1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 172 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 173 "Inserting command %p into mlqueue\n", cmd)); 174 175 scsi_set_blocked(cmd, reason); 176 177 /* 178 * Decrement the counters, since these commands are no longer 179 * active on the host/device. 180 */ 181 if (unbusy) 182 scsi_device_unbusy(device); 183 184 /* 185 * Requeue this command. It will go before all other commands 186 * that are already in the queue. Schedule requeue work under 187 * lock such that the kblockd_schedule_work() call happens 188 * before blk_cleanup_queue() finishes. 189 */ 190 cmd->result = 0; 191 192 /* 193 * Before a SCSI command is dispatched, 194 * get_device(&sdev->sdev_gendev) is called and the host, 195 * target and device busy counters are increased. Since 196 * requeuing a request causes these actions to be repeated and 197 * since scsi_device_unbusy() has already been called, 198 * put_device(&device->sdev_gendev) must still be called. Call 199 * put_device() after blk_mq_requeue_request() to avoid that 200 * removal of the SCSI device can start before requeueing has 201 * happened. 202 */ 203 blk_mq_requeue_request(cmd->request, true); 204 put_device(&device->sdev_gendev); 205 } 206 207 /* 208 * Function: scsi_queue_insert() 209 * 210 * Purpose: Insert a command in the midlevel queue. 211 * 212 * Arguments: cmd - command that we are adding to queue. 213 * reason - why we are inserting command to queue. 214 * 215 * Lock status: Assumed that lock is not held upon entry. 216 * 217 * Returns: Nothing. 218 * 219 * Notes: We do this for one of two cases. Either the host is busy 220 * and it cannot accept any more commands for the time being, 221 * or the device returned QUEUE_FULL and can accept no more 222 * commands. 223 * Notes: This could be called either from an interrupt context or a 224 * normal process context. 225 */ 226 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 227 { 228 __scsi_queue_insert(cmd, reason, true); 229 } 230 231 232 /** 233 * __scsi_execute - insert request and wait for the result 234 * @sdev: scsi device 235 * @cmd: scsi command 236 * @data_direction: data direction 237 * @buffer: data buffer 238 * @bufflen: len of buffer 239 * @sense: optional sense buffer 240 * @sshdr: optional decoded sense header 241 * @timeout: request timeout in seconds 242 * @retries: number of times to retry request 243 * @flags: flags for ->cmd_flags 244 * @rq_flags: flags for ->rq_flags 245 * @resid: optional residual length 246 * 247 * Returns the scsi_cmnd result field if a command was executed, or a negative 248 * Linux error code if we didn't get that far. 249 */ 250 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 251 int data_direction, void *buffer, unsigned bufflen, 252 unsigned char *sense, struct scsi_sense_hdr *sshdr, 253 int timeout, int retries, u64 flags, req_flags_t rq_flags, 254 int *resid) 255 { 256 struct request *req; 257 struct scsi_request *rq; 258 int ret = DRIVER_ERROR << 24; 259 260 req = blk_get_request(sdev->request_queue, 261 data_direction == DMA_TO_DEVICE ? 262 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 263 if (IS_ERR(req)) 264 return ret; 265 rq = scsi_req(req); 266 267 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 268 buffer, bufflen, GFP_NOIO)) 269 goto out; 270 271 rq->cmd_len = COMMAND_SIZE(cmd[0]); 272 memcpy(rq->cmd, cmd, rq->cmd_len); 273 rq->retries = retries; 274 req->timeout = timeout; 275 req->cmd_flags |= flags; 276 req->rq_flags |= rq_flags | RQF_QUIET; 277 278 /* 279 * head injection *required* here otherwise quiesce won't work 280 */ 281 blk_execute_rq(req->q, NULL, req, 1); 282 283 /* 284 * Some devices (USB mass-storage in particular) may transfer 285 * garbage data together with a residue indicating that the data 286 * is invalid. Prevent the garbage from being misinterpreted 287 * and prevent security leaks by zeroing out the excess data. 288 */ 289 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 290 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 291 292 if (resid) 293 *resid = rq->resid_len; 294 if (sense && rq->sense_len) 295 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 296 if (sshdr) 297 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 298 ret = rq->result; 299 out: 300 blk_put_request(req); 301 302 return ret; 303 } 304 EXPORT_SYMBOL(__scsi_execute); 305 306 /* 307 * Function: scsi_init_cmd_errh() 308 * 309 * Purpose: Initialize cmd fields related to error handling. 310 * 311 * Arguments: cmd - command that is ready to be queued. 312 * 313 * Notes: This function has the job of initializing a number of 314 * fields related to error handling. Typically this will 315 * be called once for each command, as required. 316 */ 317 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 318 { 319 scsi_set_resid(cmd, 0); 320 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 321 if (cmd->cmd_len == 0) 322 cmd->cmd_len = scsi_command_size(cmd->cmnd); 323 } 324 325 /* 326 * Decrement the host_busy counter and wake up the error handler if necessary. 327 * Avoid as follows that the error handler is not woken up if shost->host_busy 328 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 329 * with an RCU read lock in this function to ensure that this function in its 330 * entirety either finishes before scsi_eh_scmd_add() increases the 331 * host_failed counter or that it notices the shost state change made by 332 * scsi_eh_scmd_add(). 333 */ 334 static void scsi_dec_host_busy(struct Scsi_Host *shost) 335 { 336 unsigned long flags; 337 338 rcu_read_lock(); 339 atomic_dec(&shost->host_busy); 340 if (unlikely(scsi_host_in_recovery(shost))) { 341 spin_lock_irqsave(shost->host_lock, flags); 342 if (shost->host_failed || shost->host_eh_scheduled) 343 scsi_eh_wakeup(shost); 344 spin_unlock_irqrestore(shost->host_lock, flags); 345 } 346 rcu_read_unlock(); 347 } 348 349 void scsi_device_unbusy(struct scsi_device *sdev) 350 { 351 struct Scsi_Host *shost = sdev->host; 352 struct scsi_target *starget = scsi_target(sdev); 353 354 scsi_dec_host_busy(shost); 355 356 if (starget->can_queue > 0) 357 atomic_dec(&starget->target_busy); 358 359 atomic_dec(&sdev->device_busy); 360 } 361 362 static void scsi_kick_queue(struct request_queue *q) 363 { 364 blk_mq_run_hw_queues(q, false); 365 } 366 367 /* 368 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 369 * and call blk_run_queue for all the scsi_devices on the target - 370 * including current_sdev first. 371 * 372 * Called with *no* scsi locks held. 373 */ 374 static void scsi_single_lun_run(struct scsi_device *current_sdev) 375 { 376 struct Scsi_Host *shost = current_sdev->host; 377 struct scsi_device *sdev, *tmp; 378 struct scsi_target *starget = scsi_target(current_sdev); 379 unsigned long flags; 380 381 spin_lock_irqsave(shost->host_lock, flags); 382 starget->starget_sdev_user = NULL; 383 spin_unlock_irqrestore(shost->host_lock, flags); 384 385 /* 386 * Call blk_run_queue for all LUNs on the target, starting with 387 * current_sdev. We race with others (to set starget_sdev_user), 388 * but in most cases, we will be first. Ideally, each LU on the 389 * target would get some limited time or requests on the target. 390 */ 391 scsi_kick_queue(current_sdev->request_queue); 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 if (starget->starget_sdev_user) 395 goto out; 396 list_for_each_entry_safe(sdev, tmp, &starget->devices, 397 same_target_siblings) { 398 if (sdev == current_sdev) 399 continue; 400 if (scsi_device_get(sdev)) 401 continue; 402 403 spin_unlock_irqrestore(shost->host_lock, flags); 404 scsi_kick_queue(sdev->request_queue); 405 spin_lock_irqsave(shost->host_lock, flags); 406 407 scsi_device_put(sdev); 408 } 409 out: 410 spin_unlock_irqrestore(shost->host_lock, flags); 411 } 412 413 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 414 { 415 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 416 return true; 417 if (atomic_read(&sdev->device_blocked) > 0) 418 return true; 419 return false; 420 } 421 422 static inline bool scsi_target_is_busy(struct scsi_target *starget) 423 { 424 if (starget->can_queue > 0) { 425 if (atomic_read(&starget->target_busy) >= starget->can_queue) 426 return true; 427 if (atomic_read(&starget->target_blocked) > 0) 428 return true; 429 } 430 return false; 431 } 432 433 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 434 { 435 if (shost->can_queue > 0 && 436 atomic_read(&shost->host_busy) >= shost->can_queue) 437 return true; 438 if (atomic_read(&shost->host_blocked) > 0) 439 return true; 440 if (shost->host_self_blocked) 441 return true; 442 return false; 443 } 444 445 static void scsi_starved_list_run(struct Scsi_Host *shost) 446 { 447 LIST_HEAD(starved_list); 448 struct scsi_device *sdev; 449 unsigned long flags; 450 451 spin_lock_irqsave(shost->host_lock, flags); 452 list_splice_init(&shost->starved_list, &starved_list); 453 454 while (!list_empty(&starved_list)) { 455 struct request_queue *slq; 456 457 /* 458 * As long as shost is accepting commands and we have 459 * starved queues, call blk_run_queue. scsi_request_fn 460 * drops the queue_lock and can add us back to the 461 * starved_list. 462 * 463 * host_lock protects the starved_list and starved_entry. 464 * scsi_request_fn must get the host_lock before checking 465 * or modifying starved_list or starved_entry. 466 */ 467 if (scsi_host_is_busy(shost)) 468 break; 469 470 sdev = list_entry(starved_list.next, 471 struct scsi_device, starved_entry); 472 list_del_init(&sdev->starved_entry); 473 if (scsi_target_is_busy(scsi_target(sdev))) { 474 list_move_tail(&sdev->starved_entry, 475 &shost->starved_list); 476 continue; 477 } 478 479 /* 480 * Once we drop the host lock, a racing scsi_remove_device() 481 * call may remove the sdev from the starved list and destroy 482 * it and the queue. Mitigate by taking a reference to the 483 * queue and never touching the sdev again after we drop the 484 * host lock. Note: if __scsi_remove_device() invokes 485 * blk_cleanup_queue() before the queue is run from this 486 * function then blk_run_queue() will return immediately since 487 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 488 */ 489 slq = sdev->request_queue; 490 if (!blk_get_queue(slq)) 491 continue; 492 spin_unlock_irqrestore(shost->host_lock, flags); 493 494 scsi_kick_queue(slq); 495 blk_put_queue(slq); 496 497 spin_lock_irqsave(shost->host_lock, flags); 498 } 499 /* put any unprocessed entries back */ 500 list_splice(&starved_list, &shost->starved_list); 501 spin_unlock_irqrestore(shost->host_lock, flags); 502 } 503 504 /* 505 * Function: scsi_run_queue() 506 * 507 * Purpose: Select a proper request queue to serve next 508 * 509 * Arguments: q - last request's queue 510 * 511 * Returns: Nothing 512 * 513 * Notes: The previous command was completely finished, start 514 * a new one if possible. 