1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 172 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 173 "Inserting command %p into mlqueue\n", cmd)); 174 175 scsi_set_blocked(cmd, reason); 176 177 /* 178 * Decrement the counters, since these commands are no longer 179 * active on the host/device. 180 */ 181 if (unbusy) 182 scsi_device_unbusy(device); 183 184 /* 185 * Requeue this command. It will go before all other commands 186 * that are already in the queue. Schedule requeue work under 187 * lock such that the kblockd_schedule_work() call happens 188 * before blk_cleanup_queue() finishes. 189 */ 190 cmd->result = 0; 191 192 /* 193 * Before a SCSI command is dispatched, 194 * get_device(&sdev->sdev_gendev) is called and the host, 195 * target and device busy counters are increased. Since 196 * requeuing a request causes these actions to be repeated and 197 * since scsi_device_unbusy() has already been called, 198 * put_device(&device->sdev_gendev) must still be called. Call 199 * put_device() after blk_mq_requeue_request() to avoid that 200 * removal of the SCSI device can start before requeueing has 201 * happened. 202 */ 203 blk_mq_requeue_request(cmd->request, true); 204 put_device(&device->sdev_gendev); 205 } 206 207 /* 208 * Function: scsi_queue_insert() 209 * 210 * Purpose: Insert a command in the midlevel queue. 211 * 212 * Arguments: cmd - command that we are adding to queue. 213 * reason - why we are inserting command to queue. 214 * 215 * Lock status: Assumed that lock is not held upon entry. 216 * 217 * Returns: Nothing. 218 * 219 * Notes: We do this for one of two cases. Either the host is busy 220 * and it cannot accept any more commands for the time being, 221 * or the device returned QUEUE_FULL and can accept no more 222 * commands. 223 * Notes: This could be called either from an interrupt context or a 224 * normal process context. 225 */ 226 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 227 { 228 __scsi_queue_insert(cmd, reason, true); 229 } 230 231 232 /** 233 * __scsi_execute - insert request and wait for the result 234 * @sdev: scsi device 235 * @cmd: scsi command 236 * @data_direction: data direction 237 * @buffer: data buffer 238 * @bufflen: len of buffer 239 * @sense: optional sense buffer 240 * @sshdr: optional decoded sense header 241 * @timeout: request timeout in seconds 242 * @retries: number of times to retry request 243 * @flags: flags for ->cmd_flags 244 * @rq_flags: flags for ->rq_flags 245 * @resid: optional residual length 246 * 247 * Returns the scsi_cmnd result field if a command was executed, or a negative 248 * Linux error code if we didn't get that far. 249 */ 250 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 251 int data_direction, void *buffer, unsigned bufflen, 252 unsigned char *sense, struct scsi_sense_hdr *sshdr, 253 int timeout, int retries, u64 flags, req_flags_t rq_flags, 254 int *resid) 255 { 256 struct request *req; 257 struct scsi_request *rq; 258 int ret = DRIVER_ERROR << 24; 259 260 req = blk_get_request(sdev->request_queue, 261 data_direction == DMA_TO_DEVICE ? 262 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 263 if (IS_ERR(req)) 264 return ret; 265 rq = scsi_req(req); 266 267 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 268 buffer, bufflen, GFP_NOIO)) 269 goto out; 270 271 rq->cmd_len = COMMAND_SIZE(cmd[0]); 272 memcpy(rq->cmd, cmd, rq->cmd_len); 273 rq->retries = retries; 274 req->timeout = timeout; 275 req->cmd_flags |= flags; 276 req->rq_flags |= rq_flags | RQF_QUIET; 277 278 /* 279 * head injection *required* here otherwise quiesce won't work 280 */ 281 blk_execute_rq(req->q, NULL, req, 1); 282 283 /* 284 * Some devices (USB mass-storage in particular) may transfer 285 * garbage data together with a residue indicating that the data 286 * is invalid. Prevent the garbage from being misinterpreted 287 * and prevent security leaks by zeroing out the excess data. 288 */ 289 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 290 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 291 292 if (resid) 293 *resid = rq->resid_len; 294 if (sense && rq->sense_len) 295 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 296 if (sshdr) 297 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 298 ret = rq->result; 299 out: 300 blk_put_request(req); 301 302 return ret; 303 } 304 EXPORT_SYMBOL(__scsi_execute); 305 306 /* 307 * Function: scsi_init_cmd_errh() 308 * 309 * Purpose: Initialize cmd fields related to error handling. 310 * 311 * Arguments: cmd - command that is ready to be queued. 312 * 313 * Notes: This function has the job of initializing a number of 314 * fields related to error handling. Typically this will 315 * be called once for each command, as required. 316 */ 317 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 318 { 319 cmd->serial_number = 0; 320 scsi_set_resid(cmd, 0); 321 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 322 if (cmd->cmd_len == 0) 323 cmd->cmd_len = scsi_command_size(cmd->cmnd); 324 } 325 326 /* 327 * Decrement the host_busy counter and wake up the error handler if necessary. 328 * Avoid as follows that the error handler is not woken up if shost->host_busy 329 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 330 * with an RCU read lock in this function to ensure that this function in its 331 * entirety either finishes before scsi_eh_scmd_add() increases the 332 * host_failed counter or that it notices the shost state change made by 333 * scsi_eh_scmd_add(). 334 */ 335 static void scsi_dec_host_busy(struct Scsi_Host *shost) 336 { 337 unsigned long flags; 338 339 rcu_read_lock(); 340 atomic_dec(&shost->host_busy); 341 if (unlikely(scsi_host_in_recovery(shost))) { 342 spin_lock_irqsave(shost->host_lock, flags); 343 if (shost->host_failed || shost->host_eh_scheduled) 344 scsi_eh_wakeup(shost); 345 spin_unlock_irqrestore(shost->host_lock, flags); 346 } 347 rcu_read_unlock(); 348 } 349 350 void scsi_device_unbusy(struct scsi_device *sdev) 351 { 352 struct Scsi_Host *shost = sdev->host; 353 struct scsi_target *starget = scsi_target(sdev); 354 355 scsi_dec_host_busy(shost); 356 357 if (starget->can_queue > 0) 358 atomic_dec(&starget->target_busy); 359 360 atomic_dec(&sdev->device_busy); 361 } 362 363 static void scsi_kick_queue(struct request_queue *q) 364 { 365 blk_mq_run_hw_queues(q, false); 366 } 367 368 /* 369 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 370 * and call blk_run_queue for all the scsi_devices on the target - 371 * including current_sdev first. 372 * 373 * Called with *no* scsi locks held. 374 */ 375 static void scsi_single_lun_run(struct scsi_device *current_sdev) 376 { 377 struct Scsi_Host *shost = current_sdev->host; 378 struct scsi_device *sdev, *tmp; 379 struct scsi_target *starget = scsi_target(current_sdev); 380 unsigned long flags; 381 382 spin_lock_irqsave(shost->host_lock, flags); 383 starget->starget_sdev_user = NULL; 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 386 /* 387 * Call blk_run_queue for all LUNs on the target, starting with 388 * current_sdev. We race with others (to set starget_sdev_user), 389 * but in most cases, we will be first. Ideally, each LU on the 390 * target would get some limited time or requests on the target. 391 */ 392 scsi_kick_queue(current_sdev->request_queue); 393 394 spin_lock_irqsave(shost->host_lock, flags); 395 if (starget->starget_sdev_user) 396 goto out; 397 list_for_each_entry_safe(sdev, tmp, &starget->devices, 398 same_target_siblings) { 399 if (sdev == current_sdev) 400 continue; 401 if (scsi_device_get(sdev)) 402 continue; 403 404 spin_unlock_irqrestore(shost->host_lock, flags); 405 scsi_kick_queue(sdev->request_queue); 406 spin_lock_irqsave(shost->host_lock, flags); 407 408 scsi_device_put(sdev); 409 } 410 out: 411 spin_unlock_irqrestore(shost->host_lock, flags); 412 } 413 414 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 415 { 416 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 417 return true; 418 if (atomic_read(&sdev->device_blocked) > 0) 419 return true; 420 return false; 421 } 422 423 static inline bool scsi_target_is_busy(struct scsi_target *starget) 424 { 425 if (starget->can_queue > 0) { 426 if (atomic_read(&starget->target_busy) >= starget->can_queue) 427 return true; 428 if (atomic_read(&starget->target_blocked) > 0) 429 return true; 430 } 431 return false; 432 } 433 434 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 435 { 436 if (shost->can_queue > 0 && 437 atomic_read(&shost->host_busy) >= shost->can_queue) 438 return true; 439 if (atomic_read(&shost->host_blocked) > 0) 440 return true; 441 if (shost->host_self_blocked) 442 return true; 443 return false; 444 } 445 446 static void scsi_starved_list_run(struct Scsi_Host *shost) 447 { 448 LIST_HEAD(starved_list); 449 struct scsi_device *sdev; 450 unsigned long flags; 451 452 spin_lock_irqsave(shost->host_lock, flags); 453 list_splice_init(&shost->starved_list, &starved_list); 454 455 while (!list_empty(&starved_list)) { 456 struct request_queue *slq; 457 458 /* 459 * As long as shost is accepting commands and we have 460 * starved queues, call blk_run_queue. scsi_request_fn 461 * drops the queue_lock and can add us back to the 462 * starved_list. 463 * 464 * host_lock protects the starved_list and starved_entry. 465 * scsi_request_fn must get the host_lock before checking 466 * or modifying starved_list or starved_entry. 467 */ 468 if (scsi_host_is_busy(shost)) 469 break; 470 471 sdev = list_entry(starved_list.next, 472 struct scsi_device, starved_entry); 473 list_del_init(&sdev->starved_entry); 474 if (scsi_target_is_busy(scsi_target(sdev))) { 475 list_move_tail(&sdev->starved_entry, 476 &shost->starved_list); 477 continue; 478 } 479 480 /* 481 * Once we drop the host lock, a racing scsi_remove_device() 482 * call may remove the sdev from the starved list and destroy 483 * it and the queue. Mitigate by taking a reference to the 484 * queue and never touching the sdev again after we drop the 485 * host lock. Note: if __scsi_remove_device() invokes 486 * blk_cleanup_queue() before the queue is run from this 487 * function then blk_run_queue() will return immediately since 488 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 489 */ 490 slq = sdev->request_queue; 491 if (!blk_get_queue(slq)) 492 continue; 493 spin_unlock_irqrestore(shost->host_lock, flags); 494 495 scsi_kick_queue(slq); 496 blk_put_queue(slq); 497 498 spin_lock_irqsave(shost->host_lock, flags); 499 } 500 /* put any unprocessed entries back */ 501 list_splice(&starved_list, &shost->starved_list); 502 spin_unlock_irqrestore(shost->host_lock, flags); 503 } 504 505 /* 506 * Function: scsi_run_queue() 507 * 508 * Purpose: Select a proper request queue to serve next 509 * 510 * Arguments: q - last request's queue 511 * 512 * Returns: Nothing 513 * 514 * Notes: The previous command was completely finished, start 515 * a new one if possible. 