xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision a1e58bbd)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 static struct kmem_cache *scsi_bidi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 	struct Scsi_Host *host = cmd->device->host;
116 	struct scsi_device *device = cmd->device;
117 	struct request_queue *q = device->request_queue;
118 	unsigned long flags;
119 
120 	SCSI_LOG_MLQUEUE(1,
121 		 printk("Inserting command %p into mlqueue\n", cmd));
122 
123 	/*
124 	 * Set the appropriate busy bit for the device/host.
125 	 *
126 	 * If the host/device isn't busy, assume that something actually
127 	 * completed, and that we should be able to queue a command now.
128 	 *
129 	 * Note that the prior mid-layer assumption that any host could
130 	 * always queue at least one command is now broken.  The mid-layer
131 	 * will implement a user specifiable stall (see
132 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 	 * if a command is requeued with no other commands outstanding
134 	 * either for the device or for the host.
135 	 */
136 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 		host->host_blocked = host->max_host_blocked;
138 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 		device->device_blocked = device->max_device_blocked;
140 
141 	/*
142 	 * Decrement the counters, since these commands are no longer
143 	 * active on the host/device.
144 	 */
145 	scsi_device_unbusy(device);
146 
147 	/*
148 	 * Requeue this command.  It will go before all other commands
149 	 * that are already in the queue.
150 	 *
151 	 * NOTE: there is magic here about the way the queue is plugged if
152 	 * we have no outstanding commands.
153 	 *
154 	 * Although we *don't* plug the queue, we call the request
155 	 * function.  The SCSI request function detects the blocked condition
156 	 * and plugs the queue appropriately.
157          */
158 	spin_lock_irqsave(q->queue_lock, flags);
159 	blk_requeue_request(q, cmd->request);
160 	spin_unlock_irqrestore(q->queue_lock, flags);
161 
162 	scsi_run_queue(q);
163 
164 	return 0;
165 }
166 
167 /**
168  * scsi_execute - insert request and wait for the result
169  * @sdev:	scsi device
170  * @cmd:	scsi command
171  * @data_direction: data direction
172  * @buffer:	data buffer
173  * @bufflen:	len of buffer
174  * @sense:	optional sense buffer
175  * @timeout:	request timeout in seconds
176  * @retries:	number of times to retry request
177  * @flags:	or into request flags;
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 		 int data_direction, void *buffer, unsigned bufflen,
184 		 unsigned char *sense, int timeout, int retries, int flags)
185 {
186 	struct request *req;
187 	int write = (data_direction == DMA_TO_DEVICE);
188 	int ret = DRIVER_ERROR << 24;
189 
190 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191 
192 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193 					buffer, bufflen, __GFP_WAIT))
194 		goto out;
195 
196 	req->cmd_len = COMMAND_SIZE(cmd[0]);
197 	memcpy(req->cmd, cmd, req->cmd_len);
198 	req->sense = sense;
199 	req->sense_len = 0;
200 	req->retries = retries;
201 	req->timeout = timeout;
202 	req->cmd_type = REQ_TYPE_BLOCK_PC;
203 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204 
205 	/*
206 	 * head injection *required* here otherwise quiesce won't work
207 	 */
208 	blk_execute_rq(req->q, NULL, req, 1);
209 
210 	ret = req->errors;
211  out:
212 	blk_put_request(req);
213 
214 	return ret;
215 }
216 EXPORT_SYMBOL(scsi_execute);
217 
218 
219 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220 		     int data_direction, void *buffer, unsigned bufflen,
221 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
222 {
223 	char *sense = NULL;
224 	int result;
225 
226 	if (sshdr) {
227 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228 		if (!sense)
229 			return DRIVER_ERROR << 24;
230 	}
231 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232 			      sense, timeout, retries, 0);
233 	if (sshdr)
234 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235 
236 	kfree(sense);
237 	return result;
238 }
239 EXPORT_SYMBOL(scsi_execute_req);
240 
241 struct scsi_io_context {
242 	void *data;
243 	void (*done)(void *data, char *sense, int result, int resid);
244 	char sense[SCSI_SENSE_BUFFERSIZE];
245 };
246 
247 static struct kmem_cache *scsi_io_context_cache;
248 
249 static void scsi_end_async(struct request *req, int uptodate)
250 {
251 	struct scsi_io_context *sioc = req->end_io_data;
252 
253 	if (sioc->done)
254 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255 
256 	kmem_cache_free(scsi_io_context_cache, sioc);
257 	__blk_put_request(req->q, req);
258 }
259 
260 static int scsi_merge_bio(struct request *rq, struct bio *bio)
261 {
262 	struct request_queue *q = rq->q;
263 
264 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265 	if (rq_data_dir(rq) == WRITE)
266 		bio->bi_rw |= (1 << BIO_RW);
267 	blk_queue_bounce(q, &bio);
268 
269 	return blk_rq_append_bio(q, rq, bio);
270 }
271 
272 static void scsi_bi_endio(struct bio *bio, int error)
273 {
274 	bio_put(bio);
275 }
276 
277 /**
278  * scsi_req_map_sg - map a scatterlist into a request
279  * @rq:		request to fill
280  * @sgl:	scatterlist
281  * @nsegs:	number of elements
282  * @bufflen:	len of buffer
283  * @gfp:	memory allocation flags
284  *
285  * scsi_req_map_sg maps a scatterlist into a request so that the
286  * request can be sent to the block layer. We do not trust the scatterlist
287  * sent to use, as some ULDs use that struct to only organize the pages.
288  */
289 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290 			   int nsegs, unsigned bufflen, gfp_t gfp)
291 {
292 	struct request_queue *q = rq->q;
293 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294 	unsigned int data_len = bufflen, len, bytes, off;
295 	struct scatterlist *sg;
296 	struct page *page;
297 	struct bio *bio = NULL;
298 	int i, err, nr_vecs = 0;
299 
300 	for_each_sg(sgl, sg, nsegs, i) {
301 		page = sg_page(sg);
302 		off = sg->offset;
303 		len = sg->length;
304 
305 		while (len > 0 && data_len > 0) {
306 			/*
307 			 * sg sends a scatterlist that is larger than
308 			 * the data_len it wants transferred for certain
309 			 * IO sizes
310 			 */
311 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312 			bytes = min(bytes, data_len);
313 
314 			if (!bio) {
315 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316 				nr_pages -= nr_vecs;
317 
318 				bio = bio_alloc(gfp, nr_vecs);
319 				if (!bio) {
320 					err = -ENOMEM;
321 					goto free_bios;
322 				}
323 				bio->bi_end_io = scsi_bi_endio;
324 			}
325 
326 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
327 			    bytes) {
328 				bio_put(bio);
329 				err = -EINVAL;
330 				goto free_bios;
331 			}
332 
333 			if (bio->bi_vcnt >= nr_vecs) {
334 				err = scsi_merge_bio(rq, bio);
335 				if (err) {
336 					bio_endio(bio, 0);
337 					goto free_bios;
338 				}
339 				bio = NULL;
340 			}
341 
342 			page++;
343 			len -= bytes;
344 			data_len -=bytes;
345 			off = 0;
346 		}
347 	}
348 
349 	rq->buffer = rq->data = NULL;
350 	rq->data_len = bufflen;
351 	return 0;
352 
353 free_bios:
354 	while ((bio = rq->bio) != NULL) {
355 		rq->bio = bio->bi_next;
356 		/*
357 		 * call endio instead of bio_put incase it was bounced
358 		 */
359 		bio_endio(bio, 0);
360 	}
361 
362 	return err;
363 }
364 
365 /**
366  * scsi_execute_async - insert request
367  * @sdev:	scsi device
368  * @cmd:	scsi command
369  * @cmd_len:	length of scsi cdb
370  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
372  * @bufflen:	len of buffer
373  * @use_sg:	if buffer is a scatterlist this is the number of elements
374  * @timeout:	request timeout in seconds
375  * @retries:	number of times to retry request
376  * @privdata:	data passed to done()
377  * @done:	callback function when done
378  * @gfp:	memory allocation flags
379  */
380 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382 		       int use_sg, int timeout, int retries, void *privdata,
383 		       void (*done)(void *, char *, int, int), gfp_t gfp)
384 {
385 	struct request *req;
386 	struct scsi_io_context *sioc;
387 	int err = 0;
388 	int write = (data_direction == DMA_TO_DEVICE);
389 
390 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391 	if (!sioc)
392 		return DRIVER_ERROR << 24;
393 
394 	req = blk_get_request(sdev->request_queue, write, gfp);
395 	if (!req)
396 		goto free_sense;
397 	req->cmd_type = REQ_TYPE_BLOCK_PC;
398 	req->cmd_flags |= REQ_QUIET;
399 
400 	if (use_sg)
401 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402 	else if (bufflen)
403 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404 
405 	if (err)
406 		goto free_req;
407 
408 	req->cmd_len = cmd_len;
409 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410 	memcpy(req->cmd, cmd, req->cmd_len);
411 	req->sense = sioc->sense;
412 	req->sense_len = 0;
413 	req->timeout = timeout;
414 	req->retries = retries;
415 	req->end_io_data = sioc;
416 
417 	sioc->data = privdata;
418 	sioc->done = done;
419 
420 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421 	return 0;
422 
423 free_req:
424 	blk_put_request(req);
425 free_sense:
426 	kmem_cache_free(scsi_io_context_cache, sioc);
427 	return DRIVER_ERROR << 24;
428 }
429 EXPORT_SYMBOL_GPL(scsi_execute_async);
430 
431 /*
432  * Function:    scsi_init_cmd_errh()
433  *
434  * Purpose:     Initialize cmd fields related to error handling.
