1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static DEFINE_MUTEX(scsi_sense_cache_mutex); 57 58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 59 60 int scsi_init_sense_cache(struct Scsi_Host *shost) 61 { 62 int ret = 0; 63 64 mutex_lock(&scsi_sense_cache_mutex); 65 if (!scsi_sense_cache) { 66 scsi_sense_cache = 67 kmem_cache_create_usercopy("scsi_sense_cache", 68 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 69 0, SCSI_SENSE_BUFFERSIZE, NULL); 70 if (!scsi_sense_cache) 71 ret = -ENOMEM; 72 } 73 mutex_unlock(&scsi_sense_cache_mutex); 74 return ret; 75 } 76 77 /* 78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 79 * not change behaviour from the previous unplug mechanism, experimentation 80 * may prove this needs changing. 81 */ 82 #define SCSI_QUEUE_DELAY 3 83 84 static void 85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 86 { 87 struct Scsi_Host *host = cmd->device->host; 88 struct scsi_device *device = cmd->device; 89 struct scsi_target *starget = scsi_target(device); 90 91 /* 92 * Set the appropriate busy bit for the device/host. 93 * 94 * If the host/device isn't busy, assume that something actually 95 * completed, and that we should be able to queue a command now. 96 * 97 * Note that the prior mid-layer assumption that any host could 98 * always queue at least one command is now broken. The mid-layer 99 * will implement a user specifiable stall (see 100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 101 * if a command is requeued with no other commands outstanding 102 * either for the device or for the host. 103 */ 104 switch (reason) { 105 case SCSI_MLQUEUE_HOST_BUSY: 106 atomic_set(&host->host_blocked, host->max_host_blocked); 107 break; 108 case SCSI_MLQUEUE_DEVICE_BUSY: 109 case SCSI_MLQUEUE_EH_RETRY: 110 atomic_set(&device->device_blocked, 111 device->max_device_blocked); 112 break; 113 case SCSI_MLQUEUE_TARGET_BUSY: 114 atomic_set(&starget->target_blocked, 115 starget->max_target_blocked); 116 break; 117 } 118 } 119 120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 121 { 122 if (cmd->request->rq_flags & RQF_DONTPREP) { 123 cmd->request->rq_flags &= ~RQF_DONTPREP; 124 scsi_mq_uninit_cmd(cmd); 125 } else { 126 WARN_ON_ONCE(true); 127 } 128 blk_mq_requeue_request(cmd->request, true); 129 } 130 131 /** 132 * __scsi_queue_insert - private queue insertion 133 * @cmd: The SCSI command being requeued 134 * @reason: The reason for the requeue 135 * @unbusy: Whether the queue should be unbusied 136 * 137 * This is a private queue insertion. The public interface 138 * scsi_queue_insert() always assumes the queue should be unbusied 139 * because it's always called before the completion. This function is 140 * for a requeue after completion, which should only occur in this 141 * file. 142 */ 143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 144 { 145 struct scsi_device *device = cmd->device; 146 147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 148 "Inserting command %p into mlqueue\n", cmd)); 149 150 scsi_set_blocked(cmd, reason); 151 152 /* 153 * Decrement the counters, since these commands are no longer 154 * active on the host/device. 155 */ 156 if (unbusy) 157 scsi_device_unbusy(device, cmd); 158 159 /* 160 * Requeue this command. It will go before all other commands 161 * that are already in the queue. Schedule requeue work under 162 * lock such that the kblockd_schedule_work() call happens 163 * before blk_cleanup_queue() finishes. 164 */ 165 cmd->result = 0; 166 167 blk_mq_requeue_request(cmd->request, true); 168 } 169 170 /** 171 * scsi_queue_insert - Reinsert a command in the queue. 172 * @cmd: command that we are adding to queue. 173 * @reason: why we are inserting command to queue. 174 * 175 * We do this for one of two cases. Either the host is busy and it cannot accept 176 * any more commands for the time being, or the device returned QUEUE_FULL and 177 * can accept no more commands. 178 * 179 * Context: This could be called either from an interrupt context or a normal 180 * process context. 181 */ 182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 183 { 184 __scsi_queue_insert(cmd, reason, true); 185 } 186 187 188 /** 189 * __scsi_execute - insert request and wait for the result 190 * @sdev: scsi device 191 * @cmd: scsi command 192 * @data_direction: data direction 193 * @buffer: data buffer 194 * @bufflen: len of buffer 195 * @sense: optional sense buffer 196 * @sshdr: optional decoded sense header 197 * @timeout: request timeout in seconds 198 * @retries: number of times to retry request 199 * @flags: flags for ->cmd_flags 200 * @rq_flags: flags for ->rq_flags 201 * @resid: optional residual length 202 * 203 * Returns the scsi_cmnd result field if a command was executed, or a negative 204 * Linux error code if we didn't get that far. 205 */ 206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 207 int data_direction, void *buffer, unsigned bufflen, 208 unsigned char *sense, struct scsi_sense_hdr *sshdr, 209 int timeout, int retries, u64 flags, req_flags_t rq_flags, 210 int *resid) 211 { 212 struct request *req; 213 struct scsi_request *rq; 214 int ret; 215 216 req = blk_get_request(sdev->request_queue, 217 data_direction == DMA_TO_DEVICE ? 218 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, 219 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 220 if (IS_ERR(req)) 221 return PTR_ERR(req); 222 223 rq = scsi_req(req); 224 225 if (bufflen) { 226 ret = blk_rq_map_kern(sdev->request_queue, req, 227 buffer, bufflen, GFP_NOIO); 228 if (ret) 229 goto out; 230 } 231 rq->cmd_len = COMMAND_SIZE(cmd[0]); 232 memcpy(rq->cmd, cmd, rq->cmd_len); 233 rq->retries = retries; 234 req->timeout = timeout; 235 req->cmd_flags |= flags; 236 req->rq_flags |= rq_flags | RQF_QUIET; 237 238 /* 239 * head injection *required* here otherwise quiesce won't work 240 */ 241 blk_execute_rq(NULL, req, 1); 242 243 /* 244 * Some devices (USB mass-storage in particular) may transfer 245 * garbage data together with a residue indicating that the data 246 * is invalid. Prevent the garbage from being misinterpreted 247 * and prevent security leaks by zeroing out the excess data. 248 */ 249 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 250 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 251 252 if (resid) 253 *resid = rq->resid_len; 254 if (sense && rq->sense_len) 255 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 256 if (sshdr) 257 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 258 ret = rq->result; 259 out: 260 blk_put_request(req); 261 262 return ret; 263 } 264 EXPORT_SYMBOL(__scsi_execute); 265 266 /* 267 * Wake up the error handler if necessary. Avoid as follows that the error 268 * handler is not woken up if host in-flight requests number == 269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 270 * with an RCU read lock in this function to ensure that this function in 271 * its entirety either finishes before scsi_eh_scmd_add() increases the 272 * host_failed counter or that it notices the shost state change made by 273 * scsi_eh_scmd_add(). 274 */ 275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 276 { 277 unsigned long flags; 278 279 rcu_read_lock(); 280 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 281 if (unlikely(scsi_host_in_recovery(shost))) { 282 spin_lock_irqsave(shost->host_lock, flags); 283 if (shost->host_failed || shost->host_eh_scheduled) 284 scsi_eh_wakeup(shost); 285 spin_unlock_irqrestore(shost->host_lock, flags); 286 } 287 rcu_read_unlock(); 288 } 289 290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 291 { 292 struct Scsi_Host *shost = sdev->host; 293 struct scsi_target *starget = scsi_target(sdev); 294 295 scsi_dec_host_busy(shost, cmd); 296 297 if (starget->can_queue > 0) 298 atomic_dec(&starget->target_busy); 299 300 sbitmap_put(&sdev->budget_map, cmd->budget_token); 301 cmd->budget_token = -1; 302 } 303 304 static void scsi_kick_queue(struct request_queue *q) 305 { 306 blk_mq_run_hw_queues(q, false); 307 } 308 309 /* 310 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 311 * and call blk_run_queue for all the scsi_devices on the target - 312 * including current_sdev first. 313 * 314 * Called with *no* scsi locks held. 315 */ 316 static void scsi_single_lun_run(struct scsi_device *current_sdev) 317 { 318 struct Scsi_Host *shost = current_sdev->host; 319 struct scsi_device *sdev, *tmp; 320 struct scsi_target *starget = scsi_target(current_sdev); 321 unsigned long flags; 322 323 spin_lock_irqsave(shost->host_lock, flags); 324 starget->starget_sdev_user = NULL; 325 spin_unlock_irqrestore(shost->host_lock, flags); 326 327 /* 328 * Call blk_run_queue for all LUNs on the target, starting with 329 * current_sdev. We race with others (to set starget_sdev_user), 330 * but in most cases, we will be first. Ideally, each LU on the 331 * target would get some limited time or requests on the target. 332 */ 333 scsi_kick_queue(current_sdev->request_queue); 334 335 spin_lock_irqsave(shost->host_lock, flags); 336 if (starget->starget_sdev_user) 337 goto out; 338 list_for_each_entry_safe(sdev, tmp, &starget->devices, 339 same_target_siblings) { 340 if (sdev == current_sdev) 341 continue; 342 if (scsi_device_get(sdev)) 343 continue; 344 345 spin_unlock_irqrestore(shost->host_lock, flags); 346 scsi_kick_queue(sdev->request_queue); 347 spin_lock_irqsave(shost->host_lock, flags); 348 349 scsi_device_put(sdev); 350 } 351 out: 352 spin_unlock_irqrestore(shost->host_lock, flags); 353 } 354 355 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 356 { 357 if (scsi_device_busy(sdev) >= sdev->queue_depth) 358 return true; 359 if (atomic_read(&sdev->device_blocked) > 0) 360 return true; 361 return false; 362 } 363 364 static inline bool scsi_target_is_busy(struct scsi_target *starget) 365 { 366 if (starget->can_queue > 0) { 367 if (atomic_read(&starget->target_busy) >= starget->can_queue) 368 return true; 369 if (atomic_read(&starget->target_blocked) > 0) 370 return true; 371 } 372 return false; 373 } 374 375 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 376 { 377 if (atomic_read(&shost->host_blocked) > 0) 378 return true; 379 if (shost->host_self_blocked) 380 return true; 381 return false; 382 } 383 384 static void scsi_starved_list_run(struct Scsi_Host *shost) 385 { 386 LIST_HEAD(starved_list); 387 struct scsi_device *sdev; 388 unsigned long flags; 389 390 spin_lock_irqsave(shost->host_lock, flags); 391 list_splice_init(&shost->starved_list, &starved_list); 392 393 while (!list_empty(&starved_list)) { 394 struct request_queue *slq; 395 396 /* 397 * As long as shost is accepting commands and we have 398 * starved queues, call blk_run_queue. scsi_request_fn 399 * drops the queue_lock and can add us back to the 400 * starved_list. 401 * 402 * host_lock protects the starved_list and starved_entry. 403 * scsi_request_fn must get the host_lock before checking 404 * or modifying starved_list or starved_entry. 405 */ 406 if (scsi_host_is_busy(shost)) 407 break; 408 409 sdev = list_entry(starved_list.next, 410 struct scsi_device, starved_entry); 411 list_del_init(&sdev->starved_entry); 412 if (scsi_target_is_busy(scsi_target(sdev))) { 413 list_move_tail(&sdev->starved_entry, 414 &shost->starved_list); 415 continue; 416 } 417 418 /* 419 * Once we drop the host lock, a racing scsi_remove_device() 420 * call may remove the sdev from the starved list and destroy 421 * it and the queue. Mitigate by taking a reference to the 422 * queue and never touching the sdev again after we drop the 423 * host lock. Note: if __scsi_remove_device() invokes 424 * blk_cleanup_queue() before the queue is run from this 425 * function then blk_run_queue() will return immediately since 426 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 427 */ 428 slq = sdev->request_queue; 429 if (!blk_get_queue(slq)) 430 continue; 431 spin_unlock_irqrestore(shost->host_lock, flags); 432 433 scsi_kick_queue(slq); 434 blk_put_queue(slq); 435 436 spin_lock_irqsave(shost->host_lock, flags); 437 } 438 /* put any unprocessed entries back */ 439 list_splice(&starved_list, &shost->starved_list); 440 spin_unlock_irqrestore(shost->host_lock, flags); 441 } 442 443 /** 444 * scsi_run_queue - Select a proper request queue to serve next. 445 * @q: last request's queue 446 * 447 * The previous command was completely finished, start a new one if possible. 