xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		/*
195 		 * Before a SCSI command is dispatched,
196 		 * get_device(&sdev->sdev_gendev) is called and the host,
197 		 * target and device busy counters are increased. Since
198 		 * requeuing a request causes these actions to be repeated and
199 		 * since scsi_device_unbusy() has already been called,
200 		 * put_device(&device->sdev_gendev) must still be called. Call
201 		 * put_device() after blk_mq_requeue_request() to avoid that
202 		 * removal of the SCSI device can start before requeueing has
203 		 * happened.
204 		 */
205 		blk_mq_requeue_request(cmd->request, true);
206 		put_device(&device->sdev_gendev);
207 		return;
208 	}
209 	spin_lock_irqsave(q->queue_lock, flags);
210 	blk_requeue_request(q, cmd->request);
211 	kblockd_schedule_work(&device->requeue_work);
212 	spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214 
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236 	__scsi_queue_insert(cmd, reason, true);
237 }
238 
239 
240 /**
241  * scsi_execute - insert request and wait for the result
242  * @sdev:	scsi device
243  * @cmd:	scsi command
244  * @data_direction: data direction
245  * @buffer:	data buffer
246  * @bufflen:	len of buffer
247  * @sense:	optional sense buffer
248  * @sshdr:	optional decoded sense header
249  * @timeout:	request timeout in seconds
250  * @retries:	number of times to retry request
251  * @flags:	flags for ->cmd_flags
252  * @rq_flags:	flags for ->rq_flags
253  * @resid:	optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 		 int data_direction, void *buffer, unsigned bufflen,
260 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 		 int *resid)
263 {
264 	struct request *req;
265 	struct scsi_request *rq;
266 	int ret = DRIVER_ERROR << 24;
267 
268 	req = blk_get_request_flags(sdev->request_queue,
269 			data_direction == DMA_TO_DEVICE ?
270 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 	if (IS_ERR(req))
272 		return ret;
273 	rq = scsi_req(req);
274 
275 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
276 					buffer, bufflen, __GFP_RECLAIM))
277 		goto out;
278 
279 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 	memcpy(rq->cmd, cmd, rq->cmd_len);
281 	rq->retries = retries;
282 	req->timeout = timeout;
283 	req->cmd_flags |= flags;
284 	req->rq_flags |= rq_flags | RQF_QUIET;
285 
286 	/*
287 	 * head injection *required* here otherwise quiesce won't work
288 	 */
289 	blk_execute_rq(req->q, NULL, req, 1);
290 
291 	/*
292 	 * Some devices (USB mass-storage in particular) may transfer
293 	 * garbage data together with a residue indicating that the data
294 	 * is invalid.  Prevent the garbage from being misinterpreted
295 	 * and prevent security leaks by zeroing out the excess data.
296 	 */
297 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299 
300 	if (resid)
301 		*resid = rq->resid_len;
302 	if (sense && rq->sense_len)
303 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 	if (sshdr)
305 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 	ret = rq->result;
307  out:
308 	blk_put_request(req);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL(scsi_execute);
313 
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd	- command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327 	cmd->serial_number = 0;
328 	scsi_set_resid(cmd, 0);
329 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 	if (cmd->cmd_len == 0)
331 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333 
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345 	unsigned long flags;
346 
347 	rcu_read_lock();
348 	atomic_dec(&shost->host_busy);
349 	if (unlikely(scsi_host_in_recovery(shost))) {
350 		spin_lock_irqsave(shost->host_lock, flags);
351 		if (shost->host_failed || shost->host_eh_scheduled)
352 			scsi_eh_wakeup(shost);
353 		spin_unlock_irqrestore(shost->host_lock, flags);
354 	}
355 	rcu_read_unlock();
356 }
357 
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360 	struct Scsi_Host *shost = sdev->host;
361 	struct scsi_target *starget = scsi_target(sdev);
362 
363 	scsi_dec_host_busy(shost);
364 
365 	if (starget->can_queue > 0)
366 		atomic_dec(&starget->target_busy);
367 
368 	atomic_dec(&sdev->device_busy);
369 }
370 
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373 	if (q->mq_ops)
374 		blk_mq_start_hw_queues(q);
375 	else
376 		blk_run_queue(q);
377 }
378 
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388 	struct Scsi_Host *shost = current_sdev->host;
389 	struct scsi_device *sdev, *tmp;
390 	struct scsi_target *starget = scsi_target(current_sdev);
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	starget->starget_sdev_user = NULL;
395 	spin_unlock_irqrestore(shost->host_lock, flags);
396 
397 	/*
398 	 * Call blk_run_queue for all LUNs on the target, starting with
399 	 * current_sdev. We race with others (to set starget_sdev_user),
400 	 * but in most cases, we will be first. Ideally, each LU on the
401 	 * target would get some limited time or requests on the target.
402 	 */
403 	scsi_kick_queue(current_sdev->request_queue);
404 
405 	spin_lock_irqsave(shost->host_lock, flags);
406 	if (starget->starget_sdev_user)
407 		goto out;
408 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 			same_target_siblings) {
410 		if (sdev == current_sdev)
411 			continue;
412 		if (scsi_device_get(sdev))
413 			continue;
414 
415 		spin_unlock_irqrestore(shost->host_lock, flags);
416 		scsi_kick_queue(sdev->request_queue);
417 		spin_lock_irqsave(shost->host_lock, flags);
418 
419 		scsi_device_put(sdev);
420 	}
421  out:
422 	spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424 
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 		return true;
429 	if (atomic_read(&sdev->device_blocked) > 0)
430 		return true;
431 	return false;
432 }
433 
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436 	if (starget->can_queue > 0) {
437 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 			return true;
439 		if (atomic_read(&starget->target_blocked) > 0)
440 			return true;
441 	}
442 	return false;
443 }
444 
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447 	if (shost->can_queue > 0 &&
448 	    atomic_read(&shost->host_busy) >= shost->can_queue)
449 		return true;
450 	if (atomic_read(&shost->host_blocked) > 0)
451 		return true;
452 	if (shost->host_self_blocked)
453 		return true;
454 	return false;
455 }
456 
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459 	LIST_HEAD(starved_list);
460 	struct scsi_device *sdev;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(shost->host_lock, flags);
464 	list_splice_init(&shost->starved_list, &starved_list);
465 
466 	while (!list_empty(&starved_list)) {
467 		struct request_queue *slq;
468 
469 		/*
470 		 * As long as shost is accepting commands and we have
471 		 * starved queues, call blk_run_queue. scsi_request_fn
472 		 * drops the queue_lock and can add us back to the
473 		 * starved_list.
474 		 *
475 		 * host_lock protects the starved_list and starved_entry.
476 		 * scsi_request_fn must get the host_lock before checking
477 		 * or modifying starved_list or starved_entry.
478 		 */
479 		if (scsi_host_is_busy(shost))
480 			break;
481 
482 		sdev = list_entry(starved_list.next,
483 				  struct scsi_device, starved_entry);
484 		list_del_init(&sdev->starved_entry);
485 		if (scsi_target_is_busy(scsi_target(sdev))) {
486 			list_move_tail(&sdev->starved_entry,
487 				       &shost->starved_list);
488 			continue;
489 		}
490 
491 		/*
492 		 * Once we drop the host lock, a racing scsi_remove_device()
493 		 * call may remove the sdev from the starved list and destroy
494 		 * it and the queue.  Mitigate by taking a reference to the
495 		 * queue and never touching the sdev again after we drop the
496 		 * host lock.  Note: if __scsi_remove_device() invokes
497 		 * blk_cleanup_queue() before the queue is run from this
498 		 * function then blk_run_queue() will return immediately since
499 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500 		 */
501 		slq = sdev->request_queue;
502 		if (!blk_get_queue(slq))
503 			continue;
504 		spin_unlock_irqrestore(shost->host_lock, flags);
505 
506 		scsi_kick_queue(slq);
507 		blk_put_queue(slq);
508 
509 		spin_lock_irqsave(shost->host_lock, flags);
510 	}
511 	/* put any unprocessed entries back */
512 	list_splice(&starved_list, &shost->starved_list);
513 	spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515 
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530 	struct scsi_device *sdev = q->queuedata;
531 
532 	if (scsi_target(sdev)->single_lun)
533 		scsi_single_lun_run(sdev);
534 	if (!list_empty(&sdev->host->starved_list))
535 		scsi_starved_list_run(sdev->host);
536 
537 	if (q->mq_ops)
538 		blk_mq_run_hw_queues(q, false);
539 	else
540 		blk_run_queue(q);
541 }
542 
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545 	struct scsi_device *sdev;
546 	struct request_queue *q;
547 
548 	sdev = container_of(work, struct scsi_device, requeue_work);
549 	q = sdev->request_queue;
550 	scsi_run_queue(q);
551 }
552 
553 /*
554  * Function:	scsi_requeue_command()
555  *
556  * Purpose:	Handle post-processing of completed commands.
557  *
558  * Arguments:	q	- queue to operate on
559  *		cmd	- command that may need to be requeued.
560  *
561  * Returns:	Nothing
562  *
563  * Notes:	After command completion, there may be blocks left
564  *		over which weren't finished by the previous command
565  *		this can be for a number of reasons - the main one is
566  *		I/O errors in the middle of the request, in which case
567  *		we need to request the blocks that come after the bad
568  *		sector.
569  * Notes:	Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573 	struct scsi_device *sdev = cmd->device;
574 	struct request *req = cmd->request;
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(q->queue_lock, flags);
578 	blk_unprep_request(req);
579 	req->special = NULL;
580 	scsi_put_command(cmd);
581 	blk_requeue_request(q, req);
582 	spin_unlock_irqrestore(q->queue_lock, flags);
583 
584 	scsi_run_queue(q);
585 
586 	put_device(&sdev->sdev_gendev);
587 }
588 
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591 	struct scsi_device *sdev;
592 
593 	shost_for_each_device(sdev, shost)
594 		scsi_run_queue(sdev->request_queue);
595 }
596 
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599 	if (!blk_rq_is_passthrough(cmd->request)) {
600 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601 
602 		if (drv->uninit_command)
603 			drv->uninit_command(cmd);
604 	}
605 }
606 
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609 	struct scsi_data_buffer *sdb;
610 
611 	if (cmd->sdb.table.nents)
612 		sg_free_table_chained(&cmd->sdb.table, true);
613 	if (cmd->request->next_rq) {
614 		sdb = cmd->request->next_rq->special;
615 		if (sdb)
616 			sg_free_table_chained(&sdb->table, true);
617 	}
618 	if (scsi_prot_sg_count(cmd))
619 		sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621 
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624 	scsi_mq_free_sgtables(cmd);
625 	scsi_uninit_cmd(cmd);
626 	scsi_del_cmd_from_list(cmd);
627 }
628 
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd	- command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *		command, we must release resources allocated during
642  *		the __init_io() function.  Primarily this would involve
643  *		the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647 	if (cmd->sdb.table.nents)
648 		sg_free_table_chained(&cmd->sdb.table, false);
649 
650 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651 
652 	if (scsi_prot_sg_count(cmd))
653 		sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655 
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659 
660 	sg_free_table_chained(&bidi_sdb->table, false);
661 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 	cmd->request->next_rq->special = NULL;
663 }
664 
665 static bool scsi_end_request(struct request *req, blk_status_t error,
666 		unsigned int bytes, unsigned int bidi_bytes)
667 {
668 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
669 	struct scsi_device *sdev = cmd->device;
670 	struct request_queue *q = sdev->request_queue;
671 
672 	if (blk_update_request(req, error, bytes))
673 		return true;
674 
675 	/* Bidi request must be completed as a whole */
676 	if (unlikely(bidi_bytes) &&
677 	    blk_update_request(req->next_rq, error, bidi_bytes))
678 		return true;
679 
680 	if (blk_queue_add_random(q))
681 		add_disk_randomness(req->rq_disk);
682 
683 	if (!blk_rq_is_scsi(req)) {
684 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
685 		cmd->flags &= ~SCMD_INITIALIZED;
686 		destroy_rcu_head(&cmd->rcu);
687 	}
688 
689 	if (req->mq_ctx) {
690 		/*
691 		 * In the MQ case the command gets freed by __blk_mq_end_request,
692 		 * so we have to do all cleanup that depends on it earlier.
693 		 *
694 		 * We also can't kick the queues from irq context, so we
695 		 * will have to defer it to a workqueue.
