2303  *	scsi_mode_select - issue a mode select
2304  *	@sdev:	SCSI device to be queried
2305  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2306  *	@sp:	Save page bit (0 == don't save, 1 == save)
2307  *	@modepage: mode page being requested
2308  *	@buffer: request buffer (may not be smaller than eight bytes)
2309  *	@len:	length of request buffer.
2310  *	@timeout: command timeout
2311  *	@retries: number of retries before failing
2312  *	@data: returns a structure abstracting the mode header data
2313  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2314  *		must be SCSI_SENSE_BUFFERSIZE big.
2315  *
2316  *	Returns zero if successful; negative error number or scsi
2317  *	status on error
2318  *
2319  */
2320 int
2321 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2322 		 unsigned char *buffer, int len, int timeout, int retries,
2323 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2324 {
2325 	unsigned char cmd[10];
2326 	unsigned char *real_buffer;
2327 	int ret;
2328 
2329 	memset(cmd, 0, sizeof(cmd));
2330 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2331 
2332 	if (sdev->use_10_for_ms) {
2333 		if (len > 65535)
2334 			return -EINVAL;
2335 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2336 		if (!real_buffer)
2337 			return -ENOMEM;
2338 		memcpy(real_buffer + 8, buffer, len);
2339 		len += 8;
2340 		real_buffer[0] = 0;
2341 		real_buffer[1] = 0;
2342 		real_buffer[2] = data->medium_type;
2343 		real_buffer[3] = data->device_specific;
2344 		real_buffer[4] = data->longlba ? 0x01 : 0;
2345 		real_buffer[5] = 0;
2346 		real_buffer[6] = data->block_descriptor_length >> 8;
2347 		real_buffer[7] = data->block_descriptor_length;
2348 
2349 		cmd[0] = MODE_SELECT_10;
2350 		cmd[7] = len >> 8;
2351 		cmd[8] = len;
2352 	} else {
2353 		if (len > 255 || data->block_descriptor_length > 255 ||
2354 		    data->longlba)
2355 			return -EINVAL;
2356 
2357 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2358 		if (!real_buffer)
2359 			return -ENOMEM;
2360 		memcpy(real_buffer + 4, buffer, len);
2361 		len += 4;
2362 		real_buffer[0] = 0;
2363 		real_buffer[1] = data->medium_type;
2364 		real_buffer[2] = data->device_specific;
2365 		real_buffer[3] = data->block_descriptor_length;
2366 
2367 
2368 		cmd[0] = MODE_SELECT;
2369 		cmd[4] = len;
2370 	}
2371 
2372 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2373 			       sshdr, timeout, retries, NULL);
2374 	kfree(real_buffer);
2375 	return ret;
2376 }
2377 EXPORT_SYMBOL_GPL(scsi_mode_select);
2378 
2379 /**
2380  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2381  *	@sdev:	SCSI device to be queried
2382  *	@dbd:	set if mode sense will allow block descriptors to be returned
2383  *	@modepage: mode page being requested
2384  *	@buffer: request buffer (may not be smaller than eight bytes)
2385  *	@len:	length of request buffer.
2386  *	@timeout: command timeout
2387  *	@retries: number of retries before failing
2388  *	@data: returns a structure abstracting the mode header data
2389  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2390  *		must be SCSI_SENSE_BUFFERSIZE big.
2391  *
2392  *	Returns zero if unsuccessful, or the header offset (either 4
2393  *	or 8 depending on whether a six or ten byte command was
2394  *	issued) if successful.