516 */ 517 static void scsi_run_queue(struct request_queue *q) 518 { 519 struct scsi_device *sdev = q->queuedata; 520 521 if (scsi_target(sdev)->single_lun) 522 scsi_single_lun_run(sdev); 523 if (!list_empty(&sdev->host->starved_list)) 524 scsi_starved_list_run(sdev->host); 525 526 blk_mq_run_hw_queues(q, false); 527 } 528 529 void scsi_requeue_run_queue(struct work_struct *work) 530 { 531 struct scsi_device *sdev; 532 struct request_queue *q; 533 534 sdev = container_of(work, struct scsi_device, requeue_work); 535 q = sdev->request_queue; 536 scsi_run_queue(q); 537 } 538 539 void scsi_run_host_queues(struct Scsi_Host *shost) 540 { 541 struct scsi_device *sdev; 542 543 shost_for_each_device(sdev, shost) 544 scsi_run_queue(sdev->request_queue); 545 } 546 547 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 548 { 549 if (!blk_rq_is_passthrough(cmd->request)) { 550 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 551 552 if (drv->uninit_command) 553 drv->uninit_command(cmd); 554 } 555 } 556 557 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 558 { 559 struct scsi_data_buffer *sdb; 560 561 if (cmd->sdb.table.nents) 562 sg_free_table_chained(&cmd->sdb.table, true); 563 if (cmd->request->next_rq) { 564 sdb = cmd->request->next_rq->special; 565 if (sdb) 566 sg_free_table_chained(&sdb->table, true); 567 } 568 if (scsi_prot_sg_count(cmd)) 569 sg_free_table_chained(&cmd->prot_sdb->table, true); 570 } 571 572 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 573 { 574 scsi_mq_free_sgtables(cmd); 575 scsi_uninit_cmd(cmd); 576 scsi_del_cmd_from_list(cmd); 577 } 578 579 /* Returns false when no more bytes to process, true if there are more */ 580 static bool scsi_end_request(struct request *req, blk_status_t error, 581 unsigned int bytes, unsigned int bidi_bytes) 582 { 583 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 584 struct scsi_device *sdev = cmd->device; 585 struct request_queue *q = sdev->request_queue; 586 587 if (blk_update_request(req, error, bytes)) 588 return true; 589 590 /* Bidi request must be completed as a whole */ 591 if (unlikely(bidi_bytes) && 592 blk_update_request(req->next_rq, error, bidi_bytes)) 593 return true; 594 595 if (blk_queue_add_random(q)) 596 add_disk_randomness(req->rq_disk); 597 598 if (!blk_rq_is_scsi(req)) { 599 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 600 cmd->flags &= ~SCMD_INITIALIZED; 601 destroy_rcu_head(&cmd->rcu); 602 } 603 604 /* 605 * In the MQ case the command gets freed by __blk_mq_end_request, 606 * so we have to do all cleanup that depends on it earlier. 607 * 608 * We also can't kick the queues from irq context, so we 609 * will have to defer it to a workqueue. 610 */ 611 scsi_mq_uninit_cmd(cmd); 612 613 /* 614 * queue is still alive, so grab the ref for preventing it 615 * from being cleaned up during running queue. 616 */ 617 percpu_ref_get(&q->q_usage_counter); 618 619 __blk_mq_end_request(req, error); 620 621 if (scsi_target(sdev)->single_lun || 622 !list_empty(&sdev->host->starved_list)) 623 kblockd_schedule_work(&sdev->requeue_work); 624 else 625 blk_mq_run_hw_queues(q, true); 626 627 percpu_ref_put(&q->q_usage_counter); 628 put_device(&sdev->sdev_gendev); 629 return false; 630 } 631 632 /** 633 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 634 * @cmd: SCSI command 635 * @result: scsi error code 636 * 637 * Translate a SCSI result code into a blk_status_t value. May reset the host 638 * byte of @cmd->result. 639 */ 640 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 641 { 642 switch (host_byte(result)) { 643 case DID_OK: 644 /* 645 * Also check the other bytes than the status byte in result 646 * to handle the case when a SCSI LLD sets result to 647 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 648 */ 649 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 650 return BLK_STS_OK; 651 return BLK_STS_IOERR; 652 case DID_TRANSPORT_FAILFAST: 653 return BLK_STS_TRANSPORT; 654 case DID_TARGET_FAILURE: 655 set_host_byte(cmd, DID_OK); 656 return BLK_STS_TARGET; 657 case DID_NEXUS_FAILURE: 658 set_host_byte(cmd, DID_OK); 659 return BLK_STS_NEXUS; 660 case DID_ALLOC_FAILURE: 661 set_host_byte(cmd, DID_OK); 662 return BLK_STS_NOSPC; 663 case DID_MEDIUM_ERROR: 664 set_host_byte(cmd, DID_OK); 665 return BLK_STS_MEDIUM; 666 default: 667 return BLK_STS_IOERR; 668 } 669 } 670 671 /* Helper for scsi_io_completion() when "reprep" action required. */ 672 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 673 struct request_queue *q) 674 { 675 /* A new command will be prepared and issued. */ 676 scsi_mq_requeue_cmd(cmd); 677 } 678 679 /* Helper for scsi_io_completion() when special action required. */ 680 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 681 { 682 struct request_queue *q = cmd->device->request_queue; 683 struct request *req = cmd->request; 684 int level = 0; 685 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 686 ACTION_DELAYED_RETRY} action; 687 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 688 struct scsi_sense_hdr sshdr; 689 bool sense_valid; 690 bool sense_current = true; /* false implies "deferred sense" */ 691 blk_status_t blk_stat; 692 693 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 694 if (sense_valid) 695 sense_current = !scsi_sense_is_deferred(&sshdr); 696 697 blk_stat = scsi_result_to_blk_status(cmd, result); 698 699 if (host_byte(result) == DID_RESET) { 700 /* Third party bus reset or reset for error recovery 701 * reasons. Just retry the command and see what 702 * happens. 703 */ 704 action = ACTION_RETRY; 705 } else if (sense_valid && sense_current) { 706 switch (sshdr.sense_key) { 707 case UNIT_ATTENTION: 708 if (cmd->device->removable) { 709 /* Detected disc change. Set a bit 710 * and quietly refuse further access. 711 */ 712 cmd->device->changed = 1; 713 action = ACTION_FAIL; 714 } else { 715 /* Must have been a power glitch, or a 716 * bus reset. Could not have been a 717 * media change, so we just retry the 718 * command and see what happens. 719 */ 720 action = ACTION_RETRY; 721 } 722 break; 723 case ILLEGAL_REQUEST: 724 /* If we had an ILLEGAL REQUEST returned, then 725 * we may have performed an unsupported 726 * command. The only thing this should be 727 * would be a ten byte read where only a six 728 * byte read was supported. Also, on a system 729 * where READ CAPACITY failed, we may have 730 * read past the end of the disk. 731 */ 732 if ((cmd->device->use_10_for_rw && 733 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 734 (cmd->cmnd[0] == READ_10 || 735 cmd->cmnd[0] == WRITE_10)) { 736 /* This will issue a new 6-byte command. */ 737 cmd->device->use_10_for_rw = 0; 738 action = ACTION_REPREP; 739 } else if (sshdr.asc == 0x10) /* DIX */ { 740 action = ACTION_FAIL; 741 blk_stat = BLK_STS_PROTECTION; 742 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 743 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 744 action = ACTION_FAIL; 745 blk_stat = BLK_STS_TARGET; 746 } else 747 action = ACTION_FAIL; 748 break; 749 case ABORTED_COMMAND: 750 action = ACTION_FAIL; 751 if (sshdr.asc == 0x10) /* DIF */ 752 blk_stat = BLK_STS_PROTECTION; 753 break; 754 case NOT_READY: 755 /* If the device is in the process of becoming 756 * ready, or has a temporary blockage, retry. 757 */ 758 if (sshdr.asc == 0x04) { 759 switch (sshdr.ascq) { 760 case 0x01: /* becoming ready */ 761 case 0x04: /* format in progress */ 762 case 0x05: /* rebuild in progress */ 763 case 0x06: /* recalculation in progress */ 764 case 0x07: /* operation in progress */ 765 case 0x08: /* Long write in progress */ 766 case 0x09: /* self test in progress */ 767 case 0x14: /* space allocation in progress */ 768 case 0x1a: /* start stop unit in progress */ 769 case 0x1b: /* sanitize in progress */ 770 case 0x1d: /* configuration in progress */ 771 case 0x24: /* depopulation in progress */ 772 action = ACTION_DELAYED_RETRY; 773 break; 774 default: 775 action = ACTION_FAIL; 776 break; 777 } 778 } else 779 action = ACTION_FAIL; 780 break; 781 case VOLUME_OVERFLOW: 782 /* See SSC3rXX or current. */ 783 action = ACTION_FAIL; 784 break; 785 default: 786 action = ACTION_FAIL; 787 break; 788 } 789 } else 790 action = ACTION_FAIL; 791 792 if (action != ACTION_FAIL && 793 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 794 action = ACTION_FAIL; 795 796 switch (action) { 797 case ACTION_FAIL: 798 /* Give up and fail the remainder of the request */ 799 if (!(req->rq_flags & RQF_QUIET)) { 800 static DEFINE_RATELIMIT_STATE(_rs, 801 DEFAULT_RATELIMIT_INTERVAL, 802 DEFAULT_RATELIMIT_BURST); 803 804 if (unlikely(scsi_logging_level)) 805 level = 806 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 807 SCSI_LOG_MLCOMPLETE_BITS); 808 809 /* 810 * if logging is enabled the failure will be printed 811 * in scsi_log_completion(), so avoid duplicate messages 812 */ 813 if (!level && __ratelimit(&_rs)) { 814 scsi_print_result(cmd, NULL, FAILED); 815 if (driver_byte(result) == DRIVER_SENSE) 816 scsi_print_sense(cmd); 817 scsi_print_command(cmd); 818 } 819 } 820 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0)) 821 return; 822 /*FALLTHRU*/ 823 case ACTION_REPREP: 824 scsi_io_completion_reprep(cmd, q); 825 break; 826 case ACTION_RETRY: 827 /* Retry the same command immediately */ 828 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 829 break; 830 case ACTION_DELAYED_RETRY: 831 /* Retry the same command after a delay */ 832 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 833 break; 834 } 835 } 836 837 /* 838 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 839 * new result that may suppress further error checking. Also modifies 840 * *blk_statp in some cases. 841 */ 842 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 843 blk_status_t *blk_statp) 844 { 845 bool sense_valid; 846 bool sense_current = true; /* false implies "deferred sense" */ 847 struct request *req = cmd->request; 848 struct scsi_sense_hdr sshdr; 849 850 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 851 if (sense_valid) 852 sense_current = !scsi_sense_is_deferred(&sshdr); 853 854 if (blk_rq_is_passthrough(req)) { 855 if (sense_valid) { 856 /* 857 * SG_IO wants current and deferred errors 858 */ 859 scsi_req(req)->sense_len = 860 min(8 + cmd->sense_buffer[7], 861 SCSI_SENSE_BUFFERSIZE); 862 } 863 if (sense_current) 864 *blk_statp = scsi_result_to_blk_status(cmd, result); 865 } else if (blk_rq_bytes(req) == 0 && sense_current) { 866 /* 867 * Flush commands do not transfers any data, and thus cannot use 868 * good_bytes != blk_rq_bytes(req) as the signal for an error. 