448 */ 449 static void scsi_run_queue(struct request_queue *q) 450 { 451 struct scsi_device *sdev = q->queuedata; 452 453 if (scsi_target(sdev)->single_lun) 454 scsi_single_lun_run(sdev); 455 if (!list_empty(&sdev->host->starved_list)) 456 scsi_starved_list_run(sdev->host); 457 458 blk_mq_run_hw_queues(q, false); 459 } 460 461 void scsi_requeue_run_queue(struct work_struct *work) 462 { 463 struct scsi_device *sdev; 464 struct request_queue *q; 465 466 sdev = container_of(work, struct scsi_device, requeue_work); 467 q = sdev->request_queue; 468 scsi_run_queue(q); 469 } 470 471 void scsi_run_host_queues(struct Scsi_Host *shost) 472 { 473 struct scsi_device *sdev; 474 475 shost_for_each_device(sdev, shost) 476 scsi_run_queue(sdev->request_queue); 477 } 478 479 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 480 { 481 if (!blk_rq_is_passthrough(cmd->request)) { 482 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 483 484 if (drv->uninit_command) 485 drv->uninit_command(cmd); 486 } 487 } 488 489 void scsi_free_sgtables(struct scsi_cmnd *cmd) 490 { 491 if (cmd->sdb.table.nents) 492 sg_free_table_chained(&cmd->sdb.table, 493 SCSI_INLINE_SG_CNT); 494 if (scsi_prot_sg_count(cmd)) 495 sg_free_table_chained(&cmd->prot_sdb->table, 496 SCSI_INLINE_PROT_SG_CNT); 497 } 498 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 499 500 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 501 { 502 scsi_free_sgtables(cmd); 503 scsi_uninit_cmd(cmd); 504 } 505 506 static void scsi_run_queue_async(struct scsi_device *sdev) 507 { 508 if (scsi_target(sdev)->single_lun || 509 !list_empty(&sdev->host->starved_list)) { 510 kblockd_schedule_work(&sdev->requeue_work); 511 } else { 512 /* 513 * smp_mb() present in sbitmap_queue_clear() or implied in 514 * .end_io is for ordering writing .device_busy in 515 * scsi_device_unbusy() and reading sdev->restarts. 516 */ 517 int old = atomic_read(&sdev->restarts); 518 519 /* 520 * ->restarts has to be kept as non-zero if new budget 521 * contention occurs. 522 * 523 * No need to run queue when either another re-run 524 * queue wins in updating ->restarts or a new budget 525 * contention occurs. 526 */ 527 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 528 blk_mq_run_hw_queues(sdev->request_queue, true); 529 } 530 } 531 532 /* Returns false when no more bytes to process, true if there are more */ 533 static bool scsi_end_request(struct request *req, blk_status_t error, 534 unsigned int bytes) 535 { 536 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 537 struct scsi_device *sdev = cmd->device; 538 struct request_queue *q = sdev->request_queue; 539 540 if (blk_update_request(req, error, bytes)) 541 return true; 542 543 if (blk_queue_add_random(q)) 544 add_disk_randomness(req->rq_disk); 545 546 if (!blk_rq_is_scsi(req)) { 547 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 548 cmd->flags &= ~SCMD_INITIALIZED; 549 } 550 551 /* 552 * Calling rcu_barrier() is not necessary here because the 553 * SCSI error handler guarantees that the function called by 554 * call_rcu() has been called before scsi_end_request() is 555 * called. 556 */ 557 destroy_rcu_head(&cmd->rcu); 558 559 /* 560 * In the MQ case the command gets freed by __blk_mq_end_request, 561 * so we have to do all cleanup that depends on it earlier. 562 * 563 * We also can't kick the queues from irq context, so we 564 * will have to defer it to a workqueue. 565 */ 566 scsi_mq_uninit_cmd(cmd); 567 568 /* 569 * queue is still alive, so grab the ref for preventing it 570 * from being cleaned up during running queue. 571 */ 572 percpu_ref_get(&q->q_usage_counter); 573 574 __blk_mq_end_request(req, error); 575 576 scsi_run_queue_async(sdev); 577 578 percpu_ref_put(&q->q_usage_counter); 579 return false; 580 } 581 582 /** 583 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 584 * @cmd: SCSI command 585 * @result: scsi error code 586 * 587 * Translate a SCSI result code into a blk_status_t value. May reset the host 588 * byte of @cmd->result. 589 */ 590 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 591 { 592 switch (host_byte(result)) { 593 case DID_OK: 594 if (scsi_status_is_good(result)) 595 return BLK_STS_OK; 596 return BLK_STS_IOERR; 597 case DID_TRANSPORT_FAILFAST: 598 case DID_TRANSPORT_MARGINAL: 599 return BLK_STS_TRANSPORT; 600 case DID_TARGET_FAILURE: 601 set_host_byte(cmd, DID_OK); 602 return BLK_STS_TARGET; 603 case DID_NEXUS_FAILURE: 604 set_host_byte(cmd, DID_OK); 605 return BLK_STS_NEXUS; 606 case DID_ALLOC_FAILURE: 607 set_host_byte(cmd, DID_OK); 608 return BLK_STS_NOSPC; 609 case DID_MEDIUM_ERROR: 610 set_host_byte(cmd, DID_OK); 611 return BLK_STS_MEDIUM; 612 default: 613 return BLK_STS_IOERR; 614 } 615 } 616 617 /* Helper for scsi_io_completion() when "reprep" action required. */ 618 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 619 struct request_queue *q) 620 { 621 /* A new command will be prepared and issued. */ 622 scsi_mq_requeue_cmd(cmd); 623 } 624 625 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 626 { 627 struct request *req = cmd->request; 628 unsigned long wait_for; 629 630 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 631 return false; 632 633 wait_for = (cmd->allowed + 1) * req->timeout; 634 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 635 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 636 wait_for/HZ); 637 return true; 638 } 639 return false; 640 } 641 642 /* Helper for scsi_io_completion() when special action required. */ 643 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 644 { 645 struct request_queue *q = cmd->device->request_queue; 646 struct request *req = cmd->request; 647 int level = 0; 648 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 649 ACTION_DELAYED_RETRY} action; 650 struct scsi_sense_hdr sshdr; 651 bool sense_valid; 652 bool sense_current = true; /* false implies "deferred sense" */ 653 blk_status_t blk_stat; 654 655 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 656 if (sense_valid) 657 sense_current = !scsi_sense_is_deferred(&sshdr); 658 659 blk_stat = scsi_result_to_blk_status(cmd, result); 660 661 if (host_byte(result) == DID_RESET) { 662 /* Third party bus reset or reset for error recovery 663 * reasons. Just retry the command and see what 664 * happens. 665 */ 666 action = ACTION_RETRY; 667 } else if (sense_valid && sense_current) { 668 switch (sshdr.sense_key) { 669 case UNIT_ATTENTION: 670 if (cmd->device->removable) { 671 /* Detected disc change. Set a bit 672 * and quietly refuse further access. 673 */ 674 cmd->device->changed = 1; 675 action = ACTION_FAIL; 676 } else { 677 /* Must have been a power glitch, or a 678 * bus reset. Could not have been a 679 * media change, so we just retry the 680 * command and see what happens. 681 */ 682 action = ACTION_RETRY; 683 } 684 break; 685 case ILLEGAL_REQUEST: 686 /* If we had an ILLEGAL REQUEST returned, then 687 * we may have performed an unsupported 688 * command. The only thing this should be 689 * would be a ten byte read where only a six 690 * byte read was supported. Also, on a system 691 * where READ CAPACITY failed, we may have 692 * read past the end of the disk. 693 */ 694 if ((cmd->device->use_10_for_rw && 695 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 696 (cmd->cmnd[0] == READ_10 || 697 cmd->cmnd[0] == WRITE_10)) { 698 /* This will issue a new 6-byte command. */ 699 cmd->device->use_10_for_rw = 0; 700 action = ACTION_REPREP; 701 } else if (sshdr.asc == 0x10) /* DIX */ { 702 action = ACTION_FAIL; 703 blk_stat = BLK_STS_PROTECTION; 704 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 705 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 706 action = ACTION_FAIL; 707 blk_stat = BLK_STS_TARGET; 708 } else 709 action = ACTION_FAIL; 710 break; 711 case ABORTED_COMMAND: 712 action = ACTION_FAIL; 713 if (sshdr.asc == 0x10) /* DIF */ 714 blk_stat = BLK_STS_PROTECTION; 715 break; 716 case NOT_READY: 717 /* If the device is in the process of becoming 718 * ready, or has a temporary blockage, retry. 719 */ 720 if (sshdr.asc == 0x04) { 721 switch (sshdr.ascq) { 722 case 0x01: /* becoming ready */ 723 case 0x04: /* format in progress */ 724 case 0x05: /* rebuild in progress */ 725 case 0x06: /* recalculation in progress */ 726 case 0x07: /* operation in progress */ 727 case 0x08: /* Long write in progress */ 728 case 0x09: /* self test in progress */ 729 case 0x14: /* space allocation in progress */ 730 case 0x1a: /* start stop unit in progress */ 731 case 0x1b: /* sanitize in progress */ 732 case 0x1d: /* configuration in progress */ 733 case 0x24: /* depopulation in progress */ 734 action = ACTION_DELAYED_RETRY; 735 break; 736 case 0x0a: /* ALUA state transition */ 737 blk_stat = BLK_STS_AGAIN; 738 fallthrough; 739 default: 740 action = ACTION_FAIL; 741 break; 742 } 743 } else 744 action = ACTION_FAIL; 745 break; 746 case VOLUME_OVERFLOW: 747 /* See SSC3rXX or current. */ 748 action = ACTION_FAIL; 749 break; 750 case DATA_PROTECT: 751 action = ACTION_FAIL; 752 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 753 (sshdr.asc == 0x55 && 754 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 755 /* Insufficient zone resources */ 756 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 757 } 758 break; 759 default: 760 action = ACTION_FAIL; 761 break; 762 } 763 } else 764 action = ACTION_FAIL; 765 766 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 767 action = ACTION_FAIL; 768 769 switch (action) { 770 case ACTION_FAIL: 771 /* Give up and fail the remainder of the request */ 772 if (!(req->rq_flags & RQF_QUIET)) { 773 static DEFINE_RATELIMIT_STATE(_rs, 774 DEFAULT_RATELIMIT_INTERVAL, 775 DEFAULT_RATELIMIT_BURST); 776 777 if (unlikely(scsi_logging_level)) 778 level = 779 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 780 SCSI_LOG_MLCOMPLETE_BITS); 781 782 /* 783 * if logging is enabled the failure will be printed 784 * in scsi_log_completion(), so avoid duplicate messages 785 */ 786 if (!level && __ratelimit(&_rs)) { 787 scsi_print_result(cmd, NULL, FAILED); 788 if (sense_valid) 789 scsi_print_sense(cmd); 790 scsi_print_command(cmd); 791 } 792 } 793 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 794 return; 795 fallthrough; 796 case ACTION_REPREP: 797 scsi_io_completion_reprep(cmd, q); 798 break; 799 case ACTION_RETRY: 800 /* Retry the same command immediately */ 801 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 802 break; 803 case ACTION_DELAYED_RETRY: 804 /* Retry the same command after a delay */ 805 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 806 break; 807 } 808 } 809 810 /* 811 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 812 * new result that may suppress further error checking. Also modifies 813 * *blk_statp in some cases. 