xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 97da55fc)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73 
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76 	return dev->bus == &scsi_bus_type;
77 }
78 
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85 
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88 	unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92 
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY	3
99 
100 /*
101  * Function:	scsi_unprep_request()
102  *
103  * Purpose:	Remove all preparation done for a request, including its
104  *		associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:	req	- request to unprepare
107  *
108  * Lock status:	Assumed that no locks are held upon entry.
109  *
110  * Returns:	Nothing.
111  */
112 static void scsi_unprep_request(struct request *req)
113 {
114 	struct scsi_cmnd *cmd = req->special;
115 
116 	blk_unprep_request(req);
117 	req->special = NULL;
118 
119 	scsi_put_command(cmd);
120 }
121 
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136 	struct Scsi_Host *host = cmd->device->host;
137 	struct scsi_device *device = cmd->device;
138 	struct scsi_target *starget = scsi_target(device);
139 	struct request_queue *q = device->request_queue;
140 	unsigned long flags;
141 
142 	SCSI_LOG_MLQUEUE(1,
143 		 printk("Inserting command %p into mlqueue\n", cmd));
144 
145 	/*
146 	 * Set the appropriate busy bit for the device/host.
147 	 *
148 	 * If the host/device isn't busy, assume that something actually
149 	 * completed, and that we should be able to queue a command now.
150 	 *
151 	 * Note that the prior mid-layer assumption that any host could
152 	 * always queue at least one command is now broken.  The mid-layer
153 	 * will implement a user specifiable stall (see
154 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 	 * if a command is requeued with no other commands outstanding
156 	 * either for the device or for the host.
157 	 */
158 	switch (reason) {
159 	case SCSI_MLQUEUE_HOST_BUSY:
160 		host->host_blocked = host->max_host_blocked;
161 		break;
162 	case SCSI_MLQUEUE_DEVICE_BUSY:
163 	case SCSI_MLQUEUE_EH_RETRY:
164 		device->device_blocked = device->max_device_blocked;
165 		break;
166 	case SCSI_MLQUEUE_TARGET_BUSY:
167 		starget->target_blocked = starget->max_target_blocked;
168 		break;
169 	}
170 
171 	/*
172 	 * Decrement the counters, since these commands are no longer
173 	 * active on the host/device.
174 	 */
175 	if (unbusy)
176 		scsi_device_unbusy(device);
177 
178 	/*
179 	 * Requeue this command.  It will go before all other commands
180 	 * that are already in the queue. Schedule requeue work under
181 	 * lock such that the kblockd_schedule_work() call happens
182 	 * before blk_cleanup_queue() finishes.
183 	 */
184 	spin_lock_irqsave(q->queue_lock, flags);
185 	blk_requeue_request(q, cmd->request);
186 	kblockd_schedule_work(q, &device->requeue_work);
187 	spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189 
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211 	__scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:	scsi device
216  * @cmd:	scsi command
217  * @data_direction: data direction
218  * @buffer:	data buffer
219  * @bufflen:	len of buffer
220  * @sense:	optional sense buffer
221  * @timeout:	request timeout in seconds
222  * @retries:	number of times to retry request
223  * @flags:	or into request flags;
224  * @resid:	optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230 		 int data_direction, void *buffer, unsigned bufflen,
231 		 unsigned char *sense, int timeout, int retries, int flags,
232 		 int *resid)
233 {
234 	struct request *req;
235 	int write = (data_direction == DMA_TO_DEVICE);
236 	int ret = DRIVER_ERROR << 24;
237 
238 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239 	if (!req)
240 		return ret;
241 
242 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
243 					buffer, bufflen, __GFP_WAIT))
244 		goto out;
245 
246 	req->cmd_len = COMMAND_SIZE(cmd[0]);
247 	memcpy(req->cmd, cmd, req->cmd_len);
248 	req->sense = sense;
249 	req->sense_len = 0;
250 	req->retries = retries;
251 	req->timeout = timeout;
252 	req->cmd_type = REQ_TYPE_BLOCK_PC;
253 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254 
255 	/*
256 	 * head injection *required* here otherwise quiesce won't work
257 	 */
258 	blk_execute_rq(req->q, NULL, req, 1);
259 
260 	/*
261 	 * Some devices (USB mass-storage in particular) may transfer
262 	 * garbage data together with a residue indicating that the data
263 	 * is invalid.  Prevent the garbage from being misinterpreted
264 	 * and prevent security leaks by zeroing out the excess data.
265 	 */
266 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268 
269 	if (resid)
270 		*resid = req->resid_len;
271 	ret = req->errors;
272  out:
273 	blk_put_request(req);
274 
275 	return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278 
279 
280 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
281 		     int data_direction, void *buffer, unsigned bufflen,
282 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
283 		     int *resid)
284 {
285 	char *sense = NULL;
286 	int result;
287 
288 	if (sshdr) {
289 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
290 		if (!sense)
291 			return DRIVER_ERROR << 24;
292 	}
293 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294 			      sense, timeout, retries, 0, resid);
295 	if (sshdr)
296 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297 
298 	kfree(sense);
299 	return result;
300 }
301 EXPORT_SYMBOL(scsi_execute_req);
302 
303 /*
304  * Function:    scsi_init_cmd_errh()
305  *
306  * Purpose:     Initialize cmd fields related to error handling.
307  *
308  * Arguments:   cmd	- command that is ready to be queued.
309  *
310  * Notes:       This function has the job of initializing a number of
311  *              fields related to error handling.   Typically this will
312  *              be called once for each command, as required.
313  */
314 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
315 {
316 	cmd->serial_number = 0;
317 	scsi_set_resid(cmd, 0);
318 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 	if (cmd->cmd_len == 0)
320 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322 
323 void scsi_device_unbusy(struct scsi_device *sdev)
324 {
325 	struct Scsi_Host *shost = sdev->host;
326 	struct scsi_target *starget = scsi_target(sdev);
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(shost->host_lock, flags);
330 	shost->host_busy--;
331 	starget->target_busy--;
332 	if (unlikely(scsi_host_in_recovery(shost) &&
333 		     (shost->host_failed || shost->host_eh_scheduled)))
334 		scsi_eh_wakeup(shost);
335 	spin_unlock(shost->host_lock);
336 	spin_lock(sdev->request_queue->queue_lock);
337 	sdev->device_busy--;
338 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
339 }
340 
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 	struct Scsi_Host *shost = current_sdev->host;
351 	struct scsi_device *sdev, *tmp;
352 	struct scsi_target *starget = scsi_target(current_sdev);
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(shost->host_lock, flags);
356 	starget->starget_sdev_user = NULL;
357 	spin_unlock_irqrestore(shost->host_lock, flags);
358 
359 	/*
360 	 * Call blk_run_queue for all LUNs on the target, starting with
361 	 * current_sdev. We race with others (to set starget_sdev_user),
362 	 * but in most cases, we will be first. Ideally, each LU on the
363 	 * target would get some limited time or requests on the target.
364 	 */
365 	blk_run_queue(current_sdev->request_queue);
366 
367 	spin_lock_irqsave(shost->host_lock, flags);
368 	if (starget->starget_sdev_user)
369 		goto out;
370 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 			same_target_siblings) {
372 		if (sdev == current_sdev)
373 			continue;
374 		if (scsi_device_get(sdev))
375 			continue;
376 
377 		spin_unlock_irqrestore(shost->host_lock, flags);
378 		blk_run_queue(sdev->request_queue);
379 		spin_lock_irqsave(shost->host_lock, flags);
380 
381 		scsi_device_put(sdev);
382 	}
383  out:
384 	spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386 
387 static inline int scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
390 		return 1;
391 
392 	return 0;
393 }
394 
395 static inline int scsi_target_is_busy(struct scsi_target *starget)
396 {
397 	return ((starget->can_queue > 0 &&
398 		 starget->target_busy >= starget->can_queue) ||
399 		 starget->target_blocked);
400 }
401 
402 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
405 	    shost->host_blocked || shost->host_self_blocked)
406 		return 1;
407 
408 	return 0;
409 }
410 
411 /*
412  * Function:	scsi_run_queue()
413  *
414  * Purpose:	Select a proper request queue to serve next
415  *
416  * Arguments:	q	- last request's queue
417  *
418  * Returns:     Nothing
419  *
420  * Notes:	The previous command was completely finished, start
421  *		a new one if possible.
422  */
423 static void scsi_run_queue(struct request_queue *q)
424 {
425 	struct scsi_device *sdev = q->queuedata;
426 	struct Scsi_Host *shost;
427 	LIST_HEAD(starved_list);
428 	unsigned long flags;
429 
430 	shost = sdev->host;
431 	if (scsi_target(sdev)->single_lun)
432 		scsi_single_lun_run(sdev);
433 
434 	spin_lock_irqsave(shost->host_lock, flags);
435 	list_splice_init(&shost->starved_list, &starved_list);
436 
437 	while (!list_empty(&starved_list)) {
438 		/*
439 		 * As long as shost is accepting commands and we have
440 		 * starved queues, call blk_run_queue. scsi_request_fn
441 		 * drops the queue_lock and can add us back to the
442 		 * starved_list.
443 		 *
444 		 * host_lock protects the starved_list and starved_entry.
445 		 * scsi_request_fn must get the host_lock before checking
446 		 * or modifying starved_list or starved_entry.