2395  */
2396 int
2397 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2398 		  unsigned char *buffer, int len, int timeout, int retries,
2399 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2400 {
2401 	unsigned char cmd[12];
2402 	int use_10_for_ms;
2403 	int header_length;
2404 	int result, retry_count = retries;
2405 	struct scsi_sense_hdr my_sshdr;
2406 
2407 	memset(data, 0, sizeof(*data));
2408 	memset(&cmd[0], 0, 12);
2409 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2410 	cmd[2] = modepage;
2411 
2412 	/* caller might not be interested in sense, but we need it */
2413 	if (!sshdr)
2414 		sshdr = &my_sshdr;
2415 
2416  retry:
2417 	use_10_for_ms = sdev->use_10_for_ms;
2418 
2419 	if (use_10_for_ms) {
2420 		if (len < 8)
2421 			len = 8;
2422 
2423 		cmd[0] = MODE_SENSE_10;
2424 		cmd[8] = len;
2425 		header_length = 8;
2426 	} else {
2427 		if (len < 4)
2428 			len = 4;
2429 
2430 		cmd[0] = MODE_SENSE;
2431 		cmd[4] = len;
2432 		header_length = 4;
2433 	}
2434 
2435 	memset(buffer, 0, len);
2436 
2437 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2438 				  sshdr, timeout, retries, NULL);
2439 
2440 	/* This code looks awful: what it's doing is making sure an
2441 	 * ILLEGAL REQUEST sense return identifies the actual command
2442 	 * byte as the problem.  MODE_SENSE commands can return
2443 	 * ILLEGAL REQUEST if the code page isn't supported */
2444 
2445 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2446 	    (driver_byte(result) & DRIVER_SENSE)) {
2447 		if (scsi_sense_valid(sshdr)) {
2448 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2449 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2450 				/*
2451 				 * Invalid command operation code
2452 				 */
2453 				sdev->use_10_for_ms = 0;
2454 				goto retry;
2455 			}
2456 		}
2457 	}
2458 
2459 	if(scsi_status_is_good(result)) {
2460 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2461 			     (modepage == 6 || modepage == 8))) {
2462 			/* Initio breakage? */
2463 			header_length = 0;
2464 			data->length = 13;
2465 			data->medium_type = 0;
2466 			data->device_specific = 0;
2467 			data->longlba = 0;
2468 			data->block_descriptor_length = 0;
2469 		} else if(use_10_for_ms) {
2470 			data->length = buffer[0]*256 + buffer[1] + 2;
2471 			data->medium_type = buffer[2];
2472 			data->device_specific = buffer[3];
2473 			data->longlba = buffer[4] & 0x01;
2474 			data->block_descriptor_length = buffer[6]*256
2475 				+ buffer[7];
2476 		} else {
2477 			data->length = buffer[0] + 1;
2478 			data->medium_type = buffer[1];
2479 			data->device_specific = buffer[2];
2480 			data->block_descriptor_length = buffer[3];
2481 		}
2482 		data->header_length = header_length;
2483 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2484 		   scsi_sense_valid(sshdr) &&
2485 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2486 		retry_count--;
2487 		goto retry;
2488 	}
2489 
2490 	return result;
2491 }
2492 EXPORT_SYMBOL(scsi_mode_sense);
2493 
2494 /**
2495  *	scsi_test_unit_ready - test if unit is ready
2496  *	@sdev:	scsi device to change the state of.
2497  *	@timeout: command timeout
2498  *	@retries: number of retries before failing
2499  *	@sshdr: outpout pointer for decoded sense information.
2500  *
2501  *	Returns zero if unsuccessful or an error if TUR failed.  For
2502  *	removable media, UNIT_ATTENTION sets ->changed flag.
2503  **/
2504 int
2505 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2506 		     struct scsi_sense_hdr *sshdr)
2507 {
2508 	char cmd[] = {
2509 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2510 	};
2511 	int result;
2512 
2513 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2514 	do {
2515 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2516 					  timeout, retries, NULL);
2517 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2518 		    sshdr->sense_key == UNIT_ATTENTION)
2519 			sdev->changed = 1;
2520 	} while (scsi_sense_valid(sshdr) &&
2521 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2522 
2523 	return result;
2524 }
2525 EXPORT_SYMBOL(scsi_test_unit_ready);
2526 
2527 /**
2528  *	scsi_device_set_state - Take the given device through the device state model.
2529  *	@sdev:	scsi device to change the state of.
2530  *	@state:	state to change to.
2531  *
2532  *	Returns zero if unsuccessful or an error if the requested
2533  *	transition is illegal.
