xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 96de2506)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		/*
195 		 * Before a SCSI command is dispatched,
196 		 * get_device(&sdev->sdev_gendev) is called and the host,
197 		 * target and device busy counters are increased. Since
198 		 * requeuing a request causes these actions to be repeated and
199 		 * since scsi_device_unbusy() has already been called,
200 		 * put_device(&device->sdev_gendev) must still be called. Call
201 		 * put_device() after blk_mq_requeue_request() to avoid that
202 		 * removal of the SCSI device can start before requeueing has
203 		 * happened.
204 		 */
205 		blk_mq_requeue_request(cmd->request, true);
206 		put_device(&device->sdev_gendev);
207 		return;
208 	}
209 	spin_lock_irqsave(q->queue_lock, flags);
210 	blk_requeue_request(q, cmd->request);
211 	kblockd_schedule_work(&device->requeue_work);
212 	spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214 
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236 	__scsi_queue_insert(cmd, reason, true);
237 }
238 
239 
240 /**
241  * __scsi_execute - insert request and wait for the result
242  * @sdev:	scsi device
243  * @cmd:	scsi command
244  * @data_direction: data direction
245  * @buffer:	data buffer
246  * @bufflen:	len of buffer
247  * @sense:	optional sense buffer
248  * @sshdr:	optional decoded sense header
249  * @timeout:	request timeout in seconds
250  * @retries:	number of times to retry request
251  * @flags:	flags for ->cmd_flags
252  * @rq_flags:	flags for ->rq_flags
253  * @resid:	optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 		 int data_direction, void *buffer, unsigned bufflen,
260 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 		 int *resid)
263 {
264 	struct request *req;
265 	struct scsi_request *rq;
266 	int ret = DRIVER_ERROR << 24;
267 
268 	req = blk_get_request(sdev->request_queue,
269 			data_direction == DMA_TO_DEVICE ?
270 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 	if (IS_ERR(req))
272 		return ret;
273 	rq = scsi_req(req);
274 
275 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
276 					buffer, bufflen, GFP_NOIO))
277 		goto out;
278 
279 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 	memcpy(rq->cmd, cmd, rq->cmd_len);
281 	rq->retries = retries;
282 	req->timeout = timeout;
283 	req->cmd_flags |= flags;
284 	req->rq_flags |= rq_flags | RQF_QUIET;
285 
286 	/*
287 	 * head injection *required* here otherwise quiesce won't work
288 	 */
289 	blk_execute_rq(req->q, NULL, req, 1);
290 
291 	/*
292 	 * Some devices (USB mass-storage in particular) may transfer
293 	 * garbage data together with a residue indicating that the data
294 	 * is invalid.  Prevent the garbage from being misinterpreted
295 	 * and prevent security leaks by zeroing out the excess data.
296 	 */
297 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299 
300 	if (resid)
301 		*resid = rq->resid_len;
302 	if (sense && rq->sense_len)
303 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 	if (sshdr)
305 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 	ret = rq->result;
307  out:
308 	blk_put_request(req);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL(__scsi_execute);
313 
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd	- command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327 	cmd->serial_number = 0;
328 	scsi_set_resid(cmd, 0);
329 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 	if (cmd->cmd_len == 0)
331 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333 
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345 	unsigned long flags;
346 
347 	rcu_read_lock();
348 	atomic_dec(&shost->host_busy);
349 	if (unlikely(scsi_host_in_recovery(shost))) {
350 		spin_lock_irqsave(shost->host_lock, flags);
351 		if (shost->host_failed || shost->host_eh_scheduled)
352 			scsi_eh_wakeup(shost);
353 		spin_unlock_irqrestore(shost->host_lock, flags);
354 	}
355 	rcu_read_unlock();
356 }
357 
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360 	struct Scsi_Host *shost = sdev->host;
361 	struct scsi_target *starget = scsi_target(sdev);
362 
363 	scsi_dec_host_busy(shost);
364 
365 	if (starget->can_queue > 0)
366 		atomic_dec(&starget->target_busy);
367 
368 	atomic_dec(&sdev->device_busy);
369 }
370 
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373 	if (q->mq_ops)
374 		blk_mq_run_hw_queues(q, false);
375 	else
376 		blk_run_queue(q);
377 }
378 
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388 	struct Scsi_Host *shost = current_sdev->host;
389 	struct scsi_device *sdev, *tmp;
390 	struct scsi_target *starget = scsi_target(current_sdev);
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	starget->starget_sdev_user = NULL;
395 	spin_unlock_irqrestore(shost->host_lock, flags);
396 
397 	/*
398 	 * Call blk_run_queue for all LUNs on the target, starting with
399 	 * current_sdev. We race with others (to set starget_sdev_user),
400 	 * but in most cases, we will be first. Ideally, each LU on the
401 	 * target would get some limited time or requests on the target.
402 	 */
403 	scsi_kick_queue(current_sdev->request_queue);
404 
405 	spin_lock_irqsave(shost->host_lock, flags);
406 	if (starget->starget_sdev_user)
407 		goto out;
408 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 			same_target_siblings) {
410 		if (sdev == current_sdev)
411 			continue;
412 		if (scsi_device_get(sdev))
413 			continue;
414 
415 		spin_unlock_irqrestore(shost->host_lock, flags);
416 		scsi_kick_queue(sdev->request_queue);
417 		spin_lock_irqsave(shost->host_lock, flags);
418 
419 		scsi_device_put(sdev);
420 	}
421  out:
422 	spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424 
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 		return true;
429 	if (atomic_read(&sdev->device_blocked) > 0)
430 		return true;
431 	return false;
432 }
433 
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436 	if (starget->can_queue > 0) {
437 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 			return true;
439 		if (atomic_read(&starget->target_blocked) > 0)
440 			return true;
441 	}
442 	return false;
443 }
444 
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447 	if (shost->can_queue > 0 &&
448 	    atomic_read(&shost->host_busy) >= shost->can_queue)
449 		return true;
450 	if (atomic_read(&shost->host_blocked) > 0)
451 		return true;
452 	if (shost->host_self_blocked)
453 		return true;
454 	return false;
455 }
456 
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459 	LIST_HEAD(starved_list);
460 	struct scsi_device *sdev;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(shost->host_lock, flags);
464 	list_splice_init(&shost->starved_list, &starved_list);
465 
466 	while (!list_empty(&starved_list)) {
467 		struct request_queue *slq;
468 
469 		/*
470 		 * As long as shost is accepting commands and we have
471 		 * starved queues, call blk_run_queue. scsi_request_fn
472 		 * drops the queue_lock and can add us back to the
473 		 * starved_list.
474 		 *
475 		 * host_lock protects the starved_list and starved_entry.
476 		 * scsi_request_fn must get the host_lock before checking
477 		 * or modifying starved_list or starved_entry.
478 		 */
479 		if (scsi_host_is_busy(shost))
480 			break;
481 
482 		sdev = list_entry(starved_list.next,
483 				  struct scsi_device, starved_entry);
484 		list_del_init(&sdev->starved_entry);
485 		if (scsi_target_is_busy(scsi_target(sdev))) {
486 			list_move_tail(&sdev->starved_entry,
487 				       &shost->starved_list);
488 			continue;
489 		}
490 
491 		/*
492 		 * Once we drop the host lock, a racing scsi_remove_device()
493 		 * call may remove the sdev from the starved list and destroy
494 		 * it and the queue.  Mitigate by taking a reference to the
495 		 * queue and never touching the sdev again after we drop the
496 		 * host lock.  Note: if __scsi_remove_device() invokes
497 		 * blk_cleanup_queue() before the queue is run from this
498 		 * function then blk_run_queue() will return immediately since
499 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500 		 */
501 		slq = sdev->request_queue;
502 		if (!blk_get_queue(slq))
503 			continue;
504 		spin_unlock_irqrestore(shost->host_lock, flags);
505 
506 		scsi_kick_queue(slq);
507 		blk_put_queue(slq);
508 
509 		spin_lock_irqsave(shost->host_lock, flags);
510 	}
511 	/* put any unprocessed entries back */
512 	list_splice(&starved_list, &shost->starved_list);
513 	spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515 
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530 	struct scsi_device *sdev = q->queuedata;
531 
532 	if (scsi_target(sdev)->single_lun)
533 		scsi_single_lun_run(sdev);
534 	if (!list_empty(&sdev->host->starved_list))
535 		scsi_starved_list_run(sdev->host);
536 
537 	if (q->mq_ops)
538 		blk_mq_run_hw_queues(q, false);
539 	else
540 		blk_run_queue(q);
541 }
542 
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545 	struct scsi_device *sdev;
546 	struct request_queue *q;
547 
548 	sdev = container_of(work, struct scsi_device, requeue_work);
549 	q = sdev->request_queue;
550 	scsi_run_queue(q);
551 }
552 
553 /*
554  * Function:	scsi_requeue_command()
555  *
556  * Purpose:	Handle post-processing of completed commands.
557  *
558  * Arguments:	q	- queue to operate on
559  *		cmd	- command that may need to be requeued.
560  *
561  * Returns:	Nothing
562  *
563  * Notes:	After command completion, there may be blocks left
564  *		over which weren't finished by the previous command
565  *		this can be for a number of reasons - the main one is
566  *		I/O errors in the middle of the request, in which case
567  *		we need to request the blocks that come after the bad
568  *		sector.
569  * Notes:	Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573 	struct scsi_device *sdev = cmd->device;
574 	struct request *req = cmd->request;
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(q->queue_lock, flags);
578 	blk_unprep_request(req);
579 	req->special = NULL;
580 	scsi_put_command(cmd);
581 	blk_requeue_request(q, req);
582 	spin_unlock_irqrestore(q->queue_lock, flags);
583 
584 	scsi_run_queue(q);
585 
586 	put_device(&sdev->sdev_gendev);
587 }
588 
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591 	struct scsi_device *sdev;
592 
593 	shost_for_each_device(sdev, shost)
594 		scsi_run_queue(sdev->request_queue);
595 }
596 
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599 	if (!blk_rq_is_passthrough(cmd->request)) {
600 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601 
602 		if (drv->uninit_command)
603 			drv->uninit_command(cmd);
604 	}
605 }
606 
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609 	struct scsi_data_buffer *sdb;
610 
611 	if (cmd->sdb.table.nents)
612 		sg_free_table_chained(&cmd->sdb.table, true);
613 	if (cmd->request->next_rq) {
614 		sdb = cmd->request->next_rq->special;
615 		if (sdb)
616 			sg_free_table_chained(&sdb->table, true);
617 	}
618 	if (scsi_prot_sg_count(cmd))
619 		sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621 
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624 	scsi_mq_free_sgtables(cmd);
625 	scsi_uninit_cmd(cmd);
626 	scsi_del_cmd_from_list(cmd);
627 }
628 
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd	- command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *		command, we must release resources allocated during
642  *		the __init_io() function.  Primarily this would involve
643  *		the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647 	if (cmd->sdb.table.nents)
648 		sg_free_table_chained(&cmd->sdb.table, false);
649 
650 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651 
652 	if (scsi_prot_sg_count(cmd))
653 		sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655 
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659 
660 	sg_free_table_chained(&bidi_sdb->table, false);
661 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 	cmd->request->next_rq->special = NULL;
663 }
664 
665 /* Returns false when no more bytes to process, true if there are more */
666 static bool scsi_end_request(struct request *req, blk_status_t error,
667 		unsigned int bytes, unsigned int bidi_bytes)
668 {
669 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
670 	struct scsi_device *sdev = cmd->device;
671 	struct request_queue *q = sdev->request_queue;
672 
673 	if (blk_update_request(req, error, bytes))
674 		return true;
675 
676 	/* Bidi request must be completed as a whole */
677 	if (unlikely(bidi_bytes) &&
678 	    blk_update_request(req->next_rq, error, bidi_bytes))
679 		return true;
680 
681 	if (blk_queue_add_random(q))
682 		add_disk_randomness(req->rq_disk);
683 
684 	if (!blk_rq_is_scsi(req)) {
685 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
686 		cmd->flags &= ~SCMD_INITIALIZED;
687 		destroy_rcu_head(&cmd->rcu);
688 	}
689 
690 	if (req->mq_ctx) {
691 		/*
692 		 * In the MQ case the command gets freed by __blk_mq_end_request,
693 		 * so we have to do all cleanup that depends on it earlier.
694 		 *
695 		 * We also can't kick the queues from irq context, so we
696 		 * will have to defer it to a workqueue.
697 		 */
698 		scsi_mq_uninit_cmd(cmd);
699 
700 		__blk_mq_end_request(req, error);
701 
702 		if (scsi_target(sdev)->single_lun ||
703 		    !list_empty(&sdev->host->starved_list))
704 			kblockd_schedule_work(&sdev->requeue_work);
705 		else
706 			blk_mq_run_hw_queues(q, true);
707 	} else {
708 		unsigned long flags;
709 
710 		if (bidi_bytes)
711 			scsi_release_bidi_buffers(cmd);
712 		scsi_release_buffers(cmd);
713 		scsi_put_command(cmd);
714 
715 		spin_lock_irqsave(q->queue_lock, flags);
716 		blk_finish_request(req, error);
717 		spin_unlock_irqrestore(q->queue_lock, flags);
718 
719 		scsi_run_queue(q);
720 	}
721 
722 	put_device(&sdev->sdev_gendev);
723 	return false;
724 }
725 
726 /**
727  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
728  * @cmd:	SCSI command
729  * @result:	scsi error code
730  *
731  * Translate a SCSI result code into a blk_status_t value. May reset the host
732  * byte of @cmd->result.