869 * This sets *blk_statp explicitly for the problem case. 870 */ 871 *blk_statp = scsi_result_to_blk_status(cmd, result); 872 } 873 /* 874 * Recovered errors need reporting, but they're always treated as 875 * success, so fiddle the result code here. For passthrough requests 876 * we already took a copy of the original into sreq->result which 877 * is what gets returned to the user 878 */ 879 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 880 bool do_print = true; 881 /* 882 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 883 * skip print since caller wants ATA registers. Only occurs 884 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 885 */ 886 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 887 do_print = false; 888 else if (req->rq_flags & RQF_QUIET) 889 do_print = false; 890 if (do_print) 891 scsi_print_sense(cmd); 892 result = 0; 893 /* for passthrough, *blk_statp may be set */ 894 *blk_statp = BLK_STS_OK; 895 } 896 /* 897 * Another corner case: the SCSI status byte is non-zero but 'good'. 898 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 899 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 900 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 901 * intermediate statuses (both obsolete in SAM-4) as good. 902 */ 903 if (status_byte(result) && scsi_status_is_good(result)) { 904 result = 0; 905 *blk_statp = BLK_STS_OK; 906 } 907 return result; 908 } 909 910 /* 911 * Function: scsi_io_completion() 912 * 913 * Purpose: Completion processing for block device I/O requests. 914 * 915 * Arguments: cmd - command that is finished. 916 * 917 * Lock status: Assumed that no lock is held upon entry. 918 * 919 * Returns: Nothing 920 * 921 * Notes: We will finish off the specified number of sectors. If we 922 * are done, the command block will be released and the queue 923 * function will be goosed. If we are not done then we have to 924 * figure out what to do next: 925 * 926 * a) We can call scsi_requeue_command(). The request 927 * will be unprepared and put back on the queue. Then 928 * a new command will be created for it. This should 929 * be used if we made forward progress, or if we want 930 * to switch from READ(10) to READ(6) for example. 931 * 932 * b) We can call __scsi_queue_insert(). The request will 933 * be put back on the queue and retried using the same 934 * command as before, possibly after a delay. 935 * 936 * c) We can call scsi_end_request() with blk_stat other than 937 * BLK_STS_OK, to fail the remainder of the request. 938 */ 939 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 940 { 941 int result = cmd->result; 942 struct request_queue *q = cmd->device->request_queue; 943 struct request *req = cmd->request; 944 blk_status_t blk_stat = BLK_STS_OK; 945 946 if (unlikely(result)) /* a nz result may or may not be an error */ 947 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 948 949 if (unlikely(blk_rq_is_passthrough(req))) { 950 /* 951 * scsi_result_to_blk_status may have reset the host_byte 952 */ 953 scsi_req(req)->result = cmd->result; 954 scsi_req(req)->resid_len = scsi_get_resid(cmd); 955 956 if (unlikely(scsi_bidi_cmnd(cmd))) { 957 /* 958 * Bidi commands Must be complete as a whole, 959 * both sides at once. 960 */ 961 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 962 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 963 blk_rq_bytes(req->next_rq))) 964 WARN_ONCE(true, 965 "Bidi command with remaining bytes"); 966 return; 967 } 968 } 969 970 /* no bidi support yet, other than in pass-through */ 971 if (unlikely(blk_bidi_rq(req))) { 972 WARN_ONCE(true, "Only support bidi command in passthrough"); 973 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n"); 974 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req), 975 blk_rq_bytes(req->next_rq))) 976 WARN_ONCE(true, "Bidi command with remaining bytes"); 977 return; 978 } 979 980 /* 981 * Next deal with any sectors which we were able to correctly 982 * handle. 983 */ 984 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 985 "%u sectors total, %d bytes done.\n", 986 blk_rq_sectors(req), good_bytes)); 987 988 /* 989 * Next deal with any sectors which we were able to correctly 990 * handle. Failed, zero length commands always need to drop down 991 * to retry code. Fast path should return in this block. 992 */ 993 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 994 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0))) 995 return; /* no bytes remaining */ 996 } 997 998 /* Kill remainder if no retries. */ 999 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1000 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0)) 1001 WARN_ONCE(true, 1002 "Bytes remaining after failed, no-retry command"); 1003 return; 1004 } 1005 1006 /* 1007 * If there had been no error, but we have leftover bytes in the 1008 * requeues just queue the command up again. 1009 */ 1010 if (likely(result == 0)) 1011 scsi_io_completion_reprep(cmd, q); 1012 else 1013 scsi_io_completion_action(cmd, result); 1014 } 1015 1016 static blk_status_t scsi_init_sgtable(struct request *req, 1017 struct scsi_data_buffer *sdb) 1018 { 1019 int count; 1020 1021 /* 1022 * If sg table allocation fails, requeue request later. 1023 */ 1024 if (unlikely(sg_alloc_table_chained(&sdb->table, 1025 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1026 return BLK_STS_RESOURCE; 1027 1028 /* 1029 * Next, walk the list, and fill in the addresses and sizes of 1030 * each segment. 1031 */ 1032 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1033 BUG_ON(count > sdb->table.nents); 1034 sdb->table.nents = count; 1035 sdb->length = blk_rq_payload_bytes(req); 1036 return BLK_STS_OK; 1037 } 1038 1039 /* 1040 * Function: scsi_init_io() 1041 * 1042 * Purpose: SCSI I/O initialize function. 1043 * 1044 * Arguments: cmd - Command descriptor we wish to initialize 1045 * 1046 * Returns: BLK_STS_OK on success 1047 * BLK_STS_RESOURCE if the failure is retryable 1048 * BLK_STS_IOERR if the failure is fatal 1049 */ 1050 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1051 { 1052 struct request *rq = cmd->request; 1053 blk_status_t ret; 1054 1055 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1056 return BLK_STS_IOERR; 1057 1058 ret = scsi_init_sgtable(rq, &cmd->sdb); 1059 if (ret) 1060 return ret; 1061 1062 if (blk_bidi_rq(rq)) { 1063 ret = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1064 if (ret) 1065 goto out_free_sgtables; 1066 } 1067 1068 if (blk_integrity_rq(rq)) { 1069 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1070 int ivecs, count; 1071 1072 if (WARN_ON_ONCE(!prot_sdb)) { 1073 /* 1074 * This can happen if someone (e.g. multipath) 1075 * queues a command to a device on an adapter 1076 * that does not support DIX. 1077 */ 1078 ret = BLK_STS_IOERR; 1079 goto out_free_sgtables; 1080 } 1081 1082 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1083 1084 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1085 prot_sdb->table.sgl)) { 1086 ret = BLK_STS_RESOURCE; 1087 goto out_free_sgtables; 1088 } 1089 1090 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1091 prot_sdb->table.sgl); 1092 BUG_ON(count > ivecs); 1093 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1094 1095 cmd->prot_sdb = prot_sdb; 1096 cmd->prot_sdb->table.nents = count; 1097 } 1098 1099 return BLK_STS_OK; 1100 out_free_sgtables: 1101 scsi_mq_free_sgtables(cmd); 1102 return ret; 1103 } 1104 EXPORT_SYMBOL(scsi_init_io); 1105 1106 /** 1107 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1108 * @rq: Request associated with the SCSI command to be initialized. 1109 * 1110 * This function initializes the members of struct scsi_cmnd that must be 1111 * initialized before request processing starts and that won't be 1112 * reinitialized if a SCSI command is requeued. 1113 * 1114 * Called from inside blk_get_request() for pass-through requests and from 1115 * inside scsi_init_command() for filesystem requests. 1116 */ 1117 static void scsi_initialize_rq(struct request *rq) 1118 { 1119 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1120 1121 scsi_req_init(&cmd->req); 1122 init_rcu_head(&cmd->rcu); 1123 cmd->jiffies_at_alloc = jiffies; 1124 cmd->retries = 0; 1125 } 1126 1127 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1128 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1129 { 1130 struct scsi_device *sdev = cmd->device; 1131 struct Scsi_Host *shost = sdev->host; 1132 unsigned long flags; 1133 1134 if (shost->use_cmd_list) { 1135 spin_lock_irqsave(&sdev->list_lock, flags); 1136 list_add_tail(&cmd->list, &sdev->cmd_list); 1137 spin_unlock_irqrestore(&sdev->list_lock, flags); 1138 } 1139 } 1140 1141 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1142 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1143 { 1144 struct scsi_device *sdev = cmd->device; 1145 struct Scsi_Host *shost = sdev->host; 1146 unsigned long flags; 1147 1148 if (shost->use_cmd_list) { 1149 spin_lock_irqsave(&sdev->list_lock, flags); 1150 BUG_ON(list_empty(&cmd->list)); 1151 list_del_init(&cmd->list); 1152 spin_unlock_irqrestore(&sdev->list_lock, flags); 1153 } 1154 } 1155 1156 /* Called after a request has been started. */ 1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1158 { 1159 void *buf = cmd->sense_buffer; 1160 void *prot = cmd->prot_sdb; 1161 struct request *rq = blk_mq_rq_from_pdu(cmd); 1162 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1163 unsigned long jiffies_at_alloc; 1164 int retries; 1165 1166 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1167 flags |= SCMD_INITIALIZED; 1168 scsi_initialize_rq(rq); 1169 } 1170 1171 jiffies_at_alloc = cmd->jiffies_at_alloc; 1172 retries = cmd->retries; 1173 /* zero out the cmd, except for the embedded scsi_request */ 1174 memset((char *)cmd + sizeof(cmd->req), 0, 1175 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1176 1177 cmd->device = dev; 1178 cmd->sense_buffer = buf; 1179 cmd->prot_sdb = prot; 1180 cmd->flags = flags; 1181 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1182 cmd->jiffies_at_alloc = jiffies_at_alloc; 1183 cmd->retries = retries; 1184 1185 scsi_add_cmd_to_list(cmd); 1186 } 1187 1188 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1189 struct request *req) 1190 { 1191 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1192 1193 /* 1194 * Passthrough requests may transfer data, in which case they must 1195 * a bio attached to them. Or they might contain a SCSI command 1196 * that does not transfer data, in which case they may optionally 1197 * submit a request without an attached bio. 1198 */ 1199 if (req->bio) { 1200 blk_status_t ret = scsi_init_io(cmd); 1201 if (unlikely(ret != BLK_STS_OK)) 1202 return ret; 1203 } else { 1204 BUG_ON(blk_rq_bytes(req)); 1205 1206 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1207 } 1208 1209 cmd->cmd_len = scsi_req(req)->cmd_len; 1210 cmd->cmnd = scsi_req(req)->cmd; 1211 cmd->transfersize = blk_rq_bytes(req); 1212 cmd->allowed = scsi_req(req)->retries; 1213 return BLK_STS_OK; 1214 } 1215 1216 /* 1217 * Setup a normal block command. These are simple request from filesystems 1218 * that still need to be translated to SCSI CDBs from the ULD. 1219 */ 1220 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1221 struct request *req) 1222 { 1223 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1224 1225 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1226 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1227 if (ret != BLK_STS_OK) 1228 return ret; 1229 } 1230 1231 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1232 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1233 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1234 } 1235 1236 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1237 struct request *req) 1238 { 1239 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1240 1241 if (!blk_rq_bytes(req)) 1242 cmd->sc_data_direction = DMA_NONE; 1243 else if (rq_data_dir(req) == WRITE) 1244 cmd->sc_data_direction = DMA_TO_DEVICE; 1245 else 1246 cmd->sc_data_direction = DMA_FROM_DEVICE; 1247 1248 if (blk_rq_is_scsi(req)) 1249 return scsi_setup_scsi_cmnd(sdev, req); 1250 else 1251 return scsi_setup_fs_cmnd(sdev, req); 1252 } 1253 1254 static blk_status_t 1255 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1256 { 1257 switch (sdev->sdev_state) { 1258 case SDEV_OFFLINE: 1259 case SDEV_TRANSPORT_OFFLINE: 1260 /* 1261 * If the device is offline we refuse to process any 1262 * commands. The device must be brought online 1263 * before trying any recovery commands. 