2534  */
2535 int
2536 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2537 {
2538 	enum scsi_device_state oldstate = sdev->sdev_state;
2539 
2540 	if (state == oldstate)
2541 		return 0;
2542 
2543 	switch (state) {
2544 	case SDEV_CREATED:
2545 		switch (oldstate) {
2546 		case SDEV_CREATED_BLOCK:
2547 			break;
2548 		default:
2549 			goto illegal;
2550 		}
2551 		break;
2552 
2553 	case SDEV_RUNNING:
2554 		switch (oldstate) {
2555 		case SDEV_CREATED:
2556 		case SDEV_OFFLINE:
2557 		case SDEV_TRANSPORT_OFFLINE:
2558 		case SDEV_QUIESCE:
2559 		case SDEV_BLOCK:
2560 			break;
2561 		default:
2562 			goto illegal;
2563 		}
2564 		break;
2565 
2566 	case SDEV_QUIESCE:
2567 		switch (oldstate) {
2568 		case SDEV_RUNNING:
2569 		case SDEV_OFFLINE:
2570 		case SDEV_TRANSPORT_OFFLINE:
2571 			break;
2572 		default:
2573 			goto illegal;
2574 		}
2575 		break;
2576 
2577 	case SDEV_OFFLINE:
2578 	case SDEV_TRANSPORT_OFFLINE:
2579 		switch (oldstate) {
2580 		case SDEV_CREATED:
2581 		case SDEV_RUNNING:
2582 		case SDEV_QUIESCE:
2583 		case SDEV_BLOCK:
2584 			break;
2585 		default:
2586 			goto illegal;
2587 		}
2588 		break;
2589 
2590 	case SDEV_BLOCK:
2591 		switch (oldstate) {
2592 		case SDEV_RUNNING:
2593 		case SDEV_CREATED_BLOCK:
2594 			break;
2595 		default:
2596 			goto illegal;
2597 		}
2598 		break;
2599 
2600 	case SDEV_CREATED_BLOCK:
2601 		switch (oldstate) {
2602 		case SDEV_CREATED:
2603 			break;
2604 		default:
2605 			goto illegal;
2606 		}
2607 		break;
2608 
2609 	case SDEV_CANCEL:
2610 		switch (oldstate) {
2611 		case SDEV_CREATED:
2612 		case SDEV_RUNNING:
2613 		case SDEV_QUIESCE:
2614 		case SDEV_OFFLINE:
2615 		case SDEV_TRANSPORT_OFFLINE:
2616 		case SDEV_BLOCK:
2617 			break;
2618 		default:
2619 			goto illegal;
2620 		}
2621 		break;
2622 
2623 	case SDEV_DEL:
2624 		switch (oldstate) {
2625 		case SDEV_CREATED:
2626 		case SDEV_RUNNING:
2627 		case SDEV_OFFLINE:
2628 		case SDEV_TRANSPORT_OFFLINE:
2629 		case SDEV_CANCEL:
2630 		case SDEV_CREATED_BLOCK:
2631 			break;
2632 		default:
2633 			goto illegal;
2634 		}
2635 		break;
2636 
2637 	}
2638 	sdev->sdev_state = state;
2639 	return 0;
2640 
2641  illegal:
2642 	SCSI_LOG_ERROR_RECOVERY(1,
2643 				sdev_printk(KERN_ERR, sdev,
2644 					    "Illegal state transition %s->%s",
2645 					    scsi_device_state_name(oldstate),
2646 					    scsi_device_state_name(state))
2647 				);
2648 	return -EINVAL;
2649 }
2650 EXPORT_SYMBOL(scsi_device_set_state);
2651 
2652 /**
2653  * 	sdev_evt_emit - emit a single SCSI device uevent
2654  *	@sdev: associated SCSI device
2655  *	@evt: event to emit
2656  *
2657  *	Send a single uevent (scsi_event) to the associated scsi_device.
2658  */
2659 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2660 {
2661 	int idx = 0;
2662 	char *envp[3];
2663 
2664 	switch (evt->evt_type) {
2665 	case SDEV_EVT_MEDIA_CHANGE:
2666 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2667 		break;
2668 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2669 		scsi_rescan_device(&sdev->sdev_gendev);
2670 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2671 		break;
2672 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2673 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2674 		break;
2675 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2676 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2677 		break;
2678 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2679 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2680 		break;
2681 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2682 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2683 		break;
2684 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2685 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2686 		break;
2687 	default:
2688 		/* do nothing */
2689 		break;
2690 	}
2691 
2692 	envp[idx++] = NULL;
2693 
2694 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2695 }
2696 
2697 /**
2698  * 	sdev_evt_thread - send a uevent for each scsi event
2699  *	@work: work struct for scsi_device
2700  *
2701  *	Dispatch queued events to their associated scsi_device kobjects
2702  *	as uevents.