447 		 */
448 		if (scsi_host_is_busy(shost))
449 			break;
450 
451 		sdev = list_entry(starved_list.next,
452 				  struct scsi_device, starved_entry);
453 		list_del_init(&sdev->starved_entry);
454 		if (scsi_target_is_busy(scsi_target(sdev))) {
455 			list_move_tail(&sdev->starved_entry,
456 				       &shost->starved_list);
457 			continue;
458 		}
459 
460 		spin_unlock(shost->host_lock);
461 		spin_lock(sdev->request_queue->queue_lock);
462 		__blk_run_queue(sdev->request_queue);
463 		spin_unlock(sdev->request_queue->queue_lock);
464 		spin_lock(shost->host_lock);
465 	}
466 	/* put any unprocessed entries back */
467 	list_splice(&starved_list, &shost->starved_list);
468 	spin_unlock_irqrestore(shost->host_lock, flags);
469 
470 	blk_run_queue(q);
471 }
472 
473 void scsi_requeue_run_queue(struct work_struct *work)
474 {
475 	struct scsi_device *sdev;
476 	struct request_queue *q;
477 
478 	sdev = container_of(work, struct scsi_device, requeue_work);
479 	q = sdev->request_queue;
480 	scsi_run_queue(q);
481 }
482 
483 /*
484  * Function:	scsi_requeue_command()
485  *
486  * Purpose:	Handle post-processing of completed commands.
487  *
488  * Arguments:	q	- queue to operate on
489  *		cmd	- command that may need to be requeued.
490  *
491  * Returns:	Nothing
492  *
493  * Notes:	After command completion, there may be blocks left
494  *		over which weren't finished by the previous command
495  *		this can be for a number of reasons - the main one is
496  *		I/O errors in the middle of the request, in which case
497  *		we need to request the blocks that come after the bad
498  *		sector.
499  * Notes:	Upon return, cmd is a stale pointer.
500  */
501 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
502 {
503 	struct scsi_device *sdev = cmd->device;
504 	struct request *req = cmd->request;
505 	unsigned long flags;
506 
507 	/*
508 	 * We need to hold a reference on the device to avoid the queue being
509 	 * killed after the unlock and before scsi_run_queue is invoked which
510 	 * may happen because scsi_unprep_request() puts the command which
511 	 * releases its reference on the device.
512 	 */
513 	get_device(&sdev->sdev_gendev);
514 
515 	spin_lock_irqsave(q->queue_lock, flags);
516 	scsi_unprep_request(req);
517 	blk_requeue_request(q, req);
518 	spin_unlock_irqrestore(q->queue_lock, flags);
519 
520 	scsi_run_queue(q);
521 
522 	put_device(&sdev->sdev_gendev);
523 }
524 
525 void scsi_next_command(struct scsi_cmnd *cmd)
526 {
527 	struct scsi_device *sdev = cmd->device;
528 	struct request_queue *q = sdev->request_queue;
529 
530 	/* need to hold a reference on the device before we let go of the cmd */
531 	get_device(&sdev->sdev_gendev);
532 
533 	scsi_put_command(cmd);
534 	scsi_run_queue(q);
535 
536 	/* ok to remove device now */
537 	put_device(&sdev->sdev_gendev);
538 }
539 
540 void scsi_run_host_queues(struct Scsi_Host *shost)
541 {
542 	struct scsi_device *sdev;
543 
544 	shost_for_each_device(sdev, shost)
545 		scsi_run_queue(sdev->request_queue);
546 }
547 
548 static void __scsi_release_buffers(struct scsi_cmnd *, int);
549 
550 /*
551  * Function:    scsi_end_request()
552  *
553  * Purpose:     Post-processing of completed commands (usually invoked at end
554  *		of upper level post-processing and scsi_io_completion).
555  *
556  * Arguments:   cmd	 - command that is complete.
557  *              error    - 0 if I/O indicates success, < 0 for I/O error.
558  *              bytes    - number of bytes of completed I/O
559  *		requeue  - indicates whether we should requeue leftovers.
560  *
561  * Lock status: Assumed that lock is not held upon entry.
562  *
563  * Returns:     cmd if requeue required, NULL otherwise.
564  *
565  * Notes:       This is called for block device requests in order to
566  *              mark some number of sectors as complete.
567  *
568  *		We are guaranteeing that the request queue will be goosed
569  *		at some point during this call.
570  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
571  */
572 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
573 					  int bytes, int requeue)
574 {
575 	struct request_queue *q = cmd->device->request_queue;
576 	struct request *req = cmd->request;
577 
578 	/*
579 	 * If there are blocks left over at the end, set up the command
580 	 * to queue the remainder of them.
581 	 */
582 	if (blk_end_request(req, error, bytes)) {
583 		/* kill remainder if no retrys */
584 		if (error && scsi_noretry_cmd(cmd))
585 			blk_end_request_all(req, error);
586 		else {
587 			if (requeue) {
588 				/*
589 				 * Bleah.  Leftovers again.  Stick the
590 				 * leftovers in the front of the
591 				 * queue, and goose the queue again.
592 				 */
593 				scsi_release_buffers(cmd);
594 				scsi_requeue_command(q, cmd);
595 				cmd = NULL;
596 			}
597 			return cmd;
598 		}
599 	}
600 
601 	/*
602 	 * This will goose the queue request function at the end, so we don't
603 	 * need to worry about launching another command.
604 	 */
605 	__scsi_release_buffers(cmd, 0);
606 	scsi_next_command(cmd);
607 	return NULL;
608 }
609 
610 static inline unsigned int scsi_sgtable_index(unsigned short nents)
611 {
612 	unsigned int index;
613 
614 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
615 
616 	if (nents <= 8)
617 		index = 0;
618 	else
619 		index = get_count_order(nents) - 3;
620 
621 	return index;
622 }
623 
624 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
625 {
626 	struct scsi_host_sg_pool *sgp;
627 
628 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
629 	mempool_free(sgl, sgp->pool);
630 }
631 
632 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
633 {
634 	struct scsi_host_sg_pool *sgp;
635 
636 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
637 	return mempool_alloc(sgp->pool, gfp_mask);
638 }
639 
640 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
641 			      gfp_t gfp_mask)
642 {
643 	int ret;
644 
645 	BUG_ON(!nents);
646 
647 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
648 			       gfp_mask, scsi_sg_alloc);
649 	if (unlikely(ret))
650 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
651 				scsi_sg_free);
652 
653 	return ret;
654 }
655 
656 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
657 {
658 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
659 }
660 
661 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
662 {
663 
664 	if (cmd->sdb.table.nents)
665 		scsi_free_sgtable(&cmd->sdb);
666 
667 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
668 
669 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
670 		struct scsi_data_buffer *bidi_sdb =
671 			cmd->request->next_rq->special;
672 		scsi_free_sgtable(bidi_sdb);
673 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
674 		cmd->request->next_rq->special = NULL;
675 	}
676 
677 	if (scsi_prot_sg_count(cmd))
678 		scsi_free_sgtable(cmd->prot_sdb);
679 }
680 
681 /*
682  * Function:    scsi_release_buffers()
683  *
684  * Purpose:     Completion processing for block device I/O requests.
685  *
686  * Arguments:   cmd	- command that we are bailing.
687  *
688  * Lock status: Assumed that no lock is held upon entry.
689  *
690  * Returns:     Nothing
691  *
692  * Notes:       In the event that an upper level driver rejects a
693  *		command, we must release resources allocated during
694  *		the __init_io() function.  Primarily this would involve
695  *		the scatter-gather table, and potentially any bounce
696  *		buffers.
697  */
698 void scsi_release_buffers(struct scsi_cmnd *cmd)
699 {
700 	__scsi_release_buffers(cmd, 1);
701 }
702 EXPORT_SYMBOL(scsi_release_buffers);
703 
704 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
705 {
706 	int error = 0;
707 
708 	switch(host_byte(result)) {
709 	case DID_TRANSPORT_FAILFAST:
710 		error = -ENOLINK;
711 		break;
712 	case DID_TARGET_FAILURE:
713 		set_host_byte(cmd, DID_OK);
714 		error = -EREMOTEIO;
715 		break;
716 	case DID_NEXUS_FAILURE:
717 		set_host_byte(cmd, DID_OK);
718 		error = -EBADE;
719 		break;
720 	default:
721 		error = -EIO;
722 		break;
723 	}
724 
725 	return error;
726 }
727 
728 /*
729  * Function:    scsi_io_completion()
730  *
731  * Purpose:     Completion processing for block device I/O requests.
732  *
733  * Arguments:   cmd   - command that is finished.
734  *
735  * Lock status: Assumed that no lock is held upon entry.
736  *
737  * Returns:     Nothing
738  *
739  * Notes:       This function is matched in terms of capabilities to
740  *              the function that created the scatter-gather list.
741  *              In other words, if there are no bounce buffers
742  *              (the normal case for most drivers), we don't need
743  *              the logic to deal with cleaning up afterwards.
744  *
745  *		We must call scsi_end_request().  This will finish off
746  *		the specified number of sectors.  If we are done, the
747  *		command block will be released and the queue function
748  *		will be goosed.  If we are not done then we have to
749  *		figure out what to do next:
750  *
751  *		a) We can call scsi_requeue_command().  The request
752  *		   will be unprepared and put back on the queue.  Then
753  *		   a new command will be created for it.  This should
754  *		   be used if we made forward progress, or if we want
755  *		   to switch from READ(10) to READ(6) for example.
756  *
757  *		b) We can call scsi_queue_insert().  The request will
758  *		   be put back on the queue and retried using the same
759  *		   command as before, possibly after a delay.
760  *
761  *		c) We can call blk_end_request() with -EIO to fail
762  *		   the remainder of the request.