1264 */ 1265 sdev_printk(KERN_ERR, sdev, 1266 "rejecting I/O to offline device\n"); 1267 return BLK_STS_IOERR; 1268 case SDEV_DEL: 1269 /* 1270 * If the device is fully deleted, we refuse to 1271 * process any commands as well. 1272 */ 1273 sdev_printk(KERN_ERR, sdev, 1274 "rejecting I/O to dead device\n"); 1275 return BLK_STS_IOERR; 1276 case SDEV_BLOCK: 1277 case SDEV_CREATED_BLOCK: 1278 return BLK_STS_RESOURCE; 1279 case SDEV_QUIESCE: 1280 /* 1281 * If the devices is blocked we defer normal commands. 1282 */ 1283 if (req && !(req->rq_flags & RQF_PREEMPT)) 1284 return BLK_STS_RESOURCE; 1285 return BLK_STS_OK; 1286 default: 1287 /* 1288 * For any other not fully online state we only allow 1289 * special commands. In particular any user initiated 1290 * command is not allowed. 1291 */ 1292 if (req && !(req->rq_flags & RQF_PREEMPT)) 1293 return BLK_STS_IOERR; 1294 return BLK_STS_OK; 1295 } 1296 } 1297 1298 /* 1299 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1300 * return 0. 1301 * 1302 * Called with the queue_lock held. 1303 */ 1304 static inline int scsi_dev_queue_ready(struct request_queue *q, 1305 struct scsi_device *sdev) 1306 { 1307 unsigned int busy; 1308 1309 busy = atomic_inc_return(&sdev->device_busy) - 1; 1310 if (atomic_read(&sdev->device_blocked)) { 1311 if (busy) 1312 goto out_dec; 1313 1314 /* 1315 * unblock after device_blocked iterates to zero 1316 */ 1317 if (atomic_dec_return(&sdev->device_blocked) > 0) 1318 goto out_dec; 1319 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1320 "unblocking device at zero depth\n")); 1321 } 1322 1323 if (busy >= sdev->queue_depth) 1324 goto out_dec; 1325 1326 return 1; 1327 out_dec: 1328 atomic_dec(&sdev->device_busy); 1329 return 0; 1330 } 1331 1332 /* 1333 * scsi_target_queue_ready: checks if there we can send commands to target 1334 * @sdev: scsi device on starget to check. 1335 */ 1336 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1337 struct scsi_device *sdev) 1338 { 1339 struct scsi_target *starget = scsi_target(sdev); 1340 unsigned int busy; 1341 1342 if (starget->single_lun) { 1343 spin_lock_irq(shost->host_lock); 1344 if (starget->starget_sdev_user && 1345 starget->starget_sdev_user != sdev) { 1346 spin_unlock_irq(shost->host_lock); 1347 return 0; 1348 } 1349 starget->starget_sdev_user = sdev; 1350 spin_unlock_irq(shost->host_lock); 1351 } 1352 1353 if (starget->can_queue <= 0) 1354 return 1; 1355 1356 busy = atomic_inc_return(&starget->target_busy) - 1; 1357 if (atomic_read(&starget->target_blocked) > 0) { 1358 if (busy) 1359 goto starved; 1360 1361 /* 1362 * unblock after target_blocked iterates to zero 1363 */ 1364 if (atomic_dec_return(&starget->target_blocked) > 0) 1365 goto out_dec; 1366 1367 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1368 "unblocking target at zero depth\n")); 1369 } 1370 1371 if (busy >= starget->can_queue) 1372 goto starved; 1373 1374 return 1; 1375 1376 starved: 1377 spin_lock_irq(shost->host_lock); 1378 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1379 spin_unlock_irq(shost->host_lock); 1380 out_dec: 1381 if (starget->can_queue > 0) 1382 atomic_dec(&starget->target_busy); 1383 return 0; 1384 } 1385 1386 /* 1387 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1388 * return 0. We must end up running the queue again whenever 0 is 1389 * returned, else IO can hang. 1390 */ 1391 static inline int scsi_host_queue_ready(struct request_queue *q, 1392 struct Scsi_Host *shost, 1393 struct scsi_device *sdev) 1394 { 1395 unsigned int busy; 1396 1397 if (scsi_host_in_recovery(shost)) 1398 return 0; 1399 1400 busy = atomic_inc_return(&shost->host_busy) - 1; 1401 if (atomic_read(&shost->host_blocked) > 0) { 1402 if (busy) 1403 goto starved; 1404 1405 /* 1406 * unblock after host_blocked iterates to zero 1407 */ 1408 if (atomic_dec_return(&shost->host_blocked) > 0) 1409 goto out_dec; 1410 1411 SCSI_LOG_MLQUEUE(3, 1412 shost_printk(KERN_INFO, shost, 1413 "unblocking host at zero depth\n")); 1414 } 1415 1416 if (shost->can_queue > 0 && busy >= shost->can_queue) 1417 goto starved; 1418 if (shost->host_self_blocked) 1419 goto starved; 1420 1421 /* We're OK to process the command, so we can't be starved */ 1422 if (!list_empty(&sdev->starved_entry)) { 1423 spin_lock_irq(shost->host_lock); 1424 if (!list_empty(&sdev->starved_entry)) 1425 list_del_init(&sdev->starved_entry); 1426 spin_unlock_irq(shost->host_lock); 1427 } 1428 1429 return 1; 1430 1431 starved: 1432 spin_lock_irq(shost->host_lock); 1433 if (list_empty(&sdev->starved_entry)) 1434 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1435 spin_unlock_irq(shost->host_lock); 1436 out_dec: 1437 scsi_dec_host_busy(shost); 1438 return 0; 1439 } 1440 1441 /* 1442 * Busy state exporting function for request stacking drivers. 1443 * 1444 * For efficiency, no lock is taken to check the busy state of 1445 * shost/starget/sdev, since the returned value is not guaranteed and 1446 * may be changed after request stacking drivers call the function, 1447 * regardless of taking lock or not. 1448 * 1449 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1450 * needs to return 'not busy'. Otherwise, request stacking drivers 1451 * may hold requests forever. 1452 */ 1453 static bool scsi_mq_lld_busy(struct request_queue *q) 1454 { 1455 struct scsi_device *sdev = q->queuedata; 1456 struct Scsi_Host *shost; 1457 1458 if (blk_queue_dying(q)) 1459 return false; 1460 1461 shost = sdev->host; 1462 1463 /* 1464 * Ignore host/starget busy state. 1465 * Since block layer does not have a concept of fairness across 1466 * multiple queues, congestion of host/starget needs to be handled 1467 * in SCSI layer. 1468 */ 1469 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1470 return true; 1471 1472 return false; 1473 } 1474 1475 static void scsi_softirq_done(struct request *rq) 1476 { 1477 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1478 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1479 int disposition; 1480 1481 INIT_LIST_HEAD(&cmd->eh_entry); 1482 1483 atomic_inc(&cmd->device->iodone_cnt); 1484 if (cmd->result) 1485 atomic_inc(&cmd->device->ioerr_cnt); 1486 1487 disposition = scsi_decide_disposition(cmd); 1488 if (disposition != SUCCESS && 1489 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1490 sdev_printk(KERN_ERR, cmd->device, 1491 "timing out command, waited %lus\n", 1492 wait_for/HZ); 1493 disposition = SUCCESS; 1494 } 1495 1496 scsi_log_completion(cmd, disposition); 1497 1498 switch (disposition) { 1499 case SUCCESS: 1500 scsi_finish_command(cmd); 1501 break; 1502 case NEEDS_RETRY: 1503 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1504 break; 1505 case ADD_TO_MLQUEUE: 1506 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1507 break; 1508 default: 1509 scsi_eh_scmd_add(cmd); 1510 break; 1511 } 1512 } 1513 1514 /** 1515 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1516 * @cmd: command block we are dispatching. 1517 * 1518 * Return: nonzero return request was rejected and device's queue needs to be 1519 * plugged. 1520 */ 1521 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1522 { 1523 struct Scsi_Host *host = cmd->device->host; 1524 int rtn = 0; 1525 1526 atomic_inc(&cmd->device->iorequest_cnt); 1527 1528 /* check if the device is still usable */ 1529 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1530 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1531 * returns an immediate error upwards, and signals 1532 * that the device is no longer present */ 1533 cmd->result = DID_NO_CONNECT << 16; 1534 goto done; 1535 } 1536 1537 /* Check to see if the scsi lld made this device blocked. */ 1538 if (unlikely(scsi_device_blocked(cmd->device))) { 1539 /* 1540 * in blocked state, the command is just put back on 1541 * the device queue. The suspend state has already 1542 * blocked the queue so future requests should not 1543 * occur until the device transitions out of the 1544 * suspend state. 1545 */ 1546 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1547 "queuecommand : device blocked\n")); 1548 return SCSI_MLQUEUE_DEVICE_BUSY; 1549 } 1550 1551 /* Store the LUN value in cmnd, if needed. */ 1552 if (cmd->device->lun_in_cdb) 1553 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1554 (cmd->device->lun << 5 & 0xe0); 1555 1556 scsi_log_send(cmd); 1557 1558 /* 1559 * Before we queue this command, check if the command 1560 * length exceeds what the host adapter can handle. 