xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	if (cmd->request->rq_flags & RQF_DONTPREP) {
123 		cmd->request->rq_flags &= ~RQF_DONTPREP;
124 		scsi_mq_uninit_cmd(cmd);
125 	} else {
126 		WARN_ON_ONCE(true);
127 	}
128 	blk_mq_requeue_request(cmd->request, true);
129 }
130 
131 /**
132  * __scsi_queue_insert - private queue insertion
133  * @cmd: The SCSI command being requeued
134  * @reason:  The reason for the requeue
135  * @unbusy: Whether the queue should be unbusied
136  *
137  * This is a private queue insertion.  The public interface
138  * scsi_queue_insert() always assumes the queue should be unbusied
139  * because it's always called before the completion.  This function is
140  * for a requeue after completion, which should only occur in this
141  * file.
142  */
143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
144 {
145 	struct scsi_device *device = cmd->device;
146 
147 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 		"Inserting command %p into mlqueue\n", cmd));
149 
150 	scsi_set_blocked(cmd, reason);
151 
152 	/*
153 	 * Decrement the counters, since these commands are no longer
154 	 * active on the host/device.
155 	 */
156 	if (unbusy)
157 		scsi_device_unbusy(device, cmd);
158 
159 	/*
160 	 * Requeue this command.  It will go before all other commands
161 	 * that are already in the queue. Schedule requeue work under
162 	 * lock such that the kblockd_schedule_work() call happens
163 	 * before blk_cleanup_queue() finishes.
164 	 */
165 	cmd->result = 0;
166 
167 	blk_mq_requeue_request(cmd->request, true);
168 }
169 
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 	__scsi_queue_insert(cmd, reason, true);
185 }
186 
187 
188 /**
189  * __scsi_execute - insert request and wait for the result
190  * @sdev:	scsi device
191  * @cmd:	scsi command
192  * @data_direction: data direction
193  * @buffer:	data buffer
194  * @bufflen:	len of buffer
195  * @sense:	optional sense buffer
196  * @sshdr:	optional decoded sense header
197  * @timeout:	request timeout in HZ
198  * @retries:	number of times to retry request
199  * @flags:	flags for ->cmd_flags
200  * @rq_flags:	flags for ->rq_flags
201  * @resid:	optional residual length
202  *
203  * Returns the scsi_cmnd result field if a command was executed, or a negative
204  * Linux error code if we didn't get that far.
205  */
206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 		 int data_direction, void *buffer, unsigned bufflen,
208 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
209 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
210 		 int *resid)
211 {
212 	struct request *req;
213 	struct scsi_request *rq;
214 	int ret;
215 
216 	req = blk_get_request(sdev->request_queue,
217 			data_direction == DMA_TO_DEVICE ?
218 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
219 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
220 	if (IS_ERR(req))
221 		return PTR_ERR(req);
222 
223 	rq = scsi_req(req);
224 
225 	if (bufflen) {
226 		ret = blk_rq_map_kern(sdev->request_queue, req,
227 				      buffer, bufflen, GFP_NOIO);
228 		if (ret)
229 			goto out;
230 	}
231 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
232 	memcpy(rq->cmd, cmd, rq->cmd_len);
233 	rq->retries = retries;
234 	req->timeout = timeout;
235 	req->cmd_flags |= flags;
236 	req->rq_flags |= rq_flags | RQF_QUIET;
237 
238 	/*
239 	 * head injection *required* here otherwise quiesce won't work
240 	 */
241 	blk_execute_rq(NULL, req, 1);
242 
243 	/*
244 	 * Some devices (USB mass-storage in particular) may transfer
245 	 * garbage data together with a residue indicating that the data
246 	 * is invalid.  Prevent the garbage from being misinterpreted
247 	 * and prevent security leaks by zeroing out the excess data.
248 	 */
249 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
250 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
251 
252 	if (resid)
253 		*resid = rq->resid_len;
254 	if (sense && rq->sense_len)
255 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
256 	if (sshdr)
257 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
258 	ret = rq->result;
259  out:
260 	blk_put_request(req);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL(__scsi_execute);
265 
266 /*
267  * Wake up the error handler if necessary. Avoid as follows that the error
268  * handler is not woken up if host in-flight requests number ==
269  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270  * with an RCU read lock in this function to ensure that this function in
271  * its entirety either finishes before scsi_eh_scmd_add() increases the
272  * host_failed counter or that it notices the shost state change made by
273  * scsi_eh_scmd_add().
274  */
275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277 	unsigned long flags;
278 
279 	rcu_read_lock();
280 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281 	if (unlikely(scsi_host_in_recovery(shost))) {
282 		spin_lock_irqsave(shost->host_lock, flags);
283 		if (shost->host_failed || shost->host_eh_scheduled)
284 			scsi_eh_wakeup(shost);
285 		spin_unlock_irqrestore(shost->host_lock, flags);
286 	}
287 	rcu_read_unlock();
288 }
289 
290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
291 {
292 	struct Scsi_Host *shost = sdev->host;
293 	struct scsi_target *starget = scsi_target(sdev);
294 
295 	scsi_dec_host_busy(shost, cmd);
296 
297 	if (starget->can_queue > 0)
298 		atomic_dec(&starget->target_busy);
299 
300 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
301 	cmd->budget_token = -1;
302 }
303 
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306 	blk_mq_run_hw_queues(q, false);
307 }
308 
309 /*
310  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
311  * and call blk_run_queue for all the scsi_devices on the target -
312  * including current_sdev first.
313  *
314  * Called with *no* scsi locks held.
315  */
316 static void scsi_single_lun_run(struct scsi_device *current_sdev)
317 {
318 	struct Scsi_Host *shost = current_sdev->host;
319 	struct scsi_device *sdev, *tmp;
320 	struct scsi_target *starget = scsi_target(current_sdev);
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(shost->host_lock, flags);
324 	starget->starget_sdev_user = NULL;
325 	spin_unlock_irqrestore(shost->host_lock, flags);
326 
327 	/*
328 	 * Call blk_run_queue for all LUNs on the target, starting with
329 	 * current_sdev. We race with others (to set starget_sdev_user),
330 	 * but in most cases, we will be first. Ideally, each LU on the
331 	 * target would get some limited time or requests on the target.
332 	 */
333 	scsi_kick_queue(current_sdev->request_queue);
334 
335 	spin_lock_irqsave(shost->host_lock, flags);
336 	if (starget->starget_sdev_user)
337 		goto out;
338 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
339 			same_target_siblings) {
340 		if (sdev == current_sdev)
341 			continue;
342 		if (scsi_device_get(sdev))
343 			continue;
344 
345 		spin_unlock_irqrestore(shost->host_lock, flags);
346 		scsi_kick_queue(sdev->request_queue);
347 		spin_lock_irqsave(shost->host_lock, flags);
348 
349 		scsi_device_put(sdev);
350 	}
351  out:
352 	spin_unlock_irqrestore(shost->host_lock, flags);
353 }
354 
355 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
356 {
357 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
358 		return true;
359 	if (atomic_read(&sdev->device_blocked) > 0)
360 		return true;
361 	return false;
362 }
363 
364 static inline bool scsi_target_is_busy(struct scsi_target *starget)
365 {
366 	if (starget->can_queue > 0) {
367 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
368 			return true;
369 		if (atomic_read(&starget->target_blocked) > 0)
370 			return true;
371 	}
372 	return false;
373 }
374 
375 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
376 {
377 	if (atomic_read(&shost->host_blocked) > 0)
378 		return true;
379 	if (shost->host_self_blocked)
380 		return true;
381 	return false;
382 }
383 
384 static void scsi_starved_list_run(struct Scsi_Host *shost)
385 {
386 	LIST_HEAD(starved_list);
387 	struct scsi_device *sdev;
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(shost->host_lock, flags);
391 	list_splice_init(&shost->starved_list, &starved_list);
392 
393 	while (!list_empty(&starved_list)) {
394 		struct request_queue *slq;
395 
396 		/*
397 		 * As long as shost is accepting commands and we have
398 		 * starved queues, call blk_run_queue. scsi_request_fn
399 		 * drops the queue_lock and can add us back to the
400 		 * starved_list.
401 		 *
402 		 * host_lock protects the starved_list and starved_entry.
403 		 * scsi_request_fn must get the host_lock before checking
404 		 * or modifying starved_list or starved_entry.
405 		 */
406 		if (scsi_host_is_busy(shost))
407 			break;
408 
409 		sdev = list_entry(starved_list.next,
410 				  struct scsi_device, starved_entry);
411 		list_del_init(&sdev->starved_entry);
412 		if (scsi_target_is_busy(scsi_target(sdev))) {
413 			list_move_tail(&sdev->starved_entry,
414 				       &shost->starved_list);
415 			continue;
416 		}
417 
418 		/*
419 		 * Once we drop the host lock, a racing scsi_remove_device()
420 		 * call may remove the sdev from the starved list and destroy
421 		 * it and the queue.  Mitigate by taking a reference to the
422 		 * queue and never touching the sdev again after we drop the
423 		 * host lock.  Note: if __scsi_remove_device() invokes
424 		 * blk_cleanup_queue() before the queue is run from this
425 		 * function then blk_run_queue() will return immediately since
426 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
427 		 */
428 		slq = sdev->request_queue;
429 		if (!blk_get_queue(slq))
430 			continue;
431 		spin_unlock_irqrestore(shost->host_lock, flags);
432 
433 		scsi_kick_queue(slq);
434 		blk_put_queue(slq);
435 
436 		spin_lock_irqsave(shost->host_lock, flags);
437 	}
438 	/* put any unprocessed entries back */
439 	list_splice(&starved_list, &shost->starved_list);
440 	spin_unlock_irqrestore(shost->host_lock, flags);
441 }
442 
443 /**
444  * scsi_run_queue - Select a proper request queue to serve next.
445  * @q:  last request's queue
446  *
447  * The previous command was completely finished, start a new one if possible.
448  */
449 static void scsi_run_queue(struct request_queue *q)
450 {
451 	struct scsi_device *sdev = q->queuedata;
452 
453 	if (scsi_target(sdev)->single_lun)
454 		scsi_single_lun_run(sdev);
455 	if (!list_empty(&sdev->host->starved_list))
456 		scsi_starved_list_run(sdev->host);
457 
458 	blk_mq_run_hw_queues(q, false);
459 }
460 
461 void scsi_requeue_run_queue(struct work_struct *work)
462 {
463 	struct scsi_device *sdev;
464 	struct request_queue *q;
465 
466 	sdev = container_of(work, struct scsi_device, requeue_work);
467 	q = sdev->request_queue;
468 	scsi_run_queue(q);
469 }
470 
471 void scsi_run_host_queues(struct Scsi_Host *shost)
472 {
473 	struct scsi_device *sdev;
474 
475 	shost_for_each_device(sdev, shost)
476 		scsi_run_queue(sdev->request_queue);
477 }
478 
479 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
480 {
481 	if (!blk_rq_is_passthrough(cmd->request)) {
482 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
483 
484 		if (drv->uninit_command)
485 			drv->uninit_command(cmd);
486 	}
487 }
488 
489 void scsi_free_sgtables(struct scsi_cmnd *cmd)
490 {
491 	if (cmd->sdb.table.nents)
492 		sg_free_table_chained(&cmd->sdb.table,
493 				SCSI_INLINE_SG_CNT);
494 	if (scsi_prot_sg_count(cmd))
495 		sg_free_table_chained(&cmd->prot_sdb->table,
496 				SCSI_INLINE_PROT_SG_CNT);
497 }
498 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
499 
500 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
501 {
502 	scsi_free_sgtables(cmd);
503 	scsi_uninit_cmd(cmd);
504 }
505 
506 static void scsi_run_queue_async(struct scsi_device *sdev)
507 {
508 	if (scsi_target(sdev)->single_lun ||
509 	    !list_empty(&sdev->host->starved_list)) {
510 		kblockd_schedule_work(&sdev->requeue_work);
511 	} else {
512 		/*
513 		 * smp_mb() present in sbitmap_queue_clear() or implied in
514 		 * .end_io is for ordering writing .device_busy in
515 		 * scsi_device_unbusy() and reading sdev->restarts.