733  */
734 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
735 {
736 	switch (host_byte(result)) {
737 	case DID_OK:
738 		/*
739 		 * Also check the other bytes than the status byte in result
740 		 * to handle the case when a SCSI LLD sets result to
741 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
742 		 */
743 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
744 			return BLK_STS_OK;
745 		return BLK_STS_IOERR;
746 	case DID_TRANSPORT_FAILFAST:
747 		return BLK_STS_TRANSPORT;
748 	case DID_TARGET_FAILURE:
749 		set_host_byte(cmd, DID_OK);
750 		return BLK_STS_TARGET;
751 	case DID_NEXUS_FAILURE:
752 		return BLK_STS_NEXUS;
753 	case DID_ALLOC_FAILURE:
754 		set_host_byte(cmd, DID_OK);
755 		return BLK_STS_NOSPC;
756 	case DID_MEDIUM_ERROR:
757 		set_host_byte(cmd, DID_OK);
758 		return BLK_STS_MEDIUM;
759 	default:
760 		return BLK_STS_IOERR;
761 	}
762 }
763 
764 /* Helper for scsi_io_completion() when "reprep" action required. */
765 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
766 				      struct request_queue *q)
767 {
768 	/* A new command will be prepared and issued. */
769 	if (q->mq_ops) {
770 		scsi_mq_requeue_cmd(cmd);
771 	} else {
772 		/* Unprep request and put it back at head of the queue. */
773 		scsi_release_buffers(cmd);
774 		scsi_requeue_command(q, cmd);
775 	}
776 }
777 
778 /* Helper for scsi_io_completion() when special action required. */
779 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
780 {
781 	struct request_queue *q = cmd->device->request_queue;
782 	struct request *req = cmd->request;
783 	int level = 0;
784 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
785 	      ACTION_DELAYED_RETRY} action;
786 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
787 	struct scsi_sense_hdr sshdr;
788 	bool sense_valid;
789 	bool sense_current = true;      /* false implies "deferred sense" */
790 	blk_status_t blk_stat;
791 
792 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
793 	if (sense_valid)
794 		sense_current = !scsi_sense_is_deferred(&sshdr);
795 
796 	blk_stat = scsi_result_to_blk_status(cmd, result);
797 
798 	if (host_byte(result) == DID_RESET) {
799 		/* Third party bus reset or reset for error recovery
800 		 * reasons.  Just retry the command and see what
801 		 * happens.
802 		 */
803 		action = ACTION_RETRY;
804 	} else if (sense_valid && sense_current) {
805 		switch (sshdr.sense_key) {
806 		case UNIT_ATTENTION:
807 			if (cmd->device->removable) {
808 				/* Detected disc change.  Set a bit
809 				 * and quietly refuse further access.
810 				 */
811 				cmd->device->changed = 1;
812 				action = ACTION_FAIL;
813 			} else {
814 				/* Must have been a power glitch, or a
815 				 * bus reset.  Could not have been a
816 				 * media change, so we just retry the
817 				 * command and see what happens.
818 				 */
819 				action = ACTION_RETRY;
820 			}
821 			break;
822 		case ILLEGAL_REQUEST:
823 			/* If we had an ILLEGAL REQUEST returned, then
824 			 * we may have performed an unsupported
825 			 * command.  The only thing this should be
826 			 * would be a ten byte read where only a six
827 			 * byte read was supported.  Also, on a system
828 			 * where READ CAPACITY failed, we may have
829 			 * read past the end of the disk.
830 			 */
831 			if ((cmd->device->use_10_for_rw &&
832 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
833 			    (cmd->cmnd[0] == READ_10 ||
834 			     cmd->cmnd[0] == WRITE_10)) {
835 				/* This will issue a new 6-byte command. */
836 				cmd->device->use_10_for_rw = 0;
837 				action = ACTION_REPREP;
838 			} else if (sshdr.asc == 0x10) /* DIX */ {
839 				action = ACTION_FAIL;
840 				blk_stat = BLK_STS_PROTECTION;
841 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
842 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
843 				action = ACTION_FAIL;
844 				blk_stat = BLK_STS_TARGET;
845 			} else
846 				action = ACTION_FAIL;
847 			break;
848 		case ABORTED_COMMAND:
849 			action = ACTION_FAIL;
850 			if (sshdr.asc == 0x10) /* DIF */
851 				blk_stat = BLK_STS_PROTECTION;
852 			break;
853 		case NOT_READY:
854 			/* If the device is in the process of becoming
855 			 * ready, or has a temporary blockage, retry.
856 			 */
857 			if (sshdr.asc == 0x04) {
858 				switch (sshdr.ascq) {
859 				case 0x01: /* becoming ready */
860 				case 0x04: /* format in progress */
861 				case 0x05: /* rebuild in progress */
862 				case 0x06: /* recalculation in progress */
863 				case 0x07: /* operation in progress */
864 				case 0x08: /* Long write in progress */
865 				case 0x09: /* self test in progress */
866 				case 0x14: /* space allocation in progress */
867 				case 0x1a: /* start stop unit in progress */
868 				case 0x1b: /* sanitize in progress */
869 				case 0x1d: /* configuration in progress */
870 				case 0x24: /* depopulation in progress */
871 					action = ACTION_DELAYED_RETRY;
872 					break;
873 				default:
874 					action = ACTION_FAIL;
875 					break;
876 				}
877 			} else
878 				action = ACTION_FAIL;
879 			break;
880 		case VOLUME_OVERFLOW:
881 			/* See SSC3rXX or current. */
882 			action = ACTION_FAIL;
883 			break;
884 		default:
885 			action = ACTION_FAIL;
886 			break;
887 		}
888 	} else
889 		action = ACTION_FAIL;
890 
891 	if (action != ACTION_FAIL &&
892 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
893 		action = ACTION_FAIL;
894 
895 	switch (action) {
896 	case ACTION_FAIL:
897 		/* Give up and fail the remainder of the request */
898 		if (!(req->rq_flags & RQF_QUIET)) {
899 			static DEFINE_RATELIMIT_STATE(_rs,
900 					DEFAULT_RATELIMIT_INTERVAL,
901 					DEFAULT_RATELIMIT_BURST);
902 
903 			if (unlikely(scsi_logging_level))
904 				level =
905 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
906 						    SCSI_LOG_MLCOMPLETE_BITS);
907 
908 			/*
909 			 * if logging is enabled the failure will be printed
910 			 * in scsi_log_completion(), so avoid duplicate messages
911 			 */
912 			if (!level && __ratelimit(&_rs)) {
913 				scsi_print_result(cmd, NULL, FAILED);
914 				if (driver_byte(result) == DRIVER_SENSE)
915 					scsi_print_sense(cmd);
916 				scsi_print_command(cmd);
917 			}
918 		}
919 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0))
920 			return;
921 		/*FALLTHRU*/
922 	case ACTION_REPREP:
923 		scsi_io_completion_reprep(cmd, q);
924 		break;
925 	case ACTION_RETRY:
926 		/* Retry the same command immediately */
927 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
928 		break;
929 	case ACTION_DELAYED_RETRY:
930 		/* Retry the same command after a delay */
931 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
932 		break;
933 	}
934 }
935 
936 /*
937  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
938  * new result that may suppress further error checking. Also modifies
939  * *blk_statp in some cases.
940  */
941 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
942 					blk_status_t *blk_statp)
943 {
944 	bool sense_valid;
945 	bool sense_current = true;	/* false implies "deferred sense" */
946 	struct request *req = cmd->request;
947 	struct scsi_sense_hdr sshdr;
948 
949 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
950 	if (sense_valid)
951 		sense_current = !scsi_sense_is_deferred(&sshdr);
952 
953 	if (blk_rq_is_passthrough(req)) {
954 		if (sense_valid) {
955 			/*
956 			 * SG_IO wants current and deferred errors
957 			 */
958 			scsi_req(req)->sense_len =
959 				min(8 + cmd->sense_buffer[7],
960 				    SCSI_SENSE_BUFFERSIZE);
961 		}
962 		if (sense_current)
963 			*blk_statp = scsi_result_to_blk_status(cmd, result);
964 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
965 		/*
966 		 * Flush commands do not transfers any data, and thus cannot use
967 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
968 		 * This sets *blk_statp explicitly for the problem case.
969 		 */
970 		*blk_statp = scsi_result_to_blk_status(cmd, result);
971 	}
972 	/*
973 	 * Recovered errors need reporting, but they're always treated as
974 	 * success, so fiddle the result code here.  For passthrough requests
975 	 * we already took a copy of the original into sreq->result which
976 	 * is what gets returned to the user
977 	 */
978 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
979 		bool do_print = true;
980 		/*
981 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
982 		 * skip print since caller wants ATA registers. Only occurs
983 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
984 		 */
985 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
986 			do_print = false;
987 		else if (req->rq_flags & RQF_QUIET)
988 			do_print = false;
989 		if (do_print)
990 			scsi_print_sense(cmd);
991 		result = 0;
992 		/* for passthrough, *blk_statp may be set */
993 		*blk_statp = BLK_STS_OK;
994 	}
995 	/*
996 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
997 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
998 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
999 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1000 	 * intermediate statuses (both obsolete in SAM-4) as good.
1001 	 */
1002 	if (status_byte(result) && scsi_status_is_good(result)) {
1003 		result = 0;
1004 		*blk_statp = BLK_STS_OK;
1005 	}
1006 	return result;
1007 }
1008 
1009 /*
1010  * Function:    scsi_io_completion()
1011  *
1012  * Purpose:     Completion processing for block device I/O requests.
1013  *
1014  * Arguments:   cmd   - command that is finished.
1015  *
1016  * Lock status: Assumed that no lock is held upon entry.
1017  *
1018  * Returns:     Nothing
1019  *
1020  * Notes:       We will finish off the specified number of sectors.  If we
1021  *		are done, the command block will be released and the queue
1022  *		function will be goosed.  If we are not done then we have to
1023  *		figure out what to do next:
1024  *
1025  *		a) We can call scsi_requeue_command().  The request
1026  *		   will be unprepared and put back on the queue.  Then
1027  *		   a new command will be created for it.  This should
1028  *		   be used if we made forward progress, or if we want
1029  *		   to switch from READ(10) to READ(6) for example.
1030  *
1031  *		b) We can call __scsi_queue_insert().  The request will
1032  *		   be put back on the queue and retried using the same
1033  *		   command as before, possibly after a delay.
1034  *
1035  *		c) We can call scsi_end_request() with blk_stat other than
1036  *		   BLK_STS_OK, to fail the remainder of the request.
1037  */
1038 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1039 {
1040 	int result = cmd->result;
1041 	struct request_queue *q = cmd->device->request_queue;
1042 	struct request *req = cmd->request;
1043 	blk_status_t blk_stat = BLK_STS_OK;
1044 
1045 	if (unlikely(result))	/* a nz result may or may not be an error */
1046 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1047 
1048 	if (unlikely(blk_rq_is_passthrough(req))) {
1049 		/*
1050 		 * scsi_result_to_blk_status may have reset the host_byte
1051 		 */
1052 		scsi_req(req)->result = cmd->result;
1053 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
1054 
1055 		if (unlikely(scsi_bidi_cmnd(cmd))) {
1056 			/*
1057 			 * Bidi commands Must be complete as a whole,
1058 			 * both sides at once.
1059 			 */
1060 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
1061 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
1062 					blk_rq_bytes(req->next_rq)))
1063 				WARN_ONCE(true,
1064 					  "Bidi command with remaining bytes");
1065 			return;
1066 		}
1067 	}
1068 
1069 	/* no bidi support yet, other than in pass-through */
1070 	if (unlikely(blk_bidi_rq(req))) {
1071 		WARN_ONCE(true, "Only support bidi command in passthrough");
1072 		scmd_printk(KERN_ERR, cmd, "Killing bidi command\n");
1073 		if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req),
1074 				     blk_rq_bytes(req->next_rq)))
1075 			WARN_ONCE(true, "Bidi command with remaining bytes");
1076 		return;
1077 	}
1078 
1079 	/*
1080 	 * Next deal with any sectors which we were able to correctly
1081 	 * handle.
1082 	 */
1083 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1084 		"%u sectors total, %d bytes done.\n",
1085 		blk_rq_sectors(req), good_bytes));
1086 
1087 	/*
1088 	 * Next deal with any sectors which we were able to correctly
1089 	 * handle. Failed, zero length commands always need to drop down
1090 	 * to retry code. Fast path should return in this block.
1091 	 */
1092 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1093 		if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0)))
1094 			return; /* no bytes remaining */
1095 	}
1096 
1097 	/* Kill remainder if no retries. */
1098 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1099 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0))
1100 			WARN_ONCE(true,
1101 			    "Bytes remaining after failed, no-retry command");
1102 		return;
1103 	}
1104 
1105 	/*
1106 	 * If there had been no error, but we have leftover bytes in the
1107 	 * requeues just queue the command up again.