696 		 */
697 		scsi_mq_uninit_cmd(cmd);
698 
699 		__blk_mq_end_request(req, error);
700 
701 		if (scsi_target(sdev)->single_lun ||
702 		    !list_empty(&sdev->host->starved_list))
703 			kblockd_schedule_work(&sdev->requeue_work);
704 		else
705 			blk_mq_run_hw_queues(q, true);
706 	} else {
707 		unsigned long flags;
708 
709 		if (bidi_bytes)
710 			scsi_release_bidi_buffers(cmd);
711 		scsi_release_buffers(cmd);
712 		scsi_put_command(cmd);
713 
714 		spin_lock_irqsave(q->queue_lock, flags);
715 		blk_finish_request(req, error);
716 		spin_unlock_irqrestore(q->queue_lock, flags);
717 
718 		scsi_run_queue(q);
719 	}
720 
721 	put_device(&sdev->sdev_gendev);
722 	return false;
723 }
724 
725 /**
726  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
727  * @cmd:	SCSI command
728  * @result:	scsi error code
729  *
730  * Translate a SCSI result code into a blk_status_t value. May reset the host
731  * byte of @cmd->result.
732  */
733 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
734 {
735 	switch (host_byte(result)) {
736 	case DID_OK:
737 		/*
738 		 * Also check the other bytes than the status byte in result
739 		 * to handle the case when a SCSI LLD sets result to
740 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
741 		 */
742 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
743 			return BLK_STS_OK;
744 		return BLK_STS_IOERR;
745 	case DID_TRANSPORT_FAILFAST:
746 		return BLK_STS_TRANSPORT;
747 	case DID_TARGET_FAILURE:
748 		set_host_byte(cmd, DID_OK);
749 		return BLK_STS_TARGET;
750 	case DID_NEXUS_FAILURE:
751 		return BLK_STS_NEXUS;
752 	case DID_ALLOC_FAILURE:
753 		set_host_byte(cmd, DID_OK);
754 		return BLK_STS_NOSPC;
755 	case DID_MEDIUM_ERROR:
756 		set_host_byte(cmd, DID_OK);
757 		return BLK_STS_MEDIUM;
758 	default:
759 		return BLK_STS_IOERR;
760 	}
761 }
762 
763 /*
764  * Function:    scsi_io_completion()
765  *
766  * Purpose:     Completion processing for block device I/O requests.
767  *
768  * Arguments:   cmd   - command that is finished.
769  *
770  * Lock status: Assumed that no lock is held upon entry.
771  *
772  * Returns:     Nothing
773  *
774  * Notes:       We will finish off the specified number of sectors.  If we
775  *		are done, the command block will be released and the queue
776  *		function will be goosed.  If we are not done then we have to
777  *		figure out what to do next:
778  *
779  *		a) We can call scsi_requeue_command().  The request
780  *		   will be unprepared and put back on the queue.  Then
781  *		   a new command will be created for it.  This should
782  *		   be used if we made forward progress, or if we want
783  *		   to switch from READ(10) to READ(6) for example.
784  *
785  *		b) We can call __scsi_queue_insert().  The request will
786  *		   be put back on the queue and retried using the same
787  *		   command as before, possibly after a delay.
788  *
789  *		c) We can call scsi_end_request() with -EIO to fail
790  *		   the remainder of the request.
791  */
792 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
793 {
794 	int result = cmd->result;
795 	struct request_queue *q = cmd->device->request_queue;
796 	struct request *req = cmd->request;
797 	blk_status_t error = BLK_STS_OK;
798 	struct scsi_sense_hdr sshdr;
799 	bool sense_valid = false;
800 	int sense_deferred = 0, level = 0;
801 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
802 	      ACTION_DELAYED_RETRY} action;
803 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
804 
805 	if (result) {
806 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
807 		if (sense_valid)
808 			sense_deferred = scsi_sense_is_deferred(&sshdr);
809 	}
810 
811 	if (blk_rq_is_passthrough(req)) {
812 		if (result) {
813 			if (sense_valid) {
814 				/*
815 				 * SG_IO wants current and deferred errors
816 				 */
817 				scsi_req(req)->sense_len =
818 					min(8 + cmd->sense_buffer[7],
819 					    SCSI_SENSE_BUFFERSIZE);
820 			}
821 			if (!sense_deferred)
822 				error = scsi_result_to_blk_status(cmd, result);
823 		}
824 		/*
825 		 * scsi_result_to_blk_status may have reset the host_byte
826 		 */
827 		scsi_req(req)->result = cmd->result;
828 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
829 
830 		if (scsi_bidi_cmnd(cmd)) {
831 			/*
832 			 * Bidi commands Must be complete as a whole,
833 			 * both sides at once.
834 			 */
835 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
836 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
837 					blk_rq_bytes(req->next_rq)))
838 				BUG();
839 			return;
840 		}
841 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets the error explicitly for the problem case.
846 		 */
847 		error = scsi_result_to_blk_status(cmd, result);
848 	}
849 
850 	/* no bidi support for !blk_rq_is_passthrough yet */
851 	BUG_ON(blk_bidi_rq(req));
852 
853 	/*
854 	 * Next deal with any sectors which we were able to correctly
855 	 * handle.
856 	 */
857 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
858 		"%u sectors total, %d bytes done.\n",
859 		blk_rq_sectors(req), good_bytes));
860 
861 	/*
862 	 * Recovered errors need reporting, but they're always treated as
863 	 * success, so fiddle the result code here.  For passthrough requests
864 	 * we already took a copy of the original into sreq->result which
865 	 * is what gets returned to the user
866 	 */
867 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
868 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
869 		 * print since caller wants ATA registers. Only occurs on
870 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
871 		 */
872 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
873 			;
874 		else if (!(req->rq_flags & RQF_QUIET))
875 			scsi_print_sense(cmd);
876 		result = 0;
877 		/* for passthrough error may be set */
878 		error = BLK_STS_OK;
879 	}
880 	/*
881 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
882 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
883 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
884 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
885 	 * intermediate statuses (both obsolete in SAM-4) as good.
886 	 */
887 	if (status_byte(result) && scsi_status_is_good(result)) {
888 		result = 0;
889 		error = BLK_STS_OK;
890 	}
891 
892 	/*
893 	 * special case: failed zero length commands always need to
894 	 * drop down into the retry code. Otherwise, if we finished
895 	 * all bytes in the request we are done now.
896 	 */
897 	if (!(blk_rq_bytes(req) == 0 && error) &&
898 	    !scsi_end_request(req, error, good_bytes, 0))
899 		return;
900 
901 	/*
902 	 * Kill remainder if no retrys.
903 	 */
904 	if (error && scsi_noretry_cmd(cmd)) {
905 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
906 			BUG();
907 		return;
908 	}
909 
910 	/*
911 	 * If there had been no error, but we have leftover bytes in the
912 	 * requeues just queue the command up again.
913 	 */
914 	if (result == 0)
915 		goto requeue;
916 
917 	error = scsi_result_to_blk_status(cmd, result);
918 
919 	if (host_byte(result) == DID_RESET) {
920 		/* Third party bus reset or reset for error recovery
921 		 * reasons.  Just retry the command and see what
922 		 * happens.
923 		 */
924 		action = ACTION_RETRY;
925 	} else if (sense_valid && !sense_deferred) {
926 		switch (sshdr.sense_key) {
927 		case UNIT_ATTENTION:
928 			if (cmd->device->removable) {
929 				/* Detected disc change.  Set a bit
930 				 * and quietly refuse further access.
931 				 */
932 				cmd->device->changed = 1;
933 				action = ACTION_FAIL;
934 			} else {
935 				/* Must have been a power glitch, or a
936 				 * bus reset.  Could not have been a
937 				 * media change, so we just retry the
938 				 * command and see what happens.
939 				 */
940 				action = ACTION_RETRY;
941 			}
942 			break;
943 		case ILLEGAL_REQUEST:
944 			/* If we had an ILLEGAL REQUEST returned, then
945 			 * we may have performed an unsupported
946 			 * command.  The only thing this should be
947 			 * would be a ten byte read where only a six
948 			 * byte read was supported.  Also, on a system
949 			 * where READ CAPACITY failed, we may have
950 			 * read past the end of the disk.
951 			 */
952 			if ((cmd->device->use_10_for_rw &&
953 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
954 			    (cmd->cmnd[0] == READ_10 ||
955 			     cmd->cmnd[0] == WRITE_10)) {
956 				/* This will issue a new 6-byte command. */
957 				cmd->device->use_10_for_rw = 0;
958 				action = ACTION_REPREP;
959 			} else if (sshdr.asc == 0x10) /* DIX */ {
960 				action = ACTION_FAIL;
961 				error = BLK_STS_PROTECTION;
962 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
963 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
964 				action = ACTION_FAIL;
965 				error = BLK_STS_TARGET;
966 			} else
967 				action = ACTION_FAIL;
968 			break;
969 		case ABORTED_COMMAND:
970 			action = ACTION_FAIL;
971 			if (sshdr.asc == 0x10) /* DIF */
972 				error = BLK_STS_PROTECTION;
973 			break;
974 		case NOT_READY:
975 			/* If the device is in the process of becoming
976 			 * ready, or has a temporary blockage, retry.
977 			 */
978 			if (sshdr.asc == 0x04) {
979 				switch (sshdr.ascq) {
980 				case 0x01: /* becoming ready */
981 				case 0x04: /* format in progress */
982 				case 0x05: /* rebuild in progress */
983 				case 0x06: /* recalculation in progress */
984 				case 0x07: /* operation in progress */
985 				case 0x08: /* Long write in progress */
986 				case 0x09: /* self test in progress */
987 				case 0x14: /* space allocation in progress */
988 					action = ACTION_DELAYED_RETRY;
989 					break;
990 				default:
991 					action = ACTION_FAIL;
992 					break;
993 				}
994 			} else
995 				action = ACTION_FAIL;
996 			break;
997 		case VOLUME_OVERFLOW:
998 			/* See SSC3rXX or current. */
999 			action = ACTION_FAIL;
1000 			break;
1001 		default:
1002 			action = ACTION_FAIL;
1003 			break;
1004 		}
1005 	} else
1006 		action = ACTION_FAIL;
1007 
1008 	if (action != ACTION_FAIL &&
1009 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1010 		action = ACTION_FAIL;
1011 
1012 	switch (action) {
1013 	case ACTION_FAIL:
1014 		/* Give up and fail the remainder of the request */
1015 		if (!(req->rq_flags & RQF_QUIET)) {
1016 			static DEFINE_RATELIMIT_STATE(_rs,
1017 					DEFAULT_RATELIMIT_INTERVAL,
1018 					DEFAULT_RATELIMIT_BURST);
1019 
1020 			if (unlikely(scsi_logging_level))
1021 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1022 						       SCSI_LOG_MLCOMPLETE_BITS);
1023 
1024 			/*
1025 			 * if logging is enabled the failure will be printed
1026 			 * in scsi_log_completion(), so avoid duplicate messages
1027 			 */
1028 			if (!level && __ratelimit(&_rs)) {
1029 				scsi_print_result(cmd, NULL, FAILED);
1030 				if (driver_byte(result) & DRIVER_SENSE)
1031 					scsi_print_sense(cmd);
1032 				scsi_print_command(cmd);
1033 			}
1034 		}
1035 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1036 			return;
1037 		/*FALLTHRU*/
1038 	case ACTION_REPREP:
1039 	requeue:
1040 		/* Unprep the request and put it back at the head of the queue.
1041 		 * A new command will be prepared and issued.
1042 		 */
1043 		if (q->mq_ops) {
1044 			scsi_mq_requeue_cmd(cmd);
1045 		} else {
1046 			scsi_release_buffers(cmd);
1047 			scsi_requeue_command(q, cmd);
1048 		}
1049 		break;
1050 	case ACTION_RETRY:
1051 		/* Retry the same command immediately */
1052 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1053 		break;
1054 	case ACTION_DELAYED_RETRY:
1055 		/* Retry the same command after a delay */
1056 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1057 		break;
1058 	}
1059 }
1060 
1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1062 {
1063 	int count;
1064 
1065 	/*
1066 	 * If sg table allocation fails, requeue request later.
1067 	 */
1068 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1069 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1070 		return BLKPREP_DEFER;
1071 
1072 	/*
1073 	 * Next, walk the list, and fill in the addresses and sizes of
1074 	 * each segment.
1075 	 */
1076 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1077 	BUG_ON(count > sdb->table.nents);
1078 	sdb->table.nents = count;
1079 	sdb->length = blk_rq_payload_bytes(req);
1080 	return BLKPREP_OK;
1081 }
1082 
1083 /*
1084  * Function:    scsi_init_io()
1085  *
1086  * Purpose:     SCSI I/O initialize function.