814 */ 815 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 816 blk_status_t *blk_statp) 817 { 818 bool sense_valid; 819 bool sense_current = true; /* false implies "deferred sense" */ 820 struct request *req = cmd->request; 821 struct scsi_sense_hdr sshdr; 822 823 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 824 if (sense_valid) 825 sense_current = !scsi_sense_is_deferred(&sshdr); 826 827 if (blk_rq_is_passthrough(req)) { 828 if (sense_valid) { 829 /* 830 * SG_IO wants current and deferred errors 831 */ 832 scsi_req(req)->sense_len = 833 min(8 + cmd->sense_buffer[7], 834 SCSI_SENSE_BUFFERSIZE); 835 } 836 if (sense_current) 837 *blk_statp = scsi_result_to_blk_status(cmd, result); 838 } else if (blk_rq_bytes(req) == 0 && sense_current) { 839 /* 840 * Flush commands do not transfers any data, and thus cannot use 841 * good_bytes != blk_rq_bytes(req) as the signal for an error. 842 * This sets *blk_statp explicitly for the problem case. 843 */ 844 *blk_statp = scsi_result_to_blk_status(cmd, result); 845 } 846 /* 847 * Recovered errors need reporting, but they're always treated as 848 * success, so fiddle the result code here. For passthrough requests 849 * we already took a copy of the original into sreq->result which 850 * is what gets returned to the user 851 */ 852 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 853 bool do_print = true; 854 /* 855 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 856 * skip print since caller wants ATA registers. Only occurs 857 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 858 */ 859 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 860 do_print = false; 861 else if (req->rq_flags & RQF_QUIET) 862 do_print = false; 863 if (do_print) 864 scsi_print_sense(cmd); 865 result = 0; 866 /* for passthrough, *blk_statp may be set */ 867 *blk_statp = BLK_STS_OK; 868 } 869 /* 870 * Another corner case: the SCSI status byte is non-zero but 'good'. 871 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 872 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 873 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 874 * intermediate statuses (both obsolete in SAM-4) as good. 875 */ 876 if ((result & 0xff) && scsi_status_is_good(result)) { 877 result = 0; 878 *blk_statp = BLK_STS_OK; 879 } 880 return result; 881 } 882 883 /** 884 * scsi_io_completion - Completion processing for SCSI commands. 885 * @cmd: command that is finished. 886 * @good_bytes: number of processed bytes. 887 * 888 * We will finish off the specified number of sectors. If we are done, the 889 * command block will be released and the queue function will be goosed. If we 890 * are not done then we have to figure out what to do next: 891 * 892 * a) We can call scsi_io_completion_reprep(). The request will be 893 * unprepared and put back on the queue. Then a new command will 894 * be created for it. This should be used if we made forward 895 * progress, or if we want to switch from READ(10) to READ(6) for 896 * example. 897 * 898 * b) We can call scsi_io_completion_action(). The request will be 899 * put back on the queue and retried using the same command as 900 * before, possibly after a delay. 901 * 902 * c) We can call scsi_end_request() with blk_stat other than 903 * BLK_STS_OK, to fail the remainder of the request. 904 */ 905 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 906 { 907 int result = cmd->result; 908 struct request_queue *q = cmd->device->request_queue; 909 struct request *req = cmd->request; 910 blk_status_t blk_stat = BLK_STS_OK; 911 912 if (unlikely(result)) /* a nz result may or may not be an error */ 913 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 914 915 if (unlikely(blk_rq_is_passthrough(req))) { 916 /* 917 * scsi_result_to_blk_status may have reset the host_byte 918 */ 919 scsi_req(req)->result = cmd->result; 920 } 921 922 /* 923 * Next deal with any sectors which we were able to correctly 924 * handle. 925 */ 926 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 927 "%u sectors total, %d bytes done.\n", 928 blk_rq_sectors(req), good_bytes)); 929 930 /* 931 * Failed, zero length commands always need to drop down 932 * to retry code. Fast path should return in this block. 933 */ 934 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 935 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 936 return; /* no bytes remaining */ 937 } 938 939 /* Kill remainder if no retries. */ 940 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 941 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 942 WARN_ONCE(true, 943 "Bytes remaining after failed, no-retry command"); 944 return; 945 } 946 947 /* 948 * If there had been no error, but we have leftover bytes in the 949 * requeues just queue the command up again. 950 */ 951 if (likely(result == 0)) 952 scsi_io_completion_reprep(cmd, q); 953 else 954 scsi_io_completion_action(cmd, result); 955 } 956 957 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 958 struct request *rq) 959 { 960 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 961 !op_is_write(req_op(rq)) && 962 sdev->host->hostt->dma_need_drain(rq); 963 } 964 965 /** 966 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 967 * @cmd: SCSI command data structure to initialize. 968 * 969 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 970 * for @cmd. 971 * 972 * Returns: 973 * * BLK_STS_OK - on success 974 * * BLK_STS_RESOURCE - if the failure is retryable 975 * * BLK_STS_IOERR - if the failure is fatal 976 */ 977 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 978 { 979 struct scsi_device *sdev = cmd->device; 980 struct request *rq = cmd->request; 981 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 982 struct scatterlist *last_sg = NULL; 983 blk_status_t ret; 984 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 985 int count; 986 987 if (WARN_ON_ONCE(!nr_segs)) 988 return BLK_STS_IOERR; 989 990 /* 991 * Make sure there is space for the drain. The driver must adjust 992 * max_hw_segments to be prepared for this. 993 */ 994 if (need_drain) 995 nr_segs++; 996 997 /* 998 * If sg table allocation fails, requeue request later. 999 */ 1000 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1001 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1002 return BLK_STS_RESOURCE; 1003 1004 /* 1005 * Next, walk the list, and fill in the addresses and sizes of 1006 * each segment. 1007 */ 1008 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1009 1010 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1011 unsigned int pad_len = 1012 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1013 1014 last_sg->length += pad_len; 1015 cmd->extra_len += pad_len; 1016 } 1017 1018 if (need_drain) { 1019 sg_unmark_end(last_sg); 1020 last_sg = sg_next(last_sg); 1021 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1022 sg_mark_end(last_sg); 1023 1024 cmd->extra_len += sdev->dma_drain_len; 1025 count++; 1026 } 1027 1028 BUG_ON(count > cmd->sdb.table.nents); 1029 cmd->sdb.table.nents = count; 1030 cmd->sdb.length = blk_rq_payload_bytes(rq); 1031 1032 if (blk_integrity_rq(rq)) { 1033 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1034 int ivecs; 1035 1036 if (WARN_ON_ONCE(!prot_sdb)) { 1037 /* 1038 * This can happen if someone (e.g. multipath) 1039 * queues a command to a device on an adapter 1040 * that does not support DIX. 1041 */ 1042 ret = BLK_STS_IOERR; 1043 goto out_free_sgtables; 1044 } 1045 1046 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1047 1048 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1049 prot_sdb->table.sgl, 1050 SCSI_INLINE_PROT_SG_CNT)) { 1051 ret = BLK_STS_RESOURCE; 1052 goto out_free_sgtables; 1053 } 1054 1055 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1056 prot_sdb->table.sgl); 1057 BUG_ON(count > ivecs); 1058 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1059 1060 cmd->prot_sdb = prot_sdb; 1061 cmd->prot_sdb->table.nents = count; 1062 } 1063 1064 return BLK_STS_OK; 1065 out_free_sgtables: 1066 scsi_free_sgtables(cmd); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(scsi_alloc_sgtables); 1070 1071 /** 1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1073 * @rq: Request associated with the SCSI command to be initialized. 1074 * 1075 * This function initializes the members of struct scsi_cmnd that must be 1076 * initialized before request processing starts and that won't be 1077 * reinitialized if a SCSI command is requeued. 1078 * 1079 * Called from inside blk_get_request() for pass-through requests and from 1080 * inside scsi_init_command() for filesystem requests. 1081 */ 1082 static void scsi_initialize_rq(struct request *rq) 1083 { 1084 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1085 1086 scsi_req_init(&cmd->req); 1087 init_rcu_head(&cmd->rcu); 1088 cmd->jiffies_at_alloc = jiffies; 1089 cmd->retries = 0; 1090 } 1091 1092 /* 1093 * Only called when the request isn't completed by SCSI, and not freed by 1094 * SCSI 1095 */ 1096 static void scsi_cleanup_rq(struct request *rq) 1097 { 1098 if (rq->rq_flags & RQF_DONTPREP) { 1099 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1100 rq->rq_flags &= ~RQF_DONTPREP; 1101 } 1102 } 1103 1104 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1105 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1106 { 1107 void *buf = cmd->sense_buffer; 1108 void *prot = cmd->prot_sdb; 1109 struct request *rq = blk_mq_rq_from_pdu(cmd); 1110 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1111 unsigned long jiffies_at_alloc; 1112 int retries, to_clear; 1113 bool in_flight; 1114 int budget_token = cmd->budget_token; 1115 1116 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1117 flags |= SCMD_INITIALIZED; 1118 scsi_initialize_rq(rq); 1119 } 1120 1121 jiffies_at_alloc = cmd->jiffies_at_alloc; 1122 retries = cmd->retries; 1123 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1124 /* 1125 * Zero out the cmd, except for the embedded scsi_request. Only clear 1126 * the driver-private command data if the LLD does not supply a 1127 * function to initialize that data. 1128 */ 1129 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1130 if (!dev->host->hostt->init_cmd_priv) 1131 to_clear += dev->host->hostt->cmd_size; 1132 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1133 1134 cmd->device = dev; 1135 cmd->sense_buffer = buf; 1136 cmd->prot_sdb = prot; 1137 cmd->flags = flags; 1138 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1139 cmd->jiffies_at_alloc = jiffies_at_alloc; 1140 cmd->retries = retries; 1141 if (in_flight) 1142 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1143 cmd->budget_token = budget_token; 1144 1145 } 1146 1147 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1148 struct request *req) 1149 { 1150 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1151 1152 /* 1153 * Passthrough requests may transfer data, in which case they must 1154 * a bio attached to them. Or they might contain a SCSI command 1155 * that does not transfer data, in which case they may optionally 1156 * submit a request without an attached bio. 1157 */ 1158 if (req->bio) { 1159 blk_status_t ret = scsi_alloc_sgtables(cmd); 1160 if (unlikely(ret != BLK_STS_OK)) 1161 return ret; 1162 } else { 1163 BUG_ON(blk_rq_bytes(req)); 1164 1165 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1166 } 1167 1168 cmd->cmd_len = scsi_req(req)->cmd_len; 1169 if (cmd->cmd_len == 0) 1170 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1171 cmd->cmnd = scsi_req(req)->cmd; 1172 cmd->transfersize = blk_rq_bytes(req); 1173 cmd->allowed = scsi_req(req)->retries; 1174 return BLK_STS_OK; 1175 } 1176 1177 static blk_status_t 1178 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1179 { 1180 switch (sdev->sdev_state) { 1181 case SDEV_CREATED: 1182 return BLK_STS_OK; 1183 case SDEV_OFFLINE: 1184 case SDEV_TRANSPORT_OFFLINE: 1185 /* 1186 * If the device is offline we refuse to process any 1187 * commands. The device must be brought online 1188 * before trying any recovery commands. 