xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 9dbbc3b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	if (cmd->request->rq_flags & RQF_DONTPREP) {
123 		cmd->request->rq_flags &= ~RQF_DONTPREP;
124 		scsi_mq_uninit_cmd(cmd);
125 	} else {
126 		WARN_ON_ONCE(true);
127 	}
128 	blk_mq_requeue_request(cmd->request, true);
129 }
130 
131 /**
132  * __scsi_queue_insert - private queue insertion
133  * @cmd: The SCSI command being requeued
134  * @reason:  The reason for the requeue
135  * @unbusy: Whether the queue should be unbusied
136  *
137  * This is a private queue insertion.  The public interface
138  * scsi_queue_insert() always assumes the queue should be unbusied
139  * because it's always called before the completion.  This function is
140  * for a requeue after completion, which should only occur in this
141  * file.
142  */
143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
144 {
145 	struct scsi_device *device = cmd->device;
146 
147 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 		"Inserting command %p into mlqueue\n", cmd));
149 
150 	scsi_set_blocked(cmd, reason);
151 
152 	/*
153 	 * Decrement the counters, since these commands are no longer
154 	 * active on the host/device.
155 	 */
156 	if (unbusy)
157 		scsi_device_unbusy(device, cmd);
158 
159 	/*
160 	 * Requeue this command.  It will go before all other commands
161 	 * that are already in the queue. Schedule requeue work under
162 	 * lock such that the kblockd_schedule_work() call happens
163 	 * before blk_cleanup_queue() finishes.
164 	 */
165 	cmd->result = 0;
166 
167 	blk_mq_requeue_request(cmd->request, true);
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 
188 /**
189  * __scsi_execute - insert request and wait for the result
190  * @sdev:	scsi device
191  * @cmd:	scsi command
192  * @data_direction: data direction
193  * @buffer:	data buffer
194  * @bufflen:	len of buffer
195  * @sense:	optional sense buffer
196  * @sshdr:	optional decoded sense header
197  * @timeout:	request timeout in seconds
198  * @retries:	number of times to retry request
199  * @flags:	flags for ->cmd_flags
200  * @rq_flags:	flags for ->rq_flags
201  * @resid:	optional residual length
202  *
203  * Returns the scsi_cmnd result field if a command was executed, or a negative
204  * Linux error code if we didn't get that far.
205  */
206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 		 int data_direction, void *buffer, unsigned bufflen,
208 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
209 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
210 		 int *resid)
211 {
212 	struct request *req;
213 	struct scsi_request *rq;
214 	int ret;
215 
216 	req = blk_get_request(sdev->request_queue,
217 			data_direction == DMA_TO_DEVICE ?
218 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
219 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
220 	if (IS_ERR(req))
221 		return PTR_ERR(req);
222 
223 	rq = scsi_req(req);
224 
225 	if (bufflen) {
226 		ret = blk_rq_map_kern(sdev->request_queue, req,
227 				      buffer, bufflen, GFP_NOIO);
228 		if (ret)
229 			goto out;
230 	}
231 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
232 	memcpy(rq->cmd, cmd, rq->cmd_len);
233 	rq->retries = retries;
234 	req->timeout = timeout;
235 	req->cmd_flags |= flags;
236 	req->rq_flags |= rq_flags | RQF_QUIET;
237 
238 	/*
239 	 * head injection *required* here otherwise quiesce won't work
240 	 */
241 	blk_execute_rq(NULL, req, 1);
242 
243 	/*
244 	 * Some devices (USB mass-storage in particular) may transfer
245 	 * garbage data together with a residue indicating that the data
246 	 * is invalid.  Prevent the garbage from being misinterpreted
247 	 * and prevent security leaks by zeroing out the excess data.
248 	 */
249 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
250 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
251 
252 	if (resid)
253 		*resid = rq->resid_len;
254 	if (sense && rq->sense_len)
255 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
256 	if (sshdr)
257 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
258 	ret = rq->result;
259  out:
260 	blk_put_request(req);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL(__scsi_execute);
265 
266 /*
267  * Wake up the error handler if necessary. Avoid as follows that the error
268  * handler is not woken up if host in-flight requests number ==
269  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270  * with an RCU read lock in this function to ensure that this function in
271  * its entirety either finishes before scsi_eh_scmd_add() increases the
272  * host_failed counter or that it notices the shost state change made by
273  * scsi_eh_scmd_add().
274  */
275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277 	unsigned long flags;
278 
279 	rcu_read_lock();
280 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281 	if (unlikely(scsi_host_in_recovery(shost))) {
282 		spin_lock_irqsave(shost->host_lock, flags);
283 		if (shost->host_failed || shost->host_eh_scheduled)
284 			scsi_eh_wakeup(shost);
285 		spin_unlock_irqrestore(shost->host_lock, flags);
286 	}
287 	rcu_read_unlock();
288 }
289 
290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
291 {
292 	struct Scsi_Host *shost = sdev->host;
293 	struct scsi_target *starget = scsi_target(sdev);
294 
295 	scsi_dec_host_busy(shost, cmd);
296 
297 	if (starget->can_queue > 0)
298 		atomic_dec(&starget->target_busy);
299 
300 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
301 	cmd->budget_token = -1;
302 }
303 
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306 	blk_mq_run_hw_queues(q, false);
307 }
308 
309 /*
310  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
311  * and call blk_run_queue for all the scsi_devices on the target -
312  * including current_sdev first.
313  *
314  * Called with *no* scsi locks held.
315  */
316 static void scsi_single_lun_run(struct scsi_device *current_sdev)
317 {
318 	struct Scsi_Host *shost = current_sdev->host;
319 	struct scsi_device *sdev, *tmp;
320 	struct scsi_target *starget = scsi_target(current_sdev);
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(shost->host_lock, flags);
324 	starget->starget_sdev_user = NULL;
325 	spin_unlock_irqrestore(shost->host_lock, flags);
326 
327 	/*
328 	 * Call blk_run_queue for all LUNs on the target, starting with
329 	 * current_sdev. We race with others (to set starget_sdev_user),
330 	 * but in most cases, we will be first. Ideally, each LU on the
331 	 * target would get some limited time or requests on the target.
332 	 */
333 	scsi_kick_queue(current_sdev->request_queue);
334 
335 	spin_lock_irqsave(shost->host_lock, flags);
336 	if (starget->starget_sdev_user)
337 		goto out;
338 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
339 			same_target_siblings) {
340 		if (sdev == current_sdev)
341 			continue;
342 		if (scsi_device_get(sdev))
343 			continue;
344 
345 		spin_unlock_irqrestore(shost->host_lock, flags);
346 		scsi_kick_queue(sdev->request_queue);
347 		spin_lock_irqsave(shost->host_lock, flags);
348 
349 		scsi_device_put(sdev);
350 	}
351  out:
352 	spin_unlock_irqrestore(shost->host_lock, flags);
353 }
354 
355 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
356 {
357 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
358 		return true;
359 	if (atomic_read(&sdev->device_blocked) > 0)
360 		return true;
361 	return false;
362 }
363 
364 static inline bool scsi_target_is_busy(struct scsi_target *starget)
365 {
366 	if (starget->can_queue > 0) {
367 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
368 			return true;
369 		if (atomic_read(&starget->target_blocked) > 0)
370 			return true;
371 	}
372 	return false;
373 }
374 
375 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
376 {
377 	if (atomic_read(&shost->host_blocked) > 0)
378 		return true;
379 	if (shost->host_self_blocked)
380 		return true;
381 	return false;
382 }
383 
384 static void scsi_starved_list_run(struct Scsi_Host *shost)
385 {
386 	LIST_HEAD(starved_list);
387 	struct scsi_device *sdev;
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(shost->host_lock, flags);
391 	list_splice_init(&shost->starved_list, &starved_list);
392 
393 	while (!list_empty(&starved_list)) {
394 		struct request_queue *slq;
395 
396 		/*
397 		 * As long as shost is accepting commands and we have
398 		 * starved queues, call blk_run_queue. scsi_request_fn
399 		 * drops the queue_lock and can add us back to the
400 		 * starved_list.
401 		 *
402 		 * host_lock protects the starved_list and starved_entry.
403 		 * scsi_request_fn must get the host_lock before checking
404 		 * or modifying starved_list or starved_entry.
405 		 */
406 		if (scsi_host_is_busy(shost))
407 			break;
408 
409 		sdev = list_entry(starved_list.next,
410 				  struct scsi_device, starved_entry);
411 		list_del_init(&sdev->starved_entry);
412 		if (scsi_target_is_busy(scsi_target(sdev))) {
413 			list_move_tail(&sdev->starved_entry,
414 				       &shost->starved_list);
415 			continue;
416 		}
417 
418 		/*
419 		 * Once we drop the host lock, a racing scsi_remove_device()
420 		 * call may remove the sdev from the starved list and destroy
421 		 * it and the queue.  Mitigate by taking a reference to the
422 		 * queue and never touching the sdev again after we drop the
423 		 * host lock.  Note: if __scsi_remove_device() invokes
424 		 * blk_cleanup_queue() before the queue is run from this
425 		 * function then blk_run_queue() will return immediately since
426 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
427 		 */
428 		slq = sdev->request_queue;
429 		if (!blk_get_queue(slq))
430 			continue;
431 		spin_unlock_irqrestore(shost->host_lock, flags);
432 
433 		scsi_kick_queue(slq);
434 		blk_put_queue(slq);
435 
436 		spin_lock_irqsave(shost->host_lock, flags);
437 	}
438 	/* put any unprocessed entries back */
439 	list_splice(&starved_list, &shost->starved_list);
440 	spin_unlock_irqrestore(shost->host_lock, flags);
441 }
442 
443 /**
444  * scsi_run_queue - Select a proper request queue to serve next.
445  * @q:  last request's queue
446  *
447  * The previous command was completely finished, start a new one if possible.
448  */
449 static void scsi_run_queue(struct request_queue *q)
450 {
451 	struct scsi_device *sdev = q->queuedata;
452 
453 	if (scsi_target(sdev)->single_lun)
454 		scsi_single_lun_run(sdev);
455 	if (!list_empty(&sdev->host->starved_list))
456 		scsi_starved_list_run(sdev->host);
457 
458 	blk_mq_run_hw_queues(q, false);
459 }
460 
461 void scsi_requeue_run_queue(struct work_struct *work)
462 {
463 	struct scsi_device *sdev;
464 	struct request_queue *q;
465 
466 	sdev = container_of(work, struct scsi_device, requeue_work);
467 	q = sdev->request_queue;
468 	scsi_run_queue(q);
469 }
470 
471 void scsi_run_host_queues(struct Scsi_Host *shost)
472 {
473 	struct scsi_device *sdev;
474 
475 	shost_for_each_device(sdev, shost)
476 		scsi_run_queue(sdev->request_queue);
477 }
478 
479 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
480 {
481 	if (!blk_rq_is_passthrough(cmd->request)) {
482 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
483 
484 		if (drv->uninit_command)
485 			drv->uninit_command(cmd);
486 	}
487 }
488 
489 void scsi_free_sgtables(struct scsi_cmnd *cmd)
490 {
491 	if (cmd->sdb.table.nents)
492 		sg_free_table_chained(&cmd->sdb.table,
493 				SCSI_INLINE_SG_CNT);
494 	if (scsi_prot_sg_count(cmd))
495 		sg_free_table_chained(&cmd->prot_sdb->table,
496 				SCSI_INLINE_PROT_SG_CNT);
497 }
498 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
499 
500 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
501 {
502 	scsi_free_sgtables(cmd);
503 	scsi_uninit_cmd(cmd);
504 }
505 
506 static void scsi_run_queue_async(struct scsi_device *sdev)
507 {
508 	if (scsi_target(sdev)->single_lun ||
509 	    !list_empty(&sdev->host->starved_list)) {
510 		kblockd_schedule_work(&sdev->requeue_work);
511 	} else {
512 		/*
513 		 * smp_mb() present in sbitmap_queue_clear() or implied in
514 		 * .end_io is for ordering writing .device_busy in
515 		 * scsi_device_unbusy() and reading sdev->restarts.