516 		 */
517 		int old = atomic_read(&sdev->restarts);
518 
519 		/*
520 		 * ->restarts has to be kept as non-zero if new budget
521 		 *  contention occurs.
522 		 *
523 		 *  No need to run queue when either another re-run
524 		 *  queue wins in updating ->restarts or a new budget
525 		 *  contention occurs.
526 		 */
527 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
528 			blk_mq_run_hw_queues(sdev->request_queue, true);
529 	}
530 }
531 
532 /* Returns false when no more bytes to process, true if there are more */
533 static bool scsi_end_request(struct request *req, blk_status_t error,
534 		unsigned int bytes)
535 {
536 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
537 	struct scsi_device *sdev = cmd->device;
538 	struct request_queue *q = sdev->request_queue;
539 
540 	if (blk_update_request(req, error, bytes))
541 		return true;
542 
543 	if (blk_queue_add_random(q))
544 		add_disk_randomness(req->rq_disk);
545 
546 	if (!blk_rq_is_passthrough(req)) {
547 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
548 		cmd->flags &= ~SCMD_INITIALIZED;
549 	}
550 
551 	/*
552 	 * Calling rcu_barrier() is not necessary here because the
553 	 * SCSI error handler guarantees that the function called by
554 	 * call_rcu() has been called before scsi_end_request() is
555 	 * called.
556 	 */
557 	destroy_rcu_head(&cmd->rcu);
558 
559 	/*
560 	 * In the MQ case the command gets freed by __blk_mq_end_request,
561 	 * so we have to do all cleanup that depends on it earlier.
562 	 *
563 	 * We also can't kick the queues from irq context, so we
564 	 * will have to defer it to a workqueue.
565 	 */
566 	scsi_mq_uninit_cmd(cmd);
567 
568 	/*
569 	 * queue is still alive, so grab the ref for preventing it
570 	 * from being cleaned up during running queue.
571 	 */
572 	percpu_ref_get(&q->q_usage_counter);
573 
574 	__blk_mq_end_request(req, error);
575 
576 	scsi_run_queue_async(sdev);
577 
578 	percpu_ref_put(&q->q_usage_counter);
579 	return false;
580 }
581 
582 /**
583  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
584  * @cmd:	SCSI command
585  * @result:	scsi error code
586  *
587  * Translate a SCSI result code into a blk_status_t value. May reset the host
588  * byte of @cmd->result.
589  */
590 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
591 {
592 	switch (host_byte(result)) {
593 	case DID_OK:
594 		if (scsi_status_is_good(result))
595 			return BLK_STS_OK;
596 		return BLK_STS_IOERR;
597 	case DID_TRANSPORT_FAILFAST:
598 	case DID_TRANSPORT_MARGINAL:
599 		return BLK_STS_TRANSPORT;
600 	case DID_TARGET_FAILURE:
601 		set_host_byte(cmd, DID_OK);
602 		return BLK_STS_TARGET;
603 	case DID_NEXUS_FAILURE:
604 		set_host_byte(cmd, DID_OK);
605 		return BLK_STS_NEXUS;
606 	case DID_ALLOC_FAILURE:
607 		set_host_byte(cmd, DID_OK);
608 		return BLK_STS_NOSPC;
609 	case DID_MEDIUM_ERROR:
610 		set_host_byte(cmd, DID_OK);
611 		return BLK_STS_MEDIUM;
612 	default:
613 		return BLK_STS_IOERR;
614 	}
615 }
616 
617 /* Helper for scsi_io_completion() when "reprep" action required. */
618 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
619 				      struct request_queue *q)
620 {
621 	/* A new command will be prepared and issued. */
622 	scsi_mq_requeue_cmd(cmd);
623 }
624 
625 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
626 {
627 	struct request *req = cmd->request;
628 	unsigned long wait_for;
629 
630 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
631 		return false;
632 
633 	wait_for = (cmd->allowed + 1) * req->timeout;
634 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
635 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
636 			    wait_for/HZ);
637 		return true;
638 	}
639 	return false;
640 }
641 
642 /* Helper for scsi_io_completion() when special action required. */
643 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
644 {
645 	struct request_queue *q = cmd->device->request_queue;
646 	struct request *req = cmd->request;
647 	int level = 0;
648 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
649 	      ACTION_DELAYED_RETRY} action;
650 	struct scsi_sense_hdr sshdr;
651 	bool sense_valid;
652 	bool sense_current = true;      /* false implies "deferred sense" */
653 	blk_status_t blk_stat;
654 
655 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
656 	if (sense_valid)
657 		sense_current = !scsi_sense_is_deferred(&sshdr);
658 
659 	blk_stat = scsi_result_to_blk_status(cmd, result);
660 
661 	if (host_byte(result) == DID_RESET) {
662 		/* Third party bus reset or reset for error recovery
663 		 * reasons.  Just retry the command and see what
664 		 * happens.
665 		 */
666 		action = ACTION_RETRY;
667 	} else if (sense_valid && sense_current) {
668 		switch (sshdr.sense_key) {
669 		case UNIT_ATTENTION:
670 			if (cmd->device->removable) {
671 				/* Detected disc change.  Set a bit
672 				 * and quietly refuse further access.
673 				 */
674 				cmd->device->changed = 1;
675 				action = ACTION_FAIL;
676 			} else {
677 				/* Must have been a power glitch, or a
678 				 * bus reset.  Could not have been a
679 				 * media change, so we just retry the
680 				 * command and see what happens.
681 				 */
682 				action = ACTION_RETRY;
683 			}
684 			break;
685 		case ILLEGAL_REQUEST:
686 			/* If we had an ILLEGAL REQUEST returned, then
687 			 * we may have performed an unsupported
688 			 * command.  The only thing this should be
689 			 * would be a ten byte read where only a six
690 			 * byte read was supported.  Also, on a system
691 			 * where READ CAPACITY failed, we may have
692 			 * read past the end of the disk.
693 			 */
694 			if ((cmd->device->use_10_for_rw &&
695 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
696 			    (cmd->cmnd[0] == READ_10 ||
697 			     cmd->cmnd[0] == WRITE_10)) {
698 				/* This will issue a new 6-byte command. */
699 				cmd->device->use_10_for_rw = 0;
700 				action = ACTION_REPREP;
701 			} else if (sshdr.asc == 0x10) /* DIX */ {
702 				action = ACTION_FAIL;
703 				blk_stat = BLK_STS_PROTECTION;
704 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
705 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
706 				action = ACTION_FAIL;
707 				blk_stat = BLK_STS_TARGET;
708 			} else
709 				action = ACTION_FAIL;
710 			break;
711 		case ABORTED_COMMAND:
712 			action = ACTION_FAIL;
713 			if (sshdr.asc == 0x10) /* DIF */
714 				blk_stat = BLK_STS_PROTECTION;
715 			break;
716 		case NOT_READY:
717 			/* If the device is in the process of becoming
718 			 * ready, or has a temporary blockage, retry.
719 			 */
720 			if (sshdr.asc == 0x04) {
721 				switch (sshdr.ascq) {
722 				case 0x01: /* becoming ready */
723 				case 0x04: /* format in progress */
724 				case 0x05: /* rebuild in progress */
725 				case 0x06: /* recalculation in progress */
726 				case 0x07: /* operation in progress */
727 				case 0x08: /* Long write in progress */
728 				case 0x09: /* self test in progress */
729 				case 0x11: /* notify (enable spinup) required */
730 				case 0x14: /* space allocation in progress */
731 				case 0x1a: /* start stop unit in progress */
732 				case 0x1b: /* sanitize in progress */
733 				case 0x1d: /* configuration in progress */
734 				case 0x24: /* depopulation in progress */
735 					action = ACTION_DELAYED_RETRY;
736 					break;
737 				case 0x0a: /* ALUA state transition */
738 					blk_stat = BLK_STS_AGAIN;
739 					fallthrough;
740 				default:
741 					action = ACTION_FAIL;
742 					break;
743 				}
744 			} else
745 				action = ACTION_FAIL;
746 			break;
747 		case VOLUME_OVERFLOW:
748 			/* See SSC3rXX or current. */
749 			action = ACTION_FAIL;
750 			break;
751 		case DATA_PROTECT:
752 			action = ACTION_FAIL;
753 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
754 			    (sshdr.asc == 0x55 &&
755 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
756 				/* Insufficient zone resources */
757 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
758 			}
759 			break;
760 		default:
761 			action = ACTION_FAIL;
762 			break;
763 		}
764 	} else
765 		action = ACTION_FAIL;
766 
767 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
768 		action = ACTION_FAIL;
769 
770 	switch (action) {
771 	case ACTION_FAIL:
772 		/* Give up and fail the remainder of the request */
773 		if (!(req->rq_flags & RQF_QUIET)) {
774 			static DEFINE_RATELIMIT_STATE(_rs,
775 					DEFAULT_RATELIMIT_INTERVAL,
776 					DEFAULT_RATELIMIT_BURST);
777 
778 			if (unlikely(scsi_logging_level))
779 				level =
780 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
781 						    SCSI_LOG_MLCOMPLETE_BITS);
782 
783 			/*
784 			 * if logging is enabled the failure will be printed
785 			 * in scsi_log_completion(), so avoid duplicate messages
786 			 */
787 			if (!level && __ratelimit(&_rs)) {
788 				scsi_print_result(cmd, NULL, FAILED);
789 				if (sense_valid)
790 					scsi_print_sense(cmd);
791 				scsi_print_command(cmd);
792 			}
793 		}
794 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
795 			return;
796 		fallthrough;
797 	case ACTION_REPREP:
798 		scsi_io_completion_reprep(cmd, q);
799 		break;
800 	case ACTION_RETRY:
801 		/* Retry the same command immediately */
802 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
803 		break;
804 	case ACTION_DELAYED_RETRY:
805 		/* Retry the same command after a delay */
806 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
807 		break;
808 	}
809 }
810 
811 /*
812  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
813  * new result that may suppress further error checking. Also modifies
814  * *blk_statp in some cases.
815  */
816 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
817 					blk_status_t *blk_statp)
818 {
819 	bool sense_valid;
820 	bool sense_current = true;	/* false implies "deferred sense" */
821 	struct request *req = cmd->request;
822 	struct scsi_sense_hdr sshdr;
823 
824 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
825 	if (sense_valid)
826 		sense_current = !scsi_sense_is_deferred(&sshdr);
827 
828 	if (blk_rq_is_passthrough(req)) {
829 		if (sense_valid) {
830 			/*
831 			 * SG_IO wants current and deferred errors
832 			 */
833 			scsi_req(req)->sense_len =
834 				min(8 + cmd->sense_buffer[7],
835 				    SCSI_SENSE_BUFFERSIZE);
836 		}
837 		if (sense_current)
838 			*blk_statp = scsi_result_to_blk_status(cmd, result);
839 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
840 		/*
841 		 * Flush commands do not transfers any data, and thus cannot use
842 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
843 		 * This sets *blk_statp explicitly for the problem case.
844 		 */
845 		*blk_statp = scsi_result_to_blk_status(cmd, result);
846 	}
847 	/*
848 	 * Recovered errors need reporting, but they're always treated as
849 	 * success, so fiddle the result code here.  For passthrough requests
850 	 * we already took a copy of the original into sreq->result which
851 	 * is what gets returned to the user
852 	 */
853 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
854 		bool do_print = true;
855 		/*
856 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
857 		 * skip print since caller wants ATA registers. Only occurs
858 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
859 		 */
860 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
861 			do_print = false;
862 		else if (req->rq_flags & RQF_QUIET)
863 			do_print = false;
864 		if (do_print)
865 			scsi_print_sense(cmd);
866 		result = 0;
867 		/* for passthrough, *blk_statp may be set */
868 		*blk_statp = BLK_STS_OK;
869 	}
870 	/*
871 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
872 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
873 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
874 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
875 	 * intermediate statuses (both obsolete in SAM-4) as good.
876 	 */
877 	if ((result & 0xff) && scsi_status_is_good(result)) {
878 		result = 0;
879 		*blk_statp = BLK_STS_OK;
880 	}
881 	return result;
882 }
883 
884 /**
885  * scsi_io_completion - Completion processing for SCSI commands.