1108 	 */
1109 	if (likely(result == 0))
1110 		scsi_io_completion_reprep(cmd, q);
1111 	else
1112 		scsi_io_completion_action(cmd, result);
1113 }
1114 
1115 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1116 {
1117 	int count;
1118 
1119 	/*
1120 	 * If sg table allocation fails, requeue request later.
1121 	 */
1122 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1123 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1124 		return BLKPREP_DEFER;
1125 
1126 	/*
1127 	 * Next, walk the list, and fill in the addresses and sizes of
1128 	 * each segment.
1129 	 */
1130 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1131 	BUG_ON(count > sdb->table.nents);
1132 	sdb->table.nents = count;
1133 	sdb->length = blk_rq_payload_bytes(req);
1134 	return BLKPREP_OK;
1135 }
1136 
1137 /*
1138  * Function:    scsi_init_io()
1139  *
1140  * Purpose:     SCSI I/O initialize function.
1141  *
1142  * Arguments:   cmd   - Command descriptor we wish to initialize
1143  *
1144  * Returns:     0 on success
1145  *		BLKPREP_DEFER if the failure is retryable
1146  *		BLKPREP_KILL if the failure is fatal
1147  */
1148 int scsi_init_io(struct scsi_cmnd *cmd)
1149 {
1150 	struct scsi_device *sdev = cmd->device;
1151 	struct request *rq = cmd->request;
1152 	bool is_mq = (rq->mq_ctx != NULL);
1153 	int error = BLKPREP_KILL;
1154 
1155 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1156 		goto err_exit;
1157 
1158 	error = scsi_init_sgtable(rq, &cmd->sdb);
1159 	if (error)
1160 		goto err_exit;
1161 
1162 	if (blk_bidi_rq(rq)) {
1163 		if (!rq->q->mq_ops) {
1164 			struct scsi_data_buffer *bidi_sdb =
1165 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1166 			if (!bidi_sdb) {
1167 				error = BLKPREP_DEFER;
1168 				goto err_exit;
1169 			}
1170 
1171 			rq->next_rq->special = bidi_sdb;
1172 		}
1173 
1174 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1175 		if (error)
1176 			goto err_exit;
1177 	}
1178 
1179 	if (blk_integrity_rq(rq)) {
1180 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1181 		int ivecs, count;
1182 
1183 		if (prot_sdb == NULL) {
1184 			/*
1185 			 * This can happen if someone (e.g. multipath)
1186 			 * queues a command to a device on an adapter
1187 			 * that does not support DIX.
1188 			 */
1189 			WARN_ON_ONCE(1);
1190 			error = BLKPREP_KILL;
1191 			goto err_exit;
1192 		}
1193 
1194 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1195 
1196 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1197 				prot_sdb->table.sgl)) {
1198 			error = BLKPREP_DEFER;
1199 			goto err_exit;
1200 		}
1201 
1202 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1203 						prot_sdb->table.sgl);
1204 		BUG_ON(unlikely(count > ivecs));
1205 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1206 
1207 		cmd->prot_sdb = prot_sdb;
1208 		cmd->prot_sdb->table.nents = count;
1209 	}
1210 
1211 	return BLKPREP_OK;
1212 err_exit:
1213 	if (is_mq) {
1214 		scsi_mq_free_sgtables(cmd);
1215 	} else {
1216 		scsi_release_buffers(cmd);
1217 		cmd->request->special = NULL;
1218 		scsi_put_command(cmd);
1219 		put_device(&sdev->sdev_gendev);
1220 	}
1221 	return error;
1222 }
1223 EXPORT_SYMBOL(scsi_init_io);
1224 
1225 /**
1226  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1227  * @rq: Request associated with the SCSI command to be initialized.
1228  *
1229  * This function initializes the members of struct scsi_cmnd that must be
1230  * initialized before request processing starts and that won't be
1231  * reinitialized if a SCSI command is requeued.
1232  *
1233  * Called from inside blk_get_request() for pass-through requests and from
1234  * inside scsi_init_command() for filesystem requests.
1235  */
1236 static void scsi_initialize_rq(struct request *rq)
1237 {
1238 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1239 
1240 	scsi_req_init(&cmd->req);
1241 	init_rcu_head(&cmd->rcu);
1242 	cmd->jiffies_at_alloc = jiffies;
1243 	cmd->retries = 0;
1244 }
1245 
1246 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1247 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1248 {
1249 	struct scsi_device *sdev = cmd->device;
1250 	struct Scsi_Host *shost = sdev->host;
1251 	unsigned long flags;
1252 
1253 	if (shost->use_cmd_list) {
1254 		spin_lock_irqsave(&sdev->list_lock, flags);
1255 		list_add_tail(&cmd->list, &sdev->cmd_list);
1256 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1257 	}
1258 }
1259 
1260 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1261 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1262 {
1263 	struct scsi_device *sdev = cmd->device;
1264 	struct Scsi_Host *shost = sdev->host;
1265 	unsigned long flags;
1266 
1267 	if (shost->use_cmd_list) {
1268 		spin_lock_irqsave(&sdev->list_lock, flags);
1269 		BUG_ON(list_empty(&cmd->list));
1270 		list_del_init(&cmd->list);
1271 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1272 	}
1273 }
1274 
1275 /* Called after a request has been started. */
1276 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1277 {
1278 	void *buf = cmd->sense_buffer;
1279 	void *prot = cmd->prot_sdb;
1280 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1281 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1282 	unsigned long jiffies_at_alloc;
1283 	int retries;
1284 
1285 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1286 		flags |= SCMD_INITIALIZED;
1287 		scsi_initialize_rq(rq);
1288 	}
1289 
1290 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1291 	retries = cmd->retries;
1292 	/* zero out the cmd, except for the embedded scsi_request */
1293 	memset((char *)cmd + sizeof(cmd->req), 0,
1294 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1295 
1296 	cmd->device = dev;
1297 	cmd->sense_buffer = buf;
1298 	cmd->prot_sdb = prot;
1299 	cmd->flags = flags;
1300 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1301 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1302 	cmd->retries = retries;
1303 
1304 	scsi_add_cmd_to_list(cmd);
1305 }
1306 
1307 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1308 {
1309 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1310 
1311 	/*
1312 	 * Passthrough requests may transfer data, in which case they must
1313 	 * a bio attached to them.  Or they might contain a SCSI command
1314 	 * that does not transfer data, in which case they may optionally
1315 	 * submit a request without an attached bio.
1316 	 */
1317 	if (req->bio) {
1318 		int ret = scsi_init_io(cmd);
1319 		if (unlikely(ret))
1320 			return ret;
1321 	} else {
1322 		BUG_ON(blk_rq_bytes(req));
1323 
1324 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1325 	}
1326 
1327 	cmd->cmd_len = scsi_req(req)->cmd_len;
1328 	cmd->cmnd = scsi_req(req)->cmd;
1329 	cmd->transfersize = blk_rq_bytes(req);
1330 	cmd->allowed = scsi_req(req)->retries;
1331 	return BLKPREP_OK;
1332 }
1333 
1334 /*
1335  * Setup a normal block command.  These are simple request from filesystems
1336  * that still need to be translated to SCSI CDBs from the ULD.
1337  */
1338 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1339 {
1340 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1341 
1342 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1343 		int ret = sdev->handler->prep_fn(sdev, req);
1344 		if (ret != BLKPREP_OK)
1345 			return ret;
1346 	}
1347 
1348 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1349 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1350 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1351 }
1352 
1353 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1354 {
1355 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1356 
1357 	if (!blk_rq_bytes(req))
1358 		cmd->sc_data_direction = DMA_NONE;
1359 	else if (rq_data_dir(req) == WRITE)
1360 		cmd->sc_data_direction = DMA_TO_DEVICE;
1361 	else
1362 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1363 
1364 	if (blk_rq_is_scsi(req))
1365 		return scsi_setup_scsi_cmnd(sdev, req);
1366 	else
1367 		return scsi_setup_fs_cmnd(sdev, req);
1368 }
1369 
1370 static int
1371 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1372 {
1373 	int ret = BLKPREP_OK;
1374 
1375 	/*
1376 	 * If the device is not in running state we will reject some
1377 	 * or all commands.
1378 	 */
1379 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1380 		switch (sdev->sdev_state) {
1381 		case SDEV_OFFLINE:
1382 		case SDEV_TRANSPORT_OFFLINE:
1383 			/*
1384 			 * If the device is offline we refuse to process any
1385 			 * commands.  The device must be brought online
1386 			 * before trying any recovery commands.
1387 			 */
1388 			sdev_printk(KERN_ERR, sdev,
1389 				    "rejecting I/O to offline device\n");
1390 			ret = BLKPREP_KILL;
1391 			break;
1392 		case SDEV_DEL:
1393 			/*
1394 			 * If the device is fully deleted, we refuse to
1395 			 * process any commands as well.
1396 			 */
1397 			sdev_printk(KERN_ERR, sdev,
1398 				    "rejecting I/O to dead device\n");
1399 			ret = BLKPREP_KILL;
1400 			break;
1401 		case SDEV_BLOCK:
1402 		case SDEV_CREATED_BLOCK:
1403 			ret = BLKPREP_DEFER;
1404 			break;
1405 		case SDEV_QUIESCE:
1406 			/*
1407 			 * If the devices is blocked we defer normal commands.
1408 			 */
1409 			if (req && !(req->rq_flags & RQF_PREEMPT))
1410 				ret = BLKPREP_DEFER;
1411 			break;
1412 		default:
1413 			/*
1414 			 * For any other not fully online state we only allow
1415 			 * special commands.  In particular any user initiated
1416 			 * command is not allowed.
1417 			 */
1418 			if (req && !(req->rq_flags & RQF_PREEMPT))
1419 				ret = BLKPREP_KILL;
1420 			break;
1421 		}
1422 	}
1423 	return ret;
1424 }
1425 
1426 static int
1427 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1428 {
1429 	struct scsi_device *sdev = q->queuedata;
1430 
1431 	switch (ret) {
1432 	case BLKPREP_KILL:
1433 	case BLKPREP_INVALID:
1434 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1435 		/* release the command and kill it */
1436 		if (req->special) {
1437 			struct scsi_cmnd *cmd = req->special;
1438 			scsi_release_buffers(cmd);
1439 			scsi_put_command(cmd);
1440 			put_device(&sdev->sdev_gendev);
1441 			req->special = NULL;
1442 		}
1443 		break;
1444 	case BLKPREP_DEFER:
1445 		/*
1446 		 * If we defer, the blk_peek_request() returns NULL, but the
1447 		 * queue must be restarted, so we schedule a callback to happen
1448 		 * shortly.
1449 		 */
1450 		if (atomic_read(&sdev->device_busy) == 0)
1451 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1452 		break;
1453 	default:
1454 		req->rq_flags |= RQF_DONTPREP;
1455 	}
1456 
1457 	return ret;
1458 }
1459 
1460 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1461 {
1462 	struct scsi_device *sdev = q->queuedata;
1463 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1464 	int ret;
1465 
1466 	ret = scsi_prep_state_check(sdev, req);
1467 	if (ret != BLKPREP_OK)
1468 		goto out;
1469 
1470 	if (!req->special) {
1471 		/* Bail if we can't get a reference to the device */
1472 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1473 			ret = BLKPREP_DEFER;
1474 			goto out;
1475 		}
1476 
1477 		scsi_init_command(sdev, cmd);
1478 		req->special = cmd;
1479 	}
1480 
1481 	cmd->tag = req->tag;
1482 	cmd->request = req;
1483 	cmd->prot_op = SCSI_PROT_NORMAL;
1484 
1485 	ret = scsi_setup_cmnd(sdev, req);
1486 out:
1487 	return scsi_prep_return(q, req, ret);
1488 }
1489 
1490 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1491 {
1492 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1493 }
1494 
1495 /*
1496  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1497  * return 0.
1498  *
1499  * Called with the queue_lock held.
1500  */
1501 static inline int scsi_dev_queue_ready(struct request_queue *q,
1502 				  struct scsi_device *sdev)
1503 {
1504 	unsigned int busy;
1505 
1506 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1507 	if (atomic_read(&sdev->device_blocked)) {
1508 		if (busy)
1509 			goto out_dec;
1510 
1511 		/*
1512 		 * unblock after device_blocked iterates to zero
1513 		 */
1514 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1515 			/*
1516 			 * For the MQ case we take care of this in the caller.
1517 			 */
1518 			if (!q->mq_ops)
1519 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1520 			goto out_dec;
1521 		}
1522 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1523 				   "unblocking device at zero depth\n"));
1524 	}
1525 
1526 	if (busy >= sdev->queue_depth)
1527 		goto out_dec;
1528 
1529 	return 1;
1530 out_dec:
1531 	atomic_dec(&sdev->device_busy);
1532 	return 0;
1533 }
1534 
1535 /*
1536  * scsi_target_queue_ready: checks if there we can send commands to target
1537  * @sdev: scsi device on starget to check.