516 		 */
517 		int old = atomic_read(&sdev->restarts);
518 
519 		/*
520 		 * ->restarts has to be kept as non-zero if new budget
521 		 *  contention occurs.
522 		 *
523 		 *  No need to run queue when either another re-run
524 		 *  queue wins in updating ->restarts or a new budget
525 		 *  contention occurs.
526 		 */
527 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
528 			blk_mq_run_hw_queues(sdev->request_queue, true);
529 	}
530 }
531 
532 /* Returns false when no more bytes to process, true if there are more */
533 static bool scsi_end_request(struct request *req, blk_status_t error,
534 		unsigned int bytes)
535 {
536 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
537 	struct scsi_device *sdev = cmd->device;
538 	struct request_queue *q = sdev->request_queue;
539 
540 	if (blk_update_request(req, error, bytes))
541 		return true;
542 
543 	if (blk_queue_add_random(q))
544 		add_disk_randomness(req->rq_disk);
545 
546 	if (!blk_rq_is_scsi(req)) {
547 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
548 		cmd->flags &= ~SCMD_INITIALIZED;
549 	}
550 
551 	/*
552 	 * Calling rcu_barrier() is not necessary here because the
553 	 * SCSI error handler guarantees that the function called by
554 	 * call_rcu() has been called before scsi_end_request() is
555 	 * called.
556 	 */
557 	destroy_rcu_head(&cmd->rcu);
558 
559 	/*
560 	 * In the MQ case the command gets freed by __blk_mq_end_request,
561 	 * so we have to do all cleanup that depends on it earlier.
562 	 *
563 	 * We also can't kick the queues from irq context, so we
564 	 * will have to defer it to a workqueue.
565 	 */
566 	scsi_mq_uninit_cmd(cmd);
567 
568 	/*
569 	 * queue is still alive, so grab the ref for preventing it
570 	 * from being cleaned up during running queue.
571 	 */
572 	percpu_ref_get(&q->q_usage_counter);
573 
574 	__blk_mq_end_request(req, error);
575 
576 	scsi_run_queue_async(sdev);
577 
578 	percpu_ref_put(&q->q_usage_counter);
579 	return false;
580 }
581 
582 /**
583  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
584  * @cmd:	SCSI command
585  * @result:	scsi error code
586  *
587  * Translate a SCSI result code into a blk_status_t value. May reset the host
588  * byte of @cmd->result.
589  */
590 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
591 {
592 	switch (host_byte(result)) {
593 	case DID_OK:
594 		if (scsi_status_is_good(result))
595 			return BLK_STS_OK;
596 		return BLK_STS_IOERR;
597 	case DID_TRANSPORT_FAILFAST:
598 	case DID_TRANSPORT_MARGINAL:
599 		return BLK_STS_TRANSPORT;
600 	case DID_TARGET_FAILURE:
601 		set_host_byte(cmd, DID_OK);
602 		return BLK_STS_TARGET;
603 	case DID_NEXUS_FAILURE:
604 		set_host_byte(cmd, DID_OK);
605 		return BLK_STS_NEXUS;
606 	case DID_ALLOC_FAILURE:
607 		set_host_byte(cmd, DID_OK);
608 		return BLK_STS_NOSPC;
609 	case DID_MEDIUM_ERROR:
610 		set_host_byte(cmd, DID_OK);
611 		return BLK_STS_MEDIUM;
612 	default:
613 		return BLK_STS_IOERR;
614 	}
615 }
616 
617 /* Helper for scsi_io_completion() when "reprep" action required. */
618 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
619 				      struct request_queue *q)
620 {
621 	/* A new command will be prepared and issued. */
622 	scsi_mq_requeue_cmd(cmd);
623 }
624 
625 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
626 {
627 	struct request *req = cmd->request;
628 	unsigned long wait_for;
629 
630 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
631 		return false;
632 
633 	wait_for = (cmd->allowed + 1) * req->timeout;
634 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
635 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
636 			    wait_for/HZ);
637 		return true;
638 	}
639 	return false;
640 }
641 
642 /* Helper for scsi_io_completion() when special action required. */
643 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
644 {
645 	struct request_queue *q = cmd->device->request_queue;
646 	struct request *req = cmd->request;
647 	int level = 0;
648 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
649 	      ACTION_DELAYED_RETRY} action;
650 	struct scsi_sense_hdr sshdr;
651 	bool sense_valid;
652 	bool sense_current = true;      /* false implies "deferred sense" */
653 	blk_status_t blk_stat;
654 
655 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
656 	if (sense_valid)
657 		sense_current = !scsi_sense_is_deferred(&sshdr);
658 
659 	blk_stat = scsi_result_to_blk_status(cmd, result);
660 
661 	if (host_byte(result) == DID_RESET) {
662 		/* Third party bus reset or reset for error recovery
663 		 * reasons.  Just retry the command and see what
664 		 * happens.
665 		 */
666 		action = ACTION_RETRY;
667 	} else if (sense_valid && sense_current) {
668 		switch (sshdr.sense_key) {
669 		case UNIT_ATTENTION:
670 			if (cmd->device->removable) {
671 				/* Detected disc change.  Set a bit
672 				 * and quietly refuse further access.
673 				 */
674 				cmd->device->changed = 1;
675 				action = ACTION_FAIL;
676 			} else {
677 				/* Must have been a power glitch, or a
678 				 * bus reset.  Could not have been a
679 				 * media change, so we just retry the
680 				 * command and see what happens.
681 				 */
682 				action = ACTION_RETRY;
683 			}
684 			break;
685 		case ILLEGAL_REQUEST:
686 			/* If we had an ILLEGAL REQUEST returned, then
687 			 * we may have performed an unsupported
688 			 * command.  The only thing this should be
689 			 * would be a ten byte read where only a six
690 			 * byte read was supported.  Also, on a system
691 			 * where READ CAPACITY failed, we may have
692 			 * read past the end of the disk.
693 			 */
694 			if ((cmd->device->use_10_for_rw &&
695 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
696 			    (cmd->cmnd[0] == READ_10 ||
697 			     cmd->cmnd[0] == WRITE_10)) {
698 				/* This will issue a new 6-byte command. */
699 				cmd->device->use_10_for_rw = 0;
700 				action = ACTION_REPREP;
701 			} else if (sshdr.asc == 0x10) /* DIX */ {
702 				action = ACTION_FAIL;
703 				blk_stat = BLK_STS_PROTECTION;
704 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
705 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
706 				action = ACTION_FAIL;
707 				blk_stat = BLK_STS_TARGET;
708 			} else
709 				action = ACTION_FAIL;
710 			break;
711 		case ABORTED_COMMAND:
712 			action = ACTION_FAIL;
713 			if (sshdr.asc == 0x10) /* DIF */
714 				blk_stat = BLK_STS_PROTECTION;
715 			break;
716 		case NOT_READY:
717 			/* If the device is in the process of becoming
718 			 * ready, or has a temporary blockage, retry.
719 			 */
720 			if (sshdr.asc == 0x04) {
721 				switch (sshdr.ascq) {
722 				case 0x01: /* becoming ready */
723 				case 0x04: /* format in progress */
724 				case 0x05: /* rebuild in progress */
725 				case 0x06: /* recalculation in progress */
726 				case 0x07: /* operation in progress */
727 				case 0x08: /* Long write in progress */
728 				case 0x09: /* self test in progress */
729 				case 0x14: /* space allocation in progress */
730 				case 0x1a: /* start stop unit in progress */
731 				case 0x1b: /* sanitize in progress */
732 				case 0x1d: /* configuration in progress */
733 				case 0x24: /* depopulation in progress */
734 					action = ACTION_DELAYED_RETRY;
735 					break;
736 				case 0x0a: /* ALUA state transition */
737 					blk_stat = BLK_STS_AGAIN;
738 					fallthrough;
739 				default:
740 					action = ACTION_FAIL;
741 					break;
742 				}
743 			} else
744 				action = ACTION_FAIL;
745 			break;
746 		case VOLUME_OVERFLOW:
747 			/* See SSC3rXX or current. */
748 			action = ACTION_FAIL;
749 			break;
750 		case DATA_PROTECT:
751 			action = ACTION_FAIL;
752 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
753 			    (sshdr.asc == 0x55 &&
754 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
755 				/* Insufficient zone resources */
756 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
757 			}
758 			break;
759 		default:
760 			action = ACTION_FAIL;
761 			break;
762 		}
763 	} else
764 		action = ACTION_FAIL;
765 
766 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
767 		action = ACTION_FAIL;
768 
769 	switch (action) {
770 	case ACTION_FAIL:
771 		/* Give up and fail the remainder of the request */
772 		if (!(req->rq_flags & RQF_QUIET)) {
773 			static DEFINE_RATELIMIT_STATE(_rs,
774 					DEFAULT_RATELIMIT_INTERVAL,
775 					DEFAULT_RATELIMIT_BURST);
776 
777 			if (unlikely(scsi_logging_level))
778 				level =
779 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
780 						    SCSI_LOG_MLCOMPLETE_BITS);
781 
782 			/*
783 			 * if logging is enabled the failure will be printed
784 			 * in scsi_log_completion(), so avoid duplicate messages
785 			 */
786 			if (!level && __ratelimit(&_rs)) {
787 				scsi_print_result(cmd, NULL, FAILED);
788 				if (sense_valid)
789 					scsi_print_sense(cmd);
790 				scsi_print_command(cmd);
791 			}
792 		}
793 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
794 			return;
795 		fallthrough;
796 	case ACTION_REPREP:
797 		scsi_io_completion_reprep(cmd, q);
798 		break;
799 	case ACTION_RETRY:
800 		/* Retry the same command immediately */
801 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
802 		break;
803 	case ACTION_DELAYED_RETRY:
804 		/* Retry the same command after a delay */
805 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
806 		break;
807 	}
808 }
809 
810 /*
811  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
812  * new result that may suppress further error checking. Also modifies
813  * *blk_statp in some cases.
814  */
815 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
816 					blk_status_t *blk_statp)
817 {
818 	bool sense_valid;
819 	bool sense_current = true;	/* false implies "deferred sense" */
820 	struct request *req = cmd->request;
821 	struct scsi_sense_hdr sshdr;
822 
823 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
824 	if (sense_valid)
825 		sense_current = !scsi_sense_is_deferred(&sshdr);
826 
827 	if (blk_rq_is_passthrough(req)) {
828 		if (sense_valid) {
829 			/*
830 			 * SG_IO wants current and deferred errors
831 			 */
832 			scsi_req(req)->sense_len =
833 				min(8 + cmd->sense_buffer[7],
834 				    SCSI_SENSE_BUFFERSIZE);
835 		}
836 		if (sense_current)
837 			*blk_statp = scsi_result_to_blk_status(cmd, result);
838 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
839 		/*
840 		 * Flush commands do not transfers any data, and thus cannot use
841 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
842 		 * This sets *blk_statp explicitly for the problem case.
843 		 */
844 		*blk_statp = scsi_result_to_blk_status(cmd, result);
845 	}
846 	/*
847 	 * Recovered errors need reporting, but they're always treated as
848 	 * success, so fiddle the result code here.  For passthrough requests
849 	 * we already took a copy of the original into sreq->result which
850 	 * is what gets returned to the user
851 	 */
852 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
853 		bool do_print = true;
854 		/*
855 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
856 		 * skip print since caller wants ATA registers. Only occurs
857 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
858 		 */
859 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
860 			do_print = false;
861 		else if (req->rq_flags & RQF_QUIET)
862 			do_print = false;
863 		if (do_print)
864 			scsi_print_sense(cmd);
865 		result = 0;
866 		/* for passthrough, *blk_statp may be set */
867 		*blk_statp = BLK_STS_OK;
868 	}
869 	/*
870 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
871 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
872 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
873 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
874 	 * intermediate statuses (both obsolete in SAM-4) as good.
875 	 */
876 	if ((result & 0xff) && scsi_status_is_good(result)) {
877 		result = 0;
878 		*blk_statp = BLK_STS_OK;
879 	}
880 	return result;
881 }
882 
883 /**
884  * scsi_io_completion - Completion processing for SCSI commands.
885  * @cmd:	command that is finished.
886  * @good_bytes:	number of processed bytes.