435  *
436  * Arguments:   cmd	- command that is ready to be queued.
437  *
438  * Notes:       This function has the job of initializing a number of
439  *              fields related to error handling.   Typically this will
440  *              be called once for each command, as required.
441  */
442 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443 {
444 	cmd->serial_number = 0;
445 	scsi_set_resid(cmd, 0);
446 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447 	if (cmd->cmd_len == 0)
448 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450 
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453 	struct Scsi_Host *shost = sdev->host;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(shost->host_lock, flags);
457 	shost->host_busy--;
458 	if (unlikely(scsi_host_in_recovery(shost) &&
459 		     (shost->host_failed || shost->host_eh_scheduled)))
460 		scsi_eh_wakeup(shost);
461 	spin_unlock(shost->host_lock);
462 	spin_lock(sdev->request_queue->queue_lock);
463 	sdev->device_busy--;
464 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466 
467 /*
468  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469  * and call blk_run_queue for all the scsi_devices on the target -
470  * including current_sdev first.
471  *
472  * Called with *no* scsi locks held.
473  */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476 	struct Scsi_Host *shost = current_sdev->host;
477 	struct scsi_device *sdev, *tmp;
478 	struct scsi_target *starget = scsi_target(current_sdev);
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(shost->host_lock, flags);
482 	starget->starget_sdev_user = NULL;
483 	spin_unlock_irqrestore(shost->host_lock, flags);
484 
485 	/*
486 	 * Call blk_run_queue for all LUNs on the target, starting with
487 	 * current_sdev. We race with others (to set starget_sdev_user),
488 	 * but in most cases, we will be first. Ideally, each LU on the
489 	 * target would get some limited time or requests on the target.
490 	 */
491 	blk_run_queue(current_sdev->request_queue);
492 
493 	spin_lock_irqsave(shost->host_lock, flags);
494 	if (starget->starget_sdev_user)
495 		goto out;
496 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497 			same_target_siblings) {
498 		if (sdev == current_sdev)
499 			continue;
500 		if (scsi_device_get(sdev))
501 			continue;
502 
503 		spin_unlock_irqrestore(shost->host_lock, flags);
504 		blk_run_queue(sdev->request_queue);
505 		spin_lock_irqsave(shost->host_lock, flags);
506 
507 		scsi_device_put(sdev);
508 	}
509  out:
510 	spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512 
513 /*
514  * Function:	scsi_run_queue()
515  *
516  * Purpose:	Select a proper request queue to serve next
517  *
518  * Arguments:	q	- last request's queue
519  *
520  * Returns:     Nothing
521  *
522  * Notes:	The previous command was completely finished, start
523  *		a new one if possible.
524  */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527 	struct scsi_device *sdev = q->queuedata;
528 	struct Scsi_Host *shost = sdev->host;
529 	unsigned long flags;
530 
531 	if (scsi_target(sdev)->single_lun)
532 		scsi_single_lun_run(sdev);
533 
534 	spin_lock_irqsave(shost->host_lock, flags);
535 	while (!list_empty(&shost->starved_list) &&
536 	       !shost->host_blocked && !shost->host_self_blocked &&
537 		!((shost->can_queue > 0) &&
538 		  (shost->host_busy >= shost->can_queue))) {
539 		/*
540 		 * As long as shost is accepting commands and we have
541 		 * starved queues, call blk_run_queue. scsi_request_fn
542 		 * drops the queue_lock and can add us back to the
543 		 * starved_list.
544 		 *
545 		 * host_lock protects the starved_list and starved_entry.
546 		 * scsi_request_fn must get the host_lock before checking
547 		 * or modifying starved_list or starved_entry.
548 		 */
549 		sdev = list_entry(shost->starved_list.next,
550 					  struct scsi_device, starved_entry);
551 		list_del_init(&sdev->starved_entry);
552 		spin_unlock_irqrestore(shost->host_lock, flags);
553 
554 
555 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
557 				      &sdev->request_queue->queue_flags)) {
558 			blk_run_queue(sdev->request_queue);
559 			clear_bit(QUEUE_FLAG_REENTER,
560 				  &sdev->request_queue->queue_flags);
561 		} else
562 			blk_run_queue(sdev->request_queue);
563 
564 		spin_lock_irqsave(shost->host_lock, flags);
565 		if (unlikely(!list_empty(&sdev->starved_entry)))
566 			/*
567 			 * sdev lost a race, and was put back on the
568 			 * starved list. This is unlikely but without this
569 			 * in theory we could loop forever.
570 			 */
571 			break;
572 	}
573 	spin_unlock_irqrestore(shost->host_lock, flags);
574 
575 	blk_run_queue(q);
576 }
577 
578 /*
579  * Function:	scsi_requeue_command()
580  *
581  * Purpose:	Handle post-processing of completed commands.
582  *
583  * Arguments:	q	- queue to operate on
584  *		cmd	- command that may need to be requeued.
585  *
586  * Returns:	Nothing
587  *
588  * Notes:	After command completion, there may be blocks left
589  *		over which weren't finished by the previous command
590  *		this can be for a number of reasons - the main one is
591  *		I/O errors in the middle of the request, in which case
592  *		we need to request the blocks that come after the bad
593  *		sector.
594  * Notes:	Upon return, cmd is a stale pointer.
595  */
596 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597 {
598 	struct request *req = cmd->request;
599 	unsigned long flags;
600 
601 	scsi_unprep_request(req);
602 	spin_lock_irqsave(q->queue_lock, flags);
603 	blk_requeue_request(q, req);
604 	spin_unlock_irqrestore(q->queue_lock, flags);
605 
606 	scsi_run_queue(q);
607 }
608 
609 void scsi_next_command(struct scsi_cmnd *cmd)
610 {
611 	struct scsi_device *sdev = cmd->device;
612 	struct request_queue *q = sdev->request_queue;
613 
614 	/* need to hold a reference on the device before we let go of the cmd */
615 	get_device(&sdev->sdev_gendev);
616 
617 	scsi_put_command(cmd);
618 	scsi_run_queue(q);
619 
620 	/* ok to remove device now */
621 	put_device(&sdev->sdev_gendev);
622 }
623 
624 void scsi_run_host_queues(struct Scsi_Host *shost)
625 {
626 	struct scsi_device *sdev;
627 
628 	shost_for_each_device(sdev, shost)
629 		scsi_run_queue(sdev->request_queue);
630 }
631 
632 /*
633  * Function:    scsi_end_request()
634  *
635  * Purpose:     Post-processing of completed commands (usually invoked at end
636  *		of upper level post-processing and scsi_io_completion).
637  *
638  * Arguments:   cmd	 - command that is complete.
639  *              error    - 0 if I/O indicates success, < 0 for I/O error.
640  *              bytes    - number of bytes of completed I/O
641  *		requeue  - indicates whether we should requeue leftovers.
642  *
643  * Lock status: Assumed that lock is not held upon entry.
644  *
645  * Returns:     cmd if requeue required, NULL otherwise.
646  *
647  * Notes:       This is called for block device requests in order to
648  *              mark some number of sectors as complete.
649  *
650  *		We are guaranteeing that the request queue will be goosed
651  *		at some point during this call.
652  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
653  */
654 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
655 					  int bytes, int requeue)
656 {
657 	struct request_queue *q = cmd->device->request_queue;
658 	struct request *req = cmd->request;
659 
660 	/*
661 	 * If there are blocks left over at the end, set up the command
662 	 * to queue the remainder of them.
663 	 */
664 	if (blk_end_request(req, error, bytes)) {
665 		int leftover = (req->hard_nr_sectors << 9);
666 
667 		if (blk_pc_request(req))
668 			leftover = req->data_len;
669 
670 		/* kill remainder if no retrys */
671 		if (error && blk_noretry_request(req))
672 			blk_end_request(req, error, leftover);
673 		else {
674 			if (requeue) {
675 				/*
676 				 * Bleah.  Leftovers again.  Stick the
677 				 * leftovers in the front of the
678 				 * queue, and goose the queue again.
679 				 */
680 				scsi_requeue_command(q, cmd);
681 				cmd = NULL;
682 			}
683 			return cmd;
684 		}
685 	}
686 
687 	/*
688 	 * This will goose the queue request function at the end, so we don't
689 	 * need to worry about launching another command.
690 	 */
691 	scsi_next_command(cmd);
692 	return NULL;
693 }
694 
695 static inline unsigned int scsi_sgtable_index(unsigned short nents)
696 {
697 	unsigned int index;
698 
699 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
700 
701 	if (nents <= 8)
702 		index = 0;
703 	else
704 		index = get_count_order(nents) - 3;
705 
706 	return index;
707 }
708 
709 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
710 {
711 	struct scsi_host_sg_pool *sgp;
712 
713 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
714 	mempool_free(sgl, sgp->pool);
715 }
716 
717 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
718 {
719 	struct scsi_host_sg_pool *sgp;
720 
721 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
722 	return mempool_alloc(sgp->pool, gfp_mask);
723 }
724 
725 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
726 			      gfp_t gfp_mask)
727 {
728 	int ret;
729 
730 	BUG_ON(!nents);
731 
732 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
733 			       gfp_mask, scsi_sg_alloc);
734 	if (unlikely(ret))
735 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
736 				scsi_sg_free);
737 
738 	return ret;
739 }
740 
741 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
742 {
743 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
744 }
745 
746 /*
747  * Function:    scsi_release_buffers()
748  *
749  * Purpose:     Completion processing for block device I/O requests.