1538  */
1539 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1540 					   struct scsi_device *sdev)
1541 {
1542 	struct scsi_target *starget = scsi_target(sdev);
1543 	unsigned int busy;
1544 
1545 	if (starget->single_lun) {
1546 		spin_lock_irq(shost->host_lock);
1547 		if (starget->starget_sdev_user &&
1548 		    starget->starget_sdev_user != sdev) {
1549 			spin_unlock_irq(shost->host_lock);
1550 			return 0;
1551 		}
1552 		starget->starget_sdev_user = sdev;
1553 		spin_unlock_irq(shost->host_lock);
1554 	}
1555 
1556 	if (starget->can_queue <= 0)
1557 		return 1;
1558 
1559 	busy = atomic_inc_return(&starget->target_busy) - 1;
1560 	if (atomic_read(&starget->target_blocked) > 0) {
1561 		if (busy)
1562 			goto starved;
1563 
1564 		/*
1565 		 * unblock after target_blocked iterates to zero
1566 		 */
1567 		if (atomic_dec_return(&starget->target_blocked) > 0)
1568 			goto out_dec;
1569 
1570 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1571 				 "unblocking target at zero depth\n"));
1572 	}
1573 
1574 	if (busy >= starget->can_queue)
1575 		goto starved;
1576 
1577 	return 1;
1578 
1579 starved:
1580 	spin_lock_irq(shost->host_lock);
1581 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1582 	spin_unlock_irq(shost->host_lock);
1583 out_dec:
1584 	if (starget->can_queue > 0)
1585 		atomic_dec(&starget->target_busy);
1586 	return 0;
1587 }
1588 
1589 /*
1590  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1591  * return 0. We must end up running the queue again whenever 0 is
1592  * returned, else IO can hang.
1593  */
1594 static inline int scsi_host_queue_ready(struct request_queue *q,
1595 				   struct Scsi_Host *shost,
1596 				   struct scsi_device *sdev)
1597 {
1598 	unsigned int busy;
1599 
1600 	if (scsi_host_in_recovery(shost))
1601 		return 0;
1602 
1603 	busy = atomic_inc_return(&shost->host_busy) - 1;
1604 	if (atomic_read(&shost->host_blocked) > 0) {
1605 		if (busy)
1606 			goto starved;
1607 
1608 		/*
1609 		 * unblock after host_blocked iterates to zero
1610 		 */
1611 		if (atomic_dec_return(&shost->host_blocked) > 0)
1612 			goto out_dec;
1613 
1614 		SCSI_LOG_MLQUEUE(3,
1615 			shost_printk(KERN_INFO, shost,
1616 				     "unblocking host at zero depth\n"));
1617 	}
1618 
1619 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1620 		goto starved;
1621 	if (shost->host_self_blocked)
1622 		goto starved;
1623 
1624 	/* We're OK to process the command, so we can't be starved */
1625 	if (!list_empty(&sdev->starved_entry)) {
1626 		spin_lock_irq(shost->host_lock);
1627 		if (!list_empty(&sdev->starved_entry))
1628 			list_del_init(&sdev->starved_entry);
1629 		spin_unlock_irq(shost->host_lock);
1630 	}
1631 
1632 	return 1;
1633 
1634 starved:
1635 	spin_lock_irq(shost->host_lock);
1636 	if (list_empty(&sdev->starved_entry))
1637 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1638 	spin_unlock_irq(shost->host_lock);
1639 out_dec:
1640 	scsi_dec_host_busy(shost);
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Busy state exporting function for request stacking drivers.
1646  *
1647  * For efficiency, no lock is taken to check the busy state of
1648  * shost/starget/sdev, since the returned value is not guaranteed and
1649  * may be changed after request stacking drivers call the function,
1650  * regardless of taking lock or not.
1651  *
1652  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1653  * needs to return 'not busy'. Otherwise, request stacking drivers
1654  * may hold requests forever.
1655  */
1656 static int scsi_lld_busy(struct request_queue *q)
1657 {
1658 	struct scsi_device *sdev = q->queuedata;
1659 	struct Scsi_Host *shost;
1660 
1661 	if (blk_queue_dying(q))
1662 		return 0;
1663 
1664 	shost = sdev->host;
1665 
1666 	/*
1667 	 * Ignore host/starget busy state.
1668 	 * Since block layer does not have a concept of fairness across
1669 	 * multiple queues, congestion of host/starget needs to be handled
1670 	 * in SCSI layer.
1671 	 */
1672 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1673 		return 1;
1674 
1675 	return 0;
1676 }
1677 
1678 /*
1679  * Kill a request for a dead device
1680  */
1681 static void scsi_kill_request(struct request *req, struct request_queue *q)
1682 {
1683 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1684 	struct scsi_device *sdev;
1685 	struct scsi_target *starget;
1686 	struct Scsi_Host *shost;
1687 
1688 	blk_start_request(req);
1689 
1690 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1691 
1692 	sdev = cmd->device;
1693 	starget = scsi_target(sdev);
1694 	shost = sdev->host;
1695 	scsi_init_cmd_errh(cmd);
1696 	cmd->result = DID_NO_CONNECT << 16;
1697 	atomic_inc(&cmd->device->iorequest_cnt);
1698 
1699 	/*
1700 	 * SCSI request completion path will do scsi_device_unbusy(),
1701 	 * bump busy counts.  To bump the counters, we need to dance
1702 	 * with the locks as normal issue path does.
1703 	 */
1704 	atomic_inc(&sdev->device_busy);
1705 	atomic_inc(&shost->host_busy);
1706 	if (starget->can_queue > 0)
1707 		atomic_inc(&starget->target_busy);
1708 
1709 	blk_complete_request(req);
1710 }
1711 
1712 static void scsi_softirq_done(struct request *rq)
1713 {
1714 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1715 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1716 	int disposition;
1717 
1718 	INIT_LIST_HEAD(&cmd->eh_entry);
1719 
1720 	atomic_inc(&cmd->device->iodone_cnt);
1721 	if (cmd->result)
1722 		atomic_inc(&cmd->device->ioerr_cnt);
1723 
1724 	disposition = scsi_decide_disposition(cmd);
1725 	if (disposition != SUCCESS &&
1726 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1727 		sdev_printk(KERN_ERR, cmd->device,
1728 			    "timing out command, waited %lus\n",
1729 			    wait_for/HZ);
1730 		disposition = SUCCESS;
1731 	}
1732 
1733 	scsi_log_completion(cmd, disposition);
1734 
1735 	switch (disposition) {
1736 		case SUCCESS:
1737 			scsi_finish_command(cmd);
1738 			break;
1739 		case NEEDS_RETRY:
1740 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1741 			break;
1742 		case ADD_TO_MLQUEUE:
1743 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1744 			break;
1745 		default:
1746 			scsi_eh_scmd_add(cmd);
1747 			break;
1748 	}
1749 }
1750 
1751 /**
1752  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1753  * @cmd: command block we are dispatching.
1754  *
1755  * Return: nonzero return request was rejected and device's queue needs to be
1756  * plugged.
1757  */
1758 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1759 {
1760 	struct Scsi_Host *host = cmd->device->host;
1761 	int rtn = 0;
1762 
1763 	atomic_inc(&cmd->device->iorequest_cnt);
1764 
1765 	/* check if the device is still usable */
1766 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1767 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1768 		 * returns an immediate error upwards, and signals
1769 		 * that the device is no longer present */
1770 		cmd->result = DID_NO_CONNECT << 16;
1771 		goto done;
1772 	}
1773 
1774 	/* Check to see if the scsi lld made this device blocked. */
1775 	if (unlikely(scsi_device_blocked(cmd->device))) {
1776 		/*
1777 		 * in blocked state, the command is just put back on
1778 		 * the device queue.  The suspend state has already
1779 		 * blocked the queue so future requests should not
1780 		 * occur until the device transitions out of the
1781 		 * suspend state.
1782 		 */
1783 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1784 			"queuecommand : device blocked\n"));
1785 		return SCSI_MLQUEUE_DEVICE_BUSY;
1786 	}
1787 
1788 	/* Store the LUN value in cmnd, if needed. */
1789 	if (cmd->device->lun_in_cdb)
1790 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1791 			       (cmd->device->lun << 5 & 0xe0);
1792 
1793 	scsi_log_send(cmd);
1794 
1795 	/*
1796 	 * Before we queue this command, check if the command
1797 	 * length exceeds what the host adapter can handle.
1798 	 */
1799 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1800 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1801 			       "queuecommand : command too long. "
1802 			       "cdb_size=%d host->max_cmd_len=%d\n",
1803 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1804 		cmd->result = (DID_ABORT << 16);
1805 		goto done;
1806 	}
1807 
1808 	if (unlikely(host->shost_state == SHOST_DEL)) {
1809 		cmd->result = (DID_NO_CONNECT << 16);
1810 		goto done;
1811 
1812 	}
1813 
1814 	trace_scsi_dispatch_cmd_start(cmd);
1815 	rtn = host->hostt->queuecommand(host, cmd);
1816 	if (rtn) {
1817 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1818 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1819 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1820 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1821 
1822 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1823 			"queuecommand : request rejected\n"));
1824 	}
1825 
1826 	return rtn;
1827  done:
1828 	cmd->scsi_done(cmd);
1829 	return 0;
1830 }
1831 
1832 /**
1833  * scsi_done - Invoke completion on finished SCSI command.
1834  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1835  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1836  *
1837  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1838  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1839  * calls blk_complete_request() for further processing.
1840  *
1841  * This function is interrupt context safe.
1842  */
1843 static void scsi_done(struct scsi_cmnd *cmd)
1844 {
1845 	trace_scsi_dispatch_cmd_done(cmd);
1846 	blk_complete_request(cmd->request);
1847 }
1848 
1849 /*
1850  * Function:    scsi_request_fn()
1851  *
1852  * Purpose:     Main strategy routine for SCSI.
1853  *
1854  * Arguments:   q       - Pointer to actual queue.
1855  *
1856  * Returns:     Nothing
1857  *
1858  * Lock status: request queue lock assumed to be held when called.
1859  *
1860  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1861  * protection for ZBC disks.
1862  */
1863 static void scsi_request_fn(struct request_queue *q)
1864 	__releases(q->queue_lock)
1865 	__acquires(q->queue_lock)
1866 {
1867 	struct scsi_device *sdev = q->queuedata;
1868 	struct Scsi_Host *shost;
1869 	struct scsi_cmnd *cmd;
1870 	struct request *req;
1871 
1872 	/*
1873 	 * To start with, we keep looping until the queue is empty, or until
1874 	 * the host is no longer able to accept any more requests.
1875 	 */
1876 	shost = sdev->host;
1877 	for (;;) {
1878 		int rtn;
1879 		/*
1880 		 * get next queueable request.  We do this early to make sure
1881 		 * that the request is fully prepared even if we cannot
1882 		 * accept it.
1883 		 */
1884 		req = blk_peek_request(q);
1885 		if (!req)
1886 			break;
1887 
1888 		if (unlikely(!scsi_device_online(sdev))) {
1889 			sdev_printk(KERN_ERR, sdev,
1890 				    "rejecting I/O to offline device\n");
1891 			scsi_kill_request(req, q);
1892 			continue;
1893 		}
1894 
1895 		if (!scsi_dev_queue_ready(q, sdev))
1896 			break;
1897 
1898 		/*
1899 		 * Remove the request from the request list.
1900 		 */
1901 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1902 			blk_start_request(req);
1903 
1904 		spin_unlock_irq(q->queue_lock);
1905 		cmd = blk_mq_rq_to_pdu(req);
1906 		if (cmd != req->special) {
1907 			printk(KERN_CRIT "impossible request in %s.\n"
1908 					 "please mail a stack trace to "
1909 					 "linux-scsi@vger.kernel.org\n",
1910 					 __func__);
1911 			blk_dump_rq_flags(req, "foo");
1912 			BUG();
1913 		}
1914 
1915 		/*
1916 		 * We hit this when the driver is using a host wide
1917 		 * tag map. For device level tag maps the queue_depth check
1918 		 * in the device ready fn would prevent us from trying
1919 		 * to allocate a tag. Since the map is a shared host resource
1920 		 * we add the dev to the starved list so it eventually gets
1921 		 * a run when a tag is freed.
1922 		 */
1923 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1924 			spin_lock_irq(shost->host_lock);
1925 			if (list_empty(&sdev->starved_entry))
1926 				list_add_tail(&sdev->starved_entry,
1927 					      &shost->starved_list);
1928 			spin_unlock_irq(shost->host_lock);
1929 			goto not_ready;
1930 		}
1931 
1932 		if (!scsi_target_queue_ready(shost, sdev))
1933 			goto not_ready;
1934 
1935 		if (!scsi_host_queue_ready(q, shost, sdev))
1936 			goto host_not_ready;
1937 
1938 		if (sdev->simple_tags)
1939 			cmd->flags |= SCMD_TAGGED;
1940 		else
1941 			cmd->flags &= ~SCMD_TAGGED;
1942 
1943 		/*
1944 		 * Finally, initialize any error handling parameters, and set up
1945 		 * the timers for timeouts.