887  *
888  * We will finish off the specified number of sectors. If we are done, the
889  * command block will be released and the queue function will be goosed. If we
890  * are not done then we have to figure out what to do next:
891  *
892  *   a) We can call scsi_io_completion_reprep().  The request will be
893  *	unprepared and put back on the queue.  Then a new command will
894  *	be created for it.  This should be used if we made forward
895  *	progress, or if we want to switch from READ(10) to READ(6) for
896  *	example.
897  *
898  *   b) We can call scsi_io_completion_action().  The request will be
899  *	put back on the queue and retried using the same command as
900  *	before, possibly after a delay.
901  *
902  *   c) We can call scsi_end_request() with blk_stat other than
903  *	BLK_STS_OK, to fail the remainder of the request.
904  */
905 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
906 {
907 	int result = cmd->result;
908 	struct request_queue *q = cmd->device->request_queue;
909 	struct request *req = cmd->request;
910 	blk_status_t blk_stat = BLK_STS_OK;
911 
912 	if (unlikely(result))	/* a nz result may or may not be an error */
913 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
914 
915 	if (unlikely(blk_rq_is_passthrough(req))) {
916 		/*
917 		 * scsi_result_to_blk_status may have reset the host_byte
918 		 */
919 		scsi_req(req)->result = cmd->result;
920 	}
921 
922 	/*
923 	 * Next deal with any sectors which we were able to correctly
924 	 * handle.
925 	 */
926 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
927 		"%u sectors total, %d bytes done.\n",
928 		blk_rq_sectors(req), good_bytes));
929 
930 	/*
931 	 * Failed, zero length commands always need to drop down
932 	 * to retry code. Fast path should return in this block.
933 	 */
934 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
935 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
936 			return; /* no bytes remaining */
937 	}
938 
939 	/* Kill remainder if no retries. */
940 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
941 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
942 			WARN_ONCE(true,
943 			    "Bytes remaining after failed, no-retry command");
944 		return;
945 	}
946 
947 	/*
948 	 * If there had been no error, but we have leftover bytes in the
949 	 * requeues just queue the command up again.
950 	 */
951 	if (likely(result == 0))
952 		scsi_io_completion_reprep(cmd, q);
953 	else
954 		scsi_io_completion_action(cmd, result);
955 }
956 
957 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
958 		struct request *rq)
959 {
960 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
961 	       !op_is_write(req_op(rq)) &&
962 	       sdev->host->hostt->dma_need_drain(rq);
963 }
964 
965 /**
966  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
967  * @cmd: SCSI command data structure to initialize.
968  *
969  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
970  * for @cmd.
971  *
972  * Returns:
973  * * BLK_STS_OK       - on success
974  * * BLK_STS_RESOURCE - if the failure is retryable
975  * * BLK_STS_IOERR    - if the failure is fatal
976  */
977 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
978 {
979 	struct scsi_device *sdev = cmd->device;
980 	struct request *rq = cmd->request;
981 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
982 	struct scatterlist *last_sg = NULL;
983 	blk_status_t ret;
984 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
985 	int count;
986 
987 	if (WARN_ON_ONCE(!nr_segs))
988 		return BLK_STS_IOERR;
989 
990 	/*
991 	 * Make sure there is space for the drain.  The driver must adjust
992 	 * max_hw_segments to be prepared for this.
993 	 */
994 	if (need_drain)
995 		nr_segs++;
996 
997 	/*
998 	 * If sg table allocation fails, requeue request later.
999 	 */
1000 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1001 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1002 		return BLK_STS_RESOURCE;
1003 
1004 	/*
1005 	 * Next, walk the list, and fill in the addresses and sizes of
1006 	 * each segment.
1007 	 */
1008 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1009 
1010 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1011 		unsigned int pad_len =
1012 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1013 
1014 		last_sg->length += pad_len;
1015 		cmd->extra_len += pad_len;
1016 	}
1017 
1018 	if (need_drain) {
1019 		sg_unmark_end(last_sg);
1020 		last_sg = sg_next(last_sg);
1021 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1022 		sg_mark_end(last_sg);
1023 
1024 		cmd->extra_len += sdev->dma_drain_len;
1025 		count++;
1026 	}
1027 
1028 	BUG_ON(count > cmd->sdb.table.nents);
1029 	cmd->sdb.table.nents = count;
1030 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1031 
1032 	if (blk_integrity_rq(rq)) {
1033 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034 		int ivecs;
1035 
1036 		if (WARN_ON_ONCE(!prot_sdb)) {
1037 			/*
1038 			 * This can happen if someone (e.g. multipath)
1039 			 * queues a command to a device on an adapter
1040 			 * that does not support DIX.
1041 			 */
1042 			ret = BLK_STS_IOERR;
1043 			goto out_free_sgtables;
1044 		}
1045 
1046 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047 
1048 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049 				prot_sdb->table.sgl,
1050 				SCSI_INLINE_PROT_SG_CNT)) {
1051 			ret = BLK_STS_RESOURCE;
1052 			goto out_free_sgtables;
1053 		}
1054 
1055 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056 						prot_sdb->table.sgl);
1057 		BUG_ON(count > ivecs);
1058 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059 
1060 		cmd->prot_sdb = prot_sdb;
1061 		cmd->prot_sdb->table.nents = count;
1062 	}
1063 
1064 	return BLK_STS_OK;
1065 out_free_sgtables:
1066 	scsi_free_sgtables(cmd);
1067 	return ret;
1068 }
1069 EXPORT_SYMBOL(scsi_alloc_sgtables);
1070 
1071 /**
1072  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073  * @rq: Request associated with the SCSI command to be initialized.
1074  *
1075  * This function initializes the members of struct scsi_cmnd that must be
1076  * initialized before request processing starts and that won't be
1077  * reinitialized if a SCSI command is requeued.
1078  *
1079  * Called from inside blk_get_request() for pass-through requests and from
1080  * inside scsi_init_command() for filesystem requests.
1081  */
1082 static void scsi_initialize_rq(struct request *rq)
1083 {
1084 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085 
1086 	scsi_req_init(&cmd->req);
1087 	init_rcu_head(&cmd->rcu);
1088 	cmd->jiffies_at_alloc = jiffies;
1089 	cmd->retries = 0;
1090 }
1091 
1092 /*
1093  * Only called when the request isn't completed by SCSI, and not freed by
1094  * SCSI
1095  */
1096 static void scsi_cleanup_rq(struct request *rq)
1097 {
1098 	if (rq->rq_flags & RQF_DONTPREP) {
1099 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100 		rq->rq_flags &= ~RQF_DONTPREP;
1101 	}
1102 }
1103 
1104 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1105 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1106 {
1107 	void *buf = cmd->sense_buffer;
1108 	void *prot = cmd->prot_sdb;
1109 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1110 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1111 	unsigned long jiffies_at_alloc;
1112 	int retries, to_clear;
1113 	bool in_flight;
1114 	int budget_token = cmd->budget_token;
1115 
1116 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1117 		flags |= SCMD_INITIALIZED;
1118 		scsi_initialize_rq(rq);
1119 	}
1120 
1121 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1122 	retries = cmd->retries;
1123 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1124 	/*
1125 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1126 	 * the driver-private command data if the LLD does not supply a
1127 	 * function to initialize that data.
1128 	 */
1129 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1130 	if (!dev->host->hostt->init_cmd_priv)
1131 		to_clear += dev->host->hostt->cmd_size;
1132 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1133 
1134 	cmd->device = dev;
1135 	cmd->sense_buffer = buf;
1136 	cmd->prot_sdb = prot;
1137 	cmd->flags = flags;
1138 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1139 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1140 	cmd->retries = retries;
1141 	if (in_flight)
1142 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1143 	cmd->budget_token = budget_token;
1144 
1145 }
1146 
1147 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1148 		struct request *req)
1149 {
1150 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1151 
1152 	/*
1153 	 * Passthrough requests may transfer data, in which case they must
1154 	 * a bio attached to them.  Or they might contain a SCSI command
1155 	 * that does not transfer data, in which case they may optionally
1156 	 * submit a request without an attached bio.
1157 	 */
1158 	if (req->bio) {
1159 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1160 		if (unlikely(ret != BLK_STS_OK))
1161 			return ret;
1162 	} else {
1163 		BUG_ON(blk_rq_bytes(req));
1164 
1165 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1166 	}
1167 
1168 	cmd->cmd_len = scsi_req(req)->cmd_len;
1169 	if (cmd->cmd_len == 0)
1170 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1171 	cmd->cmnd = scsi_req(req)->cmd;
1172 	cmd->transfersize = blk_rq_bytes(req);
1173 	cmd->allowed = scsi_req(req)->retries;
1174 	return BLK_STS_OK;
1175 }
1176 
1177 static blk_status_t
1178 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1179 {
1180 	switch (sdev->sdev_state) {
1181 	case SDEV_CREATED:
1182 		return BLK_STS_OK;
1183 	case SDEV_OFFLINE:
1184 	case SDEV_TRANSPORT_OFFLINE:
1185 		/*
1186 		 * If the device is offline we refuse to process any
1187 		 * commands.  The device must be brought online
1188 		 * before trying any recovery commands.
1189 		 */
1190 		if (!sdev->offline_already) {
1191 			sdev->offline_already = true;
1192 			sdev_printk(KERN_ERR, sdev,
1193 				    "rejecting I/O to offline device\n");
1194 		}
1195 		return BLK_STS_IOERR;
1196 	case SDEV_DEL:
1197 		/*
1198 		 * If the device is fully deleted, we refuse to
1199 		 * process any commands as well.
1200 		 */
1201 		sdev_printk(KERN_ERR, sdev,
1202 			    "rejecting I/O to dead device\n");
1203 		return BLK_STS_IOERR;
1204 	case SDEV_BLOCK:
1205 	case SDEV_CREATED_BLOCK:
1206 		return BLK_STS_RESOURCE;
1207 	case SDEV_QUIESCE:
1208 		/*
1209 		 * If the device is blocked we only accept power management
1210 		 * commands.
1211 		 */
1212 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1213 			return BLK_STS_RESOURCE;
1214 		return BLK_STS_OK;
1215 	default:
1216 		/*
1217 		 * For any other not fully online state we only allow
1218 		 * power management commands.
1219 		 */
1220 		if (req && !(req->rq_flags & RQF_PM))
1221 			return BLK_STS_IOERR;
1222 		return BLK_STS_OK;
1223 	}
1224 }
1225 
1226 /*
1227  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1228  * and return the token else return -1.
1229  */
1230 static inline int scsi_dev_queue_ready(struct request_queue *q,
1231 				  struct scsi_device *sdev)
1232 {
1233 	int token;
1234 
1235 	token = sbitmap_get(&sdev->budget_map);
1236 	if (atomic_read(&sdev->device_blocked)) {
1237 		if (token < 0)
1238 			goto out;
1239 
1240 		if (scsi_device_busy(sdev) > 1)
1241 			goto out_dec;
1242 
1243 		/*
1244 		 * unblock after device_blocked iterates to zero
1245 		 */
1246 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1247 			goto out_dec;
1248 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1249 				   "unblocking device at zero depth\n"));
1250 	}
1251 
1252 	return token;
1253 out_dec:
1254 	if (token >= 0)
1255 		sbitmap_put(&sdev->budget_map, token);
1256 out:
1257 	return -1;
1258 }
1259 
1260 /*
1261  * scsi_target_queue_ready: checks if there we can send commands to target
1262  * @sdev: scsi device on starget to check.