886  * @cmd:	command that is finished.
887  * @good_bytes:	number of processed bytes.
888  *
889  * We will finish off the specified number of sectors. If we are done, the
890  * command block will be released and the queue function will be goosed. If we
891  * are not done then we have to figure out what to do next:
892  *
893  *   a) We can call scsi_io_completion_reprep().  The request will be
894  *	unprepared and put back on the queue.  Then a new command will
895  *	be created for it.  This should be used if we made forward
896  *	progress, or if we want to switch from READ(10) to READ(6) for
897  *	example.
898  *
899  *   b) We can call scsi_io_completion_action().  The request will be
900  *	put back on the queue and retried using the same command as
901  *	before, possibly after a delay.
902  *
903  *   c) We can call scsi_end_request() with blk_stat other than
904  *	BLK_STS_OK, to fail the remainder of the request.
905  */
906 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
907 {
908 	int result = cmd->result;
909 	struct request_queue *q = cmd->device->request_queue;
910 	struct request *req = cmd->request;
911 	blk_status_t blk_stat = BLK_STS_OK;
912 
913 	if (unlikely(result))	/* a nz result may or may not be an error */
914 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
915 
916 	if (unlikely(blk_rq_is_passthrough(req))) {
917 		/*
918 		 * scsi_result_to_blk_status may have reset the host_byte
919 		 */
920 		scsi_req(req)->result = cmd->result;
921 	}
922 
923 	/*
924 	 * Next deal with any sectors which we were able to correctly
925 	 * handle.
926 	 */
927 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
928 		"%u sectors total, %d bytes done.\n",
929 		blk_rq_sectors(req), good_bytes));
930 
931 	/*
932 	 * Failed, zero length commands always need to drop down
933 	 * to retry code. Fast path should return in this block.
934 	 */
935 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
936 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
937 			return; /* no bytes remaining */
938 	}
939 
940 	/* Kill remainder if no retries. */
941 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
942 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
943 			WARN_ONCE(true,
944 			    "Bytes remaining after failed, no-retry command");
945 		return;
946 	}
947 
948 	/*
949 	 * If there had been no error, but we have leftover bytes in the
950 	 * requeues just queue the command up again.
951 	 */
952 	if (likely(result == 0))
953 		scsi_io_completion_reprep(cmd, q);
954 	else
955 		scsi_io_completion_action(cmd, result);
956 }
957 
958 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
959 		struct request *rq)
960 {
961 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
962 	       !op_is_write(req_op(rq)) &&
963 	       sdev->host->hostt->dma_need_drain(rq);
964 }
965 
966 /**
967  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
968  * @cmd: SCSI command data structure to initialize.
969  *
970  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
971  * for @cmd.
972  *
973  * Returns:
974  * * BLK_STS_OK       - on success
975  * * BLK_STS_RESOURCE - if the failure is retryable
976  * * BLK_STS_IOERR    - if the failure is fatal
977  */
978 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
979 {
980 	struct scsi_device *sdev = cmd->device;
981 	struct request *rq = cmd->request;
982 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
983 	struct scatterlist *last_sg = NULL;
984 	blk_status_t ret;
985 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
986 	int count;
987 
988 	if (WARN_ON_ONCE(!nr_segs))
989 		return BLK_STS_IOERR;
990 
991 	/*
992 	 * Make sure there is space for the drain.  The driver must adjust
993 	 * max_hw_segments to be prepared for this.
994 	 */
995 	if (need_drain)
996 		nr_segs++;
997 
998 	/*
999 	 * If sg table allocation fails, requeue request later.
1000 	 */
1001 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1002 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1003 		return BLK_STS_RESOURCE;
1004 
1005 	/*
1006 	 * Next, walk the list, and fill in the addresses and sizes of
1007 	 * each segment.
1008 	 */
1009 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1010 
1011 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1012 		unsigned int pad_len =
1013 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1014 
1015 		last_sg->length += pad_len;
1016 		cmd->extra_len += pad_len;
1017 	}
1018 
1019 	if (need_drain) {
1020 		sg_unmark_end(last_sg);
1021 		last_sg = sg_next(last_sg);
1022 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1023 		sg_mark_end(last_sg);
1024 
1025 		cmd->extra_len += sdev->dma_drain_len;
1026 		count++;
1027 	}
1028 
1029 	BUG_ON(count > cmd->sdb.table.nents);
1030 	cmd->sdb.table.nents = count;
1031 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1032 
1033 	if (blk_integrity_rq(rq)) {
1034 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1035 		int ivecs;
1036 
1037 		if (WARN_ON_ONCE(!prot_sdb)) {
1038 			/*
1039 			 * This can happen if someone (e.g. multipath)
1040 			 * queues a command to a device on an adapter
1041 			 * that does not support DIX.
1042 			 */
1043 			ret = BLK_STS_IOERR;
1044 			goto out_free_sgtables;
1045 		}
1046 
1047 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1048 
1049 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1050 				prot_sdb->table.sgl,
1051 				SCSI_INLINE_PROT_SG_CNT)) {
1052 			ret = BLK_STS_RESOURCE;
1053 			goto out_free_sgtables;
1054 		}
1055 
1056 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1057 						prot_sdb->table.sgl);
1058 		BUG_ON(count > ivecs);
1059 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1060 
1061 		cmd->prot_sdb = prot_sdb;
1062 		cmd->prot_sdb->table.nents = count;
1063 	}
1064 
1065 	return BLK_STS_OK;
1066 out_free_sgtables:
1067 	scsi_free_sgtables(cmd);
1068 	return ret;
1069 }
1070 EXPORT_SYMBOL(scsi_alloc_sgtables);
1071 
1072 /**
1073  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1074  * @rq: Request associated with the SCSI command to be initialized.
1075  *
1076  * This function initializes the members of struct scsi_cmnd that must be
1077  * initialized before request processing starts and that won't be
1078  * reinitialized if a SCSI command is requeued.
1079  *
1080  * Called from inside blk_get_request() for pass-through requests and from
1081  * inside scsi_init_command() for filesystem requests.
1082  */
1083 static void scsi_initialize_rq(struct request *rq)
1084 {
1085 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1086 
1087 	scsi_req_init(&cmd->req);
1088 	init_rcu_head(&cmd->rcu);
1089 	cmd->jiffies_at_alloc = jiffies;
1090 	cmd->retries = 0;
1091 }
1092 
1093 /*
1094  * Only called when the request isn't completed by SCSI, and not freed by
1095  * SCSI
1096  */
1097 static void scsi_cleanup_rq(struct request *rq)
1098 {
1099 	if (rq->rq_flags & RQF_DONTPREP) {
1100 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1101 		rq->rq_flags &= ~RQF_DONTPREP;
1102 	}
1103 }
1104 
1105 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1106 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1107 {
1108 	void *buf = cmd->sense_buffer;
1109 	void *prot = cmd->prot_sdb;
1110 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1111 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1112 	unsigned long jiffies_at_alloc;
1113 	int retries, to_clear;
1114 	bool in_flight;
1115 	int budget_token = cmd->budget_token;
1116 
1117 	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1118 		flags |= SCMD_INITIALIZED;
1119 		scsi_initialize_rq(rq);
1120 	}
1121 
1122 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1123 	retries = cmd->retries;
1124 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1125 	/*
1126 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1127 	 * the driver-private command data if the LLD does not supply a
1128 	 * function to initialize that data.
1129 	 */
1130 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1131 	if (!dev->host->hostt->init_cmd_priv)
1132 		to_clear += dev->host->hostt->cmd_size;
1133 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1134 
1135 	cmd->device = dev;
1136 	cmd->sense_buffer = buf;
1137 	cmd->prot_sdb = prot;
1138 	cmd->flags = flags;
1139 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1140 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1141 	cmd->retries = retries;
1142 	if (in_flight)
1143 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1144 	cmd->budget_token = budget_token;
1145 
1146 }
1147 
1148 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1149 		struct request *req)
1150 {
1151 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1152 
1153 	/*
1154 	 * Passthrough requests may transfer data, in which case they must
1155 	 * a bio attached to them.  Or they might contain a SCSI command
1156 	 * that does not transfer data, in which case they may optionally
1157 	 * submit a request without an attached bio.
1158 	 */
1159 	if (req->bio) {
1160 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1161 		if (unlikely(ret != BLK_STS_OK))
1162 			return ret;
1163 	} else {
1164 		BUG_ON(blk_rq_bytes(req));
1165 
1166 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1167 	}
1168 
1169 	cmd->cmd_len = scsi_req(req)->cmd_len;
1170 	if (cmd->cmd_len == 0)
1171 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1172 	cmd->cmnd = scsi_req(req)->cmd;
1173 	cmd->transfersize = blk_rq_bytes(req);
1174 	cmd->allowed = scsi_req(req)->retries;
1175 	return BLK_STS_OK;
1176 }
1177 
1178 static blk_status_t
1179 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1180 {
1181 	switch (sdev->sdev_state) {
1182 	case SDEV_CREATED:
1183 		return BLK_STS_OK;
1184 	case SDEV_OFFLINE:
1185 	case SDEV_TRANSPORT_OFFLINE:
1186 		/*
1187 		 * If the device is offline we refuse to process any
1188 		 * commands.  The device must be brought online
1189 		 * before trying any recovery commands.
1190 		 */
1191 		if (!sdev->offline_already) {
1192 			sdev->offline_already = true;
1193 			sdev_printk(KERN_ERR, sdev,
1194 				    "rejecting I/O to offline device\n");
1195 		}
1196 		return BLK_STS_IOERR;
1197 	case SDEV_DEL:
1198 		/*
1199 		 * If the device is fully deleted, we refuse to
1200 		 * process any commands as well.
1201 		 */
1202 		sdev_printk(KERN_ERR, sdev,
1203 			    "rejecting I/O to dead device\n");
1204 		return BLK_STS_IOERR;
1205 	case SDEV_BLOCK:
1206 	case SDEV_CREATED_BLOCK:
1207 		return BLK_STS_RESOURCE;
1208 	case SDEV_QUIESCE:
1209 		/*
1210 		 * If the device is blocked we only accept power management
1211 		 * commands.
1212 		 */
1213 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1214 			return BLK_STS_RESOURCE;
1215 		return BLK_STS_OK;
1216 	default:
1217 		/*
1218 		 * For any other not fully online state we only allow
1219 		 * power management commands.
1220 		 */
1221 		if (req && !(req->rq_flags & RQF_PM))
1222 			return BLK_STS_IOERR;
1223 		return BLK_STS_OK;
1224 	}
1225 }
1226 
1227 /*
1228  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1229  * and return the token else return -1.
1230  */
1231 static inline int scsi_dev_queue_ready(struct request_queue *q,
1232 				  struct scsi_device *sdev)
1233 {
1234 	int token;
1235 
1236 	token = sbitmap_get(&sdev->budget_map);
1237 	if (atomic_read(&sdev->device_blocked)) {
1238 		if (token < 0)
1239 			goto out;
1240 
1241 		if (scsi_device_busy(sdev) > 1)
1242 			goto out_dec;
1243 
1244 		/*
1245 		 * unblock after device_blocked iterates to zero
1246 		 */
1247 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1248 			goto out_dec;
1249 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1250 				   "unblocking device at zero depth\n"));
1251 	}
1252 
1253 	return token;
1254 out_dec:
1255 	if (token >= 0)
1256 		sbitmap_put(&sdev->budget_map, token);
1257 out:
1258 	return -1;
1259 }
1260 
1261 /*
1262  * scsi_target_queue_ready: checks if there we can send commands to target
1263  * @sdev: scsi device on starget to check.