1946 		 */
1947 		scsi_init_cmd_errh(cmd);
1948 
1949 		/*
1950 		 * Dispatch the command to the low-level driver.
1951 		 */
1952 		cmd->scsi_done = scsi_done;
1953 		rtn = scsi_dispatch_cmd(cmd);
1954 		if (rtn) {
1955 			scsi_queue_insert(cmd, rtn);
1956 			spin_lock_irq(q->queue_lock);
1957 			goto out_delay;
1958 		}
1959 		spin_lock_irq(q->queue_lock);
1960 	}
1961 
1962 	return;
1963 
1964  host_not_ready:
1965 	if (scsi_target(sdev)->can_queue > 0)
1966 		atomic_dec(&scsi_target(sdev)->target_busy);
1967  not_ready:
1968 	/*
1969 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1970 	 * must return with queue_lock held.
1971 	 *
1972 	 * Decrementing device_busy without checking it is OK, as all such
1973 	 * cases (host limits or settings) should run the queue at some
1974 	 * later time.
1975 	 */
1976 	spin_lock_irq(q->queue_lock);
1977 	blk_requeue_request(q, req);
1978 	atomic_dec(&sdev->device_busy);
1979 out_delay:
1980 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1981 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1982 }
1983 
1984 static inline blk_status_t prep_to_mq(int ret)
1985 {
1986 	switch (ret) {
1987 	case BLKPREP_OK:
1988 		return BLK_STS_OK;
1989 	case BLKPREP_DEFER:
1990 		return BLK_STS_RESOURCE;
1991 	default:
1992 		return BLK_STS_IOERR;
1993 	}
1994 }
1995 
1996 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1997 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1998 {
1999 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
2000 		sizeof(struct scatterlist);
2001 }
2002 
2003 static int scsi_mq_prep_fn(struct request *req)
2004 {
2005 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2006 	struct scsi_device *sdev = req->q->queuedata;
2007 	struct Scsi_Host *shost = sdev->host;
2008 	struct scatterlist *sg;
2009 
2010 	scsi_init_command(sdev, cmd);
2011 
2012 	req->special = cmd;
2013 
2014 	cmd->request = req;
2015 
2016 	cmd->tag = req->tag;
2017 	cmd->prot_op = SCSI_PROT_NORMAL;
2018 
2019 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2020 	cmd->sdb.table.sgl = sg;
2021 
2022 	if (scsi_host_get_prot(shost)) {
2023 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
2024 
2025 		cmd->prot_sdb->table.sgl =
2026 			(struct scatterlist *)(cmd->prot_sdb + 1);
2027 	}
2028 
2029 	if (blk_bidi_rq(req)) {
2030 		struct request *next_rq = req->next_rq;
2031 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
2032 
2033 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
2034 		bidi_sdb->table.sgl =
2035 			(struct scatterlist *)(bidi_sdb + 1);
2036 
2037 		next_rq->special = bidi_sdb;
2038 	}
2039 
2040 	blk_mq_start_request(req);
2041 
2042 	return scsi_setup_cmnd(sdev, req);
2043 }
2044 
2045 static void scsi_mq_done(struct scsi_cmnd *cmd)
2046 {
2047 	trace_scsi_dispatch_cmd_done(cmd);
2048 	blk_mq_complete_request(cmd->request);
2049 }
2050 
2051 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2052 {
2053 	struct request_queue *q = hctx->queue;
2054 	struct scsi_device *sdev = q->queuedata;
2055 
2056 	atomic_dec(&sdev->device_busy);
2057 	put_device(&sdev->sdev_gendev);
2058 }
2059 
2060 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2061 {
2062 	struct request_queue *q = hctx->queue;
2063 	struct scsi_device *sdev = q->queuedata;
2064 
2065 	if (!get_device(&sdev->sdev_gendev))
2066 		goto out;
2067 	if (!scsi_dev_queue_ready(q, sdev))
2068 		goto out_put_device;
2069 
2070 	return true;
2071 
2072 out_put_device:
2073 	put_device(&sdev->sdev_gendev);
2074 out:
2075 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2076 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2077 	return false;
2078 }
2079 
2080 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2081 			 const struct blk_mq_queue_data *bd)
2082 {
2083 	struct request *req = bd->rq;
2084 	struct request_queue *q = req->q;
2085 	struct scsi_device *sdev = q->queuedata;
2086 	struct Scsi_Host *shost = sdev->host;
2087 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2088 	blk_status_t ret;
2089 	int reason;
2090 
2091 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2092 	if (ret != BLK_STS_OK)
2093 		goto out_put_budget;
2094 
2095 	ret = BLK_STS_RESOURCE;
2096 	if (!scsi_target_queue_ready(shost, sdev))
2097 		goto out_put_budget;
2098 	if (!scsi_host_queue_ready(q, shost, sdev))
2099 		goto out_dec_target_busy;
2100 
2101 	if (!(req->rq_flags & RQF_DONTPREP)) {
2102 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2103 		if (ret != BLK_STS_OK)
2104 			goto out_dec_host_busy;
2105 		req->rq_flags |= RQF_DONTPREP;
2106 	} else {
2107 		blk_mq_start_request(req);
2108 	}
2109 
2110 	if (sdev->simple_tags)
2111 		cmd->flags |= SCMD_TAGGED;
2112 	else
2113 		cmd->flags &= ~SCMD_TAGGED;
2114 
2115 	scsi_init_cmd_errh(cmd);
2116 	cmd->scsi_done = scsi_mq_done;
2117 
2118 	reason = scsi_dispatch_cmd(cmd);
2119 	if (reason) {
2120 		scsi_set_blocked(cmd, reason);
2121 		ret = BLK_STS_RESOURCE;
2122 		goto out_dec_host_busy;
2123 	}
2124 
2125 	return BLK_STS_OK;
2126 
2127 out_dec_host_busy:
2128 	scsi_dec_host_busy(shost);
2129 out_dec_target_busy:
2130 	if (scsi_target(sdev)->can_queue > 0)
2131 		atomic_dec(&scsi_target(sdev)->target_busy);
2132 out_put_budget:
2133 	scsi_mq_put_budget(hctx);
2134 	switch (ret) {
2135 	case BLK_STS_OK:
2136 		break;
2137 	case BLK_STS_RESOURCE:
2138 		if (atomic_read(&sdev->device_busy) ||
2139 		    scsi_device_blocked(sdev))
2140 			ret = BLK_STS_DEV_RESOURCE;
2141 		break;
2142 	default:
2143 		/*
2144 		 * Make sure to release all allocated ressources when
2145 		 * we hit an error, as we will never see this command
2146 		 * again.
2147 		 */
2148 		if (req->rq_flags & RQF_DONTPREP)
2149 			scsi_mq_uninit_cmd(cmd);
2150 		break;
2151 	}
2152 	return ret;
2153 }
2154 
2155 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2156 		bool reserved)
2157 {
2158 	if (reserved)
2159 		return BLK_EH_RESET_TIMER;
2160 	return scsi_times_out(req);
2161 }
2162 
2163 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2164 				unsigned int hctx_idx, unsigned int numa_node)
2165 {
2166 	struct Scsi_Host *shost = set->driver_data;
2167 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2168 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2169 	struct scatterlist *sg;
2170 
2171 	if (unchecked_isa_dma)
2172 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2173 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2174 						    GFP_KERNEL, numa_node);
2175 	if (!cmd->sense_buffer)
2176 		return -ENOMEM;
2177 	cmd->req.sense = cmd->sense_buffer;
2178 
2179 	if (scsi_host_get_prot(shost)) {
2180 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2181 			shost->hostt->cmd_size;
2182 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2189 				 unsigned int hctx_idx)
2190 {
2191 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2192 
2193 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2194 			       cmd->sense_buffer);
2195 }
2196 
2197 static int scsi_map_queues(struct blk_mq_tag_set *set)
2198 {
2199 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2200 
2201 	if (shost->hostt->map_queues)
2202 		return shost->hostt->map_queues(shost);
2203 	return blk_mq_map_queues(set);
2204 }
2205 
2206 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2207 {
2208 	struct device *dev = shost->dma_dev;
2209 
2210 	/*
2211 	 * this limit is imposed by hardware restrictions
2212 	 */
2213 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2214 					SG_MAX_SEGMENTS));
2215 
2216 	if (scsi_host_prot_dma(shost)) {
2217 		shost->sg_prot_tablesize =
2218 			min_not_zero(shost->sg_prot_tablesize,
2219 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2220 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2221 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2222 	}
2223 
2224 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2225 	if (shost->unchecked_isa_dma)
2226 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2227 	blk_queue_segment_boundary(q, shost->dma_boundary);
2228 	dma_set_seg_boundary(dev, shost->dma_boundary);
2229 
2230 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2231 
2232 	if (!shost->use_clustering)
2233 		q->limits.cluster = 0;
2234 
2235 	/*
2236 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2237 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2238 	 * which is set by the platform.
2239 	 *
2240 	 * Devices that require a bigger alignment can increase it later.
2241 	 */
2242 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2243 }
2244 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2245 
2246 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2247 			    gfp_t gfp)
2248 {
2249 	struct Scsi_Host *shost = q->rq_alloc_data;
2250 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2251 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2252 
2253 	memset(cmd, 0, sizeof(*cmd));
2254 
2255 	if (unchecked_isa_dma)
2256 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2257 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2258 						    NUMA_NO_NODE);
2259 	if (!cmd->sense_buffer)
2260 		goto fail;
2261 	cmd->req.sense = cmd->sense_buffer;
2262 
2263 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2264 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2265 		if (!cmd->prot_sdb)
2266 			goto fail_free_sense;
2267 	}
2268 
2269 	return 0;
2270 
2271 fail_free_sense:
2272 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2273 fail:
2274 	return -ENOMEM;
2275 }
2276 
2277 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2278 {
2279 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2280 
2281 	if (cmd->prot_sdb)
2282 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2283 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2284 			       cmd->sense_buffer);
2285 }
2286 
2287 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2288 {
2289 	struct Scsi_Host *shost = sdev->host;
2290 	struct request_queue *q;
2291 
2292 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2293 	if (!q)
2294 		return NULL;
2295 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2296 	q->rq_alloc_data = shost;
2297 	q->request_fn = scsi_request_fn;
2298 	q->init_rq_fn = scsi_old_init_rq;
2299 	q->exit_rq_fn = scsi_old_exit_rq;
2300 	q->initialize_rq_fn = scsi_initialize_rq;
2301 
2302 	if (blk_init_allocated_queue(q) < 0) {
2303 		blk_cleanup_queue(q);
2304 		return NULL;
2305 	}
2306 
2307 	__scsi_init_queue(shost, q);
2308 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2309 	blk_queue_prep_rq(q, scsi_prep_fn);
2310 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2311 	blk_queue_softirq_done(q, scsi_softirq_done);
2312 	blk_queue_rq_timed_out(q, scsi_times_out);
2313 	blk_queue_lld_busy(q, scsi_lld_busy);
2314 	return q;
2315 }
2316 
2317 static const struct blk_mq_ops scsi_mq_ops = {
2318 	.get_budget	= scsi_mq_get_budget,
2319 	.put_budget	= scsi_mq_put_budget,
2320 	.queue_rq	= scsi_queue_rq,
2321 	.complete	= scsi_softirq_done,
2322 	.timeout	= scsi_timeout,
2323 #ifdef CONFIG_BLK_DEBUG_FS
2324 	.show_rq	= scsi_show_rq,
2325 #endif
2326 	.init_request	= scsi_mq_init_request,
2327 	.exit_request	= scsi_mq_exit_request,
2328 	.initialize_rq_fn = scsi_initialize_rq,
2329 	.map_queues	= scsi_map_queues,
2330 };
2331 
2332 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2333 {
2334 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2335 	if (IS_ERR(sdev->request_queue))
2336 		return NULL;
2337 
2338 	sdev->request_queue->queuedata = sdev;
2339 	__scsi_init_queue(sdev->host, sdev->request_queue);
2340 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2341 	return sdev->request_queue;
2342 }
2343 
2344 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2345 {
2346 	unsigned int cmd_size, sgl_size;
2347 
2348 	sgl_size = scsi_mq_sgl_size(shost);
2349 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2350 	if (scsi_host_get_prot(shost))
2351 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2352 
2353 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2354 	shost->tag_set.ops = &scsi_mq_ops;
2355 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2356 	shost->tag_set.queue_depth = shost->can_queue;
2357 	shost->tag_set.cmd_size = cmd_size;
2358 	shost->tag_set.numa_node = NUMA_NO_NODE;
2359 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2360 	shost->tag_set.flags |=
2361 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2362 	shost->tag_set.driver_data = shost;
2363 
2364 	return blk_mq_alloc_tag_set(&shost->tag_set);
2365 }
2366 
2367 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2368 {
2369 	blk_mq_free_tag_set(&shost->tag_set);
2370 }
2371 
2372 /**
2373  * scsi_device_from_queue - return sdev associated with a request_queue
2374  * @q: The request queue to return the sdev from
2375  *
2376  * Return the sdev associated with a request queue or NULL if the
2377  * request_queue does not reference a SCSI device.