515 */ 516 static void scsi_run_queue(struct request_queue *q) 517 { 518 struct scsi_device *sdev = q->queuedata; 519 520 if (scsi_target(sdev)->single_lun) 521 scsi_single_lun_run(sdev); 522 if (!list_empty(&sdev->host->starved_list)) 523 scsi_starved_list_run(sdev->host); 524 525 blk_mq_run_hw_queues(q, false); 526 } 527 528 void scsi_requeue_run_queue(struct work_struct *work) 529 { 530 struct scsi_device *sdev; 531 struct request_queue *q; 532 533 sdev = container_of(work, struct scsi_device, requeue_work); 534 q = sdev->request_queue; 535 scsi_run_queue(q); 536 } 537 538 void scsi_run_host_queues(struct Scsi_Host *shost) 539 { 540 struct scsi_device *sdev; 541 542 shost_for_each_device(sdev, shost) 543 scsi_run_queue(sdev->request_queue); 544 } 545 546 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 547 { 548 if (!blk_rq_is_passthrough(cmd->request)) { 549 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 550 551 if (drv->uninit_command) 552 drv->uninit_command(cmd); 553 } 554 } 555 556 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 557 { 558 if (cmd->sdb.table.nents) 559 sg_free_table_chained(&cmd->sdb.table, true); 560 if (scsi_prot_sg_count(cmd)) 561 sg_free_table_chained(&cmd->prot_sdb->table, true); 562 } 563 564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 565 { 566 scsi_mq_free_sgtables(cmd); 567 scsi_uninit_cmd(cmd); 568 scsi_del_cmd_from_list(cmd); 569 } 570 571 /* Returns false when no more bytes to process, true if there are more */ 572 static bool scsi_end_request(struct request *req, blk_status_t error, 573 unsigned int bytes) 574 { 575 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 576 struct scsi_device *sdev = cmd->device; 577 struct request_queue *q = sdev->request_queue; 578 579 if (blk_update_request(req, error, bytes)) 580 return true; 581 582 if (blk_queue_add_random(q)) 583 add_disk_randomness(req->rq_disk); 584 585 if (!blk_rq_is_scsi(req)) { 586 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 587 cmd->flags &= ~SCMD_INITIALIZED; 588 } 589 590 /* 591 * Calling rcu_barrier() is not necessary here because the 592 * SCSI error handler guarantees that the function called by 593 * call_rcu() has been called before scsi_end_request() is 594 * called. 595 */ 596 destroy_rcu_head(&cmd->rcu); 597 598 /* 599 * In the MQ case the command gets freed by __blk_mq_end_request, 600 * so we have to do all cleanup that depends on it earlier. 601 * 602 * We also can't kick the queues from irq context, so we 603 * will have to defer it to a workqueue. 604 */ 605 scsi_mq_uninit_cmd(cmd); 606 607 /* 608 * queue is still alive, so grab the ref for preventing it 609 * from being cleaned up during running queue. 610 */ 611 percpu_ref_get(&q->q_usage_counter); 612 613 __blk_mq_end_request(req, error); 614 615 if (scsi_target(sdev)->single_lun || 616 !list_empty(&sdev->host->starved_list)) 617 kblockd_schedule_work(&sdev->requeue_work); 618 else 619 blk_mq_run_hw_queues(q, true); 620 621 percpu_ref_put(&q->q_usage_counter); 622 put_device(&sdev->sdev_gendev); 623 return false; 624 } 625 626 /** 627 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 628 * @cmd: SCSI command 629 * @result: scsi error code 630 * 631 * Translate a SCSI result code into a blk_status_t value. May reset the host 632 * byte of @cmd->result. 633 */ 634 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 635 { 636 switch (host_byte(result)) { 637 case DID_OK: 638 /* 639 * Also check the other bytes than the status byte in result 640 * to handle the case when a SCSI LLD sets result to 641 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 642 */ 643 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 644 return BLK_STS_OK; 645 return BLK_STS_IOERR; 646 case DID_TRANSPORT_FAILFAST: 647 return BLK_STS_TRANSPORT; 648 case DID_TARGET_FAILURE: 649 set_host_byte(cmd, DID_OK); 650 return BLK_STS_TARGET; 651 case DID_NEXUS_FAILURE: 652 set_host_byte(cmd, DID_OK); 653 return BLK_STS_NEXUS; 654 case DID_ALLOC_FAILURE: 655 set_host_byte(cmd, DID_OK); 656 return BLK_STS_NOSPC; 657 case DID_MEDIUM_ERROR: 658 set_host_byte(cmd, DID_OK); 659 return BLK_STS_MEDIUM; 660 default: 661 return BLK_STS_IOERR; 662 } 663 } 664 665 /* Helper for scsi_io_completion() when "reprep" action required. */ 666 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 667 struct request_queue *q) 668 { 669 /* A new command will be prepared and issued. */ 670 scsi_mq_requeue_cmd(cmd); 671 } 672 673 /* Helper for scsi_io_completion() when special action required. */ 674 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 675 { 676 struct request_queue *q = cmd->device->request_queue; 677 struct request *req = cmd->request; 678 int level = 0; 679 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 680 ACTION_DELAYED_RETRY} action; 681 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 682 struct scsi_sense_hdr sshdr; 683 bool sense_valid; 684 bool sense_current = true; /* false implies "deferred sense" */ 685 blk_status_t blk_stat; 686 687 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 688 if (sense_valid) 689 sense_current = !scsi_sense_is_deferred(&sshdr); 690 691 blk_stat = scsi_result_to_blk_status(cmd, result); 692 693 if (host_byte(result) == DID_RESET) { 694 /* Third party bus reset or reset for error recovery 695 * reasons. Just retry the command and see what 696 * happens. 697 */ 698 action = ACTION_RETRY; 699 } else if (sense_valid && sense_current) { 700 switch (sshdr.sense_key) { 701 case UNIT_ATTENTION: 702 if (cmd->device->removable) { 703 /* Detected disc change. Set a bit 704 * and quietly refuse further access. 705 */ 706 cmd->device->changed = 1; 707 action = ACTION_FAIL; 708 } else { 709 /* Must have been a power glitch, or a 710 * bus reset. Could not have been a 711 * media change, so we just retry the 712 * command and see what happens. 713 */ 714 action = ACTION_RETRY; 715 } 716 break; 717 case ILLEGAL_REQUEST: 718 /* If we had an ILLEGAL REQUEST returned, then 719 * we may have performed an unsupported 720 * command. The only thing this should be 721 * would be a ten byte read where only a six 722 * byte read was supported. Also, on a system 723 * where READ CAPACITY failed, we may have 724 * read past the end of the disk. 725 */ 726 if ((cmd->device->use_10_for_rw && 727 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 728 (cmd->cmnd[0] == READ_10 || 729 cmd->cmnd[0] == WRITE_10)) { 730 /* This will issue a new 6-byte command. */ 731 cmd->device->use_10_for_rw = 0; 732 action = ACTION_REPREP; 733 } else if (sshdr.asc == 0x10) /* DIX */ { 734 action = ACTION_FAIL; 735 blk_stat = BLK_STS_PROTECTION; 736 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 737 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 738 action = ACTION_FAIL; 739 blk_stat = BLK_STS_TARGET; 740 } else 741 action = ACTION_FAIL; 742 break; 743 case ABORTED_COMMAND: 744 action = ACTION_FAIL; 745 if (sshdr.asc == 0x10) /* DIF */ 746 blk_stat = BLK_STS_PROTECTION; 747 break; 748 case NOT_READY: 749 /* If the device is in the process of becoming 750 * ready, or has a temporary blockage, retry. 751 */ 752 if (sshdr.asc == 0x04) { 753 switch (sshdr.ascq) { 754 case 0x01: /* becoming ready */ 755 case 0x04: /* format in progress */ 756 case 0x05: /* rebuild in progress */ 757 case 0x06: /* recalculation in progress */ 758 case 0x07: /* operation in progress */ 759 case 0x08: /* Long write in progress */ 760 case 0x09: /* self test in progress */ 761 case 0x14: /* space allocation in progress */ 762 case 0x1a: /* start stop unit in progress */ 763 case 0x1b: /* sanitize in progress */ 764 case 0x1d: /* configuration in progress */ 765 case 0x24: /* depopulation in progress */ 766 action = ACTION_DELAYED_RETRY; 767 break; 768 default: 769 action = ACTION_FAIL; 770 break; 771 } 772 } else 773 action = ACTION_FAIL; 774 break; 775 case VOLUME_OVERFLOW: 776 /* See SSC3rXX or current. */ 777 action = ACTION_FAIL; 778 break; 779 default: 780 action = ACTION_FAIL; 781 break; 782 } 783 } else 784 action = ACTION_FAIL; 785 786 if (action != ACTION_FAIL && 787 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 788 action = ACTION_FAIL; 789 790 switch (action) { 791 case ACTION_FAIL: 792 /* Give up and fail the remainder of the request */ 793 if (!(req->rq_flags & RQF_QUIET)) { 794 static DEFINE_RATELIMIT_STATE(_rs, 795 DEFAULT_RATELIMIT_INTERVAL, 796 DEFAULT_RATELIMIT_BURST); 797 798 if (unlikely(scsi_logging_level)) 799 level = 800 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 801 SCSI_LOG_MLCOMPLETE_BITS); 802 803 /* 804 * if logging is enabled the failure will be printed 805 * in scsi_log_completion(), so avoid duplicate messages 806 */ 807 if (!level && __ratelimit(&_rs)) { 808 scsi_print_result(cmd, NULL, FAILED); 809 if (driver_byte(result) == DRIVER_SENSE) 810 scsi_print_sense(cmd); 811 scsi_print_command(cmd); 812 } 813 } 814 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 815 return; 816 /*FALLTHRU*/ 817 case ACTION_REPREP: 818 scsi_io_completion_reprep(cmd, q); 819 break; 820 case ACTION_RETRY: 821 /* Retry the same command immediately */ 822 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 823 break; 824 case ACTION_DELAYED_RETRY: 825 /* Retry the same command after a delay */ 826 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 827 break; 828 } 829 } 830 831 /* 832 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 833 * new result that may suppress further error checking. Also modifies 834 * *blk_statp in some cases. 835 */ 836 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 837 blk_status_t *blk_statp) 838 { 839 bool sense_valid; 840 bool sense_current = true; /* false implies "deferred sense" */ 841 struct request *req = cmd->request; 842 struct scsi_sense_hdr sshdr; 843 844 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 845 if (sense_valid) 846 sense_current = !scsi_sense_is_deferred(&sshdr); 847 848 if (blk_rq_is_passthrough(req)) { 849 if (sense_valid) { 850 /* 851 * SG_IO wants current and deferred errors 852 */ 853 scsi_req(req)->sense_len = 854 min(8 + cmd->sense_buffer[7], 855 SCSI_SENSE_BUFFERSIZE); 856 } 857 if (sense_current) 858 *blk_statp = scsi_result_to_blk_status(cmd, result); 859 } else if (blk_rq_bytes(req) == 0 && sense_current) { 860 /* 861 * Flush commands do not transfers any data, and thus cannot use 862 * good_bytes != blk_rq_bytes(req) as the signal for an error. 