1264  */
1265 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1266 					   struct scsi_device *sdev)
1267 {
1268 	struct scsi_target *starget = scsi_target(sdev);
1269 	unsigned int busy;
1270 
1271 	if (starget->single_lun) {
1272 		spin_lock_irq(shost->host_lock);
1273 		if (starget->starget_sdev_user &&
1274 		    starget->starget_sdev_user != sdev) {
1275 			spin_unlock_irq(shost->host_lock);
1276 			return 0;
1277 		}
1278 		starget->starget_sdev_user = sdev;
1279 		spin_unlock_irq(shost->host_lock);
1280 	}
1281 
1282 	if (starget->can_queue <= 0)
1283 		return 1;
1284 
1285 	busy = atomic_inc_return(&starget->target_busy) - 1;
1286 	if (atomic_read(&starget->target_blocked) > 0) {
1287 		if (busy)
1288 			goto starved;
1289 
1290 		/*
1291 		 * unblock after target_blocked iterates to zero
1292 		 */
1293 		if (atomic_dec_return(&starget->target_blocked) > 0)
1294 			goto out_dec;
1295 
1296 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1297 				 "unblocking target at zero depth\n"));
1298 	}
1299 
1300 	if (busy >= starget->can_queue)
1301 		goto starved;
1302 
1303 	return 1;
1304 
1305 starved:
1306 	spin_lock_irq(shost->host_lock);
1307 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1308 	spin_unlock_irq(shost->host_lock);
1309 out_dec:
1310 	if (starget->can_queue > 0)
1311 		atomic_dec(&starget->target_busy);
1312 	return 0;
1313 }
1314 
1315 /*
1316  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1317  * return 0. We must end up running the queue again whenever 0 is
1318  * returned, else IO can hang.
1319  */
1320 static inline int scsi_host_queue_ready(struct request_queue *q,
1321 				   struct Scsi_Host *shost,
1322 				   struct scsi_device *sdev,
1323 				   struct scsi_cmnd *cmd)
1324 {
1325 	if (scsi_host_in_recovery(shost))
1326 		return 0;
1327 
1328 	if (atomic_read(&shost->host_blocked) > 0) {
1329 		if (scsi_host_busy(shost) > 0)
1330 			goto starved;
1331 
1332 		/*
1333 		 * unblock after host_blocked iterates to zero
1334 		 */
1335 		if (atomic_dec_return(&shost->host_blocked) > 0)
1336 			goto out_dec;
1337 
1338 		SCSI_LOG_MLQUEUE(3,
1339 			shost_printk(KERN_INFO, shost,
1340 				     "unblocking host at zero depth\n"));
1341 	}
1342 
1343 	if (shost->host_self_blocked)
1344 		goto starved;
1345 
1346 	/* We're OK to process the command, so we can't be starved */
1347 	if (!list_empty(&sdev->starved_entry)) {
1348 		spin_lock_irq(shost->host_lock);
1349 		if (!list_empty(&sdev->starved_entry))
1350 			list_del_init(&sdev->starved_entry);
1351 		spin_unlock_irq(shost->host_lock);
1352 	}
1353 
1354 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1355 
1356 	return 1;
1357 
1358 starved:
1359 	spin_lock_irq(shost->host_lock);
1360 	if (list_empty(&sdev->starved_entry))
1361 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1362 	spin_unlock_irq(shost->host_lock);
1363 out_dec:
1364 	scsi_dec_host_busy(shost, cmd);
1365 	return 0;
1366 }
1367 
1368 /*
1369  * Busy state exporting function for request stacking drivers.
1370  *
1371  * For efficiency, no lock is taken to check the busy state of
1372  * shost/starget/sdev, since the returned value is not guaranteed and
1373  * may be changed after request stacking drivers call the function,
1374  * regardless of taking lock or not.
1375  *
1376  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1377  * needs to return 'not busy'. Otherwise, request stacking drivers
1378  * may hold requests forever.
1379  */
1380 static bool scsi_mq_lld_busy(struct request_queue *q)
1381 {
1382 	struct scsi_device *sdev = q->queuedata;
1383 	struct Scsi_Host *shost;
1384 
1385 	if (blk_queue_dying(q))
1386 		return false;
1387 
1388 	shost = sdev->host;
1389 
1390 	/*
1391 	 * Ignore host/starget busy state.
1392 	 * Since block layer does not have a concept of fairness across
1393 	 * multiple queues, congestion of host/starget needs to be handled
1394 	 * in SCSI layer.
1395 	 */
1396 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1397 		return true;
1398 
1399 	return false;
1400 }
1401 
1402 /*
1403  * Block layer request completion callback. May be called from interrupt
1404  * context.
1405  */
1406 static void scsi_complete(struct request *rq)
1407 {
1408 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1409 	enum scsi_disposition disposition;
1410 
1411 	INIT_LIST_HEAD(&cmd->eh_entry);
1412 
1413 	atomic_inc(&cmd->device->iodone_cnt);
1414 	if (cmd->result)
1415 		atomic_inc(&cmd->device->ioerr_cnt);
1416 
1417 	disposition = scsi_decide_disposition(cmd);
1418 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1419 		disposition = SUCCESS;
1420 
1421 	scsi_log_completion(cmd, disposition);
1422 
1423 	switch (disposition) {
1424 	case SUCCESS:
1425 		scsi_finish_command(cmd);
1426 		break;
1427 	case NEEDS_RETRY:
1428 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1429 		break;
1430 	case ADD_TO_MLQUEUE:
1431 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1432 		break;
1433 	default:
1434 		scsi_eh_scmd_add(cmd);
1435 		break;
1436 	}
1437 }
1438 
1439 /**
1440  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1441  * @cmd: command block we are dispatching.
1442  *
1443  * Return: nonzero return request was rejected and device's queue needs to be
1444  * plugged.
1445  */
1446 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1447 {
1448 	struct Scsi_Host *host = cmd->device->host;
1449 	int rtn = 0;
1450 
1451 	atomic_inc(&cmd->device->iorequest_cnt);
1452 
1453 	/* check if the device is still usable */
1454 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1455 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1456 		 * returns an immediate error upwards, and signals
1457 		 * that the device is no longer present */
1458 		cmd->result = DID_NO_CONNECT << 16;
1459 		goto done;
1460 	}
1461 
1462 	/* Check to see if the scsi lld made this device blocked. */
1463 	if (unlikely(scsi_device_blocked(cmd->device))) {
1464 		/*
1465 		 * in blocked state, the command is just put back on
1466 		 * the device queue.  The suspend state has already
1467 		 * blocked the queue so future requests should not
1468 		 * occur until the device transitions out of the
1469 		 * suspend state.
1470 		 */
1471 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1472 			"queuecommand : device blocked\n"));
1473 		return SCSI_MLQUEUE_DEVICE_BUSY;
1474 	}
1475 
1476 	/* Store the LUN value in cmnd, if needed. */
1477 	if (cmd->device->lun_in_cdb)
1478 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1479 			       (cmd->device->lun << 5 & 0xe0);
1480 
1481 	scsi_log_send(cmd);
1482 
1483 	/*
1484 	 * Before we queue this command, check if the command
1485 	 * length exceeds what the host adapter can handle.
1486 	 */
1487 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1488 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1489 			       "queuecommand : command too long. "
1490 			       "cdb_size=%d host->max_cmd_len=%d\n",
1491 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1492 		cmd->result = (DID_ABORT << 16);
1493 		goto done;
1494 	}
1495 
1496 	if (unlikely(host->shost_state == SHOST_DEL)) {
1497 		cmd->result = (DID_NO_CONNECT << 16);
1498 		goto done;
1499 
1500 	}
1501 
1502 	trace_scsi_dispatch_cmd_start(cmd);
1503 	rtn = host->hostt->queuecommand(host, cmd);
1504 	if (rtn) {
1505 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1506 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1507 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1508 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1509 
1510 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1511 			"queuecommand : request rejected\n"));
1512 	}
1513 
1514 	return rtn;
1515  done:
1516 	cmd->scsi_done(cmd);
1517 	return 0;
1518 }
1519 
1520 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1521 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1522 {
1523 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1524 		sizeof(struct scatterlist);
1525 }
1526 
1527 static blk_status_t scsi_prepare_cmd(struct request *req)
1528 {
1529 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1530 	struct scsi_device *sdev = req->q->queuedata;
1531 	struct Scsi_Host *shost = sdev->host;
1532 	struct scatterlist *sg;
1533 
1534 	scsi_init_command(sdev, cmd);
1535 
1536 	cmd->request = req;
1537 	cmd->tag = req->tag;
1538 	cmd->prot_op = SCSI_PROT_NORMAL;
1539 	if (blk_rq_bytes(req))
1540 		cmd->sc_data_direction = rq_dma_dir(req);
1541 	else
1542 		cmd->sc_data_direction = DMA_NONE;
1543 
1544 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1545 	cmd->sdb.table.sgl = sg;
1546 
1547 	if (scsi_host_get_prot(shost)) {
1548 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1549 
1550 		cmd->prot_sdb->table.sgl =
1551 			(struct scatterlist *)(cmd->prot_sdb + 1);
1552 	}
1553 
1554 	/*
1555 	 * Special handling for passthrough commands, which don't go to the ULP
1556 	 * at all:
1557 	 */
1558 	if (blk_rq_is_passthrough(req))
1559 		return scsi_setup_scsi_cmnd(sdev, req);
1560 
1561 	if (sdev->handler && sdev->handler->prep_fn) {
1562 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1563 
1564 		if (ret != BLK_STS_OK)
1565 			return ret;
1566 	}
1567 
1568 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1569 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1570 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1571 }
1572 
1573 static void scsi_mq_done(struct scsi_cmnd *cmd)
1574 {
1575 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1576 		return;
1577 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1578 		return;
1579 	trace_scsi_dispatch_cmd_done(cmd);
1580 	blk_mq_complete_request(cmd->request);
1581 }
1582 
1583 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1584 {
1585 	struct scsi_device *sdev = q->queuedata;
1586 
1587 	sbitmap_put(&sdev->budget_map, budget_token);
1588 }
1589 
1590 static int scsi_mq_get_budget(struct request_queue *q)
1591 {
1592 	struct scsi_device *sdev = q->queuedata;
1593 	int token = scsi_dev_queue_ready(q, sdev);
1594 
1595 	if (token >= 0)
1596 		return token;
1597 
1598 	atomic_inc(&sdev->restarts);
1599 
1600 	/*
1601 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1602 	 * .restarts must be incremented before .device_busy is read because the
1603 	 * code in scsi_run_queue_async() depends on the order of these operations.
1604 	 */
1605 	smp_mb__after_atomic();
1606 
1607 	/*
1608 	 * If all in-flight requests originated from this LUN are completed
1609 	 * before reading .device_busy, sdev->device_busy will be observed as
1610 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1611 	 * soon. Otherwise, completion of one of these requests will observe
1612 	 * the .restarts flag, and the request queue will be run for handling
1613 	 * this request, see scsi_end_request().
1614 	 */
1615 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1616 				!scsi_device_blocked(sdev)))
1617 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1618 	return -1;
1619 }
1620 
1621 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1622 {
1623 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1624 
1625 	cmd->budget_token = token;
1626 }
1627 
1628 static int scsi_mq_get_rq_budget_token(struct request *req)
1629 {
1630 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1631 
1632 	return cmd->budget_token;
1633 }
1634 
1635 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1636 			 const struct blk_mq_queue_data *bd)
1637 {
1638 	struct request *req = bd->rq;
1639 	struct request_queue *q = req->q;
1640 	struct scsi_device *sdev = q->queuedata;
1641 	struct Scsi_Host *shost = sdev->host;
1642 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1643 	blk_status_t ret;
1644 	int reason;
1645 
1646 	WARN_ON_ONCE(cmd->budget_token < 0);
1647 
1648 	/*
1649 	 * If the device is not in running state we will reject some or all
1650 	 * commands.