2378  */
2379 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2380 {
2381 	struct scsi_device *sdev = NULL;
2382 
2383 	if (q->mq_ops) {
2384 		if (q->mq_ops == &scsi_mq_ops)
2385 			sdev = q->queuedata;
2386 	} else if (q->request_fn == scsi_request_fn)
2387 		sdev = q->queuedata;
2388 	if (!sdev || !get_device(&sdev->sdev_gendev))
2389 		sdev = NULL;
2390 
2391 	return sdev;
2392 }
2393 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2394 
2395 /*
2396  * Function:    scsi_block_requests()
2397  *
2398  * Purpose:     Utility function used by low-level drivers to prevent further
2399  *		commands from being queued to the device.
2400  *
2401  * Arguments:   shost       - Host in question
2402  *
2403  * Returns:     Nothing
2404  *
2405  * Lock status: No locks are assumed held.
2406  *
2407  * Notes:       There is no timer nor any other means by which the requests
2408  *		get unblocked other than the low-level driver calling
2409  *		scsi_unblock_requests().
2410  */
2411 void scsi_block_requests(struct Scsi_Host *shost)
2412 {
2413 	shost->host_self_blocked = 1;
2414 }
2415 EXPORT_SYMBOL(scsi_block_requests);
2416 
2417 /*
2418  * Function:    scsi_unblock_requests()
2419  *
2420  * Purpose:     Utility function used by low-level drivers to allow further
2421  *		commands from being queued to the device.
2422  *
2423  * Arguments:   shost       - Host in question
2424  *
2425  * Returns:     Nothing
2426  *
2427  * Lock status: No locks are assumed held.
2428  *
2429  * Notes:       There is no timer nor any other means by which the requests
2430  *		get unblocked other than the low-level driver calling
2431  *		scsi_unblock_requests().
2432  *
2433  *		This is done as an API function so that changes to the
2434  *		internals of the scsi mid-layer won't require wholesale
2435  *		changes to drivers that use this feature.
2436  */
2437 void scsi_unblock_requests(struct Scsi_Host *shost)
2438 {
2439 	shost->host_self_blocked = 0;
2440 	scsi_run_host_queues(shost);
2441 }
2442 EXPORT_SYMBOL(scsi_unblock_requests);
2443 
2444 int __init scsi_init_queue(void)
2445 {
2446 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2447 					   sizeof(struct scsi_data_buffer),
2448 					   0, 0, NULL);
2449 	if (!scsi_sdb_cache) {
2450 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2451 		return -ENOMEM;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 void scsi_exit_queue(void)
2458 {
2459 	kmem_cache_destroy(scsi_sense_cache);
2460 	kmem_cache_destroy(scsi_sense_isadma_cache);
2461 	kmem_cache_destroy(scsi_sdb_cache);
2462 }
2463 
2464 /**
2465  *	scsi_mode_select - issue a mode select
2466  *	@sdev:	SCSI device to be queried
2467  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2468  *	@sp:	Save page bit (0 == don't save, 1 == save)
2469  *	@modepage: mode page being requested
2470  *	@buffer: request buffer (may not be smaller than eight bytes)
2471  *	@len:	length of request buffer.
2472  *	@timeout: command timeout
2473  *	@retries: number of retries before failing
2474  *	@data: returns a structure abstracting the mode header data
2475  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2476  *		must be SCSI_SENSE_BUFFERSIZE big.
2477  *
2478  *	Returns zero if successful; negative error number or scsi
2479  *	status on error
2480  *
2481  */
2482 int
2483 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2484 		 unsigned char *buffer, int len, int timeout, int retries,
2485 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2486 {
2487 	unsigned char cmd[10];
2488 	unsigned char *real_buffer;
2489 	int ret;
2490 
2491 	memset(cmd, 0, sizeof(cmd));
2492 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2493 
2494 	if (sdev->use_10_for_ms) {
2495 		if (len > 65535)
2496 			return -EINVAL;
2497 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2498 		if (!real_buffer)
2499 			return -ENOMEM;
2500 		memcpy(real_buffer + 8, buffer, len);
2501 		len += 8;
2502 		real_buffer[0] = 0;
2503 		real_buffer[1] = 0;
2504 		real_buffer[2] = data->medium_type;
2505 		real_buffer[3] = data->device_specific;
2506 		real_buffer[4] = data->longlba ? 0x01 : 0;
2507 		real_buffer[5] = 0;
2508 		real_buffer[6] = data->block_descriptor_length >> 8;
2509 		real_buffer[7] = data->block_descriptor_length;
2510 
2511 		cmd[0] = MODE_SELECT_10;
2512 		cmd[7] = len >> 8;
2513 		cmd[8] = len;
2514 	} else {
2515 		if (len > 255 || data->block_descriptor_length > 255 ||
2516 		    data->longlba)
2517 			return -EINVAL;
2518 
2519 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2520 		if (!real_buffer)
2521 			return -ENOMEM;
2522 		memcpy(real_buffer + 4, buffer, len);
2523 		len += 4;
2524 		real_buffer[0] = 0;
2525 		real_buffer[1] = data->medium_type;
2526 		real_buffer[2] = data->device_specific;
2527 		real_buffer[3] = data->block_descriptor_length;
2528 
2529 
2530 		cmd[0] = MODE_SELECT;
2531 		cmd[4] = len;
2532 	}
2533 
2534 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2535 			       sshdr, timeout, retries, NULL);
2536 	kfree(real_buffer);
2537 	return ret;
2538 }
2539 EXPORT_SYMBOL_GPL(scsi_mode_select);
2540 
2541 /**
2542  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2543  *	@sdev:	SCSI device to be queried
2544  *	@dbd:	set if mode sense will allow block descriptors to be returned
2545  *	@modepage: mode page being requested
2546  *	@buffer: request buffer (may not be smaller than eight bytes)
2547  *	@len:	length of request buffer.
2548  *	@timeout: command timeout
2549  *	@retries: number of retries before failing
2550  *	@data: returns a structure abstracting the mode header data
2551  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2552  *		must be SCSI_SENSE_BUFFERSIZE big.
2553  *
2554  *	Returns zero if unsuccessful, or the header offset (either 4
2555  *	or 8 depending on whether a six or ten byte command was
2556  *	issued) if successful.
2557  */
2558 int
2559 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2560 		  unsigned char *buffer, int len, int timeout, int retries,
2561 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2562 {
2563 	unsigned char cmd[12];
2564 	int use_10_for_ms;
2565 	int header_length;
2566 	int result, retry_count = retries;
2567 	struct scsi_sense_hdr my_sshdr;
2568 
2569 	memset(data, 0, sizeof(*data));
2570 	memset(&cmd[0], 0, 12);
2571 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2572 	cmd[2] = modepage;
2573 
2574 	/* caller might not be interested in sense, but we need it */
2575 	if (!sshdr)
2576 		sshdr = &my_sshdr;
2577 
2578  retry:
2579 	use_10_for_ms = sdev->use_10_for_ms;
2580 
2581 	if (use_10_for_ms) {
2582 		if (len < 8)
2583 			len = 8;
2584 
2585 		cmd[0] = MODE_SENSE_10;
2586 		cmd[8] = len;
2587 		header_length = 8;
2588 	} else {
2589 		if (len < 4)
2590 			len = 4;
2591 
2592 		cmd[0] = MODE_SENSE;
2593 		cmd[4] = len;
2594 		header_length = 4;
2595 	}
2596 
2597 	memset(buffer, 0, len);
2598 
2599 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2600 				  sshdr, timeout, retries, NULL);
2601 
2602 	/* This code looks awful: what it's doing is making sure an
2603 	 * ILLEGAL REQUEST sense return identifies the actual command
2604 	 * byte as the problem.  MODE_SENSE commands can return
2605 	 * ILLEGAL REQUEST if the code page isn't supported */
2606 
2607 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2608 	    driver_byte(result) == DRIVER_SENSE) {
2609 		if (scsi_sense_valid(sshdr)) {
2610 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2611 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2612 				/*
2613 				 * Invalid command operation code
2614 				 */
2615 				sdev->use_10_for_ms = 0;
2616 				goto retry;
2617 			}
2618 		}
2619 	}
2620 
2621 	if(scsi_status_is_good(result)) {
2622 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2623 			     (modepage == 6 || modepage == 8))) {
2624 			/* Initio breakage? */
2625 			header_length = 0;
2626 			data->length = 13;
2627 			data->medium_type = 0;
2628 			data->device_specific = 0;
2629 			data->longlba = 0;
2630 			data->block_descriptor_length = 0;
2631 		} else if(use_10_for_ms) {
2632 			data->length = buffer[0]*256 + buffer[1] + 2;
2633 			data->medium_type = buffer[2];
2634 			data->device_specific = buffer[3];
2635 			data->longlba = buffer[4] & 0x01;
2636 			data->block_descriptor_length = buffer[6]*256
2637 				+ buffer[7];
2638 		} else {
2639 			data->length = buffer[0] + 1;
2640 			data->medium_type = buffer[1];
2641 			data->device_specific = buffer[2];
2642 			data->block_descriptor_length = buffer[3];
2643 		}
2644 		data->header_length = header_length;
2645 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2646 		   scsi_sense_valid(sshdr) &&
2647 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2648 		retry_count--;
2649 		goto retry;
2650 	}
2651 
2652 	return result;
2653 }
2654 EXPORT_SYMBOL(scsi_mode_sense);
2655 
2656 /**
2657  *	scsi_test_unit_ready - test if unit is ready
2658  *	@sdev:	scsi device to change the state of.
2659  *	@timeout: command timeout
2660  *	@retries: number of retries before failing
2661  *	@sshdr: outpout pointer for decoded sense information.
2662  *
2663  *	Returns zero if unsuccessful or an error if TUR failed.  For
2664  *	removable media, UNIT_ATTENTION sets ->changed flag.
2665  **/
2666 int
2667 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2668 		     struct scsi_sense_hdr *sshdr)
2669 {
2670 	char cmd[] = {
2671 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2672 	};
2673 	int result;
2674 
2675 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2676 	do {
2677 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2678 					  timeout, 1, NULL);
2679 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2680 		    sshdr->sense_key == UNIT_ATTENTION)
2681 			sdev->changed = 1;
2682 	} while (scsi_sense_valid(sshdr) &&
2683 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2684 
2685 	return result;
2686 }
2687 EXPORT_SYMBOL(scsi_test_unit_ready);
2688 
2689 /**
2690  *	scsi_device_set_state - Take the given device through the device state model.
2691  *	@sdev:	scsi device to change the state of.
2692  *	@state:	state to change to.
2693  *
2694  *	Returns zero if successful or an error if the requested
2695  *	transition is illegal.
2696  */
2697 int
2698 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2699 {
2700 	enum scsi_device_state oldstate = sdev->sdev_state;
2701 
2702 	if (state == oldstate)
2703 		return 0;
2704 
2705 	switch (state) {
2706 	case SDEV_CREATED:
2707 		switch (oldstate) {
2708 		case SDEV_CREATED_BLOCK:
2709 			break;
2710 		default:
2711 			goto illegal;
2712 		}
2713 		break;
2714 
2715 	case SDEV_RUNNING:
2716 		switch (oldstate) {
2717 		case SDEV_CREATED:
2718 		case SDEV_OFFLINE:
2719 		case SDEV_TRANSPORT_OFFLINE:
2720 		case SDEV_QUIESCE:
2721 		case SDEV_BLOCK:
2722 			break;
2723 		default:
2724 			goto illegal;
2725 		}
2726 		break;
2727 
2728 	case SDEV_QUIESCE:
2729 		switch (oldstate) {
2730 		case SDEV_RUNNING:
2731 		case SDEV_OFFLINE:
2732 		case SDEV_TRANSPORT_OFFLINE:
2733 			break;
2734 		default:
2735 			goto illegal;
2736 		}
2737 		break;
2738 
2739 	case SDEV_OFFLINE:
2740 	case SDEV_TRANSPORT_OFFLINE:
2741 		switch (oldstate) {
2742 		case SDEV_CREATED:
2743 		case SDEV_RUNNING:
2744 		case SDEV_QUIESCE:
2745 		case SDEV_BLOCK:
2746 			break;
2747 		default:
2748 			goto illegal;
2749 		}
2750 		break;
2751 
2752 	case SDEV_BLOCK:
2753 		switch (oldstate) {
2754 		case SDEV_RUNNING:
2755 		case SDEV_CREATED_BLOCK:
2756 			break;
2757 		default:
2758 			goto illegal;
2759 		}
2760 		break;
2761 
2762 	case SDEV_CREATED_BLOCK:
2763 		switch (oldstate) {
2764 		case SDEV_CREATED:
2765 			break;
2766 		default:
2767 			goto illegal;
2768 		}
2769 		break;
2770 
2771 	case SDEV_CANCEL:
2772 		switch (oldstate) {
2773 		case SDEV_CREATED:
2774 		case SDEV_RUNNING:
2775 		case SDEV_QUIESCE:
2776 		case SDEV_OFFLINE:
2777 		case SDEV_TRANSPORT_OFFLINE:
2778 			break;
2779 		default:
2780 			goto illegal;
2781 		}
2782 		break;
2783 
2784 	case SDEV_DEL:
2785 		switch (oldstate) {
2786 		case SDEV_CREATED:
2787 		case SDEV_RUNNING:
2788 		case SDEV_OFFLINE:
2789 		case SDEV_TRANSPORT_OFFLINE:
2790 		case SDEV_CANCEL:
2791 		case SDEV_BLOCK:
2792 		case SDEV_CREATED_BLOCK:
2793 			break;
2794 		default:
2795 			goto illegal;
2796 		}
2797 		break;
2798 
2799 	}
2800 	sdev->sdev_state = state;
2801 	return 0;
2802 
2803  illegal:
2804 	SCSI_LOG_ERROR_RECOVERY(1,
2805 				sdev_printk(KERN_ERR, sdev,
2806 					    "Illegal state transition %s->%s",
2807 					    scsi_device_state_name(oldstate),
2808 					    scsi_device_state_name(state))
2809 				);
2810 	return -EINVAL;
2811 }
2812 EXPORT_SYMBOL(scsi_device_set_state);
2813 
2814 /**
2815  * 	sdev_evt_emit - emit a single SCSI device uevent
2816  *	@sdev: associated SCSI device
2817  *	@evt: event to emit
2818  *
2819  *	Send a single uevent (scsi_event) to the associated scsi_device.
