1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 48 49 static inline struct kmem_cache * 50 scsi_select_sense_cache(bool unchecked_isa_dma) 51 { 52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 53 } 54 55 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 56 unsigned char *sense_buffer) 57 { 58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 59 sense_buffer); 60 } 61 62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 63 gfp_t gfp_mask, int numa_node) 64 { 65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 66 gfp_mask, numa_node); 67 } 68 69 int scsi_init_sense_cache(struct Scsi_Host *shost) 70 { 71 struct kmem_cache *cache; 72 int ret = 0; 73 74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 75 if (cache) 76 return 0; 77 78 mutex_lock(&scsi_sense_cache_mutex); 79 if (shost->unchecked_isa_dma) { 80 scsi_sense_isadma_cache = 81 kmem_cache_create("scsi_sense_cache(DMA)", 82 SCSI_SENSE_BUFFERSIZE, 0, 83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 84 if (!scsi_sense_isadma_cache) 85 ret = -ENOMEM; 86 } else { 87 scsi_sense_cache = 88 kmem_cache_create_usercopy("scsi_sense_cache", 89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 90 0, SCSI_SENSE_BUFFERSIZE, NULL); 91 if (!scsi_sense_cache) 92 ret = -ENOMEM; 93 } 94 95 mutex_unlock(&scsi_sense_cache_mutex); 96 return ret; 97 } 98 99 /* 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 101 * not change behaviour from the previous unplug mechanism, experimentation 102 * may prove this needs changing. 103 */ 104 #define SCSI_QUEUE_DELAY 3 105 106 static void 107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 108 { 109 struct Scsi_Host *host = cmd->device->host; 110 struct scsi_device *device = cmd->device; 111 struct scsi_target *starget = scsi_target(device); 112 113 /* 114 * Set the appropriate busy bit for the device/host. 115 * 116 * If the host/device isn't busy, assume that something actually 117 * completed, and that we should be able to queue a command now. 118 * 119 * Note that the prior mid-layer assumption that any host could 120 * always queue at least one command is now broken. The mid-layer 121 * will implement a user specifiable stall (see 122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 123 * if a command is requeued with no other commands outstanding 124 * either for the device or for the host. 125 */ 126 switch (reason) { 127 case SCSI_MLQUEUE_HOST_BUSY: 128 atomic_set(&host->host_blocked, host->max_host_blocked); 129 break; 130 case SCSI_MLQUEUE_DEVICE_BUSY: 131 case SCSI_MLQUEUE_EH_RETRY: 132 atomic_set(&device->device_blocked, 133 device->max_device_blocked); 134 break; 135 case SCSI_MLQUEUE_TARGET_BUSY: 136 atomic_set(&starget->target_blocked, 137 starget->max_target_blocked); 138 break; 139 } 140 } 141 142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 143 { 144 struct scsi_device *sdev = cmd->device; 145 146 if (cmd->request->rq_flags & RQF_DONTPREP) { 147 cmd->request->rq_flags &= ~RQF_DONTPREP; 148 scsi_mq_uninit_cmd(cmd); 149 } else { 150 WARN_ON_ONCE(true); 151 } 152 blk_mq_requeue_request(cmd->request, true); 153 put_device(&sdev->sdev_gendev); 154 } 155 156 /** 157 * __scsi_queue_insert - private queue insertion 158 * @cmd: The SCSI command being requeued 159 * @reason: The reason for the requeue 160 * @unbusy: Whether the queue should be unbusied 161 * 162 * This is a private queue insertion. The public interface 163 * scsi_queue_insert() always assumes the queue should be unbusied 164 * because it's always called before the completion. This function is 165 * for a requeue after completion, which should only occur in this 166 * file. 167 */ 168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 169 { 170 struct scsi_device *device = cmd->device; 171 struct request_queue *q = device->request_queue; 172 unsigned long flags; 173 174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 175 "Inserting command %p into mlqueue\n", cmd)); 176 177 scsi_set_blocked(cmd, reason); 178 179 /* 180 * Decrement the counters, since these commands are no longer 181 * active on the host/device. 