1651 	 */
1652 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1653 		ret = scsi_device_state_check(sdev, req);
1654 		if (ret != BLK_STS_OK)
1655 			goto out_put_budget;
1656 	}
1657 
1658 	ret = BLK_STS_RESOURCE;
1659 	if (!scsi_target_queue_ready(shost, sdev))
1660 		goto out_put_budget;
1661 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1662 		goto out_dec_target_busy;
1663 
1664 	if (!(req->rq_flags & RQF_DONTPREP)) {
1665 		ret = scsi_prepare_cmd(req);
1666 		if (ret != BLK_STS_OK)
1667 			goto out_dec_host_busy;
1668 		req->rq_flags |= RQF_DONTPREP;
1669 	} else {
1670 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1671 	}
1672 
1673 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1674 	if (sdev->simple_tags)
1675 		cmd->flags |= SCMD_TAGGED;
1676 	if (bd->last)
1677 		cmd->flags |= SCMD_LAST;
1678 
1679 	scsi_set_resid(cmd, 0);
1680 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1681 	cmd->scsi_done = scsi_mq_done;
1682 
1683 	blk_mq_start_request(req);
1684 	reason = scsi_dispatch_cmd(cmd);
1685 	if (reason) {
1686 		scsi_set_blocked(cmd, reason);
1687 		ret = BLK_STS_RESOURCE;
1688 		goto out_dec_host_busy;
1689 	}
1690 
1691 	return BLK_STS_OK;
1692 
1693 out_dec_host_busy:
1694 	scsi_dec_host_busy(shost, cmd);
1695 out_dec_target_busy:
1696 	if (scsi_target(sdev)->can_queue > 0)
1697 		atomic_dec(&scsi_target(sdev)->target_busy);
1698 out_put_budget:
1699 	scsi_mq_put_budget(q, cmd->budget_token);
1700 	cmd->budget_token = -1;
1701 	switch (ret) {
1702 	case BLK_STS_OK:
1703 		break;
1704 	case BLK_STS_RESOURCE:
1705 	case BLK_STS_ZONE_RESOURCE:
1706 		if (scsi_device_blocked(sdev))
1707 			ret = BLK_STS_DEV_RESOURCE;
1708 		break;
1709 	case BLK_STS_AGAIN:
1710 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1711 		if (req->rq_flags & RQF_DONTPREP)
1712 			scsi_mq_uninit_cmd(cmd);
1713 		break;
1714 	default:
1715 		if (unlikely(!scsi_device_online(sdev)))
1716 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1717 		else
1718 			scsi_req(req)->result = DID_ERROR << 16;
1719 		/*
1720 		 * Make sure to release all allocated resources when
1721 		 * we hit an error, as we will never see this command
1722 		 * again.
1723 		 */
1724 		if (req->rq_flags & RQF_DONTPREP)
1725 			scsi_mq_uninit_cmd(cmd);
1726 		scsi_run_queue_async(sdev);
1727 		break;
1728 	}
1729 	return ret;
1730 }
1731 
1732 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1733 		bool reserved)
1734 {
1735 	if (reserved)
1736 		return BLK_EH_RESET_TIMER;
1737 	return scsi_times_out(req);
1738 }
1739 
1740 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1741 				unsigned int hctx_idx, unsigned int numa_node)
1742 {
1743 	struct Scsi_Host *shost = set->driver_data;
1744 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745 	struct scatterlist *sg;
1746 	int ret = 0;
1747 
1748 	cmd->sense_buffer =
1749 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1750 	if (!cmd->sense_buffer)
1751 		return -ENOMEM;
1752 	cmd->req.sense = cmd->sense_buffer;
1753 
1754 	if (scsi_host_get_prot(shost)) {
1755 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1756 			shost->hostt->cmd_size;
1757 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1758 	}
1759 
1760 	if (shost->hostt->init_cmd_priv) {
1761 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1762 		if (ret < 0)
1763 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1764 	}
1765 
1766 	return ret;
1767 }
1768 
1769 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1770 				 unsigned int hctx_idx)
1771 {
1772 	struct Scsi_Host *shost = set->driver_data;
1773 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1774 
1775 	if (shost->hostt->exit_cmd_priv)
1776 		shost->hostt->exit_cmd_priv(shost, cmd);
1777 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1778 }
1779 
1780 
1781 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1782 {
1783 	struct Scsi_Host *shost = hctx->driver_data;
1784 
1785 	if (shost->hostt->mq_poll)
1786 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1787 
1788 	return 0;
1789 }
1790 
1791 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1792 			  unsigned int hctx_idx)
1793 {
1794 	struct Scsi_Host *shost = data;
1795 
1796 	hctx->driver_data = shost;
1797 	return 0;
1798 }
1799 
1800 static int scsi_map_queues(struct blk_mq_tag_set *set)
1801 {
1802 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1803 
1804 	if (shost->hostt->map_queues)
1805 		return shost->hostt->map_queues(shost);
1806 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1807 }
1808 
1809 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1810 {
1811 	struct device *dev = shost->dma_dev;
1812 
1813 	/*
1814 	 * this limit is imposed by hardware restrictions
1815 	 */
1816 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1817 					SG_MAX_SEGMENTS));
1818 
1819 	if (scsi_host_prot_dma(shost)) {
1820 		shost->sg_prot_tablesize =
1821 			min_not_zero(shost->sg_prot_tablesize,
1822 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1823 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1824 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1825 	}
1826 
1827 	if (dev->dma_mask) {
1828 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1829 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1830 	}
1831 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1832 	blk_queue_segment_boundary(q, shost->dma_boundary);
1833 	dma_set_seg_boundary(dev, shost->dma_boundary);
1834 
1835 	blk_queue_max_segment_size(q, shost->max_segment_size);
1836 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1837 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1838 
1839 	/*
1840 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1841 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1842 	 * which is set by the platform.
1843 	 *
1844 	 * Devices that require a bigger alignment can increase it later.
1845 	 */
1846 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1847 }
1848 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1849 
1850 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1851 	.get_budget	= scsi_mq_get_budget,
1852 	.put_budget	= scsi_mq_put_budget,
1853 	.queue_rq	= scsi_queue_rq,
1854 	.complete	= scsi_complete,
1855 	.timeout	= scsi_timeout,
1856 #ifdef CONFIG_BLK_DEBUG_FS
1857 	.show_rq	= scsi_show_rq,
1858 #endif
1859 	.init_request	= scsi_mq_init_request,
1860 	.exit_request	= scsi_mq_exit_request,
1861 	.initialize_rq_fn = scsi_initialize_rq,
1862 	.cleanup_rq	= scsi_cleanup_rq,
1863 	.busy		= scsi_mq_lld_busy,
1864 	.map_queues	= scsi_map_queues,
1865 	.init_hctx	= scsi_init_hctx,
1866 	.poll		= scsi_mq_poll,
1867 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1868 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1869 };
1870 
1871 
1872 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1873 {
1874 	struct Scsi_Host *shost = hctx->driver_data;
1875 
1876 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1877 }
1878 
1879 static const struct blk_mq_ops scsi_mq_ops = {
1880 	.get_budget	= scsi_mq_get_budget,
1881 	.put_budget	= scsi_mq_put_budget,
1882 	.queue_rq	= scsi_queue_rq,
1883 	.commit_rqs	= scsi_commit_rqs,
1884 	.complete	= scsi_complete,
1885 	.timeout	= scsi_timeout,
1886 #ifdef CONFIG_BLK_DEBUG_FS
1887 	.show_rq	= scsi_show_rq,
1888 #endif
1889 	.init_request	= scsi_mq_init_request,
1890 	.exit_request	= scsi_mq_exit_request,
1891 	.initialize_rq_fn = scsi_initialize_rq,
1892 	.cleanup_rq	= scsi_cleanup_rq,
1893 	.busy		= scsi_mq_lld_busy,
1894 	.map_queues	= scsi_map_queues,
1895 	.init_hctx	= scsi_init_hctx,
1896 	.poll		= scsi_mq_poll,
1897 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1898 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1899 };
1900 
1901 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1902 {
1903 	unsigned int cmd_size, sgl_size;
1904 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1905 
1906 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1907 				scsi_mq_inline_sgl_size(shost));
1908 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1909 	if (scsi_host_get_prot(shost))
1910 		cmd_size += sizeof(struct scsi_data_buffer) +
1911 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1912 
1913 	memset(tag_set, 0, sizeof(*tag_set));
1914 	if (shost->hostt->commit_rqs)
1915 		tag_set->ops = &scsi_mq_ops;
1916 	else
1917 		tag_set->ops = &scsi_mq_ops_no_commit;
1918 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1919 	tag_set->nr_maps = shost->nr_maps ? : 1;
1920 	tag_set->queue_depth = shost->can_queue;
1921 	tag_set->cmd_size = cmd_size;
1922 	tag_set->numa_node = NUMA_NO_NODE;
1923 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1924 	tag_set->flags |=
1925 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1926 	tag_set->driver_data = shost;
1927 	if (shost->host_tagset)
1928 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1929 
1930 	return blk_mq_alloc_tag_set(tag_set);
1931 }
1932 
1933 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1934 {
1935 	blk_mq_free_tag_set(&shost->tag_set);
1936 }
1937 
1938 /**
1939  * scsi_device_from_queue - return sdev associated with a request_queue
1940  * @q: The request queue to return the sdev from
1941  *
1942  * Return the sdev associated with a request queue or NULL if the
1943  * request_queue does not reference a SCSI device.
1944  */
1945 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1946 {
1947 	struct scsi_device *sdev = NULL;
1948 
1949 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1950 	    q->mq_ops == &scsi_mq_ops)
1951 		sdev = q->queuedata;
1952 	if (!sdev || !get_device(&sdev->sdev_gendev))
1953 		sdev = NULL;
1954 
1955 	return sdev;
1956 }
1957 
1958 /**
1959  * scsi_block_requests - Utility function used by low-level drivers to prevent
1960  * further commands from being queued to the device.
1961  * @shost:  host in question
1962  *
1963  * There is no timer nor any other means by which the requests get unblocked
1964  * other than the low-level driver calling scsi_unblock_requests().
1965  */
1966 void scsi_block_requests(struct Scsi_Host *shost)
1967 {
1968 	shost->host_self_blocked = 1;
1969 }
1970 EXPORT_SYMBOL(scsi_block_requests);
1971 
1972 /**
1973  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1974  * further commands to be queued to the device.
1975  * @shost:  host in question
1976  *
1977  * There is no timer nor any other means by which the requests get unblocked
1978  * other than the low-level driver calling scsi_unblock_requests(). This is done
1979  * as an API function so that changes to the internals of the scsi mid-layer
1980  * won't require wholesale changes to drivers that use this feature.
1981  */
1982 void scsi_unblock_requests(struct Scsi_Host *shost)
1983 {
1984 	shost->host_self_blocked = 0;
1985 	scsi_run_host_queues(shost);
1986 }
1987 EXPORT_SYMBOL(scsi_unblock_requests);
1988 
1989 void scsi_exit_queue(void)
1990 {
1991 	kmem_cache_destroy(scsi_sense_cache);
1992 }
1993 
1994 /**
1995  *	scsi_mode_select - issue a mode select
1996  *	@sdev:	SCSI device to be queried
1997  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1998  *	@sp:	Save page bit (0 == don't save, 1 == save)
1999  *	@modepage: mode page being requested
2000  *	@buffer: request buffer (may not be smaller than eight bytes)
2001  *	@len:	length of request buffer.
2002  *	@timeout: command timeout
2003  *	@retries: number of retries before failing
2004  *	@data: returns a structure abstracting the mode header data
2005  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2006  *		must be SCSI_SENSE_BUFFERSIZE big.
2007  *
2008  *	Returns zero if successful; negative error number or scsi
2009  *	status on error
2010  *
2011  */
2012 int
2013 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2014 		 unsigned char *buffer, int len, int timeout, int retries,
2015 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2016 {
2017 	unsigned char cmd[10];
2018 	unsigned char *real_buffer;
2019 	int ret;
2020 
2021 	memset(cmd, 0, sizeof(cmd));
2022 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2023 
2024 	if (sdev->use_10_for_ms) {
2025 		if (len > 65535)
2026 			return -EINVAL;
2027 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2028 		if (!real_buffer)
2029 			return -ENOMEM;
2030 		memcpy(real_buffer + 8, buffer, len);
2031 		len += 8;
2032 		real_buffer[0] = 0;
2033 		real_buffer[1] = 0;
2034 		real_buffer[2] = data->medium_type;
2035 		real_buffer[3] = data->device_specific;
2036 		real_buffer[4] = data->longlba ? 0x01 : 0;
2037 		real_buffer[5] = 0;
2038 		real_buffer[6] = data->block_descriptor_length >> 8;
2039 		real_buffer[7] = data->block_descriptor_length;
2040 
2041 		cmd[0] = MODE_SELECT_10;
2042 		cmd[7] = len >> 8;
2043 		cmd[8] = len;
2044 	} else {
2045 		if (len > 255 || data->block_descriptor_length > 255 ||
2046 		    data->longlba)
2047 			return -EINVAL;
2048 
2049 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2050 		if (!real_buffer)
2051 			return -ENOMEM;
2052 		memcpy(real_buffer + 4, buffer, len);
2053 		len += 4;
2054 		real_buffer[0] = 0;
2055 		real_buffer[1] = data->medium_type;
2056 		real_buffer[2] = data->device_specific;
2057 		real_buffer[3] = data->block_descriptor_length;
2058 
2059 		cmd[0] = MODE_SELECT;
2060 		cmd[4] = len;
2061 	}
2062 
2063 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2064 			       sshdr, timeout, retries, NULL);
2065 	kfree(real_buffer);
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(scsi_mode_select);
2069 
2070 /**
2071  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2072  *	@sdev:	SCSI device to be queried
2073  *	@dbd:	set if mode sense will allow block descriptors to be returned
2074  *	@modepage: mode page being requested
2075  *	@buffer: request buffer (may not be smaller than eight bytes)
2076  *	@len:	length of request buffer.