763  */
764 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
765 {
766 	int result = cmd->result;
767 	struct request_queue *q = cmd->device->request_queue;
768 	struct request *req = cmd->request;
769 	int error = 0;
770 	struct scsi_sense_hdr sshdr;
771 	int sense_valid = 0;
772 	int sense_deferred = 0;
773 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
774 	      ACTION_DELAYED_RETRY} action;
775 	char *description = NULL;
776 
777 	if (result) {
778 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
779 		if (sense_valid)
780 			sense_deferred = scsi_sense_is_deferred(&sshdr);
781 	}
782 
783 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
784 		if (result) {
785 			if (sense_valid && req->sense) {
786 				/*
787 				 * SG_IO wants current and deferred errors
788 				 */
789 				int len = 8 + cmd->sense_buffer[7];
790 
791 				if (len > SCSI_SENSE_BUFFERSIZE)
792 					len = SCSI_SENSE_BUFFERSIZE;
793 				memcpy(req->sense, cmd->sense_buffer,  len);
794 				req->sense_len = len;
795 			}
796 			if (!sense_deferred)
797 				error = __scsi_error_from_host_byte(cmd, result);
798 		}
799 		/*
800 		 * __scsi_error_from_host_byte may have reset the host_byte
801 		 */
802 		req->errors = cmd->result;
803 
804 		req->resid_len = scsi_get_resid(cmd);
805 
806 		if (scsi_bidi_cmnd(cmd)) {
807 			/*
808 			 * Bidi commands Must be complete as a whole,
809 			 * both sides at once.
810 			 */
811 			req->next_rq->resid_len = scsi_in(cmd)->resid;
812 
813 			scsi_release_buffers(cmd);
814 			blk_end_request_all(req, 0);
815 
816 			scsi_next_command(cmd);
817 			return;
818 		}
819 	}
820 
821 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
822 	BUG_ON(blk_bidi_rq(req));
823 
824 	/*
825 	 * Next deal with any sectors which we were able to correctly
826 	 * handle.
827 	 */
828 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
829 				      "%d bytes done.\n",
830 				      blk_rq_sectors(req), good_bytes));
831 
832 	/*
833 	 * Recovered errors need reporting, but they're always treated
834 	 * as success, so fiddle the result code here.  For BLOCK_PC
835 	 * we already took a copy of the original into rq->errors which
836 	 * is what gets returned to the user
837 	 */
838 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
839 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
840 		 * print since caller wants ATA registers. Only occurs on
841 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
842 		 */
843 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
844 			;
845 		else if (!(req->cmd_flags & REQ_QUIET))
846 			scsi_print_sense("", cmd);
847 		result = 0;
848 		/* BLOCK_PC may have set error */
849 		error = 0;
850 	}
851 
852 	/*
853 	 * A number of bytes were successfully read.  If there
854 	 * are leftovers and there is some kind of error
855 	 * (result != 0), retry the rest.
856 	 */
857 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
858 		return;
859 
860 	error = __scsi_error_from_host_byte(cmd, result);
861 
862 	if (host_byte(result) == DID_RESET) {
863 		/* Third party bus reset or reset for error recovery
864 		 * reasons.  Just retry the command and see what
865 		 * happens.
866 		 */
867 		action = ACTION_RETRY;
868 	} else if (sense_valid && !sense_deferred) {
869 		switch (sshdr.sense_key) {
870 		case UNIT_ATTENTION:
871 			if (cmd->device->removable) {
872 				/* Detected disc change.  Set a bit
873 				 * and quietly refuse further access.
874 				 */
875 				cmd->device->changed = 1;
876 				description = "Media Changed";
877 				action = ACTION_FAIL;
878 			} else {
879 				/* Must have been a power glitch, or a
880 				 * bus reset.  Could not have been a
881 				 * media change, so we just retry the
882 				 * command and see what happens.
883 				 */
884 				action = ACTION_RETRY;
885 			}
886 			break;
887 		case ILLEGAL_REQUEST:
888 			/* If we had an ILLEGAL REQUEST returned, then
889 			 * we may have performed an unsupported
890 			 * command.  The only thing this should be
891 			 * would be a ten byte read where only a six
892 			 * byte read was supported.  Also, on a system
893 			 * where READ CAPACITY failed, we may have
894 			 * read past the end of the disk.
895 			 */
896 			if ((cmd->device->use_10_for_rw &&
897 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
898 			    (cmd->cmnd[0] == READ_10 ||
899 			     cmd->cmnd[0] == WRITE_10)) {
900 				/* This will issue a new 6-byte command. */
901 				cmd->device->use_10_for_rw = 0;
902 				action = ACTION_REPREP;
903 			} else if (sshdr.asc == 0x10) /* DIX */ {
904 				description = "Host Data Integrity Failure";
905 				action = ACTION_FAIL;
906 				error = -EILSEQ;
907 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
908 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
909 				switch (cmd->cmnd[0]) {
910 				case UNMAP:
911 					description = "Discard failure";
912 					break;
913 				case WRITE_SAME:
914 				case WRITE_SAME_16:
915 					if (cmd->cmnd[1] & 0x8)
916 						description = "Discard failure";
917 					else
918 						description =
919 							"Write same failure";
920 					break;
921 				default:
922 					description = "Invalid command failure";
923 					break;
924 				}
925 				action = ACTION_FAIL;
926 				error = -EREMOTEIO;
927 			} else
928 				action = ACTION_FAIL;
929 			break;
930 		case ABORTED_COMMAND:
931 			action = ACTION_FAIL;
932 			if (sshdr.asc == 0x10) { /* DIF */
933 				description = "Target Data Integrity Failure";
934 				error = -EILSEQ;
935 			}
936 			break;
937 		case NOT_READY:
938 			/* If the device is in the process of becoming
939 			 * ready, or has a temporary blockage, retry.
940 			 */
941 			if (sshdr.asc == 0x04) {
942 				switch (sshdr.ascq) {
943 				case 0x01: /* becoming ready */
944 				case 0x04: /* format in progress */
945 				case 0x05: /* rebuild in progress */
946 				case 0x06: /* recalculation in progress */
947 				case 0x07: /* operation in progress */
948 				case 0x08: /* Long write in progress */
949 				case 0x09: /* self test in progress */
950 				case 0x14: /* space allocation in progress */
951 					action = ACTION_DELAYED_RETRY;
952 					break;
953 				default:
954 					description = "Device not ready";
955 					action = ACTION_FAIL;
956 					break;
957 				}
958 			} else {
959 				description = "Device not ready";
960 				action = ACTION_FAIL;
961 			}
962 			break;
963 		case VOLUME_OVERFLOW:
964 			/* See SSC3rXX or current. */
965 			action = ACTION_FAIL;
966 			break;
967 		default:
968 			description = "Unhandled sense code";
969 			action = ACTION_FAIL;
970 			break;
971 		}
972 	} else {
973 		description = "Unhandled error code";
974 		action = ACTION_FAIL;
975 	}
976 
977 	switch (action) {
978 	case ACTION_FAIL:
979 		/* Give up and fail the remainder of the request */
980 		scsi_release_buffers(cmd);
981 		if (!(req->cmd_flags & REQ_QUIET)) {
982 			if (description)
983 				scmd_printk(KERN_INFO, cmd, "%s\n",
984 					    description);
985 			scsi_print_result(cmd);
986 			if (driver_byte(result) & DRIVER_SENSE)
987 				scsi_print_sense("", cmd);
988 			scsi_print_command(cmd);
989 		}
990 		if (blk_end_request_err(req, error))
991 			scsi_requeue_command(q, cmd);
992 		else
993 			scsi_next_command(cmd);
994 		break;
995 	case ACTION_REPREP:
996 		/* Unprep the request and put it back at the head of the queue.
997 		 * A new command will be prepared and issued.
998 		 */
999 		scsi_release_buffers(cmd);
1000 		scsi_requeue_command(q, cmd);
1001 		break;
1002 	case ACTION_RETRY:
1003 		/* Retry the same command immediately */
1004 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1005 		break;
1006 	case ACTION_DELAYED_RETRY:
1007 		/* Retry the same command after a delay */
1008 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1009 		break;
1010 	}
1011 }
1012 
1013 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1014 			     gfp_t gfp_mask)
1015 {
1016 	int count;
1017 
1018 	/*
1019 	 * If sg table allocation fails, requeue request later.
1020 	 */
1021 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1022 					gfp_mask))) {
1023 		return BLKPREP_DEFER;
1024 	}
1025 
1026 	req->buffer = NULL;
1027 
1028 	/*
1029 	 * Next, walk the list, and fill in the addresses and sizes of
1030 	 * each segment.
1031 	 */
1032 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1033 	BUG_ON(count > sdb->table.nents);
1034 	sdb->table.nents = count;
1035 	sdb->length = blk_rq_bytes(req);
1036 	return BLKPREP_OK;
1037 }
1038 
1039 /*
1040  * Function:    scsi_init_io()
1041  *
1042  * Purpose:     SCSI I/O initialize function.