1087  *
1088  * Arguments:   cmd   - Command descriptor we wish to initialize
1089  *
1090  * Returns:     0 on success
1091  *		BLKPREP_DEFER if the failure is retryable
1092  *		BLKPREP_KILL if the failure is fatal
1093  */
1094 int scsi_init_io(struct scsi_cmnd *cmd)
1095 {
1096 	struct scsi_device *sdev = cmd->device;
1097 	struct request *rq = cmd->request;
1098 	bool is_mq = (rq->mq_ctx != NULL);
1099 	int error = BLKPREP_KILL;
1100 
1101 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1102 		goto err_exit;
1103 
1104 	error = scsi_init_sgtable(rq, &cmd->sdb);
1105 	if (error)
1106 		goto err_exit;
1107 
1108 	if (blk_bidi_rq(rq)) {
1109 		if (!rq->q->mq_ops) {
1110 			struct scsi_data_buffer *bidi_sdb =
1111 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1112 			if (!bidi_sdb) {
1113 				error = BLKPREP_DEFER;
1114 				goto err_exit;
1115 			}
1116 
1117 			rq->next_rq->special = bidi_sdb;
1118 		}
1119 
1120 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1121 		if (error)
1122 			goto err_exit;
1123 	}
1124 
1125 	if (blk_integrity_rq(rq)) {
1126 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1127 		int ivecs, count;
1128 
1129 		if (prot_sdb == NULL) {
1130 			/*
1131 			 * This can happen if someone (e.g. multipath)
1132 			 * queues a command to a device on an adapter
1133 			 * that does not support DIX.
1134 			 */
1135 			WARN_ON_ONCE(1);
1136 			error = BLKPREP_KILL;
1137 			goto err_exit;
1138 		}
1139 
1140 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1141 
1142 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1143 				prot_sdb->table.sgl)) {
1144 			error = BLKPREP_DEFER;
1145 			goto err_exit;
1146 		}
1147 
1148 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1149 						prot_sdb->table.sgl);
1150 		BUG_ON(unlikely(count > ivecs));
1151 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1152 
1153 		cmd->prot_sdb = prot_sdb;
1154 		cmd->prot_sdb->table.nents = count;
1155 	}
1156 
1157 	return BLKPREP_OK;
1158 err_exit:
1159 	if (is_mq) {
1160 		scsi_mq_free_sgtables(cmd);
1161 	} else {
1162 		scsi_release_buffers(cmd);
1163 		cmd->request->special = NULL;
1164 		scsi_put_command(cmd);
1165 		put_device(&sdev->sdev_gendev);
1166 	}
1167 	return error;
1168 }
1169 EXPORT_SYMBOL(scsi_init_io);
1170 
1171 /**
1172  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1173  * @rq: Request associated with the SCSI command to be initialized.
1174  *
1175  * This function initializes the members of struct scsi_cmnd that must be
1176  * initialized before request processing starts and that won't be
1177  * reinitialized if a SCSI command is requeued.
1178  *
1179  * Called from inside blk_get_request() for pass-through requests and from
1180  * inside scsi_init_command() for filesystem requests.
1181  */
1182 static void scsi_initialize_rq(struct request *rq)
1183 {
1184 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1185 
1186 	scsi_req_init(&cmd->req);
1187 	init_rcu_head(&cmd->rcu);
1188 	cmd->jiffies_at_alloc = jiffies;
1189 	cmd->retries = 0;
1190 }
1191 
1192 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1193 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1194 {
1195 	struct scsi_device *sdev = cmd->device;
1196 	struct Scsi_Host *shost = sdev->host;
1197 	unsigned long flags;
1198 
1199 	if (shost->use_cmd_list) {
1200 		spin_lock_irqsave(&sdev->list_lock, flags);
1201 		list_add_tail(&cmd->list, &sdev->cmd_list);
1202 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1203 	}
1204 }
1205 
1206 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1207 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1208 {
1209 	struct scsi_device *sdev = cmd->device;
1210 	struct Scsi_Host *shost = sdev->host;
1211 	unsigned long flags;
1212 
1213 	if (shost->use_cmd_list) {
1214 		spin_lock_irqsave(&sdev->list_lock, flags);
1215 		BUG_ON(list_empty(&cmd->list));
1216 		list_del_init(&cmd->list);
1217 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1218 	}
1219 }
1220 
1221 /* Called after a request has been started. */
1222 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1223 {
1224 	void *buf = cmd->sense_buffer;
1225 	void *prot = cmd->prot_sdb;
1226 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1227 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1228 	unsigned long jiffies_at_alloc;
1229 	int retries;
1230 
1231 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1232 		flags |= SCMD_INITIALIZED;
1233 		scsi_initialize_rq(rq);
1234 	}
1235 
1236 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1237 	retries = cmd->retries;
1238 	/* zero out the cmd, except for the embedded scsi_request */
1239 	memset((char *)cmd + sizeof(cmd->req), 0,
1240 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1241 
1242 	cmd->device = dev;
1243 	cmd->sense_buffer = buf;
1244 	cmd->prot_sdb = prot;
1245 	cmd->flags = flags;
1246 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1247 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1248 	cmd->retries = retries;
1249 
1250 	scsi_add_cmd_to_list(cmd);
1251 }
1252 
1253 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1256 
1257 	/*
1258 	 * Passthrough requests may transfer data, in which case they must
1259 	 * a bio attached to them.  Or they might contain a SCSI command
1260 	 * that does not transfer data, in which case they may optionally
1261 	 * submit a request without an attached bio.
1262 	 */
1263 	if (req->bio) {
1264 		int ret = scsi_init_io(cmd);
1265 		if (unlikely(ret))
1266 			return ret;
1267 	} else {
1268 		BUG_ON(blk_rq_bytes(req));
1269 
1270 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1271 	}
1272 
1273 	cmd->cmd_len = scsi_req(req)->cmd_len;
1274 	cmd->cmnd = scsi_req(req)->cmd;
1275 	cmd->transfersize = blk_rq_bytes(req);
1276 	cmd->allowed = scsi_req(req)->retries;
1277 	return BLKPREP_OK;
1278 }
1279 
1280 /*
1281  * Setup a normal block command.  These are simple request from filesystems
1282  * that still need to be translated to SCSI CDBs from the ULD.
1283  */
1284 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1285 {
1286 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1287 
1288 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1289 		int ret = sdev->handler->prep_fn(sdev, req);
1290 		if (ret != BLKPREP_OK)
1291 			return ret;
1292 	}
1293 
1294 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1295 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1296 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1297 }
1298 
1299 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1300 {
1301 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1302 
1303 	if (!blk_rq_bytes(req))
1304 		cmd->sc_data_direction = DMA_NONE;
1305 	else if (rq_data_dir(req) == WRITE)
1306 		cmd->sc_data_direction = DMA_TO_DEVICE;
1307 	else
1308 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1309 
1310 	if (blk_rq_is_scsi(req))
1311 		return scsi_setup_scsi_cmnd(sdev, req);
1312 	else
1313 		return scsi_setup_fs_cmnd(sdev, req);
1314 }
1315 
1316 static int
1317 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1318 {
1319 	int ret = BLKPREP_OK;
1320 
1321 	/*
1322 	 * If the device is not in running state we will reject some
1323 	 * or all commands.
1324 	 */
1325 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1326 		switch (sdev->sdev_state) {
1327 		case SDEV_OFFLINE:
1328 		case SDEV_TRANSPORT_OFFLINE:
1329 			/*
1330 			 * If the device is offline we refuse to process any
1331 			 * commands.  The device must be brought online
1332 			 * before trying any recovery commands.
1333 			 */
1334 			sdev_printk(KERN_ERR, sdev,
1335 				    "rejecting I/O to offline device\n");
1336 			ret = BLKPREP_KILL;
1337 			break;
1338 		case SDEV_DEL:
1339 			/*
1340 			 * If the device is fully deleted, we refuse to
1341 			 * process any commands as well.
1342 			 */
1343 			sdev_printk(KERN_ERR, sdev,
1344 				    "rejecting I/O to dead device\n");
1345 			ret = BLKPREP_KILL;
1346 			break;
1347 		case SDEV_BLOCK:
1348 		case SDEV_CREATED_BLOCK:
1349 			ret = BLKPREP_DEFER;
1350 			break;
1351 		case SDEV_QUIESCE:
1352 			/*
1353 			 * If the devices is blocked we defer normal commands.
1354 			 */
1355 			if (req && !(req->rq_flags & RQF_PREEMPT))
1356 				ret = BLKPREP_DEFER;
1357 			break;
1358 		default:
1359 			/*
1360 			 * For any other not fully online state we only allow
1361 			 * special commands.  In particular any user initiated
1362 			 * command is not allowed.
1363 			 */
1364 			if (req && !(req->rq_flags & RQF_PREEMPT))
1365 				ret = BLKPREP_KILL;
1366 			break;
1367 		}
1368 	}
1369 	return ret;
1370 }
1371 
1372 static int
1373 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1374 {
1375 	struct scsi_device *sdev = q->queuedata;
1376 
1377 	switch (ret) {
1378 	case BLKPREP_KILL:
1379 	case BLKPREP_INVALID:
1380 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1381 		/* release the command and kill it */
1382 		if (req->special) {
1383 			struct scsi_cmnd *cmd = req->special;
1384 			scsi_release_buffers(cmd);
1385 			scsi_put_command(cmd);
1386 			put_device(&sdev->sdev_gendev);
1387 			req->special = NULL;
1388 		}
1389 		break;
1390 	case BLKPREP_DEFER:
1391 		/*
1392 		 * If we defer, the blk_peek_request() returns NULL, but the
1393 		 * queue must be restarted, so we schedule a callback to happen
1394 		 * shortly.
1395 		 */
1396 		if (atomic_read(&sdev->device_busy) == 0)
1397 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1398 		break;
1399 	default:
1400 		req->rq_flags |= RQF_DONTPREP;
1401 	}
1402 
1403 	return ret;
1404 }
1405 
1406 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1407 {
1408 	struct scsi_device *sdev = q->queuedata;
1409 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1410 	int ret;
1411 
1412 	ret = scsi_prep_state_check(sdev, req);
1413 	if (ret != BLKPREP_OK)
1414 		goto out;
1415 
1416 	if (!req->special) {
1417 		/* Bail if we can't get a reference to the device */
1418 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1419 			ret = BLKPREP_DEFER;
1420 			goto out;
1421 		}
1422 
1423 		scsi_init_command(sdev, cmd);
1424 		req->special = cmd;
1425 	}
1426 
1427 	cmd->tag = req->tag;
1428 	cmd->request = req;
1429 	cmd->prot_op = SCSI_PROT_NORMAL;
1430 
1431 	ret = scsi_setup_cmnd(sdev, req);
1432 out:
1433 	return scsi_prep_return(q, req, ret);
1434 }
1435 
1436 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1437 {
1438 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1439 }
1440 
1441 /*
1442  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1443  * return 0.
1444  *
1445  * Called with the queue_lock held.
1446  */
1447 static inline int scsi_dev_queue_ready(struct request_queue *q,
1448 				  struct scsi_device *sdev)
1449 {
1450 	unsigned int busy;
1451 
1452 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1453 	if (atomic_read(&sdev->device_blocked)) {
1454 		if (busy)
1455 			goto out_dec;
1456 
1457 		/*
1458 		 * unblock after device_blocked iterates to zero
1459 		 */
1460 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1461 			/*
1462 			 * For the MQ case we take care of this in the caller.
1463 			 */
1464 			if (!q->mq_ops)
1465 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1466 			goto out_dec;
1467 		}
1468 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1469 				   "unblocking device at zero depth\n"));
1470 	}
1471 
1472 	if (busy >= sdev->queue_depth)
1473 		goto out_dec;
1474 
1475 	return 1;
1476 out_dec:
1477 	atomic_dec(&sdev->device_busy);
1478 	return 0;
1479 }
1480 
1481 /*
1482  * scsi_target_queue_ready: checks if there we can send commands to target
1483  * @sdev: scsi device on starget to check.
1484  */
1485 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1486 					   struct scsi_device *sdev)
1487 {
1488 	struct scsi_target *starget = scsi_target(sdev);
1489 	unsigned int busy;
1490 
1491 	if (starget->single_lun) {
1492 		spin_lock_irq(shost->host_lock);
1493 		if (starget->starget_sdev_user &&
1494 		    starget->starget_sdev_user != sdev) {
1495 			spin_unlock_irq(shost->host_lock);
1496 			return 0;
1497 		}
1498 		starget->starget_sdev_user = sdev;
1499 		spin_unlock_irq(shost->host_lock);
1500 	}
1501 
1502 	if (starget->can_queue <= 0)
1503 		return 1;
1504 
1505 	busy = atomic_inc_return(&starget->target_busy) - 1;
1506 	if (atomic_read(&starget->target_blocked) > 0) {
1507 		if (busy)
1508 			goto starved;
1509 
1510 		/*
1511 		 * unblock after target_blocked iterates to zero
1512 		 */
1513 		if (atomic_dec_return(&starget->target_blocked) > 0)
1514 			goto out_dec;
1515 
1516 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1517 				 "unblocking target at zero depth\n"));
1518 	}
1519 
1520 	if (busy >= starget->can_queue)
1521 		goto starved;
1522 
1523 	return 1;
1524 
1525 starved:
1526 	spin_lock_irq(shost->host_lock);
1527 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1528 	spin_unlock_irq(shost->host_lock);
1529 out_dec:
1530 	if (starget->can_queue > 0)
1531 		atomic_dec(&starget->target_busy);
1532 	return 0;
1533 }
1534 
1535 /*
1536  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1537  * return 0. We must end up running the queue again whenever 0 is
1538  * returned, else IO can hang.