1263  */
1264 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1265 					   struct scsi_device *sdev)
1266 {
1267 	struct scsi_target *starget = scsi_target(sdev);
1268 	unsigned int busy;
1269 
1270 	if (starget->single_lun) {
1271 		spin_lock_irq(shost->host_lock);
1272 		if (starget->starget_sdev_user &&
1273 		    starget->starget_sdev_user != sdev) {
1274 			spin_unlock_irq(shost->host_lock);
1275 			return 0;
1276 		}
1277 		starget->starget_sdev_user = sdev;
1278 		spin_unlock_irq(shost->host_lock);
1279 	}
1280 
1281 	if (starget->can_queue <= 0)
1282 		return 1;
1283 
1284 	busy = atomic_inc_return(&starget->target_busy) - 1;
1285 	if (atomic_read(&starget->target_blocked) > 0) {
1286 		if (busy)
1287 			goto starved;
1288 
1289 		/*
1290 		 * unblock after target_blocked iterates to zero
1291 		 */
1292 		if (atomic_dec_return(&starget->target_blocked) > 0)
1293 			goto out_dec;
1294 
1295 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1296 				 "unblocking target at zero depth\n"));
1297 	}
1298 
1299 	if (busy >= starget->can_queue)
1300 		goto starved;
1301 
1302 	return 1;
1303 
1304 starved:
1305 	spin_lock_irq(shost->host_lock);
1306 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1307 	spin_unlock_irq(shost->host_lock);
1308 out_dec:
1309 	if (starget->can_queue > 0)
1310 		atomic_dec(&starget->target_busy);
1311 	return 0;
1312 }
1313 
1314 /*
1315  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1316  * return 0. We must end up running the queue again whenever 0 is
1317  * returned, else IO can hang.
1318  */
1319 static inline int scsi_host_queue_ready(struct request_queue *q,
1320 				   struct Scsi_Host *shost,
1321 				   struct scsi_device *sdev,
1322 				   struct scsi_cmnd *cmd)
1323 {
1324 	if (scsi_host_in_recovery(shost))
1325 		return 0;
1326 
1327 	if (atomic_read(&shost->host_blocked) > 0) {
1328 		if (scsi_host_busy(shost) > 0)
1329 			goto starved;
1330 
1331 		/*
1332 		 * unblock after host_blocked iterates to zero
1333 		 */
1334 		if (atomic_dec_return(&shost->host_blocked) > 0)
1335 			goto out_dec;
1336 
1337 		SCSI_LOG_MLQUEUE(3,
1338 			shost_printk(KERN_INFO, shost,
1339 				     "unblocking host at zero depth\n"));
1340 	}
1341 
1342 	if (shost->host_self_blocked)
1343 		goto starved;
1344 
1345 	/* We're OK to process the command, so we can't be starved */
1346 	if (!list_empty(&sdev->starved_entry)) {
1347 		spin_lock_irq(shost->host_lock);
1348 		if (!list_empty(&sdev->starved_entry))
1349 			list_del_init(&sdev->starved_entry);
1350 		spin_unlock_irq(shost->host_lock);
1351 	}
1352 
1353 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1354 
1355 	return 1;
1356 
1357 starved:
1358 	spin_lock_irq(shost->host_lock);
1359 	if (list_empty(&sdev->starved_entry))
1360 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1361 	spin_unlock_irq(shost->host_lock);
1362 out_dec:
1363 	scsi_dec_host_busy(shost, cmd);
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Busy state exporting function for request stacking drivers.
1369  *
1370  * For efficiency, no lock is taken to check the busy state of
1371  * shost/starget/sdev, since the returned value is not guaranteed and
1372  * may be changed after request stacking drivers call the function,
1373  * regardless of taking lock or not.
1374  *
1375  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1376  * needs to return 'not busy'. Otherwise, request stacking drivers
1377  * may hold requests forever.
1378  */
1379 static bool scsi_mq_lld_busy(struct request_queue *q)
1380 {
1381 	struct scsi_device *sdev = q->queuedata;
1382 	struct Scsi_Host *shost;
1383 
1384 	if (blk_queue_dying(q))
1385 		return false;
1386 
1387 	shost = sdev->host;
1388 
1389 	/*
1390 	 * Ignore host/starget busy state.
1391 	 * Since block layer does not have a concept of fairness across
1392 	 * multiple queues, congestion of host/starget needs to be handled
1393 	 * in SCSI layer.
1394 	 */
1395 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1396 		return true;
1397 
1398 	return false;
1399 }
1400 
1401 /*
1402  * Block layer request completion callback. May be called from interrupt
1403  * context.
1404  */
1405 static void scsi_complete(struct request *rq)
1406 {
1407 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1408 	enum scsi_disposition disposition;
1409 
1410 	INIT_LIST_HEAD(&cmd->eh_entry);
1411 
1412 	atomic_inc(&cmd->device->iodone_cnt);
1413 	if (cmd->result)
1414 		atomic_inc(&cmd->device->ioerr_cnt);
1415 
1416 	disposition = scsi_decide_disposition(cmd);
1417 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1418 		disposition = SUCCESS;
1419 
1420 	scsi_log_completion(cmd, disposition);
1421 
1422 	switch (disposition) {
1423 	case SUCCESS:
1424 		scsi_finish_command(cmd);
1425 		break;
1426 	case NEEDS_RETRY:
1427 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1428 		break;
1429 	case ADD_TO_MLQUEUE:
1430 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1431 		break;
1432 	default:
1433 		scsi_eh_scmd_add(cmd);
1434 		break;
1435 	}
1436 }
1437 
1438 /**
1439  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1440  * @cmd: command block we are dispatching.
1441  *
1442  * Return: nonzero return request was rejected and device's queue needs to be
1443  * plugged.
1444  */
1445 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1446 {
1447 	struct Scsi_Host *host = cmd->device->host;
1448 	int rtn = 0;
1449 
1450 	atomic_inc(&cmd->device->iorequest_cnt);
1451 
1452 	/* check if the device is still usable */
1453 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1454 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1455 		 * returns an immediate error upwards, and signals
1456 		 * that the device is no longer present */
1457 		cmd->result = DID_NO_CONNECT << 16;
1458 		goto done;
1459 	}
1460 
1461 	/* Check to see if the scsi lld made this device blocked. */
1462 	if (unlikely(scsi_device_blocked(cmd->device))) {
1463 		/*
1464 		 * in blocked state, the command is just put back on
1465 		 * the device queue.  The suspend state has already
1466 		 * blocked the queue so future requests should not
1467 		 * occur until the device transitions out of the
1468 		 * suspend state.
1469 		 */
1470 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1471 			"queuecommand : device blocked\n"));
1472 		return SCSI_MLQUEUE_DEVICE_BUSY;
1473 	}
1474 
1475 	/* Store the LUN value in cmnd, if needed. */
1476 	if (cmd->device->lun_in_cdb)
1477 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1478 			       (cmd->device->lun << 5 & 0xe0);
1479 
1480 	scsi_log_send(cmd);
1481 
1482 	/*
1483 	 * Before we queue this command, check if the command
1484 	 * length exceeds what the host adapter can handle.
1485 	 */
1486 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1487 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1488 			       "queuecommand : command too long. "
1489 			       "cdb_size=%d host->max_cmd_len=%d\n",
1490 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1491 		cmd->result = (DID_ABORT << 16);
1492 		goto done;
1493 	}
1494 
1495 	if (unlikely(host->shost_state == SHOST_DEL)) {
1496 		cmd->result = (DID_NO_CONNECT << 16);
1497 		goto done;
1498 
1499 	}
1500 
1501 	trace_scsi_dispatch_cmd_start(cmd);
1502 	rtn = host->hostt->queuecommand(host, cmd);
1503 	if (rtn) {
1504 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1505 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1506 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1507 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1508 
1509 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1510 			"queuecommand : request rejected\n"));
1511 	}
1512 
1513 	return rtn;
1514  done:
1515 	cmd->scsi_done(cmd);
1516 	return 0;
1517 }
1518 
1519 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1520 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1521 {
1522 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1523 		sizeof(struct scatterlist);
1524 }
1525 
1526 static blk_status_t scsi_prepare_cmd(struct request *req)
1527 {
1528 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1529 	struct scsi_device *sdev = req->q->queuedata;
1530 	struct Scsi_Host *shost = sdev->host;
1531 	struct scatterlist *sg;
1532 
1533 	scsi_init_command(sdev, cmd);
1534 
1535 	cmd->request = req;
1536 	cmd->tag = req->tag;
1537 	cmd->prot_op = SCSI_PROT_NORMAL;
1538 	if (blk_rq_bytes(req))
1539 		cmd->sc_data_direction = rq_dma_dir(req);
1540 	else
1541 		cmd->sc_data_direction = DMA_NONE;
1542 
1543 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1544 	cmd->sdb.table.sgl = sg;
1545 
1546 	if (scsi_host_get_prot(shost)) {
1547 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1548 
1549 		cmd->prot_sdb->table.sgl =
1550 			(struct scatterlist *)(cmd->prot_sdb + 1);
1551 	}
1552 
1553 	/*
1554 	 * Special handling for passthrough commands, which don't go to the ULP
1555 	 * at all:
1556 	 */
1557 	if (blk_rq_is_scsi(req))
1558 		return scsi_setup_scsi_cmnd(sdev, req);
1559 
1560 	if (sdev->handler && sdev->handler->prep_fn) {
1561 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1562 
1563 		if (ret != BLK_STS_OK)
1564 			return ret;
1565 	}
1566 
1567 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1568 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1569 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1570 }
1571 
1572 static void scsi_mq_done(struct scsi_cmnd *cmd)
1573 {
1574 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1575 		return;
1576 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1577 		return;
1578 	trace_scsi_dispatch_cmd_done(cmd);
1579 	blk_mq_complete_request(cmd->request);
1580 }
1581 
1582 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1583 {
1584 	struct scsi_device *sdev = q->queuedata;
1585 
1586 	sbitmap_put(&sdev->budget_map, budget_token);
1587 }
1588 
1589 static int scsi_mq_get_budget(struct request_queue *q)
1590 {
1591 	struct scsi_device *sdev = q->queuedata;
1592 	int token = scsi_dev_queue_ready(q, sdev);
1593 
1594 	if (token >= 0)
1595 		return token;
1596 
1597 	atomic_inc(&sdev->restarts);
1598 
1599 	/*
1600 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1601 	 * .restarts must be incremented before .device_busy is read because the
1602 	 * code in scsi_run_queue_async() depends on the order of these operations.
1603 	 */
1604 	smp_mb__after_atomic();
1605 
1606 	/*
1607 	 * If all in-flight requests originated from this LUN are completed
1608 	 * before reading .device_busy, sdev->device_busy will be observed as
1609 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1610 	 * soon. Otherwise, completion of one of these requests will observe
1611 	 * the .restarts flag, and the request queue will be run for handling
1612 	 * this request, see scsi_end_request().
1613 	 */
1614 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1615 				!scsi_device_blocked(sdev)))
1616 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1617 	return -1;
1618 }
1619 
1620 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1621 {
1622 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1623 
1624 	cmd->budget_token = token;
1625 }
1626 
1627 static int scsi_mq_get_rq_budget_token(struct request *req)
1628 {
1629 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630 
1631 	return cmd->budget_token;
1632 }
1633 
1634 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1635 			 const struct blk_mq_queue_data *bd)
1636 {
1637 	struct request *req = bd->rq;
1638 	struct request_queue *q = req->q;
1639 	struct scsi_device *sdev = q->queuedata;
1640 	struct Scsi_Host *shost = sdev->host;
1641 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1642 	blk_status_t ret;
1643 	int reason;
1644 
1645 	WARN_ON_ONCE(cmd->budget_token < 0);
1646 
1647 	/*
1648 	 * If the device is not in running state we will reject some or all
1649 	 * commands.