1043  *
1044  * Arguments:   cmd   - Command descriptor we wish to initialize
1045  *
1046  * Returns:     0 on success
1047  *		BLKPREP_DEFER if the failure is retryable
1048  *		BLKPREP_KILL if the failure is fatal
1049  */
1050 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1051 {
1052 	struct request *rq = cmd->request;
1053 
1054 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1055 	if (error)
1056 		goto err_exit;
1057 
1058 	if (blk_bidi_rq(rq)) {
1059 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1060 			scsi_sdb_cache, GFP_ATOMIC);
1061 		if (!bidi_sdb) {
1062 			error = BLKPREP_DEFER;
1063 			goto err_exit;
1064 		}
1065 
1066 		rq->next_rq->special = bidi_sdb;
1067 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1068 		if (error)
1069 			goto err_exit;
1070 	}
1071 
1072 	if (blk_integrity_rq(rq)) {
1073 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1074 		int ivecs, count;
1075 
1076 		BUG_ON(prot_sdb == NULL);
1077 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1078 
1079 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1080 			error = BLKPREP_DEFER;
1081 			goto err_exit;
1082 		}
1083 
1084 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1085 						prot_sdb->table.sgl);
1086 		BUG_ON(unlikely(count > ivecs));
1087 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1088 
1089 		cmd->prot_sdb = prot_sdb;
1090 		cmd->prot_sdb->table.nents = count;
1091 	}
1092 
1093 	return BLKPREP_OK ;
1094 
1095 err_exit:
1096 	scsi_release_buffers(cmd);
1097 	cmd->request->special = NULL;
1098 	scsi_put_command(cmd);
1099 	return error;
1100 }
1101 EXPORT_SYMBOL(scsi_init_io);
1102 
1103 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104 		struct request *req)
1105 {
1106 	struct scsi_cmnd *cmd;
1107 
1108 	if (!req->special) {
1109 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110 		if (unlikely(!cmd))
1111 			return NULL;
1112 		req->special = cmd;
1113 	} else {
1114 		cmd = req->special;
1115 	}
1116 
1117 	/* pull a tag out of the request if we have one */
1118 	cmd->tag = req->tag;
1119 	cmd->request = req;
1120 
1121 	cmd->cmnd = req->cmd;
1122 	cmd->prot_op = SCSI_PROT_NORMAL;
1123 
1124 	return cmd;
1125 }
1126 
1127 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1128 {
1129 	struct scsi_cmnd *cmd;
1130 	int ret = scsi_prep_state_check(sdev, req);
1131 
1132 	if (ret != BLKPREP_OK)
1133 		return ret;
1134 
1135 	cmd = scsi_get_cmd_from_req(sdev, req);
1136 	if (unlikely(!cmd))
1137 		return BLKPREP_DEFER;
1138 
1139 	/*
1140 	 * BLOCK_PC requests may transfer data, in which case they must
1141 	 * a bio attached to them.  Or they might contain a SCSI command
1142 	 * that does not transfer data, in which case they may optionally
1143 	 * submit a request without an attached bio.
1144 	 */
1145 	if (req->bio) {
1146 		int ret;
1147 
1148 		BUG_ON(!req->nr_phys_segments);
1149 
1150 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1151 		if (unlikely(ret))
1152 			return ret;
1153 	} else {
1154 		BUG_ON(blk_rq_bytes(req));
1155 
1156 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1157 		req->buffer = NULL;
1158 	}
1159 
1160 	cmd->cmd_len = req->cmd_len;
1161 	if (!blk_rq_bytes(req))
1162 		cmd->sc_data_direction = DMA_NONE;
1163 	else if (rq_data_dir(req) == WRITE)
1164 		cmd->sc_data_direction = DMA_TO_DEVICE;
1165 	else
1166 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1167 
1168 	cmd->transfersize = blk_rq_bytes(req);
1169 	cmd->allowed = req->retries;
1170 	return BLKPREP_OK;
1171 }
1172 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1173 
1174 /*
1175  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1176  * from filesystems that still need to be translated to SCSI CDBs from
1177  * the ULD.
1178  */
1179 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1180 {
1181 	struct scsi_cmnd *cmd;
1182 	int ret = scsi_prep_state_check(sdev, req);
1183 
1184 	if (ret != BLKPREP_OK)
1185 		return ret;
1186 
1187 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1188 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1189 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1190 		if (ret != BLKPREP_OK)
1191 			return ret;
1192 	}
1193 
1194 	/*
1195 	 * Filesystem requests must transfer data.
1196 	 */
1197 	BUG_ON(!req->nr_phys_segments);
1198 
1199 	cmd = scsi_get_cmd_from_req(sdev, req);
1200 	if (unlikely(!cmd))
1201 		return BLKPREP_DEFER;
1202 
1203 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1204 	return scsi_init_io(cmd, GFP_ATOMIC);
1205 }
1206 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1207 
1208 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210 	int ret = BLKPREP_OK;
1211 
1212 	/*
1213 	 * If the device is not in running state we will reject some
1214 	 * or all commands.
1215 	 */
1216 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1217 		switch (sdev->sdev_state) {
1218 		case SDEV_OFFLINE:
1219 		case SDEV_TRANSPORT_OFFLINE:
1220 			/*
1221 			 * If the device is offline we refuse to process any
1222 			 * commands.  The device must be brought online
1223 			 * before trying any recovery commands.
1224 			 */
1225 			sdev_printk(KERN_ERR, sdev,
1226 				    "rejecting I/O to offline device\n");
1227 			ret = BLKPREP_KILL;
1228 			break;
1229 		case SDEV_DEL:
1230 			/*
1231 			 * If the device is fully deleted, we refuse to
1232 			 * process any commands as well.
1233 			 */
1234 			sdev_printk(KERN_ERR, sdev,
1235 				    "rejecting I/O to dead device\n");
1236 			ret = BLKPREP_KILL;
1237 			break;
1238 		case SDEV_QUIESCE:
1239 		case SDEV_BLOCK:
1240 		case SDEV_CREATED_BLOCK:
1241 			/*
1242 			 * If the devices is blocked we defer normal commands.
1243 			 */
1244 			if (!(req->cmd_flags & REQ_PREEMPT))
1245 				ret = BLKPREP_DEFER;
1246 			break;
1247 		default:
1248 			/*
1249 			 * For any other not fully online state we only allow
1250 			 * special commands.  In particular any user initiated
1251 			 * command is not allowed.
1252 			 */
1253 			if (!(req->cmd_flags & REQ_PREEMPT))
1254 				ret = BLKPREP_KILL;
1255 			break;
1256 		}
1257 	}
1258 	return ret;
1259 }
1260 EXPORT_SYMBOL(scsi_prep_state_check);
1261 
1262 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1263 {
1264 	struct scsi_device *sdev = q->queuedata;
1265 
1266 	switch (ret) {
1267 	case BLKPREP_KILL:
1268 		req->errors = DID_NO_CONNECT << 16;
1269 		/* release the command and kill it */
1270 		if (req->special) {
1271 			struct scsi_cmnd *cmd = req->special;
1272 			scsi_release_buffers(cmd);
1273 			scsi_put_command(cmd);
1274 			req->special = NULL;
1275 		}
1276 		break;
1277 	case BLKPREP_DEFER:
1278 		/*
1279 		 * If we defer, the blk_peek_request() returns NULL, but the
1280 		 * queue must be restarted, so we schedule a callback to happen
1281 		 * shortly.
1282 		 */
1283 		if (sdev->device_busy == 0)
1284 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1285 		break;
1286 	default:
1287 		req->cmd_flags |= REQ_DONTPREP;
1288 	}
1289 
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL(scsi_prep_return);
1293 
1294 int scsi_prep_fn(struct request_queue *q, struct request *req)
1295 {
1296 	struct scsi_device *sdev = q->queuedata;
1297 	int ret = BLKPREP_KILL;
1298 
1299 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1300 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1301 	return scsi_prep_return(q, req, ret);
1302 }
1303 EXPORT_SYMBOL(scsi_prep_fn);
1304 
1305 /*
1306  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1307  * return 0.
1308  *
1309  * Called with the queue_lock held.
1310  */
1311 static inline int scsi_dev_queue_ready(struct request_queue *q,
1312 				  struct scsi_device *sdev)
1313 {
1314 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1315 		/*
1316 		 * unblock after device_blocked iterates to zero
1317 		 */
1318 		if (--sdev->device_blocked == 0) {
1319 			SCSI_LOG_MLQUEUE(3,
1320 				   sdev_printk(KERN_INFO, sdev,
1321 				   "unblocking device at zero depth\n"));
1322 		} else {
1323 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1324 			return 0;
1325 		}
1326 	}
1327 	if (scsi_device_is_busy(sdev))
1328 		return 0;
1329 
1330 	return 1;
1331 }
1332 
1333 
1334 /*
1335  * scsi_target_queue_ready: checks if there we can send commands to target
1336  * @sdev: scsi device on starget to check.
1337  *
1338  * Called with the host lock held.
1339  */
1340 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1341 					   struct scsi_device *sdev)
1342 {
1343 	struct scsi_target *starget = scsi_target(sdev);
1344 
1345 	if (starget->single_lun) {
1346 		if (starget->starget_sdev_user &&
1347 		    starget->starget_sdev_user != sdev)
1348 			return 0;
1349 		starget->starget_sdev_user = sdev;
1350 	}
1351 
1352 	if (starget->target_busy == 0 && starget->target_blocked) {
1353 		/*
1354 		 * unblock after target_blocked iterates to zero
1355 		 */
1356 		if (--starget->target_blocked == 0) {
1357 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1358 					 "unblocking target at zero depth\n"));
1359 		} else
1360 			return 0;
1361 	}
1362 
1363 	if (scsi_target_is_busy(starget)) {
1364 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1365 		return 0;
1366 	}
1367 
1368 	return 1;
1369 }
1370 
1371 /*
1372  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1373  * return 0. We must end up running the queue again whenever 0 is
1374  * returned, else IO can hang.
1375  *
1376  * Called with host_lock held.
1377  */
1378 static inline int scsi_host_queue_ready(struct request_queue *q,
1379 				   struct Scsi_Host *shost,
1380 				   struct scsi_device *sdev)
1381 {
1382 	if (scsi_host_in_recovery(shost))
1383 		return 0;
1384 	if (shost->host_busy == 0 && shost->host_blocked) {
1385 		/*
1386 		 * unblock after host_blocked iterates to zero
1387 		 */
1388 		if (--shost->host_blocked == 0) {
1389 			SCSI_LOG_MLQUEUE(3,
1390 				printk("scsi%d unblocking host at zero depth\n",
1391 					shost->host_no));
1392 		} else {
1393 			return 0;
1394 		}
1395 	}
1396 	if (scsi_host_is_busy(shost)) {
1397 		if (list_empty(&sdev->starved_entry))
1398 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399 		return 0;
1400 	}
1401 
1402 	/* We're OK to process the command, so we can't be starved */
1403 	if (!list_empty(&sdev->starved_entry))
1404 		list_del_init(&sdev->starved_entry);
1405 
1406 	return 1;
1407 }
1408 
1409 /*
1410  * Busy state exporting function for request stacking drivers.