2820  */
2821 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2822 {
2823 	int idx = 0;
2824 	char *envp[3];
2825 
2826 	switch (evt->evt_type) {
2827 	case SDEV_EVT_MEDIA_CHANGE:
2828 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2829 		break;
2830 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2831 		scsi_rescan_device(&sdev->sdev_gendev);
2832 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2833 		break;
2834 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2835 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2836 		break;
2837 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2838 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2839 		break;
2840 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2841 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2842 		break;
2843 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2844 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2845 		break;
2846 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2847 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2848 		break;
2849 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2850 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2851 		break;
2852 	default:
2853 		/* do nothing */
2854 		break;
2855 	}
2856 
2857 	envp[idx++] = NULL;
2858 
2859 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2860 }
2861 
2862 /**
2863  * 	sdev_evt_thread - send a uevent for each scsi event
2864  *	@work: work struct for scsi_device
2865  *
2866  *	Dispatch queued events to their associated scsi_device kobjects
2867  *	as uevents.
2868  */
2869 void scsi_evt_thread(struct work_struct *work)
2870 {
2871 	struct scsi_device *sdev;
2872 	enum scsi_device_event evt_type;
2873 	LIST_HEAD(event_list);
2874 
2875 	sdev = container_of(work, struct scsi_device, event_work);
2876 
2877 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2878 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2879 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2880 
2881 	while (1) {
2882 		struct scsi_event *evt;
2883 		struct list_head *this, *tmp;
2884 		unsigned long flags;
2885 
2886 		spin_lock_irqsave(&sdev->list_lock, flags);
2887 		list_splice_init(&sdev->event_list, &event_list);
2888 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2889 
2890 		if (list_empty(&event_list))
2891 			break;
2892 
2893 		list_for_each_safe(this, tmp, &event_list) {
2894 			evt = list_entry(this, struct scsi_event, node);
2895 			list_del(&evt->node);
2896 			scsi_evt_emit(sdev, evt);
2897 			kfree(evt);
2898 		}
2899 	}
2900 }
2901 
2902 /**
2903  * 	sdev_evt_send - send asserted event to uevent thread
2904  *	@sdev: scsi_device event occurred on
2905  *	@evt: event to send
2906  *
2907  *	Assert scsi device event asynchronously.
2908  */
2909 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2910 {
2911 	unsigned long flags;
2912 
2913 #if 0
2914 	/* FIXME: currently this check eliminates all media change events
2915 	 * for polled devices.  Need to update to discriminate between AN
2916 	 * and polled events */
2917 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2918 		kfree(evt);
2919 		return;
2920 	}
2921 #endif
2922 
2923 	spin_lock_irqsave(&sdev->list_lock, flags);
2924 	list_add_tail(&evt->node, &sdev->event_list);
2925 	schedule_work(&sdev->event_work);
2926 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2927 }
2928 EXPORT_SYMBOL_GPL(sdev_evt_send);
2929 
2930 /**
2931  * 	sdev_evt_alloc - allocate a new scsi event
2932  *	@evt_type: type of event to allocate
2933  *	@gfpflags: GFP flags for allocation
2934  *
2935  *	Allocates and returns a new scsi_event.
2936  */
2937 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2938 				  gfp_t gfpflags)
2939 {
2940 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2941 	if (!evt)
2942 		return NULL;
2943 
2944 	evt->evt_type = evt_type;
2945 	INIT_LIST_HEAD(&evt->node);
2946 
2947 	/* evt_type-specific initialization, if any */
2948 	switch (evt_type) {
2949 	case SDEV_EVT_MEDIA_CHANGE:
2950 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2951 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2952 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2953 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2954 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2955 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2956 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2957 	default:
2958 		/* do nothing */
2959 		break;
2960 	}
2961 
2962 	return evt;
2963 }
2964 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2965 
2966 /**
2967  * 	sdev_evt_send_simple - send asserted event to uevent thread
2968  *	@sdev: scsi_device event occurred on
2969  *	@evt_type: type of event to send
2970  *	@gfpflags: GFP flags for allocation
2971  *
2972  *	Assert scsi device event asynchronously, given an event type.
2973  */
2974 void sdev_evt_send_simple(struct scsi_device *sdev,
2975 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2976 {
2977 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2978 	if (!evt) {
2979 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2980 			    evt_type);
2981 		return;
2982 	}
2983 
2984 	sdev_evt_send(sdev, evt);
2985 }
2986 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2987 
2988 /**
2989  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2990  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2991  */
2992 static int scsi_request_fn_active(struct scsi_device *sdev)
2993 {
2994 	struct request_queue *q = sdev->request_queue;
2995 	int request_fn_active;
2996 
2997 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2998 
2999 	spin_lock_irq(q->queue_lock);
3000 	request_fn_active = q->request_fn_active;
3001 	spin_unlock_irq(q->queue_lock);
3002 
3003 	return request_fn_active;
3004 }
3005 
3006 /**
3007  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
3008  * @sdev: SCSI device pointer.
3009  *
3010  * Wait until the ongoing shost->hostt->queuecommand() calls that are
3011  * invoked from scsi_request_fn() have finished.
3012  */
3013 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
3014 {
3015 	WARN_ON_ONCE(sdev->host->use_blk_mq);
3016 
3017 	while (scsi_request_fn_active(sdev))
3018 		msleep(20);
3019 }
3020 
3021 /**
3022  *	scsi_device_quiesce - Block user issued commands.
3023  *	@sdev:	scsi device to quiesce.
3024  *
3025  *	This works by trying to transition to the SDEV_QUIESCE state
3026  *	(which must be a legal transition).  When the device is in this
3027  *	state, only special requests will be accepted, all others will
3028  *	be deferred.  Since special requests may also be requeued requests,
3029  *	a successful return doesn't guarantee the device will be
3030  *	totally quiescent.
3031  *
3032  *	Must be called with user context, may sleep.
3033  *
3034  *	Returns zero if unsuccessful or an error if not.
3035  */
3036 int
3037 scsi_device_quiesce(struct scsi_device *sdev)
3038 {
3039 	struct request_queue *q = sdev->request_queue;
3040 	int err;
3041 
3042 	/*
3043 	 * It is allowed to call scsi_device_quiesce() multiple times from
3044 	 * the same context but concurrent scsi_device_quiesce() calls are
3045 	 * not allowed.
3046 	 */
3047 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3048 
3049 	blk_set_preempt_only(q);
3050 
3051 	blk_mq_freeze_queue(q);
3052 	/*
3053 	 * Ensure that the effect of blk_set_preempt_only() will be visible
3054 	 * for percpu_ref_tryget() callers that occur after the queue
3055 	 * unfreeze even if the queue was already frozen before this function
3056 	 * was called. See also https://lwn.net/Articles/573497/.
3057 	 */
3058 	synchronize_rcu();
3059 	blk_mq_unfreeze_queue(q);
3060 
3061 	mutex_lock(&sdev->state_mutex);
3062 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3063 	if (err == 0)
3064 		sdev->quiesced_by = current;
3065 	else
3066 		blk_clear_preempt_only(q);
3067 	mutex_unlock(&sdev->state_mutex);
3068 
3069 	return err;
3070 }
3071 EXPORT_SYMBOL(scsi_device_quiesce);
3072 
3073 /**
3074  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3075  *	@sdev:	scsi device to resume.
3076  *
3077  *	Moves the device from quiesced back to running and restarts the
3078  *	queues.
3079  *
3080  *	Must be called with user context, may sleep.
3081  */
3082 void scsi_device_resume(struct scsi_device *sdev)
3083 {
3084 	/* check if the device state was mutated prior to resume, and if
3085 	 * so assume the state is being managed elsewhere (for example
3086 	 * device deleted during suspend)
3087 	 */
3088 	mutex_lock(&sdev->state_mutex);
3089 	WARN_ON_ONCE(!sdev->quiesced_by);
3090 	sdev->quiesced_by = NULL;
3091 	blk_clear_preempt_only(sdev->request_queue);
3092 	if (sdev->sdev_state == SDEV_QUIESCE)
3093 		scsi_device_set_state(sdev, SDEV_RUNNING);
3094 	mutex_unlock(&sdev->state_mutex);
3095 }
3096 EXPORT_SYMBOL(scsi_device_resume);
3097 
3098 static void
3099 device_quiesce_fn(struct scsi_device *sdev, void *data)
3100 {
3101 	scsi_device_quiesce(sdev);
3102 }
3103 
3104 void
3105 scsi_target_quiesce(struct scsi_target *starget)
3106 {
3107 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3108 }
3109 EXPORT_SYMBOL(scsi_target_quiesce);
3110 
3111 static void
3112 device_resume_fn(struct scsi_device *sdev, void *data)
3113 {
3114 	scsi_device_resume(sdev);
3115 }
3116 
3117 void
3118 scsi_target_resume(struct scsi_target *starget)
3119 {
3120 	starget_for_each_device(starget, NULL, device_resume_fn);
3121 }
3122 EXPORT_SYMBOL(scsi_target_resume);
3123 
3124 /**
3125  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3126  * @sdev: device to block
3127  *
3128  * Pause SCSI command processing on the specified device. Does not sleep.
3129  *
3130  * Returns zero if successful or a negative error code upon failure.
3131  *
3132  * Notes:
3133  * This routine transitions the device to the SDEV_BLOCK state (which must be
3134  * a legal transition). When the device is in this state, command processing
3135  * is paused until the device leaves the SDEV_BLOCK state. See also
3136  * scsi_internal_device_unblock_nowait().
3137  */
3138 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3139 {
3140 	struct request_queue *q = sdev->request_queue;
3141 	unsigned long flags;
3142 	int err = 0;
3143 
3144 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3145 	if (err) {
3146 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3147 
3148 		if (err)
3149 			return err;
3150 	}
3151 
3152 	/*
3153 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3154 	 * block layer from calling the midlayer with this device's
3155 	 * request queue.
3156 	 */
3157 	if (q->mq_ops) {
3158 		blk_mq_quiesce_queue_nowait(q);
3159 	} else {
3160 		spin_lock_irqsave(q->queue_lock, flags);
3161 		blk_stop_queue(q);
3162 		spin_unlock_irqrestore(q->queue_lock, flags);
3163 	}
3164 
3165 	return 0;
3166 }
3167 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3168 
3169 /**
3170  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3171  * @sdev: device to block
3172  *
3173  * Pause SCSI command processing on the specified device and wait until all
3174  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3175  *
3176  * Returns zero if successful or a negative error code upon failure.
3177  *
3178  * Note:
3179  * This routine transitions the device to the SDEV_BLOCK state (which must be
3180  * a legal transition). When the device is in this state, command processing
3181  * is paused until the device leaves the SDEV_BLOCK state. See also
3182  * scsi_internal_device_unblock().
3183  *
3184  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3185  * scsi_internal_device_block() has blocked a SCSI device and also
3186  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3187  */
3188 static int scsi_internal_device_block(struct scsi_device *sdev)
3189 {
3190 	struct request_queue *q = sdev->request_queue;
3191 	int err;
3192 
3193 	mutex_lock(&sdev->state_mutex);
3194 	err = scsi_internal_device_block_nowait(sdev);
3195 	if (err == 0) {
3196 		if (q->mq_ops)
3197 			blk_mq_quiesce_queue(q);
3198 		else
3199 			scsi_wait_for_queuecommand(sdev);
3200 	}
3201 	mutex_unlock(&sdev->state_mutex);
3202 
3203 	return err;
3204 }
3205 
3206 void scsi_start_queue(struct scsi_device *sdev)
3207 {
3208 	struct request_queue *q = sdev->request_queue;
3209 	unsigned long flags;
3210 
3211 	if (q->mq_ops) {
3212 		blk_mq_unquiesce_queue(q);
3213 	} else {
3214 		spin_lock_irqsave(q->queue_lock, flags);
3215 		blk_start_queue(q);
3216 		spin_unlock_irqrestore(q->queue_lock, flags);
3217 	}
3218 }
3219 
3220 /**
3221  * scsi_internal_device_unblock_nowait - resume a device after a block request
3222  * @sdev:	device to resume
3223  * @new_state:	state to set the device to after unblocking
3224  *
3225  * Restart the device queue for a previously suspended SCSI device. Does not
3226  * sleep.