2077  *	@timeout: command timeout
2078  *	@retries: number of retries before failing
2079  *	@data: returns a structure abstracting the mode header data
2080  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2081  *		must be SCSI_SENSE_BUFFERSIZE big.
2082  *
2083  *	Returns zero if successful, or a negative error number on failure
2084  */
2085 int
2086 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2087 		  unsigned char *buffer, int len, int timeout, int retries,
2088 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2089 {
2090 	unsigned char cmd[12];
2091 	int use_10_for_ms;
2092 	int header_length;
2093 	int result, retry_count = retries;
2094 	struct scsi_sense_hdr my_sshdr;
2095 
2096 	memset(data, 0, sizeof(*data));
2097 	memset(&cmd[0], 0, 12);
2098 
2099 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2100 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2101 	cmd[2] = modepage;
2102 
2103 	/* caller might not be interested in sense, but we need it */
2104 	if (!sshdr)
2105 		sshdr = &my_sshdr;
2106 
2107  retry:
2108 	use_10_for_ms = sdev->use_10_for_ms;
2109 
2110 	if (use_10_for_ms) {
2111 		if (len < 8)
2112 			len = 8;
2113 
2114 		cmd[0] = MODE_SENSE_10;
2115 		cmd[8] = len;
2116 		header_length = 8;
2117 	} else {
2118 		if (len < 4)
2119 			len = 4;
2120 
2121 		cmd[0] = MODE_SENSE;
2122 		cmd[4] = len;
2123 		header_length = 4;
2124 	}
2125 
2126 	memset(buffer, 0, len);
2127 
2128 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2129 				  sshdr, timeout, retries, NULL);
2130 	if (result < 0)
2131 		return result;
2132 
2133 	/* This code looks awful: what it's doing is making sure an
2134 	 * ILLEGAL REQUEST sense return identifies the actual command
2135 	 * byte as the problem.  MODE_SENSE commands can return
2136 	 * ILLEGAL REQUEST if the code page isn't supported */
2137 
2138 	if (!scsi_status_is_good(result)) {
2139 		if (scsi_sense_valid(sshdr)) {
2140 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2141 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2142 				/*
2143 				 * Invalid command operation code
2144 				 */
2145 				if (use_10_for_ms) {
2146 					sdev->use_10_for_ms = 0;
2147 					goto retry;
2148 				}
2149 			}
2150 			if (scsi_status_is_check_condition(result) &&
2151 			    sshdr->sense_key == UNIT_ATTENTION &&
2152 			    retry_count) {
2153 				retry_count--;
2154 				goto retry;
2155 			}
2156 		}
2157 		return -EIO;
2158 	}
2159 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2160 		     (modepage == 6 || modepage == 8))) {
2161 		/* Initio breakage? */
2162 		header_length = 0;
2163 		data->length = 13;
2164 		data->medium_type = 0;
2165 		data->device_specific = 0;
2166 		data->longlba = 0;
2167 		data->block_descriptor_length = 0;
2168 	} else if (use_10_for_ms) {
2169 		data->length = buffer[0]*256 + buffer[1] + 2;
2170 		data->medium_type = buffer[2];
2171 		data->device_specific = buffer[3];
2172 		data->longlba = buffer[4] & 0x01;
2173 		data->block_descriptor_length = buffer[6]*256
2174 			+ buffer[7];
2175 	} else {
2176 		data->length = buffer[0] + 1;
2177 		data->medium_type = buffer[1];
2178 		data->device_specific = buffer[2];
2179 		data->block_descriptor_length = buffer[3];
2180 	}
2181 	data->header_length = header_length;
2182 
2183 	return 0;
2184 }
2185 EXPORT_SYMBOL(scsi_mode_sense);
2186 
2187 /**
2188  *	scsi_test_unit_ready - test if unit is ready
2189  *	@sdev:	scsi device to change the state of.
2190  *	@timeout: command timeout
2191  *	@retries: number of retries before failing
2192  *	@sshdr: outpout pointer for decoded sense information.
2193  *
2194  *	Returns zero if unsuccessful or an error if TUR failed.  For
2195  *	removable media, UNIT_ATTENTION sets ->changed flag.
2196  **/
2197 int
2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2199 		     struct scsi_sense_hdr *sshdr)
2200 {
2201 	char cmd[] = {
2202 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2203 	};
2204 	int result;
2205 
2206 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2207 	do {
2208 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2209 					  timeout, 1, NULL);
2210 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2211 		    sshdr->sense_key == UNIT_ATTENTION)
2212 			sdev->changed = 1;
2213 	} while (scsi_sense_valid(sshdr) &&
2214 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2215 
2216 	return result;
2217 }
2218 EXPORT_SYMBOL(scsi_test_unit_ready);
2219 
2220 /**
2221  *	scsi_device_set_state - Take the given device through the device state model.
2222  *	@sdev:	scsi device to change the state of.
2223  *	@state:	state to change to.
2224  *
2225  *	Returns zero if successful or an error if the requested
2226  *	transition is illegal.
2227  */
2228 int
2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2230 {
2231 	enum scsi_device_state oldstate = sdev->sdev_state;
2232 
2233 	if (state == oldstate)
2234 		return 0;
2235 
2236 	switch (state) {
2237 	case SDEV_CREATED:
2238 		switch (oldstate) {
2239 		case SDEV_CREATED_BLOCK:
2240 			break;
2241 		default:
2242 			goto illegal;
2243 		}
2244 		break;
2245 
2246 	case SDEV_RUNNING:
2247 		switch (oldstate) {
2248 		case SDEV_CREATED:
2249 		case SDEV_OFFLINE:
2250 		case SDEV_TRANSPORT_OFFLINE:
2251 		case SDEV_QUIESCE:
2252 		case SDEV_BLOCK:
2253 			break;
2254 		default:
2255 			goto illegal;
2256 		}
2257 		break;
2258 
2259 	case SDEV_QUIESCE:
2260 		switch (oldstate) {
2261 		case SDEV_RUNNING:
2262 		case SDEV_OFFLINE:
2263 		case SDEV_TRANSPORT_OFFLINE:
2264 			break;
2265 		default:
2266 			goto illegal;
2267 		}
2268 		break;
2269 
2270 	case SDEV_OFFLINE:
2271 	case SDEV_TRANSPORT_OFFLINE:
2272 		switch (oldstate) {
2273 		case SDEV_CREATED:
2274 		case SDEV_RUNNING:
2275 		case SDEV_QUIESCE:
2276 		case SDEV_BLOCK:
2277 			break;
2278 		default:
2279 			goto illegal;
2280 		}
2281 		break;
2282 
2283 	case SDEV_BLOCK:
2284 		switch (oldstate) {
2285 		case SDEV_RUNNING:
2286 		case SDEV_CREATED_BLOCK:
2287 		case SDEV_QUIESCE:
2288 		case SDEV_OFFLINE:
2289 			break;
2290 		default:
2291 			goto illegal;
2292 		}
2293 		break;
2294 
2295 	case SDEV_CREATED_BLOCK:
2296 		switch (oldstate) {
2297 		case SDEV_CREATED:
2298 			break;
2299 		default:
2300 			goto illegal;
2301 		}
2302 		break;
2303 
2304 	case SDEV_CANCEL:
2305 		switch (oldstate) {
2306 		case SDEV_CREATED:
2307 		case SDEV_RUNNING:
2308 		case SDEV_QUIESCE:
2309 		case SDEV_OFFLINE:
2310 		case SDEV_TRANSPORT_OFFLINE:
2311 			break;
2312 		default:
2313 			goto illegal;
2314 		}
2315 		break;
2316 
2317 	case SDEV_DEL:
2318 		switch (oldstate) {
2319 		case SDEV_CREATED:
2320 		case SDEV_RUNNING:
2321 		case SDEV_OFFLINE:
2322 		case SDEV_TRANSPORT_OFFLINE:
2323 		case SDEV_CANCEL:
2324 		case SDEV_BLOCK:
2325 		case SDEV_CREATED_BLOCK:
2326 			break;
2327 		default:
2328 			goto illegal;
2329 		}
2330 		break;
2331 
2332 	}
2333 	sdev->offline_already = false;
2334 	sdev->sdev_state = state;
2335 	return 0;
2336 
2337  illegal:
2338 	SCSI_LOG_ERROR_RECOVERY(1,
2339 				sdev_printk(KERN_ERR, sdev,
2340 					    "Illegal state transition %s->%s",
2341 					    scsi_device_state_name(oldstate),
2342 					    scsi_device_state_name(state))
2343 				);
2344 	return -EINVAL;
2345 }
2346 EXPORT_SYMBOL(scsi_device_set_state);
2347 
2348 /**
2349  *	scsi_evt_emit - emit a single SCSI device uevent
2350  *	@sdev: associated SCSI device
2351  *	@evt: event to emit
2352  *
2353  *	Send a single uevent (scsi_event) to the associated scsi_device.
2354  */
2355 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2356 {
2357 	int idx = 0;
2358 	char *envp[3];
2359 
2360 	switch (evt->evt_type) {
2361 	case SDEV_EVT_MEDIA_CHANGE:
2362 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2363 		break;
2364 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2365 		scsi_rescan_device(&sdev->sdev_gendev);
2366 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2367 		break;
2368 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2369 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2370 		break;
2371 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2372 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2373 		break;
2374 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2375 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2376 		break;
2377 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2378 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2379 		break;
2380 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2381 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2382 		break;
2383 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2384 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2385 		break;
2386 	default:
2387 		/* do nothing */
2388 		break;
2389 	}
2390 
2391 	envp[idx++] = NULL;
2392 
2393 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2394 }
2395 
2396 /**
2397  *	scsi_evt_thread - send a uevent for each scsi event
2398  *	@work: work struct for scsi_device
2399  *
2400  *	Dispatch queued events to their associated scsi_device kobjects
2401  *	as uevents.
2402  */
2403 void scsi_evt_thread(struct work_struct *work)
2404 {
2405 	struct scsi_device *sdev;
2406 	enum scsi_device_event evt_type;
2407 	LIST_HEAD(event_list);
2408 
2409 	sdev = container_of(work, struct scsi_device, event_work);
2410 
2411 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2412 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2413 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2414 
2415 	while (1) {
2416 		struct scsi_event *evt;
2417 		struct list_head *this, *tmp;
2418 		unsigned long flags;
2419 
2420 		spin_lock_irqsave(&sdev->list_lock, flags);
2421 		list_splice_init(&sdev->event_list, &event_list);
2422 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2423 
2424 		if (list_empty(&event_list))
2425 			break;
2426 
2427 		list_for_each_safe(this, tmp, &event_list) {
2428 			evt = list_entry(this, struct scsi_event, node);
2429 			list_del(&evt->node);
2430 			scsi_evt_emit(sdev, evt);
2431 			kfree(evt);
2432 		}
2433 	}
2434 }
2435 
2436 /**
2437  * 	sdev_evt_send - send asserted event to uevent thread
2438  *	@sdev: scsi_device event occurred on
2439  *	@evt: event to send
2440  *
2441  *	Assert scsi device event asynchronously.