1650 	 */
1651 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1652 		ret = scsi_device_state_check(sdev, req);
1653 		if (ret != BLK_STS_OK)
1654 			goto out_put_budget;
1655 	}
1656 
1657 	ret = BLK_STS_RESOURCE;
1658 	if (!scsi_target_queue_ready(shost, sdev))
1659 		goto out_put_budget;
1660 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1661 		goto out_dec_target_busy;
1662 
1663 	if (!(req->rq_flags & RQF_DONTPREP)) {
1664 		ret = scsi_prepare_cmd(req);
1665 		if (ret != BLK_STS_OK)
1666 			goto out_dec_host_busy;
1667 		req->rq_flags |= RQF_DONTPREP;
1668 	} else {
1669 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1670 	}
1671 
1672 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1673 	if (sdev->simple_tags)
1674 		cmd->flags |= SCMD_TAGGED;
1675 	if (bd->last)
1676 		cmd->flags |= SCMD_LAST;
1677 
1678 	scsi_set_resid(cmd, 0);
1679 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1680 	cmd->scsi_done = scsi_mq_done;
1681 
1682 	blk_mq_start_request(req);
1683 	reason = scsi_dispatch_cmd(cmd);
1684 	if (reason) {
1685 		scsi_set_blocked(cmd, reason);
1686 		ret = BLK_STS_RESOURCE;
1687 		goto out_dec_host_busy;
1688 	}
1689 
1690 	return BLK_STS_OK;
1691 
1692 out_dec_host_busy:
1693 	scsi_dec_host_busy(shost, cmd);
1694 out_dec_target_busy:
1695 	if (scsi_target(sdev)->can_queue > 0)
1696 		atomic_dec(&scsi_target(sdev)->target_busy);
1697 out_put_budget:
1698 	scsi_mq_put_budget(q, cmd->budget_token);
1699 	cmd->budget_token = -1;
1700 	switch (ret) {
1701 	case BLK_STS_OK:
1702 		break;
1703 	case BLK_STS_RESOURCE:
1704 	case BLK_STS_ZONE_RESOURCE:
1705 		if (scsi_device_blocked(sdev))
1706 			ret = BLK_STS_DEV_RESOURCE;
1707 		break;
1708 	case BLK_STS_AGAIN:
1709 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1710 		if (req->rq_flags & RQF_DONTPREP)
1711 			scsi_mq_uninit_cmd(cmd);
1712 		break;
1713 	default:
1714 		if (unlikely(!scsi_device_online(sdev)))
1715 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1716 		else
1717 			scsi_req(req)->result = DID_ERROR << 16;
1718 		/*
1719 		 * Make sure to release all allocated resources when
1720 		 * we hit an error, as we will never see this command
1721 		 * again.
1722 		 */
1723 		if (req->rq_flags & RQF_DONTPREP)
1724 			scsi_mq_uninit_cmd(cmd);
1725 		scsi_run_queue_async(sdev);
1726 		break;
1727 	}
1728 	return ret;
1729 }
1730 
1731 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1732 		bool reserved)
1733 {
1734 	if (reserved)
1735 		return BLK_EH_RESET_TIMER;
1736 	return scsi_times_out(req);
1737 }
1738 
1739 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740 				unsigned int hctx_idx, unsigned int numa_node)
1741 {
1742 	struct Scsi_Host *shost = set->driver_data;
1743 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1744 	struct scatterlist *sg;
1745 	int ret = 0;
1746 
1747 	cmd->sense_buffer =
1748 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1749 	if (!cmd->sense_buffer)
1750 		return -ENOMEM;
1751 	cmd->req.sense = cmd->sense_buffer;
1752 
1753 	if (scsi_host_get_prot(shost)) {
1754 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1755 			shost->hostt->cmd_size;
1756 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1757 	}
1758 
1759 	if (shost->hostt->init_cmd_priv) {
1760 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1761 		if (ret < 0)
1762 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1763 	}
1764 
1765 	return ret;
1766 }
1767 
1768 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1769 				 unsigned int hctx_idx)
1770 {
1771 	struct Scsi_Host *shost = set->driver_data;
1772 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1773 
1774 	if (shost->hostt->exit_cmd_priv)
1775 		shost->hostt->exit_cmd_priv(shost, cmd);
1776 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1777 }
1778 
1779 
1780 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1781 {
1782 	struct Scsi_Host *shost = hctx->driver_data;
1783 
1784 	if (shost->hostt->mq_poll)
1785 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1786 
1787 	return 0;
1788 }
1789 
1790 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1791 			  unsigned int hctx_idx)
1792 {
1793 	struct Scsi_Host *shost = data;
1794 
1795 	hctx->driver_data = shost;
1796 	return 0;
1797 }
1798 
1799 static int scsi_map_queues(struct blk_mq_tag_set *set)
1800 {
1801 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1802 
1803 	if (shost->hostt->map_queues)
1804 		return shost->hostt->map_queues(shost);
1805 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1806 }
1807 
1808 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1809 {
1810 	struct device *dev = shost->dma_dev;
1811 
1812 	/*
1813 	 * this limit is imposed by hardware restrictions
1814 	 */
1815 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1816 					SG_MAX_SEGMENTS));
1817 
1818 	if (scsi_host_prot_dma(shost)) {
1819 		shost->sg_prot_tablesize =
1820 			min_not_zero(shost->sg_prot_tablesize,
1821 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1822 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1823 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1824 	}
1825 
1826 	if (dev->dma_mask) {
1827 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1828 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1829 	}
1830 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1831 	blk_queue_segment_boundary(q, shost->dma_boundary);
1832 	dma_set_seg_boundary(dev, shost->dma_boundary);
1833 
1834 	blk_queue_max_segment_size(q, shost->max_segment_size);
1835 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1836 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1837 
1838 	/*
1839 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1840 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1841 	 * which is set by the platform.
1842 	 *
1843 	 * Devices that require a bigger alignment can increase it later.
1844 	 */
1845 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1846 }
1847 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1848 
1849 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1850 	.get_budget	= scsi_mq_get_budget,
1851 	.put_budget	= scsi_mq_put_budget,
1852 	.queue_rq	= scsi_queue_rq,
1853 	.complete	= scsi_complete,
1854 	.timeout	= scsi_timeout,
1855 #ifdef CONFIG_BLK_DEBUG_FS
1856 	.show_rq	= scsi_show_rq,
1857 #endif
1858 	.init_request	= scsi_mq_init_request,
1859 	.exit_request	= scsi_mq_exit_request,
1860 	.initialize_rq_fn = scsi_initialize_rq,
1861 	.cleanup_rq	= scsi_cleanup_rq,
1862 	.busy		= scsi_mq_lld_busy,
1863 	.map_queues	= scsi_map_queues,
1864 	.init_hctx	= scsi_init_hctx,
1865 	.poll		= scsi_mq_poll,
1866 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1867 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1868 };
1869 
1870 
1871 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1872 {
1873 	struct Scsi_Host *shost = hctx->driver_data;
1874 
1875 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1876 }
1877 
1878 static const struct blk_mq_ops scsi_mq_ops = {
1879 	.get_budget	= scsi_mq_get_budget,
1880 	.put_budget	= scsi_mq_put_budget,
1881 	.queue_rq	= scsi_queue_rq,
1882 	.commit_rqs	= scsi_commit_rqs,
1883 	.complete	= scsi_complete,
1884 	.timeout	= scsi_timeout,
1885 #ifdef CONFIG_BLK_DEBUG_FS
1886 	.show_rq	= scsi_show_rq,
1887 #endif
1888 	.init_request	= scsi_mq_init_request,
1889 	.exit_request	= scsi_mq_exit_request,
1890 	.initialize_rq_fn = scsi_initialize_rq,
1891 	.cleanup_rq	= scsi_cleanup_rq,
1892 	.busy		= scsi_mq_lld_busy,
1893 	.map_queues	= scsi_map_queues,
1894 	.init_hctx	= scsi_init_hctx,
1895 	.poll		= scsi_mq_poll,
1896 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1897 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1898 };
1899 
1900 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1901 {
1902 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1903 	if (IS_ERR(sdev->request_queue))
1904 		return NULL;
1905 
1906 	sdev->request_queue->queuedata = sdev;
1907 	__scsi_init_queue(sdev->host, sdev->request_queue);
1908 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1909 	return sdev->request_queue;
1910 }
1911 
1912 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1913 {
1914 	unsigned int cmd_size, sgl_size;
1915 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1916 
1917 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1918 				scsi_mq_inline_sgl_size(shost));
1919 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1920 	if (scsi_host_get_prot(shost))
1921 		cmd_size += sizeof(struct scsi_data_buffer) +
1922 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1923 
1924 	memset(tag_set, 0, sizeof(*tag_set));
1925 	if (shost->hostt->commit_rqs)
1926 		tag_set->ops = &scsi_mq_ops;
1927 	else
1928 		tag_set->ops = &scsi_mq_ops_no_commit;
1929 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1930 	tag_set->nr_maps = shost->nr_maps ? : 1;
1931 	tag_set->queue_depth = shost->can_queue;
1932 	tag_set->cmd_size = cmd_size;
1933 	tag_set->numa_node = NUMA_NO_NODE;
1934 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1935 	tag_set->flags |=
1936 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1937 	tag_set->driver_data = shost;
1938 	if (shost->host_tagset)
1939 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1940 
1941 	return blk_mq_alloc_tag_set(tag_set);
1942 }
1943 
1944 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1945 {
1946 	blk_mq_free_tag_set(&shost->tag_set);
1947 }
1948 
1949 /**
1950  * scsi_device_from_queue - return sdev associated with a request_queue
1951  * @q: The request queue to return the sdev from
1952  *
1953  * Return the sdev associated with a request queue or NULL if the
1954  * request_queue does not reference a SCSI device.
1955  */
1956 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1957 {
1958 	struct scsi_device *sdev = NULL;
1959 
1960 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1961 	    q->mq_ops == &scsi_mq_ops)
1962 		sdev = q->queuedata;
1963 	if (!sdev || !get_device(&sdev->sdev_gendev))
1964 		sdev = NULL;
1965 
1966 	return sdev;
1967 }
1968 
1969 /**
1970  * scsi_block_requests - Utility function used by low-level drivers to prevent
1971  * further commands from being queued to the device.
1972  * @shost:  host in question
1973  *
1974  * There is no timer nor any other means by which the requests get unblocked
1975  * other than the low-level driver calling scsi_unblock_requests().
1976  */
1977 void scsi_block_requests(struct Scsi_Host *shost)
1978 {
1979 	shost->host_self_blocked = 1;
1980 }
1981 EXPORT_SYMBOL(scsi_block_requests);
1982 
1983 /**
1984  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1985  * further commands to be queued to the device.
1986  * @shost:  host in question
1987  *
1988  * There is no timer nor any other means by which the requests get unblocked
1989  * other than the low-level driver calling scsi_unblock_requests(). This is done
1990  * as an API function so that changes to the internals of the scsi mid-layer
1991  * won't require wholesale changes to drivers that use this feature.
1992  */
1993 void scsi_unblock_requests(struct Scsi_Host *shost)
1994 {
1995 	shost->host_self_blocked = 0;
1996 	scsi_run_host_queues(shost);
1997 }
1998 EXPORT_SYMBOL(scsi_unblock_requests);
1999 
2000 void scsi_exit_queue(void)
2001 {
2002 	kmem_cache_destroy(scsi_sense_cache);
2003 }
2004 
2005 /**
2006  *	scsi_mode_select - issue a mode select
2007  *	@sdev:	SCSI device to be queried
2008  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2009  *	@sp:	Save page bit (0 == don't save, 1 == save)
2010  *	@modepage: mode page being requested
2011  *	@buffer: request buffer (may not be smaller than eight bytes)
2012  *	@len:	length of request buffer.
2013  *	@timeout: command timeout
2014  *	@retries: number of retries before failing
2015  *	@data: returns a structure abstracting the mode header data
2016  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2017  *		must be SCSI_SENSE_BUFFERSIZE big.
2018  *
2019  *	Returns zero if successful; negative error number or scsi
2020  *	status on error
2021  *
2022  */
2023 int
2024 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2025 		 unsigned char *buffer, int len, int timeout, int retries,
2026 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2027 {
2028 	unsigned char cmd[10];
2029 	unsigned char *real_buffer;
2030 	int ret;
2031 
2032 	memset(cmd, 0, sizeof(cmd));
2033 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2034 
2035 	if (sdev->use_10_for_ms) {
2036 		if (len > 65535)
2037 			return -EINVAL;
2038 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2039 		if (!real_buffer)
2040 			return -ENOMEM;
2041 		memcpy(real_buffer + 8, buffer, len);
2042 		len += 8;
2043 		real_buffer[0] = 0;
2044 		real_buffer[1] = 0;
2045 		real_buffer[2] = data->medium_type;
2046 		real_buffer[3] = data->device_specific;
2047 		real_buffer[4] = data->longlba ? 0x01 : 0;
2048 		real_buffer[5] = 0;
2049 		real_buffer[6] = data->block_descriptor_length >> 8;
2050 		real_buffer[7] = data->block_descriptor_length;
2051 
2052 		cmd[0] = MODE_SELECT_10;
2053 		cmd[7] = len >> 8;
2054 		cmd[8] = len;
2055 	} else {
2056 		if (len > 255 || data->block_descriptor_length > 255 ||
2057 		    data->longlba)
2058 			return -EINVAL;
2059 
2060 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2061 		if (!real_buffer)
2062 			return -ENOMEM;
2063 		memcpy(real_buffer + 4, buffer, len);
2064 		len += 4;
2065 		real_buffer[0] = 0;
2066 		real_buffer[1] = data->medium_type;
2067 		real_buffer[2] = data->device_specific;
2068 		real_buffer[3] = data->block_descriptor_length;
2069 
2070 		cmd[0] = MODE_SELECT;
2071 		cmd[4] = len;
2072 	}
2073 
2074 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2075 			       sshdr, timeout, retries, NULL);
2076 	kfree(real_buffer);
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL_GPL(scsi_mode_select);
2080 
2081 /**
2082  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2083  *	@sdev:	SCSI device to be queried
2084  *	@dbd:	set if mode sense will allow block descriptors to be returned
2085  *	@modepage: mode page being requested
2086  *	@buffer: request buffer (may not be smaller than eight bytes)
2087  *	@len:	length of request buffer.