1561 */ 1562 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1563 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1564 "queuecommand : command too long. " 1565 "cdb_size=%d host->max_cmd_len=%d\n", 1566 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1567 cmd->result = (DID_ABORT << 16); 1568 goto done; 1569 } 1570 1571 if (unlikely(host->shost_state == SHOST_DEL)) { 1572 cmd->result = (DID_NO_CONNECT << 16); 1573 goto done; 1574 1575 } 1576 1577 trace_scsi_dispatch_cmd_start(cmd); 1578 rtn = host->hostt->queuecommand(host, cmd); 1579 if (rtn) { 1580 trace_scsi_dispatch_cmd_error(cmd, rtn); 1581 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1582 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1583 rtn = SCSI_MLQUEUE_HOST_BUSY; 1584 1585 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1586 "queuecommand : request rejected\n")); 1587 } 1588 1589 return rtn; 1590 done: 1591 cmd->scsi_done(cmd); 1592 return 0; 1593 } 1594 1595 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1596 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1597 { 1598 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1599 sizeof(struct scatterlist); 1600 } 1601 1602 static blk_status_t scsi_mq_prep_fn(struct request *req) 1603 { 1604 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1605 struct scsi_device *sdev = req->q->queuedata; 1606 struct Scsi_Host *shost = sdev->host; 1607 struct scatterlist *sg; 1608 1609 scsi_init_command(sdev, cmd); 1610 1611 req->special = cmd; 1612 1613 cmd->request = req; 1614 1615 cmd->tag = req->tag; 1616 cmd->prot_op = SCSI_PROT_NORMAL; 1617 1618 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1619 cmd->sdb.table.sgl = sg; 1620 1621 if (scsi_host_get_prot(shost)) { 1622 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1623 1624 cmd->prot_sdb->table.sgl = 1625 (struct scatterlist *)(cmd->prot_sdb + 1); 1626 } 1627 1628 if (blk_bidi_rq(req)) { 1629 struct request *next_rq = req->next_rq; 1630 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1631 1632 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1633 bidi_sdb->table.sgl = 1634 (struct scatterlist *)(bidi_sdb + 1); 1635 1636 next_rq->special = bidi_sdb; 1637 } 1638 1639 blk_mq_start_request(req); 1640 1641 return scsi_setup_cmnd(sdev, req); 1642 } 1643 1644 static void scsi_mq_done(struct scsi_cmnd *cmd) 1645 { 1646 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1647 return; 1648 trace_scsi_dispatch_cmd_done(cmd); 1649 1650 /* 1651 * If the block layer didn't complete the request due to a timeout 1652 * injection, scsi must clear its internal completed state so that the 1653 * timeout handler will see it needs to escalate its own error 1654 * recovery. 1655 */ 1656 if (unlikely(!blk_mq_complete_request(cmd->request))) 1657 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1658 } 1659 1660 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1661 { 1662 struct request_queue *q = hctx->queue; 1663 struct scsi_device *sdev = q->queuedata; 1664 1665 atomic_dec(&sdev->device_busy); 1666 put_device(&sdev->sdev_gendev); 1667 } 1668 1669 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1670 { 1671 struct request_queue *q = hctx->queue; 1672 struct scsi_device *sdev = q->queuedata; 1673 1674 if (!get_device(&sdev->sdev_gendev)) 1675 goto out; 1676 if (!scsi_dev_queue_ready(q, sdev)) 1677 goto out_put_device; 1678 1679 return true; 1680 1681 out_put_device: 1682 put_device(&sdev->sdev_gendev); 1683 out: 1684 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1685 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1686 return false; 1687 } 1688 1689 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1690 const struct blk_mq_queue_data *bd) 1691 { 1692 struct request *req = bd->rq; 1693 struct request_queue *q = req->q; 1694 struct scsi_device *sdev = q->queuedata; 1695 struct Scsi_Host *shost = sdev->host; 1696 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1697 blk_status_t ret; 1698 int reason; 1699 1700 /* 1701 * If the device is not in running state we will reject some or all 1702 * commands. 1703 */ 1704 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1705 ret = scsi_prep_state_check(sdev, req); 1706 if (ret != BLK_STS_OK) 1707 goto out_put_budget; 1708 } 1709 1710 ret = BLK_STS_RESOURCE; 1711 if (!scsi_target_queue_ready(shost, sdev)) 1712 goto out_put_budget; 1713 if (!scsi_host_queue_ready(q, shost, sdev)) 1714 goto out_dec_target_busy; 1715 1716 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1717 if (!(req->rq_flags & RQF_DONTPREP)) { 1718 ret = scsi_mq_prep_fn(req); 1719 if (ret != BLK_STS_OK) 1720 goto out_dec_host_busy; 1721 req->rq_flags |= RQF_DONTPREP; 1722 } else { 1723 blk_mq_start_request(req); 1724 } 1725 1726 if (sdev->simple_tags) 1727 cmd->flags |= SCMD_TAGGED; 1728 else 1729 cmd->flags &= ~SCMD_TAGGED; 1730 1731 scsi_init_cmd_errh(cmd); 1732 cmd->scsi_done = scsi_mq_done; 1733 1734 reason = scsi_dispatch_cmd(cmd); 1735 if (reason) { 1736 scsi_set_blocked(cmd, reason); 1737 ret = BLK_STS_RESOURCE; 1738 goto out_dec_host_busy; 1739 } 1740 1741 return BLK_STS_OK; 1742 1743 out_dec_host_busy: 1744 scsi_dec_host_busy(shost); 1745 out_dec_target_busy: 1746 if (scsi_target(sdev)->can_queue > 0) 1747 atomic_dec(&scsi_target(sdev)->target_busy); 1748 out_put_budget: 1749 scsi_mq_put_budget(hctx); 1750 switch (ret) { 1751 case BLK_STS_OK: 1752 break; 1753 case BLK_STS_RESOURCE: 1754 if (atomic_read(&sdev->device_busy) || 1755 scsi_device_blocked(sdev)) 1756 ret = BLK_STS_DEV_RESOURCE; 1757 break; 1758 default: 1759 /* 1760 * Make sure to release all allocated ressources when 1761 * we hit an error, as we will never see this command 1762 * again. 1763 */ 1764 if (req->rq_flags & RQF_DONTPREP) 1765 scsi_mq_uninit_cmd(cmd); 1766 break; 1767 } 1768 return ret; 1769 } 1770 1771 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1772 bool reserved) 1773 { 1774 if (reserved) 1775 return BLK_EH_RESET_TIMER; 1776 return scsi_times_out(req); 1777 } 1778 1779 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1780 unsigned int hctx_idx, unsigned int numa_node) 1781 { 1782 struct Scsi_Host *shost = set->driver_data; 1783 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1784 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1785 struct scatterlist *sg; 1786 1787 if (unchecked_isa_dma) 1788 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1789 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1790 GFP_KERNEL, numa_node); 1791 if (!cmd->sense_buffer) 1792 return -ENOMEM; 1793 cmd->req.sense = cmd->sense_buffer; 1794 1795 if (scsi_host_get_prot(shost)) { 1796 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1797 shost->hostt->cmd_size; 1798 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 1799 } 1800 1801 return 0; 1802 } 1803 1804 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1805 unsigned int hctx_idx) 1806 { 1807 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1808 1809 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1810 cmd->sense_buffer); 1811 } 1812 1813 static int scsi_map_queues(struct blk_mq_tag_set *set) 1814 { 1815 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1816 1817 if (shost->hostt->map_queues) 1818 return shost->hostt->map_queues(shost); 1819 return blk_mq_map_queues(&set->map[0]); 1820 } 1821 1822 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1823 { 1824 struct device *dev = shost->dma_dev; 1825 1826 /* 1827 * this limit is imposed by hardware restrictions 1828 */ 1829 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1830 SG_MAX_SEGMENTS)); 1831 1832 if (scsi_host_prot_dma(shost)) { 1833 shost->sg_prot_tablesize = 1834 min_not_zero(shost->sg_prot_tablesize, 1835 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1836 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1837 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1838 } 1839 1840 blk_queue_max_hw_sectors(q, shost->max_sectors); 1841 if (shost->unchecked_isa_dma) 1842 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1843 blk_queue_segment_boundary(q, shost->dma_boundary); 1844 dma_set_seg_boundary(dev, shost->dma_boundary); 1845 1846 blk_queue_max_segment_size(q, shost->max_segment_size); 1847 dma_set_max_seg_size(dev, shost->max_segment_size); 1848 1849 /* 1850 * Set a reasonable default alignment: The larger of 32-byte (dword), 1851 * which is a common minimum for HBAs, and the minimum DMA alignment, 1852 * which is set by the platform. 1853 * 1854 * Devices that require a bigger alignment can increase it later. 1855 */ 1856 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1857 } 1858 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1859 1860 static const struct blk_mq_ops scsi_mq_ops = { 1861 .get_budget = scsi_mq_get_budget, 1862 .put_budget = scsi_mq_put_budget, 1863 .queue_rq = scsi_queue_rq, 1864 .complete = scsi_softirq_done, 1865 .timeout = scsi_timeout, 1866 #ifdef CONFIG_BLK_DEBUG_FS 1867 .show_rq = scsi_show_rq, 1868 #endif 1869 .init_request = scsi_mq_init_request, 1870 .exit_request = scsi_mq_exit_request, 1871 .initialize_rq_fn = scsi_initialize_rq, 1872 .busy = scsi_mq_lld_busy, 1873 .map_queues = scsi_map_queues, 1874 }; 1875 1876 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1877 { 1878 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1879 if (IS_ERR(sdev->request_queue)) 1880 return NULL; 1881 1882 sdev->request_queue->queuedata = sdev; 1883 __scsi_init_queue(sdev->host, sdev->request_queue); 1884 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1885 return sdev->request_queue; 1886 } 1887 1888 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1889 { 1890 unsigned int cmd_size, sgl_size; 1891 1892 sgl_size = scsi_mq_sgl_size(shost); 1893 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1894 if (scsi_host_get_prot(shost)) 1895 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 1896 1897 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1898 shost->tag_set.ops = &scsi_mq_ops; 1899 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1900 shost->tag_set.queue_depth = shost->can_queue; 1901 shost->tag_set.cmd_size = cmd_size; 1902 shost->tag_set.numa_node = NUMA_NO_NODE; 1903 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1904 shost->tag_set.flags |= 1905 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1906 shost->tag_set.driver_data = shost; 1907 1908 return blk_mq_alloc_tag_set(&shost->tag_set); 1909 } 1910 1911 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1912 { 1913 blk_mq_free_tag_set(&shost->tag_set); 1914 } 1915 1916 /** 1917 * scsi_device_from_queue - return sdev associated with a request_queue 1918 * @q: The request queue to return the sdev from 1919 * 1920 * Return the sdev associated with a request queue or NULL if the 1921 * request_queue does not reference a SCSI device. 1922 */ 1923 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1924 { 1925 struct scsi_device *sdev = NULL; 1926 1927 if (q->mq_ops == &scsi_mq_ops) 1928 sdev = q->queuedata; 1929 if (!sdev || !get_device(&sdev->sdev_gendev)) 1930 sdev = NULL; 1931 1932 return sdev; 1933 } 1934 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1935 1936 /* 1937 * Function: scsi_block_requests() 1938 * 1939 * Purpose: Utility function used by low-level drivers to prevent further 1940 * commands from being queued to the device. 1941 * 1942 * Arguments: shost - Host in question 1943 * 1944 * Returns: Nothing 1945 * 1946 * Lock status: No locks are assumed held. 1947 * 1948 * Notes: There is no timer nor any other means by which the requests 1949 * get unblocked other than the low-level driver calling 1950 * scsi_unblock_requests(). 1951 */ 1952 void scsi_block_requests(struct Scsi_Host *shost) 1953 { 1954 shost->host_self_blocked = 1; 1955 } 1956 EXPORT_SYMBOL(scsi_block_requests); 1957 1958 /* 1959 * Function: scsi_unblock_requests() 1960 * 1961 * Purpose: Utility function used by low-level drivers to allow further 1962 * commands from being queued to the device. 