1539  */
1540 static inline int scsi_host_queue_ready(struct request_queue *q,
1541 				   struct Scsi_Host *shost,
1542 				   struct scsi_device *sdev)
1543 {
1544 	unsigned int busy;
1545 
1546 	if (scsi_host_in_recovery(shost))
1547 		return 0;
1548 
1549 	busy = atomic_inc_return(&shost->host_busy) - 1;
1550 	if (atomic_read(&shost->host_blocked) > 0) {
1551 		if (busy)
1552 			goto starved;
1553 
1554 		/*
1555 		 * unblock after host_blocked iterates to zero
1556 		 */
1557 		if (atomic_dec_return(&shost->host_blocked) > 0)
1558 			goto out_dec;
1559 
1560 		SCSI_LOG_MLQUEUE(3,
1561 			shost_printk(KERN_INFO, shost,
1562 				     "unblocking host at zero depth\n"));
1563 	}
1564 
1565 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1566 		goto starved;
1567 	if (shost->host_self_blocked)
1568 		goto starved;
1569 
1570 	/* We're OK to process the command, so we can't be starved */
1571 	if (!list_empty(&sdev->starved_entry)) {
1572 		spin_lock_irq(shost->host_lock);
1573 		if (!list_empty(&sdev->starved_entry))
1574 			list_del_init(&sdev->starved_entry);
1575 		spin_unlock_irq(shost->host_lock);
1576 	}
1577 
1578 	return 1;
1579 
1580 starved:
1581 	spin_lock_irq(shost->host_lock);
1582 	if (list_empty(&sdev->starved_entry))
1583 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1584 	spin_unlock_irq(shost->host_lock);
1585 out_dec:
1586 	scsi_dec_host_busy(shost);
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Busy state exporting function for request stacking drivers.
1592  *
1593  * For efficiency, no lock is taken to check the busy state of
1594  * shost/starget/sdev, since the returned value is not guaranteed and
1595  * may be changed after request stacking drivers call the function,
1596  * regardless of taking lock or not.
1597  *
1598  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1599  * needs to return 'not busy'. Otherwise, request stacking drivers
1600  * may hold requests forever.
1601  */
1602 static int scsi_lld_busy(struct request_queue *q)
1603 {
1604 	struct scsi_device *sdev = q->queuedata;
1605 	struct Scsi_Host *shost;
1606 
1607 	if (blk_queue_dying(q))
1608 		return 0;
1609 
1610 	shost = sdev->host;
1611 
1612 	/*
1613 	 * Ignore host/starget busy state.
1614 	 * Since block layer does not have a concept of fairness across
1615 	 * multiple queues, congestion of host/starget needs to be handled
1616 	 * in SCSI layer.
1617 	 */
1618 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1619 		return 1;
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Kill a request for a dead device
1626  */
1627 static void scsi_kill_request(struct request *req, struct request_queue *q)
1628 {
1629 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630 	struct scsi_device *sdev;
1631 	struct scsi_target *starget;
1632 	struct Scsi_Host *shost;
1633 
1634 	blk_start_request(req);
1635 
1636 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1637 
1638 	sdev = cmd->device;
1639 	starget = scsi_target(sdev);
1640 	shost = sdev->host;
1641 	scsi_init_cmd_errh(cmd);
1642 	cmd->result = DID_NO_CONNECT << 16;
1643 	atomic_inc(&cmd->device->iorequest_cnt);
1644 
1645 	/*
1646 	 * SCSI request completion path will do scsi_device_unbusy(),
1647 	 * bump busy counts.  To bump the counters, we need to dance
1648 	 * with the locks as normal issue path does.
1649 	 */
1650 	atomic_inc(&sdev->device_busy);
1651 	atomic_inc(&shost->host_busy);
1652 	if (starget->can_queue > 0)
1653 		atomic_inc(&starget->target_busy);
1654 
1655 	blk_complete_request(req);
1656 }
1657 
1658 static void scsi_softirq_done(struct request *rq)
1659 {
1660 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1661 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1662 	int disposition;
1663 
1664 	INIT_LIST_HEAD(&cmd->eh_entry);
1665 
1666 	atomic_inc(&cmd->device->iodone_cnt);
1667 	if (cmd->result)
1668 		atomic_inc(&cmd->device->ioerr_cnt);
1669 
1670 	disposition = scsi_decide_disposition(cmd);
1671 	if (disposition != SUCCESS &&
1672 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1673 		sdev_printk(KERN_ERR, cmd->device,
1674 			    "timing out command, waited %lus\n",
1675 			    wait_for/HZ);
1676 		disposition = SUCCESS;
1677 	}
1678 
1679 	scsi_log_completion(cmd, disposition);
1680 
1681 	switch (disposition) {
1682 		case SUCCESS:
1683 			scsi_finish_command(cmd);
1684 			break;
1685 		case NEEDS_RETRY:
1686 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1687 			break;
1688 		case ADD_TO_MLQUEUE:
1689 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1690 			break;
1691 		default:
1692 			scsi_eh_scmd_add(cmd);
1693 			break;
1694 	}
1695 }
1696 
1697 /**
1698  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1699  * @cmd: command block we are dispatching.
1700  *
1701  * Return: nonzero return request was rejected and device's queue needs to be
1702  * plugged.
1703  */
1704 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1705 {
1706 	struct Scsi_Host *host = cmd->device->host;
1707 	int rtn = 0;
1708 
1709 	atomic_inc(&cmd->device->iorequest_cnt);
1710 
1711 	/* check if the device is still usable */
1712 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1713 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1714 		 * returns an immediate error upwards, and signals
1715 		 * that the device is no longer present */
1716 		cmd->result = DID_NO_CONNECT << 16;
1717 		goto done;
1718 	}
1719 
1720 	/* Check to see if the scsi lld made this device blocked. */
1721 	if (unlikely(scsi_device_blocked(cmd->device))) {
1722 		/*
1723 		 * in blocked state, the command is just put back on
1724 		 * the device queue.  The suspend state has already
1725 		 * blocked the queue so future requests should not
1726 		 * occur until the device transitions out of the
1727 		 * suspend state.
1728 		 */
1729 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730 			"queuecommand : device blocked\n"));
1731 		return SCSI_MLQUEUE_DEVICE_BUSY;
1732 	}
1733 
1734 	/* Store the LUN value in cmnd, if needed. */
1735 	if (cmd->device->lun_in_cdb)
1736 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1737 			       (cmd->device->lun << 5 & 0xe0);
1738 
1739 	scsi_log_send(cmd);
1740 
1741 	/*
1742 	 * Before we queue this command, check if the command
1743 	 * length exceeds what the host adapter can handle.
1744 	 */
1745 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1746 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1747 			       "queuecommand : command too long. "
1748 			       "cdb_size=%d host->max_cmd_len=%d\n",
1749 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1750 		cmd->result = (DID_ABORT << 16);
1751 		goto done;
1752 	}
1753 
1754 	if (unlikely(host->shost_state == SHOST_DEL)) {
1755 		cmd->result = (DID_NO_CONNECT << 16);
1756 		goto done;
1757 
1758 	}
1759 
1760 	trace_scsi_dispatch_cmd_start(cmd);
1761 	rtn = host->hostt->queuecommand(host, cmd);
1762 	if (rtn) {
1763 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1764 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1765 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1766 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1767 
1768 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1769 			"queuecommand : request rejected\n"));
1770 	}
1771 
1772 	return rtn;
1773  done:
1774 	cmd->scsi_done(cmd);
1775 	return 0;
1776 }
1777 
1778 /**
1779  * scsi_done - Invoke completion on finished SCSI command.
1780  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1781  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1782  *
1783  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1784  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1785  * calls blk_complete_request() for further processing.
1786  *
1787  * This function is interrupt context safe.
1788  */
1789 static void scsi_done(struct scsi_cmnd *cmd)
1790 {
1791 	trace_scsi_dispatch_cmd_done(cmd);
1792 	blk_complete_request(cmd->request);
1793 }
1794 
1795 /*
1796  * Function:    scsi_request_fn()
1797  *
1798  * Purpose:     Main strategy routine for SCSI.
1799  *
1800  * Arguments:   q       - Pointer to actual queue.
1801  *
1802  * Returns:     Nothing
1803  *
1804  * Lock status: request queue lock assumed to be held when called.
1805  *
1806  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1807  * protection for ZBC disks.
1808  */
1809 static void scsi_request_fn(struct request_queue *q)
1810 	__releases(q->queue_lock)
1811 	__acquires(q->queue_lock)
1812 {
1813 	struct scsi_device *sdev = q->queuedata;
1814 	struct Scsi_Host *shost;
1815 	struct scsi_cmnd *cmd;
1816 	struct request *req;
1817 
1818 	/*
1819 	 * To start with, we keep looping until the queue is empty, or until
1820 	 * the host is no longer able to accept any more requests.
1821 	 */
1822 	shost = sdev->host;
1823 	for (;;) {
1824 		int rtn;
1825 		/*
1826 		 * get next queueable request.  We do this early to make sure
1827 		 * that the request is fully prepared even if we cannot
1828 		 * accept it.
1829 		 */
1830 		req = blk_peek_request(q);
1831 		if (!req)
1832 			break;
1833 
1834 		if (unlikely(!scsi_device_online(sdev))) {
1835 			sdev_printk(KERN_ERR, sdev,
1836 				    "rejecting I/O to offline device\n");
1837 			scsi_kill_request(req, q);
1838 			continue;
1839 		}
1840 
1841 		if (!scsi_dev_queue_ready(q, sdev))
1842 			break;
1843 
1844 		/*
1845 		 * Remove the request from the request list.
1846 		 */
1847 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1848 			blk_start_request(req);
1849 
1850 		spin_unlock_irq(q->queue_lock);
1851 		cmd = blk_mq_rq_to_pdu(req);
1852 		if (cmd != req->special) {
1853 			printk(KERN_CRIT "impossible request in %s.\n"
1854 					 "please mail a stack trace to "
1855 					 "linux-scsi@vger.kernel.org\n",
1856 					 __func__);
1857 			blk_dump_rq_flags(req, "foo");
1858 			BUG();
1859 		}
1860 
1861 		/*
1862 		 * We hit this when the driver is using a host wide
1863 		 * tag map. For device level tag maps the queue_depth check
1864 		 * in the device ready fn would prevent us from trying
1865 		 * to allocate a tag. Since the map is a shared host resource
1866 		 * we add the dev to the starved list so it eventually gets
1867 		 * a run when a tag is freed.
1868 		 */
1869 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1870 			spin_lock_irq(shost->host_lock);
1871 			if (list_empty(&sdev->starved_entry))
1872 				list_add_tail(&sdev->starved_entry,
1873 					      &shost->starved_list);
1874 			spin_unlock_irq(shost->host_lock);
1875 			goto not_ready;
1876 		}
1877 
1878 		if (!scsi_target_queue_ready(shost, sdev))
1879 			goto not_ready;
1880 
1881 		if (!scsi_host_queue_ready(q, shost, sdev))
1882 			goto host_not_ready;
1883 
1884 		if (sdev->simple_tags)
1885 			cmd->flags |= SCMD_TAGGED;
1886 		else
1887 			cmd->flags &= ~SCMD_TAGGED;
1888 
1889 		/*
1890 		 * Finally, initialize any error handling parameters, and set up
1891 		 * the timers for timeouts.
1892 		 */
1893 		scsi_init_cmd_errh(cmd);
1894 
1895 		/*
1896 		 * Dispatch the command to the low-level driver.
1897 		 */
1898 		cmd->scsi_done = scsi_done;
1899 		rtn = scsi_dispatch_cmd(cmd);
1900 		if (rtn) {
1901 			scsi_queue_insert(cmd, rtn);
1902 			spin_lock_irq(q->queue_lock);
1903 			goto out_delay;
1904 		}
1905 		spin_lock_irq(q->queue_lock);
1906 	}
1907 
1908 	return;
1909 
1910  host_not_ready:
1911 	if (scsi_target(sdev)->can_queue > 0)
1912 		atomic_dec(&scsi_target(sdev)->target_busy);
1913  not_ready:
1914 	/*
1915 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1916 	 * must return with queue_lock held.
1917 	 *
1918 	 * Decrementing device_busy without checking it is OK, as all such
1919 	 * cases (host limits or settings) should run the queue at some
1920 	 * later time.