2442  */
2443 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2444 {
2445 	unsigned long flags;
2446 
2447 #if 0
2448 	/* FIXME: currently this check eliminates all media change events
2449 	 * for polled devices.  Need to update to discriminate between AN
2450 	 * and polled events */
2451 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2452 		kfree(evt);
2453 		return;
2454 	}
2455 #endif
2456 
2457 	spin_lock_irqsave(&sdev->list_lock, flags);
2458 	list_add_tail(&evt->node, &sdev->event_list);
2459 	schedule_work(&sdev->event_work);
2460 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2461 }
2462 EXPORT_SYMBOL_GPL(sdev_evt_send);
2463 
2464 /**
2465  * 	sdev_evt_alloc - allocate a new scsi event
2466  *	@evt_type: type of event to allocate
2467  *	@gfpflags: GFP flags for allocation
2468  *
2469  *	Allocates and returns a new scsi_event.
2470  */
2471 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2472 				  gfp_t gfpflags)
2473 {
2474 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2475 	if (!evt)
2476 		return NULL;
2477 
2478 	evt->evt_type = evt_type;
2479 	INIT_LIST_HEAD(&evt->node);
2480 
2481 	/* evt_type-specific initialization, if any */
2482 	switch (evt_type) {
2483 	case SDEV_EVT_MEDIA_CHANGE:
2484 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2485 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2486 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2487 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2488 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2489 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2490 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2491 	default:
2492 		/* do nothing */
2493 		break;
2494 	}
2495 
2496 	return evt;
2497 }
2498 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2499 
2500 /**
2501  * 	sdev_evt_send_simple - send asserted event to uevent thread
2502  *	@sdev: scsi_device event occurred on
2503  *	@evt_type: type of event to send
2504  *	@gfpflags: GFP flags for allocation
2505  *
2506  *	Assert scsi device event asynchronously, given an event type.
2507  */
2508 void sdev_evt_send_simple(struct scsi_device *sdev,
2509 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2510 {
2511 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2512 	if (!evt) {
2513 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2514 			    evt_type);
2515 		return;
2516 	}
2517 
2518 	sdev_evt_send(sdev, evt);
2519 }
2520 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2521 
2522 /**
2523  *	scsi_device_quiesce - Block all commands except power management.
2524  *	@sdev:	scsi device to quiesce.
2525  *
2526  *	This works by trying to transition to the SDEV_QUIESCE state
2527  *	(which must be a legal transition).  When the device is in this
2528  *	state, only power management requests will be accepted, all others will
2529  *	be deferred.
2530  *
2531  *	Must be called with user context, may sleep.
2532  *
2533  *	Returns zero if unsuccessful or an error if not.
2534  */
2535 int
2536 scsi_device_quiesce(struct scsi_device *sdev)
2537 {
2538 	struct request_queue *q = sdev->request_queue;
2539 	int err;
2540 
2541 	/*
2542 	 * It is allowed to call scsi_device_quiesce() multiple times from
2543 	 * the same context but concurrent scsi_device_quiesce() calls are
2544 	 * not allowed.
2545 	 */
2546 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2547 
2548 	if (sdev->quiesced_by == current)
2549 		return 0;
2550 
2551 	blk_set_pm_only(q);
2552 
2553 	blk_mq_freeze_queue(q);
2554 	/*
2555 	 * Ensure that the effect of blk_set_pm_only() will be visible
2556 	 * for percpu_ref_tryget() callers that occur after the queue
2557 	 * unfreeze even if the queue was already frozen before this function
2558 	 * was called. See also https://lwn.net/Articles/573497/.
2559 	 */
2560 	synchronize_rcu();
2561 	blk_mq_unfreeze_queue(q);
2562 
2563 	mutex_lock(&sdev->state_mutex);
2564 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2565 	if (err == 0)
2566 		sdev->quiesced_by = current;
2567 	else
2568 		blk_clear_pm_only(q);
2569 	mutex_unlock(&sdev->state_mutex);
2570 
2571 	return err;
2572 }
2573 EXPORT_SYMBOL(scsi_device_quiesce);
2574 
2575 /**
2576  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2577  *	@sdev:	scsi device to resume.
2578  *
2579  *	Moves the device from quiesced back to running and restarts the
2580  *	queues.
2581  *
2582  *	Must be called with user context, may sleep.
2583  */
2584 void scsi_device_resume(struct scsi_device *sdev)
2585 {
2586 	/* check if the device state was mutated prior to resume, and if
2587 	 * so assume the state is being managed elsewhere (for example
2588 	 * device deleted during suspend)
2589 	 */
2590 	mutex_lock(&sdev->state_mutex);
2591 	if (sdev->sdev_state == SDEV_QUIESCE)
2592 		scsi_device_set_state(sdev, SDEV_RUNNING);
2593 	if (sdev->quiesced_by) {
2594 		sdev->quiesced_by = NULL;
2595 		blk_clear_pm_only(sdev->request_queue);
2596 	}
2597 	mutex_unlock(&sdev->state_mutex);
2598 }
2599 EXPORT_SYMBOL(scsi_device_resume);
2600 
2601 static void
2602 device_quiesce_fn(struct scsi_device *sdev, void *data)
2603 {
2604 	scsi_device_quiesce(sdev);
2605 }
2606 
2607 void
2608 scsi_target_quiesce(struct scsi_target *starget)
2609 {
2610 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2611 }
2612 EXPORT_SYMBOL(scsi_target_quiesce);
2613 
2614 static void
2615 device_resume_fn(struct scsi_device *sdev, void *data)
2616 {
2617 	scsi_device_resume(sdev);
2618 }
2619 
2620 void
2621 scsi_target_resume(struct scsi_target *starget)
2622 {
2623 	starget_for_each_device(starget, NULL, device_resume_fn);
2624 }
2625 EXPORT_SYMBOL(scsi_target_resume);
2626 
2627 /**
2628  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2629  * @sdev: device to block
2630  *
2631  * Pause SCSI command processing on the specified device. Does not sleep.
2632  *
2633  * Returns zero if successful or a negative error code upon failure.
2634  *
2635  * Notes:
2636  * This routine transitions the device to the SDEV_BLOCK state (which must be
2637  * a legal transition). When the device is in this state, command processing
2638  * is paused until the device leaves the SDEV_BLOCK state. See also
2639  * scsi_internal_device_unblock_nowait().
2640  */
2641 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2642 {
2643 	struct request_queue *q = sdev->request_queue;
2644 	int err = 0;
2645 
2646 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2647 	if (err) {
2648 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2649 
2650 		if (err)
2651 			return err;
2652 	}
2653 
2654 	/*
2655 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2656 	 * block layer from calling the midlayer with this device's
2657 	 * request queue.
2658 	 */
2659 	blk_mq_quiesce_queue_nowait(q);
2660 	return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2663 
2664 /**
2665  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2666  * @sdev: device to block
2667  *
2668  * Pause SCSI command processing on the specified device and wait until all
2669  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2670  *
2671  * Returns zero if successful or a negative error code upon failure.
2672  *
2673  * Note:
2674  * This routine transitions the device to the SDEV_BLOCK state (which must be
2675  * a legal transition). When the device is in this state, command processing
2676  * is paused until the device leaves the SDEV_BLOCK state. See also
2677  * scsi_internal_device_unblock().
2678  */
2679 static int scsi_internal_device_block(struct scsi_device *sdev)
2680 {
2681 	struct request_queue *q = sdev->request_queue;
2682 	int err;
2683 
2684 	mutex_lock(&sdev->state_mutex);
2685 	err = scsi_internal_device_block_nowait(sdev);
2686 	if (err == 0)
2687 		blk_mq_quiesce_queue(q);
2688 	mutex_unlock(&sdev->state_mutex);
2689 
2690 	return err;
2691 }
2692 
2693 void scsi_start_queue(struct scsi_device *sdev)
2694 {
2695 	struct request_queue *q = sdev->request_queue;
2696 
2697 	blk_mq_unquiesce_queue(q);
2698 }
2699 
2700 /**
2701  * scsi_internal_device_unblock_nowait - resume a device after a block request
2702  * @sdev:	device to resume
2703  * @new_state:	state to set the device to after unblocking
2704  *
2705  * Restart the device queue for a previously suspended SCSI device. Does not
2706  * sleep.
2707  *
2708  * Returns zero if successful or a negative error code upon failure.
2709  *
2710  * Notes:
2711  * This routine transitions the device to the SDEV_RUNNING state or to one of
2712  * the offline states (which must be a legal transition) allowing the midlayer
2713  * to goose the queue for this device.
2714  */
2715 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2716 					enum scsi_device_state new_state)
2717 {
2718 	switch (new_state) {
2719 	case SDEV_RUNNING:
2720 	case SDEV_TRANSPORT_OFFLINE:
2721 		break;
2722 	default:
2723 		return -EINVAL;
2724 	}
2725 
2726 	/*
2727 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2728 	 * offlined states and goose the device queue if successful.
2729 	 */
2730 	switch (sdev->sdev_state) {
2731 	case SDEV_BLOCK:
2732 	case SDEV_TRANSPORT_OFFLINE:
2733 		sdev->sdev_state = new_state;
2734 		break;
2735 	case SDEV_CREATED_BLOCK:
2736 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2737 		    new_state == SDEV_OFFLINE)
2738 			sdev->sdev_state = new_state;
2739 		else
2740 			sdev->sdev_state = SDEV_CREATED;
2741 		break;
2742 	case SDEV_CANCEL:
2743 	case SDEV_OFFLINE:
2744 		break;
2745 	default:
2746 		return -EINVAL;
2747 	}
2748 	scsi_start_queue(sdev);
2749 
2750 	return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2753 
2754 /**
2755  * scsi_internal_device_unblock - resume a device after a block request
2756  * @sdev:	device to resume
2757  * @new_state:	state to set the device to after unblocking
2758  *
2759  * Restart the device queue for a previously suspended SCSI device. May sleep.
2760  *
2761  * Returns zero if successful or a negative error code upon failure.
2762  *
2763  * Notes:
2764  * This routine transitions the device to the SDEV_RUNNING state or to one of
2765  * the offline states (which must be a legal transition) allowing the midlayer
2766  * to goose the queue for this device.
2767  */
2768 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2769 					enum scsi_device_state new_state)
2770 {
2771 	int ret;
2772 
2773 	mutex_lock(&sdev->state_mutex);
2774 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2775 	mutex_unlock(&sdev->state_mutex);
2776 
2777 	return ret;
2778 }
2779 
2780 static void
2781 device_block(struct scsi_device *sdev, void *data)
2782 {
2783 	int ret;
2784 
2785 	ret = scsi_internal_device_block(sdev);
2786 
2787 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2788 		  dev_name(&sdev->sdev_gendev), ret);
2789 }
2790 
2791 static int
2792 target_block(struct device *dev, void *data)
2793 {
2794 	if (scsi_is_target_device(dev))
2795 		starget_for_each_device(to_scsi_target(dev), NULL,
2796 					device_block);
2797 	return 0;
2798 }
2799 
2800 void
2801 scsi_target_block(struct device *dev)
2802 {
2803 	if (scsi_is_target_device(dev))
2804 		starget_for_each_device(to_scsi_target(dev), NULL,
2805 					device_block);
2806 	else
2807 		device_for_each_child(dev, NULL, target_block);
2808 }
2809 EXPORT_SYMBOL_GPL(scsi_target_block);
2810 
2811 static void
2812 device_unblock(struct scsi_device *sdev, void *data)
2813 {
2814 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2815 }
2816 
2817 static int
2818 target_unblock(struct device *dev, void *data)
2819 {
2820 	if (scsi_is_target_device(dev))
2821 		starget_for_each_device(to_scsi_target(dev), data,
2822 					device_unblock);
2823 	return 0;
2824 }
2825 
2826 void
2827 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2828 {
2829 	if (scsi_is_target_device(dev))
2830 		starget_for_each_device(to_scsi_target(dev), &new_state,
2831 					device_unblock);
2832 	else
2833 		device_for_each_child(dev, &new_state, target_unblock);
2834 }
2835 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2836 
2837 int
2838 scsi_host_block(struct Scsi_Host *shost)
2839 {
2840 	struct scsi_device *sdev;
2841 	int ret = 0;
2842 
2843 	/*
2844 	 * Call scsi_internal_device_block_nowait so we can avoid
2845 	 * calling synchronize_rcu() for each LUN.