1963 * 1964 * Arguments: shost - Host in question 1965 * 1966 * Returns: Nothing 1967 * 1968 * Lock status: No locks are assumed held. 1969 * 1970 * Notes: There is no timer nor any other means by which the requests 1971 * get unblocked other than the low-level driver calling 1972 * scsi_unblock_requests(). 1973 * 1974 * This is done as an API function so that changes to the 1975 * internals of the scsi mid-layer won't require wholesale 1976 * changes to drivers that use this feature. 1977 */ 1978 void scsi_unblock_requests(struct Scsi_Host *shost) 1979 { 1980 shost->host_self_blocked = 0; 1981 scsi_run_host_queues(shost); 1982 } 1983 EXPORT_SYMBOL(scsi_unblock_requests); 1984 1985 int __init scsi_init_queue(void) 1986 { 1987 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1988 sizeof(struct scsi_data_buffer), 1989 0, 0, NULL); 1990 if (!scsi_sdb_cache) { 1991 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1992 return -ENOMEM; 1993 } 1994 1995 return 0; 1996 } 1997 1998 void scsi_exit_queue(void) 1999 { 2000 kmem_cache_destroy(scsi_sense_cache); 2001 kmem_cache_destroy(scsi_sense_isadma_cache); 2002 kmem_cache_destroy(scsi_sdb_cache); 2003 } 2004 2005 /** 2006 * scsi_mode_select - issue a mode select 2007 * @sdev: SCSI device to be queried 2008 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2009 * @sp: Save page bit (0 == don't save, 1 == save) 2010 * @modepage: mode page being requested 2011 * @buffer: request buffer (may not be smaller than eight bytes) 2012 * @len: length of request buffer. 2013 * @timeout: command timeout 2014 * @retries: number of retries before failing 2015 * @data: returns a structure abstracting the mode header data 2016 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2017 * must be SCSI_SENSE_BUFFERSIZE big. 2018 * 2019 * Returns zero if successful; negative error number or scsi 2020 * status on error 2021 * 2022 */ 2023 int 2024 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2025 unsigned char *buffer, int len, int timeout, int retries, 2026 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2027 { 2028 unsigned char cmd[10]; 2029 unsigned char *real_buffer; 2030 int ret; 2031 2032 memset(cmd, 0, sizeof(cmd)); 2033 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2034 2035 if (sdev->use_10_for_ms) { 2036 if (len > 65535) 2037 return -EINVAL; 2038 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2039 if (!real_buffer) 2040 return -ENOMEM; 2041 memcpy(real_buffer + 8, buffer, len); 2042 len += 8; 2043 real_buffer[0] = 0; 2044 real_buffer[1] = 0; 2045 real_buffer[2] = data->medium_type; 2046 real_buffer[3] = data->device_specific; 2047 real_buffer[4] = data->longlba ? 0x01 : 0; 2048 real_buffer[5] = 0; 2049 real_buffer[6] = data->block_descriptor_length >> 8; 2050 real_buffer[7] = data->block_descriptor_length; 2051 2052 cmd[0] = MODE_SELECT_10; 2053 cmd[7] = len >> 8; 2054 cmd[8] = len; 2055 } else { 2056 if (len > 255 || data->block_descriptor_length > 255 || 2057 data->longlba) 2058 return -EINVAL; 2059 2060 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2061 if (!real_buffer) 2062 return -ENOMEM; 2063 memcpy(real_buffer + 4, buffer, len); 2064 len += 4; 2065 real_buffer[0] = 0; 2066 real_buffer[1] = data->medium_type; 2067 real_buffer[2] = data->device_specific; 2068 real_buffer[3] = data->block_descriptor_length; 2069 2070 2071 cmd[0] = MODE_SELECT; 2072 cmd[4] = len; 2073 } 2074 2075 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2076 sshdr, timeout, retries, NULL); 2077 kfree(real_buffer); 2078 return ret; 2079 } 2080 EXPORT_SYMBOL_GPL(scsi_mode_select); 2081 2082 /** 2083 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2084 * @sdev: SCSI device to be queried 2085 * @dbd: set if mode sense will allow block descriptors to be returned 2086 * @modepage: mode page being requested 2087 * @buffer: request buffer (may not be smaller than eight bytes) 2088 * @len: length of request buffer. 2089 * @timeout: command timeout 2090 * @retries: number of retries before failing 2091 * @data: returns a structure abstracting the mode header data 2092 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2093 * must be SCSI_SENSE_BUFFERSIZE big. 2094 * 2095 * Returns zero if unsuccessful, or the header offset (either 4 2096 * or 8 depending on whether a six or ten byte command was 2097 * issued) if successful. 2098 */ 2099 int 2100 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2101 unsigned char *buffer, int len, int timeout, int retries, 2102 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2103 { 2104 unsigned char cmd[12]; 2105 int use_10_for_ms; 2106 int header_length; 2107 int result, retry_count = retries; 2108 struct scsi_sense_hdr my_sshdr; 2109 2110 memset(data, 0, sizeof(*data)); 2111 memset(&cmd[0], 0, 12); 2112 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2113 cmd[2] = modepage; 2114 2115 /* caller might not be interested in sense, but we need it */ 2116 if (!sshdr) 2117 sshdr = &my_sshdr; 2118 2119 retry: 2120 use_10_for_ms = sdev->use_10_for_ms; 2121 2122 if (use_10_for_ms) { 2123 if (len < 8) 2124 len = 8; 2125 2126 cmd[0] = MODE_SENSE_10; 2127 cmd[8] = len; 2128 header_length = 8; 2129 } else { 2130 if (len < 4) 2131 len = 4; 2132 2133 cmd[0] = MODE_SENSE; 2134 cmd[4] = len; 2135 header_length = 4; 2136 } 2137 2138 memset(buffer, 0, len); 2139 2140 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2141 sshdr, timeout, retries, NULL); 2142 2143 /* This code looks awful: what it's doing is making sure an 2144 * ILLEGAL REQUEST sense return identifies the actual command 2145 * byte as the problem. MODE_SENSE commands can return 2146 * ILLEGAL REQUEST if the code page isn't supported */ 2147 2148 if (use_10_for_ms && !scsi_status_is_good(result) && 2149 driver_byte(result) == DRIVER_SENSE) { 2150 if (scsi_sense_valid(sshdr)) { 2151 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2152 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2153 /* 2154 * Invalid command operation code 2155 */ 2156 sdev->use_10_for_ms = 0; 2157 goto retry; 2158 } 2159 } 2160 } 2161 2162 if(scsi_status_is_good(result)) { 2163 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2164 (modepage == 6 || modepage == 8))) { 2165 /* Initio breakage? */ 2166 header_length = 0; 2167 data->length = 13; 2168 data->medium_type = 0; 2169 data->device_specific = 0; 2170 data->longlba = 0; 2171 data->block_descriptor_length = 0; 2172 } else if(use_10_for_ms) { 2173 data->length = buffer[0]*256 + buffer[1] + 2; 2174 data->medium_type = buffer[2]; 2175 data->device_specific = buffer[3]; 2176 data->longlba = buffer[4] & 0x01; 2177 data->block_descriptor_length = buffer[6]*256 2178 + buffer[7]; 2179 } else { 2180 data->length = buffer[0] + 1; 2181 data->medium_type = buffer[1]; 2182 data->device_specific = buffer[2]; 2183 data->block_descriptor_length = buffer[3]; 2184 } 2185 data->header_length = header_length; 2186 } else if ((status_byte(result) == CHECK_CONDITION) && 2187 scsi_sense_valid(sshdr) && 2188 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2189 retry_count--; 2190 goto retry; 2191 } 2192 2193 return result; 2194 } 2195 EXPORT_SYMBOL(scsi_mode_sense); 2196 2197 /** 2198 * scsi_test_unit_ready - test if unit is ready 2199 * @sdev: scsi device to change the state of. 2200 * @timeout: command timeout 2201 * @retries: number of retries before failing 2202 * @sshdr: outpout pointer for decoded sense information. 2203 * 2204 * Returns zero if unsuccessful or an error if TUR failed. For 2205 * removable media, UNIT_ATTENTION sets ->changed flag. 2206 **/ 2207 int 2208 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2209 struct scsi_sense_hdr *sshdr) 2210 { 2211 char cmd[] = { 2212 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2213 }; 2214 int result; 2215 2216 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2217 do { 2218 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2219 timeout, 1, NULL); 2220 if (sdev->removable && scsi_sense_valid(sshdr) && 2221 sshdr->sense_key == UNIT_ATTENTION) 2222 sdev->changed = 1; 2223 } while (scsi_sense_valid(sshdr) && 2224 sshdr->sense_key == UNIT_ATTENTION && --retries); 2225 2226 return result; 2227 } 2228 EXPORT_SYMBOL(scsi_test_unit_ready); 2229 2230 /** 2231 * scsi_device_set_state - Take the given device through the device state model. 2232 * @sdev: scsi device to change the state of. 2233 * @state: state to change to. 2234 * 2235 * Returns zero if successful or an error if the requested 2236 * transition is illegal. 2237 */ 2238 int 2239 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2240 { 2241 enum scsi_device_state oldstate = sdev->sdev_state; 2242 2243 if (state == oldstate) 2244 return 0; 2245 2246 switch (state) { 2247 case SDEV_CREATED: 2248 switch (oldstate) { 2249 case SDEV_CREATED_BLOCK: 2250 break; 2251 default: 2252 goto illegal; 2253 } 2254 break; 2255 2256 case SDEV_RUNNING: 2257 switch (oldstate) { 2258 case SDEV_CREATED: 2259 case SDEV_OFFLINE: 2260 case SDEV_TRANSPORT_OFFLINE: 2261 case SDEV_QUIESCE: 2262 case SDEV_BLOCK: 2263 break; 2264 default: 2265 goto illegal; 2266 } 2267 break; 2268 2269 case SDEV_QUIESCE: 2270 switch (oldstate) { 2271 case SDEV_RUNNING: 2272 case SDEV_OFFLINE: 2273 case SDEV_TRANSPORT_OFFLINE: 2274 break; 2275 default: 2276 goto illegal; 2277 } 2278 break; 2279 2280 case SDEV_OFFLINE: 2281 case SDEV_TRANSPORT_OFFLINE: 2282 switch (oldstate) { 2283 case SDEV_CREATED: 2284 case SDEV_RUNNING: 2285 case SDEV_QUIESCE: 2286 case SDEV_BLOCK: 2287 break; 2288 default: 2289 goto illegal; 2290 } 2291 break; 2292 2293 case SDEV_BLOCK: 2294 switch (oldstate) { 2295 case SDEV_RUNNING: 2296 case SDEV_CREATED_BLOCK: 2297 case SDEV_OFFLINE: 2298 break; 2299 default: 2300 goto illegal; 2301 } 2302 break; 2303 2304 case SDEV_CREATED_BLOCK: 2305 switch (oldstate) { 2306 case SDEV_CREATED: 2307 break; 2308 default: 2309 goto illegal; 2310 } 2311 break; 2312 2313 case SDEV_CANCEL: 2314 switch (oldstate) { 2315 case SDEV_CREATED: 2316 case SDEV_RUNNING: 2317 case SDEV_QUIESCE: 2318 case SDEV_OFFLINE: 2319 case SDEV_TRANSPORT_OFFLINE: 2320 break; 2321 default: 2322 goto illegal; 2323 } 2324 break; 2325 2326 case SDEV_DEL: 2327 switch (oldstate) { 2328 case SDEV_CREATED: 2329 case SDEV_RUNNING: 2330 case SDEV_OFFLINE: 2331 case SDEV_TRANSPORT_OFFLINE: 2332 case SDEV_CANCEL: 2333 case SDEV_BLOCK: 2334 case SDEV_CREATED_BLOCK: 2335 break; 2336 default: 2337 goto illegal; 2338 } 2339 break; 2340 2341 } 2342 sdev->sdev_state = state; 2343 return 0; 2344 2345 illegal: 2346 SCSI_LOG_ERROR_RECOVERY(1, 2347 sdev_printk(KERN_ERR, sdev, 2348 "Illegal state transition %s->%s", 2349 scsi_device_state_name(oldstate), 2350 scsi_device_state_name(state)) 2351 ); 2352 return -EINVAL; 2353 } 2354 EXPORT_SYMBOL(scsi_device_set_state); 2355 2356 /** 2357 * sdev_evt_emit - emit a single SCSI device uevent 2358 * @sdev: associated SCSI device 2359 * @evt: event to emit 2360 * 2361 * Send a single uevent (scsi_event) to the associated scsi_device. 