1921 	 */
1922 	spin_lock_irq(q->queue_lock);
1923 	blk_requeue_request(q, req);
1924 	atomic_dec(&sdev->device_busy);
1925 out_delay:
1926 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1927 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1928 }
1929 
1930 static inline blk_status_t prep_to_mq(int ret)
1931 {
1932 	switch (ret) {
1933 	case BLKPREP_OK:
1934 		return BLK_STS_OK;
1935 	case BLKPREP_DEFER:
1936 		return BLK_STS_RESOURCE;
1937 	default:
1938 		return BLK_STS_IOERR;
1939 	}
1940 }
1941 
1942 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1943 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1944 {
1945 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1946 		sizeof(struct scatterlist);
1947 }
1948 
1949 static int scsi_mq_prep_fn(struct request *req)
1950 {
1951 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1952 	struct scsi_device *sdev = req->q->queuedata;
1953 	struct Scsi_Host *shost = sdev->host;
1954 	struct scatterlist *sg;
1955 
1956 	scsi_init_command(sdev, cmd);
1957 
1958 	req->special = cmd;
1959 
1960 	cmd->request = req;
1961 
1962 	cmd->tag = req->tag;
1963 	cmd->prot_op = SCSI_PROT_NORMAL;
1964 
1965 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1966 	cmd->sdb.table.sgl = sg;
1967 
1968 	if (scsi_host_get_prot(shost)) {
1969 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1970 
1971 		cmd->prot_sdb->table.sgl =
1972 			(struct scatterlist *)(cmd->prot_sdb + 1);
1973 	}
1974 
1975 	if (blk_bidi_rq(req)) {
1976 		struct request *next_rq = req->next_rq;
1977 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1978 
1979 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1980 		bidi_sdb->table.sgl =
1981 			(struct scatterlist *)(bidi_sdb + 1);
1982 
1983 		next_rq->special = bidi_sdb;
1984 	}
1985 
1986 	blk_mq_start_request(req);
1987 
1988 	return scsi_setup_cmnd(sdev, req);
1989 }
1990 
1991 static void scsi_mq_done(struct scsi_cmnd *cmd)
1992 {
1993 	trace_scsi_dispatch_cmd_done(cmd);
1994 	blk_mq_complete_request(cmd->request);
1995 }
1996 
1997 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1998 {
1999 	struct request_queue *q = hctx->queue;
2000 	struct scsi_device *sdev = q->queuedata;
2001 
2002 	atomic_dec(&sdev->device_busy);
2003 	put_device(&sdev->sdev_gendev);
2004 }
2005 
2006 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2007 {
2008 	struct request_queue *q = hctx->queue;
2009 	struct scsi_device *sdev = q->queuedata;
2010 
2011 	if (!get_device(&sdev->sdev_gendev))
2012 		goto out;
2013 	if (!scsi_dev_queue_ready(q, sdev))
2014 		goto out_put_device;
2015 
2016 	return true;
2017 
2018 out_put_device:
2019 	put_device(&sdev->sdev_gendev);
2020 out:
2021 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2022 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2023 	return false;
2024 }
2025 
2026 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2027 			 const struct blk_mq_queue_data *bd)
2028 {
2029 	struct request *req = bd->rq;
2030 	struct request_queue *q = req->q;
2031 	struct scsi_device *sdev = q->queuedata;
2032 	struct Scsi_Host *shost = sdev->host;
2033 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2034 	blk_status_t ret;
2035 	int reason;
2036 
2037 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2038 	if (ret != BLK_STS_OK)
2039 		goto out_put_budget;
2040 
2041 	ret = BLK_STS_RESOURCE;
2042 	if (!scsi_target_queue_ready(shost, sdev))
2043 		goto out_put_budget;
2044 	if (!scsi_host_queue_ready(q, shost, sdev))
2045 		goto out_dec_target_busy;
2046 
2047 	if (!(req->rq_flags & RQF_DONTPREP)) {
2048 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2049 		if (ret != BLK_STS_OK)
2050 			goto out_dec_host_busy;
2051 		req->rq_flags |= RQF_DONTPREP;
2052 	} else {
2053 		blk_mq_start_request(req);
2054 	}
2055 
2056 	if (sdev->simple_tags)
2057 		cmd->flags |= SCMD_TAGGED;
2058 	else
2059 		cmd->flags &= ~SCMD_TAGGED;
2060 
2061 	scsi_init_cmd_errh(cmd);
2062 	cmd->scsi_done = scsi_mq_done;
2063 
2064 	reason = scsi_dispatch_cmd(cmd);
2065 	if (reason) {
2066 		scsi_set_blocked(cmd, reason);
2067 		ret = BLK_STS_RESOURCE;
2068 		goto out_dec_host_busy;
2069 	}
2070 
2071 	return BLK_STS_OK;
2072 
2073 out_dec_host_busy:
2074 	scsi_dec_host_busy(shost);
2075 out_dec_target_busy:
2076 	if (scsi_target(sdev)->can_queue > 0)
2077 		atomic_dec(&scsi_target(sdev)->target_busy);
2078 out_put_budget:
2079 	scsi_mq_put_budget(hctx);
2080 	switch (ret) {
2081 	case BLK_STS_OK:
2082 		break;
2083 	case BLK_STS_RESOURCE:
2084 		if (atomic_read(&sdev->device_busy) ||
2085 		    scsi_device_blocked(sdev))
2086 			ret = BLK_STS_DEV_RESOURCE;
2087 		break;
2088 	default:
2089 		/*
2090 		 * Make sure to release all allocated ressources when
2091 		 * we hit an error, as we will never see this command
2092 		 * again.
2093 		 */
2094 		if (req->rq_flags & RQF_DONTPREP)
2095 			scsi_mq_uninit_cmd(cmd);
2096 		break;
2097 	}
2098 	return ret;
2099 }
2100 
2101 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2102 		bool reserved)
2103 {
2104 	if (reserved)
2105 		return BLK_EH_RESET_TIMER;
2106 	return scsi_times_out(req);
2107 }
2108 
2109 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2110 				unsigned int hctx_idx, unsigned int numa_node)
2111 {
2112 	struct Scsi_Host *shost = set->driver_data;
2113 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2114 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2115 	struct scatterlist *sg;
2116 
2117 	if (unchecked_isa_dma)
2118 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2120 						    GFP_KERNEL, numa_node);
2121 	if (!cmd->sense_buffer)
2122 		return -ENOMEM;
2123 	cmd->req.sense = cmd->sense_buffer;
2124 
2125 	if (scsi_host_get_prot(shost)) {
2126 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2127 			shost->hostt->cmd_size;
2128 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2135 				 unsigned int hctx_idx)
2136 {
2137 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2138 
2139 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2140 			       cmd->sense_buffer);
2141 }
2142 
2143 static int scsi_map_queues(struct blk_mq_tag_set *set)
2144 {
2145 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2146 
2147 	if (shost->hostt->map_queues)
2148 		return shost->hostt->map_queues(shost);
2149 	return blk_mq_map_queues(set);
2150 }
2151 
2152 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2153 {
2154 	struct device *host_dev;
2155 	u64 bounce_limit = 0xffffffff;
2156 
2157 	if (shost->unchecked_isa_dma)
2158 		return BLK_BOUNCE_ISA;
2159 	/*
2160 	 * Platforms with virtual-DMA translation
2161 	 * hardware have no practical limit.
2162 	 */
2163 	if (!PCI_DMA_BUS_IS_PHYS)
2164 		return BLK_BOUNCE_ANY;
2165 
2166 	host_dev = scsi_get_device(shost);
2167 	if (host_dev && host_dev->dma_mask)
2168 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2169 
2170 	return bounce_limit;
2171 }
2172 
2173 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2174 {
2175 	struct device *dev = shost->dma_dev;
2176 
2177 	/*
2178 	 * this limit is imposed by hardware restrictions
2179 	 */
2180 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2181 					SG_MAX_SEGMENTS));
2182 
2183 	if (scsi_host_prot_dma(shost)) {
2184 		shost->sg_prot_tablesize =
2185 			min_not_zero(shost->sg_prot_tablesize,
2186 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2187 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2188 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2189 	}
2190 
2191 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2192 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2193 	blk_queue_segment_boundary(q, shost->dma_boundary);
2194 	dma_set_seg_boundary(dev, shost->dma_boundary);
2195 
2196 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2197 
2198 	if (!shost->use_clustering)
2199 		q->limits.cluster = 0;
2200 
2201 	/*
2202 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2203 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2204 	 * which is set by the platform.
2205 	 *
2206 	 * Devices that require a bigger alignment can increase it later.
2207 	 */
2208 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2209 }
2210 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2211 
2212 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2213 			    gfp_t gfp)
2214 {
2215 	struct Scsi_Host *shost = q->rq_alloc_data;
2216 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2217 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2218 
2219 	memset(cmd, 0, sizeof(*cmd));
2220 
2221 	if (unchecked_isa_dma)
2222 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2223 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2224 						    NUMA_NO_NODE);
2225 	if (!cmd->sense_buffer)
2226 		goto fail;
2227 	cmd->req.sense = cmd->sense_buffer;
2228 
2229 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2230 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2231 		if (!cmd->prot_sdb)
2232 			goto fail_free_sense;
2233 	}
2234 
2235 	return 0;
2236 
2237 fail_free_sense:
2238 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2239 fail:
2240 	return -ENOMEM;
2241 }
2242 
2243 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2244 {
2245 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2246 
2247 	if (cmd->prot_sdb)
2248 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2249 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2250 			       cmd->sense_buffer);
2251 }
2252 
2253 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2254 {
2255 	struct Scsi_Host *shost = sdev->host;
2256 	struct request_queue *q;
2257 
2258 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2259 	if (!q)
2260 		return NULL;
2261 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2262 	q->rq_alloc_data = shost;
2263 	q->request_fn = scsi_request_fn;
2264 	q->init_rq_fn = scsi_old_init_rq;
2265 	q->exit_rq_fn = scsi_old_exit_rq;
2266 	q->initialize_rq_fn = scsi_initialize_rq;
2267 
2268 	if (blk_init_allocated_queue(q) < 0) {
2269 		blk_cleanup_queue(q);
2270 		return NULL;
2271 	}
2272 
2273 	__scsi_init_queue(shost, q);
2274 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2275 	blk_queue_prep_rq(q, scsi_prep_fn);
2276 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2277 	blk_queue_softirq_done(q, scsi_softirq_done);
2278 	blk_queue_rq_timed_out(q, scsi_times_out);
2279 	blk_queue_lld_busy(q, scsi_lld_busy);
2280 	return q;
2281 }
2282 
2283 static const struct blk_mq_ops scsi_mq_ops = {
2284 	.get_budget	= scsi_mq_get_budget,
2285 	.put_budget	= scsi_mq_put_budget,
2286 	.queue_rq	= scsi_queue_rq,
2287 	.complete	= scsi_softirq_done,
2288 	.timeout	= scsi_timeout,
2289 #ifdef CONFIG_BLK_DEBUG_FS
2290 	.show_rq	= scsi_show_rq,
2291 #endif
2292 	.init_request	= scsi_mq_init_request,
2293 	.exit_request	= scsi_mq_exit_request,
2294 	.initialize_rq_fn = scsi_initialize_rq,
2295 	.map_queues	= scsi_map_queues,
2296 };
2297 
2298 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2299 {
2300 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2301 	if (IS_ERR(sdev->request_queue))
2302 		return NULL;
2303 
2304 	sdev->request_queue->queuedata = sdev;
2305 	__scsi_init_queue(sdev->host, sdev->request_queue);
2306 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2307 	return sdev->request_queue;
2308 }
2309 
2310 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2311 {
2312 	unsigned int cmd_size, sgl_size;
2313 
2314 	sgl_size = scsi_mq_sgl_size(shost);
2315 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2316 	if (scsi_host_get_prot(shost))
2317 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2318 
2319 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2320 	shost->tag_set.ops = &scsi_mq_ops;
2321 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2322 	shost->tag_set.queue_depth = shost->can_queue;
2323 	shost->tag_set.cmd_size = cmd_size;
2324 	shost->tag_set.numa_node = NUMA_NO_NODE;
2325 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2326 	shost->tag_set.flags |=
2327 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2328 	shost->tag_set.driver_data = shost;
2329 
2330 	return blk_mq_alloc_tag_set(&shost->tag_set);
2331 }
2332 
2333 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2334 {
2335 	blk_mq_free_tag_set(&shost->tag_set);
2336 }
2337 
2338 /**
2339  * scsi_device_from_queue - return sdev associated with a request_queue
2340  * @q: The request queue to return the sdev from
2341  *
2342  * Return the sdev associated with a request queue or NULL if the
2343  * request_queue does not reference a SCSI device.
2344  */
2345 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2346 {
2347 	struct scsi_device *sdev = NULL;
2348 
2349 	if (q->mq_ops) {
2350 		if (q->mq_ops == &scsi_mq_ops)
2351 			sdev = q->queuedata;
2352 	} else if (q->request_fn == scsi_request_fn)
2353 		sdev = q->queuedata;
2354 	if (!sdev || !get_device(&sdev->sdev_gendev))
2355 		sdev = NULL;
2356 
2357 	return sdev;
2358 }
2359 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2360 
2361 /*
2362  * Function:    scsi_block_requests()
2363  *
2364  * Purpose:     Utility function used by low-level drivers to prevent further
2365  *		commands from being queued to the device.