2703  */
2704 void scsi_evt_thread(struct work_struct *work)
2705 {
2706 	struct scsi_device *sdev;
2707 	enum scsi_device_event evt_type;
2708 	LIST_HEAD(event_list);
2709 
2710 	sdev = container_of(work, struct scsi_device, event_work);
2711 
2712 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2713 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2714 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2715 
2716 	while (1) {
2717 		struct scsi_event *evt;
2718 		struct list_head *this, *tmp;
2719 		unsigned long flags;
2720 
2721 		spin_lock_irqsave(&sdev->list_lock, flags);
2722 		list_splice_init(&sdev->event_list, &event_list);
2723 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2724 
2725 		if (list_empty(&event_list))
2726 			break;
2727 
2728 		list_for_each_safe(this, tmp, &event_list) {
2729 			evt = list_entry(this, struct scsi_event, node);
2730 			list_del(&evt->node);
2731 			scsi_evt_emit(sdev, evt);
2732 			kfree(evt);
2733 		}
2734 	}
2735 }
2736 
2737 /**
2738  * 	sdev_evt_send - send asserted event to uevent thread
2739  *	@sdev: scsi_device event occurred on
2740  *	@evt: event to send
2741  *
2742  *	Assert scsi device event asynchronously.
2743  */
2744 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2745 {
2746 	unsigned long flags;
2747 
2748 #if 0
2749 	/* FIXME: currently this check eliminates all media change events
2750 	 * for polled devices.  Need to update to discriminate between AN
2751 	 * and polled events */
2752 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2753 		kfree(evt);
2754 		return;
2755 	}
2756 #endif
2757 
2758 	spin_lock_irqsave(&sdev->list_lock, flags);
2759 	list_add_tail(&evt->node, &sdev->event_list);
2760 	schedule_work(&sdev->event_work);
2761 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2762 }
2763 EXPORT_SYMBOL_GPL(sdev_evt_send);
2764 
2765 /**
2766  * 	sdev_evt_alloc - allocate a new scsi event
2767  *	@evt_type: type of event to allocate
2768  *	@gfpflags: GFP flags for allocation
2769  *
2770  *	Allocates and returns a new scsi_event.
2771  */
2772 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2773 				  gfp_t gfpflags)
2774 {
2775 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2776 	if (!evt)
2777 		return NULL;
2778 
2779 	evt->evt_type = evt_type;
2780 	INIT_LIST_HEAD(&evt->node);
2781 
2782 	/* evt_type-specific initialization, if any */
2783 	switch (evt_type) {
2784 	case SDEV_EVT_MEDIA_CHANGE:
2785 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2786 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2787 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2788 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2789 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2790 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2791 	default:
2792 		/* do nothing */
2793 		break;
2794 	}
2795 
2796 	return evt;
2797 }
2798 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2799 
2800 /**
2801  * 	sdev_evt_send_simple - send asserted event to uevent thread
2802  *	@sdev: scsi_device event occurred on
2803  *	@evt_type: type of event to send
2804  *	@gfpflags: GFP flags for allocation
2805  *
2806  *	Assert scsi device event asynchronously, given an event type.
2807  */
2808 void sdev_evt_send_simple(struct scsi_device *sdev,
2809 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2810 {
2811 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2812 	if (!evt) {
2813 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2814 			    evt_type);
2815 		return;
2816 	}
2817 
2818 	sdev_evt_send(sdev, evt);
2819 }
2820 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2821 
2822 /**
2823  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2824  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2825  */
2826 static int scsi_request_fn_active(struct scsi_device *sdev)
2827 {
2828 	struct request_queue *q = sdev->request_queue;
2829 	int request_fn_active;
2830 
2831 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2832 
2833 	spin_lock_irq(q->queue_lock);
2834 	request_fn_active = q->request_fn_active;
2835 	spin_unlock_irq(q->queue_lock);
2836 
2837 	return request_fn_active;
2838 }
2839 
2840 /**
2841  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2842  * @sdev: SCSI device pointer.
2843  *
2844  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2845  * invoked from scsi_request_fn() have finished.
2846  */
2847 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2848 {
2849 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2850 
2851 	while (scsi_request_fn_active(sdev))
2852 		msleep(20);
2853 }
2854 
2855 /**
2856  *	scsi_device_quiesce - Block user issued commands.