863 * This sets *blk_statp explicitly for the problem case. 864 */ 865 *blk_statp = scsi_result_to_blk_status(cmd, result); 866 } 867 /* 868 * Recovered errors need reporting, but they're always treated as 869 * success, so fiddle the result code here. For passthrough requests 870 * we already took a copy of the original into sreq->result which 871 * is what gets returned to the user 872 */ 873 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 874 bool do_print = true; 875 /* 876 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 877 * skip print since caller wants ATA registers. Only occurs 878 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 879 */ 880 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 881 do_print = false; 882 else if (req->rq_flags & RQF_QUIET) 883 do_print = false; 884 if (do_print) 885 scsi_print_sense(cmd); 886 result = 0; 887 /* for passthrough, *blk_statp may be set */ 888 *blk_statp = BLK_STS_OK; 889 } 890 /* 891 * Another corner case: the SCSI status byte is non-zero but 'good'. 892 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 893 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 894 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 895 * intermediate statuses (both obsolete in SAM-4) as good. 896 */ 897 if (status_byte(result) && scsi_status_is_good(result)) { 898 result = 0; 899 *blk_statp = BLK_STS_OK; 900 } 901 return result; 902 } 903 904 /* 905 * Function: scsi_io_completion() 906 * 907 * Purpose: Completion processing for block device I/O requests. 908 * 909 * Arguments: cmd - command that is finished. 910 * 911 * Lock status: Assumed that no lock is held upon entry. 912 * 913 * Returns: Nothing 914 * 915 * Notes: We will finish off the specified number of sectors. If we 916 * are done, the command block will be released and the queue 917 * function will be goosed. If we are not done then we have to 918 * figure out what to do next: 919 * 920 * a) We can call scsi_requeue_command(). The request 921 * will be unprepared and put back on the queue. Then 922 * a new command will be created for it. This should 923 * be used if we made forward progress, or if we want 924 * to switch from READ(10) to READ(6) for example. 925 * 926 * b) We can call __scsi_queue_insert(). The request will 927 * be put back on the queue and retried using the same 928 * command as before, possibly after a delay. 929 * 930 * c) We can call scsi_end_request() with blk_stat other than 931 * BLK_STS_OK, to fail the remainder of the request. 932 */ 933 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 934 { 935 int result = cmd->result; 936 struct request_queue *q = cmd->device->request_queue; 937 struct request *req = cmd->request; 938 blk_status_t blk_stat = BLK_STS_OK; 939 940 if (unlikely(result)) /* a nz result may or may not be an error */ 941 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 942 943 if (unlikely(blk_rq_is_passthrough(req))) { 944 /* 945 * scsi_result_to_blk_status may have reset the host_byte 946 */ 947 scsi_req(req)->result = cmd->result; 948 } 949 950 /* 951 * Next deal with any sectors which we were able to correctly 952 * handle. 953 */ 954 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 955 "%u sectors total, %d bytes done.\n", 956 blk_rq_sectors(req), good_bytes)); 957 958 /* 959 * Next deal with any sectors which we were able to correctly 960 * handle. Failed, zero length commands always need to drop down 961 * to retry code. Fast path should return in this block. 962 */ 963 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 964 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 965 return; /* no bytes remaining */ 966 } 967 968 /* Kill remainder if no retries. */ 969 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 970 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 971 WARN_ONCE(true, 972 "Bytes remaining after failed, no-retry command"); 973 return; 974 } 975 976 /* 977 * If there had been no error, but we have leftover bytes in the 978 * requeues just queue the command up again. 979 */ 980 if (likely(result == 0)) 981 scsi_io_completion_reprep(cmd, q); 982 else 983 scsi_io_completion_action(cmd, result); 984 } 985 986 static blk_status_t scsi_init_sgtable(struct request *req, 987 struct scsi_data_buffer *sdb) 988 { 989 int count; 990 991 /* 992 * If sg table allocation fails, requeue request later. 993 */ 994 if (unlikely(sg_alloc_table_chained(&sdb->table, 995 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 996 return BLK_STS_RESOURCE; 997 998 /* 999 * Next, walk the list, and fill in the addresses and sizes of 1000 * each segment. 1001 */ 1002 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1003 BUG_ON(count > sdb->table.nents); 1004 sdb->table.nents = count; 1005 sdb->length = blk_rq_payload_bytes(req); 1006 return BLK_STS_OK; 1007 } 1008 1009 /* 1010 * Function: scsi_init_io() 1011 * 1012 * Purpose: SCSI I/O initialize function. 1013 * 1014 * Arguments: cmd - Command descriptor we wish to initialize 1015 * 1016 * Returns: BLK_STS_OK on success 1017 * BLK_STS_RESOURCE if the failure is retryable 1018 * BLK_STS_IOERR if the failure is fatal 1019 */ 1020 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1021 { 1022 struct request *rq = cmd->request; 1023 blk_status_t ret; 1024 1025 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1026 return BLK_STS_IOERR; 1027 1028 ret = scsi_init_sgtable(rq, &cmd->sdb); 1029 if (ret) 1030 return ret; 1031 1032 if (blk_integrity_rq(rq)) { 1033 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1034 int ivecs, count; 1035 1036 if (WARN_ON_ONCE(!prot_sdb)) { 1037 /* 1038 * This can happen if someone (e.g. multipath) 1039 * queues a command to a device on an adapter 1040 * that does not support DIX. 1041 */ 1042 ret = BLK_STS_IOERR; 1043 goto out_free_sgtables; 1044 } 1045 1046 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1047 1048 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1049 prot_sdb->table.sgl)) { 1050 ret = BLK_STS_RESOURCE; 1051 goto out_free_sgtables; 1052 } 1053 1054 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1055 prot_sdb->table.sgl); 1056 BUG_ON(count > ivecs); 1057 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1058 1059 cmd->prot_sdb = prot_sdb; 1060 cmd->prot_sdb->table.nents = count; 1061 } 1062 1063 return BLK_STS_OK; 1064 out_free_sgtables: 1065 scsi_mq_free_sgtables(cmd); 1066 return ret; 1067 } 1068 EXPORT_SYMBOL(scsi_init_io); 1069 1070 /** 1071 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1072 * @rq: Request associated with the SCSI command to be initialized. 1073 * 1074 * This function initializes the members of struct scsi_cmnd that must be 1075 * initialized before request processing starts and that won't be 1076 * reinitialized if a SCSI command is requeued. 1077 * 1078 * Called from inside blk_get_request() for pass-through requests and from 1079 * inside scsi_init_command() for filesystem requests. 1080 */ 1081 static void scsi_initialize_rq(struct request *rq) 1082 { 1083 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1084 1085 scsi_req_init(&cmd->req); 1086 init_rcu_head(&cmd->rcu); 1087 cmd->jiffies_at_alloc = jiffies; 1088 cmd->retries = 0; 1089 } 1090 1091 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1092 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1093 { 1094 struct scsi_device *sdev = cmd->device; 1095 struct Scsi_Host *shost = sdev->host; 1096 unsigned long flags; 1097 1098 if (shost->use_cmd_list) { 1099 spin_lock_irqsave(&sdev->list_lock, flags); 1100 list_add_tail(&cmd->list, &sdev->cmd_list); 1101 spin_unlock_irqrestore(&sdev->list_lock, flags); 1102 } 1103 } 1104 1105 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1106 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1107 { 1108 struct scsi_device *sdev = cmd->device; 1109 struct Scsi_Host *shost = sdev->host; 1110 unsigned long flags; 1111 1112 if (shost->use_cmd_list) { 1113 spin_lock_irqsave(&sdev->list_lock, flags); 1114 BUG_ON(list_empty(&cmd->list)); 1115 list_del_init(&cmd->list); 1116 spin_unlock_irqrestore(&sdev->list_lock, flags); 1117 } 1118 } 1119 1120 /* Called after a request has been started. */ 1121 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1122 { 1123 void *buf = cmd->sense_buffer; 1124 void *prot = cmd->prot_sdb; 1125 struct request *rq = blk_mq_rq_from_pdu(cmd); 1126 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1127 unsigned long jiffies_at_alloc; 1128 int retries; 1129 1130 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1131 flags |= SCMD_INITIALIZED; 1132 scsi_initialize_rq(rq); 1133 } 1134 1135 jiffies_at_alloc = cmd->jiffies_at_alloc; 1136 retries = cmd->retries; 1137 /* zero out the cmd, except for the embedded scsi_request */ 1138 memset((char *)cmd + sizeof(cmd->req), 0, 1139 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1140 1141 cmd->device = dev; 1142 cmd->sense_buffer = buf; 1143 cmd->prot_sdb = prot; 1144 cmd->flags = flags; 1145 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1146 cmd->jiffies_at_alloc = jiffies_at_alloc; 1147 cmd->retries = retries; 1148 1149 scsi_add_cmd_to_list(cmd); 1150 } 1151 1152 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1153 struct request *req) 1154 { 1155 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1156 1157 /* 1158 * Passthrough requests may transfer data, in which case they must 1159 * a bio attached to them. Or they might contain a SCSI command 1160 * that does not transfer data, in which case they may optionally 1161 * submit a request without an attached bio. 1162 */ 1163 if (req->bio) { 1164 blk_status_t ret = scsi_init_io(cmd); 1165 if (unlikely(ret != BLK_STS_OK)) 1166 return ret; 1167 } else { 1168 BUG_ON(blk_rq_bytes(req)); 1169 1170 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1171 } 1172 1173 cmd->cmd_len = scsi_req(req)->cmd_len; 1174 cmd->cmnd = scsi_req(req)->cmd; 1175 cmd->transfersize = blk_rq_bytes(req); 1176 cmd->allowed = scsi_req(req)->retries; 1177 return BLK_STS_OK; 1178 } 1179 1180 /* 1181 * Setup a normal block command. These are simple request from filesystems 1182 * that still need to be translated to SCSI CDBs from the ULD. 1183 */ 1184 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1185 struct request *req) 1186 { 1187 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1188 1189 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1190 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1191 if (ret != BLK_STS_OK) 1192 return ret; 1193 } 1194 1195 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1196 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1197 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1198 } 1199 1200 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1201 struct request *req) 1202 { 1203 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1204 1205 if (!blk_rq_bytes(req)) 1206 cmd->sc_data_direction = DMA_NONE; 1207 else if (rq_data_dir(req) == WRITE) 1208 cmd->sc_data_direction = DMA_TO_DEVICE; 1209 else 1210 cmd->sc_data_direction = DMA_FROM_DEVICE; 1211 1212 if (blk_rq_is_scsi(req)) 1213 return scsi_setup_scsi_cmnd(sdev, req); 1214 else 1215 return scsi_setup_fs_cmnd(sdev, req); 1216 } 1217 1218 static blk_status_t 1219 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1220 { 1221 switch (sdev->sdev_state) { 1222 case SDEV_OFFLINE: 1223 case SDEV_TRANSPORT_OFFLINE: 1224 /* 1225 * If the device is offline we refuse to process any 1226 * commands. The device must be brought online 1227 * before trying any recovery commands. 