750  *
751  * Arguments:   cmd	- command that we are bailing.
752  *
753  * Lock status: Assumed that no lock is held upon entry.
754  *
755  * Returns:     Nothing
756  *
757  * Notes:       In the event that an upper level driver rejects a
758  *		command, we must release resources allocated during
759  *		the __init_io() function.  Primarily this would involve
760  *		the scatter-gather table, and potentially any bounce
761  *		buffers.
762  */
763 void scsi_release_buffers(struct scsi_cmnd *cmd)
764 {
765 	if (cmd->sdb.table.nents)
766 		scsi_free_sgtable(&cmd->sdb);
767 
768 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
769 
770 	if (scsi_bidi_cmnd(cmd)) {
771 		struct scsi_data_buffer *bidi_sdb =
772 			cmd->request->next_rq->special;
773 		scsi_free_sgtable(bidi_sdb);
774 		kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
775 		cmd->request->next_rq->special = NULL;
776 	}
777 }
778 EXPORT_SYMBOL(scsi_release_buffers);
779 
780 /*
781  * Bidi commands Must be complete as a whole, both sides at once.
782  * If part of the bytes were written and lld returned
783  * scsi_in()->resid and/or scsi_out()->resid this information will be left
784  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
785  * decide what to do with this information.
786  */
787 void scsi_end_bidi_request(struct scsi_cmnd *cmd)
788 {
789 	struct request *req = cmd->request;
790 	unsigned int dlen = req->data_len;
791 	unsigned int next_dlen = req->next_rq->data_len;
792 
793 	req->data_len = scsi_out(cmd)->resid;
794 	req->next_rq->data_len = scsi_in(cmd)->resid;
795 
796 	/* The req and req->next_rq have not been completed */
797 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
798 
799 	scsi_release_buffers(cmd);
800 
801 	/*
802 	 * This will goose the queue request function at the end, so we don't
803 	 * need to worry about launching another command.
804 	 */
805 	scsi_next_command(cmd);
806 }
807 
808 /*
809  * Function:    scsi_io_completion()
810  *
811  * Purpose:     Completion processing for block device I/O requests.
812  *
813  * Arguments:   cmd   - command that is finished.
814  *
815  * Lock status: Assumed that no lock is held upon entry.
816  *
817  * Returns:     Nothing
818  *
819  * Notes:       This function is matched in terms of capabilities to
820  *              the function that created the scatter-gather list.
821  *              In other words, if there are no bounce buffers
822  *              (the normal case for most drivers), we don't need
823  *              the logic to deal with cleaning up afterwards.
824  *
825  *		We must do one of several things here:
826  *
827  *		a) Call scsi_end_request.  This will finish off the
828  *		   specified number of sectors.  If we are done, the
829  *		   command block will be released, and the queue
830  *		   function will be goosed.  If we are not done, then
831  *		   scsi_end_request will directly goose the queue.
832  *
833  *		b) We can just use scsi_requeue_command() here.  This would
834  *		   be used if we just wanted to retry, for example.
835  */
836 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
837 {
838 	int result = cmd->result;
839 	int this_count = scsi_bufflen(cmd);
840 	struct request_queue *q = cmd->device->request_queue;
841 	struct request *req = cmd->request;
842 	int clear_errors = 1;
843 	struct scsi_sense_hdr sshdr;
844 	int sense_valid = 0;
845 	int sense_deferred = 0;
846 
847 	if (result) {
848 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
849 		if (sense_valid)
850 			sense_deferred = scsi_sense_is_deferred(&sshdr);
851 	}
852 
853 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
854 		req->errors = result;
855 		if (result) {
856 			clear_errors = 0;
857 			if (sense_valid && req->sense) {
858 				/*
859 				 * SG_IO wants current and deferred errors
860 				 */
861 				int len = 8 + cmd->sense_buffer[7];
862 
863 				if (len > SCSI_SENSE_BUFFERSIZE)
864 					len = SCSI_SENSE_BUFFERSIZE;
865 				memcpy(req->sense, cmd->sense_buffer,  len);
866 				req->sense_len = len;
867 			}
868 		}
869 		if (scsi_bidi_cmnd(cmd)) {
870 			/* will also release_buffers */
871 			scsi_end_bidi_request(cmd);
872 			return;
873 		}
874 		req->data_len = scsi_get_resid(cmd);
875 	}
876 
877 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
878 	scsi_release_buffers(cmd);
879 
880 	/*
881 	 * Next deal with any sectors which we were able to correctly
882 	 * handle.
883 	 */
884 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
885 				      "%d bytes done.\n",
886 				      req->nr_sectors, good_bytes));
887 
888 	if (clear_errors)
889 		req->errors = 0;
890 
891 	/* A number of bytes were successfully read.  If there
892 	 * are leftovers and there is some kind of error
893 	 * (result != 0), retry the rest.
894 	 */
895 	if (scsi_end_request(cmd, 0, good_bytes, result == 0) == NULL)
896 		return;
897 
898 	/* good_bytes = 0, or (inclusive) there were leftovers and
899 	 * result = 0, so scsi_end_request couldn't retry.
900 	 */
901 	if (sense_valid && !sense_deferred) {
902 		switch (sshdr.sense_key) {
903 		case UNIT_ATTENTION:
904 			if (cmd->device->removable) {
905 				/* Detected disc change.  Set a bit
906 				 * and quietly refuse further access.
907 				 */
908 				cmd->device->changed = 1;
909 				scsi_end_request(cmd, -EIO, this_count, 1);
910 				return;
911 			} else {
912 				/* Must have been a power glitch, or a
913 				 * bus reset.  Could not have been a
914 				 * media change, so we just retry the
915 				 * request and see what happens.
916 				 */
917 				scsi_requeue_command(q, cmd);
918 				return;
919 			}
920 			break;
921 		case ILLEGAL_REQUEST:
922 			/* If we had an ILLEGAL REQUEST returned, then
923 			 * we may have performed an unsupported
924 			 * command.  The only thing this should be
925 			 * would be a ten byte read where only a six
926 			 * byte read was supported.  Also, on a system
927 			 * where READ CAPACITY failed, we may have
928 			 * read past the end of the disk.
929 			 */
930 			if ((cmd->device->use_10_for_rw &&
931 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
932 			    (cmd->cmnd[0] == READ_10 ||
933 			     cmd->cmnd[0] == WRITE_10)) {
934 				cmd->device->use_10_for_rw = 0;
935 				/* This will cause a retry with a
936 				 * 6-byte command.
937 				 */
938 				scsi_requeue_command(q, cmd);
939 				return;
940 			} else {
941 				scsi_end_request(cmd, -EIO, this_count, 1);
942 				return;
943 			}
944 			break;
945 		case NOT_READY:
946 			/* If the device is in the process of becoming
947 			 * ready, or has a temporary blockage, retry.
948 			 */
949 			if (sshdr.asc == 0x04) {
950 				switch (sshdr.ascq) {
951 				case 0x01: /* becoming ready */
952 				case 0x04: /* format in progress */
953 				case 0x05: /* rebuild in progress */
954 				case 0x06: /* recalculation in progress */
955 				case 0x07: /* operation in progress */
956 				case 0x08: /* Long write in progress */
957 				case 0x09: /* self test in progress */
958 					scsi_requeue_command(q, cmd);
959 					return;
960 				default:
961 					break;
962 				}
963 			}
964 			if (!(req->cmd_flags & REQ_QUIET))
965 				scsi_cmd_print_sense_hdr(cmd,
966 							 "Device not ready",
967 							 &sshdr);
968 
969 			scsi_end_request(cmd, -EIO, this_count, 1);
970 			return;
971 		case VOLUME_OVERFLOW:
972 			if (!(req->cmd_flags & REQ_QUIET)) {
973 				scmd_printk(KERN_INFO, cmd,
974 					    "Volume overflow, CDB: ");
975 				__scsi_print_command(cmd->cmnd);
976 				scsi_print_sense("", cmd);
977 			}
978 			/* See SSC3rXX or current. */
979 			scsi_end_request(cmd, -EIO, this_count, 1);
980 			return;
981 		default:
982 			break;
983 		}
984 	}
985 	if (host_byte(result) == DID_RESET) {
986 		/* Third party bus reset or reset for error recovery
987 		 * reasons.  Just retry the request and see what
988 		 * happens.
989 		 */
990 		scsi_requeue_command(q, cmd);
991 		return;
992 	}
993 	if (result) {
994 		if (!(req->cmd_flags & REQ_QUIET)) {
995 			scsi_print_result(cmd);
996 			if (driver_byte(result) & DRIVER_SENSE)
997 				scsi_print_sense("", cmd);
998 		}
999 	}
1000 	scsi_end_request(cmd, -EIO, this_count, !result);
1001 }
1002 
1003 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1004 			     gfp_t gfp_mask)
1005 {
1006 	int count;
1007 
1008 	/*
1009 	 * If sg table allocation fails, requeue request later.
1010 	 */
1011 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1012 					gfp_mask))) {
1013 		return BLKPREP_DEFER;
1014 	}
1015 
1016 	req->buffer = NULL;
1017 
1018 	/*
1019 	 * Next, walk the list, and fill in the addresses and sizes of
1020 	 * each segment.