2366  *
2367  * Arguments:   shost       - Host in question
2368  *
2369  * Returns:     Nothing
2370  *
2371  * Lock status: No locks are assumed held.
2372  *
2373  * Notes:       There is no timer nor any other means by which the requests
2374  *		get unblocked other than the low-level driver calling
2375  *		scsi_unblock_requests().
2376  */
2377 void scsi_block_requests(struct Scsi_Host *shost)
2378 {
2379 	shost->host_self_blocked = 1;
2380 }
2381 EXPORT_SYMBOL(scsi_block_requests);
2382 
2383 /*
2384  * Function:    scsi_unblock_requests()
2385  *
2386  * Purpose:     Utility function used by low-level drivers to allow further
2387  *		commands from being queued to the device.
2388  *
2389  * Arguments:   shost       - Host in question
2390  *
2391  * Returns:     Nothing
2392  *
2393  * Lock status: No locks are assumed held.
2394  *
2395  * Notes:       There is no timer nor any other means by which the requests
2396  *		get unblocked other than the low-level driver calling
2397  *		scsi_unblock_requests().
2398  *
2399  *		This is done as an API function so that changes to the
2400  *		internals of the scsi mid-layer won't require wholesale
2401  *		changes to drivers that use this feature.
2402  */
2403 void scsi_unblock_requests(struct Scsi_Host *shost)
2404 {
2405 	shost->host_self_blocked = 0;
2406 	scsi_run_host_queues(shost);
2407 }
2408 EXPORT_SYMBOL(scsi_unblock_requests);
2409 
2410 int __init scsi_init_queue(void)
2411 {
2412 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2413 					   sizeof(struct scsi_data_buffer),
2414 					   0, 0, NULL);
2415 	if (!scsi_sdb_cache) {
2416 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2417 		return -ENOMEM;
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 void scsi_exit_queue(void)
2424 {
2425 	kmem_cache_destroy(scsi_sense_cache);
2426 	kmem_cache_destroy(scsi_sense_isadma_cache);
2427 	kmem_cache_destroy(scsi_sdb_cache);
2428 }
2429 
2430 /**
2431  *	scsi_mode_select - issue a mode select
2432  *	@sdev:	SCSI device to be queried
2433  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2434  *	@sp:	Save page bit (0 == don't save, 1 == save)
2435  *	@modepage: mode page being requested
2436  *	@buffer: request buffer (may not be smaller than eight bytes)
2437  *	@len:	length of request buffer.
2438  *	@timeout: command timeout
2439  *	@retries: number of retries before failing
2440  *	@data: returns a structure abstracting the mode header data
2441  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2442  *		must be SCSI_SENSE_BUFFERSIZE big.
2443  *
2444  *	Returns zero if successful; negative error number or scsi
2445  *	status on error
2446  *
2447  */
2448 int
2449 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2450 		 unsigned char *buffer, int len, int timeout, int retries,
2451 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2452 {
2453 	unsigned char cmd[10];
2454 	unsigned char *real_buffer;
2455 	int ret;
2456 
2457 	memset(cmd, 0, sizeof(cmd));
2458 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2459 
2460 	if (sdev->use_10_for_ms) {
2461 		if (len > 65535)
2462 			return -EINVAL;
2463 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2464 		if (!real_buffer)
2465 			return -ENOMEM;
2466 		memcpy(real_buffer + 8, buffer, len);
2467 		len += 8;
2468 		real_buffer[0] = 0;
2469 		real_buffer[1] = 0;
2470 		real_buffer[2] = data->medium_type;
2471 		real_buffer[3] = data->device_specific;
2472 		real_buffer[4] = data->longlba ? 0x01 : 0;
2473 		real_buffer[5] = 0;
2474 		real_buffer[6] = data->block_descriptor_length >> 8;
2475 		real_buffer[7] = data->block_descriptor_length;
2476 
2477 		cmd[0] = MODE_SELECT_10;
2478 		cmd[7] = len >> 8;
2479 		cmd[8] = len;
2480 	} else {
2481 		if (len > 255 || data->block_descriptor_length > 255 ||
2482 		    data->longlba)
2483 			return -EINVAL;
2484 
2485 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2486 		if (!real_buffer)
2487 			return -ENOMEM;
2488 		memcpy(real_buffer + 4, buffer, len);
2489 		len += 4;
2490 		real_buffer[0] = 0;
2491 		real_buffer[1] = data->medium_type;
2492 		real_buffer[2] = data->device_specific;
2493 		real_buffer[3] = data->block_descriptor_length;
2494 
2495 
2496 		cmd[0] = MODE_SELECT;
2497 		cmd[4] = len;
2498 	}
2499 
2500 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2501 			       sshdr, timeout, retries, NULL);
2502 	kfree(real_buffer);
2503 	return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(scsi_mode_select);
2506 
2507 /**
2508  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2509  *	@sdev:	SCSI device to be queried
2510  *	@dbd:	set if mode sense will allow block descriptors to be returned
2511  *	@modepage: mode page being requested
2512  *	@buffer: request buffer (may not be smaller than eight bytes)
2513  *	@len:	length of request buffer.
2514  *	@timeout: command timeout
2515  *	@retries: number of retries before failing
2516  *	@data: returns a structure abstracting the mode header data
2517  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2518  *		must be SCSI_SENSE_BUFFERSIZE big.
2519  *
2520  *	Returns zero if unsuccessful, or the header offset (either 4
2521  *	or 8 depending on whether a six or ten byte command was
2522  *	issued) if successful.
2523  */
2524 int
2525 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2526 		  unsigned char *buffer, int len, int timeout, int retries,
2527 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2528 {
2529 	unsigned char cmd[12];
2530 	int use_10_for_ms;
2531 	int header_length;
2532 	int result, retry_count = retries;
2533 	struct scsi_sense_hdr my_sshdr;
2534 
2535 	memset(data, 0, sizeof(*data));
2536 	memset(&cmd[0], 0, 12);
2537 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2538 	cmd[2] = modepage;
2539 
2540 	/* caller might not be interested in sense, but we need it */
2541 	if (!sshdr)
2542 		sshdr = &my_sshdr;
2543 
2544  retry:
2545 	use_10_for_ms = sdev->use_10_for_ms;
2546 
2547 	if (use_10_for_ms) {
2548 		if (len < 8)
2549 			len = 8;
2550 
2551 		cmd[0] = MODE_SENSE_10;
2552 		cmd[8] = len;
2553 		header_length = 8;
2554 	} else {
2555 		if (len < 4)
2556 			len = 4;
2557 
2558 		cmd[0] = MODE_SENSE;
2559 		cmd[4] = len;
2560 		header_length = 4;
2561 	}
2562 
2563 	memset(buffer, 0, len);
2564 
2565 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2566 				  sshdr, timeout, retries, NULL);
2567 
2568 	/* This code looks awful: what it's doing is making sure an
2569 	 * ILLEGAL REQUEST sense return identifies the actual command
2570 	 * byte as the problem.  MODE_SENSE commands can return
2571 	 * ILLEGAL REQUEST if the code page isn't supported */
2572 
2573 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2574 	    (driver_byte(result) & DRIVER_SENSE)) {
2575 		if (scsi_sense_valid(sshdr)) {
2576 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2577 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2578 				/*
2579 				 * Invalid command operation code
2580 				 */
2581 				sdev->use_10_for_ms = 0;
2582 				goto retry;
2583 			}
2584 		}
2585 	}
2586 
2587 	if(scsi_status_is_good(result)) {
2588 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2589 			     (modepage == 6 || modepage == 8))) {
2590 			/* Initio breakage? */
2591 			header_length = 0;
2592 			data->length = 13;
2593 			data->medium_type = 0;
2594 			data->device_specific = 0;
2595 			data->longlba = 0;
2596 			data->block_descriptor_length = 0;
2597 		} else if(use_10_for_ms) {
2598 			data->length = buffer[0]*256 + buffer[1] + 2;
2599 			data->medium_type = buffer[2];
2600 			data->device_specific = buffer[3];
2601 			data->longlba = buffer[4] & 0x01;
2602 			data->block_descriptor_length = buffer[6]*256
2603 				+ buffer[7];
2604 		} else {
2605 			data->length = buffer[0] + 1;
2606 			data->medium_type = buffer[1];
2607 			data->device_specific = buffer[2];
2608 			data->block_descriptor_length = buffer[3];
2609 		}
2610 		data->header_length = header_length;
2611 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2612 		   scsi_sense_valid(sshdr) &&
2613 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2614 		retry_count--;
2615 		goto retry;
2616 	}
2617 
2618 	return result;
2619 }
2620 EXPORT_SYMBOL(scsi_mode_sense);
2621 
2622 /**
2623  *	scsi_test_unit_ready - test if unit is ready
2624  *	@sdev:	scsi device to change the state of.
2625  *	@timeout: command timeout
2626  *	@retries: number of retries before failing
2627  *	@sshdr: outpout pointer for decoded sense information.
2628  *
2629  *	Returns zero if unsuccessful or an error if TUR failed.  For
2630  *	removable media, UNIT_ATTENTION sets ->changed flag.
2631  **/
2632 int
2633 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2634 		     struct scsi_sense_hdr *sshdr)
2635 {
2636 	char cmd[] = {
2637 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2638 	};
2639 	int result;
2640 
2641 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2642 	do {
2643 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2644 					  timeout, 1, NULL);
2645 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2646 		    sshdr->sense_key == UNIT_ATTENTION)
2647 			sdev->changed = 1;
2648 	} while (scsi_sense_valid(sshdr) &&
2649 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2650 
2651 	return result;
2652 }
2653 EXPORT_SYMBOL(scsi_test_unit_ready);
2654 
2655 /**
2656  *	scsi_device_set_state - Take the given device through the device state model.
2657  *	@sdev:	scsi device to change the state of.
2658  *	@state:	state to change to.
2659  *
2660  *	Returns zero if successful or an error if the requested
2661  *	transition is illegal.
2662  */
2663 int
2664 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2665 {
2666 	enum scsi_device_state oldstate = sdev->sdev_state;
2667 
2668 	if (state == oldstate)
2669 		return 0;
2670 
2671 	switch (state) {
2672 	case SDEV_CREATED:
2673 		switch (oldstate) {
2674 		case SDEV_CREATED_BLOCK:
2675 			break;
2676 		default:
2677 			goto illegal;
2678 		}
2679 		break;
2680 
2681 	case SDEV_RUNNING:
2682 		switch (oldstate) {
2683 		case SDEV_CREATED:
2684 		case SDEV_OFFLINE:
2685 		case SDEV_TRANSPORT_OFFLINE:
2686 		case SDEV_QUIESCE:
2687 		case SDEV_BLOCK:
2688 			break;
2689 		default:
2690 			goto illegal;
2691 		}
2692 		break;
2693 
2694 	case SDEV_QUIESCE:
2695 		switch (oldstate) {
2696 		case SDEV_RUNNING:
2697 		case SDEV_OFFLINE:
2698 		case SDEV_TRANSPORT_OFFLINE:
2699 			break;
2700 		default:
2701 			goto illegal;
2702 		}
2703 		break;
2704 
2705 	case SDEV_OFFLINE:
2706 	case SDEV_TRANSPORT_OFFLINE:
2707 		switch (oldstate) {
2708 		case SDEV_CREATED:
2709 		case SDEV_RUNNING:
2710 		case SDEV_QUIESCE:
2711 		case SDEV_BLOCK:
2712 			break;
2713 		default:
2714 			goto illegal;
2715 		}
2716 		break;
2717 
2718 	case SDEV_BLOCK:
2719 		switch (oldstate) {
2720 		case SDEV_RUNNING:
2721 		case SDEV_CREATED_BLOCK:
2722 			break;
2723 		default:
2724 			goto illegal;
2725 		}
2726 		break;
2727 
2728 	case SDEV_CREATED_BLOCK:
2729 		switch (oldstate) {
2730 		case SDEV_CREATED:
2731 			break;
2732 		default:
2733 			goto illegal;
2734 		}
2735 		break;
2736 
2737 	case SDEV_CANCEL:
2738 		switch (oldstate) {
2739 		case SDEV_CREATED:
2740 		case SDEV_RUNNING:
2741 		case SDEV_QUIESCE:
2742 		case SDEV_OFFLINE:
2743 		case SDEV_TRANSPORT_OFFLINE:
2744 			break;
2745 		default:
2746 			goto illegal;
2747 		}
2748 		break;
2749 
2750 	case SDEV_DEL:
2751 		switch (oldstate) {
2752 		case SDEV_CREATED:
2753 		case SDEV_RUNNING:
2754 		case SDEV_OFFLINE:
2755 		case SDEV_TRANSPORT_OFFLINE:
2756 		case SDEV_CANCEL:
2757 		case SDEV_BLOCK:
2758 		case SDEV_CREATED_BLOCK:
2759 			break;
2760 		default:
2761 			goto illegal;
2762 		}
2763 		break;
2764 
2765 	}
2766 	sdev->sdev_state = state;
2767 	return 0;
2768 
2769  illegal:
2770 	SCSI_LOG_ERROR_RECOVERY(1,
2771 				sdev_printk(KERN_ERR, sdev,
2772 					    "Illegal state transition %s->%s",
2773 					    scsi_device_state_name(oldstate),
2774 					    scsi_device_state_name(state))
2775 				);
2776 	return -EINVAL;
2777 }
2778 EXPORT_SYMBOL(scsi_device_set_state);
2779 
2780 /**
2781  * 	sdev_evt_emit - emit a single SCSI device uevent
2782  *	@sdev: associated SCSI device
2783  *	@evt: event to emit
2784  *
2785  *	Send a single uevent (scsi_event) to the associated scsi_device.