1228 */ 1229 sdev_printk(KERN_ERR, sdev, 1230 "rejecting I/O to offline device\n"); 1231 return BLK_STS_IOERR; 1232 case SDEV_DEL: 1233 /* 1234 * If the device is fully deleted, we refuse to 1235 * process any commands as well. 1236 */ 1237 sdev_printk(KERN_ERR, sdev, 1238 "rejecting I/O to dead device\n"); 1239 return BLK_STS_IOERR; 1240 case SDEV_BLOCK: 1241 case SDEV_CREATED_BLOCK: 1242 return BLK_STS_RESOURCE; 1243 case SDEV_QUIESCE: 1244 /* 1245 * If the devices is blocked we defer normal commands. 1246 */ 1247 if (req && !(req->rq_flags & RQF_PREEMPT)) 1248 return BLK_STS_RESOURCE; 1249 return BLK_STS_OK; 1250 default: 1251 /* 1252 * For any other not fully online state we only allow 1253 * special commands. In particular any user initiated 1254 * command is not allowed. 1255 */ 1256 if (req && !(req->rq_flags & RQF_PREEMPT)) 1257 return BLK_STS_IOERR; 1258 return BLK_STS_OK; 1259 } 1260 } 1261 1262 /* 1263 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1264 * return 0. 1265 * 1266 * Called with the queue_lock held. 1267 */ 1268 static inline int scsi_dev_queue_ready(struct request_queue *q, 1269 struct scsi_device *sdev) 1270 { 1271 unsigned int busy; 1272 1273 busy = atomic_inc_return(&sdev->device_busy) - 1; 1274 if (atomic_read(&sdev->device_blocked)) { 1275 if (busy) 1276 goto out_dec; 1277 1278 /* 1279 * unblock after device_blocked iterates to zero 1280 */ 1281 if (atomic_dec_return(&sdev->device_blocked) > 0) 1282 goto out_dec; 1283 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1284 "unblocking device at zero depth\n")); 1285 } 1286 1287 if (busy >= sdev->queue_depth) 1288 goto out_dec; 1289 1290 return 1; 1291 out_dec: 1292 atomic_dec(&sdev->device_busy); 1293 return 0; 1294 } 1295 1296 /* 1297 * scsi_target_queue_ready: checks if there we can send commands to target 1298 * @sdev: scsi device on starget to check. 1299 */ 1300 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1301 struct scsi_device *sdev) 1302 { 1303 struct scsi_target *starget = scsi_target(sdev); 1304 unsigned int busy; 1305 1306 if (starget->single_lun) { 1307 spin_lock_irq(shost->host_lock); 1308 if (starget->starget_sdev_user && 1309 starget->starget_sdev_user != sdev) { 1310 spin_unlock_irq(shost->host_lock); 1311 return 0; 1312 } 1313 starget->starget_sdev_user = sdev; 1314 spin_unlock_irq(shost->host_lock); 1315 } 1316 1317 if (starget->can_queue <= 0) 1318 return 1; 1319 1320 busy = atomic_inc_return(&starget->target_busy) - 1; 1321 if (atomic_read(&starget->target_blocked) > 0) { 1322 if (busy) 1323 goto starved; 1324 1325 /* 1326 * unblock after target_blocked iterates to zero 1327 */ 1328 if (atomic_dec_return(&starget->target_blocked) > 0) 1329 goto out_dec; 1330 1331 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1332 "unblocking target at zero depth\n")); 1333 } 1334 1335 if (busy >= starget->can_queue) 1336 goto starved; 1337 1338 return 1; 1339 1340 starved: 1341 spin_lock_irq(shost->host_lock); 1342 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1343 spin_unlock_irq(shost->host_lock); 1344 out_dec: 1345 if (starget->can_queue > 0) 1346 atomic_dec(&starget->target_busy); 1347 return 0; 1348 } 1349 1350 /* 1351 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1352 * return 0. We must end up running the queue again whenever 0 is 1353 * returned, else IO can hang. 1354 */ 1355 static inline int scsi_host_queue_ready(struct request_queue *q, 1356 struct Scsi_Host *shost, 1357 struct scsi_device *sdev) 1358 { 1359 unsigned int busy; 1360 1361 if (scsi_host_in_recovery(shost)) 1362 return 0; 1363 1364 busy = atomic_inc_return(&shost->host_busy) - 1; 1365 if (atomic_read(&shost->host_blocked) > 0) { 1366 if (busy) 1367 goto starved; 1368 1369 /* 1370 * unblock after host_blocked iterates to zero 1371 */ 1372 if (atomic_dec_return(&shost->host_blocked) > 0) 1373 goto out_dec; 1374 1375 SCSI_LOG_MLQUEUE(3, 1376 shost_printk(KERN_INFO, shost, 1377 "unblocking host at zero depth\n")); 1378 } 1379 1380 if (shost->can_queue > 0 && busy >= shost->can_queue) 1381 goto starved; 1382 if (shost->host_self_blocked) 1383 goto starved; 1384 1385 /* We're OK to process the command, so we can't be starved */ 1386 if (!list_empty(&sdev->starved_entry)) { 1387 spin_lock_irq(shost->host_lock); 1388 if (!list_empty(&sdev->starved_entry)) 1389 list_del_init(&sdev->starved_entry); 1390 spin_unlock_irq(shost->host_lock); 1391 } 1392 1393 return 1; 1394 1395 starved: 1396 spin_lock_irq(shost->host_lock); 1397 if (list_empty(&sdev->starved_entry)) 1398 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1399 spin_unlock_irq(shost->host_lock); 1400 out_dec: 1401 scsi_dec_host_busy(shost); 1402 return 0; 1403 } 1404 1405 /* 1406 * Busy state exporting function for request stacking drivers. 1407 * 1408 * For efficiency, no lock is taken to check the busy state of 1409 * shost/starget/sdev, since the returned value is not guaranteed and 1410 * may be changed after request stacking drivers call the function, 1411 * regardless of taking lock or not. 1412 * 1413 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1414 * needs to return 'not busy'. Otherwise, request stacking drivers 1415 * may hold requests forever. 1416 */ 1417 static bool scsi_mq_lld_busy(struct request_queue *q) 1418 { 1419 struct scsi_device *sdev = q->queuedata; 1420 struct Scsi_Host *shost; 1421 1422 if (blk_queue_dying(q)) 1423 return false; 1424 1425 shost = sdev->host; 1426 1427 /* 1428 * Ignore host/starget busy state. 1429 * Since block layer does not have a concept of fairness across 1430 * multiple queues, congestion of host/starget needs to be handled 1431 * in SCSI layer. 1432 */ 1433 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1434 return true; 1435 1436 return false; 1437 } 1438 1439 static void scsi_softirq_done(struct request *rq) 1440 { 1441 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1442 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1443 int disposition; 1444 1445 INIT_LIST_HEAD(&cmd->eh_entry); 1446 1447 atomic_inc(&cmd->device->iodone_cnt); 1448 if (cmd->result) 1449 atomic_inc(&cmd->device->ioerr_cnt); 1450 1451 disposition = scsi_decide_disposition(cmd); 1452 if (disposition != SUCCESS && 1453 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1454 sdev_printk(KERN_ERR, cmd->device, 1455 "timing out command, waited %lus\n", 1456 wait_for/HZ); 1457 disposition = SUCCESS; 1458 } 1459 1460 scsi_log_completion(cmd, disposition); 1461 1462 switch (disposition) { 1463 case SUCCESS: 1464 scsi_finish_command(cmd); 1465 break; 1466 case NEEDS_RETRY: 1467 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1468 break; 1469 case ADD_TO_MLQUEUE: 1470 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1471 break; 1472 default: 1473 scsi_eh_scmd_add(cmd); 1474 break; 1475 } 1476 } 1477 1478 /** 1479 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1480 * @cmd: command block we are dispatching. 1481 * 1482 * Return: nonzero return request was rejected and device's queue needs to be 1483 * plugged. 1484 */ 1485 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1486 { 1487 struct Scsi_Host *host = cmd->device->host; 1488 int rtn = 0; 1489 1490 atomic_inc(&cmd->device->iorequest_cnt); 1491 1492 /* check if the device is still usable */ 1493 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1494 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1495 * returns an immediate error upwards, and signals 1496 * that the device is no longer present */ 1497 cmd->result = DID_NO_CONNECT << 16; 1498 goto done; 1499 } 1500 1501 /* Check to see if the scsi lld made this device blocked. */ 1502 if (unlikely(scsi_device_blocked(cmd->device))) { 1503 /* 1504 * in blocked state, the command is just put back on 1505 * the device queue. The suspend state has already 1506 * blocked the queue so future requests should not 1507 * occur until the device transitions out of the 1508 * suspend state. 1509 */ 1510 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1511 "queuecommand : device blocked\n")); 1512 return SCSI_MLQUEUE_DEVICE_BUSY; 1513 } 1514 1515 /* Store the LUN value in cmnd, if needed. */ 1516 if (cmd->device->lun_in_cdb) 1517 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1518 (cmd->device->lun << 5 & 0xe0); 1519 1520 scsi_log_send(cmd); 1521 1522 /* 1523 * Before we queue this command, check if the command 1524 * length exceeds what the host adapter can handle. 1525 */ 1526 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1527 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1528 "queuecommand : command too long. " 1529 "cdb_size=%d host->max_cmd_len=%d\n", 1530 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1531 cmd->result = (DID_ABORT << 16); 1532 goto done; 1533 } 1534 1535 if (unlikely(host->shost_state == SHOST_DEL)) { 1536 cmd->result = (DID_NO_CONNECT << 16); 1537 goto done; 1538 1539 } 1540 1541 trace_scsi_dispatch_cmd_start(cmd); 1542 rtn = host->hostt->queuecommand(host, cmd); 1543 if (rtn) { 1544 trace_scsi_dispatch_cmd_error(cmd, rtn); 1545 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1546 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1547 rtn = SCSI_MLQUEUE_HOST_BUSY; 1548 1549 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1550 "queuecommand : request rejected\n")); 1551 } 1552 1553 return rtn; 1554 done: 1555 cmd->scsi_done(cmd); 1556 return 0; 1557 } 1558 1559 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1560 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1561 { 1562 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1563 sizeof(struct scatterlist); 1564 } 1565 1566 static blk_status_t scsi_mq_prep_fn(struct request *req) 1567 { 1568 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1569 struct scsi_device *sdev = req->q->queuedata; 1570 struct Scsi_Host *shost = sdev->host; 1571 struct scatterlist *sg; 1572 1573 scsi_init_command(sdev, cmd); 1574 1575 cmd->request = req; 1576 cmd->tag = req->tag; 1577 cmd->prot_op = SCSI_PROT_NORMAL; 1578 1579 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1580 cmd->sdb.table.sgl = sg; 1581 1582 if (scsi_host_get_prot(shost)) { 1583 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1584 1585 cmd->prot_sdb->table.sgl = 1586 (struct scatterlist *)(cmd->prot_sdb + 1); 1587 } 1588 1589 blk_mq_start_request(req); 1590 1591 return scsi_setup_cmnd(sdev, req); 1592 } 1593 1594 static void scsi_mq_done(struct scsi_cmnd *cmd) 1595 { 1596 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1597 return; 1598 trace_scsi_dispatch_cmd_done(cmd); 1599 1600 /* 1601 * If the block layer didn't complete the request due to a timeout 1602 * injection, scsi must clear its internal completed state so that the 1603 * timeout handler will see it needs to escalate its own error 1604 * recovery. 