1021 	 */
1022 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1023 	BUG_ON(count > sdb->table.nents);
1024 	sdb->table.nents = count;
1025 	if (blk_pc_request(req))
1026 		sdb->length = req->data_len;
1027 	else
1028 		sdb->length = req->nr_sectors << 9;
1029 	return BLKPREP_OK;
1030 }
1031 
1032 /*
1033  * Function:    scsi_init_io()
1034  *
1035  * Purpose:     SCSI I/O initialize function.
1036  *
1037  * Arguments:   cmd   - Command descriptor we wish to initialize
1038  *
1039  * Returns:     0 on success
1040  *		BLKPREP_DEFER if the failure is retryable
1041  *		BLKPREP_KILL if the failure is fatal
1042  */
1043 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1044 {
1045 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1046 	if (error)
1047 		goto err_exit;
1048 
1049 	if (blk_bidi_rq(cmd->request)) {
1050 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1051 			scsi_bidi_sdb_cache, GFP_ATOMIC);
1052 		if (!bidi_sdb) {
1053 			error = BLKPREP_DEFER;
1054 			goto err_exit;
1055 		}
1056 
1057 		cmd->request->next_rq->special = bidi_sdb;
1058 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1059 								    GFP_ATOMIC);
1060 		if (error)
1061 			goto err_exit;
1062 	}
1063 
1064 	return BLKPREP_OK ;
1065 
1066 err_exit:
1067 	scsi_release_buffers(cmd);
1068 	if (error == BLKPREP_KILL)
1069 		scsi_put_command(cmd);
1070 	else /* BLKPREP_DEFER */
1071 		scsi_unprep_request(cmd->request);
1072 
1073 	return error;
1074 }
1075 EXPORT_SYMBOL(scsi_init_io);
1076 
1077 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1078 		struct request *req)
1079 {
1080 	struct scsi_cmnd *cmd;
1081 
1082 	if (!req->special) {
1083 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1084 		if (unlikely(!cmd))
1085 			return NULL;
1086 		req->special = cmd;
1087 	} else {
1088 		cmd = req->special;
1089 	}
1090 
1091 	/* pull a tag out of the request if we have one */
1092 	cmd->tag = req->tag;
1093 	cmd->request = req;
1094 
1095 	return cmd;
1096 }
1097 
1098 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1099 {
1100 	struct scsi_cmnd *cmd;
1101 	int ret = scsi_prep_state_check(sdev, req);
1102 
1103 	if (ret != BLKPREP_OK)
1104 		return ret;
1105 
1106 	cmd = scsi_get_cmd_from_req(sdev, req);
1107 	if (unlikely(!cmd))
1108 		return BLKPREP_DEFER;
1109 
1110 	/*
1111 	 * BLOCK_PC requests may transfer data, in which case they must
1112 	 * a bio attached to them.  Or they might contain a SCSI command
1113 	 * that does not transfer data, in which case they may optionally
1114 	 * submit a request without an attached bio.
1115 	 */
1116 	if (req->bio) {
1117 		int ret;
1118 
1119 		BUG_ON(!req->nr_phys_segments);
1120 
1121 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1122 		if (unlikely(ret))
1123 			return ret;
1124 	} else {
1125 		BUG_ON(req->data_len);
1126 		BUG_ON(req->data);
1127 
1128 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1129 		req->buffer = NULL;
1130 	}
1131 
1132 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1133 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1134 	cmd->cmd_len = req->cmd_len;
1135 	if (!req->data_len)
1136 		cmd->sc_data_direction = DMA_NONE;
1137 	else if (rq_data_dir(req) == WRITE)
1138 		cmd->sc_data_direction = DMA_TO_DEVICE;
1139 	else
1140 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1141 
1142 	cmd->transfersize = req->data_len;
1143 	cmd->allowed = req->retries;
1144 	cmd->timeout_per_command = req->timeout;
1145 	return BLKPREP_OK;
1146 }
1147 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1148 
1149 /*
1150  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1151  * from filesystems that still need to be translated to SCSI CDBs from
1152  * the ULD.
1153  */
1154 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1155 {
1156 	struct scsi_cmnd *cmd;
1157 	int ret = scsi_prep_state_check(sdev, req);
1158 
1159 	if (ret != BLKPREP_OK)
1160 		return ret;
1161 	/*
1162 	 * Filesystem requests must transfer data.
1163 	 */
1164 	BUG_ON(!req->nr_phys_segments);
1165 
1166 	cmd = scsi_get_cmd_from_req(sdev, req);
1167 	if (unlikely(!cmd))
1168 		return BLKPREP_DEFER;
1169 
1170 	return scsi_init_io(cmd, GFP_ATOMIC);
1171 }
1172 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1173 
1174 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1175 {
1176 	int ret = BLKPREP_OK;
1177 
1178 	/*
1179 	 * If the device is not in running state we will reject some
1180 	 * or all commands.
1181 	 */
1182 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1183 		switch (sdev->sdev_state) {
1184 		case SDEV_OFFLINE:
1185 			/*
1186 			 * If the device is offline we refuse to process any
1187 			 * commands.  The device must be brought online
1188 			 * before trying any recovery commands.
1189 			 */
1190 			sdev_printk(KERN_ERR, sdev,
1191 				    "rejecting I/O to offline device\n");
1192 			ret = BLKPREP_KILL;
1193 			break;
1194 		case SDEV_DEL:
1195 			/*
1196 			 * If the device is fully deleted, we refuse to
1197 			 * process any commands as well.
1198 			 */
1199 			sdev_printk(KERN_ERR, sdev,
1200 				    "rejecting I/O to dead device\n");
1201 			ret = BLKPREP_KILL;
1202 			break;
1203 		case SDEV_QUIESCE:
1204 		case SDEV_BLOCK:
1205 			/*
1206 			 * If the devices is blocked we defer normal commands.
1207 			 */
1208 			if (!(req->cmd_flags & REQ_PREEMPT))
1209 				ret = BLKPREP_DEFER;
1210 			break;
1211 		default:
1212 			/*
1213 			 * For any other not fully online state we only allow
1214 			 * special commands.  In particular any user initiated
1215 			 * command is not allowed.
1216 			 */
1217 			if (!(req->cmd_flags & REQ_PREEMPT))
1218 				ret = BLKPREP_KILL;
1219 			break;
1220 		}
1221 	}
1222 	return ret;
1223 }
1224 EXPORT_SYMBOL(scsi_prep_state_check);
1225 
1226 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1227 {
1228 	struct scsi_device *sdev = q->queuedata;
1229 
1230 	switch (ret) {
1231 	case BLKPREP_KILL:
1232 		req->errors = DID_NO_CONNECT << 16;
1233 		/* release the command and kill it */
1234 		if (req->special) {
1235 			struct scsi_cmnd *cmd = req->special;
1236 			scsi_release_buffers(cmd);
1237 			scsi_put_command(cmd);
1238 			req->special = NULL;
1239 		}
1240 		break;
1241 	case BLKPREP_DEFER:
1242 		/*
1243 		 * If we defer, the elv_next_request() returns NULL, but the
1244 		 * queue must be restarted, so we plug here if no returning
1245 		 * command will automatically do that.
1246 		 */
1247 		if (sdev->device_busy == 0)
1248 			blk_plug_device(q);
1249 		break;
1250 	default:
1251 		req->cmd_flags |= REQ_DONTPREP;
1252 	}
1253 
1254 	return ret;
1255 }
1256 EXPORT_SYMBOL(scsi_prep_return);
1257 
1258 int scsi_prep_fn(struct request_queue *q, struct request *req)
1259 {
1260 	struct scsi_device *sdev = q->queuedata;
1261 	int ret = BLKPREP_KILL;
1262 
1263 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1264 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1265 	return scsi_prep_return(q, req, ret);
1266 }
1267 
1268 /*
1269  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1270  * return 0.
1271  *
1272  * Called with the queue_lock held.
1273  */
1274 static inline int scsi_dev_queue_ready(struct request_queue *q,
1275 				  struct scsi_device *sdev)
1276 {
1277 	if (sdev->device_busy >= sdev->queue_depth)
1278 		return 0;
1279 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1280 		/*
1281 		 * unblock after device_blocked iterates to zero
1282 		 */
1283 		if (--sdev->device_blocked == 0) {
1284 			SCSI_LOG_MLQUEUE(3,
1285 				   sdev_printk(KERN_INFO, sdev,
1286 				   "unblocking device at zero depth\n"));
1287 		} else {
1288 			blk_plug_device(q);
1289 			return 0;
1290 		}
1291 	}
1292 	if (sdev->device_blocked)
1293 		return 0;
1294 
1295 	return 1;
1296 }
1297 
1298 /*
1299  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1300  * return 0. We must end up running the queue again whenever 0 is
1301  * returned, else IO can hang.
1302  *
1303  * Called with host_lock held.