1189 */ 1190 if (!sdev->offline_already) { 1191 sdev->offline_already = true; 1192 sdev_printk(KERN_ERR, sdev, 1193 "rejecting I/O to offline device\n"); 1194 } 1195 return BLK_STS_IOERR; 1196 case SDEV_DEL: 1197 /* 1198 * If the device is fully deleted, we refuse to 1199 * process any commands as well. 1200 */ 1201 sdev_printk(KERN_ERR, sdev, 1202 "rejecting I/O to dead device\n"); 1203 return BLK_STS_IOERR; 1204 case SDEV_BLOCK: 1205 case SDEV_CREATED_BLOCK: 1206 return BLK_STS_RESOURCE; 1207 case SDEV_QUIESCE: 1208 /* 1209 * If the device is blocked we only accept power management 1210 * commands. 1211 */ 1212 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1213 return BLK_STS_RESOURCE; 1214 return BLK_STS_OK; 1215 default: 1216 /* 1217 * For any other not fully online state we only allow 1218 * power management commands. 1219 */ 1220 if (req && !(req->rq_flags & RQF_PM)) 1221 return BLK_STS_IOERR; 1222 return BLK_STS_OK; 1223 } 1224 } 1225 1226 /* 1227 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1228 * and return the token else return -1. 1229 */ 1230 static inline int scsi_dev_queue_ready(struct request_queue *q, 1231 struct scsi_device *sdev) 1232 { 1233 int token; 1234 1235 token = sbitmap_get(&sdev->budget_map); 1236 if (atomic_read(&sdev->device_blocked)) { 1237 if (token < 0) 1238 goto out; 1239 1240 if (scsi_device_busy(sdev) > 1) 1241 goto out_dec; 1242 1243 /* 1244 * unblock after device_blocked iterates to zero 1245 */ 1246 if (atomic_dec_return(&sdev->device_blocked) > 0) 1247 goto out_dec; 1248 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1249 "unblocking device at zero depth\n")); 1250 } 1251 1252 return token; 1253 out_dec: 1254 if (token >= 0) 1255 sbitmap_put(&sdev->budget_map, token); 1256 out: 1257 return -1; 1258 } 1259 1260 /* 1261 * scsi_target_queue_ready: checks if there we can send commands to target 1262 * @sdev: scsi device on starget to check. 1263 */ 1264 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1265 struct scsi_device *sdev) 1266 { 1267 struct scsi_target *starget = scsi_target(sdev); 1268 unsigned int busy; 1269 1270 if (starget->single_lun) { 1271 spin_lock_irq(shost->host_lock); 1272 if (starget->starget_sdev_user && 1273 starget->starget_sdev_user != sdev) { 1274 spin_unlock_irq(shost->host_lock); 1275 return 0; 1276 } 1277 starget->starget_sdev_user = sdev; 1278 spin_unlock_irq(shost->host_lock); 1279 } 1280 1281 if (starget->can_queue <= 0) 1282 return 1; 1283 1284 busy = atomic_inc_return(&starget->target_busy) - 1; 1285 if (atomic_read(&starget->target_blocked) > 0) { 1286 if (busy) 1287 goto starved; 1288 1289 /* 1290 * unblock after target_blocked iterates to zero 1291 */ 1292 if (atomic_dec_return(&starget->target_blocked) > 0) 1293 goto out_dec; 1294 1295 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1296 "unblocking target at zero depth\n")); 1297 } 1298 1299 if (busy >= starget->can_queue) 1300 goto starved; 1301 1302 return 1; 1303 1304 starved: 1305 spin_lock_irq(shost->host_lock); 1306 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1307 spin_unlock_irq(shost->host_lock); 1308 out_dec: 1309 if (starget->can_queue > 0) 1310 atomic_dec(&starget->target_busy); 1311 return 0; 1312 } 1313 1314 /* 1315 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1316 * return 0. We must end up running the queue again whenever 0 is 1317 * returned, else IO can hang. 1318 */ 1319 static inline int scsi_host_queue_ready(struct request_queue *q, 1320 struct Scsi_Host *shost, 1321 struct scsi_device *sdev, 1322 struct scsi_cmnd *cmd) 1323 { 1324 if (scsi_host_in_recovery(shost)) 1325 return 0; 1326 1327 if (atomic_read(&shost->host_blocked) > 0) { 1328 if (scsi_host_busy(shost) > 0) 1329 goto starved; 1330 1331 /* 1332 * unblock after host_blocked iterates to zero 1333 */ 1334 if (atomic_dec_return(&shost->host_blocked) > 0) 1335 goto out_dec; 1336 1337 SCSI_LOG_MLQUEUE(3, 1338 shost_printk(KERN_INFO, shost, 1339 "unblocking host at zero depth\n")); 1340 } 1341 1342 if (shost->host_self_blocked) 1343 goto starved; 1344 1345 /* We're OK to process the command, so we can't be starved */ 1346 if (!list_empty(&sdev->starved_entry)) { 1347 spin_lock_irq(shost->host_lock); 1348 if (!list_empty(&sdev->starved_entry)) 1349 list_del_init(&sdev->starved_entry); 1350 spin_unlock_irq(shost->host_lock); 1351 } 1352 1353 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1354 1355 return 1; 1356 1357 starved: 1358 spin_lock_irq(shost->host_lock); 1359 if (list_empty(&sdev->starved_entry)) 1360 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1361 spin_unlock_irq(shost->host_lock); 1362 out_dec: 1363 scsi_dec_host_busy(shost, cmd); 1364 return 0; 1365 } 1366 1367 /* 1368 * Busy state exporting function for request stacking drivers. 1369 * 1370 * For efficiency, no lock is taken to check the busy state of 1371 * shost/starget/sdev, since the returned value is not guaranteed and 1372 * may be changed after request stacking drivers call the function, 1373 * regardless of taking lock or not. 1374 * 1375 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1376 * needs to return 'not busy'. Otherwise, request stacking drivers 1377 * may hold requests forever. 1378 */ 1379 static bool scsi_mq_lld_busy(struct request_queue *q) 1380 { 1381 struct scsi_device *sdev = q->queuedata; 1382 struct Scsi_Host *shost; 1383 1384 if (blk_queue_dying(q)) 1385 return false; 1386 1387 shost = sdev->host; 1388 1389 /* 1390 * Ignore host/starget busy state. 1391 * Since block layer does not have a concept of fairness across 1392 * multiple queues, congestion of host/starget needs to be handled 1393 * in SCSI layer. 1394 */ 1395 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1396 return true; 1397 1398 return false; 1399 } 1400 1401 /* 1402 * Block layer request completion callback. May be called from interrupt 1403 * context. 1404 */ 1405 static void scsi_complete(struct request *rq) 1406 { 1407 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1408 enum scsi_disposition disposition; 1409 1410 INIT_LIST_HEAD(&cmd->eh_entry); 1411 1412 atomic_inc(&cmd->device->iodone_cnt); 1413 if (cmd->result) 1414 atomic_inc(&cmd->device->ioerr_cnt); 1415 1416 disposition = scsi_decide_disposition(cmd); 1417 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1418 disposition = SUCCESS; 1419 1420 scsi_log_completion(cmd, disposition); 1421 1422 switch (disposition) { 1423 case SUCCESS: 1424 scsi_finish_command(cmd); 1425 break; 1426 case NEEDS_RETRY: 1427 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1428 break; 1429 case ADD_TO_MLQUEUE: 1430 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1431 break; 1432 default: 1433 scsi_eh_scmd_add(cmd); 1434 break; 1435 } 1436 } 1437 1438 /** 1439 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1440 * @cmd: command block we are dispatching. 1441 * 1442 * Return: nonzero return request was rejected and device's queue needs to be 1443 * plugged. 1444 */ 1445 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1446 { 1447 struct Scsi_Host *host = cmd->device->host; 1448 int rtn = 0; 1449 1450 atomic_inc(&cmd->device->iorequest_cnt); 1451 1452 /* check if the device is still usable */ 1453 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1454 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1455 * returns an immediate error upwards, and signals 1456 * that the device is no longer present */ 1457 cmd->result = DID_NO_CONNECT << 16; 1458 goto done; 1459 } 1460 1461 /* Check to see if the scsi lld made this device blocked. */ 1462 if (unlikely(scsi_device_blocked(cmd->device))) { 1463 /* 1464 * in blocked state, the command is just put back on 1465 * the device queue. The suspend state has already 1466 * blocked the queue so future requests should not 1467 * occur until the device transitions out of the 1468 * suspend state. 1469 */ 1470 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1471 "queuecommand : device blocked\n")); 1472 return SCSI_MLQUEUE_DEVICE_BUSY; 1473 } 1474 1475 /* Store the LUN value in cmnd, if needed. */ 1476 if (cmd->device->lun_in_cdb) 1477 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1478 (cmd->device->lun << 5 & 0xe0); 1479 1480 scsi_log_send(cmd); 1481 1482 /* 1483 * Before we queue this command, check if the command 1484 * length exceeds what the host adapter can handle. 1485 */ 1486 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1487 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1488 "queuecommand : command too long. " 1489 "cdb_size=%d host->max_cmd_len=%d\n", 1490 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1491 cmd->result = (DID_ABORT << 16); 1492 goto done; 1493 } 1494 1495 if (unlikely(host->shost_state == SHOST_DEL)) { 1496 cmd->result = (DID_NO_CONNECT << 16); 1497 goto done; 1498 1499 } 1500 1501 trace_scsi_dispatch_cmd_start(cmd); 1502 rtn = host->hostt->queuecommand(host, cmd); 1503 if (rtn) { 1504 trace_scsi_dispatch_cmd_error(cmd, rtn); 1505 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1506 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1507 rtn = SCSI_MLQUEUE_HOST_BUSY; 1508 1509 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1510 "queuecommand : request rejected\n")); 1511 } 1512 1513 return rtn; 1514 done: 1515 cmd->scsi_done(cmd); 1516 return 0; 1517 } 1518 1519 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1520 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1521 { 1522 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1523 sizeof(struct scatterlist); 1524 } 1525 1526 static blk_status_t scsi_prepare_cmd(struct request *req) 1527 { 1528 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1529 struct scsi_device *sdev = req->q->queuedata; 1530 struct Scsi_Host *shost = sdev->host; 1531 struct scatterlist *sg; 1532 1533 scsi_init_command(sdev, cmd); 1534 1535 cmd->request = req; 1536 cmd->tag = req->tag; 1537 cmd->prot_op = SCSI_PROT_NORMAL; 1538 if (blk_rq_bytes(req)) 1539 cmd->sc_data_direction = rq_dma_dir(req); 1540 else 1541 cmd->sc_data_direction = DMA_NONE; 1542 1543 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1544 cmd->sdb.table.sgl = sg; 1545 1546 if (scsi_host_get_prot(shost)) { 1547 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1548 1549 cmd->prot_sdb->table.sgl = 1550 (struct scatterlist *)(cmd->prot_sdb + 1); 1551 } 1552 1553 /* 1554 * Special handling for passthrough commands, which don't go to the ULP 1555 * at all: 1556 */ 1557 if (blk_rq_is_scsi(req)) 1558 return scsi_setup_scsi_cmnd(sdev, req); 1559 1560 if (sdev->handler && sdev->handler->prep_fn) { 1561 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1562 1563 if (ret != BLK_STS_OK) 1564 return ret; 1565 } 1566 1567 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1568 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1569 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1570 } 1571 1572 static void scsi_mq_done(struct scsi_cmnd *cmd) 1573 { 1574 if (unlikely(blk_should_fake_timeout(cmd->request->q))) 1575 return; 1576 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1577 return; 1578 trace_scsi_dispatch_cmd_done(cmd); 1579 blk_mq_complete_request(cmd->request); 1580 } 1581 1582 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1583 { 1584 struct scsi_device *sdev = q->queuedata; 1585 1586 sbitmap_put(&sdev->budget_map, budget_token); 1587 } 1588 1589 static int scsi_mq_get_budget(struct request_queue *q) 1590 { 1591 struct scsi_device *sdev = q->queuedata; 1592 int token = scsi_dev_queue_ready(q, sdev); 1593 1594 if (token >= 0) 1595 return token; 1596 1597 atomic_inc(&sdev->restarts); 1598 1599 /* 1600 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1601 * .restarts must be incremented before .device_busy is read because the 1602 * code in scsi_run_queue_async() depends on the order of these operations. 