1605 */ 1606 if (unlikely(!blk_mq_complete_request(cmd->request))) 1607 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1608 } 1609 1610 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1611 { 1612 struct request_queue *q = hctx->queue; 1613 struct scsi_device *sdev = q->queuedata; 1614 1615 atomic_dec(&sdev->device_busy); 1616 put_device(&sdev->sdev_gendev); 1617 } 1618 1619 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1620 { 1621 struct request_queue *q = hctx->queue; 1622 struct scsi_device *sdev = q->queuedata; 1623 1624 if (!get_device(&sdev->sdev_gendev)) 1625 goto out; 1626 if (!scsi_dev_queue_ready(q, sdev)) 1627 goto out_put_device; 1628 1629 return true; 1630 1631 out_put_device: 1632 put_device(&sdev->sdev_gendev); 1633 out: 1634 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1635 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1636 return false; 1637 } 1638 1639 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1640 const struct blk_mq_queue_data *bd) 1641 { 1642 struct request *req = bd->rq; 1643 struct request_queue *q = req->q; 1644 struct scsi_device *sdev = q->queuedata; 1645 struct Scsi_Host *shost = sdev->host; 1646 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1647 blk_status_t ret; 1648 int reason; 1649 1650 /* 1651 * If the device is not in running state we will reject some or all 1652 * commands. 1653 */ 1654 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1655 ret = scsi_prep_state_check(sdev, req); 1656 if (ret != BLK_STS_OK) 1657 goto out_put_budget; 1658 } 1659 1660 ret = BLK_STS_RESOURCE; 1661 if (!scsi_target_queue_ready(shost, sdev)) 1662 goto out_put_budget; 1663 if (!scsi_host_queue_ready(q, shost, sdev)) 1664 goto out_dec_target_busy; 1665 1666 if (!(req->rq_flags & RQF_DONTPREP)) { 1667 ret = scsi_mq_prep_fn(req); 1668 if (ret != BLK_STS_OK) 1669 goto out_dec_host_busy; 1670 req->rq_flags |= RQF_DONTPREP; 1671 } else { 1672 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1673 blk_mq_start_request(req); 1674 } 1675 1676 if (sdev->simple_tags) 1677 cmd->flags |= SCMD_TAGGED; 1678 else 1679 cmd->flags &= ~SCMD_TAGGED; 1680 1681 scsi_init_cmd_errh(cmd); 1682 cmd->scsi_done = scsi_mq_done; 1683 1684 reason = scsi_dispatch_cmd(cmd); 1685 if (reason) { 1686 scsi_set_blocked(cmd, reason); 1687 ret = BLK_STS_RESOURCE; 1688 goto out_dec_host_busy; 1689 } 1690 1691 return BLK_STS_OK; 1692 1693 out_dec_host_busy: 1694 scsi_dec_host_busy(shost); 1695 out_dec_target_busy: 1696 if (scsi_target(sdev)->can_queue > 0) 1697 atomic_dec(&scsi_target(sdev)->target_busy); 1698 out_put_budget: 1699 scsi_mq_put_budget(hctx); 1700 switch (ret) { 1701 case BLK_STS_OK: 1702 break; 1703 case BLK_STS_RESOURCE: 1704 if (atomic_read(&sdev->device_busy) || 1705 scsi_device_blocked(sdev)) 1706 ret = BLK_STS_DEV_RESOURCE; 1707 break; 1708 default: 1709 /* 1710 * Make sure to release all allocated ressources when 1711 * we hit an error, as we will never see this command 1712 * again. 1713 */ 1714 if (req->rq_flags & RQF_DONTPREP) 1715 scsi_mq_uninit_cmd(cmd); 1716 break; 1717 } 1718 return ret; 1719 } 1720 1721 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1722 bool reserved) 1723 { 1724 if (reserved) 1725 return BLK_EH_RESET_TIMER; 1726 return scsi_times_out(req); 1727 } 1728 1729 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1730 unsigned int hctx_idx, unsigned int numa_node) 1731 { 1732 struct Scsi_Host *shost = set->driver_data; 1733 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1734 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1735 struct scatterlist *sg; 1736 1737 if (unchecked_isa_dma) 1738 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1739 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1740 GFP_KERNEL, numa_node); 1741 if (!cmd->sense_buffer) 1742 return -ENOMEM; 1743 cmd->req.sense = cmd->sense_buffer; 1744 1745 if (scsi_host_get_prot(shost)) { 1746 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1747 shost->hostt->cmd_size; 1748 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 1749 } 1750 1751 return 0; 1752 } 1753 1754 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1755 unsigned int hctx_idx) 1756 { 1757 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1758 1759 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1760 cmd->sense_buffer); 1761 } 1762 1763 static int scsi_map_queues(struct blk_mq_tag_set *set) 1764 { 1765 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1766 1767 if (shost->hostt->map_queues) 1768 return shost->hostt->map_queues(shost); 1769 return blk_mq_map_queues(&set->map[0]); 1770 } 1771 1772 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1773 { 1774 struct device *dev = shost->dma_dev; 1775 1776 /* 1777 * this limit is imposed by hardware restrictions 1778 */ 1779 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1780 SG_MAX_SEGMENTS)); 1781 1782 if (scsi_host_prot_dma(shost)) { 1783 shost->sg_prot_tablesize = 1784 min_not_zero(shost->sg_prot_tablesize, 1785 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1786 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1787 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1788 } 1789 1790 blk_queue_max_hw_sectors(q, shost->max_sectors); 1791 if (shost->unchecked_isa_dma) 1792 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1793 blk_queue_segment_boundary(q, shost->dma_boundary); 1794 dma_set_seg_boundary(dev, shost->dma_boundary); 1795 1796 blk_queue_max_segment_size(q, shost->max_segment_size); 1797 dma_set_max_seg_size(dev, shost->max_segment_size); 1798 1799 /* 1800 * Set a reasonable default alignment: The larger of 32-byte (dword), 1801 * which is a common minimum for HBAs, and the minimum DMA alignment, 1802 * which is set by the platform. 1803 * 1804 * Devices that require a bigger alignment can increase it later. 1805 */ 1806 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1807 } 1808 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1809 1810 static const struct blk_mq_ops scsi_mq_ops = { 1811 .get_budget = scsi_mq_get_budget, 1812 .put_budget = scsi_mq_put_budget, 1813 .queue_rq = scsi_queue_rq, 1814 .complete = scsi_softirq_done, 1815 .timeout = scsi_timeout, 1816 #ifdef CONFIG_BLK_DEBUG_FS 1817 .show_rq = scsi_show_rq, 1818 #endif 1819 .init_request = scsi_mq_init_request, 1820 .exit_request = scsi_mq_exit_request, 1821 .initialize_rq_fn = scsi_initialize_rq, 1822 .busy = scsi_mq_lld_busy, 1823 .map_queues = scsi_map_queues, 1824 }; 1825 1826 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1827 { 1828 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1829 if (IS_ERR(sdev->request_queue)) 1830 return NULL; 1831 1832 sdev->request_queue->queuedata = sdev; 1833 __scsi_init_queue(sdev->host, sdev->request_queue); 1834 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1835 return sdev->request_queue; 1836 } 1837 1838 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1839 { 1840 unsigned int cmd_size, sgl_size; 1841 1842 sgl_size = scsi_mq_sgl_size(shost); 1843 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1844 if (scsi_host_get_prot(shost)) 1845 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 1846 1847 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1848 shost->tag_set.ops = &scsi_mq_ops; 1849 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1850 shost->tag_set.queue_depth = shost->can_queue; 1851 shost->tag_set.cmd_size = cmd_size; 1852 shost->tag_set.numa_node = NUMA_NO_NODE; 1853 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1854 shost->tag_set.flags |= 1855 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1856 shost->tag_set.driver_data = shost; 1857 1858 return blk_mq_alloc_tag_set(&shost->tag_set); 1859 } 1860 1861 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1862 { 1863 blk_mq_free_tag_set(&shost->tag_set); 1864 } 1865 1866 /** 1867 * scsi_device_from_queue - return sdev associated with a request_queue 1868 * @q: The request queue to return the sdev from 1869 * 1870 * Return the sdev associated with a request queue or NULL if the 1871 * request_queue does not reference a SCSI device. 1872 */ 1873 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1874 { 1875 struct scsi_device *sdev = NULL; 1876 1877 if (q->mq_ops == &scsi_mq_ops) 1878 sdev = q->queuedata; 1879 if (!sdev || !get_device(&sdev->sdev_gendev)) 1880 sdev = NULL; 1881 1882 return sdev; 1883 } 1884 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1885 1886 /* 1887 * Function: scsi_block_requests() 1888 * 1889 * Purpose: Utility function used by low-level drivers to prevent further 1890 * commands from being queued to the device. 1891 * 1892 * Arguments: shost - Host in question 1893 * 1894 * Returns: Nothing 1895 * 1896 * Lock status: No locks are assumed held. 1897 * 1898 * Notes: There is no timer nor any other means by which the requests 1899 * get unblocked other than the low-level driver calling 1900 * scsi_unblock_requests(). 1901 */ 1902 void scsi_block_requests(struct Scsi_Host *shost) 1903 { 1904 shost->host_self_blocked = 1; 1905 } 1906 EXPORT_SYMBOL(scsi_block_requests); 1907 1908 /* 1909 * Function: scsi_unblock_requests() 1910 * 1911 * Purpose: Utility function used by low-level drivers to allow further 1912 * commands from being queued to the device. 1913 * 1914 * Arguments: shost - Host in question 1915 * 1916 * Returns: Nothing 1917 * 1918 * Lock status: No locks are assumed held. 1919 * 1920 * Notes: There is no timer nor any other means by which the requests 1921 * get unblocked other than the low-level driver calling 1922 * scsi_unblock_requests(). 1923 * 1924 * This is done as an API function so that changes to the 1925 * internals of the scsi mid-layer won't require wholesale 1926 * changes to drivers that use this feature. 