1304  */
1305 static inline int scsi_host_queue_ready(struct request_queue *q,
1306 				   struct Scsi_Host *shost,
1307 				   struct scsi_device *sdev)
1308 {
1309 	if (scsi_host_in_recovery(shost))
1310 		return 0;
1311 	if (shost->host_busy == 0 && shost->host_blocked) {
1312 		/*
1313 		 * unblock after host_blocked iterates to zero
1314 		 */
1315 		if (--shost->host_blocked == 0) {
1316 			SCSI_LOG_MLQUEUE(3,
1317 				printk("scsi%d unblocking host at zero depth\n",
1318 					shost->host_no));
1319 		} else {
1320 			blk_plug_device(q);
1321 			return 0;
1322 		}
1323 	}
1324 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1325 	    shost->host_blocked || shost->host_self_blocked) {
1326 		if (list_empty(&sdev->starved_entry))
1327 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1328 		return 0;
1329 	}
1330 
1331 	/* We're OK to process the command, so we can't be starved */
1332 	if (!list_empty(&sdev->starved_entry))
1333 		list_del_init(&sdev->starved_entry);
1334 
1335 	return 1;
1336 }
1337 
1338 /*
1339  * Kill a request for a dead device
1340  */
1341 static void scsi_kill_request(struct request *req, struct request_queue *q)
1342 {
1343 	struct scsi_cmnd *cmd = req->special;
1344 	struct scsi_device *sdev = cmd->device;
1345 	struct Scsi_Host *shost = sdev->host;
1346 
1347 	blkdev_dequeue_request(req);
1348 
1349 	if (unlikely(cmd == NULL)) {
1350 		printk(KERN_CRIT "impossible request in %s.\n",
1351 				 __FUNCTION__);
1352 		BUG();
1353 	}
1354 
1355 	scsi_init_cmd_errh(cmd);
1356 	cmd->result = DID_NO_CONNECT << 16;
1357 	atomic_inc(&cmd->device->iorequest_cnt);
1358 
1359 	/*
1360 	 * SCSI request completion path will do scsi_device_unbusy(),
1361 	 * bump busy counts.  To bump the counters, we need to dance
1362 	 * with the locks as normal issue path does.
1363 	 */
1364 	sdev->device_busy++;
1365 	spin_unlock(sdev->request_queue->queue_lock);
1366 	spin_lock(shost->host_lock);
1367 	shost->host_busy++;
1368 	spin_unlock(shost->host_lock);
1369 	spin_lock(sdev->request_queue->queue_lock);
1370 
1371 	__scsi_done(cmd);
1372 }
1373 
1374 static void scsi_softirq_done(struct request *rq)
1375 {
1376 	struct scsi_cmnd *cmd = rq->completion_data;
1377 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1378 	int disposition;
1379 
1380 	INIT_LIST_HEAD(&cmd->eh_entry);
1381 
1382 	disposition = scsi_decide_disposition(cmd);
1383 	if (disposition != SUCCESS &&
1384 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1385 		sdev_printk(KERN_ERR, cmd->device,
1386 			    "timing out command, waited %lus\n",
1387 			    wait_for/HZ);
1388 		disposition = SUCCESS;
1389 	}
1390 
1391 	scsi_log_completion(cmd, disposition);
1392 
1393 	switch (disposition) {
1394 		case SUCCESS:
1395 			scsi_finish_command(cmd);
1396 			break;
1397 		case NEEDS_RETRY:
1398 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1399 			break;
1400 		case ADD_TO_MLQUEUE:
1401 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1402 			break;
1403 		default:
1404 			if (!scsi_eh_scmd_add(cmd, 0))
1405 				scsi_finish_command(cmd);
1406 	}
1407 }
1408 
1409 /*
1410  * Function:    scsi_request_fn()
1411  *
1412  * Purpose:     Main strategy routine for SCSI.
1413  *
1414  * Arguments:   q       - Pointer to actual queue.
1415  *
1416  * Returns:     Nothing
1417  *
1418  * Lock status: IO request lock assumed to be held when called.
1419  */
1420 static void scsi_request_fn(struct request_queue *q)
1421 {
1422 	struct scsi_device *sdev = q->queuedata;
1423 	struct Scsi_Host *shost;
1424 	struct scsi_cmnd *cmd;
1425 	struct request *req;
1426 
1427 	if (!sdev) {
1428 		printk("scsi: killing requests for dead queue\n");
1429 		while ((req = elv_next_request(q)) != NULL)
1430 			scsi_kill_request(req, q);
1431 		return;
1432 	}
1433 
1434 	if(!get_device(&sdev->sdev_gendev))
1435 		/* We must be tearing the block queue down already */
1436 		return;
1437 
1438 	/*
1439 	 * To start with, we keep looping until the queue is empty, or until
1440 	 * the host is no longer able to accept any more requests.
1441 	 */
1442 	shost = sdev->host;
1443 	while (!blk_queue_plugged(q)) {
1444 		int rtn;
1445 		/*
1446 		 * get next queueable request.  We do this early to make sure
1447 		 * that the request is fully prepared even if we cannot
1448 		 * accept it.
1449 		 */
1450 		req = elv_next_request(q);
1451 		if (!req || !scsi_dev_queue_ready(q, sdev))
1452 			break;
1453 
1454 		if (unlikely(!scsi_device_online(sdev))) {
1455 			sdev_printk(KERN_ERR, sdev,
1456 				    "rejecting I/O to offline device\n");
1457 			scsi_kill_request(req, q);
1458 			continue;
1459 		}
1460 
1461 
1462 		/*
1463 		 * Remove the request from the request list.
1464 		 */
1465 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1466 			blkdev_dequeue_request(req);
1467 		sdev->device_busy++;
1468 
1469 		spin_unlock(q->queue_lock);
1470 		cmd = req->special;
1471 		if (unlikely(cmd == NULL)) {
1472 			printk(KERN_CRIT "impossible request in %s.\n"
1473 					 "please mail a stack trace to "
1474 					 "linux-scsi@vger.kernel.org\n",
1475 					 __FUNCTION__);
1476 			blk_dump_rq_flags(req, "foo");
1477 			BUG();
1478 		}
1479 		spin_lock(shost->host_lock);
1480 
1481 		if (!scsi_host_queue_ready(q, shost, sdev))
1482 			goto not_ready;
1483 		if (scsi_target(sdev)->single_lun) {
1484 			if (scsi_target(sdev)->starget_sdev_user &&
1485 			    scsi_target(sdev)->starget_sdev_user != sdev)
1486 				goto not_ready;
1487 			scsi_target(sdev)->starget_sdev_user = sdev;
1488 		}
1489 		shost->host_busy++;
1490 
1491 		/*
1492 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1493 		 *		take the lock again.
1494 		 */
1495 		spin_unlock_irq(shost->host_lock);
1496 
1497 		/*
1498 		 * Finally, initialize any error handling parameters, and set up
1499 		 * the timers for timeouts.
1500 		 */
1501 		scsi_init_cmd_errh(cmd);
1502 
1503 		/*
1504 		 * Dispatch the command to the low-level driver.
1505 		 */
1506 		rtn = scsi_dispatch_cmd(cmd);
1507 		spin_lock_irq(q->queue_lock);
1508 		if(rtn) {
1509 			/* we're refusing the command; because of
1510 			 * the way locks get dropped, we need to
1511 			 * check here if plugging is required */
1512 			if(sdev->device_busy == 0)
1513 				blk_plug_device(q);
1514 
1515 			break;
1516 		}
1517 	}
1518 
1519 	goto out;
1520 
1521  not_ready:
1522 	spin_unlock_irq(shost->host_lock);
1523 
1524 	/*
1525 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1526 	 * must return with queue_lock held.
1527 	 *
1528 	 * Decrementing device_busy without checking it is OK, as all such
1529 	 * cases (host limits or settings) should run the queue at some
1530 	 * later time.
1531 	 */
1532 	spin_lock_irq(q->queue_lock);
1533 	blk_requeue_request(q, req);
1534 	sdev->device_busy--;
1535 	if(sdev->device_busy == 0)
1536 		blk_plug_device(q);
1537  out:
1538 	/* must be careful here...if we trigger the ->remove() function
1539 	 * we cannot be holding the q lock */
1540 	spin_unlock_irq(q->queue_lock);
1541 	put_device(&sdev->sdev_gendev);
1542 	spin_lock_irq(q->queue_lock);
1543 }
1544 
1545 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1546 {
1547 	struct device *host_dev;
1548 	u64 bounce_limit = 0xffffffff;
1549 
1550 	if (shost->unchecked_isa_dma)
1551 		return BLK_BOUNCE_ISA;
1552 	/*
1553 	 * Platforms with virtual-DMA translation
1554 	 * hardware have no practical limit.
1555 	 */
1556 	if (!PCI_DMA_BUS_IS_PHYS)
1557 		return BLK_BOUNCE_ANY;
1558 
1559 	host_dev = scsi_get_device(shost);
1560 	if (host_dev && host_dev->dma_mask)
1561 		bounce_limit = *host_dev->dma_mask;
1562 
1563 	return bounce_limit;
1564 }
1565 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1566 
1567 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1568 					 request_fn_proc *request_fn)
1569 {
1570 	struct request_queue *q;
1571 	struct device *dev = shost->shost_gendev.parent;
1572 
1573 	q = blk_init_queue(request_fn, NULL);
1574 	if (!q)
1575 		return NULL;
1576 
1577 	/*
1578 	 * this limit is imposed by hardware restrictions
1579 	 */
1580 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1581 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1582 
1583 	blk_queue_max_sectors(q, shost->max_sectors);
1584 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1585 	blk_queue_segment_boundary(q, shost->dma_boundary);
1586 	dma_set_seg_boundary(dev, shost->dma_boundary);
1587 
1588 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1589 
1590 	if (!shost->use_clustering)
1591 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1592 
1593 	/*
1594 	 * set a reasonable default alignment on word boundaries: the
1595 	 * host and device may alter it using
1596 	 * blk_queue_update_dma_alignment() later.