1603 */ 1604 smp_mb__after_atomic(); 1605 1606 /* 1607 * If all in-flight requests originated from this LUN are completed 1608 * before reading .device_busy, sdev->device_busy will be observed as 1609 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1610 * soon. Otherwise, completion of one of these requests will observe 1611 * the .restarts flag, and the request queue will be run for handling 1612 * this request, see scsi_end_request(). 1613 */ 1614 if (unlikely(scsi_device_busy(sdev) == 0 && 1615 !scsi_device_blocked(sdev))) 1616 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1617 return -1; 1618 } 1619 1620 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1621 { 1622 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1623 1624 cmd->budget_token = token; 1625 } 1626 1627 static int scsi_mq_get_rq_budget_token(struct request *req) 1628 { 1629 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1630 1631 return cmd->budget_token; 1632 } 1633 1634 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1635 const struct blk_mq_queue_data *bd) 1636 { 1637 struct request *req = bd->rq; 1638 struct request_queue *q = req->q; 1639 struct scsi_device *sdev = q->queuedata; 1640 struct Scsi_Host *shost = sdev->host; 1641 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1642 blk_status_t ret; 1643 int reason; 1644 1645 WARN_ON_ONCE(cmd->budget_token < 0); 1646 1647 /* 1648 * If the device is not in running state we will reject some or all 1649 * commands. 1650 */ 1651 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1652 ret = scsi_device_state_check(sdev, req); 1653 if (ret != BLK_STS_OK) 1654 goto out_put_budget; 1655 } 1656 1657 ret = BLK_STS_RESOURCE; 1658 if (!scsi_target_queue_ready(shost, sdev)) 1659 goto out_put_budget; 1660 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1661 goto out_dec_target_busy; 1662 1663 if (!(req->rq_flags & RQF_DONTPREP)) { 1664 ret = scsi_prepare_cmd(req); 1665 if (ret != BLK_STS_OK) 1666 goto out_dec_host_busy; 1667 req->rq_flags |= RQF_DONTPREP; 1668 } else { 1669 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1670 } 1671 1672 cmd->flags &= SCMD_PRESERVED_FLAGS; 1673 if (sdev->simple_tags) 1674 cmd->flags |= SCMD_TAGGED; 1675 if (bd->last) 1676 cmd->flags |= SCMD_LAST; 1677 1678 scsi_set_resid(cmd, 0); 1679 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1680 cmd->scsi_done = scsi_mq_done; 1681 1682 blk_mq_start_request(req); 1683 reason = scsi_dispatch_cmd(cmd); 1684 if (reason) { 1685 scsi_set_blocked(cmd, reason); 1686 ret = BLK_STS_RESOURCE; 1687 goto out_dec_host_busy; 1688 } 1689 1690 return BLK_STS_OK; 1691 1692 out_dec_host_busy: 1693 scsi_dec_host_busy(shost, cmd); 1694 out_dec_target_busy: 1695 if (scsi_target(sdev)->can_queue > 0) 1696 atomic_dec(&scsi_target(sdev)->target_busy); 1697 out_put_budget: 1698 scsi_mq_put_budget(q, cmd->budget_token); 1699 cmd->budget_token = -1; 1700 switch (ret) { 1701 case BLK_STS_OK: 1702 break; 1703 case BLK_STS_RESOURCE: 1704 case BLK_STS_ZONE_RESOURCE: 1705 if (scsi_device_blocked(sdev)) 1706 ret = BLK_STS_DEV_RESOURCE; 1707 break; 1708 case BLK_STS_AGAIN: 1709 scsi_req(req)->result = DID_BUS_BUSY << 16; 1710 if (req->rq_flags & RQF_DONTPREP) 1711 scsi_mq_uninit_cmd(cmd); 1712 break; 1713 default: 1714 if (unlikely(!scsi_device_online(sdev))) 1715 scsi_req(req)->result = DID_NO_CONNECT << 16; 1716 else 1717 scsi_req(req)->result = DID_ERROR << 16; 1718 /* 1719 * Make sure to release all allocated resources when 1720 * we hit an error, as we will never see this command 1721 * again. 1722 */ 1723 if (req->rq_flags & RQF_DONTPREP) 1724 scsi_mq_uninit_cmd(cmd); 1725 scsi_run_queue_async(sdev); 1726 break; 1727 } 1728 return ret; 1729 } 1730 1731 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1732 bool reserved) 1733 { 1734 if (reserved) 1735 return BLK_EH_RESET_TIMER; 1736 return scsi_times_out(req); 1737 } 1738 1739 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1740 unsigned int hctx_idx, unsigned int numa_node) 1741 { 1742 struct Scsi_Host *shost = set->driver_data; 1743 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1744 struct scatterlist *sg; 1745 int ret = 0; 1746 1747 cmd->sense_buffer = 1748 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1749 if (!cmd->sense_buffer) 1750 return -ENOMEM; 1751 cmd->req.sense = cmd->sense_buffer; 1752 1753 if (scsi_host_get_prot(shost)) { 1754 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1755 shost->hostt->cmd_size; 1756 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1757 } 1758 1759 if (shost->hostt->init_cmd_priv) { 1760 ret = shost->hostt->init_cmd_priv(shost, cmd); 1761 if (ret < 0) 1762 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1763 } 1764 1765 return ret; 1766 } 1767 1768 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1769 unsigned int hctx_idx) 1770 { 1771 struct Scsi_Host *shost = set->driver_data; 1772 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1773 1774 if (shost->hostt->exit_cmd_priv) 1775 shost->hostt->exit_cmd_priv(shost, cmd); 1776 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1777 } 1778 1779 1780 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx) 1781 { 1782 struct Scsi_Host *shost = hctx->driver_data; 1783 1784 if (shost->hostt->mq_poll) 1785 return shost->hostt->mq_poll(shost, hctx->queue_num); 1786 1787 return 0; 1788 } 1789 1790 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1791 unsigned int hctx_idx) 1792 { 1793 struct Scsi_Host *shost = data; 1794 1795 hctx->driver_data = shost; 1796 return 0; 1797 } 1798 1799 static int scsi_map_queues(struct blk_mq_tag_set *set) 1800 { 1801 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1802 1803 if (shost->hostt->map_queues) 1804 return shost->hostt->map_queues(shost); 1805 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1806 } 1807 1808 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1809 { 1810 struct device *dev = shost->dma_dev; 1811 1812 /* 1813 * this limit is imposed by hardware restrictions 1814 */ 1815 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1816 SG_MAX_SEGMENTS)); 1817 1818 if (scsi_host_prot_dma(shost)) { 1819 shost->sg_prot_tablesize = 1820 min_not_zero(shost->sg_prot_tablesize, 1821 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1822 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1823 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1824 } 1825 1826 if (dev->dma_mask) { 1827 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1828 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1829 } 1830 blk_queue_max_hw_sectors(q, shost->max_sectors); 1831 blk_queue_segment_boundary(q, shost->dma_boundary); 1832 dma_set_seg_boundary(dev, shost->dma_boundary); 1833 1834 blk_queue_max_segment_size(q, shost->max_segment_size); 1835 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1836 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1837 1838 /* 1839 * Set a reasonable default alignment: The larger of 32-byte (dword), 1840 * which is a common minimum for HBAs, and the minimum DMA alignment, 1841 * which is set by the platform. 1842 * 1843 * Devices that require a bigger alignment can increase it later. 1844 */ 1845 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1846 } 1847 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1848 1849 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1850 .get_budget = scsi_mq_get_budget, 1851 .put_budget = scsi_mq_put_budget, 1852 .queue_rq = scsi_queue_rq, 1853 .complete = scsi_complete, 1854 .timeout = scsi_timeout, 1855 #ifdef CONFIG_BLK_DEBUG_FS 1856 .show_rq = scsi_show_rq, 1857 #endif 1858 .init_request = scsi_mq_init_request, 1859 .exit_request = scsi_mq_exit_request, 1860 .initialize_rq_fn = scsi_initialize_rq, 1861 .cleanup_rq = scsi_cleanup_rq, 1862 .busy = scsi_mq_lld_busy, 1863 .map_queues = scsi_map_queues, 1864 .init_hctx = scsi_init_hctx, 1865 .poll = scsi_mq_poll, 1866 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1867 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1868 }; 1869 1870 1871 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1872 { 1873 struct Scsi_Host *shost = hctx->driver_data; 1874 1875 shost->hostt->commit_rqs(shost, hctx->queue_num); 1876 } 1877 1878 static const struct blk_mq_ops scsi_mq_ops = { 1879 .get_budget = scsi_mq_get_budget, 1880 .put_budget = scsi_mq_put_budget, 1881 .queue_rq = scsi_queue_rq, 1882 .commit_rqs = scsi_commit_rqs, 1883 .complete = scsi_complete, 1884 .timeout = scsi_timeout, 1885 #ifdef CONFIG_BLK_DEBUG_FS 1886 .show_rq = scsi_show_rq, 1887 #endif 1888 .init_request = scsi_mq_init_request, 1889 .exit_request = scsi_mq_exit_request, 1890 .initialize_rq_fn = scsi_initialize_rq, 1891 .cleanup_rq = scsi_cleanup_rq, 1892 .busy = scsi_mq_lld_busy, 1893 .map_queues = scsi_map_queues, 1894 .init_hctx = scsi_init_hctx, 1895 .poll = scsi_mq_poll, 1896 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1897 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1898 }; 1899 1900 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1901 { 1902 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1903 if (IS_ERR(sdev->request_queue)) 1904 return NULL; 1905 1906 sdev->request_queue->queuedata = sdev; 1907 __scsi_init_queue(sdev->host, sdev->request_queue); 1908 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1909 return sdev->request_queue; 1910 } 1911 1912 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1913 { 1914 unsigned int cmd_size, sgl_size; 1915 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1916 1917 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1918 scsi_mq_inline_sgl_size(shost)); 1919 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1920 if (scsi_host_get_prot(shost)) 1921 cmd_size += sizeof(struct scsi_data_buffer) + 1922 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1923 1924 memset(tag_set, 0, sizeof(*tag_set)); 1925 if (shost->hostt->commit_rqs) 1926 tag_set->ops = &scsi_mq_ops; 1927 else 1928 tag_set->ops = &scsi_mq_ops_no_commit; 1929 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1930 tag_set->nr_maps = shost->nr_maps ? : 1; 1931 tag_set->queue_depth = shost->can_queue; 1932 tag_set->cmd_size = cmd_size; 1933 tag_set->numa_node = NUMA_NO_NODE; 1934 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1935 tag_set->flags |= 1936 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1937 tag_set->driver_data = shost; 1938 if (shost->host_tagset) 1939 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1940 1941 return blk_mq_alloc_tag_set(tag_set); 1942 } 1943 1944 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1945 { 1946 blk_mq_free_tag_set(&shost->tag_set); 1947 } 1948 1949 /** 1950 * scsi_device_from_queue - return sdev associated with a request_queue 1951 * @q: The request queue to return the sdev from 1952 * 1953 * Return the sdev associated with a request queue or NULL if the 1954 * request_queue does not reference a SCSI device. 1955 */ 1956 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1957 { 1958 struct scsi_device *sdev = NULL; 1959 1960 if (q->mq_ops == &scsi_mq_ops_no_commit || 1961 q->mq_ops == &scsi_mq_ops) 1962 sdev = q->queuedata; 1963 if (!sdev || !get_device(&sdev->sdev_gendev)) 1964 sdev = NULL; 1965 1966 return sdev; 1967 } 1968 1969 /** 1970 * scsi_block_requests - Utility function used by low-level drivers to prevent 1971 * further commands from being queued to the device. 