1411  *
1412  * For efficiency, no lock is taken to check the busy state of
1413  * shost/starget/sdev, since the returned value is not guaranteed and
1414  * may be changed after request stacking drivers call the function,
1415  * regardless of taking lock or not.
1416  *
1417  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1418  * needs to return 'not busy'. Otherwise, request stacking drivers
1419  * may hold requests forever.
1420  */
1421 static int scsi_lld_busy(struct request_queue *q)
1422 {
1423 	struct scsi_device *sdev = q->queuedata;
1424 	struct Scsi_Host *shost;
1425 
1426 	if (blk_queue_dying(q))
1427 		return 0;
1428 
1429 	shost = sdev->host;
1430 
1431 	/*
1432 	 * Ignore host/starget busy state.
1433 	 * Since block layer does not have a concept of fairness across
1434 	 * multiple queues, congestion of host/starget needs to be handled
1435 	 * in SCSI layer.
1436 	 */
1437 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1438 		return 1;
1439 
1440 	return 0;
1441 }
1442 
1443 /*
1444  * Kill a request for a dead device
1445  */
1446 static void scsi_kill_request(struct request *req, struct request_queue *q)
1447 {
1448 	struct scsi_cmnd *cmd = req->special;
1449 	struct scsi_device *sdev;
1450 	struct scsi_target *starget;
1451 	struct Scsi_Host *shost;
1452 
1453 	blk_start_request(req);
1454 
1455 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1456 
1457 	sdev = cmd->device;
1458 	starget = scsi_target(sdev);
1459 	shost = sdev->host;
1460 	scsi_init_cmd_errh(cmd);
1461 	cmd->result = DID_NO_CONNECT << 16;
1462 	atomic_inc(&cmd->device->iorequest_cnt);
1463 
1464 	/*
1465 	 * SCSI request completion path will do scsi_device_unbusy(),
1466 	 * bump busy counts.  To bump the counters, we need to dance
1467 	 * with the locks as normal issue path does.
1468 	 */
1469 	sdev->device_busy++;
1470 	spin_unlock(sdev->request_queue->queue_lock);
1471 	spin_lock(shost->host_lock);
1472 	shost->host_busy++;
1473 	starget->target_busy++;
1474 	spin_unlock(shost->host_lock);
1475 	spin_lock(sdev->request_queue->queue_lock);
1476 
1477 	blk_complete_request(req);
1478 }
1479 
1480 static void scsi_softirq_done(struct request *rq)
1481 {
1482 	struct scsi_cmnd *cmd = rq->special;
1483 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1484 	int disposition;
1485 
1486 	INIT_LIST_HEAD(&cmd->eh_entry);
1487 
1488 	atomic_inc(&cmd->device->iodone_cnt);
1489 	if (cmd->result)
1490 		atomic_inc(&cmd->device->ioerr_cnt);
1491 
1492 	disposition = scsi_decide_disposition(cmd);
1493 	if (disposition != SUCCESS &&
1494 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1495 		sdev_printk(KERN_ERR, cmd->device,
1496 			    "timing out command, waited %lus\n",
1497 			    wait_for/HZ);
1498 		disposition = SUCCESS;
1499 	}
1500 
1501 	scsi_log_completion(cmd, disposition);
1502 
1503 	switch (disposition) {
1504 		case SUCCESS:
1505 			scsi_finish_command(cmd);
1506 			break;
1507 		case NEEDS_RETRY:
1508 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1509 			break;
1510 		case ADD_TO_MLQUEUE:
1511 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1512 			break;
1513 		default:
1514 			if (!scsi_eh_scmd_add(cmd, 0))
1515 				scsi_finish_command(cmd);
1516 	}
1517 }
1518 
1519 /*
1520  * Function:    scsi_request_fn()
1521  *
1522  * Purpose:     Main strategy routine for SCSI.
1523  *
1524  * Arguments:   q       - Pointer to actual queue.
1525  *
1526  * Returns:     Nothing
1527  *
1528  * Lock status: IO request lock assumed to be held when called.
1529  */
1530 static void scsi_request_fn(struct request_queue *q)
1531 {
1532 	struct scsi_device *sdev = q->queuedata;
1533 	struct Scsi_Host *shost;
1534 	struct scsi_cmnd *cmd;
1535 	struct request *req;
1536 
1537 	if(!get_device(&sdev->sdev_gendev))
1538 		/* We must be tearing the block queue down already */
1539 		return;
1540 
1541 	/*
1542 	 * To start with, we keep looping until the queue is empty, or until
1543 	 * the host is no longer able to accept any more requests.
1544 	 */
1545 	shost = sdev->host;
1546 	for (;;) {
1547 		int rtn;
1548 		/*
1549 		 * get next queueable request.  We do this early to make sure
1550 		 * that the request is fully prepared even if we cannot
1551 		 * accept it.
1552 		 */
1553 		req = blk_peek_request(q);
1554 		if (!req || !scsi_dev_queue_ready(q, sdev))
1555 			break;
1556 
1557 		if (unlikely(!scsi_device_online(sdev))) {
1558 			sdev_printk(KERN_ERR, sdev,
1559 				    "rejecting I/O to offline device\n");
1560 			scsi_kill_request(req, q);
1561 			continue;
1562 		}
1563 
1564 
1565 		/*
1566 		 * Remove the request from the request list.
1567 		 */
1568 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1569 			blk_start_request(req);
1570 		sdev->device_busy++;
1571 
1572 		spin_unlock(q->queue_lock);
1573 		cmd = req->special;
1574 		if (unlikely(cmd == NULL)) {
1575 			printk(KERN_CRIT "impossible request in %s.\n"
1576 					 "please mail a stack trace to "
1577 					 "linux-scsi@vger.kernel.org\n",
1578 					 __func__);
1579 			blk_dump_rq_flags(req, "foo");
1580 			BUG();
1581 		}
1582 		spin_lock(shost->host_lock);
1583 
1584 		/*
1585 		 * We hit this when the driver is using a host wide
1586 		 * tag map. For device level tag maps the queue_depth check
1587 		 * in the device ready fn would prevent us from trying
1588 		 * to allocate a tag. Since the map is a shared host resource
1589 		 * we add the dev to the starved list so it eventually gets
1590 		 * a run when a tag is freed.
1591 		 */
1592 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1593 			if (list_empty(&sdev->starved_entry))
1594 				list_add_tail(&sdev->starved_entry,
1595 					      &shost->starved_list);
1596 			goto not_ready;
1597 		}
1598 
1599 		if (!scsi_target_queue_ready(shost, sdev))
1600 			goto not_ready;
1601 
1602 		if (!scsi_host_queue_ready(q, shost, sdev))
1603 			goto not_ready;
1604 
1605 		scsi_target(sdev)->target_busy++;
1606 		shost->host_busy++;
1607 
1608 		/*
1609 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1610 		 *		take the lock again.
1611 		 */
1612 		spin_unlock_irq(shost->host_lock);
1613 
1614 		/*
1615 		 * Finally, initialize any error handling parameters, and set up
1616 		 * the timers for timeouts.
1617 		 */
1618 		scsi_init_cmd_errh(cmd);
1619 
1620 		/*
1621 		 * Dispatch the command to the low-level driver.
1622 		 */
1623 		rtn = scsi_dispatch_cmd(cmd);
1624 		spin_lock_irq(q->queue_lock);
1625 		if (rtn)
1626 			goto out_delay;
1627 	}
1628 
1629 	goto out;
1630 
1631  not_ready:
1632 	spin_unlock_irq(shost->host_lock);
1633 
1634 	/*
1635 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1636 	 * must return with queue_lock held.
1637 	 *
1638 	 * Decrementing device_busy without checking it is OK, as all such
1639 	 * cases (host limits or settings) should run the queue at some
1640 	 * later time.
1641 	 */
1642 	spin_lock_irq(q->queue_lock);
1643 	blk_requeue_request(q, req);
1644 	sdev->device_busy--;
1645 out_delay:
1646 	if (sdev->device_busy == 0)
1647 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1648 out:
1649 	/* must be careful here...if we trigger the ->remove() function
1650 	 * we cannot be holding the q lock */
1651 	spin_unlock_irq(q->queue_lock);
1652 	put_device(&sdev->sdev_gendev);
1653 	spin_lock_irq(q->queue_lock);
1654 }
1655 
1656 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1657 {
1658 	struct device *host_dev;
1659 	u64 bounce_limit = 0xffffffff;
1660 
1661 	if (shost->unchecked_isa_dma)
1662 		return BLK_BOUNCE_ISA;
1663 	/*
1664 	 * Platforms with virtual-DMA translation
1665 	 * hardware have no practical limit.
1666 	 */
1667 	if (!PCI_DMA_BUS_IS_PHYS)
1668 		return BLK_BOUNCE_ANY;
1669 
1670 	host_dev = scsi_get_device(shost);
1671 	if (host_dev && host_dev->dma_mask)
1672 		bounce_limit = *host_dev->dma_mask;
1673 
1674 	return bounce_limit;
1675 }
1676 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1677 
1678 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1679 					 request_fn_proc *request_fn)
1680 {
1681 	struct request_queue *q;
1682 	struct device *dev = shost->dma_dev;
1683 
1684 	q = blk_init_queue(request_fn, NULL);
1685 	if (!q)
1686 		return NULL;
1687 
1688 	/*
1689 	 * this limit is imposed by hardware restrictions
1690 	 */
1691 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1692 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1693 
1694 	if (scsi_host_prot_dma(shost)) {
1695 		shost->sg_prot_tablesize =
1696 			min_not_zero(shost->sg_prot_tablesize,
1697 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1698 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1699 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1700 	}
1701 
1702 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1703 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1704 	blk_queue_segment_boundary(q, shost->dma_boundary);
1705 	dma_set_seg_boundary(dev, shost->dma_boundary);
1706 
1707 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1708 
1709 	if (!shost->use_clustering)
1710 		q->limits.cluster = 0;
1711 
1712 	/*
1713 	 * set a reasonable default alignment on word boundaries: the
1714 	 * host and device may alter it using
1715 	 * blk_queue_update_dma_alignment() later.