1597 	 */
1598 	blk_queue_dma_alignment(q, 0x03);
1599 
1600 	return q;
1601 }
1602 EXPORT_SYMBOL(__scsi_alloc_queue);
1603 
1604 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1605 {
1606 	struct request_queue *q;
1607 
1608 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1609 	if (!q)
1610 		return NULL;
1611 
1612 	blk_queue_prep_rq(q, scsi_prep_fn);
1613 	blk_queue_softirq_done(q, scsi_softirq_done);
1614 	return q;
1615 }
1616 
1617 void scsi_free_queue(struct request_queue *q)
1618 {
1619 	blk_cleanup_queue(q);
1620 }
1621 
1622 /*
1623  * Function:    scsi_block_requests()
1624  *
1625  * Purpose:     Utility function used by low-level drivers to prevent further
1626  *		commands from being queued to the device.
1627  *
1628  * Arguments:   shost       - Host in question
1629  *
1630  * Returns:     Nothing
1631  *
1632  * Lock status: No locks are assumed held.
1633  *
1634  * Notes:       There is no timer nor any other means by which the requests
1635  *		get unblocked other than the low-level driver calling
1636  *		scsi_unblock_requests().
1637  */
1638 void scsi_block_requests(struct Scsi_Host *shost)
1639 {
1640 	shost->host_self_blocked = 1;
1641 }
1642 EXPORT_SYMBOL(scsi_block_requests);
1643 
1644 /*
1645  * Function:    scsi_unblock_requests()
1646  *
1647  * Purpose:     Utility function used by low-level drivers to allow further
1648  *		commands from being queued to the device.
1649  *
1650  * Arguments:   shost       - Host in question
1651  *
1652  * Returns:     Nothing
1653  *
1654  * Lock status: No locks are assumed held.
1655  *
1656  * Notes:       There is no timer nor any other means by which the requests
1657  *		get unblocked other than the low-level driver calling
1658  *		scsi_unblock_requests().
1659  *
1660  *		This is done as an API function so that changes to the
1661  *		internals of the scsi mid-layer won't require wholesale
1662  *		changes to drivers that use this feature.
1663  */
1664 void scsi_unblock_requests(struct Scsi_Host *shost)
1665 {
1666 	shost->host_self_blocked = 0;
1667 	scsi_run_host_queues(shost);
1668 }
1669 EXPORT_SYMBOL(scsi_unblock_requests);
1670 
1671 int __init scsi_init_queue(void)
1672 {
1673 	int i;
1674 
1675 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1676 					sizeof(struct scsi_io_context),
1677 					0, 0, NULL);
1678 	if (!scsi_io_context_cache) {
1679 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1680 		return -ENOMEM;
1681 	}
1682 
1683 	scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1684 					sizeof(struct scsi_data_buffer),
1685 					0, 0, NULL);
1686 	if (!scsi_bidi_sdb_cache) {
1687 		printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1688 		goto cleanup_io_context;
1689 	}
1690 
1691 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1692 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1693 		int size = sgp->size * sizeof(struct scatterlist);
1694 
1695 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1696 				SLAB_HWCACHE_ALIGN, NULL);
1697 		if (!sgp->slab) {
1698 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1699 					sgp->name);
1700 			goto cleanup_bidi_sdb;
1701 		}
1702 
1703 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1704 						     sgp->slab);
1705 		if (!sgp->pool) {
1706 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1707 					sgp->name);
1708 			goto cleanup_bidi_sdb;
1709 		}
1710 	}
1711 
1712 	return 0;
1713 
1714 cleanup_bidi_sdb:
1715 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1716 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1717 		if (sgp->pool)
1718 			mempool_destroy(sgp->pool);
1719 		if (sgp->slab)
1720 			kmem_cache_destroy(sgp->slab);
1721 	}
1722 	kmem_cache_destroy(scsi_bidi_sdb_cache);
1723 cleanup_io_context:
1724 	kmem_cache_destroy(scsi_io_context_cache);
1725 
1726 	return -ENOMEM;
1727 }
1728 
1729 void scsi_exit_queue(void)
1730 {
1731 	int i;
1732 
1733 	kmem_cache_destroy(scsi_io_context_cache);
1734 	kmem_cache_destroy(scsi_bidi_sdb_cache);
1735 
1736 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1737 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1738 		mempool_destroy(sgp->pool);
1739 		kmem_cache_destroy(sgp->slab);
1740 	}
1741 }
1742 
1743 /**
1744  *	scsi_mode_select - issue a mode select
1745  *	@sdev:	SCSI device to be queried
1746  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1747  *	@sp:	Save page bit (0 == don't save, 1 == save)
1748  *	@modepage: mode page being requested
1749  *	@buffer: request buffer (may not be smaller than eight bytes)
1750  *	@len:	length of request buffer.
1751  *	@timeout: command timeout
1752  *	@retries: number of retries before failing
1753  *	@data: returns a structure abstracting the mode header data
1754  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1755  *		must be SCSI_SENSE_BUFFERSIZE big.
1756  *
1757  *	Returns zero if successful; negative error number or scsi
1758  *	status on error
1759  *
1760  */
1761 int
1762 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1763 		 unsigned char *buffer, int len, int timeout, int retries,
1764 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1765 {
1766 	unsigned char cmd[10];
1767 	unsigned char *real_buffer;
1768 	int ret;
1769 
1770 	memset(cmd, 0, sizeof(cmd));
1771 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1772 
1773 	if (sdev->use_10_for_ms) {
1774 		if (len > 65535)
1775 			return -EINVAL;
1776 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1777 		if (!real_buffer)
1778 			return -ENOMEM;
1779 		memcpy(real_buffer + 8, buffer, len);
1780 		len += 8;
1781 		real_buffer[0] = 0;
1782 		real_buffer[1] = 0;
1783 		real_buffer[2] = data->medium_type;
1784 		real_buffer[3] = data->device_specific;
1785 		real_buffer[4] = data->longlba ? 0x01 : 0;
1786 		real_buffer[5] = 0;
1787 		real_buffer[6] = data->block_descriptor_length >> 8;
1788 		real_buffer[7] = data->block_descriptor_length;
1789 
1790 		cmd[0] = MODE_SELECT_10;
1791 		cmd[7] = len >> 8;
1792 		cmd[8] = len;
1793 	} else {
1794 		if (len > 255 || data->block_descriptor_length > 255 ||
1795 		    data->longlba)
1796 			return -EINVAL;
1797 
1798 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1799 		if (!real_buffer)
1800 			return -ENOMEM;
1801 		memcpy(real_buffer + 4, buffer, len);
1802 		len += 4;
1803 		real_buffer[0] = 0;
1804 		real_buffer[1] = data->medium_type;
1805 		real_buffer[2] = data->device_specific;
1806 		real_buffer[3] = data->block_descriptor_length;
1807 
1808 
1809 		cmd[0] = MODE_SELECT;
1810 		cmd[4] = len;
1811 	}
1812 
1813 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1814 			       sshdr, timeout, retries);
1815 	kfree(real_buffer);
1816 	return ret;
1817 }
1818 EXPORT_SYMBOL_GPL(scsi_mode_select);
1819 
1820 /**
1821  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1822  *	@sdev:	SCSI device to be queried
1823  *	@dbd:	set if mode sense will allow block descriptors to be returned
1824  *	@modepage: mode page being requested
1825  *	@buffer: request buffer (may not be smaller than eight bytes)
1826  *	@len:	length of request buffer.
1827  *	@timeout: command timeout
1828  *	@retries: number of retries before failing
1829  *	@data: returns a structure abstracting the mode header data
1830  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1831  *		must be SCSI_SENSE_BUFFERSIZE big.
1832  *
1833  *	Returns zero if unsuccessful, or the header offset (either 4
1834  *	or 8 depending on whether a six or ten byte command was
1835  *	issued) if successful.