1927 */ 1928 void scsi_unblock_requests(struct Scsi_Host *shost) 1929 { 1930 shost->host_self_blocked = 0; 1931 scsi_run_host_queues(shost); 1932 } 1933 EXPORT_SYMBOL(scsi_unblock_requests); 1934 1935 int __init scsi_init_queue(void) 1936 { 1937 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1938 sizeof(struct scsi_data_buffer), 1939 0, 0, NULL); 1940 if (!scsi_sdb_cache) { 1941 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1942 return -ENOMEM; 1943 } 1944 1945 return 0; 1946 } 1947 1948 void scsi_exit_queue(void) 1949 { 1950 kmem_cache_destroy(scsi_sense_cache); 1951 kmem_cache_destroy(scsi_sense_isadma_cache); 1952 kmem_cache_destroy(scsi_sdb_cache); 1953 } 1954 1955 /** 1956 * scsi_mode_select - issue a mode select 1957 * @sdev: SCSI device to be queried 1958 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1959 * @sp: Save page bit (0 == don't save, 1 == save) 1960 * @modepage: mode page being requested 1961 * @buffer: request buffer (may not be smaller than eight bytes) 1962 * @len: length of request buffer. 1963 * @timeout: command timeout 1964 * @retries: number of retries before failing 1965 * @data: returns a structure abstracting the mode header data 1966 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1967 * must be SCSI_SENSE_BUFFERSIZE big. 1968 * 1969 * Returns zero if successful; negative error number or scsi 1970 * status on error 1971 * 1972 */ 1973 int 1974 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1975 unsigned char *buffer, int len, int timeout, int retries, 1976 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1977 { 1978 unsigned char cmd[10]; 1979 unsigned char *real_buffer; 1980 int ret; 1981 1982 memset(cmd, 0, sizeof(cmd)); 1983 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1984 1985 if (sdev->use_10_for_ms) { 1986 if (len > 65535) 1987 return -EINVAL; 1988 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1989 if (!real_buffer) 1990 return -ENOMEM; 1991 memcpy(real_buffer + 8, buffer, len); 1992 len += 8; 1993 real_buffer[0] = 0; 1994 real_buffer[1] = 0; 1995 real_buffer[2] = data->medium_type; 1996 real_buffer[3] = data->device_specific; 1997 real_buffer[4] = data->longlba ? 0x01 : 0; 1998 real_buffer[5] = 0; 1999 real_buffer[6] = data->block_descriptor_length >> 8; 2000 real_buffer[7] = data->block_descriptor_length; 2001 2002 cmd[0] = MODE_SELECT_10; 2003 cmd[7] = len >> 8; 2004 cmd[8] = len; 2005 } else { 2006 if (len > 255 || data->block_descriptor_length > 255 || 2007 data->longlba) 2008 return -EINVAL; 2009 2010 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2011 if (!real_buffer) 2012 return -ENOMEM; 2013 memcpy(real_buffer + 4, buffer, len); 2014 len += 4; 2015 real_buffer[0] = 0; 2016 real_buffer[1] = data->medium_type; 2017 real_buffer[2] = data->device_specific; 2018 real_buffer[3] = data->block_descriptor_length; 2019 2020 2021 cmd[0] = MODE_SELECT; 2022 cmd[4] = len; 2023 } 2024 2025 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2026 sshdr, timeout, retries, NULL); 2027 kfree(real_buffer); 2028 return ret; 2029 } 2030 EXPORT_SYMBOL_GPL(scsi_mode_select); 2031 2032 /** 2033 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2034 * @sdev: SCSI device to be queried 2035 * @dbd: set if mode sense will allow block descriptors to be returned 2036 * @modepage: mode page being requested 2037 * @buffer: request buffer (may not be smaller than eight bytes) 2038 * @len: length of request buffer. 2039 * @timeout: command timeout 2040 * @retries: number of retries before failing 2041 * @data: returns a structure abstracting the mode header data 2042 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2043 * must be SCSI_SENSE_BUFFERSIZE big. 2044 * 2045 * Returns zero if unsuccessful, or the header offset (either 4 2046 * or 8 depending on whether a six or ten byte command was 2047 * issued) if successful. 2048 */ 2049 int 2050 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2051 unsigned char *buffer, int len, int timeout, int retries, 2052 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2053 { 2054 unsigned char cmd[12]; 2055 int use_10_for_ms; 2056 int header_length; 2057 int result, retry_count = retries; 2058 struct scsi_sense_hdr my_sshdr; 2059 2060 memset(data, 0, sizeof(*data)); 2061 memset(&cmd[0], 0, 12); 2062 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2063 cmd[2] = modepage; 2064 2065 /* caller might not be interested in sense, but we need it */ 2066 if (!sshdr) 2067 sshdr = &my_sshdr; 2068 2069 retry: 2070 use_10_for_ms = sdev->use_10_for_ms; 2071 2072 if (use_10_for_ms) { 2073 if (len < 8) 2074 len = 8; 2075 2076 cmd[0] = MODE_SENSE_10; 2077 cmd[8] = len; 2078 header_length = 8; 2079 } else { 2080 if (len < 4) 2081 len = 4; 2082 2083 cmd[0] = MODE_SENSE; 2084 cmd[4] = len; 2085 header_length = 4; 2086 } 2087 2088 memset(buffer, 0, len); 2089 2090 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2091 sshdr, timeout, retries, NULL); 2092 2093 /* This code looks awful: what it's doing is making sure an 2094 * ILLEGAL REQUEST sense return identifies the actual command 2095 * byte as the problem. MODE_SENSE commands can return 2096 * ILLEGAL REQUEST if the code page isn't supported */ 2097 2098 if (use_10_for_ms && !scsi_status_is_good(result) && 2099 driver_byte(result) == DRIVER_SENSE) { 2100 if (scsi_sense_valid(sshdr)) { 2101 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2102 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2103 /* 2104 * Invalid command operation code 2105 */ 2106 sdev->use_10_for_ms = 0; 2107 goto retry; 2108 } 2109 } 2110 } 2111 2112 if(scsi_status_is_good(result)) { 2113 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2114 (modepage == 6 || modepage == 8))) { 2115 /* Initio breakage? */ 2116 header_length = 0; 2117 data->length = 13; 2118 data->medium_type = 0; 2119 data->device_specific = 0; 2120 data->longlba = 0; 2121 data->block_descriptor_length = 0; 2122 } else if(use_10_for_ms) { 2123 data->length = buffer[0]*256 + buffer[1] + 2; 2124 data->medium_type = buffer[2]; 2125 data->device_specific = buffer[3]; 2126 data->longlba = buffer[4] & 0x01; 2127 data->block_descriptor_length = buffer[6]*256 2128 + buffer[7]; 2129 } else { 2130 data->length = buffer[0] + 1; 2131 data->medium_type = buffer[1]; 2132 data->device_specific = buffer[2]; 2133 data->block_descriptor_length = buffer[3]; 2134 } 2135 data->header_length = header_length; 2136 } else if ((status_byte(result) == CHECK_CONDITION) && 2137 scsi_sense_valid(sshdr) && 2138 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2139 retry_count--; 2140 goto retry; 2141 } 2142 2143 return result; 2144 } 2145 EXPORT_SYMBOL(scsi_mode_sense); 2146 2147 /** 2148 * scsi_test_unit_ready - test if unit is ready 2149 * @sdev: scsi device to change the state of. 2150 * @timeout: command timeout 2151 * @retries: number of retries before failing 2152 * @sshdr: outpout pointer for decoded sense information. 2153 * 2154 * Returns zero if unsuccessful or an error if TUR failed. For 2155 * removable media, UNIT_ATTENTION sets ->changed flag. 2156 **/ 2157 int 2158 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2159 struct scsi_sense_hdr *sshdr) 2160 { 2161 char cmd[] = { 2162 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2163 }; 2164 int result; 2165 2166 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2167 do { 2168 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2169 timeout, 1, NULL); 2170 if (sdev->removable && scsi_sense_valid(sshdr) && 2171 sshdr->sense_key == UNIT_ATTENTION) 2172 sdev->changed = 1; 2173 } while (scsi_sense_valid(sshdr) && 2174 sshdr->sense_key == UNIT_ATTENTION && --retries); 2175 2176 return result; 2177 } 2178 EXPORT_SYMBOL(scsi_test_unit_ready); 2179 2180 /** 2181 * scsi_device_set_state - Take the given device through the device state model. 2182 * @sdev: scsi device to change the state of. 2183 * @state: state to change to. 2184 * 2185 * Returns zero if successful or an error if the requested 2186 * transition is illegal. 2187 */ 2188 int 2189 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2190 { 2191 enum scsi_device_state oldstate = sdev->sdev_state; 2192 2193 if (state == oldstate) 2194 return 0; 2195 2196 switch (state) { 2197 case SDEV_CREATED: 2198 switch (oldstate) { 2199 case SDEV_CREATED_BLOCK: 2200 break; 2201 default: 2202 goto illegal; 2203 } 2204 break; 2205 2206 case SDEV_RUNNING: 2207 switch (oldstate) { 2208 case SDEV_CREATED: 2209 case SDEV_OFFLINE: 2210 case SDEV_TRANSPORT_OFFLINE: 2211 case SDEV_QUIESCE: 2212 case SDEV_BLOCK: 2213 break; 2214 default: 2215 goto illegal; 2216 } 2217 break; 2218 2219 case SDEV_QUIESCE: 2220 switch (oldstate) { 2221 case SDEV_RUNNING: 2222 case SDEV_OFFLINE: 2223 case SDEV_TRANSPORT_OFFLINE: 2224 break; 2225 default: 2226 goto illegal; 2227 } 2228 break; 2229 2230 case SDEV_OFFLINE: 2231 case SDEV_TRANSPORT_OFFLINE: 2232 switch (oldstate) { 2233 case SDEV_CREATED: 2234 case SDEV_RUNNING: 2235 case SDEV_QUIESCE: 2236 case SDEV_BLOCK: 2237 break; 2238 default: 2239 goto illegal; 2240 } 2241 break; 2242 2243 case SDEV_BLOCK: 2244 switch (oldstate) { 2245 case SDEV_RUNNING: 2246 case SDEV_CREATED_BLOCK: 2247 case SDEV_OFFLINE: 2248 break; 2249 default: 2250 goto illegal; 2251 } 2252 break; 2253 2254 case SDEV_CREATED_BLOCK: 2255 switch (oldstate) { 2256 case SDEV_CREATED: 2257 break; 2258 default: 2259 goto illegal; 2260 } 2261 break; 2262 2263 case SDEV_CANCEL: 2264 switch (oldstate) { 2265 case SDEV_CREATED: 2266 case SDEV_RUNNING: 2267 case SDEV_QUIESCE: 2268 case SDEV_OFFLINE: 2269 case SDEV_TRANSPORT_OFFLINE: 2270 break; 2271 default: 2272 goto illegal; 2273 } 2274 break; 2275 2276 case SDEV_DEL: 2277 switch (oldstate) { 2278 case SDEV_CREATED: 2279 case SDEV_RUNNING: 2280 case SDEV_OFFLINE: 2281 case SDEV_TRANSPORT_OFFLINE: 2282 case SDEV_CANCEL: 2283 case SDEV_BLOCK: 2284 case SDEV_CREATED_BLOCK: 2285 break; 2286 default: 2287 goto illegal; 2288 } 2289 break; 2290 2291 } 2292 sdev->sdev_state = state; 2293 return 0; 2294 2295 illegal: 2296 SCSI_LOG_ERROR_RECOVERY(1, 2297 sdev_printk(KERN_ERR, sdev, 2298 "Illegal state transition %s->%s", 2299 scsi_device_state_name(oldstate), 2300 scsi_device_state_name(state)) 2301 ); 2302 return -EINVAL; 2303 } 2304 EXPORT_SYMBOL(scsi_device_set_state); 2305 2306 /** 2307 * sdev_evt_emit - emit a single SCSI device uevent 2308 * @sdev: associated SCSI device 2309 * @evt: event to emit 2310 * 2311 * Send a single uevent (scsi_event) to the associated scsi_device. 