3227  *
3228  * Returns zero if successful or a negative error code upon failure.
3229  *
3230  * Notes:
3231  * This routine transitions the device to the SDEV_RUNNING state or to one of
3232  * the offline states (which must be a legal transition) allowing the midlayer
3233  * to goose the queue for this device.
3234  */
3235 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3236 					enum scsi_device_state new_state)
3237 {
3238 	/*
3239 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3240 	 * offlined states and goose the device queue if successful.
3241 	 */
3242 	switch (sdev->sdev_state) {
3243 	case SDEV_BLOCK:
3244 	case SDEV_TRANSPORT_OFFLINE:
3245 		sdev->sdev_state = new_state;
3246 		break;
3247 	case SDEV_CREATED_BLOCK:
3248 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3249 		    new_state == SDEV_OFFLINE)
3250 			sdev->sdev_state = new_state;
3251 		else
3252 			sdev->sdev_state = SDEV_CREATED;
3253 		break;
3254 	case SDEV_CANCEL:
3255 	case SDEV_OFFLINE:
3256 		break;
3257 	default:
3258 		return -EINVAL;
3259 	}
3260 	scsi_start_queue(sdev);
3261 
3262 	return 0;
3263 }
3264 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3265 
3266 /**
3267  * scsi_internal_device_unblock - resume a device after a block request
3268  * @sdev:	device to resume
3269  * @new_state:	state to set the device to after unblocking
3270  *
3271  * Restart the device queue for a previously suspended SCSI device. May sleep.
3272  *
3273  * Returns zero if successful or a negative error code upon failure.
3274  *
3275  * Notes:
3276  * This routine transitions the device to the SDEV_RUNNING state or to one of
3277  * the offline states (which must be a legal transition) allowing the midlayer
3278  * to goose the queue for this device.
3279  */
3280 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3281 					enum scsi_device_state new_state)
3282 {
3283 	int ret;
3284 
3285 	mutex_lock(&sdev->state_mutex);
3286 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3287 	mutex_unlock(&sdev->state_mutex);
3288 
3289 	return ret;
3290 }
3291 
3292 static void
3293 device_block(struct scsi_device *sdev, void *data)
3294 {
3295 	scsi_internal_device_block(sdev);
3296 }
3297 
3298 static int
3299 target_block(struct device *dev, void *data)
3300 {
3301 	if (scsi_is_target_device(dev))
3302 		starget_for_each_device(to_scsi_target(dev), NULL,
3303 					device_block);
3304 	return 0;
3305 }
3306 
3307 void
3308 scsi_target_block(struct device *dev)
3309 {
3310 	if (scsi_is_target_device(dev))
3311 		starget_for_each_device(to_scsi_target(dev), NULL,
3312 					device_block);
3313 	else
3314 		device_for_each_child(dev, NULL, target_block);
3315 }
3316 EXPORT_SYMBOL_GPL(scsi_target_block);
3317 
3318 static void
3319 device_unblock(struct scsi_device *sdev, void *data)
3320 {
3321 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3322 }
3323 
3324 static int
3325 target_unblock(struct device *dev, void *data)
3326 {
3327 	if (scsi_is_target_device(dev))
3328 		starget_for_each_device(to_scsi_target(dev), data,
3329 					device_unblock);
3330 	return 0;
3331 }
3332 
3333 void
3334 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3335 {
3336 	if (scsi_is_target_device(dev))
3337 		starget_for_each_device(to_scsi_target(dev), &new_state,
3338 					device_unblock);
3339 	else
3340 		device_for_each_child(dev, &new_state, target_unblock);
3341 }
3342 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3343 
3344 /**
3345  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3346  * @sgl:	scatter-gather list
3347  * @sg_count:	number of segments in sg
3348  * @offset:	offset in bytes into sg, on return offset into the mapped area
3349  * @len:	bytes to map, on return number of bytes mapped
3350  *
3351  * Returns virtual address of the start of the mapped page
3352  */
3353 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3354 			  size_t *offset, size_t *len)
3355 {
3356 	int i;
3357 	size_t sg_len = 0, len_complete = 0;
3358 	struct scatterlist *sg;
3359 	struct page *page;
3360 
3361 	WARN_ON(!irqs_disabled());
3362 
3363 	for_each_sg(sgl, sg, sg_count, i) {
3364 		len_complete = sg_len; /* Complete sg-entries */
3365 		sg_len += sg->length;
3366 		if (sg_len > *offset)
3367 			break;
3368 	}
3369 
3370 	if (unlikely(i == sg_count)) {
3371 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3372 			"elements %d\n",
3373 		       __func__, sg_len, *offset, sg_count);
3374 		WARN_ON(1);
3375 		return NULL;
3376 	}
3377 
3378 	/* Offset starting from the beginning of first page in this sg-entry */
3379 	*offset = *offset - len_complete + sg->offset;
3380 
3381 	/* Assumption: contiguous pages can be accessed as "page + i" */
3382 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3383 	*offset &= ~PAGE_MASK;
3384 
3385 	/* Bytes in this sg-entry from *offset to the end of the page */
3386 	sg_len = PAGE_SIZE - *offset;
3387 	if (*len > sg_len)
3388 		*len = sg_len;
3389 
3390 	return kmap_atomic(page);
3391 }
3392 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3393 
3394 /**
3395  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3396  * @virt:	virtual address to be unmapped
3397  */
3398 void scsi_kunmap_atomic_sg(void *virt)
3399 {
3400 	kunmap_atomic(virt);
3401 }
3402 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3403 
3404 void sdev_disable_disk_events(struct scsi_device *sdev)
3405 {
3406 	atomic_inc(&sdev->disk_events_disable_depth);
3407 }
3408 EXPORT_SYMBOL(sdev_disable_disk_events);
3409 
3410 void sdev_enable_disk_events(struct scsi_device *sdev)
3411 {
3412 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3413 		return;
3414 	atomic_dec(&sdev->disk_events_disable_depth);
3415 }
3416 EXPORT_SYMBOL(sdev_enable_disk_events);
3417 
3418 /**
3419  * scsi_vpd_lun_id - return a unique device identification
3420  * @sdev: SCSI device
3421  * @id:   buffer for the identification
3422  * @id_len:  length of the buffer
3423  *
3424  * Copies a unique device identification into @id based
3425  * on the information in the VPD page 0x83 of the device.
3426  * The string will be formatted as a SCSI name string.
3427  *
3428  * Returns the length of the identification or error on failure.
3429  * If the identifier is longer than the supplied buffer the actual
3430  * identifier length is returned and the buffer is not zero-padded.
3431  */
3432 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3433 {
3434 	u8 cur_id_type = 0xff;
3435 	u8 cur_id_size = 0;
3436 	const unsigned char *d, *cur_id_str;
3437 	const struct scsi_vpd *vpd_pg83;
3438 	int id_size = -EINVAL;
3439 
3440 	rcu_read_lock();
3441 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3442 	if (!vpd_pg83) {
3443 		rcu_read_unlock();
3444 		return -ENXIO;
3445 	}
3446 
3447 	/*
3448 	 * Look for the correct descriptor.
3449 	 * Order of preference for lun descriptor:
3450 	 * - SCSI name string
3451 	 * - NAA IEEE Registered Extended
3452 	 * - EUI-64 based 16-byte
3453 	 * - EUI-64 based 12-byte
3454 	 * - NAA IEEE Registered
3455 	 * - NAA IEEE Extended
3456 	 * - T10 Vendor ID
3457 	 * as longer descriptors reduce the likelyhood
3458 	 * of identification clashes.
3459 	 */
3460 
3461 	/* The id string must be at least 20 bytes + terminating NULL byte */
3462 	if (id_len < 21) {
3463 		rcu_read_unlock();
3464 		return -EINVAL;
3465 	}
3466 
3467 	memset(id, 0, id_len);
3468 	d = vpd_pg83->data + 4;
3469 	while (d < vpd_pg83->data + vpd_pg83->len) {
3470 		/* Skip designators not referring to the LUN */
3471 		if ((d[1] & 0x30) != 0x00)
3472 			goto next_desig;
3473 
3474 		switch (d[1] & 0xf) {
3475 		case 0x1:
3476 			/* T10 Vendor ID */
3477 			if (cur_id_size > d[3])
3478 				break;
3479 			/* Prefer anything */
3480 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3481 				break;
3482 			cur_id_size = d[3];
3483 			if (cur_id_size + 4 > id_len)
3484 				cur_id_size = id_len - 4;
3485 			cur_id_str = d + 4;
3486 			cur_id_type = d[1] & 0xf;
3487 			id_size = snprintf(id, id_len, "t10.%*pE",
3488 					   cur_id_size, cur_id_str);
3489 			break;
3490 		case 0x2:
3491 			/* EUI-64 */
3492 			if (cur_id_size > d[3])
3493 				break;
3494 			/* Prefer NAA IEEE Registered Extended */
3495 			if (cur_id_type == 0x3 &&
3496 			    cur_id_size == d[3])
3497 				break;
3498 			cur_id_size = d[3];
3499 			cur_id_str = d + 4;
3500 			cur_id_type = d[1] & 0xf;
3501 			switch (cur_id_size) {
3502 			case 8:
3503 				id_size = snprintf(id, id_len,
3504 						   "eui.%8phN",
3505 						   cur_id_str);
3506 				break;
3507 			case 12:
3508 				id_size = snprintf(id, id_len,
3509 						   "eui.%12phN",
3510 						   cur_id_str);
3511 				break;
3512 			case 16:
3513 				id_size = snprintf(id, id_len,
3514 						   "eui.%16phN",
3515 						   cur_id_str);
3516 				break;
3517 			default:
3518 				cur_id_size = 0;
3519 				break;
3520 			}
3521 			break;
3522 		case 0x3:
3523 			/* NAA */
3524 			if (cur_id_size > d[3])
3525 				break;
3526 			cur_id_size = d[3];
3527 			cur_id_str = d + 4;
3528 			cur_id_type = d[1] & 0xf;
3529 			switch (cur_id_size) {
3530 			case 8:
3531 				id_size = snprintf(id, id_len,
3532 						   "naa.%8phN",
3533 						   cur_id_str);
3534 				break;
3535 			case 16:
3536 				id_size = snprintf(id, id_len,
3537 						   "naa.%16phN",
3538 						   cur_id_str);
3539 				break;
3540 			default:
3541 				cur_id_size = 0;
3542 				break;
3543 			}
3544 			break;
3545 		case 0x8:
3546 			/* SCSI name string */
3547 			if (cur_id_size + 4 > d[3])
3548 				break;
3549 			/* Prefer others for truncated descriptor */
3550 			if (cur_id_size && d[3] > id_len)
3551 				break;
3552 			cur_id_size = id_size = d[3];
3553 			cur_id_str = d + 4;
3554 			cur_id_type = d[1] & 0xf;
3555 			if (cur_id_size >= id_len)
3556 				cur_id_size = id_len - 1;
3557 			memcpy(id, cur_id_str, cur_id_size);
3558 			/* Decrease priority for truncated descriptor */
3559 			if (cur_id_size != id_size)
3560 				cur_id_size = 6;
3561 			break;
3562 		default:
3563 			break;
3564 		}
3565 next_desig:
3566 		d += d[3] + 4;
3567 	}
3568 	rcu_read_unlock();
3569 
3570 	return id_size;
3571 }
3572 EXPORT_SYMBOL(scsi_vpd_lun_id);
3573 
3574 /*
3575  * scsi_vpd_tpg_id - return a target port group identifier
3576  * @sdev: SCSI device
3577  *
3578  * Returns the Target Port Group identifier from the information
3579  * froom VPD page 0x83 of the device.
3580  *
3581  * Returns the identifier or error on failure.
3582  */
3583 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3584 {
3585 	const unsigned char *d;
3586 	const struct scsi_vpd *vpd_pg83;
3587 	int group_id = -EAGAIN, rel_port = -1;
3588 
3589 	rcu_read_lock();
3590 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3591 	if (!vpd_pg83) {
3592 		rcu_read_unlock();
3593 		return -ENXIO;
3594 	}
3595 
3596 	d = vpd_pg83->data + 4;
3597 	while (d < vpd_pg83->data + vpd_pg83->len) {
3598 		switch (d[1] & 0xf) {
3599 		case 0x4:
3600 			/* Relative target port */
3601 			rel_port = get_unaligned_be16(&d[6]);
3602 			break;
3603 		case 0x5:
3604 			/* Target port group */
3605 			group_id = get_unaligned_be16(&d[6]);
3606 			break;
3607 		default:
3608 			break;
3609 		}
3610 		d += d[3] + 4;
3611 	}
3612 	rcu_read_unlock();
3613 
3614 	if (group_id >= 0 && rel_id && rel_port != -1)
3615 		*rel_id = rel_port;
3616 
3617 	return group_id;
3618 }
3619 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3620