2857  *	@sdev:	scsi device to quiesce.
2858  *
2859  *	This works by trying to transition to the SDEV_QUIESCE state
2860  *	(which must be a legal transition).  When the device is in this
2861  *	state, only special requests will be accepted, all others will
2862  *	be deferred.  Since special requests may also be requeued requests,
2863  *	a successful return doesn't guarantee the device will be
2864  *	totally quiescent.
2865  *
2866  *	Must be called with user context, may sleep.
2867  *
2868  *	Returns zero if unsuccessful or an error if not.
2869  */
2870 int
2871 scsi_device_quiesce(struct scsi_device *sdev)
2872 {
2873 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2874 	if (err)
2875 		return err;
2876 
2877 	scsi_run_queue(sdev->request_queue);
2878 	while (atomic_read(&sdev->device_busy)) {
2879 		msleep_interruptible(200);
2880 		scsi_run_queue(sdev->request_queue);
2881 	}
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(scsi_device_quiesce);
2885 
2886 /**
2887  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2888  *	@sdev:	scsi device to resume.
2889  *
2890  *	Moves the device from quiesced back to running and restarts the
2891  *	queues.
2892  *
2893  *	Must be called with user context, may sleep.
2894  */
2895 void scsi_device_resume(struct scsi_device *sdev)
2896 {
2897 	/* check if the device state was mutated prior to resume, and if
2898 	 * so assume the state is being managed elsewhere (for example
2899 	 * device deleted during suspend)
2900 	 */
2901 	if (sdev->sdev_state != SDEV_QUIESCE ||
2902 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2903 		return;
2904 	scsi_run_queue(sdev->request_queue);
2905 }
2906 EXPORT_SYMBOL(scsi_device_resume);
2907 
2908 static void
2909 device_quiesce_fn(struct scsi_device *sdev, void *data)
2910 {
2911 	scsi_device_quiesce(sdev);
2912 }
2913 
2914 void
2915 scsi_target_quiesce(struct scsi_target *starget)
2916 {
2917 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2918 }
2919 EXPORT_SYMBOL(scsi_target_quiesce);
2920 
2921 static void
2922 device_resume_fn(struct scsi_device *sdev, void *data)
2923 {
2924 	scsi_device_resume(sdev);
2925 }
2926 
2927 void
2928 scsi_target_resume(struct scsi_target *starget)
2929 {
2930 	starget_for_each_device(starget, NULL, device_resume_fn);
2931 }
2932 EXPORT_SYMBOL(scsi_target_resume);
2933 
2934 /**
2935  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2936  * @sdev:	device to block
2937  * @wait:	Whether or not to wait until ongoing .queuecommand() /
2938  *		.queue_rq() calls have finished.
2939  *
2940  * Block request made by scsi lld's to temporarily stop all
2941  * scsi commands on the specified device. May sleep.
2942  *
2943  * Returns zero if successful or error if not
2944  *
2945  * Notes:
2946  *	This routine transitions the device to the SDEV_BLOCK state
2947  *	(which must be a legal transition).  When the device is in this
2948  *	state, all commands are deferred until the scsi lld reenables
2949  *	the device with scsi_device_unblock or device_block_tmo fires.
2950  *
2951  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2952  * scsi_internal_device_block() has blocked a SCSI device and also
2953  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2954  */
2955 int
2956 scsi_internal_device_block(struct scsi_device *sdev, bool wait)
2957 {
2958 	struct request_queue *q = sdev->request_queue;
2959 	unsigned long flags;
2960 	int err = 0;
2961 
2962 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2963 	if (err) {
2964 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2965 
2966 		if (err)
2967 			return err;
2968 	}
2969 
2970 	/*
2971 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2972 	 * block layer from calling the midlayer with this device's
2973 	 * request queue.