182 */ 183 if (unbusy) 184 scsi_device_unbusy(device); 185 186 /* 187 * Requeue this command. It will go before all other commands 188 * that are already in the queue. Schedule requeue work under 189 * lock such that the kblockd_schedule_work() call happens 190 * before blk_cleanup_queue() finishes. 191 */ 192 cmd->result = 0; 193 if (q->mq_ops) { 194 /* 195 * Before a SCSI command is dispatched, 196 * get_device(&sdev->sdev_gendev) is called and the host, 197 * target and device busy counters are increased. Since 198 * requeuing a request causes these actions to be repeated and 199 * since scsi_device_unbusy() has already been called, 200 * put_device(&device->sdev_gendev) must still be called. Call 201 * put_device() after blk_mq_requeue_request() to avoid that 202 * removal of the SCSI device can start before requeueing has 203 * happened. 204 */ 205 blk_mq_requeue_request(cmd->request, true); 206 put_device(&device->sdev_gendev); 207 return; 208 } 209 spin_lock_irqsave(q->queue_lock, flags); 210 blk_requeue_request(q, cmd->request); 211 kblockd_schedule_work(&device->requeue_work); 212 spin_unlock_irqrestore(q->queue_lock, flags); 213 } 214 215 /* 216 * Function: scsi_queue_insert() 217 * 218 * Purpose: Insert a command in the midlevel queue. 219 * 220 * Arguments: cmd - command that we are adding to queue. 221 * reason - why we are inserting command to queue. 222 * 223 * Lock status: Assumed that lock is not held upon entry. 224 * 225 * Returns: Nothing. 226 * 227 * Notes: We do this for one of two cases. Either the host is busy 228 * and it cannot accept any more commands for the time being, 229 * or the device returned QUEUE_FULL and can accept no more 230 * commands. 231 * Notes: This could be called either from an interrupt context or a 232 * normal process context. 233 */ 234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 235 { 236 __scsi_queue_insert(cmd, reason, true); 237 } 238 239 240 /** 241 * __scsi_execute - insert request and wait for the result 242 * @sdev: scsi device 243 * @cmd: scsi command 244 * @data_direction: data direction 245 * @buffer: data buffer 246 * @bufflen: len of buffer 247 * @sense: optional sense buffer 248 * @sshdr: optional decoded sense header 249 * @timeout: request timeout in seconds 250 * @retries: number of times to retry request 251 * @flags: flags for ->cmd_flags 252 * @rq_flags: flags for ->rq_flags 253 * @resid: optional residual length 254 * 255 * Returns the scsi_cmnd result field if a command was executed, or a negative 256 * Linux error code if we didn't get that far. 257 */ 258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 259 int data_direction, void *buffer, unsigned bufflen, 260 unsigned char *sense, struct scsi_sense_hdr *sshdr, 261 int timeout, int retries, u64 flags, req_flags_t rq_flags, 262 int *resid) 263 { 264 struct request *req; 265 struct scsi_request *rq; 266 int ret = DRIVER_ERROR << 24; 267 268 req = blk_get_request(sdev->request_queue, 269 data_direction == DMA_TO_DEVICE ? 270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 271 if (IS_ERR(req)) 272 return ret; 273 rq = scsi_req(req); 274 275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 276 buffer, bufflen, GFP_NOIO)) 277 goto out; 278 279 rq->cmd_len = COMMAND_SIZE(cmd[0]); 280 memcpy(rq->cmd, cmd, rq->cmd_len); 281 rq->retries = retries; 282 req->timeout = timeout; 283 req->cmd_flags |= flags; 284 req->rq_flags |= rq_flags | RQF_QUIET; 285 286 /* 287 * head injection *required* here otherwise quiesce won't work 288 */ 289 blk_execute_rq(req->q, NULL, req, 1); 290 291 /* 292 * Some devices (USB mass-storage in particular) may transfer 293 * garbage data together with a residue indicating that the data 294 * is invalid. Prevent the garbage from being misinterpreted 295 * and prevent security leaks by zeroing out the excess data. 296 */ 297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 299 300 if (resid) 301 *resid = rq->resid_len; 302 if (sense && rq->sense_len) 303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 304 if (sshdr) 305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 306 ret = rq->result; 307 out: 308 blk_put_request(req); 309 310 return ret; 311 } 312 EXPORT_SYMBOL(__scsi_execute); 313 314 /* 315 * Function: scsi_init_cmd_errh() 316 * 317 * Purpose: Initialize cmd fields related to error handling. 