2786  */
2787 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2788 {
2789 	int idx = 0;
2790 	char *envp[3];
2791 
2792 	switch (evt->evt_type) {
2793 	case SDEV_EVT_MEDIA_CHANGE:
2794 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2795 		break;
2796 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2797 		scsi_rescan_device(&sdev->sdev_gendev);
2798 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2799 		break;
2800 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2801 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2802 		break;
2803 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2804 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2805 		break;
2806 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2808 		break;
2809 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2810 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2811 		break;
2812 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2813 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2814 		break;
2815 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2816 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2817 		break;
2818 	default:
2819 		/* do nothing */
2820 		break;
2821 	}
2822 
2823 	envp[idx++] = NULL;
2824 
2825 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2826 }
2827 
2828 /**
2829  * 	sdev_evt_thread - send a uevent for each scsi event
2830  *	@work: work struct for scsi_device
2831  *
2832  *	Dispatch queued events to their associated scsi_device kobjects
2833  *	as uevents.
2834  */
2835 void scsi_evt_thread(struct work_struct *work)
2836 {
2837 	struct scsi_device *sdev;
2838 	enum scsi_device_event evt_type;
2839 	LIST_HEAD(event_list);
2840 
2841 	sdev = container_of(work, struct scsi_device, event_work);
2842 
2843 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2844 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2845 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2846 
2847 	while (1) {
2848 		struct scsi_event *evt;
2849 		struct list_head *this, *tmp;
2850 		unsigned long flags;
2851 
2852 		spin_lock_irqsave(&sdev->list_lock, flags);
2853 		list_splice_init(&sdev->event_list, &event_list);
2854 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2855 
2856 		if (list_empty(&event_list))
2857 			break;
2858 
2859 		list_for_each_safe(this, tmp, &event_list) {
2860 			evt = list_entry(this, struct scsi_event, node);
2861 			list_del(&evt->node);
2862 			scsi_evt_emit(sdev, evt);
2863 			kfree(evt);
2864 		}
2865 	}
2866 }
2867 
2868 /**
2869  * 	sdev_evt_send - send asserted event to uevent thread
2870  *	@sdev: scsi_device event occurred on
2871  *	@evt: event to send
2872  *
2873  *	Assert scsi device event asynchronously.
2874  */
2875 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2876 {
2877 	unsigned long flags;
2878 
2879 #if 0
2880 	/* FIXME: currently this check eliminates all media change events
2881 	 * for polled devices.  Need to update to discriminate between AN
2882 	 * and polled events */
2883 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2884 		kfree(evt);
2885 		return;
2886 	}
2887 #endif
2888 
2889 	spin_lock_irqsave(&sdev->list_lock, flags);
2890 	list_add_tail(&evt->node, &sdev->event_list);
2891 	schedule_work(&sdev->event_work);
2892 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2893 }
2894 EXPORT_SYMBOL_GPL(sdev_evt_send);
2895 
2896 /**
2897  * 	sdev_evt_alloc - allocate a new scsi event
2898  *	@evt_type: type of event to allocate
2899  *	@gfpflags: GFP flags for allocation
2900  *
2901  *	Allocates and returns a new scsi_event.
2902  */
2903 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2904 				  gfp_t gfpflags)
2905 {
2906 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2907 	if (!evt)
2908 		return NULL;
2909 
2910 	evt->evt_type = evt_type;
2911 	INIT_LIST_HEAD(&evt->node);
2912 
2913 	/* evt_type-specific initialization, if any */
2914 	switch (evt_type) {
2915 	case SDEV_EVT_MEDIA_CHANGE:
2916 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2917 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2918 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2919 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2920 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2921 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2922 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2923 	default:
2924 		/* do nothing */
2925 		break;
2926 	}
2927 
2928 	return evt;
2929 }
2930 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2931 
2932 /**
2933  * 	sdev_evt_send_simple - send asserted event to uevent thread
2934  *	@sdev: scsi_device event occurred on
2935  *	@evt_type: type of event to send
2936  *	@gfpflags: GFP flags for allocation
2937  *
2938  *	Assert scsi device event asynchronously, given an event type.
2939  */
2940 void sdev_evt_send_simple(struct scsi_device *sdev,
2941 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2942 {
2943 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2944 	if (!evt) {
2945 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2946 			    evt_type);
2947 		return;
2948 	}
2949 
2950 	sdev_evt_send(sdev, evt);
2951 }
2952 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2953 
2954 /**
2955  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2956  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2957  */
2958 static int scsi_request_fn_active(struct scsi_device *sdev)
2959 {
2960 	struct request_queue *q = sdev->request_queue;
2961 	int request_fn_active;
2962 
2963 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2964 
2965 	spin_lock_irq(q->queue_lock);
2966 	request_fn_active = q->request_fn_active;
2967 	spin_unlock_irq(q->queue_lock);
2968 
2969 	return request_fn_active;
2970 }
2971 
2972 /**
2973  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2974  * @sdev: SCSI device pointer.
2975  *
2976  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2977  * invoked from scsi_request_fn() have finished.
2978  */
2979 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2980 {
2981 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2982 
2983 	while (scsi_request_fn_active(sdev))
2984 		msleep(20);
2985 }
2986 
2987 /**
2988  *	scsi_device_quiesce - Block user issued commands.
2989  *	@sdev:	scsi device to quiesce.
2990  *
2991  *	This works by trying to transition to the SDEV_QUIESCE state
2992  *	(which must be a legal transition).  When the device is in this
2993  *	state, only special requests will be accepted, all others will
2994  *	be deferred.  Since special requests may also be requeued requests,
2995  *	a successful return doesn't guarantee the device will be
2996  *	totally quiescent.
2997  *
2998  *	Must be called with user context, may sleep.
2999  *
3000  *	Returns zero if unsuccessful or an error if not.
3001  */
3002 int
3003 scsi_device_quiesce(struct scsi_device *sdev)
3004 {
3005 	struct request_queue *q = sdev->request_queue;
3006 	int err;
3007 
3008 	/*
3009 	 * It is allowed to call scsi_device_quiesce() multiple times from
3010 	 * the same context but concurrent scsi_device_quiesce() calls are
3011 	 * not allowed.
3012 	 */
3013 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3014 
3015 	blk_set_preempt_only(q);
3016 
3017 	blk_mq_freeze_queue(q);
3018 	/*
3019 	 * Ensure that the effect of blk_set_preempt_only() will be visible
3020 	 * for percpu_ref_tryget() callers that occur after the queue
3021 	 * unfreeze even if the queue was already frozen before this function
3022 	 * was called. See also https://lwn.net/Articles/573497/.
3023 	 */
3024 	synchronize_rcu();
3025 	blk_mq_unfreeze_queue(q);
3026 
3027 	mutex_lock(&sdev->state_mutex);
3028 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3029 	if (err == 0)
3030 		sdev->quiesced_by = current;
3031 	else
3032 		blk_clear_preempt_only(q);
3033 	mutex_unlock(&sdev->state_mutex);
3034 
3035 	return err;
3036 }
3037 EXPORT_SYMBOL(scsi_device_quiesce);
3038 
3039 /**
3040  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3041  *	@sdev:	scsi device to resume.
3042  *
3043  *	Moves the device from quiesced back to running and restarts the
3044  *	queues.
3045  *
3046  *	Must be called with user context, may sleep.
3047  */
3048 void scsi_device_resume(struct scsi_device *sdev)
3049 {
3050 	/* check if the device state was mutated prior to resume, and if
3051 	 * so assume the state is being managed elsewhere (for example
3052 	 * device deleted during suspend)
3053 	 */
3054 	mutex_lock(&sdev->state_mutex);
3055 	WARN_ON_ONCE(!sdev->quiesced_by);
3056 	sdev->quiesced_by = NULL;
3057 	blk_clear_preempt_only(sdev->request_queue);
3058 	if (sdev->sdev_state == SDEV_QUIESCE)
3059 		scsi_device_set_state(sdev, SDEV_RUNNING);
3060 	mutex_unlock(&sdev->state_mutex);
3061 }
3062 EXPORT_SYMBOL(scsi_device_resume);
3063 
3064 static void
3065 device_quiesce_fn(struct scsi_device *sdev, void *data)
3066 {
3067 	scsi_device_quiesce(sdev);
3068 }
3069 
3070 void
3071 scsi_target_quiesce(struct scsi_target *starget)
3072 {
3073 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3074 }
3075 EXPORT_SYMBOL(scsi_target_quiesce);
3076 
3077 static void
3078 device_resume_fn(struct scsi_device *sdev, void *data)
3079 {
3080 	scsi_device_resume(sdev);
3081 }
3082 
3083 void
3084 scsi_target_resume(struct scsi_target *starget)
3085 {
3086 	starget_for_each_device(starget, NULL, device_resume_fn);
3087 }
3088 EXPORT_SYMBOL(scsi_target_resume);
3089 
3090 /**
3091  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3092  * @sdev: device to block
3093  *
3094  * Pause SCSI command processing on the specified device. Does not sleep.
3095  *
3096  * Returns zero if successful or a negative error code upon failure.
3097  *
3098  * Notes:
3099  * This routine transitions the device to the SDEV_BLOCK state (which must be
3100  * a legal transition). When the device is in this state, command processing
3101  * is paused until the device leaves the SDEV_BLOCK state. See also
3102  * scsi_internal_device_unblock_nowait().
3103  */
3104 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3105 {
3106 	struct request_queue *q = sdev->request_queue;
3107 	unsigned long flags;
3108 	int err = 0;
3109 
3110 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3111 	if (err) {
3112 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3113 
3114 		if (err)
3115 			return err;
3116 	}
3117 
3118 	/*
3119 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3120 	 * block layer from calling the midlayer with this device's
3121 	 * request queue.
3122 	 */
3123 	if (q->mq_ops) {
3124 		blk_mq_quiesce_queue_nowait(q);
3125 	} else {
3126 		spin_lock_irqsave(q->queue_lock, flags);
3127 		blk_stop_queue(q);
3128 		spin_unlock_irqrestore(q->queue_lock, flags);
3129 	}
3130 
3131 	return 0;
3132 }
3133 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3134 
3135 /**
3136  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3137  * @sdev: device to block
3138  *
3139  * Pause SCSI command processing on the specified device and wait until all
3140  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3141  *
3142  * Returns zero if successful or a negative error code upon failure.
3143  *
3144  * Note:
3145  * This routine transitions the device to the SDEV_BLOCK state (which must be
3146  * a legal transition). When the device is in this state, command processing
3147  * is paused until the device leaves the SDEV_BLOCK state. See also
3148  * scsi_internal_device_unblock().
3149  *
3150  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3151  * scsi_internal_device_block() has blocked a SCSI device and also
3152  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3153  */
3154 static int scsi_internal_device_block(struct scsi_device *sdev)
3155 {
3156 	struct request_queue *q = sdev->request_queue;
3157 	int err;
3158 
3159 	mutex_lock(&sdev->state_mutex);
3160 	err = scsi_internal_device_block_nowait(sdev);
3161 	if (err == 0) {
3162 		if (q->mq_ops)
3163 			blk_mq_quiesce_queue(q);
3164 		else
3165 			scsi_wait_for_queuecommand(sdev);
3166 	}
3167 	mutex_unlock(&sdev->state_mutex);
3168 
3169 	return err;
3170 }
3171 
3172 void scsi_start_queue(struct scsi_device *sdev)
3173 {
3174 	struct request_queue *q = sdev->request_queue;
3175 	unsigned long flags;
3176 
3177 	if (q->mq_ops) {
3178 		blk_mq_unquiesce_queue(q);
3179 	} else {
3180 		spin_lock_irqsave(q->queue_lock, flags);
3181 		blk_start_queue(q);
3182 		spin_unlock_irqrestore(q->queue_lock, flags);
3183 	}
3184 }
3185 
3186 /**
3187  * scsi_internal_device_unblock_nowait - resume a device after a block request
3188  * @sdev:	device to resume
3189  * @new_state:	state to set the device to after unblocking
3190  *
3191  * Restart the device queue for a previously suspended SCSI device. Does not
3192  * sleep.