1716 	 */
1717 	blk_queue_dma_alignment(q, 0x03);
1718 
1719 	return q;
1720 }
1721 EXPORT_SYMBOL(__scsi_alloc_queue);
1722 
1723 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1724 {
1725 	struct request_queue *q;
1726 
1727 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1728 	if (!q)
1729 		return NULL;
1730 
1731 	blk_queue_prep_rq(q, scsi_prep_fn);
1732 	blk_queue_softirq_done(q, scsi_softirq_done);
1733 	blk_queue_rq_timed_out(q, scsi_times_out);
1734 	blk_queue_lld_busy(q, scsi_lld_busy);
1735 	return q;
1736 }
1737 
1738 /*
1739  * Function:    scsi_block_requests()
1740  *
1741  * Purpose:     Utility function used by low-level drivers to prevent further
1742  *		commands from being queued to the device.
1743  *
1744  * Arguments:   shost       - Host in question
1745  *
1746  * Returns:     Nothing
1747  *
1748  * Lock status: No locks are assumed held.
1749  *
1750  * Notes:       There is no timer nor any other means by which the requests
1751  *		get unblocked other than the low-level driver calling
1752  *		scsi_unblock_requests().
1753  */
1754 void scsi_block_requests(struct Scsi_Host *shost)
1755 {
1756 	shost->host_self_blocked = 1;
1757 }
1758 EXPORT_SYMBOL(scsi_block_requests);
1759 
1760 /*
1761  * Function:    scsi_unblock_requests()
1762  *
1763  * Purpose:     Utility function used by low-level drivers to allow further
1764  *		commands from being queued to the device.
1765  *
1766  * Arguments:   shost       - Host in question
1767  *
1768  * Returns:     Nothing
1769  *
1770  * Lock status: No locks are assumed held.
1771  *
1772  * Notes:       There is no timer nor any other means by which the requests
1773  *		get unblocked other than the low-level driver calling
1774  *		scsi_unblock_requests().
1775  *
1776  *		This is done as an API function so that changes to the
1777  *		internals of the scsi mid-layer won't require wholesale
1778  *		changes to drivers that use this feature.
1779  */
1780 void scsi_unblock_requests(struct Scsi_Host *shost)
1781 {
1782 	shost->host_self_blocked = 0;
1783 	scsi_run_host_queues(shost);
1784 }
1785 EXPORT_SYMBOL(scsi_unblock_requests);
1786 
1787 int __init scsi_init_queue(void)
1788 {
1789 	int i;
1790 
1791 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1792 					   sizeof(struct scsi_data_buffer),
1793 					   0, 0, NULL);
1794 	if (!scsi_sdb_cache) {
1795 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1796 		return -ENOMEM;
1797 	}
1798 
1799 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1800 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1801 		int size = sgp->size * sizeof(struct scatterlist);
1802 
1803 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1804 				SLAB_HWCACHE_ALIGN, NULL);
1805 		if (!sgp->slab) {
1806 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1807 					sgp->name);
1808 			goto cleanup_sdb;
1809 		}
1810 
1811 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1812 						     sgp->slab);
1813 		if (!sgp->pool) {
1814 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1815 					sgp->name);
1816 			goto cleanup_sdb;
1817 		}
1818 	}
1819 
1820 	return 0;
1821 
1822 cleanup_sdb:
1823 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1824 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1825 		if (sgp->pool)
1826 			mempool_destroy(sgp->pool);
1827 		if (sgp->slab)
1828 			kmem_cache_destroy(sgp->slab);
1829 	}
1830 	kmem_cache_destroy(scsi_sdb_cache);
1831 
1832 	return -ENOMEM;
1833 }
1834 
1835 void scsi_exit_queue(void)
1836 {
1837 	int i;
1838 
1839 	kmem_cache_destroy(scsi_sdb_cache);
1840 
1841 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1842 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1843 		mempool_destroy(sgp->pool);
1844 		kmem_cache_destroy(sgp->slab);
1845 	}
1846 }
1847 
1848 /**
1849  *	scsi_mode_select - issue a mode select
1850  *	@sdev:	SCSI device to be queried
1851  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1852  *	@sp:	Save page bit (0 == don't save, 1 == save)
1853  *	@modepage: mode page being requested
1854  *	@buffer: request buffer (may not be smaller than eight bytes)
1855  *	@len:	length of request buffer.
1856  *	@timeout: command timeout
1857  *	@retries: number of retries before failing
1858  *	@data: returns a structure abstracting the mode header data
1859  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1860  *		must be SCSI_SENSE_BUFFERSIZE big.
1861  *
1862  *	Returns zero if successful; negative error number or scsi
1863  *	status on error
1864  *
1865  */
1866 int
1867 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1868 		 unsigned char *buffer, int len, int timeout, int retries,
1869 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1870 {
1871 	unsigned char cmd[10];
1872 	unsigned char *real_buffer;
1873 	int ret;
1874 
1875 	memset(cmd, 0, sizeof(cmd));
1876 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1877 
1878 	if (sdev->use_10_for_ms) {
1879 		if (len > 65535)
1880 			return -EINVAL;
1881 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1882 		if (!real_buffer)
1883 			return -ENOMEM;
1884 		memcpy(real_buffer + 8, buffer, len);
1885 		len += 8;
1886 		real_buffer[0] = 0;
1887 		real_buffer[1] = 0;
1888 		real_buffer[2] = data->medium_type;
1889 		real_buffer[3] = data->device_specific;
1890 		real_buffer[4] = data->longlba ? 0x01 : 0;
1891 		real_buffer[5] = 0;
1892 		real_buffer[6] = data->block_descriptor_length >> 8;
1893 		real_buffer[7] = data->block_descriptor_length;
1894 
1895 		cmd[0] = MODE_SELECT_10;
1896 		cmd[7] = len >> 8;
1897 		cmd[8] = len;
1898 	} else {
1899 		if (len > 255 || data->block_descriptor_length > 255 ||
1900 		    data->longlba)
1901 			return -EINVAL;
1902 
1903 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1904 		if (!real_buffer)
1905 			return -ENOMEM;
1906 		memcpy(real_buffer + 4, buffer, len);
1907 		len += 4;
1908 		real_buffer[0] = 0;
1909 		real_buffer[1] = data->medium_type;
1910 		real_buffer[2] = data->device_specific;
1911 		real_buffer[3] = data->block_descriptor_length;
1912 
1913 
1914 		cmd[0] = MODE_SELECT;
1915 		cmd[4] = len;
1916 	}
1917 
1918 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1919 			       sshdr, timeout, retries, NULL);
1920 	kfree(real_buffer);
1921 	return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(scsi_mode_select);
1924 
1925 /**
1926  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1927  *	@sdev:	SCSI device to be queried
1928  *	@dbd:	set if mode sense will allow block descriptors to be returned
1929  *	@modepage: mode page being requested
1930  *	@buffer: request buffer (may not be smaller than eight bytes)
1931  *	@len:	length of request buffer.
1932  *	@timeout: command timeout
1933  *	@retries: number of retries before failing
1934  *	@data: returns a structure abstracting the mode header data
1935  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1936  *		must be SCSI_SENSE_BUFFERSIZE big.
1937  *
1938  *	Returns zero if unsuccessful, or the header offset (either 4
1939  *	or 8 depending on whether a six or ten byte command was
1940  *	issued) if successful.
1941  */
1942 int
1943 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1944 		  unsigned char *buffer, int len, int timeout, int retries,
1945 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1946 {
1947 	unsigned char cmd[12];
1948 	int use_10_for_ms;
1949 	int header_length;
1950 	int result;
1951 	struct scsi_sense_hdr my_sshdr;
1952 
1953 	memset(data, 0, sizeof(*data));
1954 	memset(&cmd[0], 0, 12);
1955 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1956 	cmd[2] = modepage;
1957 
1958 	/* caller might not be interested in sense, but we need it */
1959 	if (!sshdr)
1960 		sshdr = &my_sshdr;
1961 
1962  retry:
1963 	use_10_for_ms = sdev->use_10_for_ms;
1964 
1965 	if (use_10_for_ms) {
1966 		if (len < 8)
1967 			len = 8;
1968 
1969 		cmd[0] = MODE_SENSE_10;
1970 		cmd[8] = len;
1971 		header_length = 8;
1972 	} else {
1973 		if (len < 4)
1974 			len = 4;
1975 
1976 		cmd[0] = MODE_SENSE;
1977 		cmd[4] = len;
1978 		header_length = 4;
1979 	}
1980 
1981 	memset(buffer, 0, len);
1982 
1983 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1984 				  sshdr, timeout, retries, NULL);
1985 
1986 	/* This code looks awful: what it's doing is making sure an
1987 	 * ILLEGAL REQUEST sense return identifies the actual command
1988 	 * byte as the problem.  MODE_SENSE commands can return
1989 	 * ILLEGAL REQUEST if the code page isn't supported */
1990 
1991 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1992 	    (driver_byte(result) & DRIVER_SENSE)) {
1993 		if (scsi_sense_valid(sshdr)) {
1994 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1995 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1996 				/*
1997 				 * Invalid command operation code
1998 				 */
1999 				sdev->use_10_for_ms = 0;
2000 				goto retry;
2001 			}
2002 		}
2003 	}
2004 
2005 	if(scsi_status_is_good(result)) {
2006 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2007 			     (modepage == 6 || modepage == 8))) {
2008 			/* Initio breakage? */
2009 			header_length = 0;
2010 			data->length = 13;
2011 			data->medium_type = 0;
2012 			data->device_specific = 0;
2013 			data->longlba = 0;
2014 			data->block_descriptor_length = 0;
2015 		} else if(use_10_for_ms) {
2016 			data->length = buffer[0]*256 + buffer[1] + 2;
2017 			data->medium_type = buffer[2];
2018 			data->device_specific = buffer[3];
2019 			data->longlba = buffer[4] & 0x01;
2020 			data->block_descriptor_length = buffer[6]*256
2021 				+ buffer[7];
2022 		} else {
2023 			data->length = buffer[0] + 1;
2024 			data->medium_type = buffer[1];
2025 			data->device_specific = buffer[2];
2026 			data->block_descriptor_length = buffer[3];
2027 		}
2028 		data->header_length = header_length;
2029 	}
2030 
2031 	return result;
2032 }
2033 EXPORT_SYMBOL(scsi_mode_sense);
2034 
2035 /**
2036  *	scsi_test_unit_ready - test if unit is ready
2037  *	@sdev:	scsi device to change the state of.