2088  *	@timeout: command timeout
2089  *	@retries: number of retries before failing
2090  *	@data: returns a structure abstracting the mode header data
2091  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2092  *		must be SCSI_SENSE_BUFFERSIZE big.
2093  *
2094  *	Returns zero if successful, or a negative error number on failure
2095  */
2096 int
2097 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2098 		  unsigned char *buffer, int len, int timeout, int retries,
2099 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2100 {
2101 	unsigned char cmd[12];
2102 	int use_10_for_ms;
2103 	int header_length;
2104 	int result, retry_count = retries;
2105 	struct scsi_sense_hdr my_sshdr;
2106 
2107 	memset(data, 0, sizeof(*data));
2108 	memset(&cmd[0], 0, 12);
2109 
2110 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2111 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2112 	cmd[2] = modepage;
2113 
2114 	/* caller might not be interested in sense, but we need it */
2115 	if (!sshdr)
2116 		sshdr = &my_sshdr;
2117 
2118  retry:
2119 	use_10_for_ms = sdev->use_10_for_ms;
2120 
2121 	if (use_10_for_ms) {
2122 		if (len < 8)
2123 			len = 8;
2124 
2125 		cmd[0] = MODE_SENSE_10;
2126 		cmd[8] = len;
2127 		header_length = 8;
2128 	} else {
2129 		if (len < 4)
2130 			len = 4;
2131 
2132 		cmd[0] = MODE_SENSE;
2133 		cmd[4] = len;
2134 		header_length = 4;
2135 	}
2136 
2137 	memset(buffer, 0, len);
2138 
2139 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2140 				  sshdr, timeout, retries, NULL);
2141 	if (result < 0)
2142 		return result;
2143 
2144 	/* This code looks awful: what it's doing is making sure an
2145 	 * ILLEGAL REQUEST sense return identifies the actual command
2146 	 * byte as the problem.  MODE_SENSE commands can return
2147 	 * ILLEGAL REQUEST if the code page isn't supported */
2148 
2149 	if (!scsi_status_is_good(result)) {
2150 		if (scsi_sense_valid(sshdr)) {
2151 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2152 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2153 				/*
2154 				 * Invalid command operation code
2155 				 */
2156 				if (use_10_for_ms) {
2157 					sdev->use_10_for_ms = 0;
2158 					goto retry;
2159 				}
2160 			}
2161 			if (scsi_status_is_check_condition(result) &&
2162 			    sshdr->sense_key == UNIT_ATTENTION &&
2163 			    retry_count) {
2164 				retry_count--;
2165 				goto retry;
2166 			}
2167 		}
2168 		return -EIO;
2169 	}
2170 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2171 		     (modepage == 6 || modepage == 8))) {
2172 		/* Initio breakage? */
2173 		header_length = 0;
2174 		data->length = 13;
2175 		data->medium_type = 0;
2176 		data->device_specific = 0;
2177 		data->longlba = 0;
2178 		data->block_descriptor_length = 0;
2179 	} else if (use_10_for_ms) {
2180 		data->length = buffer[0]*256 + buffer[1] + 2;
2181 		data->medium_type = buffer[2];
2182 		data->device_specific = buffer[3];
2183 		data->longlba = buffer[4] & 0x01;
2184 		data->block_descriptor_length = buffer[6]*256
2185 			+ buffer[7];
2186 	} else {
2187 		data->length = buffer[0] + 1;
2188 		data->medium_type = buffer[1];
2189 		data->device_specific = buffer[2];
2190 		data->block_descriptor_length = buffer[3];
2191 	}
2192 	data->header_length = header_length;
2193 
2194 	return 0;
2195 }
2196 EXPORT_SYMBOL(scsi_mode_sense);
2197 
2198 /**
2199  *	scsi_test_unit_ready - test if unit is ready
2200  *	@sdev:	scsi device to change the state of.
2201  *	@timeout: command timeout
2202  *	@retries: number of retries before failing
2203  *	@sshdr: outpout pointer for decoded sense information.
2204  *
2205  *	Returns zero if unsuccessful or an error if TUR failed.  For
2206  *	removable media, UNIT_ATTENTION sets ->changed flag.
2207  **/
2208 int
2209 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2210 		     struct scsi_sense_hdr *sshdr)
2211 {
2212 	char cmd[] = {
2213 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2214 	};
2215 	int result;
2216 
2217 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2218 	do {
2219 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2220 					  timeout, 1, NULL);
2221 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2222 		    sshdr->sense_key == UNIT_ATTENTION)
2223 			sdev->changed = 1;
2224 	} while (scsi_sense_valid(sshdr) &&
2225 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2226 
2227 	return result;
2228 }
2229 EXPORT_SYMBOL(scsi_test_unit_ready);
2230 
2231 /**
2232  *	scsi_device_set_state - Take the given device through the device state model.
2233  *	@sdev:	scsi device to change the state of.
2234  *	@state:	state to change to.
2235  *
2236  *	Returns zero if successful or an error if the requested
2237  *	transition is illegal.
2238  */
2239 int
2240 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2241 {
2242 	enum scsi_device_state oldstate = sdev->sdev_state;
2243 
2244 	if (state == oldstate)
2245 		return 0;
2246 
2247 	switch (state) {
2248 	case SDEV_CREATED:
2249 		switch (oldstate) {
2250 		case SDEV_CREATED_BLOCK:
2251 			break;
2252 		default:
2253 			goto illegal;
2254 		}
2255 		break;
2256 
2257 	case SDEV_RUNNING:
2258 		switch (oldstate) {
2259 		case SDEV_CREATED:
2260 		case SDEV_OFFLINE:
2261 		case SDEV_TRANSPORT_OFFLINE:
2262 		case SDEV_QUIESCE:
2263 		case SDEV_BLOCK:
2264 			break;
2265 		default:
2266 			goto illegal;
2267 		}
2268 		break;
2269 
2270 	case SDEV_QUIESCE:
2271 		switch (oldstate) {
2272 		case SDEV_RUNNING:
2273 		case SDEV_OFFLINE:
2274 		case SDEV_TRANSPORT_OFFLINE:
2275 			break;
2276 		default:
2277 			goto illegal;
2278 		}
2279 		break;
2280 
2281 	case SDEV_OFFLINE:
2282 	case SDEV_TRANSPORT_OFFLINE:
2283 		switch (oldstate) {
2284 		case SDEV_CREATED:
2285 		case SDEV_RUNNING:
2286 		case SDEV_QUIESCE:
2287 		case SDEV_BLOCK:
2288 			break;
2289 		default:
2290 			goto illegal;
2291 		}
2292 		break;
2293 
2294 	case SDEV_BLOCK:
2295 		switch (oldstate) {
2296 		case SDEV_RUNNING:
2297 		case SDEV_CREATED_BLOCK:
2298 		case SDEV_QUIESCE:
2299 		case SDEV_OFFLINE:
2300 			break;
2301 		default:
2302 			goto illegal;
2303 		}
2304 		break;
2305 
2306 	case SDEV_CREATED_BLOCK:
2307 		switch (oldstate) {
2308 		case SDEV_CREATED:
2309 			break;
2310 		default:
2311 			goto illegal;
2312 		}
2313 		break;
2314 
2315 	case SDEV_CANCEL:
2316 		switch (oldstate) {
2317 		case SDEV_CREATED:
2318 		case SDEV_RUNNING:
2319 		case SDEV_QUIESCE:
2320 		case SDEV_OFFLINE:
2321 		case SDEV_TRANSPORT_OFFLINE:
2322 			break;
2323 		default:
2324 			goto illegal;
2325 		}
2326 		break;
2327 
2328 	case SDEV_DEL:
2329 		switch (oldstate) {
2330 		case SDEV_CREATED:
2331 		case SDEV_RUNNING:
2332 		case SDEV_OFFLINE:
2333 		case SDEV_TRANSPORT_OFFLINE:
2334 		case SDEV_CANCEL:
2335 		case SDEV_BLOCK:
2336 		case SDEV_CREATED_BLOCK:
2337 			break;
2338 		default:
2339 			goto illegal;
2340 		}
2341 		break;
2342 
2343 	}
2344 	sdev->offline_already = false;
2345 	sdev->sdev_state = state;
2346 	return 0;
2347 
2348  illegal:
2349 	SCSI_LOG_ERROR_RECOVERY(1,
2350 				sdev_printk(KERN_ERR, sdev,
2351 					    "Illegal state transition %s->%s",
2352 					    scsi_device_state_name(oldstate),
2353 					    scsi_device_state_name(state))
2354 				);
2355 	return -EINVAL;
2356 }
2357 EXPORT_SYMBOL(scsi_device_set_state);
2358 
2359 /**
2360  *	scsi_evt_emit - emit a single SCSI device uevent
2361  *	@sdev: associated SCSI device
2362  *	@evt: event to emit
2363  *
2364  *	Send a single uevent (scsi_event) to the associated scsi_device.
2365  */
2366 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2367 {
2368 	int idx = 0;
2369 	char *envp[3];
2370 
2371 	switch (evt->evt_type) {
2372 	case SDEV_EVT_MEDIA_CHANGE:
2373 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2374 		break;
2375 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2376 		scsi_rescan_device(&sdev->sdev_gendev);
2377 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2378 		break;
2379 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2380 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2381 		break;
2382 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2383 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2384 		break;
2385 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2386 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2387 		break;
2388 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2389 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2390 		break;
2391 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2392 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2393 		break;
2394 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2395 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2396 		break;
2397 	default:
2398 		/* do nothing */
2399 		break;
2400 	}
2401 
2402 	envp[idx++] = NULL;
2403 
2404 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2405 }
2406 
2407 /**
2408  *	scsi_evt_thread - send a uevent for each scsi event
2409  *	@work: work struct for scsi_device
2410  *
2411  *	Dispatch queued events to their associated scsi_device kobjects
2412  *	as uevents.
2413  */
2414 void scsi_evt_thread(struct work_struct *work)
2415 {
2416 	struct scsi_device *sdev;
2417 	enum scsi_device_event evt_type;
2418 	LIST_HEAD(event_list);
2419 
2420 	sdev = container_of(work, struct scsi_device, event_work);
2421 
2422 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2423 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2424 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2425 
2426 	while (1) {
2427 		struct scsi_event *evt;
2428 		struct list_head *this, *tmp;
2429 		unsigned long flags;
2430 
2431 		spin_lock_irqsave(&sdev->list_lock, flags);
2432 		list_splice_init(&sdev->event_list, &event_list);
2433 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2434 
2435 		if (list_empty(&event_list))
2436 			break;
2437 
2438 		list_for_each_safe(this, tmp, &event_list) {
2439 			evt = list_entry(this, struct scsi_event, node);
2440 			list_del(&evt->node);
2441 			scsi_evt_emit(sdev, evt);
2442 			kfree(evt);
2443 		}
2444 	}
2445 }
2446 
2447 /**
2448  * 	sdev_evt_send - send asserted event to uevent thread
2449  *	@sdev: scsi_device event occurred on
2450  *	@evt: event to send
2451  *
2452  *	Assert scsi device event asynchronously.