2312 */ 2313 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2314 { 2315 int idx = 0; 2316 char *envp[3]; 2317 2318 switch (evt->evt_type) { 2319 case SDEV_EVT_MEDIA_CHANGE: 2320 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2321 break; 2322 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2323 scsi_rescan_device(&sdev->sdev_gendev); 2324 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2325 break; 2326 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2327 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2328 break; 2329 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2330 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2331 break; 2332 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2333 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2334 break; 2335 case SDEV_EVT_LUN_CHANGE_REPORTED: 2336 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2337 break; 2338 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2339 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2340 break; 2341 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2342 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2343 break; 2344 default: 2345 /* do nothing */ 2346 break; 2347 } 2348 2349 envp[idx++] = NULL; 2350 2351 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2352 } 2353 2354 /** 2355 * sdev_evt_thread - send a uevent for each scsi event 2356 * @work: work struct for scsi_device 2357 * 2358 * Dispatch queued events to their associated scsi_device kobjects 2359 * as uevents. 2360 */ 2361 void scsi_evt_thread(struct work_struct *work) 2362 { 2363 struct scsi_device *sdev; 2364 enum scsi_device_event evt_type; 2365 LIST_HEAD(event_list); 2366 2367 sdev = container_of(work, struct scsi_device, event_work); 2368 2369 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2370 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2371 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2372 2373 while (1) { 2374 struct scsi_event *evt; 2375 struct list_head *this, *tmp; 2376 unsigned long flags; 2377 2378 spin_lock_irqsave(&sdev->list_lock, flags); 2379 list_splice_init(&sdev->event_list, &event_list); 2380 spin_unlock_irqrestore(&sdev->list_lock, flags); 2381 2382 if (list_empty(&event_list)) 2383 break; 2384 2385 list_for_each_safe(this, tmp, &event_list) { 2386 evt = list_entry(this, struct scsi_event, node); 2387 list_del(&evt->node); 2388 scsi_evt_emit(sdev, evt); 2389 kfree(evt); 2390 } 2391 } 2392 } 2393 2394 /** 2395 * sdev_evt_send - send asserted event to uevent thread 2396 * @sdev: scsi_device event occurred on 2397 * @evt: event to send 2398 * 2399 * Assert scsi device event asynchronously. 2400 */ 2401 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2402 { 2403 unsigned long flags; 2404 2405 #if 0 2406 /* FIXME: currently this check eliminates all media change events 2407 * for polled devices. Need to update to discriminate between AN 2408 * and polled events */ 2409 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2410 kfree(evt); 2411 return; 2412 } 2413 #endif 2414 2415 spin_lock_irqsave(&sdev->list_lock, flags); 2416 list_add_tail(&evt->node, &sdev->event_list); 2417 schedule_work(&sdev->event_work); 2418 spin_unlock_irqrestore(&sdev->list_lock, flags); 2419 } 2420 EXPORT_SYMBOL_GPL(sdev_evt_send); 2421 2422 /** 2423 * sdev_evt_alloc - allocate a new scsi event 2424 * @evt_type: type of event to allocate 2425 * @gfpflags: GFP flags for allocation 2426 * 2427 * Allocates and returns a new scsi_event. 2428 */ 2429 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2430 gfp_t gfpflags) 2431 { 2432 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2433 if (!evt) 2434 return NULL; 2435 2436 evt->evt_type = evt_type; 2437 INIT_LIST_HEAD(&evt->node); 2438 2439 /* evt_type-specific initialization, if any */ 2440 switch (evt_type) { 2441 case SDEV_EVT_MEDIA_CHANGE: 2442 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2443 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2444 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2445 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2446 case SDEV_EVT_LUN_CHANGE_REPORTED: 2447 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2448 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2449 default: 2450 /* do nothing */ 2451 break; 2452 } 2453 2454 return evt; 2455 } 2456 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2457 2458 /** 2459 * sdev_evt_send_simple - send asserted event to uevent thread 2460 * @sdev: scsi_device event occurred on 2461 * @evt_type: type of event to send 2462 * @gfpflags: GFP flags for allocation 2463 * 2464 * Assert scsi device event asynchronously, given an event type. 2465 */ 2466 void sdev_evt_send_simple(struct scsi_device *sdev, 2467 enum scsi_device_event evt_type, gfp_t gfpflags) 2468 { 2469 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2470 if (!evt) { 2471 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2472 evt_type); 2473 return; 2474 } 2475 2476 sdev_evt_send(sdev, evt); 2477 } 2478 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2479 2480 /** 2481 * scsi_device_quiesce - Block user issued commands. 2482 * @sdev: scsi device to quiesce. 2483 * 2484 * This works by trying to transition to the SDEV_QUIESCE state 2485 * (which must be a legal transition). When the device is in this 2486 * state, only special requests will be accepted, all others will 2487 * be deferred. Since special requests may also be requeued requests, 2488 * a successful return doesn't guarantee the device will be 2489 * totally quiescent. 2490 * 2491 * Must be called with user context, may sleep. 2492 * 2493 * Returns zero if unsuccessful or an error if not. 2494 */ 2495 int 2496 scsi_device_quiesce(struct scsi_device *sdev) 2497 { 2498 struct request_queue *q = sdev->request_queue; 2499 int err; 2500 2501 /* 2502 * It is allowed to call scsi_device_quiesce() multiple times from 2503 * the same context but concurrent scsi_device_quiesce() calls are 2504 * not allowed. 2505 */ 2506 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2507 2508 if (sdev->quiesced_by == current) 2509 return 0; 2510 2511 blk_set_pm_only(q); 2512 2513 blk_mq_freeze_queue(q); 2514 /* 2515 * Ensure that the effect of blk_set_pm_only() will be visible 2516 * for percpu_ref_tryget() callers that occur after the queue 2517 * unfreeze even if the queue was already frozen before this function 2518 * was called. See also https://lwn.net/Articles/573497/. 2519 */ 2520 synchronize_rcu(); 2521 blk_mq_unfreeze_queue(q); 2522 2523 mutex_lock(&sdev->state_mutex); 2524 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2525 if (err == 0) 2526 sdev->quiesced_by = current; 2527 else 2528 blk_clear_pm_only(q); 2529 mutex_unlock(&sdev->state_mutex); 2530 2531 return err; 2532 } 2533 EXPORT_SYMBOL(scsi_device_quiesce); 2534 2535 /** 2536 * scsi_device_resume - Restart user issued commands to a quiesced device. 2537 * @sdev: scsi device to resume. 2538 * 2539 * Moves the device from quiesced back to running and restarts the 2540 * queues. 2541 * 2542 * Must be called with user context, may sleep. 2543 */ 2544 void scsi_device_resume(struct scsi_device *sdev) 2545 { 2546 /* check if the device state was mutated prior to resume, and if 2547 * so assume the state is being managed elsewhere (for example 2548 * device deleted during suspend) 2549 */ 2550 mutex_lock(&sdev->state_mutex); 2551 if (sdev->quiesced_by) { 2552 sdev->quiesced_by = NULL; 2553 blk_clear_pm_only(sdev->request_queue); 2554 } 2555 if (sdev->sdev_state == SDEV_QUIESCE) 2556 scsi_device_set_state(sdev, SDEV_RUNNING); 2557 mutex_unlock(&sdev->state_mutex); 2558 } 2559 EXPORT_SYMBOL(scsi_device_resume); 2560 2561 static void 2562 device_quiesce_fn(struct scsi_device *sdev, void *data) 2563 { 2564 scsi_device_quiesce(sdev); 2565 } 2566 2567 void 2568 scsi_target_quiesce(struct scsi_target *starget) 2569 { 2570 starget_for_each_device(starget, NULL, device_quiesce_fn); 2571 } 2572 EXPORT_SYMBOL(scsi_target_quiesce); 2573 2574 static void 2575 device_resume_fn(struct scsi_device *sdev, void *data) 2576 { 2577 scsi_device_resume(sdev); 2578 } 2579 2580 void 2581 scsi_target_resume(struct scsi_target *starget) 2582 { 2583 starget_for_each_device(starget, NULL, device_resume_fn); 2584 } 2585 EXPORT_SYMBOL(scsi_target_resume); 2586 2587 /** 2588 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2589 * @sdev: device to block 2590 * 2591 * Pause SCSI command processing on the specified device. Does not sleep. 2592 * 2593 * Returns zero if successful or a negative error code upon failure. 2594 * 2595 * Notes: 2596 * This routine transitions the device to the SDEV_BLOCK state (which must be 2597 * a legal transition). When the device is in this state, command processing 2598 * is paused until the device leaves the SDEV_BLOCK state. See also 2599 * scsi_internal_device_unblock_nowait(). 2600 */ 2601 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2602 { 2603 struct request_queue *q = sdev->request_queue; 2604 int err = 0; 2605 2606 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2607 if (err) { 2608 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2609 2610 if (err) 2611 return err; 2612 } 2613 2614 /* 2615 * The device has transitioned to SDEV_BLOCK. Stop the 2616 * block layer from calling the midlayer with this device's 2617 * request queue. 2618 */ 2619 blk_mq_quiesce_queue_nowait(q); 2620 return 0; 2621 } 2622 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2623 2624 /** 2625 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2626 * @sdev: device to block 2627 * 2628 * Pause SCSI command processing on the specified device and wait until all 2629 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2630 * 2631 * Returns zero if successful or a negative error code upon failure. 2632 * 2633 * Note: 2634 * This routine transitions the device to the SDEV_BLOCK state (which must be 2635 * a legal transition). When the device is in this state, command processing 2636 * is paused until the device leaves the SDEV_BLOCK state. See also 2637 * scsi_internal_device_unblock(). 2638 * 2639 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2640 * scsi_internal_device_block() has blocked a SCSI device and also 2641 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2642 */ 2643 static int scsi_internal_device_block(struct scsi_device *sdev) 2644 { 2645 struct request_queue *q = sdev->request_queue; 2646 int err; 2647 2648 mutex_lock(&sdev->state_mutex); 2649 err = scsi_internal_device_block_nowait(sdev); 2650 if (err == 0) 2651 blk_mq_quiesce_queue(q); 2652 mutex_unlock(&sdev->state_mutex); 2653 2654 return err; 2655 } 2656 2657 void scsi_start_queue(struct scsi_device *sdev) 2658 { 2659 struct request_queue *q = sdev->request_queue; 2660 2661 blk_mq_unquiesce_queue(q); 2662 } 2663 2664 /** 2665 * scsi_internal_device_unblock_nowait - resume a device after a block request 2666 * @sdev: device to resume 2667 * @new_state: state to set the device to after unblocking 2668 * 2669 * Restart the device queue for a previously suspended SCSI device. Does not 2670 * sleep. 