1972 * @shost: host in question 1973 * 1974 * There is no timer nor any other means by which the requests get unblocked 1975 * other than the low-level driver calling scsi_unblock_requests(). 1976 */ 1977 void scsi_block_requests(struct Scsi_Host *shost) 1978 { 1979 shost->host_self_blocked = 1; 1980 } 1981 EXPORT_SYMBOL(scsi_block_requests); 1982 1983 /** 1984 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1985 * further commands to be queued to the device. 1986 * @shost: host in question 1987 * 1988 * There is no timer nor any other means by which the requests get unblocked 1989 * other than the low-level driver calling scsi_unblock_requests(). This is done 1990 * as an API function so that changes to the internals of the scsi mid-layer 1991 * won't require wholesale changes to drivers that use this feature. 1992 */ 1993 void scsi_unblock_requests(struct Scsi_Host *shost) 1994 { 1995 shost->host_self_blocked = 0; 1996 scsi_run_host_queues(shost); 1997 } 1998 EXPORT_SYMBOL(scsi_unblock_requests); 1999 2000 void scsi_exit_queue(void) 2001 { 2002 kmem_cache_destroy(scsi_sense_cache); 2003 } 2004 2005 /** 2006 * scsi_mode_select - issue a mode select 2007 * @sdev: SCSI device to be queried 2008 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2009 * @sp: Save page bit (0 == don't save, 1 == save) 2010 * @modepage: mode page being requested 2011 * @buffer: request buffer (may not be smaller than eight bytes) 2012 * @len: length of request buffer. 2013 * @timeout: command timeout 2014 * @retries: number of retries before failing 2015 * @data: returns a structure abstracting the mode header data 2016 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2017 * must be SCSI_SENSE_BUFFERSIZE big. 2018 * 2019 * Returns zero if successful; negative error number or scsi 2020 * status on error 2021 * 2022 */ 2023 int 2024 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2025 unsigned char *buffer, int len, int timeout, int retries, 2026 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2027 { 2028 unsigned char cmd[10]; 2029 unsigned char *real_buffer; 2030 int ret; 2031 2032 memset(cmd, 0, sizeof(cmd)); 2033 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2034 2035 if (sdev->use_10_for_ms) { 2036 if (len > 65535) 2037 return -EINVAL; 2038 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2039 if (!real_buffer) 2040 return -ENOMEM; 2041 memcpy(real_buffer + 8, buffer, len); 2042 len += 8; 2043 real_buffer[0] = 0; 2044 real_buffer[1] = 0; 2045 real_buffer[2] = data->medium_type; 2046 real_buffer[3] = data->device_specific; 2047 real_buffer[4] = data->longlba ? 0x01 : 0; 2048 real_buffer[5] = 0; 2049 real_buffer[6] = data->block_descriptor_length >> 8; 2050 real_buffer[7] = data->block_descriptor_length; 2051 2052 cmd[0] = MODE_SELECT_10; 2053 cmd[7] = len >> 8; 2054 cmd[8] = len; 2055 } else { 2056 if (len > 255 || data->block_descriptor_length > 255 || 2057 data->longlba) 2058 return -EINVAL; 2059 2060 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2061 if (!real_buffer) 2062 return -ENOMEM; 2063 memcpy(real_buffer + 4, buffer, len); 2064 len += 4; 2065 real_buffer[0] = 0; 2066 real_buffer[1] = data->medium_type; 2067 real_buffer[2] = data->device_specific; 2068 real_buffer[3] = data->block_descriptor_length; 2069 2070 cmd[0] = MODE_SELECT; 2071 cmd[4] = len; 2072 } 2073 2074 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2075 sshdr, timeout, retries, NULL); 2076 kfree(real_buffer); 2077 return ret; 2078 } 2079 EXPORT_SYMBOL_GPL(scsi_mode_select); 2080 2081 /** 2082 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2083 * @sdev: SCSI device to be queried 2084 * @dbd: set if mode sense will allow block descriptors to be returned 2085 * @modepage: mode page being requested 2086 * @buffer: request buffer (may not be smaller than eight bytes) 2087 * @len: length of request buffer. 2088 * @timeout: command timeout 2089 * @retries: number of retries before failing 2090 * @data: returns a structure abstracting the mode header data 2091 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2092 * must be SCSI_SENSE_BUFFERSIZE big. 2093 * 2094 * Returns zero if successful, or a negative error number on failure 2095 */ 2096 int 2097 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2098 unsigned char *buffer, int len, int timeout, int retries, 2099 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2100 { 2101 unsigned char cmd[12]; 2102 int use_10_for_ms; 2103 int header_length; 2104 int result, retry_count = retries; 2105 struct scsi_sense_hdr my_sshdr; 2106 2107 memset(data, 0, sizeof(*data)); 2108 memset(&cmd[0], 0, 12); 2109 2110 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2111 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2112 cmd[2] = modepage; 2113 2114 /* caller might not be interested in sense, but we need it */ 2115 if (!sshdr) 2116 sshdr = &my_sshdr; 2117 2118 retry: 2119 use_10_for_ms = sdev->use_10_for_ms; 2120 2121 if (use_10_for_ms) { 2122 if (len < 8) 2123 len = 8; 2124 2125 cmd[0] = MODE_SENSE_10; 2126 cmd[8] = len; 2127 header_length = 8; 2128 } else { 2129 if (len < 4) 2130 len = 4; 2131 2132 cmd[0] = MODE_SENSE; 2133 cmd[4] = len; 2134 header_length = 4; 2135 } 2136 2137 memset(buffer, 0, len); 2138 2139 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2140 sshdr, timeout, retries, NULL); 2141 if (result < 0) 2142 return result; 2143 2144 /* This code looks awful: what it's doing is making sure an 2145 * ILLEGAL REQUEST sense return identifies the actual command 2146 * byte as the problem. MODE_SENSE commands can return 2147 * ILLEGAL REQUEST if the code page isn't supported */ 2148 2149 if (!scsi_status_is_good(result)) { 2150 if (scsi_sense_valid(sshdr)) { 2151 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2152 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2153 /* 2154 * Invalid command operation code 2155 */ 2156 if (use_10_for_ms) { 2157 sdev->use_10_for_ms = 0; 2158 goto retry; 2159 } 2160 } 2161 if (scsi_status_is_check_condition(result) && 2162 sshdr->sense_key == UNIT_ATTENTION && 2163 retry_count) { 2164 retry_count--; 2165 goto retry; 2166 } 2167 } 2168 return -EIO; 2169 } 2170 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2171 (modepage == 6 || modepage == 8))) { 2172 /* Initio breakage? */ 2173 header_length = 0; 2174 data->length = 13; 2175 data->medium_type = 0; 2176 data->device_specific = 0; 2177 data->longlba = 0; 2178 data->block_descriptor_length = 0; 2179 } else if (use_10_for_ms) { 2180 data->length = buffer[0]*256 + buffer[1] + 2; 2181 data->medium_type = buffer[2]; 2182 data->device_specific = buffer[3]; 2183 data->longlba = buffer[4] & 0x01; 2184 data->block_descriptor_length = buffer[6]*256 2185 + buffer[7]; 2186 } else { 2187 data->length = buffer[0] + 1; 2188 data->medium_type = buffer[1]; 2189 data->device_specific = buffer[2]; 2190 data->block_descriptor_length = buffer[3]; 2191 } 2192 data->header_length = header_length; 2193 2194 return 0; 2195 } 2196 EXPORT_SYMBOL(scsi_mode_sense); 2197 2198 /** 2199 * scsi_test_unit_ready - test if unit is ready 2200 * @sdev: scsi device to change the state of. 2201 * @timeout: command timeout 2202 * @retries: number of retries before failing 2203 * @sshdr: outpout pointer for decoded sense information. 2204 * 2205 * Returns zero if unsuccessful or an error if TUR failed. For 2206 * removable media, UNIT_ATTENTION sets ->changed flag. 2207 **/ 2208 int 2209 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2210 struct scsi_sense_hdr *sshdr) 2211 { 2212 char cmd[] = { 2213 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2214 }; 2215 int result; 2216 2217 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2218 do { 2219 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2220 timeout, 1, NULL); 2221 if (sdev->removable && scsi_sense_valid(sshdr) && 2222 sshdr->sense_key == UNIT_ATTENTION) 2223 sdev->changed = 1; 2224 } while (scsi_sense_valid(sshdr) && 2225 sshdr->sense_key == UNIT_ATTENTION && --retries); 2226 2227 return result; 2228 } 2229 EXPORT_SYMBOL(scsi_test_unit_ready); 2230 2231 /** 2232 * scsi_device_set_state - Take the given device through the device state model. 2233 * @sdev: scsi device to change the state of. 2234 * @state: state to change to. 2235 * 2236 * Returns zero if successful or an error if the requested 2237 * transition is illegal. 2238 */ 2239 int 2240 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2241 { 2242 enum scsi_device_state oldstate = sdev->sdev_state; 2243 2244 if (state == oldstate) 2245 return 0; 2246 2247 switch (state) { 2248 case SDEV_CREATED: 2249 switch (oldstate) { 2250 case SDEV_CREATED_BLOCK: 2251 break; 2252 default: 2253 goto illegal; 2254 } 2255 break; 2256 2257 case SDEV_RUNNING: 2258 switch (oldstate) { 2259 case SDEV_CREATED: 2260 case SDEV_OFFLINE: 2261 case SDEV_TRANSPORT_OFFLINE: 2262 case SDEV_QUIESCE: 2263 case SDEV_BLOCK: 2264 break; 2265 default: 2266 goto illegal; 2267 } 2268 break; 2269 2270 case SDEV_QUIESCE: 2271 switch (oldstate) { 2272 case SDEV_RUNNING: 2273 case SDEV_OFFLINE: 2274 case SDEV_TRANSPORT_OFFLINE: 2275 break; 2276 default: 2277 goto illegal; 2278 } 2279 break; 2280 2281 case SDEV_OFFLINE: 2282 case SDEV_TRANSPORT_OFFLINE: 2283 switch (oldstate) { 2284 case SDEV_CREATED: 2285 case SDEV_RUNNING: 2286 case SDEV_QUIESCE: 2287 case SDEV_BLOCK: 2288 break; 2289 default: 2290 goto illegal; 2291 } 2292 break; 2293 2294 case SDEV_BLOCK: 2295 switch (oldstate) { 2296 case SDEV_RUNNING: 2297 case SDEV_CREATED_BLOCK: 2298 case SDEV_QUIESCE: 2299 case SDEV_OFFLINE: 2300 break; 2301 default: 2302 goto illegal; 2303 } 2304 break; 2305 2306 case SDEV_CREATED_BLOCK: 2307 switch (oldstate) { 2308 case SDEV_CREATED: 2309 break; 2310 default: 2311 goto illegal; 2312 } 2313 break; 2314 2315 case SDEV_CANCEL: 2316 switch (oldstate) { 2317 case SDEV_CREATED: 2318 case SDEV_RUNNING: 2319 case SDEV_QUIESCE: 2320 case SDEV_OFFLINE: 2321 case SDEV_TRANSPORT_OFFLINE: 2322 break; 2323 default: 2324 goto illegal; 2325 } 2326 break; 2327 2328 case SDEV_DEL: 2329 switch (oldstate) { 2330 case SDEV_CREATED: 2331 case SDEV_RUNNING: 2332 case SDEV_OFFLINE: 2333 case SDEV_TRANSPORT_OFFLINE: 2334 case SDEV_CANCEL: 2335 case SDEV_BLOCK: 2336 case SDEV_CREATED_BLOCK: 2337 break; 2338 default: 2339 goto illegal; 2340 } 2341 break; 2342 2343 } 2344 sdev->offline_already = false; 2345 sdev->sdev_state = state; 2346 return 0; 2347 2348 illegal: 2349 SCSI_LOG_ERROR_RECOVERY(1, 2350 sdev_printk(KERN_ERR, sdev, 2351 "Illegal state transition %s->%s", 2352 scsi_device_state_name(oldstate), 2353 scsi_device_state_name(state)) 2354 ); 2355 return -EINVAL; 2356 } 2357 EXPORT_SYMBOL(scsi_device_set_state); 2358 2359 /** 2360 * scsi_evt_emit - emit a single SCSI device uevent 2361 * @sdev: associated SCSI device 2362 * @evt: event to emit 2363 * 2364 * Send a single uevent (scsi_event) to the associated scsi_device. 2365 */ 2366 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2367 { 2368 int idx = 0; 2369 char *envp[3]; 2370 2371 switch (evt->evt_type) { 2372 case SDEV_EVT_MEDIA_CHANGE: 2373 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2374 break; 2375 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2376 scsi_rescan_device(&sdev->sdev_gendev); 2377 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2378 break; 2379 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2380 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2381 break; 2382 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2383 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2384 break; 2385 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2386 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2387 break; 2388 case SDEV_EVT_LUN_CHANGE_REPORTED: 2389 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2390 break; 2391 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2392 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2393 break; 2394 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2395 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2396 break; 2397 default: 2398 /* do nothing */ 2399 break; 2400 } 2401 2402 envp[idx++] = NULL; 2403 2404 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2405 } 2406 2407 /** 2408 * scsi_evt_thread - send a uevent for each scsi event 2409 * @work: work struct for scsi_device 2410 * 2411 * Dispatch queued events to their associated scsi_device kobjects 2412 * as uevents. 