2453  */
2454 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2455 {
2456 	unsigned long flags;
2457 
2458 #if 0
2459 	/* FIXME: currently this check eliminates all media change events
2460 	 * for polled devices.  Need to update to discriminate between AN
2461 	 * and polled events */
2462 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2463 		kfree(evt);
2464 		return;
2465 	}
2466 #endif
2467 
2468 	spin_lock_irqsave(&sdev->list_lock, flags);
2469 	list_add_tail(&evt->node, &sdev->event_list);
2470 	schedule_work(&sdev->event_work);
2471 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2472 }
2473 EXPORT_SYMBOL_GPL(sdev_evt_send);
2474 
2475 /**
2476  * 	sdev_evt_alloc - allocate a new scsi event
2477  *	@evt_type: type of event to allocate
2478  *	@gfpflags: GFP flags for allocation
2479  *
2480  *	Allocates and returns a new scsi_event.
2481  */
2482 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2483 				  gfp_t gfpflags)
2484 {
2485 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2486 	if (!evt)
2487 		return NULL;
2488 
2489 	evt->evt_type = evt_type;
2490 	INIT_LIST_HEAD(&evt->node);
2491 
2492 	/* evt_type-specific initialization, if any */
2493 	switch (evt_type) {
2494 	case SDEV_EVT_MEDIA_CHANGE:
2495 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2496 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2497 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2498 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2499 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2500 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2501 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2502 	default:
2503 		/* do nothing */
2504 		break;
2505 	}
2506 
2507 	return evt;
2508 }
2509 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2510 
2511 /**
2512  * 	sdev_evt_send_simple - send asserted event to uevent thread
2513  *	@sdev: scsi_device event occurred on
2514  *	@evt_type: type of event to send
2515  *	@gfpflags: GFP flags for allocation
2516  *
2517  *	Assert scsi device event asynchronously, given an event type.
2518  */
2519 void sdev_evt_send_simple(struct scsi_device *sdev,
2520 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2521 {
2522 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2523 	if (!evt) {
2524 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2525 			    evt_type);
2526 		return;
2527 	}
2528 
2529 	sdev_evt_send(sdev, evt);
2530 }
2531 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2532 
2533 /**
2534  *	scsi_device_quiesce - Block all commands except power management.
2535  *	@sdev:	scsi device to quiesce.
2536  *
2537  *	This works by trying to transition to the SDEV_QUIESCE state
2538  *	(which must be a legal transition).  When the device is in this
2539  *	state, only power management requests will be accepted, all others will
2540  *	be deferred.
2541  *
2542  *	Must be called with user context, may sleep.
2543  *
2544  *	Returns zero if unsuccessful or an error if not.
2545  */
2546 int
2547 scsi_device_quiesce(struct scsi_device *sdev)
2548 {
2549 	struct request_queue *q = sdev->request_queue;
2550 	int err;
2551 
2552 	/*
2553 	 * It is allowed to call scsi_device_quiesce() multiple times from
2554 	 * the same context but concurrent scsi_device_quiesce() calls are
2555 	 * not allowed.
2556 	 */
2557 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2558 
2559 	if (sdev->quiesced_by == current)
2560 		return 0;
2561 
2562 	blk_set_pm_only(q);
2563 
2564 	blk_mq_freeze_queue(q);
2565 	/*
2566 	 * Ensure that the effect of blk_set_pm_only() will be visible
2567 	 * for percpu_ref_tryget() callers that occur after the queue
2568 	 * unfreeze even if the queue was already frozen before this function
2569 	 * was called. See also https://lwn.net/Articles/573497/.
2570 	 */
2571 	synchronize_rcu();
2572 	blk_mq_unfreeze_queue(q);
2573 
2574 	mutex_lock(&sdev->state_mutex);
2575 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2576 	if (err == 0)
2577 		sdev->quiesced_by = current;
2578 	else
2579 		blk_clear_pm_only(q);
2580 	mutex_unlock(&sdev->state_mutex);
2581 
2582 	return err;
2583 }
2584 EXPORT_SYMBOL(scsi_device_quiesce);
2585 
2586 /**
2587  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2588  *	@sdev:	scsi device to resume.
2589  *
2590  *	Moves the device from quiesced back to running and restarts the
2591  *	queues.
2592  *
2593  *	Must be called with user context, may sleep.
2594  */
2595 void scsi_device_resume(struct scsi_device *sdev)
2596 {
2597 	/* check if the device state was mutated prior to resume, and if
2598 	 * so assume the state is being managed elsewhere (for example
2599 	 * device deleted during suspend)
2600 	 */
2601 	mutex_lock(&sdev->state_mutex);
2602 	if (sdev->sdev_state == SDEV_QUIESCE)
2603 		scsi_device_set_state(sdev, SDEV_RUNNING);
2604 	if (sdev->quiesced_by) {
2605 		sdev->quiesced_by = NULL;
2606 		blk_clear_pm_only(sdev->request_queue);
2607 	}
2608 	mutex_unlock(&sdev->state_mutex);
2609 }
2610 EXPORT_SYMBOL(scsi_device_resume);
2611 
2612 static void
2613 device_quiesce_fn(struct scsi_device *sdev, void *data)
2614 {
2615 	scsi_device_quiesce(sdev);
2616 }
2617 
2618 void
2619 scsi_target_quiesce(struct scsi_target *starget)
2620 {
2621 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2622 }
2623 EXPORT_SYMBOL(scsi_target_quiesce);
2624 
2625 static void
2626 device_resume_fn(struct scsi_device *sdev, void *data)
2627 {
2628 	scsi_device_resume(sdev);
2629 }
2630 
2631 void
2632 scsi_target_resume(struct scsi_target *starget)
2633 {
2634 	starget_for_each_device(starget, NULL, device_resume_fn);
2635 }
2636 EXPORT_SYMBOL(scsi_target_resume);
2637 
2638 /**
2639  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2640  * @sdev: device to block
2641  *
2642  * Pause SCSI command processing on the specified device. Does not sleep.
2643  *
2644  * Returns zero if successful or a negative error code upon failure.
2645  *
2646  * Notes:
2647  * This routine transitions the device to the SDEV_BLOCK state (which must be
2648  * a legal transition). When the device is in this state, command processing
2649  * is paused until the device leaves the SDEV_BLOCK state. See also
2650  * scsi_internal_device_unblock_nowait().
2651  */
2652 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2653 {
2654 	struct request_queue *q = sdev->request_queue;
2655 	int err = 0;
2656 
2657 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2658 	if (err) {
2659 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2660 
2661 		if (err)
2662 			return err;
2663 	}
2664 
2665 	/*
2666 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2667 	 * block layer from calling the midlayer with this device's
2668 	 * request queue.
2669 	 */
2670 	blk_mq_quiesce_queue_nowait(q);
2671 	return 0;
2672 }
2673 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2674 
2675 /**
2676  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2677  * @sdev: device to block
2678  *
2679  * Pause SCSI command processing on the specified device and wait until all
2680  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2681  *
2682  * Returns zero if successful or a negative error code upon failure.
2683  *
2684  * Note:
2685  * This routine transitions the device to the SDEV_BLOCK state (which must be
2686  * a legal transition). When the device is in this state, command processing
2687  * is paused until the device leaves the SDEV_BLOCK state. See also
2688  * scsi_internal_device_unblock().
2689  */
2690 static int scsi_internal_device_block(struct scsi_device *sdev)
2691 {
2692 	struct request_queue *q = sdev->request_queue;
2693 	int err;
2694 
2695 	mutex_lock(&sdev->state_mutex);
2696 	err = scsi_internal_device_block_nowait(sdev);
2697 	if (err == 0)
2698 		blk_mq_quiesce_queue(q);
2699 	mutex_unlock(&sdev->state_mutex);
2700 
2701 	return err;
2702 }
2703 
2704 void scsi_start_queue(struct scsi_device *sdev)
2705 {
2706 	struct request_queue *q = sdev->request_queue;
2707 
2708 	blk_mq_unquiesce_queue(q);
2709 }
2710 
2711 /**
2712  * scsi_internal_device_unblock_nowait - resume a device after a block request
2713  * @sdev:	device to resume
2714  * @new_state:	state to set the device to after unblocking
2715  *
2716  * Restart the device queue for a previously suspended SCSI device. Does not
2717  * sleep.
2718  *
2719  * Returns zero if successful or a negative error code upon failure.
2720  *
2721  * Notes:
2722  * This routine transitions the device to the SDEV_RUNNING state or to one of
2723  * the offline states (which must be a legal transition) allowing the midlayer
2724  * to goose the queue for this device.
2725  */
2726 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2727 					enum scsi_device_state new_state)
2728 {
2729 	switch (new_state) {
2730 	case SDEV_RUNNING:
2731 	case SDEV_TRANSPORT_OFFLINE:
2732 		break;
2733 	default:
2734 		return -EINVAL;
2735 	}
2736 
2737 	/*
2738 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2739 	 * offlined states and goose the device queue if successful.
2740 	 */
2741 	switch (sdev->sdev_state) {
2742 	case SDEV_BLOCK:
2743 	case SDEV_TRANSPORT_OFFLINE:
2744 		sdev->sdev_state = new_state;
2745 		break;
2746 	case SDEV_CREATED_BLOCK:
2747 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2748 		    new_state == SDEV_OFFLINE)
2749 			sdev->sdev_state = new_state;
2750 		else
2751 			sdev->sdev_state = SDEV_CREATED;
2752 		break;
2753 	case SDEV_CANCEL:
2754 	case SDEV_OFFLINE:
2755 		break;
2756 	default:
2757 		return -EINVAL;
2758 	}
2759 	scsi_start_queue(sdev);
2760 
2761 	return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2764 
2765 /**
2766  * scsi_internal_device_unblock - resume a device after a block request
2767  * @sdev:	device to resume
2768  * @new_state:	state to set the device to after unblocking
2769  *
2770  * Restart the device queue for a previously suspended SCSI device. May sleep.
2771  *
2772  * Returns zero if successful or a negative error code upon failure.
2773  *
2774  * Notes:
2775  * This routine transitions the device to the SDEV_RUNNING state or to one of
2776  * the offline states (which must be a legal transition) allowing the midlayer
2777  * to goose the queue for this device.
2778  */
2779 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2780 					enum scsi_device_state new_state)
2781 {
2782 	int ret;
2783 
2784 	mutex_lock(&sdev->state_mutex);
2785 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2786 	mutex_unlock(&sdev->state_mutex);
2787 
2788 	return ret;
2789 }
2790 
2791 static void
2792 device_block(struct scsi_device *sdev, void *data)
2793 {
2794 	int ret;
2795 
2796 	ret = scsi_internal_device_block(sdev);
2797 
2798 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2799 		  dev_name(&sdev->sdev_gendev), ret);
2800 }
2801 
2802 static int
2803 target_block(struct device *dev, void *data)
2804 {
2805 	if (scsi_is_target_device(dev))
2806 		starget_for_each_device(to_scsi_target(dev), NULL,
2807 					device_block);
2808 	return 0;
2809 }
2810 
2811 void
2812 scsi_target_block(struct device *dev)
2813 {
2814 	if (scsi_is_target_device(dev))
2815 		starget_for_each_device(to_scsi_target(dev), NULL,
2816 					device_block);
2817 	else
2818 		device_for_each_child(dev, NULL, target_block);
2819 }
2820 EXPORT_SYMBOL_GPL(scsi_target_block);
2821 
2822 static void
2823 device_unblock(struct scsi_device *sdev, void *data)
2824 {
2825 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2826 }
2827 
2828 static int
2829 target_unblock(struct device *dev, void *data)
2830 {
2831 	if (scsi_is_target_device(dev))
2832 		starget_for_each_device(to_scsi_target(dev), data,
2833 					device_unblock);
2834 	return 0;
2835 }
2836 
2837 void
2838 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2839 {
2840 	if (scsi_is_target_device(dev))
2841 		starget_for_each_device(to_scsi_target(dev), &new_state,
2842 					device_unblock);
2843 	else
2844 		device_for_each_child(dev, &new_state, target_unblock);
2845 }
2846 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2847 
2848 int
2849 scsi_host_block(struct Scsi_Host *shost)
2850 {
2851 	struct scsi_device *sdev;
2852 	int ret = 0;
2853 
2854 	/*
2855 	 * Call scsi_internal_device_block_nowait so we can avoid
2856 	 * calling synchronize_rcu() for each LUN.