2362 */ 2363 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2364 { 2365 int idx = 0; 2366 char *envp[3]; 2367 2368 switch (evt->evt_type) { 2369 case SDEV_EVT_MEDIA_CHANGE: 2370 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2371 break; 2372 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2373 scsi_rescan_device(&sdev->sdev_gendev); 2374 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2375 break; 2376 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2377 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2378 break; 2379 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2380 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2381 break; 2382 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2383 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2384 break; 2385 case SDEV_EVT_LUN_CHANGE_REPORTED: 2386 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2387 break; 2388 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2389 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2390 break; 2391 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2392 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2393 break; 2394 default: 2395 /* do nothing */ 2396 break; 2397 } 2398 2399 envp[idx++] = NULL; 2400 2401 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2402 } 2403 2404 /** 2405 * sdev_evt_thread - send a uevent for each scsi event 2406 * @work: work struct for scsi_device 2407 * 2408 * Dispatch queued events to their associated scsi_device kobjects 2409 * as uevents. 2410 */ 2411 void scsi_evt_thread(struct work_struct *work) 2412 { 2413 struct scsi_device *sdev; 2414 enum scsi_device_event evt_type; 2415 LIST_HEAD(event_list); 2416 2417 sdev = container_of(work, struct scsi_device, event_work); 2418 2419 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2420 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2421 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2422 2423 while (1) { 2424 struct scsi_event *evt; 2425 struct list_head *this, *tmp; 2426 unsigned long flags; 2427 2428 spin_lock_irqsave(&sdev->list_lock, flags); 2429 list_splice_init(&sdev->event_list, &event_list); 2430 spin_unlock_irqrestore(&sdev->list_lock, flags); 2431 2432 if (list_empty(&event_list)) 2433 break; 2434 2435 list_for_each_safe(this, tmp, &event_list) { 2436 evt = list_entry(this, struct scsi_event, node); 2437 list_del(&evt->node); 2438 scsi_evt_emit(sdev, evt); 2439 kfree(evt); 2440 } 2441 } 2442 } 2443 2444 /** 2445 * sdev_evt_send - send asserted event to uevent thread 2446 * @sdev: scsi_device event occurred on 2447 * @evt: event to send 2448 * 2449 * Assert scsi device event asynchronously. 2450 */ 2451 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2452 { 2453 unsigned long flags; 2454 2455 #if 0 2456 /* FIXME: currently this check eliminates all media change events 2457 * for polled devices. Need to update to discriminate between AN 2458 * and polled events */ 2459 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2460 kfree(evt); 2461 return; 2462 } 2463 #endif 2464 2465 spin_lock_irqsave(&sdev->list_lock, flags); 2466 list_add_tail(&evt->node, &sdev->event_list); 2467 schedule_work(&sdev->event_work); 2468 spin_unlock_irqrestore(&sdev->list_lock, flags); 2469 } 2470 EXPORT_SYMBOL_GPL(sdev_evt_send); 2471 2472 /** 2473 * sdev_evt_alloc - allocate a new scsi event 2474 * @evt_type: type of event to allocate 2475 * @gfpflags: GFP flags for allocation 2476 * 2477 * Allocates and returns a new scsi_event. 2478 */ 2479 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2480 gfp_t gfpflags) 2481 { 2482 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2483 if (!evt) 2484 return NULL; 2485 2486 evt->evt_type = evt_type; 2487 INIT_LIST_HEAD(&evt->node); 2488 2489 /* evt_type-specific initialization, if any */ 2490 switch (evt_type) { 2491 case SDEV_EVT_MEDIA_CHANGE: 2492 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2493 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2494 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2495 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2496 case SDEV_EVT_LUN_CHANGE_REPORTED: 2497 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2498 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2499 default: 2500 /* do nothing */ 2501 break; 2502 } 2503 2504 return evt; 2505 } 2506 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2507 2508 /** 2509 * sdev_evt_send_simple - send asserted event to uevent thread 2510 * @sdev: scsi_device event occurred on 2511 * @evt_type: type of event to send 2512 * @gfpflags: GFP flags for allocation 2513 * 2514 * Assert scsi device event asynchronously, given an event type. 2515 */ 2516 void sdev_evt_send_simple(struct scsi_device *sdev, 2517 enum scsi_device_event evt_type, gfp_t gfpflags) 2518 { 2519 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2520 if (!evt) { 2521 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2522 evt_type); 2523 return; 2524 } 2525 2526 sdev_evt_send(sdev, evt); 2527 } 2528 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2529 2530 /** 2531 * scsi_device_quiesce - Block user issued commands. 2532 * @sdev: scsi device to quiesce. 2533 * 2534 * This works by trying to transition to the SDEV_QUIESCE state 2535 * (which must be a legal transition). When the device is in this 2536 * state, only special requests will be accepted, all others will 2537 * be deferred. Since special requests may also be requeued requests, 2538 * a successful return doesn't guarantee the device will be 2539 * totally quiescent. 2540 * 2541 * Must be called with user context, may sleep. 2542 * 2543 * Returns zero if unsuccessful or an error if not. 2544 */ 2545 int 2546 scsi_device_quiesce(struct scsi_device *sdev) 2547 { 2548 struct request_queue *q = sdev->request_queue; 2549 int err; 2550 2551 /* 2552 * It is allowed to call scsi_device_quiesce() multiple times from 2553 * the same context but concurrent scsi_device_quiesce() calls are 2554 * not allowed. 2555 */ 2556 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2557 2558 if (sdev->quiesced_by == current) 2559 return 0; 2560 2561 blk_set_pm_only(q); 2562 2563 blk_mq_freeze_queue(q); 2564 /* 2565 * Ensure that the effect of blk_set_pm_only() will be visible 2566 * for percpu_ref_tryget() callers that occur after the queue 2567 * unfreeze even if the queue was already frozen before this function 2568 * was called. See also https://lwn.net/Articles/573497/. 2569 */ 2570 synchronize_rcu(); 2571 blk_mq_unfreeze_queue(q); 2572 2573 mutex_lock(&sdev->state_mutex); 2574 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2575 if (err == 0) 2576 sdev->quiesced_by = current; 2577 else 2578 blk_clear_pm_only(q); 2579 mutex_unlock(&sdev->state_mutex); 2580 2581 return err; 2582 } 2583 EXPORT_SYMBOL(scsi_device_quiesce); 2584 2585 /** 2586 * scsi_device_resume - Restart user issued commands to a quiesced device. 2587 * @sdev: scsi device to resume. 2588 * 2589 * Moves the device from quiesced back to running and restarts the 2590 * queues. 2591 * 2592 * Must be called with user context, may sleep. 2593 */ 2594 void scsi_device_resume(struct scsi_device *sdev) 2595 { 2596 /* check if the device state was mutated prior to resume, and if 2597 * so assume the state is being managed elsewhere (for example 2598 * device deleted during suspend) 2599 */ 2600 mutex_lock(&sdev->state_mutex); 2601 sdev->quiesced_by = NULL; 2602 blk_clear_pm_only(sdev->request_queue); 2603 if (sdev->sdev_state == SDEV_QUIESCE) 2604 scsi_device_set_state(sdev, SDEV_RUNNING); 2605 mutex_unlock(&sdev->state_mutex); 2606 } 2607 EXPORT_SYMBOL(scsi_device_resume); 2608 2609 static void 2610 device_quiesce_fn(struct scsi_device *sdev, void *data) 2611 { 2612 scsi_device_quiesce(sdev); 2613 } 2614 2615 void 2616 scsi_target_quiesce(struct scsi_target *starget) 2617 { 2618 starget_for_each_device(starget, NULL, device_quiesce_fn); 2619 } 2620 EXPORT_SYMBOL(scsi_target_quiesce); 2621 2622 static void 2623 device_resume_fn(struct scsi_device *sdev, void *data) 2624 { 2625 scsi_device_resume(sdev); 2626 } 2627 2628 void 2629 scsi_target_resume(struct scsi_target *starget) 2630 { 2631 starget_for_each_device(starget, NULL, device_resume_fn); 2632 } 2633 EXPORT_SYMBOL(scsi_target_resume); 2634 2635 /** 2636 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2637 * @sdev: device to block 2638 * 2639 * Pause SCSI command processing on the specified device. Does not sleep. 2640 * 2641 * Returns zero if successful or a negative error code upon failure. 2642 * 2643 * Notes: 2644 * This routine transitions the device to the SDEV_BLOCK state (which must be 2645 * a legal transition). When the device is in this state, command processing 2646 * is paused until the device leaves the SDEV_BLOCK state. See also 2647 * scsi_internal_device_unblock_nowait(). 2648 */ 2649 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2650 { 2651 struct request_queue *q = sdev->request_queue; 2652 int err = 0; 2653 2654 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2655 if (err) { 2656 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2657 2658 if (err) 2659 return err; 2660 } 2661 2662 /* 2663 * The device has transitioned to SDEV_BLOCK. Stop the 2664 * block layer from calling the midlayer with this device's 2665 * request queue. 2666 */ 2667 blk_mq_quiesce_queue_nowait(q); 2668 return 0; 2669 } 2670 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2671 2672 /** 2673 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2674 * @sdev: device to block 2675 * 2676 * Pause SCSI command processing on the specified device and wait until all 2677 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2678 * 2679 * Returns zero if successful or a negative error code upon failure. 2680 * 2681 * Note: 2682 * This routine transitions the device to the SDEV_BLOCK state (which must be 2683 * a legal transition). When the device is in this state, command processing 2684 * is paused until the device leaves the SDEV_BLOCK state. See also 2685 * scsi_internal_device_unblock(). 2686 * 2687 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 2688 * scsi_internal_device_block() has blocked a SCSI device and also 2689 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 2690 */ 2691 static int scsi_internal_device_block(struct scsi_device *sdev) 2692 { 2693 struct request_queue *q = sdev->request_queue; 2694 int err; 2695 2696 mutex_lock(&sdev->state_mutex); 2697 err = scsi_internal_device_block_nowait(sdev); 2698 if (err == 0) 2699 blk_mq_quiesce_queue(q); 2700 mutex_unlock(&sdev->state_mutex); 2701 2702 return err; 2703 } 2704 2705 void scsi_start_queue(struct scsi_device *sdev) 2706 { 2707 struct request_queue *q = sdev->request_queue; 2708 2709 blk_mq_unquiesce_queue(q); 2710 } 2711 2712 /** 2713 * scsi_internal_device_unblock_nowait - resume a device after a block request 2714 * @sdev: device to resume 2715 * @new_state: state to set the device to after unblocking 2716 * 2717 * Restart the device queue for a previously suspended SCSI device. Does not 2718 * sleep. 