2974 	 */
2975 	if (q->mq_ops) {
2976 		if (wait)
2977 			blk_mq_quiesce_queue(q);
2978 		else
2979 			blk_mq_stop_hw_queues(q);
2980 	} else {
2981 		spin_lock_irqsave(q->queue_lock, flags);
2982 		blk_stop_queue(q);
2983 		spin_unlock_irqrestore(q->queue_lock, flags);
2984 		if (wait)
2985 			scsi_wait_for_queuecommand(sdev);
2986 	}
2987 
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2991 
2992 /**
2993  * scsi_internal_device_unblock - resume a device after a block request
2994  * @sdev:	device to resume
2995  * @new_state:	state to set devices to after unblocking
2996  *
2997  * Called by scsi lld's or the midlayer to restart the device queue
2998  * for the previously suspended scsi device.  Called from interrupt or
2999  * normal process context.
3000  *
3001  * Returns zero if successful or error if not.
3002  *
3003  * Notes:
3004  *	This routine transitions the device to the SDEV_RUNNING state
3005  *	or to one of the offline states (which must be a legal transition)
3006  *	allowing the midlayer to goose the queue for this device.
3007  */
3008 int
3009 scsi_internal_device_unblock(struct scsi_device *sdev,
3010 			     enum scsi_device_state new_state)
3011 {
3012 	struct request_queue *q = sdev->request_queue;
3013 	unsigned long flags;
3014 
3015 	/*
3016 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3017 	 * offlined states and goose the device queue if successful.
3018 	 */
3019 	if ((sdev->sdev_state == SDEV_BLOCK) ||
3020 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3021 		sdev->sdev_state = new_state;
3022 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3023 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3024 		    new_state == SDEV_OFFLINE)
3025 			sdev->sdev_state = new_state;
3026 		else
3027 			sdev->sdev_state = SDEV_CREATED;
3028 	} else if (sdev->sdev_state != SDEV_CANCEL &&
3029 		 sdev->sdev_state != SDEV_OFFLINE)
3030 		return -EINVAL;
3031 
3032 	if (q->mq_ops) {
3033 		blk_mq_start_stopped_hw_queues(q, false);
3034 	} else {
3035 		spin_lock_irqsave(q->queue_lock, flags);
3036 		blk_start_queue(q);
3037 		spin_unlock_irqrestore(q->queue_lock, flags);
3038 	}
3039 
3040 	return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3043 
3044 static void
3045 device_block(struct scsi_device *sdev, void *data)
3046 {
3047 	scsi_internal_device_block(sdev, true);
3048 }
3049 
3050 static int
3051 target_block(struct device *dev, void *data)
3052 {
3053 	if (scsi_is_target_device(dev))
3054 		starget_for_each_device(to_scsi_target(dev), NULL,
3055 					device_block);
3056 	return 0;
3057 }
3058 
3059 void
3060 scsi_target_block(struct device *dev)
3061 {
3062 	if (scsi_is_target_device(dev))
3063 		starget_for_each_device(to_scsi_target(dev), NULL,
3064 					device_block);
3065 	else
3066 		device_for_each_child(dev, NULL, target_block);
3067 }
3068 EXPORT_SYMBOL_GPL(scsi_target_block);
3069 
3070 static void
3071 device_unblock(struct scsi_device *sdev, void *data)
3072 {
3073 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3074 }
3075 
3076 static int
3077 target_unblock(struct device *dev, void *data)
3078 {
3079 	if (scsi_is_target_device(dev))
3080 		starget_for_each_device(to_scsi_target(dev), data,
3081 					device_unblock);
3082 	return 0;
3083 }
3084 
3085 void
3086 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3087 {
3088 	if (scsi_is_target_device(dev))
3089 		starget_for_each_device(to_scsi_target(dev), &new_state,
3090 					device_unblock);
3091 	else
3092 		device_for_each_child(dev, &new_state, target_unblock);
3093 }
3094 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3095 
3096 /**