2413 */ 2414 void scsi_evt_thread(struct work_struct *work) 2415 { 2416 struct scsi_device *sdev; 2417 enum scsi_device_event evt_type; 2418 LIST_HEAD(event_list); 2419 2420 sdev = container_of(work, struct scsi_device, event_work); 2421 2422 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2423 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2424 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2425 2426 while (1) { 2427 struct scsi_event *evt; 2428 struct list_head *this, *tmp; 2429 unsigned long flags; 2430 2431 spin_lock_irqsave(&sdev->list_lock, flags); 2432 list_splice_init(&sdev->event_list, &event_list); 2433 spin_unlock_irqrestore(&sdev->list_lock, flags); 2434 2435 if (list_empty(&event_list)) 2436 break; 2437 2438 list_for_each_safe(this, tmp, &event_list) { 2439 evt = list_entry(this, struct scsi_event, node); 2440 list_del(&evt->node); 2441 scsi_evt_emit(sdev, evt); 2442 kfree(evt); 2443 } 2444 } 2445 } 2446 2447 /** 2448 * sdev_evt_send - send asserted event to uevent thread 2449 * @sdev: scsi_device event occurred on 2450 * @evt: event to send 2451 * 2452 * Assert scsi device event asynchronously. 2453 */ 2454 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2455 { 2456 unsigned long flags; 2457 2458 #if 0 2459 /* FIXME: currently this check eliminates all media change events 2460 * for polled devices. Need to update to discriminate between AN 2461 * and polled events */ 2462 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2463 kfree(evt); 2464 return; 2465 } 2466 #endif 2467 2468 spin_lock_irqsave(&sdev->list_lock, flags); 2469 list_add_tail(&evt->node, &sdev->event_list); 2470 schedule_work(&sdev->event_work); 2471 spin_unlock_irqrestore(&sdev->list_lock, flags); 2472 } 2473 EXPORT_SYMBOL_GPL(sdev_evt_send); 2474 2475 /** 2476 * sdev_evt_alloc - allocate a new scsi event 2477 * @evt_type: type of event to allocate 2478 * @gfpflags: GFP flags for allocation 2479 * 2480 * Allocates and returns a new scsi_event. 2481 */ 2482 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2483 gfp_t gfpflags) 2484 { 2485 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2486 if (!evt) 2487 return NULL; 2488 2489 evt->evt_type = evt_type; 2490 INIT_LIST_HEAD(&evt->node); 2491 2492 /* evt_type-specific initialization, if any */ 2493 switch (evt_type) { 2494 case SDEV_EVT_MEDIA_CHANGE: 2495 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2496 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2497 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2498 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2499 case SDEV_EVT_LUN_CHANGE_REPORTED: 2500 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2501 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2502 default: 2503 /* do nothing */ 2504 break; 2505 } 2506 2507 return evt; 2508 } 2509 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2510 2511 /** 2512 * sdev_evt_send_simple - send asserted event to uevent thread 2513 * @sdev: scsi_device event occurred on 2514 * @evt_type: type of event to send 2515 * @gfpflags: GFP flags for allocation 2516 * 2517 * Assert scsi device event asynchronously, given an event type. 2518 */ 2519 void sdev_evt_send_simple(struct scsi_device *sdev, 2520 enum scsi_device_event evt_type, gfp_t gfpflags) 2521 { 2522 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2523 if (!evt) { 2524 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2525 evt_type); 2526 return; 2527 } 2528 2529 sdev_evt_send(sdev, evt); 2530 } 2531 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2532 2533 /** 2534 * scsi_device_quiesce - Block all commands except power management. 2535 * @sdev: scsi device to quiesce. 2536 * 2537 * This works by trying to transition to the SDEV_QUIESCE state 2538 * (which must be a legal transition). When the device is in this 2539 * state, only power management requests will be accepted, all others will 2540 * be deferred. 2541 * 2542 * Must be called with user context, may sleep. 2543 * 2544 * Returns zero if unsuccessful or an error if not. 2545 */ 2546 int 2547 scsi_device_quiesce(struct scsi_device *sdev) 2548 { 2549 struct request_queue *q = sdev->request_queue; 2550 int err; 2551 2552 /* 2553 * It is allowed to call scsi_device_quiesce() multiple times from 2554 * the same context but concurrent scsi_device_quiesce() calls are 2555 * not allowed. 2556 */ 2557 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2558 2559 if (sdev->quiesced_by == current) 2560 return 0; 2561 2562 blk_set_pm_only(q); 2563 2564 blk_mq_freeze_queue(q); 2565 /* 2566 * Ensure that the effect of blk_set_pm_only() will be visible 2567 * for percpu_ref_tryget() callers that occur after the queue 2568 * unfreeze even if the queue was already frozen before this function 2569 * was called. See also https://lwn.net/Articles/573497/. 2570 */ 2571 synchronize_rcu(); 2572 blk_mq_unfreeze_queue(q); 2573 2574 mutex_lock(&sdev->state_mutex); 2575 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2576 if (err == 0) 2577 sdev->quiesced_by = current; 2578 else 2579 blk_clear_pm_only(q); 2580 mutex_unlock(&sdev->state_mutex); 2581 2582 return err; 2583 } 2584 EXPORT_SYMBOL(scsi_device_quiesce); 2585 2586 /** 2587 * scsi_device_resume - Restart user issued commands to a quiesced device. 2588 * @sdev: scsi device to resume. 2589 * 2590 * Moves the device from quiesced back to running and restarts the 2591 * queues. 2592 * 2593 * Must be called with user context, may sleep. 2594 */ 2595 void scsi_device_resume(struct scsi_device *sdev) 2596 { 2597 /* check if the device state was mutated prior to resume, and if 2598 * so assume the state is being managed elsewhere (for example 2599 * device deleted during suspend) 2600 */ 2601 mutex_lock(&sdev->state_mutex); 2602 if (sdev->sdev_state == SDEV_QUIESCE) 2603 scsi_device_set_state(sdev, SDEV_RUNNING); 2604 if (sdev->quiesced_by) { 2605 sdev->quiesced_by = NULL; 2606 blk_clear_pm_only(sdev->request_queue); 2607 } 2608 mutex_unlock(&sdev->state_mutex); 2609 } 2610 EXPORT_SYMBOL(scsi_device_resume); 2611 2612 static void 2613 device_quiesce_fn(struct scsi_device *sdev, void *data) 2614 { 2615 scsi_device_quiesce(sdev); 2616 } 2617 2618 void 2619 scsi_target_quiesce(struct scsi_target *starget) 2620 { 2621 starget_for_each_device(starget, NULL, device_quiesce_fn); 2622 } 2623 EXPORT_SYMBOL(scsi_target_quiesce); 2624 2625 static void 2626 device_resume_fn(struct scsi_device *sdev, void *data) 2627 { 2628 scsi_device_resume(sdev); 2629 } 2630 2631 void 2632 scsi_target_resume(struct scsi_target *starget) 2633 { 2634 starget_for_each_device(starget, NULL, device_resume_fn); 2635 } 2636 EXPORT_SYMBOL(scsi_target_resume); 2637 2638 /** 2639 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2640 * @sdev: device to block 2641 * 2642 * Pause SCSI command processing on the specified device. Does not sleep. 2643 * 2644 * Returns zero if successful or a negative error code upon failure. 2645 * 2646 * Notes: 2647 * This routine transitions the device to the SDEV_BLOCK state (which must be 2648 * a legal transition). When the device is in this state, command processing 2649 * is paused until the device leaves the SDEV_BLOCK state. See also 2650 * scsi_internal_device_unblock_nowait(). 2651 */ 2652 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2653 { 2654 struct request_queue *q = sdev->request_queue; 2655 int err = 0; 2656 2657 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2658 if (err) { 2659 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2660 2661 if (err) 2662 return err; 2663 } 2664 2665 /* 2666 * The device has transitioned to SDEV_BLOCK. Stop the 2667 * block layer from calling the midlayer with this device's 2668 * request queue. 2669 */ 2670 blk_mq_quiesce_queue_nowait(q); 2671 return 0; 2672 } 2673 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2674 2675 /** 2676 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2677 * @sdev: device to block 2678 * 2679 * Pause SCSI command processing on the specified device and wait until all 2680 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2681 * 2682 * Returns zero if successful or a negative error code upon failure. 2683 * 2684 * Note: 2685 * This routine transitions the device to the SDEV_BLOCK state (which must be 2686 * a legal transition). When the device is in this state, command processing 2687 * is paused until the device leaves the SDEV_BLOCK state. See also 2688 * scsi_internal_device_unblock(). 2689 */ 2690 static int scsi_internal_device_block(struct scsi_device *sdev) 2691 { 2692 struct request_queue *q = sdev->request_queue; 2693 int err; 2694 2695 mutex_lock(&sdev->state_mutex); 2696 err = scsi_internal_device_block_nowait(sdev); 2697 if (err == 0) 2698 blk_mq_quiesce_queue(q); 2699 mutex_unlock(&sdev->state_mutex); 2700 2701 return err; 2702 } 2703 2704 void scsi_start_queue(struct scsi_device *sdev) 2705 { 2706 struct request_queue *q = sdev->request_queue; 2707 2708 blk_mq_unquiesce_queue(q); 2709 } 2710 2711 /** 2712 * scsi_internal_device_unblock_nowait - resume a device after a block request 2713 * @sdev: device to resume 2714 * @new_state: state to set the device to after unblocking 2715 * 2716 * Restart the device queue for a previously suspended SCSI device. Does not 2717 * sleep. 2718 * 2719 * Returns zero if successful or a negative error code upon failure. 2720 * 2721 * Notes: 2722 * This routine transitions the device to the SDEV_RUNNING state or to one of 2723 * the offline states (which must be a legal transition) allowing the midlayer 2724 * to goose the queue for this device. 2725 */ 2726 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2727 enum scsi_device_state new_state) 2728 { 2729 switch (new_state) { 2730 case SDEV_RUNNING: 2731 case SDEV_TRANSPORT_OFFLINE: 2732 break; 2733 default: 2734 return -EINVAL; 2735 } 2736 2737 /* 2738 * Try to transition the scsi device to SDEV_RUNNING or one of the 2739 * offlined states and goose the device queue if successful. 2740 */ 2741 switch (sdev->sdev_state) { 2742 case SDEV_BLOCK: 2743 case SDEV_TRANSPORT_OFFLINE: 2744 sdev->sdev_state = new_state; 2745 break; 2746 case SDEV_CREATED_BLOCK: 2747 if (new_state == SDEV_TRANSPORT_OFFLINE || 2748 new_state == SDEV_OFFLINE) 2749 sdev->sdev_state = new_state; 2750 else 2751 sdev->sdev_state = SDEV_CREATED; 2752 break; 2753 case SDEV_CANCEL: 2754 case SDEV_OFFLINE: 2755 break; 2756 default: 2757 return -EINVAL; 2758 } 2759 scsi_start_queue(sdev); 2760 2761 return 0; 2762 } 2763 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2764 2765 /** 2766 * scsi_internal_device_unblock - resume a device after a block request 2767 * @sdev: device to resume 2768 * @new_state: state to set the device to after unblocking 2769 * 2770 * Restart the device queue for a previously suspended SCSI device. May sleep. 2771 * 2772 * Returns zero if successful or a negative error code upon failure. 