2719 * 2720 * Returns zero if successful or a negative error code upon failure. 2721 * 2722 * Notes: 2723 * This routine transitions the device to the SDEV_RUNNING state or to one of 2724 * the offline states (which must be a legal transition) allowing the midlayer 2725 * to goose the queue for this device. 2726 */ 2727 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2728 enum scsi_device_state new_state) 2729 { 2730 /* 2731 * Try to transition the scsi device to SDEV_RUNNING or one of the 2732 * offlined states and goose the device queue if successful. 2733 */ 2734 switch (sdev->sdev_state) { 2735 case SDEV_BLOCK: 2736 case SDEV_TRANSPORT_OFFLINE: 2737 sdev->sdev_state = new_state; 2738 break; 2739 case SDEV_CREATED_BLOCK: 2740 if (new_state == SDEV_TRANSPORT_OFFLINE || 2741 new_state == SDEV_OFFLINE) 2742 sdev->sdev_state = new_state; 2743 else 2744 sdev->sdev_state = SDEV_CREATED; 2745 break; 2746 case SDEV_CANCEL: 2747 case SDEV_OFFLINE: 2748 break; 2749 default: 2750 return -EINVAL; 2751 } 2752 scsi_start_queue(sdev); 2753 2754 return 0; 2755 } 2756 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2757 2758 /** 2759 * scsi_internal_device_unblock - resume a device after a block request 2760 * @sdev: device to resume 2761 * @new_state: state to set the device to after unblocking 2762 * 2763 * Restart the device queue for a previously suspended SCSI device. May sleep. 2764 * 2765 * Returns zero if successful or a negative error code upon failure. 2766 * 2767 * Notes: 2768 * This routine transitions the device to the SDEV_RUNNING state or to one of 2769 * the offline states (which must be a legal transition) allowing the midlayer 2770 * to goose the queue for this device. 2771 */ 2772 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2773 enum scsi_device_state new_state) 2774 { 2775 int ret; 2776 2777 mutex_lock(&sdev->state_mutex); 2778 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2779 mutex_unlock(&sdev->state_mutex); 2780 2781 return ret; 2782 } 2783 2784 static void 2785 device_block(struct scsi_device *sdev, void *data) 2786 { 2787 scsi_internal_device_block(sdev); 2788 } 2789 2790 static int 2791 target_block(struct device *dev, void *data) 2792 { 2793 if (scsi_is_target_device(dev)) 2794 starget_for_each_device(to_scsi_target(dev), NULL, 2795 device_block); 2796 return 0; 2797 } 2798 2799 void 2800 scsi_target_block(struct device *dev) 2801 { 2802 if (scsi_is_target_device(dev)) 2803 starget_for_each_device(to_scsi_target(dev), NULL, 2804 device_block); 2805 else 2806 device_for_each_child(dev, NULL, target_block); 2807 } 2808 EXPORT_SYMBOL_GPL(scsi_target_block); 2809 2810 static void 2811 device_unblock(struct scsi_device *sdev, void *data) 2812 { 2813 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2814 } 2815 2816 static int 2817 target_unblock(struct device *dev, void *data) 2818 { 2819 if (scsi_is_target_device(dev)) 2820 starget_for_each_device(to_scsi_target(dev), data, 2821 device_unblock); 2822 return 0; 2823 } 2824 2825 void 2826 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2827 { 2828 if (scsi_is_target_device(dev)) 2829 starget_for_each_device(to_scsi_target(dev), &new_state, 2830 device_unblock); 2831 else 2832 device_for_each_child(dev, &new_state, target_unblock); 2833 } 2834 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2835 2836 /** 2837 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2838 * @sgl: scatter-gather list 2839 * @sg_count: number of segments in sg 2840 * @offset: offset in bytes into sg, on return offset into the mapped area 2841 * @len: bytes to map, on return number of bytes mapped 2842 * 2843 * Returns virtual address of the start of the mapped page 2844 */ 2845 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2846 size_t *offset, size_t *len) 2847 { 2848 int i; 2849 size_t sg_len = 0, len_complete = 0; 2850 struct scatterlist *sg; 2851 struct page *page; 2852 2853 WARN_ON(!irqs_disabled()); 2854 2855 for_each_sg(sgl, sg, sg_count, i) { 2856 len_complete = sg_len; /* Complete sg-entries */ 2857 sg_len += sg->length; 2858 if (sg_len > *offset) 2859 break; 2860 } 2861 2862 if (unlikely(i == sg_count)) { 2863 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2864 "elements %d\n", 2865 __func__, sg_len, *offset, sg_count); 2866 WARN_ON(1); 2867 return NULL; 2868 } 2869 2870 /* Offset starting from the beginning of first page in this sg-entry */ 2871 *offset = *offset - len_complete + sg->offset; 2872 2873 /* Assumption: contiguous pages can be accessed as "page + i" */ 2874 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2875 *offset &= ~PAGE_MASK; 2876 2877 /* Bytes in this sg-entry from *offset to the end of the page */ 2878 sg_len = PAGE_SIZE - *offset; 2879 if (*len > sg_len) 2880 *len = sg_len; 2881 2882 return kmap_atomic(page); 2883 } 2884 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2885 2886 /** 2887 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2888 * @virt: virtual address to be unmapped 2889 */ 2890 void scsi_kunmap_atomic_sg(void *virt) 2891 { 2892 kunmap_atomic(virt); 2893 } 2894 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2895 2896 void sdev_disable_disk_events(struct scsi_device *sdev) 2897 { 2898 atomic_inc(&sdev->disk_events_disable_depth); 2899 } 2900 EXPORT_SYMBOL(sdev_disable_disk_events); 2901 2902 void sdev_enable_disk_events(struct scsi_device *sdev) 2903 { 2904 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2905 return; 2906 atomic_dec(&sdev->disk_events_disable_depth); 2907 } 2908 EXPORT_SYMBOL(sdev_enable_disk_events); 2909 2910 /** 2911 * scsi_vpd_lun_id - return a unique device identification 2912 * @sdev: SCSI device 2913 * @id: buffer for the identification 2914 * @id_len: length of the buffer 2915 * 2916 * Copies a unique device identification into @id based 2917 * on the information in the VPD page 0x83 of the device. 2918 * The string will be formatted as a SCSI name string. 2919 * 2920 * Returns the length of the identification or error on failure. 2921 * If the identifier is longer than the supplied buffer the actual 2922 * identifier length is returned and the buffer is not zero-padded. 2923 */ 2924 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2925 { 2926 u8 cur_id_type = 0xff; 2927 u8 cur_id_size = 0; 2928 const unsigned char *d, *cur_id_str; 2929 const struct scsi_vpd *vpd_pg83; 2930 int id_size = -EINVAL; 2931 2932 rcu_read_lock(); 2933 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2934 if (!vpd_pg83) { 2935 rcu_read_unlock(); 2936 return -ENXIO; 2937 } 2938 2939 /* 2940 * Look for the correct descriptor. 2941 * Order of preference for lun descriptor: 2942 * - SCSI name string 2943 * - NAA IEEE Registered Extended 2944 * - EUI-64 based 16-byte 2945 * - EUI-64 based 12-byte 2946 * - NAA IEEE Registered 2947 * - NAA IEEE Extended 2948 * - T10 Vendor ID 2949 * as longer descriptors reduce the likelyhood 2950 * of identification clashes. 2951 */ 2952 2953 /* The id string must be at least 20 bytes + terminating NULL byte */ 2954 if (id_len < 21) { 2955 rcu_read_unlock(); 2956 return -EINVAL; 2957 } 2958 2959 memset(id, 0, id_len); 2960 d = vpd_pg83->data + 4; 2961 while (d < vpd_pg83->data + vpd_pg83->len) { 2962 /* Skip designators not referring to the LUN */ 2963 if ((d[1] & 0x30) != 0x00) 2964 goto next_desig; 2965 2966 switch (d[1] & 0xf) { 2967 case 0x1: 2968 /* T10 Vendor ID */ 2969 if (cur_id_size > d[3]) 2970 break; 2971 /* Prefer anything */ 2972 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2973 break; 2974 cur_id_size = d[3]; 2975 if (cur_id_size + 4 > id_len) 2976 cur_id_size = id_len - 4; 2977 cur_id_str = d + 4; 2978 cur_id_type = d[1] & 0xf; 2979 id_size = snprintf(id, id_len, "t10.%*pE", 2980 cur_id_size, cur_id_str); 2981 break; 2982 case 0x2: 2983 /* EUI-64 */ 2984 if (cur_id_size > d[3]) 2985 break; 2986 /* Prefer NAA IEEE Registered Extended */ 2987 if (cur_id_type == 0x3 && 2988 cur_id_size == d[3]) 2989 break; 2990 cur_id_size = d[3]; 2991 cur_id_str = d + 4; 2992 cur_id_type = d[1] & 0xf; 2993 switch (cur_id_size) { 2994 case 8: 2995 id_size = snprintf(id, id_len, 2996 "eui.%8phN", 2997 cur_id_str); 2998 break; 2999 case 12: 3000 id_size = snprintf(id, id_len, 3001 "eui.%12phN", 3002 cur_id_str); 3003 break; 3004 case 16: 3005 id_size = snprintf(id, id_len, 3006 "eui.%16phN", 3007 cur_id_str); 3008 break; 3009 default: 3010 cur_id_size = 0; 3011 break; 3012 } 3013 break; 3014 case 0x3: 3015 /* NAA */ 3016 if (cur_id_size > d[3]) 3017 break; 3018 cur_id_size = d[3]; 3019 cur_id_str = d + 4; 3020 cur_id_type = d[1] & 0xf; 3021 switch (cur_id_size) { 3022 case 8: 3023 id_size = snprintf(id, id_len, 3024 "naa.%8phN", 3025 cur_id_str); 3026 break; 3027 case 16: 3028 id_size = snprintf(id, id_len, 3029 "naa.%16phN", 3030 cur_id_str); 3031 break; 3032 default: 3033 cur_id_size = 0; 3034 break; 3035 } 3036 break; 3037 case 0x8: 3038 /* SCSI name string */ 3039 if (cur_id_size + 4 > d[3]) 3040 break; 3041 /* Prefer others for truncated descriptor */ 3042 if (cur_id_size && d[3] > id_len) 3043 break; 3044 cur_id_size = id_size = d[3]; 3045 cur_id_str = d + 4; 3046 cur_id_type = d[1] & 0xf; 3047 if (cur_id_size >= id_len) 3048 cur_id_size = id_len - 1; 3049 memcpy(id, cur_id_str, cur_id_size); 3050 /* Decrease priority for truncated descriptor */ 3051 if (cur_id_size != id_size) 3052 cur_id_size = 6; 3053 break; 3054 default: 3055 break; 3056 } 3057 next_desig: 3058 d += d[3] + 4; 3059 } 3060 rcu_read_unlock(); 3061 3062 return id_size; 3063 } 3064 EXPORT_SYMBOL(scsi_vpd_lun_id); 3065 3066 /* 3067 * scsi_vpd_tpg_id - return a target port group identifier 3068 * @sdev: SCSI device 3069 * 3070 * Returns the Target Port Group identifier from the information 3071 * froom VPD page 0x83 of the device. 3072 * 3073 * Returns the identifier or error on failure. 3074 */ 3075 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3076 { 3077 const unsigned char *d; 3078 const struct scsi_vpd *vpd_pg83; 3079 int group_id = -EAGAIN, rel_port = -1; 3080 3081 rcu_read_lock(); 3082 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3083 if (!vpd_pg83) { 3084 rcu_read_unlock(); 3085 return -ENXIO; 3086 } 3087 3088 d = vpd_pg83->data + 4; 3089 while (d < vpd_pg83->data + vpd_pg83->len) { 3090 switch (d[1] & 0xf) { 3091 case 0x4: 3092 /* Relative target port */ 3093 rel_port = get_unaligned_be16(&d[6]); 3094 break; 3095 case 0x5: 3096 /* Target port group */ 3097 group_id = get_unaligned_be16(&d[6]); 3098 break; 3099 default: 3100 break; 3101 } 3102 d += d[3] + 4; 3103 } 3104 rcu_read_unlock(); 3105 3106 if (group_id >= 0 && rel_id && rel_port != -1) 3107 *rel_id = rel_port; 3108 3109 return group_id; 3110 } 3111 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3112