3097  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3098  * @sgl:	scatter-gather list
3099  * @sg_count:	number of segments in sg
3100  * @offset:	offset in bytes into sg, on return offset into the mapped area
3101  * @len:	bytes to map, on return number of bytes mapped
3102  *
3103  * Returns virtual address of the start of the mapped page
3104  */
3105 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3106 			  size_t *offset, size_t *len)
3107 {
3108 	int i;
3109 	size_t sg_len = 0, len_complete = 0;
3110 	struct scatterlist *sg;
3111 	struct page *page;
3112 
3113 	WARN_ON(!irqs_disabled());
3114 
3115 	for_each_sg(sgl, sg, sg_count, i) {
3116 		len_complete = sg_len; /* Complete sg-entries */
3117 		sg_len += sg->length;
3118 		if (sg_len > *offset)
3119 			break;
3120 	}
3121 
3122 	if (unlikely(i == sg_count)) {
3123 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3124 			"elements %d\n",
3125 		       __func__, sg_len, *offset, sg_count);
3126 		WARN_ON(1);
3127 		return NULL;
3128 	}
3129 
3130 	/* Offset starting from the beginning of first page in this sg-entry */
3131 	*offset = *offset - len_complete + sg->offset;
3132 
3133 	/* Assumption: contiguous pages can be accessed as "page + i" */
3134 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3135 	*offset &= ~PAGE_MASK;
3136 
3137 	/* Bytes in this sg-entry from *offset to the end of the page */
3138 	sg_len = PAGE_SIZE - *offset;
3139 	if (*len > sg_len)
3140 		*len = sg_len;
3141 
3142 	return kmap_atomic(page);
3143 }
3144 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3145 
3146 /**
3147  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3148  * @virt:	virtual address to be unmapped
3149  */
3150 void scsi_kunmap_atomic_sg(void *virt)
3151 {
3152 	kunmap_atomic(virt);
3153 }
3154 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3155 
3156 void sdev_disable_disk_events(struct scsi_device *sdev)
3157 {
3158 	atomic_inc(&sdev->disk_events_disable_depth);
3159 }
3160 EXPORT_SYMBOL(sdev_disable_disk_events);
3161 
3162 void sdev_enable_disk_events(struct scsi_device *sdev)
3163 {
3164 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3165 		return;
3166 	atomic_dec(&sdev->disk_events_disable_depth);
3167 }
3168 EXPORT_SYMBOL(sdev_enable_disk_events);
3169 
3170 /**
3171  * scsi_vpd_lun_id - return a unique device identification
3172  * @sdev: SCSI device
3173  * @id:   buffer for the identification
3174  * @id_len:  length of the buffer
3175  *
3176  * Copies a unique device identification into @id based
3177  * on the information in the VPD page 0x83 of the device.
3178  * The string will be formatted as a SCSI name string.
3179  *
3180  * Returns the length of the identification or error on failure.
3181  * If the identifier is longer than the supplied buffer the actual
3182  * identifier length is returned and the buffer is not zero-padded.
3183  */
3184 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3185 {
3186 	u8 cur_id_type = 0xff;
3187 	u8 cur_id_size = 0;
3188 	unsigned char *d, *cur_id_str;
3189 	unsigned char __rcu *vpd_pg83;
3190 	int id_size = -EINVAL;
3191 
3192 	rcu_read_lock();
3193 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3194 	if (!vpd_pg83) {
3195 		rcu_read_unlock();
3196 		return -ENXIO;
3197 	}
3198 
3199 	/*
3200 	 * Look for the correct descriptor.
3201 	 * Order of preference for lun descriptor:
3202 	 * - SCSI name string
3203 	 * - NAA IEEE Registered Extended
3204 	 * - EUI-64 based 16-byte
3205 	 * - EUI-64 based 12-byte
3206 	 * - NAA IEEE Registered
3207 	 * - NAA IEEE Extended
3208 	 * - T10 Vendor ID
3209 	 * as longer descriptors reduce the likelyhood
3210 	 * of identification clashes.