2773 * 2774 * Notes: 2775 * This routine transitions the device to the SDEV_RUNNING state or to one of 2776 * the offline states (which must be a legal transition) allowing the midlayer 2777 * to goose the queue for this device. 2778 */ 2779 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2780 enum scsi_device_state new_state) 2781 { 2782 int ret; 2783 2784 mutex_lock(&sdev->state_mutex); 2785 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2786 mutex_unlock(&sdev->state_mutex); 2787 2788 return ret; 2789 } 2790 2791 static void 2792 device_block(struct scsi_device *sdev, void *data) 2793 { 2794 int ret; 2795 2796 ret = scsi_internal_device_block(sdev); 2797 2798 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2799 dev_name(&sdev->sdev_gendev), ret); 2800 } 2801 2802 static int 2803 target_block(struct device *dev, void *data) 2804 { 2805 if (scsi_is_target_device(dev)) 2806 starget_for_each_device(to_scsi_target(dev), NULL, 2807 device_block); 2808 return 0; 2809 } 2810 2811 void 2812 scsi_target_block(struct device *dev) 2813 { 2814 if (scsi_is_target_device(dev)) 2815 starget_for_each_device(to_scsi_target(dev), NULL, 2816 device_block); 2817 else 2818 device_for_each_child(dev, NULL, target_block); 2819 } 2820 EXPORT_SYMBOL_GPL(scsi_target_block); 2821 2822 static void 2823 device_unblock(struct scsi_device *sdev, void *data) 2824 { 2825 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2826 } 2827 2828 static int 2829 target_unblock(struct device *dev, void *data) 2830 { 2831 if (scsi_is_target_device(dev)) 2832 starget_for_each_device(to_scsi_target(dev), data, 2833 device_unblock); 2834 return 0; 2835 } 2836 2837 void 2838 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2839 { 2840 if (scsi_is_target_device(dev)) 2841 starget_for_each_device(to_scsi_target(dev), &new_state, 2842 device_unblock); 2843 else 2844 device_for_each_child(dev, &new_state, target_unblock); 2845 } 2846 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2847 2848 int 2849 scsi_host_block(struct Scsi_Host *shost) 2850 { 2851 struct scsi_device *sdev; 2852 int ret = 0; 2853 2854 /* 2855 * Call scsi_internal_device_block_nowait so we can avoid 2856 * calling synchronize_rcu() for each LUN. 2857 */ 2858 shost_for_each_device(sdev, shost) { 2859 mutex_lock(&sdev->state_mutex); 2860 ret = scsi_internal_device_block_nowait(sdev); 2861 mutex_unlock(&sdev->state_mutex); 2862 if (ret) { 2863 scsi_device_put(sdev); 2864 break; 2865 } 2866 } 2867 2868 /* 2869 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2870 * calling synchronize_rcu() once is enough. 2871 */ 2872 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2873 2874 if (!ret) 2875 synchronize_rcu(); 2876 2877 return ret; 2878 } 2879 EXPORT_SYMBOL_GPL(scsi_host_block); 2880 2881 int 2882 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2883 { 2884 struct scsi_device *sdev; 2885 int ret = 0; 2886 2887 shost_for_each_device(sdev, shost) { 2888 ret = scsi_internal_device_unblock(sdev, new_state); 2889 if (ret) { 2890 scsi_device_put(sdev); 2891 break; 2892 } 2893 } 2894 return ret; 2895 } 2896 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2897 2898 /** 2899 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2900 * @sgl: scatter-gather list 2901 * @sg_count: number of segments in sg 2902 * @offset: offset in bytes into sg, on return offset into the mapped area 2903 * @len: bytes to map, on return number of bytes mapped 2904 * 2905 * Returns virtual address of the start of the mapped page 2906 */ 2907 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2908 size_t *offset, size_t *len) 2909 { 2910 int i; 2911 size_t sg_len = 0, len_complete = 0; 2912 struct scatterlist *sg; 2913 struct page *page; 2914 2915 WARN_ON(!irqs_disabled()); 2916 2917 for_each_sg(sgl, sg, sg_count, i) { 2918 len_complete = sg_len; /* Complete sg-entries */ 2919 sg_len += sg->length; 2920 if (sg_len > *offset) 2921 break; 2922 } 2923 2924 if (unlikely(i == sg_count)) { 2925 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2926 "elements %d\n", 2927 __func__, sg_len, *offset, sg_count); 2928 WARN_ON(1); 2929 return NULL; 2930 } 2931 2932 /* Offset starting from the beginning of first page in this sg-entry */ 2933 *offset = *offset - len_complete + sg->offset; 2934 2935 /* Assumption: contiguous pages can be accessed as "page + i" */ 2936 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2937 *offset &= ~PAGE_MASK; 2938 2939 /* Bytes in this sg-entry from *offset to the end of the page */ 2940 sg_len = PAGE_SIZE - *offset; 2941 if (*len > sg_len) 2942 *len = sg_len; 2943 2944 return kmap_atomic(page); 2945 } 2946 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2947 2948 /** 2949 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2950 * @virt: virtual address to be unmapped 2951 */ 2952 void scsi_kunmap_atomic_sg(void *virt) 2953 { 2954 kunmap_atomic(virt); 2955 } 2956 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2957 2958 void sdev_disable_disk_events(struct scsi_device *sdev) 2959 { 2960 atomic_inc(&sdev->disk_events_disable_depth); 2961 } 2962 EXPORT_SYMBOL(sdev_disable_disk_events); 2963 2964 void sdev_enable_disk_events(struct scsi_device *sdev) 2965 { 2966 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2967 return; 2968 atomic_dec(&sdev->disk_events_disable_depth); 2969 } 2970 EXPORT_SYMBOL(sdev_enable_disk_events); 2971 2972 static unsigned char designator_prio(const unsigned char *d) 2973 { 2974 if (d[1] & 0x30) 2975 /* not associated with LUN */ 2976 return 0; 2977 2978 if (d[3] == 0) 2979 /* invalid length */ 2980 return 0; 2981 2982 /* 2983 * Order of preference for lun descriptor: 2984 * - SCSI name string 2985 * - NAA IEEE Registered Extended 2986 * - EUI-64 based 16-byte 2987 * - EUI-64 based 12-byte 2988 * - NAA IEEE Registered 2989 * - NAA IEEE Extended 2990 * - EUI-64 based 8-byte 2991 * - SCSI name string (truncated) 2992 * - T10 Vendor ID 2993 * as longer descriptors reduce the likelyhood 2994 * of identification clashes. 2995 */ 2996 2997 switch (d[1] & 0xf) { 2998 case 8: 2999 /* SCSI name string, variable-length UTF-8 */ 3000 return 9; 3001 case 3: 3002 switch (d[4] >> 4) { 3003 case 6: 3004 /* NAA registered extended */ 3005 return 8; 3006 case 5: 3007 /* NAA registered */ 3008 return 5; 3009 case 4: 3010 /* NAA extended */ 3011 return 4; 3012 case 3: 3013 /* NAA locally assigned */ 3014 return 1; 3015 default: 3016 break; 3017 } 3018 break; 3019 case 2: 3020 switch (d[3]) { 3021 case 16: 3022 /* EUI64-based, 16 byte */ 3023 return 7; 3024 case 12: 3025 /* EUI64-based, 12 byte */ 3026 return 6; 3027 case 8: 3028 /* EUI64-based, 8 byte */ 3029 return 3; 3030 default: 3031 break; 3032 } 3033 break; 3034 case 1: 3035 /* T10 vendor ID */ 3036 return 1; 3037 default: 3038 break; 3039 } 3040 3041 return 0; 3042 } 3043 3044 /** 3045 * scsi_vpd_lun_id - return a unique device identification 3046 * @sdev: SCSI device 3047 * @id: buffer for the identification 3048 * @id_len: length of the buffer 3049 * 3050 * Copies a unique device identification into @id based 3051 * on the information in the VPD page 0x83 of the device. 3052 * The string will be formatted as a SCSI name string. 3053 * 3054 * Returns the length of the identification or error on failure. 3055 * If the identifier is longer than the supplied buffer the actual 3056 * identifier length is returned and the buffer is not zero-padded. 3057 */ 3058 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3059 { 3060 u8 cur_id_prio = 0; 3061 u8 cur_id_size = 0; 3062 const unsigned char *d, *cur_id_str; 3063 const struct scsi_vpd *vpd_pg83; 3064 int id_size = -EINVAL; 3065 3066 rcu_read_lock(); 3067 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3068 if (!vpd_pg83) { 3069 rcu_read_unlock(); 3070 return -ENXIO; 3071 } 3072 3073 /* The id string must be at least 20 bytes + terminating NULL byte */ 3074 if (id_len < 21) { 3075 rcu_read_unlock(); 3076 return -EINVAL; 3077 } 3078 3079 memset(id, 0, id_len); 3080 for (d = vpd_pg83->data + 4; 3081 d < vpd_pg83->data + vpd_pg83->len; 3082 d += d[3] + 4) { 3083 u8 prio = designator_prio(d); 3084 3085 if (prio == 0 || cur_id_prio > prio) 3086 continue; 3087 3088 switch (d[1] & 0xf) { 3089 case 0x1: 3090 /* T10 Vendor ID */ 3091 if (cur_id_size > d[3]) 3092 break; 3093 cur_id_prio = prio; 3094 cur_id_size = d[3]; 3095 if (cur_id_size + 4 > id_len) 3096 cur_id_size = id_len - 4; 3097 cur_id_str = d + 4; 3098 id_size = snprintf(id, id_len, "t10.%*pE", 3099 cur_id_size, cur_id_str); 3100 break; 3101 case 0x2: 3102 /* EUI-64 */ 3103 cur_id_prio = prio; 3104 cur_id_size = d[3]; 3105 cur_id_str = d + 4; 3106 switch (cur_id_size) { 3107 case 8: 3108 id_size = snprintf(id, id_len, 3109 "eui.%8phN", 3110 cur_id_str); 3111 break; 3112 case 12: 3113 id_size = snprintf(id, id_len, 3114 "eui.%12phN", 3115 cur_id_str); 3116 break; 3117 case 16: 3118 id_size = snprintf(id, id_len, 3119 "eui.%16phN", 3120 cur_id_str); 3121 break; 3122 default: 3123 break; 3124 } 3125 break; 3126 case 0x3: 3127 /* NAA */ 3128 cur_id_prio = prio; 3129 cur_id_size = d[3]; 3130 cur_id_str = d + 4; 3131 switch (cur_id_size) { 3132 case 8: 3133 id_size = snprintf(id, id_len, 3134 "naa.%8phN", 3135 cur_id_str); 3136 break; 3137 case 16: 3138 id_size = snprintf(id, id_len, 3139 "naa.%16phN", 3140 cur_id_str); 3141 break; 3142 default: 3143 break; 3144 } 3145 break; 3146 case 0x8: 3147 /* SCSI name string */ 3148 if (cur_id_size > d[3]) 3149 break; 3150 /* Prefer others for truncated descriptor */ 3151 if (d[3] > id_len) { 3152 prio = 2; 3153 if (cur_id_prio > prio) 3154 break; 3155 } 3156 cur_id_prio = prio; 3157 cur_id_size = id_size = d[3]; 3158 cur_id_str = d + 4; 3159 if (cur_id_size >= id_len) 3160 cur_id_size = id_len - 1; 3161 memcpy(id, cur_id_str, cur_id_size); 3162 break; 3163 default: 3164 break; 3165 } 3166 } 3167 rcu_read_unlock(); 3168 3169 return id_size; 3170 } 3171 EXPORT_SYMBOL(scsi_vpd_lun_id); 3172 3173 /* 3174 * scsi_vpd_tpg_id - return a target port group identifier 3175 * @sdev: SCSI device 3176 * 3177 * Returns the Target Port Group identifier from the information 3178 * froom VPD page 0x83 of the device. 3179 * 3180 * Returns the identifier or error on failure. 3181 */ 3182 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3183 { 3184 const unsigned char *d; 3185 const struct scsi_vpd *vpd_pg83; 3186 int group_id = -EAGAIN, rel_port = -1; 3187 3188 rcu_read_lock(); 3189 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3190 if (!vpd_pg83) { 3191 rcu_read_unlock(); 3192 return -ENXIO; 3193 } 3194 3195 d = vpd_pg83->data + 4; 3196 while (d < vpd_pg83->data + vpd_pg83->len) { 3197 switch (d[1] & 0xf) { 3198 case 0x4: 3199 /* Relative target port */ 3200 rel_port = get_unaligned_be16(&d[6]); 3201 break; 3202 case 0x5: 3203 /* Target port group */ 3204 group_id = get_unaligned_be16(&d[6]); 3205 break; 3206 default: 3207 break; 3208 } 3209 d += d[3] + 4; 3210 } 3211 rcu_read_unlock(); 3212 3213 if (group_id >= 0 && rel_id && rel_port != -1) 3214 *rel_id = rel_port; 3215 3216 return group_id; 3217 } 3218 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3219 3220 /** 3221 * scsi_build_sense - build sense data for a command 3222 * @scmd: scsi command for which the sense should be formatted 3223 * @desc: Sense format (non-zero == descriptor format, 3224 * 0 == fixed format) 3225 * @key: Sense key 3226 * @asc: Additional sense code 3227 * @ascq: Additional sense code qualifier 3228 * 3229 **/ 3230 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3231 { 3232 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3233 scmd->result = SAM_STAT_CHECK_CONDITION; 3234 } 3235 EXPORT_SYMBOL_GPL(scsi_build_sense); 3236