2671 * 2672 * Returns zero if successful or a negative error code upon failure. 2673 * 2674 * Notes: 2675 * This routine transitions the device to the SDEV_RUNNING state or to one of 2676 * the offline states (which must be a legal transition) allowing the midlayer 2677 * to goose the queue for this device. 2678 */ 2679 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2680 enum scsi_device_state new_state) 2681 { 2682 /* 2683 * Try to transition the scsi device to SDEV_RUNNING or one of the 2684 * offlined states and goose the device queue if successful. 2685 */ 2686 switch (sdev->sdev_state) { 2687 case SDEV_BLOCK: 2688 case SDEV_TRANSPORT_OFFLINE: 2689 sdev->sdev_state = new_state; 2690 break; 2691 case SDEV_CREATED_BLOCK: 2692 if (new_state == SDEV_TRANSPORT_OFFLINE || 2693 new_state == SDEV_OFFLINE) 2694 sdev->sdev_state = new_state; 2695 else 2696 sdev->sdev_state = SDEV_CREATED; 2697 break; 2698 case SDEV_CANCEL: 2699 case SDEV_OFFLINE: 2700 break; 2701 default: 2702 return -EINVAL; 2703 } 2704 scsi_start_queue(sdev); 2705 2706 return 0; 2707 } 2708 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2709 2710 /** 2711 * scsi_internal_device_unblock - resume a device after a block request 2712 * @sdev: device to resume 2713 * @new_state: state to set the device to after unblocking 2714 * 2715 * Restart the device queue for a previously suspended SCSI device. May sleep. 2716 * 2717 * Returns zero if successful or a negative error code upon failure. 2718 * 2719 * Notes: 2720 * This routine transitions the device to the SDEV_RUNNING state or to one of 2721 * the offline states (which must be a legal transition) allowing the midlayer 2722 * to goose the queue for this device. 2723 */ 2724 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2725 enum scsi_device_state new_state) 2726 { 2727 int ret; 2728 2729 mutex_lock(&sdev->state_mutex); 2730 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2731 mutex_unlock(&sdev->state_mutex); 2732 2733 return ret; 2734 } 2735 2736 static void 2737 device_block(struct scsi_device *sdev, void *data) 2738 { 2739 scsi_internal_device_block(sdev); 2740 } 2741 2742 static int 2743 target_block(struct device *dev, void *data) 2744 { 2745 if (scsi_is_target_device(dev)) 2746 starget_for_each_device(to_scsi_target(dev), NULL, 2747 device_block); 2748 return 0; 2749 } 2750 2751 void 2752 scsi_target_block(struct device *dev) 2753 { 2754 if (scsi_is_target_device(dev)) 2755 starget_for_each_device(to_scsi_target(dev), NULL, 2756 device_block); 2757 else 2758 device_for_each_child(dev, NULL, target_block); 2759 } 2760 EXPORT_SYMBOL_GPL(scsi_target_block); 2761 2762 static void 2763 device_unblock(struct scsi_device *sdev, void *data) 2764 { 2765 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2766 } 2767 2768 static int 2769 target_unblock(struct device *dev, void *data) 2770 { 2771 if (scsi_is_target_device(dev)) 2772 starget_for_each_device(to_scsi_target(dev), data, 2773 device_unblock); 2774 return 0; 2775 } 2776 2777 void 2778 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2779 { 2780 if (scsi_is_target_device(dev)) 2781 starget_for_each_device(to_scsi_target(dev), &new_state, 2782 device_unblock); 2783 else 2784 device_for_each_child(dev, &new_state, target_unblock); 2785 } 2786 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2787 2788 /** 2789 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2790 * @sgl: scatter-gather list 2791 * @sg_count: number of segments in sg 2792 * @offset: offset in bytes into sg, on return offset into the mapped area 2793 * @len: bytes to map, on return number of bytes mapped 2794 * 2795 * Returns virtual address of the start of the mapped page 2796 */ 2797 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2798 size_t *offset, size_t *len) 2799 { 2800 int i; 2801 size_t sg_len = 0, len_complete = 0; 2802 struct scatterlist *sg; 2803 struct page *page; 2804 2805 WARN_ON(!irqs_disabled()); 2806 2807 for_each_sg(sgl, sg, sg_count, i) { 2808 len_complete = sg_len; /* Complete sg-entries */ 2809 sg_len += sg->length; 2810 if (sg_len > *offset) 2811 break; 2812 } 2813 2814 if (unlikely(i == sg_count)) { 2815 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2816 "elements %d\n", 2817 __func__, sg_len, *offset, sg_count); 2818 WARN_ON(1); 2819 return NULL; 2820 } 2821 2822 /* Offset starting from the beginning of first page in this sg-entry */ 2823 *offset = *offset - len_complete + sg->offset; 2824 2825 /* Assumption: contiguous pages can be accessed as "page + i" */ 2826 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2827 *offset &= ~PAGE_MASK; 2828 2829 /* Bytes in this sg-entry from *offset to the end of the page */ 2830 sg_len = PAGE_SIZE - *offset; 2831 if (*len > sg_len) 2832 *len = sg_len; 2833 2834 return kmap_atomic(page); 2835 } 2836 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2837 2838 /** 2839 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2840 * @virt: virtual address to be unmapped 2841 */ 2842 void scsi_kunmap_atomic_sg(void *virt) 2843 { 2844 kunmap_atomic(virt); 2845 } 2846 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2847 2848 void sdev_disable_disk_events(struct scsi_device *sdev) 2849 { 2850 atomic_inc(&sdev->disk_events_disable_depth); 2851 } 2852 EXPORT_SYMBOL(sdev_disable_disk_events); 2853 2854 void sdev_enable_disk_events(struct scsi_device *sdev) 2855 { 2856 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2857 return; 2858 atomic_dec(&sdev->disk_events_disable_depth); 2859 } 2860 EXPORT_SYMBOL(sdev_enable_disk_events); 2861 2862 /** 2863 * scsi_vpd_lun_id - return a unique device identification 2864 * @sdev: SCSI device 2865 * @id: buffer for the identification 2866 * @id_len: length of the buffer 2867 * 2868 * Copies a unique device identification into @id based 2869 * on the information in the VPD page 0x83 of the device. 2870 * The string will be formatted as a SCSI name string. 2871 * 2872 * Returns the length of the identification or error on failure. 2873 * If the identifier is longer than the supplied buffer the actual 2874 * identifier length is returned and the buffer is not zero-padded. 2875 */ 2876 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2877 { 2878 u8 cur_id_type = 0xff; 2879 u8 cur_id_size = 0; 2880 const unsigned char *d, *cur_id_str; 2881 const struct scsi_vpd *vpd_pg83; 2882 int id_size = -EINVAL; 2883 2884 rcu_read_lock(); 2885 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2886 if (!vpd_pg83) { 2887 rcu_read_unlock(); 2888 return -ENXIO; 2889 } 2890 2891 /* 2892 * Look for the correct descriptor. 2893 * Order of preference for lun descriptor: 2894 * - SCSI name string 2895 * - NAA IEEE Registered Extended 2896 * - EUI-64 based 16-byte 2897 * - EUI-64 based 12-byte 2898 * - NAA IEEE Registered 2899 * - NAA IEEE Extended 2900 * - T10 Vendor ID 2901 * as longer descriptors reduce the likelyhood 2902 * of identification clashes. 2903 */ 2904 2905 /* The id string must be at least 20 bytes + terminating NULL byte */ 2906 if (id_len < 21) { 2907 rcu_read_unlock(); 2908 return -EINVAL; 2909 } 2910 2911 memset(id, 0, id_len); 2912 d = vpd_pg83->data + 4; 2913 while (d < vpd_pg83->data + vpd_pg83->len) { 2914 /* Skip designators not referring to the LUN */ 2915 if ((d[1] & 0x30) != 0x00) 2916 goto next_desig; 2917 2918 switch (d[1] & 0xf) { 2919 case 0x1: 2920 /* T10 Vendor ID */ 2921 if (cur_id_size > d[3]) 2922 break; 2923 /* Prefer anything */ 2924 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2925 break; 2926 cur_id_size = d[3]; 2927 if (cur_id_size + 4 > id_len) 2928 cur_id_size = id_len - 4; 2929 cur_id_str = d + 4; 2930 cur_id_type = d[1] & 0xf; 2931 id_size = snprintf(id, id_len, "t10.%*pE", 2932 cur_id_size, cur_id_str); 2933 break; 2934 case 0x2: 2935 /* EUI-64 */ 2936 if (cur_id_size > d[3]) 2937 break; 2938 /* Prefer NAA IEEE Registered Extended */ 2939 if (cur_id_type == 0x3 && 2940 cur_id_size == d[3]) 2941 break; 2942 cur_id_size = d[3]; 2943 cur_id_str = d + 4; 2944 cur_id_type = d[1] & 0xf; 2945 switch (cur_id_size) { 2946 case 8: 2947 id_size = snprintf(id, id_len, 2948 "eui.%8phN", 2949 cur_id_str); 2950 break; 2951 case 12: 2952 id_size = snprintf(id, id_len, 2953 "eui.%12phN", 2954 cur_id_str); 2955 break; 2956 case 16: 2957 id_size = snprintf(id, id_len, 2958 "eui.%16phN", 2959 cur_id_str); 2960 break; 2961 default: 2962 cur_id_size = 0; 2963 break; 2964 } 2965 break; 2966 case 0x3: 2967 /* NAA */ 2968 if (cur_id_size > d[3]) 2969 break; 2970 cur_id_size = d[3]; 2971 cur_id_str = d + 4; 2972 cur_id_type = d[1] & 0xf; 2973 switch (cur_id_size) { 2974 case 8: 2975 id_size = snprintf(id, id_len, 2976 "naa.%8phN", 2977 cur_id_str); 2978 break; 2979 case 16: 2980 id_size = snprintf(id, id_len, 2981 "naa.%16phN", 2982 cur_id_str); 2983 break; 2984 default: 2985 cur_id_size = 0; 2986 break; 2987 } 2988 break; 2989 case 0x8: 2990 /* SCSI name string */ 2991 if (cur_id_size + 4 > d[3]) 2992 break; 2993 /* Prefer others for truncated descriptor */ 2994 if (cur_id_size && d[3] > id_len) 2995 break; 2996 cur_id_size = id_size = d[3]; 2997 cur_id_str = d + 4; 2998 cur_id_type = d[1] & 0xf; 2999 if (cur_id_size >= id_len) 3000 cur_id_size = id_len - 1; 3001 memcpy(id, cur_id_str, cur_id_size); 3002 /* Decrease priority for truncated descriptor */ 3003 if (cur_id_size != id_size) 3004 cur_id_size = 6; 3005 break; 3006 default: 3007 break; 3008 } 3009 next_desig: 3010 d += d[3] + 4; 3011 } 3012 rcu_read_unlock(); 3013 3014 return id_size; 3015 } 3016 EXPORT_SYMBOL(scsi_vpd_lun_id); 3017 3018 /* 3019 * scsi_vpd_tpg_id - return a target port group identifier 3020 * @sdev: SCSI device 3021 * 3022 * Returns the Target Port Group identifier from the information 3023 * froom VPD page 0x83 of the device. 3024 * 3025 * Returns the identifier or error on failure. 3026 */ 3027 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3028 { 3029 const unsigned char *d; 3030 const struct scsi_vpd *vpd_pg83; 3031 int group_id = -EAGAIN, rel_port = -1; 3032 3033 rcu_read_lock(); 3034 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3035 if (!vpd_pg83) { 3036 rcu_read_unlock(); 3037 return -ENXIO; 3038 } 3039 3040 d = vpd_pg83->data + 4; 3041 while (d < vpd_pg83->data + vpd_pg83->len) { 3042 switch (d[1] & 0xf) { 3043 case 0x4: 3044 /* Relative target port */ 3045 rel_port = get_unaligned_be16(&d[6]); 3046 break; 3047 case 0x5: 3048 /* Target port group */ 3049 group_id = get_unaligned_be16(&d[6]); 3050 break; 3051 default: 3052 break; 3053 } 3054 d += d[3] + 4; 3055 } 3056 rcu_read_unlock(); 3057 3058 if (group_id >= 0 && rel_id && rel_port != -1) 3059 *rel_id = rel_port; 3060 3061 return group_id; 3062 } 3063 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3064