2038  *	@timeout: command timeout
2039  *	@retries: number of retries before failing
2040  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2041  *		returning sense. Make sure that this is cleared before passing
2042  *		in.
2043  *
2044  *	Returns zero if unsuccessful or an error if TUR failed.  For
2045  *	removable media, UNIT_ATTENTION sets ->changed flag.
2046  **/
2047 int
2048 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2049 		     struct scsi_sense_hdr *sshdr_external)
2050 {
2051 	char cmd[] = {
2052 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2053 	};
2054 	struct scsi_sense_hdr *sshdr;
2055 	int result;
2056 
2057 	if (!sshdr_external)
2058 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2059 	else
2060 		sshdr = sshdr_external;
2061 
2062 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2063 	do {
2064 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2065 					  timeout, retries, NULL);
2066 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2067 		    sshdr->sense_key == UNIT_ATTENTION)
2068 			sdev->changed = 1;
2069 	} while (scsi_sense_valid(sshdr) &&
2070 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2071 
2072 	if (!sshdr_external)
2073 		kfree(sshdr);
2074 	return result;
2075 }
2076 EXPORT_SYMBOL(scsi_test_unit_ready);
2077 
2078 /**
2079  *	scsi_device_set_state - Take the given device through the device state model.
2080  *	@sdev:	scsi device to change the state of.
2081  *	@state:	state to change to.
2082  *
2083  *	Returns zero if unsuccessful or an error if the requested
2084  *	transition is illegal.
2085  */
2086 int
2087 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2088 {
2089 	enum scsi_device_state oldstate = sdev->sdev_state;
2090 
2091 	if (state == oldstate)
2092 		return 0;
2093 
2094 	switch (state) {
2095 	case SDEV_CREATED:
2096 		switch (oldstate) {
2097 		case SDEV_CREATED_BLOCK:
2098 			break;
2099 		default:
2100 			goto illegal;
2101 		}
2102 		break;
2103 
2104 	case SDEV_RUNNING:
2105 		switch (oldstate) {
2106 		case SDEV_CREATED:
2107 		case SDEV_OFFLINE:
2108 		case SDEV_TRANSPORT_OFFLINE:
2109 		case SDEV_QUIESCE:
2110 		case SDEV_BLOCK:
2111 			break;
2112 		default:
2113 			goto illegal;
2114 		}
2115 		break;
2116 
2117 	case SDEV_QUIESCE:
2118 		switch (oldstate) {
2119 		case SDEV_RUNNING:
2120 		case SDEV_OFFLINE:
2121 		case SDEV_TRANSPORT_OFFLINE:
2122 			break;
2123 		default:
2124 			goto illegal;
2125 		}
2126 		break;
2127 
2128 	case SDEV_OFFLINE:
2129 	case SDEV_TRANSPORT_OFFLINE:
2130 		switch (oldstate) {
2131 		case SDEV_CREATED:
2132 		case SDEV_RUNNING:
2133 		case SDEV_QUIESCE:
2134 		case SDEV_BLOCK:
2135 			break;
2136 		default:
2137 			goto illegal;
2138 		}
2139 		break;
2140 
2141 	case SDEV_BLOCK:
2142 		switch (oldstate) {
2143 		case SDEV_RUNNING:
2144 		case SDEV_CREATED_BLOCK:
2145 			break;
2146 		default:
2147 			goto illegal;
2148 		}
2149 		break;
2150 
2151 	case SDEV_CREATED_BLOCK:
2152 		switch (oldstate) {
2153 		case SDEV_CREATED:
2154 			break;
2155 		default:
2156 			goto illegal;
2157 		}
2158 		break;
2159 
2160 	case SDEV_CANCEL:
2161 		switch (oldstate) {
2162 		case SDEV_CREATED:
2163 		case SDEV_RUNNING:
2164 		case SDEV_QUIESCE:
2165 		case SDEV_OFFLINE:
2166 		case SDEV_TRANSPORT_OFFLINE:
2167 		case SDEV_BLOCK:
2168 			break;
2169 		default:
2170 			goto illegal;
2171 		}
2172 		break;
2173 
2174 	case SDEV_DEL:
2175 		switch (oldstate) {
2176 		case SDEV_CREATED:
2177 		case SDEV_RUNNING:
2178 		case SDEV_OFFLINE:
2179 		case SDEV_TRANSPORT_OFFLINE:
2180 		case SDEV_CANCEL:
2181 			break;
2182 		default:
2183 			goto illegal;
2184 		}
2185 		break;
2186 
2187 	}
2188 	sdev->sdev_state = state;
2189 	return 0;
2190 
2191  illegal:
2192 	SCSI_LOG_ERROR_RECOVERY(1,
2193 				sdev_printk(KERN_ERR, sdev,
2194 					    "Illegal state transition %s->%s\n",
2195 					    scsi_device_state_name(oldstate),
2196 					    scsi_device_state_name(state))
2197 				);
2198 	return -EINVAL;
2199 }
2200 EXPORT_SYMBOL(scsi_device_set_state);
2201 
2202 /**
2203  * 	sdev_evt_emit - emit a single SCSI device uevent
2204  *	@sdev: associated SCSI device
2205  *	@evt: event to emit
2206  *
2207  *	Send a single uevent (scsi_event) to the associated scsi_device.
2208  */
2209 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2210 {
2211 	int idx = 0;
2212 	char *envp[3];
2213 
2214 	switch (evt->evt_type) {
2215 	case SDEV_EVT_MEDIA_CHANGE:
2216 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2217 		break;
2218 
2219 	default:
2220 		/* do nothing */
2221 		break;
2222 	}
2223 
2224 	envp[idx++] = NULL;
2225 
2226 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2227 }
2228 
2229 /**
2230  * 	sdev_evt_thread - send a uevent for each scsi event
2231  *	@work: work struct for scsi_device
2232  *
2233  *	Dispatch queued events to their associated scsi_device kobjects
2234  *	as uevents.
2235  */
2236 void scsi_evt_thread(struct work_struct *work)
2237 {
2238 	struct scsi_device *sdev;
2239 	LIST_HEAD(event_list);
2240 
2241 	sdev = container_of(work, struct scsi_device, event_work);
2242 
2243 	while (1) {
2244 		struct scsi_event *evt;
2245 		struct list_head *this, *tmp;
2246 		unsigned long flags;
2247 
2248 		spin_lock_irqsave(&sdev->list_lock, flags);
2249 		list_splice_init(&sdev->event_list, &event_list);
2250 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2251 
2252 		if (list_empty(&event_list))
2253 			break;
2254 
2255 		list_for_each_safe(this, tmp, &event_list) {
2256 			evt = list_entry(this, struct scsi_event, node);
2257 			list_del(&evt->node);
2258 			scsi_evt_emit(sdev, evt);
2259 			kfree(evt);
2260 		}
2261 	}
2262 }
2263 
2264 /**
2265  * 	sdev_evt_send - send asserted event to uevent thread
2266  *	@sdev: scsi_device event occurred on
2267  *	@evt: event to send
2268  *
2269  *	Assert scsi device event asynchronously.
2270  */
2271 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2272 {
2273 	unsigned long flags;
2274 
2275 #if 0
2276 	/* FIXME: currently this check eliminates all media change events
2277 	 * for polled devices.  Need to update to discriminate between AN
2278 	 * and polled events */
2279 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2280 		kfree(evt);
2281 		return;
2282 	}
2283 #endif
2284 
2285 	spin_lock_irqsave(&sdev->list_lock, flags);
2286 	list_add_tail(&evt->node, &sdev->event_list);
2287 	schedule_work(&sdev->event_work);
2288 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(sdev_evt_send);
2291 
2292 /**
2293  * 	sdev_evt_alloc - allocate a new scsi event
2294  *	@evt_type: type of event to allocate
2295  *	@gfpflags: GFP flags for allocation
2296  *
2297  *	Allocates and returns a new scsi_event.
2298  */
2299 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2300 				  gfp_t gfpflags)
2301 {
2302 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2303 	if (!evt)
2304 		return NULL;
2305 
2306 	evt->evt_type = evt_type;
2307 	INIT_LIST_HEAD(&evt->node);
2308 
2309 	/* evt_type-specific initialization, if any */
2310 	switch (evt_type) {
2311 	case SDEV_EVT_MEDIA_CHANGE:
2312 	default:
2313 		/* do nothing */
2314 		break;
2315 	}
2316 
2317 	return evt;
2318 }
2319 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2320 
2321 /**
2322  * 	sdev_evt_send_simple - send asserted event to uevent thread
2323  *	@sdev: scsi_device event occurred on
2324  *	@evt_type: type of event to send
2325  *	@gfpflags: GFP flags for allocation
2326  *
2327  *	Assert scsi device event asynchronously, given an event type.