1836  */
1837 int
1838 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1839 		  unsigned char *buffer, int len, int timeout, int retries,
1840 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1841 {
1842 	unsigned char cmd[12];
1843 	int use_10_for_ms;
1844 	int header_length;
1845 	int result;
1846 	struct scsi_sense_hdr my_sshdr;
1847 
1848 	memset(data, 0, sizeof(*data));
1849 	memset(&cmd[0], 0, 12);
1850 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1851 	cmd[2] = modepage;
1852 
1853 	/* caller might not be interested in sense, but we need it */
1854 	if (!sshdr)
1855 		sshdr = &my_sshdr;
1856 
1857  retry:
1858 	use_10_for_ms = sdev->use_10_for_ms;
1859 
1860 	if (use_10_for_ms) {
1861 		if (len < 8)
1862 			len = 8;
1863 
1864 		cmd[0] = MODE_SENSE_10;
1865 		cmd[8] = len;
1866 		header_length = 8;
1867 	} else {
1868 		if (len < 4)
1869 			len = 4;
1870 
1871 		cmd[0] = MODE_SENSE;
1872 		cmd[4] = len;
1873 		header_length = 4;
1874 	}
1875 
1876 	memset(buffer, 0, len);
1877 
1878 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1879 				  sshdr, timeout, retries);
1880 
1881 	/* This code looks awful: what it's doing is making sure an
1882 	 * ILLEGAL REQUEST sense return identifies the actual command
1883 	 * byte as the problem.  MODE_SENSE commands can return
1884 	 * ILLEGAL REQUEST if the code page isn't supported */
1885 
1886 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1887 	    (driver_byte(result) & DRIVER_SENSE)) {
1888 		if (scsi_sense_valid(sshdr)) {
1889 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1890 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1891 				/*
1892 				 * Invalid command operation code
1893 				 */
1894 				sdev->use_10_for_ms = 0;
1895 				goto retry;
1896 			}
1897 		}
1898 	}
1899 
1900 	if(scsi_status_is_good(result)) {
1901 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1902 			     (modepage == 6 || modepage == 8))) {
1903 			/* Initio breakage? */
1904 			header_length = 0;
1905 			data->length = 13;
1906 			data->medium_type = 0;
1907 			data->device_specific = 0;
1908 			data->longlba = 0;
1909 			data->block_descriptor_length = 0;
1910 		} else if(use_10_for_ms) {
1911 			data->length = buffer[0]*256 + buffer[1] + 2;
1912 			data->medium_type = buffer[2];
1913 			data->device_specific = buffer[3];
1914 			data->longlba = buffer[4] & 0x01;
1915 			data->block_descriptor_length = buffer[6]*256
1916 				+ buffer[7];
1917 		} else {
1918 			data->length = buffer[0] + 1;
1919 			data->medium_type = buffer[1];
1920 			data->device_specific = buffer[2];
1921 			data->block_descriptor_length = buffer[3];
1922 		}
1923 		data->header_length = header_length;
1924 	}
1925 
1926 	return result;
1927 }
1928 EXPORT_SYMBOL(scsi_mode_sense);
1929 
1930 /**
1931  *	scsi_test_unit_ready - test if unit is ready
1932  *	@sdev:	scsi device to change the state of.
1933  *	@timeout: command timeout
1934  *	@retries: number of retries before failing
1935  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1936  *		returning sense. Make sure that this is cleared before passing
1937  *		in.
1938  *
1939  *	Returns zero if unsuccessful or an error if TUR failed.  For
1940  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1941  *	translated to success, with the ->changed flag updated.
1942  **/
1943 int
1944 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1945 		     struct scsi_sense_hdr *sshdr_external)
1946 {
1947 	char cmd[] = {
1948 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1949 	};
1950 	struct scsi_sense_hdr *sshdr;
1951 	int result;
1952 
1953 	if (!sshdr_external)
1954 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1955 	else
1956 		sshdr = sshdr_external;
1957 
1958 	/* try to eat the UNIT_ATTENTION if there are enough retries */
1959 	do {
1960 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1961 					  timeout, retries);
1962 	} while ((driver_byte(result) & DRIVER_SENSE) &&
1963 		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1964 		 --retries);
1965 
1966 	if (!sshdr)
1967 		/* could not allocate sense buffer, so can't process it */
1968 		return result;
1969 
1970 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1971 
1972 		if ((scsi_sense_valid(sshdr)) &&
1973 		    ((sshdr->sense_key == UNIT_ATTENTION) ||
1974 		     (sshdr->sense_key == NOT_READY))) {
1975 			sdev->changed = 1;
1976 			result = 0;
1977 		}
1978 	}
1979 	if (!sshdr_external)
1980 		kfree(sshdr);
1981 	return result;
1982 }
1983 EXPORT_SYMBOL(scsi_test_unit_ready);
1984 
1985 /**
1986  *	scsi_device_set_state - Take the given device through the device state model.
1987  *	@sdev:	scsi device to change the state of.
1988  *	@state:	state to change to.
1989  *
1990  *	Returns zero if unsuccessful or an error if the requested
1991  *	transition is illegal.
1992  */
1993 int
1994 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1995 {
1996 	enum scsi_device_state oldstate = sdev->sdev_state;
1997 
1998 	if (state == oldstate)
1999 		return 0;
2000 
2001 	switch (state) {
2002 	case SDEV_CREATED:
2003 		/* There are no legal states that come back to
2004 		 * created.  This is the manually initialised start
2005 		 * state */
2006 		goto illegal;
2007 
2008 	case SDEV_RUNNING:
2009 		switch (oldstate) {
2010 		case SDEV_CREATED:
2011 		case SDEV_OFFLINE:
2012 		case SDEV_QUIESCE:
2013 		case SDEV_BLOCK:
2014 			break;
2015 		default:
2016 			goto illegal;
2017 		}
2018 		break;
2019 
2020 	case SDEV_QUIESCE:
2021 		switch (oldstate) {
2022 		case SDEV_RUNNING:
2023 		case SDEV_OFFLINE:
2024 			break;
2025 		default:
2026 			goto illegal;
2027 		}
2028 		break;
2029 
2030 	case SDEV_OFFLINE:
2031 		switch (oldstate) {
2032 		case SDEV_CREATED:
2033 		case SDEV_RUNNING:
2034 		case SDEV_QUIESCE:
2035 		case SDEV_BLOCK:
2036 			break;
2037 		default:
2038 			goto illegal;
2039 		}
2040 		break;
2041 
2042 	case SDEV_BLOCK:
2043 		switch (oldstate) {
2044 		case SDEV_CREATED:
2045 		case SDEV_RUNNING:
2046 			break;
2047 		default:
2048 			goto illegal;
2049 		}
2050 		break;
2051 
2052 	case SDEV_CANCEL:
2053 		switch (oldstate) {
2054 		case SDEV_CREATED:
2055 		case SDEV_RUNNING:
2056 		case SDEV_QUIESCE:
2057 		case SDEV_OFFLINE:
2058 		case SDEV_BLOCK:
2059 			break;
2060 		default:
2061 			goto illegal;
2062 		}
2063 		break;
2064 
2065 	case SDEV_DEL:
2066 		switch (oldstate) {
2067 		case SDEV_CREATED:
2068 		case SDEV_RUNNING:
2069 		case SDEV_OFFLINE:
2070 		case SDEV_CANCEL:
2071 			break;
2072 		default:
2073 			goto illegal;
2074 		}
2075 		break;
2076 
2077 	}
2078 	sdev->sdev_state = state;
2079 	return 0;
2080 
2081  illegal:
2082 	SCSI_LOG_ERROR_RECOVERY(1,
2083 				sdev_printk(KERN_ERR, sdev,
2084 					    "Illegal state transition %s->%s\n",
2085 					    scsi_device_state_name(oldstate),
2086 					    scsi_device_state_name(state))
2087 				);
2088 	return -EINVAL;
2089 }
2090 EXPORT_SYMBOL(scsi_device_set_state);
2091 
2092 /**
2093  * 	sdev_evt_emit - emit a single SCSI device uevent
2094  *	@sdev: associated SCSI device
2095  *	@evt: event to emit
2096  *
2097  *	Send a single uevent (scsi_event) to the associated scsi_device.
2098  */
2099 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2100 {
2101 	int idx = 0;
2102 	char *envp[3];
2103 
2104 	switch (evt->evt_type) {
2105 	case SDEV_EVT_MEDIA_CHANGE:
2106 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2107 		break;
2108 
2109 	default:
2110 		/* do nothing */
2111 		break;
2112 	}
2113 
2114 	envp[idx++] = NULL;
2115 
2116 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2117 }
2118 
2119 /**
2120  * 	sdev_evt_thread - send a uevent for each scsi event
2121  *	@work: work struct for scsi_device
2122  *
2123  *	Dispatch queued events to their associated scsi_device kobjects
2124  *	as uevents.
2125  */
2126 void scsi_evt_thread(struct work_struct *work)
2127 {
2128 	struct scsi_device *sdev;
2129 	LIST_HEAD(event_list);
2130 
2131 	sdev = container_of(work, struct scsi_device, event_work);
2132 
2133 	while (1) {
2134 		struct scsi_event *evt;
2135 		struct list_head *this, *tmp;
2136 		unsigned long flags;
2137 
2138 		spin_lock_irqsave(&sdev->list_lock, flags);
2139 		list_splice_init(&sdev->event_list, &event_list);
2140 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2141 
2142 		if (list_empty(&event_list))
2143 			break;
2144 
2145 		list_for_each_safe(this, tmp, &event_list) {
2146 			evt = list_entry(this, struct scsi_event, node);
2147 			list_del(&evt->node);
2148 			scsi_evt_emit(sdev, evt);
2149 			kfree(evt);
2150 		}
2151 	}
2152 }
2153 
2154 /**
2155  * 	sdev_evt_send - send asserted event to uevent thread
2156  *	@sdev: scsi_device event occurred on
2157  *	@evt: event to send
2158  *
2159  *	Assert scsi device event asynchronously.
2160  */
2161 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2162 {
2163 	unsigned long flags;
2164 
2165 #if 0
2166 	/* FIXME: currently this check eliminates all media change events
2167 	 * for polled devices.  Need to update to discriminate between AN
2168 	 * and polled events */
2169 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2170 		kfree(evt);
2171 		return;
2172 	}
2173 #endif
2174 
2175 	spin_lock_irqsave(&sdev->list_lock, flags);
2176 	list_add_tail(&evt->node, &sdev->event_list);
2177 	schedule_work(&sdev->event_work);
2178 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2179 }
2180 EXPORT_SYMBOL_GPL(sdev_evt_send);
2181 
2182 /**
2183  * 	sdev_evt_alloc - allocate a new scsi event
2184  *	@evt_type: type of event to allocate
2185  *	@gfpflags: GFP flags for allocation
2186  *
2187  *	Allocates and returns a new scsi_event.