2846 	 */
2847 	shost_for_each_device(sdev, shost) {
2848 		mutex_lock(&sdev->state_mutex);
2849 		ret = scsi_internal_device_block_nowait(sdev);
2850 		mutex_unlock(&sdev->state_mutex);
2851 		if (ret) {
2852 			scsi_device_put(sdev);
2853 			break;
2854 		}
2855 	}
2856 
2857 	/*
2858 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2859 	 * calling synchronize_rcu() once is enough.
2860 	 */
2861 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2862 
2863 	if (!ret)
2864 		synchronize_rcu();
2865 
2866 	return ret;
2867 }
2868 EXPORT_SYMBOL_GPL(scsi_host_block);
2869 
2870 int
2871 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2872 {
2873 	struct scsi_device *sdev;
2874 	int ret = 0;
2875 
2876 	shost_for_each_device(sdev, shost) {
2877 		ret = scsi_internal_device_unblock(sdev, new_state);
2878 		if (ret) {
2879 			scsi_device_put(sdev);
2880 			break;
2881 		}
2882 	}
2883 	return ret;
2884 }
2885 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2886 
2887 /**
2888  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2889  * @sgl:	scatter-gather list
2890  * @sg_count:	number of segments in sg
2891  * @offset:	offset in bytes into sg, on return offset into the mapped area
2892  * @len:	bytes to map, on return number of bytes mapped
2893  *
2894  * Returns virtual address of the start of the mapped page
2895  */
2896 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2897 			  size_t *offset, size_t *len)
2898 {
2899 	int i;
2900 	size_t sg_len = 0, len_complete = 0;
2901 	struct scatterlist *sg;
2902 	struct page *page;
2903 
2904 	WARN_ON(!irqs_disabled());
2905 
2906 	for_each_sg(sgl, sg, sg_count, i) {
2907 		len_complete = sg_len; /* Complete sg-entries */
2908 		sg_len += sg->length;
2909 		if (sg_len > *offset)
2910 			break;
2911 	}
2912 
2913 	if (unlikely(i == sg_count)) {
2914 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2915 			"elements %d\n",
2916 		       __func__, sg_len, *offset, sg_count);
2917 		WARN_ON(1);
2918 		return NULL;
2919 	}
2920 
2921 	/* Offset starting from the beginning of first page in this sg-entry */
2922 	*offset = *offset - len_complete + sg->offset;
2923 
2924 	/* Assumption: contiguous pages can be accessed as "page + i" */
2925 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2926 	*offset &= ~PAGE_MASK;
2927 
2928 	/* Bytes in this sg-entry from *offset to the end of the page */
2929 	sg_len = PAGE_SIZE - *offset;
2930 	if (*len > sg_len)
2931 		*len = sg_len;
2932 
2933 	return kmap_atomic(page);
2934 }
2935 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2936 
2937 /**
2938  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2939  * @virt:	virtual address to be unmapped
2940  */
2941 void scsi_kunmap_atomic_sg(void *virt)
2942 {
2943 	kunmap_atomic(virt);
2944 }
2945 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2946 
2947 void sdev_disable_disk_events(struct scsi_device *sdev)
2948 {
2949 	atomic_inc(&sdev->disk_events_disable_depth);
2950 }
2951 EXPORT_SYMBOL(sdev_disable_disk_events);
2952 
2953 void sdev_enable_disk_events(struct scsi_device *sdev)
2954 {
2955 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2956 		return;
2957 	atomic_dec(&sdev->disk_events_disable_depth);
2958 }
2959 EXPORT_SYMBOL(sdev_enable_disk_events);
2960 
2961 static unsigned char designator_prio(const unsigned char *d)
2962 {
2963 	if (d[1] & 0x30)
2964 		/* not associated with LUN */
2965 		return 0;
2966 
2967 	if (d[3] == 0)
2968 		/* invalid length */
2969 		return 0;
2970 
2971 	/*
2972 	 * Order of preference for lun descriptor:
2973 	 * - SCSI name string
2974 	 * - NAA IEEE Registered Extended
2975 	 * - EUI-64 based 16-byte
2976 	 * - EUI-64 based 12-byte
2977 	 * - NAA IEEE Registered
2978 	 * - NAA IEEE Extended
2979 	 * - EUI-64 based 8-byte
2980 	 * - SCSI name string (truncated)
2981 	 * - T10 Vendor ID
2982 	 * as longer descriptors reduce the likelyhood
2983 	 * of identification clashes.
2984 	 */
2985 
2986 	switch (d[1] & 0xf) {
2987 	case 8:
2988 		/* SCSI name string, variable-length UTF-8 */
2989 		return 9;
2990 	case 3:
2991 		switch (d[4] >> 4) {
2992 		case 6:
2993 			/* NAA registered extended */
2994 			return 8;
2995 		case 5:
2996 			/* NAA registered */
2997 			return 5;
2998 		case 4:
2999 			/* NAA extended */
3000 			return 4;
3001 		case 3:
3002 			/* NAA locally assigned */
3003 			return 1;
3004 		default:
3005 			break;
3006 		}
3007 		break;
3008 	case 2:
3009 		switch (d[3]) {
3010 		case 16:
3011 			/* EUI64-based, 16 byte */
3012 			return 7;
3013 		case 12:
3014 			/* EUI64-based, 12 byte */
3015 			return 6;
3016 		case 8:
3017 			/* EUI64-based, 8 byte */
3018 			return 3;
3019 		default:
3020 			break;
3021 		}
3022 		break;
3023 	case 1:
3024 		/* T10 vendor ID */
3025 		return 1;
3026 	default:
3027 		break;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 /**
3034  * scsi_vpd_lun_id - return a unique device identification
3035  * @sdev: SCSI device
3036  * @id:   buffer for the identification
3037  * @id_len:  length of the buffer
3038  *
3039  * Copies a unique device identification into @id based
3040  * on the information in the VPD page 0x83 of the device.
3041  * The string will be formatted as a SCSI name string.
3042  *
3043  * Returns the length of the identification or error on failure.
3044  * If the identifier is longer than the supplied buffer the actual
3045  * identifier length is returned and the buffer is not zero-padded.
3046  */
3047 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3048 {
3049 	u8 cur_id_prio = 0;
3050 	u8 cur_id_size = 0;
3051 	const unsigned char *d, *cur_id_str;
3052 	const struct scsi_vpd *vpd_pg83;
3053 	int id_size = -EINVAL;
3054 
3055 	rcu_read_lock();
3056 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3057 	if (!vpd_pg83) {
3058 		rcu_read_unlock();
3059 		return -ENXIO;
3060 	}
3061 
3062 	/* The id string must be at least 20 bytes + terminating NULL byte */
3063 	if (id_len < 21) {
3064 		rcu_read_unlock();
3065 		return -EINVAL;
3066 	}
3067 
3068 	memset(id, 0, id_len);
3069 	for (d = vpd_pg83->data + 4;
3070 	     d < vpd_pg83->data + vpd_pg83->len;
3071 	     d += d[3] + 4) {
3072 		u8 prio = designator_prio(d);
3073 
3074 		if (prio == 0 || cur_id_prio > prio)
3075 			continue;
3076 
3077 		switch (d[1] & 0xf) {
3078 		case 0x1:
3079 			/* T10 Vendor ID */
3080 			if (cur_id_size > d[3])
3081 				break;
3082 			cur_id_prio = prio;
3083 			cur_id_size = d[3];
3084 			if (cur_id_size + 4 > id_len)
3085 				cur_id_size = id_len - 4;
3086 			cur_id_str = d + 4;
3087 			id_size = snprintf(id, id_len, "t10.%*pE",
3088 					   cur_id_size, cur_id_str);
3089 			break;
3090 		case 0x2:
3091 			/* EUI-64 */
3092 			cur_id_prio = prio;
3093 			cur_id_size = d[3];
3094 			cur_id_str = d + 4;
3095 			switch (cur_id_size) {
3096 			case 8:
3097 				id_size = snprintf(id, id_len,
3098 						   "eui.%8phN",
3099 						   cur_id_str);
3100 				break;
3101 			case 12:
3102 				id_size = snprintf(id, id_len,
3103 						   "eui.%12phN",
3104 						   cur_id_str);
3105 				break;
3106 			case 16:
3107 				id_size = snprintf(id, id_len,
3108 						   "eui.%16phN",
3109 						   cur_id_str);
3110 				break;
3111 			default:
3112 				break;
3113 			}
3114 			break;
3115 		case 0x3:
3116 			/* NAA */
3117 			cur_id_prio = prio;
3118 			cur_id_size = d[3];
3119 			cur_id_str = d + 4;
3120 			switch (cur_id_size) {
3121 			case 8:
3122 				id_size = snprintf(id, id_len,
3123 						   "naa.%8phN",
3124 						   cur_id_str);
3125 				break;
3126 			case 16:
3127 				id_size = snprintf(id, id_len,
3128 						   "naa.%16phN",
3129 						   cur_id_str);
3130 				break;
3131 			default:
3132 				break;
3133 			}
3134 			break;
3135 		case 0x8:
3136 			/* SCSI name string */
3137 			if (cur_id_size > d[3])
3138 				break;
3139 			/* Prefer others for truncated descriptor */
3140 			if (d[3] > id_len) {
3141 				prio = 2;
3142 				if (cur_id_prio > prio)
3143 					break;
3144 			}
3145 			cur_id_prio = prio;
3146 			cur_id_size = id_size = d[3];
3147 			cur_id_str = d + 4;
3148 			if (cur_id_size >= id_len)
3149 				cur_id_size = id_len - 1;
3150 			memcpy(id, cur_id_str, cur_id_size);
3151 			break;
3152 		default:
3153 			break;
3154 		}
3155 	}
3156 	rcu_read_unlock();
3157 
3158 	return id_size;
3159 }
3160 EXPORT_SYMBOL(scsi_vpd_lun_id);
3161 
3162 /*
3163  * scsi_vpd_tpg_id - return a target port group identifier
3164  * @sdev: SCSI device
3165  *
3166  * Returns the Target Port Group identifier from the information
3167  * froom VPD page 0x83 of the device.
3168  *
3169  * Returns the identifier or error on failure.
3170  */
3171 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3172 {
3173 	const unsigned char *d;
3174 	const struct scsi_vpd *vpd_pg83;
3175 	int group_id = -EAGAIN, rel_port = -1;
3176 
3177 	rcu_read_lock();
3178 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3179 	if (!vpd_pg83) {
3180 		rcu_read_unlock();
3181 		return -ENXIO;
3182 	}
3183 
3184 	d = vpd_pg83->data + 4;
3185 	while (d < vpd_pg83->data + vpd_pg83->len) {
3186 		switch (d[1] & 0xf) {
3187 		case 0x4:
3188 			/* Relative target port */
3189 			rel_port = get_unaligned_be16(&d[6]);
3190 			break;
3191 		case 0x5:
3192 			/* Target port group */
3193 			group_id = get_unaligned_be16(&d[6]);
3194 			break;
3195 		default:
3196 			break;
3197 		}
3198 		d += d[3] + 4;
3199 	}
3200 	rcu_read_unlock();
3201 
3202 	if (group_id >= 0 && rel_id && rel_port != -1)
3203 		*rel_id = rel_port;
3204 
3205 	return group_id;
3206 }
3207 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3208 
3209 /**
3210  * scsi_build_sense - build sense data for a command
3211  * @scmd:	scsi command for which the sense should be formatted
3212  * @desc:	Sense format (non-zero == descriptor format,
3213  *              0 == fixed format)
3214  * @key:	Sense key
3215  * @asc:	Additional sense code
3216  * @ascq:	Additional sense code qualifier
3217  *
3218  **/
3219 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3220 {
3221 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3222 	scmd->result = SAM_STAT_CHECK_CONDITION;
3223 }
3224 EXPORT_SYMBOL_GPL(scsi_build_sense);
3225