2328  */
2329 void sdev_evt_send_simple(struct scsi_device *sdev,
2330 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2331 {
2332 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2333 	if (!evt) {
2334 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2335 			    evt_type);
2336 		return;
2337 	}
2338 
2339 	sdev_evt_send(sdev, evt);
2340 }
2341 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2342 
2343 /**
2344  *	scsi_device_quiesce - Block user issued commands.
2345  *	@sdev:	scsi device to quiesce.
2346  *
2347  *	This works by trying to transition to the SDEV_QUIESCE state
2348  *	(which must be a legal transition).  When the device is in this
2349  *	state, only special requests will be accepted, all others will
2350  *	be deferred.  Since special requests may also be requeued requests,
2351  *	a successful return doesn't guarantee the device will be
2352  *	totally quiescent.
2353  *
2354  *	Must be called with user context, may sleep.
2355  *
2356  *	Returns zero if unsuccessful or an error if not.
2357  */
2358 int
2359 scsi_device_quiesce(struct scsi_device *sdev)
2360 {
2361 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2362 	if (err)
2363 		return err;
2364 
2365 	scsi_run_queue(sdev->request_queue);
2366 	while (sdev->device_busy) {
2367 		msleep_interruptible(200);
2368 		scsi_run_queue(sdev->request_queue);
2369 	}
2370 	return 0;
2371 }
2372 EXPORT_SYMBOL(scsi_device_quiesce);
2373 
2374 /**
2375  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2376  *	@sdev:	scsi device to resume.
2377  *
2378  *	Moves the device from quiesced back to running and restarts the
2379  *	queues.
2380  *
2381  *	Must be called with user context, may sleep.
2382  */
2383 void scsi_device_resume(struct scsi_device *sdev)
2384 {
2385 	/* check if the device state was mutated prior to resume, and if
2386 	 * so assume the state is being managed elsewhere (for example
2387 	 * device deleted during suspend)
2388 	 */
2389 	if (sdev->sdev_state != SDEV_QUIESCE ||
2390 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2391 		return;
2392 	scsi_run_queue(sdev->request_queue);
2393 }
2394 EXPORT_SYMBOL(scsi_device_resume);
2395 
2396 static void
2397 device_quiesce_fn(struct scsi_device *sdev, void *data)
2398 {
2399 	scsi_device_quiesce(sdev);
2400 }
2401 
2402 void
2403 scsi_target_quiesce(struct scsi_target *starget)
2404 {
2405 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2406 }
2407 EXPORT_SYMBOL(scsi_target_quiesce);
2408 
2409 static void
2410 device_resume_fn(struct scsi_device *sdev, void *data)
2411 {
2412 	scsi_device_resume(sdev);
2413 }
2414 
2415 void
2416 scsi_target_resume(struct scsi_target *starget)
2417 {
2418 	starget_for_each_device(starget, NULL, device_resume_fn);
2419 }
2420 EXPORT_SYMBOL(scsi_target_resume);
2421 
2422 /**
2423  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2424  * @sdev:	device to block
2425  *
2426  * Block request made by scsi lld's to temporarily stop all
2427  * scsi commands on the specified device.  Called from interrupt
2428  * or normal process context.
2429  *
2430  * Returns zero if successful or error if not
2431  *
2432  * Notes:
2433  *	This routine transitions the device to the SDEV_BLOCK state
2434  *	(which must be a legal transition).  When the device is in this
2435  *	state, all commands are deferred until the scsi lld reenables
2436  *	the device with scsi_device_unblock or device_block_tmo fires.
2437  */
2438 int
2439 scsi_internal_device_block(struct scsi_device *sdev)
2440 {
2441 	struct request_queue *q = sdev->request_queue;
2442 	unsigned long flags;
2443 	int err = 0;
2444 
2445 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2446 	if (err) {
2447 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2448 
2449 		if (err)
2450 			return err;
2451 	}
2452 
2453 	/*
2454 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2455 	 * block layer from calling the midlayer with this device's
2456 	 * request queue.
2457 	 */
2458 	spin_lock_irqsave(q->queue_lock, flags);
2459 	blk_stop_queue(q);
2460 	spin_unlock_irqrestore(q->queue_lock, flags);
2461 
2462 	return 0;
2463 }
2464 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2465 
2466 /**
2467  * scsi_internal_device_unblock - resume a device after a block request
2468  * @sdev:	device to resume
2469  * @new_state:	state to set devices to after unblocking
2470  *
2471  * Called by scsi lld's or the midlayer to restart the device queue
2472  * for the previously suspended scsi device.  Called from interrupt or
2473  * normal process context.
2474  *
2475  * Returns zero if successful or error if not.
2476  *
2477  * Notes:
2478  *	This routine transitions the device to the SDEV_RUNNING state
2479  *	or to one of the offline states (which must be a legal transition)
2480  *	allowing the midlayer to goose the queue for this device.
2481  */
2482 int
2483 scsi_internal_device_unblock(struct scsi_device *sdev,
2484 			     enum scsi_device_state new_state)
2485 {
2486 	struct request_queue *q = sdev->request_queue;
2487 	unsigned long flags;
2488 
2489 	/*
2490 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2491 	 * offlined states and goose the device queue if successful.
2492 	 */
2493 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2494 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2495 		sdev->sdev_state = new_state;
2496 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2497 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2498 		    new_state == SDEV_OFFLINE)
2499 			sdev->sdev_state = new_state;
2500 		else
2501 			sdev->sdev_state = SDEV_CREATED;
2502 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2503 		 sdev->sdev_state != SDEV_OFFLINE)
2504 		return -EINVAL;
2505 
2506 	spin_lock_irqsave(q->queue_lock, flags);
2507 	blk_start_queue(q);
2508 	spin_unlock_irqrestore(q->queue_lock, flags);
2509 
2510 	return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2513 
2514 static void
2515 device_block(struct scsi_device *sdev, void *data)
2516 {
2517 	scsi_internal_device_block(sdev);
2518 }
2519 
2520 static int
2521 target_block(struct device *dev, void *data)
2522 {
2523 	if (scsi_is_target_device(dev))
2524 		starget_for_each_device(to_scsi_target(dev), NULL,
2525 					device_block);
2526 	return 0;
2527 }
2528 
2529 void
2530 scsi_target_block(struct device *dev)
2531 {
2532 	if (scsi_is_target_device(dev))
2533 		starget_for_each_device(to_scsi_target(dev), NULL,
2534 					device_block);
2535 	else
2536 		device_for_each_child(dev, NULL, target_block);
2537 }
2538 EXPORT_SYMBOL_GPL(scsi_target_block);
2539 
2540 static void
2541 device_unblock(struct scsi_device *sdev, void *data)
2542 {
2543 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2544 }
2545 
2546 static int
2547 target_unblock(struct device *dev, void *data)
2548 {
2549 	if (scsi_is_target_device(dev))
2550 		starget_for_each_device(to_scsi_target(dev), data,
2551 					device_unblock);
2552 	return 0;
2553 }
2554 
2555 void
2556 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2557 {
2558 	if (scsi_is_target_device(dev))
2559 		starget_for_each_device(to_scsi_target(dev), &new_state,
2560 					device_unblock);
2561 	else
2562 		device_for_each_child(dev, &new_state, target_unblock);
2563 }
2564 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2565 
2566 /**
2567  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2568  * @sgl:	scatter-gather list
2569  * @sg_count:	number of segments in sg
2570  * @offset:	offset in bytes into sg, on return offset into the mapped area
2571  * @len:	bytes to map, on return number of bytes mapped
2572  *
2573  * Returns virtual address of the start of the mapped page
2574  */
2575 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2576 			  size_t *offset, size_t *len)
2577 {
2578 	int i;
2579 	size_t sg_len = 0, len_complete = 0;
2580 	struct scatterlist *sg;
2581 	struct page *page;
2582 
2583 	WARN_ON(!irqs_disabled());
2584 
2585 	for_each_sg(sgl, sg, sg_count, i) {
2586 		len_complete = sg_len; /* Complete sg-entries */
2587 		sg_len += sg->length;
2588 		if (sg_len > *offset)
2589 			break;
2590 	}
2591 
2592 	if (unlikely(i == sg_count)) {
2593 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2594 			"elements %d\n",
2595 		       __func__, sg_len, *offset, sg_count);
2596 		WARN_ON(1);
2597 		return NULL;
2598 	}
2599 
2600 	/* Offset starting from the beginning of first page in this sg-entry */
2601 	*offset = *offset - len_complete + sg->offset;
2602 
2603 	/* Assumption: contiguous pages can be accessed as "page + i" */
2604 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2605 	*offset &= ~PAGE_MASK;
2606 
2607 	/* Bytes in this sg-entry from *offset to the end of the page */
2608 	sg_len = PAGE_SIZE - *offset;
2609 	if (*len > sg_len)
2610 		*len = sg_len;
2611 
2612 	return kmap_atomic(page);
2613 }
2614 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2615 
2616 /**
2617  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2618  * @virt:	virtual address to be unmapped
2619  */
2620 void scsi_kunmap_atomic_sg(void *virt)
2621 {
2622 	kunmap_atomic(virt);
2623 }
2624 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2625 
2626 void sdev_disable_disk_events(struct scsi_device *sdev)
2627 {
2628 	atomic_inc(&sdev->disk_events_disable_depth);
2629 }
2630 EXPORT_SYMBOL(sdev_disable_disk_events);
2631 
2632 void sdev_enable_disk_events(struct scsi_device *sdev)
2633 {
2634 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2635 		return;
2636 	atomic_dec(&sdev->disk_events_disable_depth);
2637 }
2638 EXPORT_SYMBOL(sdev_enable_disk_events);
2639