2857 	 */
2858 	shost_for_each_device(sdev, shost) {
2859 		mutex_lock(&sdev->state_mutex);
2860 		ret = scsi_internal_device_block_nowait(sdev);
2861 		mutex_unlock(&sdev->state_mutex);
2862 		if (ret) {
2863 			scsi_device_put(sdev);
2864 			break;
2865 		}
2866 	}
2867 
2868 	/*
2869 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2870 	 * calling synchronize_rcu() once is enough.
2871 	 */
2872 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2873 
2874 	if (!ret)
2875 		synchronize_rcu();
2876 
2877 	return ret;
2878 }
2879 EXPORT_SYMBOL_GPL(scsi_host_block);
2880 
2881 int
2882 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2883 {
2884 	struct scsi_device *sdev;
2885 	int ret = 0;
2886 
2887 	shost_for_each_device(sdev, shost) {
2888 		ret = scsi_internal_device_unblock(sdev, new_state);
2889 		if (ret) {
2890 			scsi_device_put(sdev);
2891 			break;
2892 		}
2893 	}
2894 	return ret;
2895 }
2896 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2897 
2898 /**
2899  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2900  * @sgl:	scatter-gather list
2901  * @sg_count:	number of segments in sg
2902  * @offset:	offset in bytes into sg, on return offset into the mapped area
2903  * @len:	bytes to map, on return number of bytes mapped
2904  *
2905  * Returns virtual address of the start of the mapped page
2906  */
2907 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2908 			  size_t *offset, size_t *len)
2909 {
2910 	int i;
2911 	size_t sg_len = 0, len_complete = 0;
2912 	struct scatterlist *sg;
2913 	struct page *page;
2914 
2915 	WARN_ON(!irqs_disabled());
2916 
2917 	for_each_sg(sgl, sg, sg_count, i) {
2918 		len_complete = sg_len; /* Complete sg-entries */
2919 		sg_len += sg->length;
2920 		if (sg_len > *offset)
2921 			break;
2922 	}
2923 
2924 	if (unlikely(i == sg_count)) {
2925 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2926 			"elements %d\n",
2927 		       __func__, sg_len, *offset, sg_count);
2928 		WARN_ON(1);
2929 		return NULL;
2930 	}
2931 
2932 	/* Offset starting from the beginning of first page in this sg-entry */
2933 	*offset = *offset - len_complete + sg->offset;
2934 
2935 	/* Assumption: contiguous pages can be accessed as "page + i" */
2936 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2937 	*offset &= ~PAGE_MASK;
2938 
2939 	/* Bytes in this sg-entry from *offset to the end of the page */
2940 	sg_len = PAGE_SIZE - *offset;
2941 	if (*len > sg_len)
2942 		*len = sg_len;
2943 
2944 	return kmap_atomic(page);
2945 }
2946 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2947 
2948 /**
2949  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2950  * @virt:	virtual address to be unmapped
2951  */
2952 void scsi_kunmap_atomic_sg(void *virt)
2953 {
2954 	kunmap_atomic(virt);
2955 }
2956 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2957 
2958 void sdev_disable_disk_events(struct scsi_device *sdev)
2959 {
2960 	atomic_inc(&sdev->disk_events_disable_depth);
2961 }
2962 EXPORT_SYMBOL(sdev_disable_disk_events);
2963 
2964 void sdev_enable_disk_events(struct scsi_device *sdev)
2965 {
2966 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2967 		return;
2968 	atomic_dec(&sdev->disk_events_disable_depth);
2969 }
2970 EXPORT_SYMBOL(sdev_enable_disk_events);
2971 
2972 static unsigned char designator_prio(const unsigned char *d)
2973 {
2974 	if (d[1] & 0x30)
2975 		/* not associated with LUN */
2976 		return 0;
2977 
2978 	if (d[3] == 0)
2979 		/* invalid length */
2980 		return 0;
2981 
2982 	/*
2983 	 * Order of preference for lun descriptor:
2984 	 * - SCSI name string
2985 	 * - NAA IEEE Registered Extended
2986 	 * - EUI-64 based 16-byte
2987 	 * - EUI-64 based 12-byte
2988 	 * - NAA IEEE Registered
2989 	 * - NAA IEEE Extended
2990 	 * - EUI-64 based 8-byte
2991 	 * - SCSI name string (truncated)
2992 	 * - T10 Vendor ID
2993 	 * as longer descriptors reduce the likelyhood
2994 	 * of identification clashes.
2995 	 */
2996 
2997 	switch (d[1] & 0xf) {
2998 	case 8:
2999 		/* SCSI name string, variable-length UTF-8 */
3000 		return 9;
3001 	case 3:
3002 		switch (d[4] >> 4) {
3003 		case 6:
3004 			/* NAA registered extended */
3005 			return 8;
3006 		case 5:
3007 			/* NAA registered */
3008 			return 5;
3009 		case 4:
3010 			/* NAA extended */
3011 			return 4;
3012 		case 3:
3013 			/* NAA locally assigned */
3014 			return 1;
3015 		default:
3016 			break;
3017 		}
3018 		break;
3019 	case 2:
3020 		switch (d[3]) {
3021 		case 16:
3022 			/* EUI64-based, 16 byte */
3023 			return 7;
3024 		case 12:
3025 			/* EUI64-based, 12 byte */
3026 			return 6;
3027 		case 8:
3028 			/* EUI64-based, 8 byte */
3029 			return 3;
3030 		default:
3031 			break;
3032 		}
3033 		break;
3034 	case 1:
3035 		/* T10 vendor ID */
3036 		return 1;
3037 	default:
3038 		break;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 /**
3045  * scsi_vpd_lun_id - return a unique device identification
3046  * @sdev: SCSI device
3047  * @id:   buffer for the identification
3048  * @id_len:  length of the buffer
3049  *
3050  * Copies a unique device identification into @id based
3051  * on the information in the VPD page 0x83 of the device.
3052  * The string will be formatted as a SCSI name string.
3053  *
3054  * Returns the length of the identification or error on failure.
3055  * If the identifier is longer than the supplied buffer the actual
3056  * identifier length is returned and the buffer is not zero-padded.
3057  */
3058 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3059 {
3060 	u8 cur_id_prio = 0;
3061 	u8 cur_id_size = 0;
3062 	const unsigned char *d, *cur_id_str;
3063 	const struct scsi_vpd *vpd_pg83;
3064 	int id_size = -EINVAL;
3065 
3066 	rcu_read_lock();
3067 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3068 	if (!vpd_pg83) {
3069 		rcu_read_unlock();
3070 		return -ENXIO;
3071 	}
3072 
3073 	/* The id string must be at least 20 bytes + terminating NULL byte */
3074 	if (id_len < 21) {
3075 		rcu_read_unlock();
3076 		return -EINVAL;
3077 	}
3078 
3079 	memset(id, 0, id_len);
3080 	for (d = vpd_pg83->data + 4;
3081 	     d < vpd_pg83->data + vpd_pg83->len;
3082 	     d += d[3] + 4) {
3083 		u8 prio = designator_prio(d);
3084 
3085 		if (prio == 0 || cur_id_prio > prio)
3086 			continue;
3087 
3088 		switch (d[1] & 0xf) {
3089 		case 0x1:
3090 			/* T10 Vendor ID */
3091 			if (cur_id_size > d[3])
3092 				break;
3093 			cur_id_prio = prio;
3094 			cur_id_size = d[3];
3095 			if (cur_id_size + 4 > id_len)
3096 				cur_id_size = id_len - 4;
3097 			cur_id_str = d + 4;
3098 			id_size = snprintf(id, id_len, "t10.%*pE",
3099 					   cur_id_size, cur_id_str);
3100 			break;
3101 		case 0x2:
3102 			/* EUI-64 */
3103 			cur_id_prio = prio;
3104 			cur_id_size = d[3];
3105 			cur_id_str = d + 4;
3106 			switch (cur_id_size) {
3107 			case 8:
3108 				id_size = snprintf(id, id_len,
3109 						   "eui.%8phN",
3110 						   cur_id_str);
3111 				break;
3112 			case 12:
3113 				id_size = snprintf(id, id_len,
3114 						   "eui.%12phN",
3115 						   cur_id_str);
3116 				break;
3117 			case 16:
3118 				id_size = snprintf(id, id_len,
3119 						   "eui.%16phN",
3120 						   cur_id_str);
3121 				break;
3122 			default:
3123 				break;
3124 			}
3125 			break;
3126 		case 0x3:
3127 			/* NAA */
3128 			cur_id_prio = prio;
3129 			cur_id_size = d[3];
3130 			cur_id_str = d + 4;
3131 			switch (cur_id_size) {
3132 			case 8:
3133 				id_size = snprintf(id, id_len,
3134 						   "naa.%8phN",
3135 						   cur_id_str);
3136 				break;
3137 			case 16:
3138 				id_size = snprintf(id, id_len,
3139 						   "naa.%16phN",
3140 						   cur_id_str);
3141 				break;
3142 			default:
3143 				break;
3144 			}
3145 			break;
3146 		case 0x8:
3147 			/* SCSI name string */
3148 			if (cur_id_size > d[3])
3149 				break;
3150 			/* Prefer others for truncated descriptor */
3151 			if (d[3] > id_len) {
3152 				prio = 2;
3153 				if (cur_id_prio > prio)
3154 					break;
3155 			}
3156 			cur_id_prio = prio;
3157 			cur_id_size = id_size = d[3];
3158 			cur_id_str = d + 4;
3159 			if (cur_id_size >= id_len)
3160 				cur_id_size = id_len - 1;
3161 			memcpy(id, cur_id_str, cur_id_size);
3162 			break;
3163 		default:
3164 			break;
3165 		}
3166 	}
3167 	rcu_read_unlock();
3168 
3169 	return id_size;
3170 }
3171 EXPORT_SYMBOL(scsi_vpd_lun_id);
3172 
3173 /*
3174  * scsi_vpd_tpg_id - return a target port group identifier
3175  * @sdev: SCSI device
3176  *
3177  * Returns the Target Port Group identifier from the information
3178  * froom VPD page 0x83 of the device.
3179  *
3180  * Returns the identifier or error on failure.
3181  */
3182 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3183 {
3184 	const unsigned char *d;
3185 	const struct scsi_vpd *vpd_pg83;
3186 	int group_id = -EAGAIN, rel_port = -1;
3187 
3188 	rcu_read_lock();
3189 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3190 	if (!vpd_pg83) {
3191 		rcu_read_unlock();
3192 		return -ENXIO;
3193 	}
3194 
3195 	d = vpd_pg83->data + 4;
3196 	while (d < vpd_pg83->data + vpd_pg83->len) {
3197 		switch (d[1] & 0xf) {
3198 		case 0x4:
3199 			/* Relative target port */
3200 			rel_port = get_unaligned_be16(&d[6]);
3201 			break;
3202 		case 0x5:
3203 			/* Target port group */
3204 			group_id = get_unaligned_be16(&d[6]);
3205 			break;
3206 		default:
3207 			break;
3208 		}
3209 		d += d[3] + 4;
3210 	}
3211 	rcu_read_unlock();
3212 
3213 	if (group_id >= 0 && rel_id && rel_port != -1)
3214 		*rel_id = rel_port;
3215 
3216 	return group_id;
3217 }
3218 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3219 
3220 /**
3221  * scsi_build_sense - build sense data for a command
3222  * @scmd:	scsi command for which the sense should be formatted
3223  * @desc:	Sense format (non-zero == descriptor format,
3224  *              0 == fixed format)
3225  * @key:	Sense key
3226  * @asc:	Additional sense code
3227  * @ascq:	Additional sense code qualifier
3228  *
3229  **/
3230 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3231 {
3232 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3233 	scmd->result = SAM_STAT_CHECK_CONDITION;
3234 }
3235 EXPORT_SYMBOL_GPL(scsi_build_sense);
3236