2188  */
2189 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2190 				  gfp_t gfpflags)
2191 {
2192 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2193 	if (!evt)
2194 		return NULL;
2195 
2196 	evt->evt_type = evt_type;
2197 	INIT_LIST_HEAD(&evt->node);
2198 
2199 	/* evt_type-specific initialization, if any */
2200 	switch (evt_type) {
2201 	case SDEV_EVT_MEDIA_CHANGE:
2202 	default:
2203 		/* do nothing */
2204 		break;
2205 	}
2206 
2207 	return evt;
2208 }
2209 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2210 
2211 /**
2212  * 	sdev_evt_send_simple - send asserted event to uevent thread
2213  *	@sdev: scsi_device event occurred on
2214  *	@evt_type: type of event to send
2215  *	@gfpflags: GFP flags for allocation
2216  *
2217  *	Assert scsi device event asynchronously, given an event type.
2218  */
2219 void sdev_evt_send_simple(struct scsi_device *sdev,
2220 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2221 {
2222 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2223 	if (!evt) {
2224 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2225 			    evt_type);
2226 		return;
2227 	}
2228 
2229 	sdev_evt_send(sdev, evt);
2230 }
2231 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2232 
2233 /**
2234  *	scsi_device_quiesce - Block user issued commands.
2235  *	@sdev:	scsi device to quiesce.
2236  *
2237  *	This works by trying to transition to the SDEV_QUIESCE state
2238  *	(which must be a legal transition).  When the device is in this
2239  *	state, only special requests will be accepted, all others will
2240  *	be deferred.  Since special requests may also be requeued requests,
2241  *	a successful return doesn't guarantee the device will be
2242  *	totally quiescent.
2243  *
2244  *	Must be called with user context, may sleep.
2245  *
2246  *	Returns zero if unsuccessful or an error if not.
2247  */
2248 int
2249 scsi_device_quiesce(struct scsi_device *sdev)
2250 {
2251 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2252 	if (err)
2253 		return err;
2254 
2255 	scsi_run_queue(sdev->request_queue);
2256 	while (sdev->device_busy) {
2257 		msleep_interruptible(200);
2258 		scsi_run_queue(sdev->request_queue);
2259 	}
2260 	return 0;
2261 }
2262 EXPORT_SYMBOL(scsi_device_quiesce);
2263 
2264 /**
2265  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2266  *	@sdev:	scsi device to resume.
2267  *
2268  *	Moves the device from quiesced back to running and restarts the
2269  *	queues.
2270  *
2271  *	Must be called with user context, may sleep.
2272  */
2273 void
2274 scsi_device_resume(struct scsi_device *sdev)
2275 {
2276 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2277 		return;
2278 	scsi_run_queue(sdev->request_queue);
2279 }
2280 EXPORT_SYMBOL(scsi_device_resume);
2281 
2282 static void
2283 device_quiesce_fn(struct scsi_device *sdev, void *data)
2284 {
2285 	scsi_device_quiesce(sdev);
2286 }
2287 
2288 void
2289 scsi_target_quiesce(struct scsi_target *starget)
2290 {
2291 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2292 }
2293 EXPORT_SYMBOL(scsi_target_quiesce);
2294 
2295 static void
2296 device_resume_fn(struct scsi_device *sdev, void *data)
2297 {
2298 	scsi_device_resume(sdev);
2299 }
2300 
2301 void
2302 scsi_target_resume(struct scsi_target *starget)
2303 {
2304 	starget_for_each_device(starget, NULL, device_resume_fn);
2305 }
2306 EXPORT_SYMBOL(scsi_target_resume);
2307 
2308 /**
2309  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2310  * @sdev:	device to block
2311  *
2312  * Block request made by scsi lld's to temporarily stop all
2313  * scsi commands on the specified device.  Called from interrupt
2314  * or normal process context.
2315  *
2316  * Returns zero if successful or error if not
2317  *
2318  * Notes:
2319  *	This routine transitions the device to the SDEV_BLOCK state
2320  *	(which must be a legal transition).  When the device is in this
2321  *	state, all commands are deferred until the scsi lld reenables
2322  *	the device with scsi_device_unblock or device_block_tmo fires.
2323  *	This routine assumes the host_lock is held on entry.
2324  */
2325 int
2326 scsi_internal_device_block(struct scsi_device *sdev)
2327 {
2328 	struct request_queue *q = sdev->request_queue;
2329 	unsigned long flags;
2330 	int err = 0;
2331 
2332 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2333 	if (err)
2334 		return err;
2335 
2336 	/*
2337 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2338 	 * block layer from calling the midlayer with this device's
2339 	 * request queue.
2340 	 */
2341 	spin_lock_irqsave(q->queue_lock, flags);
2342 	blk_stop_queue(q);
2343 	spin_unlock_irqrestore(q->queue_lock, flags);
2344 
2345 	return 0;
2346 }
2347 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2348 
2349 /**
2350  * scsi_internal_device_unblock - resume a device after a block request
2351  * @sdev:	device to resume
2352  *
2353  * Called by scsi lld's or the midlayer to restart the device queue
2354  * for the previously suspended scsi device.  Called from interrupt or
2355  * normal process context.
2356  *
2357  * Returns zero if successful or error if not.
2358  *
2359  * Notes:
2360  *	This routine transitions the device to the SDEV_RUNNING state
2361  *	(which must be a legal transition) allowing the midlayer to
2362  *	goose the queue for this device.  This routine assumes the
2363  *	host_lock is held upon entry.
2364  */
2365 int
2366 scsi_internal_device_unblock(struct scsi_device *sdev)
2367 {
2368 	struct request_queue *q = sdev->request_queue;
2369 	int err;
2370 	unsigned long flags;
2371 
2372 	/*
2373 	 * Try to transition the scsi device to SDEV_RUNNING
2374 	 * and goose the device queue if successful.
2375 	 */
2376 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2377 	if (err)
2378 		return err;
2379 
2380 	spin_lock_irqsave(q->queue_lock, flags);
2381 	blk_start_queue(q);
2382 	spin_unlock_irqrestore(q->queue_lock, flags);
2383 
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2387 
2388 static void
2389 device_block(struct scsi_device *sdev, void *data)
2390 {
2391 	scsi_internal_device_block(sdev);
2392 }
2393 
2394 static int
2395 target_block(struct device *dev, void *data)
2396 {
2397 	if (scsi_is_target_device(dev))
2398 		starget_for_each_device(to_scsi_target(dev), NULL,
2399 					device_block);
2400 	return 0;
2401 }
2402 
2403 void
2404 scsi_target_block(struct device *dev)
2405 {
2406 	if (scsi_is_target_device(dev))
2407 		starget_for_each_device(to_scsi_target(dev), NULL,
2408 					device_block);
2409 	else
2410 		device_for_each_child(dev, NULL, target_block);
2411 }
2412 EXPORT_SYMBOL_GPL(scsi_target_block);
2413 
2414 static void
2415 device_unblock(struct scsi_device *sdev, void *data)
2416 {
2417 	scsi_internal_device_unblock(sdev);
2418 }
2419 
2420 static int
2421 target_unblock(struct device *dev, void *data)
2422 {
2423 	if (scsi_is_target_device(dev))
2424 		starget_for_each_device(to_scsi_target(dev), NULL,
2425 					device_unblock);
2426 	return 0;
2427 }
2428 
2429 void
2430 scsi_target_unblock(struct device *dev)
2431 {
2432 	if (scsi_is_target_device(dev))
2433 		starget_for_each_device(to_scsi_target(dev), NULL,
2434 					device_unblock);
2435 	else
2436 		device_for_each_child(dev, NULL, target_unblock);
2437 }
2438 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2439 
2440 /**
2441  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2442  * @sgl:	scatter-gather list
2443  * @sg_count:	number of segments in sg
2444  * @offset:	offset in bytes into sg, on return offset into the mapped area
2445  * @len:	bytes to map, on return number of bytes mapped
2446  *
2447  * Returns virtual address of the start of the mapped page
2448  */
2449 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2450 			  size_t *offset, size_t *len)
2451 {
2452 	int i;
2453 	size_t sg_len = 0, len_complete = 0;
2454 	struct scatterlist *sg;
2455 	struct page *page;
2456 
2457 	WARN_ON(!irqs_disabled());
2458 
2459 	for_each_sg(sgl, sg, sg_count, i) {
2460 		len_complete = sg_len; /* Complete sg-entries */
2461 		sg_len += sg->length;
2462 		if (sg_len > *offset)
2463 			break;
2464 	}
2465 
2466 	if (unlikely(i == sg_count)) {
2467 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2468 			"elements %d\n",
2469 		       __FUNCTION__, sg_len, *offset, sg_count);
2470 		WARN_ON(1);
2471 		return NULL;
2472 	}
2473 
2474 	/* Offset starting from the beginning of first page in this sg-entry */
2475 	*offset = *offset - len_complete + sg->offset;
2476 
2477 	/* Assumption: contiguous pages can be accessed as "page + i" */
2478 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2479 	*offset &= ~PAGE_MASK;
2480 
2481 	/* Bytes in this sg-entry from *offset to the end of the page */
2482 	sg_len = PAGE_SIZE - *offset;
2483 	if (*len > sg_len)
2484 		*len = sg_len;
2485 
2486 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2487 }
2488 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2489 
2490 /**
2491  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2492  * @virt:	virtual address to be unmapped
2493  */
2494 void scsi_kunmap_atomic_sg(void *virt)
2495 {
2496 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2497 }
2498 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2499