3193  *
3194  * Returns zero if successful or a negative error code upon failure.
3195  *
3196  * Notes:
3197  * This routine transitions the device to the SDEV_RUNNING state or to one of
3198  * the offline states (which must be a legal transition) allowing the midlayer
3199  * to goose the queue for this device.
3200  */
3201 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3202 					enum scsi_device_state new_state)
3203 {
3204 	/*
3205 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3206 	 * offlined states and goose the device queue if successful.
3207 	 */
3208 	switch (sdev->sdev_state) {
3209 	case SDEV_BLOCK:
3210 	case SDEV_TRANSPORT_OFFLINE:
3211 		sdev->sdev_state = new_state;
3212 		break;
3213 	case SDEV_CREATED_BLOCK:
3214 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3215 		    new_state == SDEV_OFFLINE)
3216 			sdev->sdev_state = new_state;
3217 		else
3218 			sdev->sdev_state = SDEV_CREATED;
3219 		break;
3220 	case SDEV_CANCEL:
3221 	case SDEV_OFFLINE:
3222 		break;
3223 	default:
3224 		return -EINVAL;
3225 	}
3226 	scsi_start_queue(sdev);
3227 
3228 	return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3231 
3232 /**
3233  * scsi_internal_device_unblock - resume a device after a block request
3234  * @sdev:	device to resume
3235  * @new_state:	state to set the device to after unblocking
3236  *
3237  * Restart the device queue for a previously suspended SCSI device. May sleep.
3238  *
3239  * Returns zero if successful or a negative error code upon failure.
3240  *
3241  * Notes:
3242  * This routine transitions the device to the SDEV_RUNNING state or to one of
3243  * the offline states (which must be a legal transition) allowing the midlayer
3244  * to goose the queue for this device.
3245  */
3246 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3247 					enum scsi_device_state new_state)
3248 {
3249 	int ret;
3250 
3251 	mutex_lock(&sdev->state_mutex);
3252 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3253 	mutex_unlock(&sdev->state_mutex);
3254 
3255 	return ret;
3256 }
3257 
3258 static void
3259 device_block(struct scsi_device *sdev, void *data)
3260 {
3261 	scsi_internal_device_block(sdev);
3262 }
3263 
3264 static int
3265 target_block(struct device *dev, void *data)
3266 {
3267 	if (scsi_is_target_device(dev))
3268 		starget_for_each_device(to_scsi_target(dev), NULL,
3269 					device_block);
3270 	return 0;
3271 }
3272 
3273 void
3274 scsi_target_block(struct device *dev)
3275 {
3276 	if (scsi_is_target_device(dev))
3277 		starget_for_each_device(to_scsi_target(dev), NULL,
3278 					device_block);
3279 	else
3280 		device_for_each_child(dev, NULL, target_block);
3281 }
3282 EXPORT_SYMBOL_GPL(scsi_target_block);
3283 
3284 static void
3285 device_unblock(struct scsi_device *sdev, void *data)
3286 {
3287 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3288 }
3289 
3290 static int
3291 target_unblock(struct device *dev, void *data)
3292 {
3293 	if (scsi_is_target_device(dev))
3294 		starget_for_each_device(to_scsi_target(dev), data,
3295 					device_unblock);
3296 	return 0;
3297 }
3298 
3299 void
3300 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3301 {
3302 	if (scsi_is_target_device(dev))
3303 		starget_for_each_device(to_scsi_target(dev), &new_state,
3304 					device_unblock);
3305 	else
3306 		device_for_each_child(dev, &new_state, target_unblock);
3307 }
3308 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3309 
3310 /**
3311  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3312  * @sgl:	scatter-gather list
3313  * @sg_count:	number of segments in sg
3314  * @offset:	offset in bytes into sg, on return offset into the mapped area
3315  * @len:	bytes to map, on return number of bytes mapped
3316  *
3317  * Returns virtual address of the start of the mapped page
3318  */
3319 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3320 			  size_t *offset, size_t *len)
3321 {
3322 	int i;
3323 	size_t sg_len = 0, len_complete = 0;
3324 	struct scatterlist *sg;
3325 	struct page *page;
3326 
3327 	WARN_ON(!irqs_disabled());
3328 
3329 	for_each_sg(sgl, sg, sg_count, i) {
3330 		len_complete = sg_len; /* Complete sg-entries */
3331 		sg_len += sg->length;
3332 		if (sg_len > *offset)
3333 			break;
3334 	}
3335 
3336 	if (unlikely(i == sg_count)) {
3337 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3338 			"elements %d\n",
3339 		       __func__, sg_len, *offset, sg_count);
3340 		WARN_ON(1);
3341 		return NULL;
3342 	}
3343 
3344 	/* Offset starting from the beginning of first page in this sg-entry */
3345 	*offset = *offset - len_complete + sg->offset;
3346 
3347 	/* Assumption: contiguous pages can be accessed as "page + i" */
3348 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3349 	*offset &= ~PAGE_MASK;
3350 
3351 	/* Bytes in this sg-entry from *offset to the end of the page */
3352 	sg_len = PAGE_SIZE - *offset;
3353 	if (*len > sg_len)
3354 		*len = sg_len;
3355 
3356 	return kmap_atomic(page);
3357 }
3358 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3359 
3360 /**
3361  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3362  * @virt:	virtual address to be unmapped
3363  */
3364 void scsi_kunmap_atomic_sg(void *virt)
3365 {
3366 	kunmap_atomic(virt);
3367 }
3368 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3369 
3370 void sdev_disable_disk_events(struct scsi_device *sdev)
3371 {
3372 	atomic_inc(&sdev->disk_events_disable_depth);
3373 }
3374 EXPORT_SYMBOL(sdev_disable_disk_events);
3375 
3376 void sdev_enable_disk_events(struct scsi_device *sdev)
3377 {
3378 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3379 		return;
3380 	atomic_dec(&sdev->disk_events_disable_depth);
3381 }
3382 EXPORT_SYMBOL(sdev_enable_disk_events);
3383 
3384 /**
3385  * scsi_vpd_lun_id - return a unique device identification
3386  * @sdev: SCSI device
3387  * @id:   buffer for the identification
3388  * @id_len:  length of the buffer
3389  *
3390  * Copies a unique device identification into @id based
3391  * on the information in the VPD page 0x83 of the device.
3392  * The string will be formatted as a SCSI name string.
3393  *
3394  * Returns the length of the identification or error on failure.
3395  * If the identifier is longer than the supplied buffer the actual
3396  * identifier length is returned and the buffer is not zero-padded.
3397  */
3398 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3399 {
3400 	u8 cur_id_type = 0xff;
3401 	u8 cur_id_size = 0;
3402 	const unsigned char *d, *cur_id_str;
3403 	const struct scsi_vpd *vpd_pg83;
3404 	int id_size = -EINVAL;
3405 
3406 	rcu_read_lock();
3407 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3408 	if (!vpd_pg83) {
3409 		rcu_read_unlock();
3410 		return -ENXIO;
3411 	}
3412 
3413 	/*
3414 	 * Look for the correct descriptor.
3415 	 * Order of preference for lun descriptor:
3416 	 * - SCSI name string
3417 	 * - NAA IEEE Registered Extended
3418 	 * - EUI-64 based 16-byte
3419 	 * - EUI-64 based 12-byte
3420 	 * - NAA IEEE Registered
3421 	 * - NAA IEEE Extended
3422 	 * - T10 Vendor ID
3423 	 * as longer descriptors reduce the likelyhood
3424 	 * of identification clashes.
3425 	 */
3426 
3427 	/* The id string must be at least 20 bytes + terminating NULL byte */
3428 	if (id_len < 21) {
3429 		rcu_read_unlock();
3430 		return -EINVAL;
3431 	}
3432 
3433 	memset(id, 0, id_len);
3434 	d = vpd_pg83->data + 4;
3435 	while (d < vpd_pg83->data + vpd_pg83->len) {
3436 		/* Skip designators not referring to the LUN */
3437 		if ((d[1] & 0x30) != 0x00)
3438 			goto next_desig;
3439 
3440 		switch (d[1] & 0xf) {
3441 		case 0x1:
3442 			/* T10 Vendor ID */
3443 			if (cur_id_size > d[3])
3444 				break;
3445 			/* Prefer anything */
3446 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3447 				break;
3448 			cur_id_size = d[3];
3449 			if (cur_id_size + 4 > id_len)
3450 				cur_id_size = id_len - 4;
3451 			cur_id_str = d + 4;
3452 			cur_id_type = d[1] & 0xf;
3453 			id_size = snprintf(id, id_len, "t10.%*pE",
3454 					   cur_id_size, cur_id_str);
3455 			break;
3456 		case 0x2:
3457 			/* EUI-64 */
3458 			if (cur_id_size > d[3])
3459 				break;
3460 			/* Prefer NAA IEEE Registered Extended */
3461 			if (cur_id_type == 0x3 &&
3462 			    cur_id_size == d[3])
3463 				break;
3464 			cur_id_size = d[3];
3465 			cur_id_str = d + 4;
3466 			cur_id_type = d[1] & 0xf;
3467 			switch (cur_id_size) {
3468 			case 8:
3469 				id_size = snprintf(id, id_len,
3470 						   "eui.%8phN",
3471 						   cur_id_str);
3472 				break;
3473 			case 12:
3474 				id_size = snprintf(id, id_len,
3475 						   "eui.%12phN",
3476 						   cur_id_str);
3477 				break;
3478 			case 16:
3479 				id_size = snprintf(id, id_len,
3480 						   "eui.%16phN",
3481 						   cur_id_str);
3482 				break;
3483 			default:
3484 				cur_id_size = 0;
3485 				break;
3486 			}
3487 			break;
3488 		case 0x3:
3489 			/* NAA */
3490 			if (cur_id_size > d[3])
3491 				break;
3492 			cur_id_size = d[3];
3493 			cur_id_str = d + 4;
3494 			cur_id_type = d[1] & 0xf;
3495 			switch (cur_id_size) {
3496 			case 8:
3497 				id_size = snprintf(id, id_len,
3498 						   "naa.%8phN",
3499 						   cur_id_str);
3500 				break;
3501 			case 16:
3502 				id_size = snprintf(id, id_len,
3503 						   "naa.%16phN",
3504 						   cur_id_str);
3505 				break;
3506 			default:
3507 				cur_id_size = 0;
3508 				break;
3509 			}
3510 			break;
3511 		case 0x8:
3512 			/* SCSI name string */
3513 			if (cur_id_size + 4 > d[3])
3514 				break;
3515 			/* Prefer others for truncated descriptor */
3516 			if (cur_id_size && d[3] > id_len)
3517 				break;
3518 			cur_id_size = id_size = d[3];
3519 			cur_id_str = d + 4;
3520 			cur_id_type = d[1] & 0xf;
3521 			if (cur_id_size >= id_len)
3522 				cur_id_size = id_len - 1;
3523 			memcpy(id, cur_id_str, cur_id_size);
3524 			/* Decrease priority for truncated descriptor */
3525 			if (cur_id_size != id_size)
3526 				cur_id_size = 6;
3527 			break;
3528 		default:
3529 			break;
3530 		}
3531 next_desig:
3532 		d += d[3] + 4;
3533 	}
3534 	rcu_read_unlock();
3535 
3536 	return id_size;
3537 }
3538 EXPORT_SYMBOL(scsi_vpd_lun_id);
3539 
3540 /*
3541  * scsi_vpd_tpg_id - return a target port group identifier
3542  * @sdev: SCSI device
3543  *
3544  * Returns the Target Port Group identifier from the information
3545  * froom VPD page 0x83 of the device.
3546  *
3547  * Returns the identifier or error on failure.
3548  */
3549 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3550 {
3551 	const unsigned char *d;
3552 	const struct scsi_vpd *vpd_pg83;
3553 	int group_id = -EAGAIN, rel_port = -1;
3554 
3555 	rcu_read_lock();
3556 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3557 	if (!vpd_pg83) {
3558 		rcu_read_unlock();
3559 		return -ENXIO;
3560 	}
3561 
3562 	d = vpd_pg83->data + 4;
3563 	while (d < vpd_pg83->data + vpd_pg83->len) {
3564 		switch (d[1] & 0xf) {
3565 		case 0x4:
3566 			/* Relative target port */
3567 			rel_port = get_unaligned_be16(&d[6]);
3568 			break;
3569 		case 0x5:
3570 			/* Target port group */
3571 			group_id = get_unaligned_be16(&d[6]);
3572 			break;
3573 		default:
3574 			break;
3575 		}
3576 		d += d[3] + 4;
3577 	}
3578 	rcu_read_unlock();
3579 
3580 	if (group_id >= 0 && rel_id && rel_port != -1)
3581 		*rel_id = rel_port;
3582 
3583 	return group_id;
3584 }
3585 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3586