3211 	 */
3212 
3213 	/* The id string must be at least 20 bytes + terminating NULL byte */
3214 	if (id_len < 21) {
3215 		rcu_read_unlock();
3216 		return -EINVAL;
3217 	}
3218 
3219 	memset(id, 0, id_len);
3220 	d = vpd_pg83 + 4;
3221 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3222 		/* Skip designators not referring to the LUN */
3223 		if ((d[1] & 0x30) != 0x00)
3224 			goto next_desig;
3225 
3226 		switch (d[1] & 0xf) {
3227 		case 0x1:
3228 			/* T10 Vendor ID */
3229 			if (cur_id_size > d[3])
3230 				break;
3231 			/* Prefer anything */
3232 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3233 				break;
3234 			cur_id_size = d[3];
3235 			if (cur_id_size + 4 > id_len)
3236 				cur_id_size = id_len - 4;
3237 			cur_id_str = d + 4;
3238 			cur_id_type = d[1] & 0xf;
3239 			id_size = snprintf(id, id_len, "t10.%*pE",
3240 					   cur_id_size, cur_id_str);
3241 			break;
3242 		case 0x2:
3243 			/* EUI-64 */
3244 			if (cur_id_size > d[3])
3245 				break;
3246 			/* Prefer NAA IEEE Registered Extended */
3247 			if (cur_id_type == 0x3 &&
3248 			    cur_id_size == d[3])
3249 				break;
3250 			cur_id_size = d[3];
3251 			cur_id_str = d + 4;
3252 			cur_id_type = d[1] & 0xf;
3253 			switch (cur_id_size) {
3254 			case 8:
3255 				id_size = snprintf(id, id_len,
3256 						   "eui.%8phN",
3257 						   cur_id_str);
3258 				break;
3259 			case 12:
3260 				id_size = snprintf(id, id_len,
3261 						   "eui.%12phN",
3262 						   cur_id_str);
3263 				break;
3264 			case 16:
3265 				id_size = snprintf(id, id_len,
3266 						   "eui.%16phN",
3267 						   cur_id_str);
3268 				break;
3269 			default:
3270 				cur_id_size = 0;
3271 				break;
3272 			}
3273 			break;
3274 		case 0x3:
3275 			/* NAA */
3276 			if (cur_id_size > d[3])
3277 				break;
3278 			cur_id_size = d[3];
3279 			cur_id_str = d + 4;
3280 			cur_id_type = d[1] & 0xf;
3281 			switch (cur_id_size) {
3282 			case 8:
3283 				id_size = snprintf(id, id_len,
3284 						   "naa.%8phN",
3285 						   cur_id_str);
3286 				break;
3287 			case 16:
3288 				id_size = snprintf(id, id_len,
3289 						   "naa.%16phN",
3290 						   cur_id_str);
3291 				break;
3292 			default:
3293 				cur_id_size = 0;
3294 				break;
3295 			}
3296 			break;
3297 		case 0x8:
3298 			/* SCSI name string */
3299 			if (cur_id_size + 4 > d[3])
3300 				break;
3301 			/* Prefer others for truncated descriptor */
3302 			if (cur_id_size && d[3] > id_len)
3303 				break;
3304 			cur_id_size = id_size = d[3];
3305 			cur_id_str = d + 4;
3306 			cur_id_type = d[1] & 0xf;
3307 			if (cur_id_size >= id_len)
3308 				cur_id_size = id_len - 1;
3309 			memcpy(id, cur_id_str, cur_id_size);
3310 			/* Decrease priority for truncated descriptor */
3311 			if (cur_id_size != id_size)
3312 				cur_id_size = 6;
3313 			break;
3314 		default:
3315 			break;
3316 		}
3317 next_desig:
3318 		d += d[3] + 4;
3319 	}
3320 	rcu_read_unlock();
3321 
3322 	return id_size;
3323 }
3324 EXPORT_SYMBOL(scsi_vpd_lun_id);
3325 
3326 /*
3327  * scsi_vpd_tpg_id - return a target port group identifier
3328  * @sdev: SCSI device
3329  *
3330  * Returns the Target Port Group identifier from the information
3331  * froom VPD page 0x83 of the device.
3332  *
3333  * Returns the identifier or error on failure.
3334  */
3335 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3336 {
3337 	unsigned char *d;
3338 	unsigned char __rcu *vpd_pg83;
3339 	int group_id = -EAGAIN, rel_port = -1;
3340 
3341 	rcu_read_lock();
3342 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3343 	if (!vpd_pg83) {
3344 		rcu_read_unlock();
3345 		return -ENXIO;
3346 	}
3347 
3348 	d = sdev->vpd_pg83 + 4;
3349 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3350 		switch (d[1] & 0xf) {
3351 		case 0x4:
3352 			/* Relative target port */
3353 			rel_port = get_unaligned_be16(&d[6]);
3354 			break;
3355 		case 0x5:
3356 			/* Target port group */
3357 			group_id = get_unaligned_be16(&d[6]);
3358 			break;
3359 		default:
3360 			break;
3361 		}
3362 		d += d[3] + 4;
3363 	}
3364 	rcu_read_unlock();
3365 
3366 	if (group_id >= 0 && rel_id && rel_port != -1)
3367 		*rel_id = rel_port;
3368 
3369 	return group_id;
3370 }
3371 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3372