318 * 319 * Arguments: cmd - command that is ready to be queued. 320 * 321 * Notes: This function has the job of initializing a number of 322 * fields related to error handling. Typically this will 323 * be called once for each command, as required. 324 */ 325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 326 { 327 cmd->serial_number = 0; 328 scsi_set_resid(cmd, 0); 329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 330 if (cmd->cmd_len == 0) 331 cmd->cmd_len = scsi_command_size(cmd->cmnd); 332 } 333 334 /* 335 * Decrement the host_busy counter and wake up the error handler if necessary. 336 * Avoid as follows that the error handler is not woken up if shost->host_busy 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 338 * with an RCU read lock in this function to ensure that this function in its 339 * entirety either finishes before scsi_eh_scmd_add() increases the 340 * host_failed counter or that it notices the shost state change made by 341 * scsi_eh_scmd_add(). 342 */ 343 static void scsi_dec_host_busy(struct Scsi_Host *shost) 344 { 345 unsigned long flags; 346 347 rcu_read_lock(); 348 atomic_dec(&shost->host_busy); 349 if (unlikely(scsi_host_in_recovery(shost))) { 350 spin_lock_irqsave(shost->host_lock, flags); 351 if (shost->host_failed || shost->host_eh_scheduled) 352 scsi_eh_wakeup(shost); 353 spin_unlock_irqrestore(shost->host_lock, flags); 354 } 355 rcu_read_unlock(); 356 } 357 358 void scsi_device_unbusy(struct scsi_device *sdev) 359 { 360 struct Scsi_Host *shost = sdev->host; 361 struct scsi_target *starget = scsi_target(sdev); 362 363 scsi_dec_host_busy(shost); 364 365 if (starget->can_queue > 0) 366 atomic_dec(&starget->target_busy); 367 368 atomic_dec(&sdev->device_busy); 369 } 370 371 static void scsi_kick_queue(struct request_queue *q) 372 { 373 if (q->mq_ops) 374 blk_mq_run_hw_queues(q, false); 375 else 376 blk_run_queue(q); 377 } 378 379 /* 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 381 * and call blk_run_queue for all the scsi_devices on the target - 382 * including current_sdev first. 383 * 384 * Called with *no* scsi locks held. 385 */ 386 static void scsi_single_lun_run(struct scsi_device *current_sdev) 387 { 388 struct Scsi_Host *shost = current_sdev->host; 389 struct scsi_device *sdev, *tmp; 390 struct scsi_target *starget = scsi_target(current_sdev); 391 unsigned long flags; 392 393 spin_lock_irqsave(shost->host_lock, flags); 394 starget->starget_sdev_user = NULL; 395 spin_unlock_irqrestore(shost->host_lock, flags); 396 397 /* 398 * Call blk_run_queue for all LUNs on the target, starting with 399 * current_sdev. We race with others (to set starget_sdev_user), 400 * but in most cases, we will be first. Ideally, each LU on the 401 * target would get some limited time or requests on the target. 402 */ 403 scsi_kick_queue(current_sdev->request_queue); 404 405 spin_lock_irqsave(shost->host_lock, flags); 406 if (starget->starget_sdev_user) 407 goto out; 408 list_for_each_entry_safe(sdev, tmp, &starget->devices, 409 same_target_siblings) { 410 if (sdev == current_sdev) 411 continue; 412 if (scsi_device_get(sdev)) 413 continue; 414 415 spin_unlock_irqrestore(shost->host_lock, flags); 416 scsi_kick_queue(sdev->request_queue); 417 spin_lock_irqsave(shost->host_lock, flags); 418 419 scsi_device_put(sdev); 420 } 421 out: 422 spin_unlock_irqrestore(shost->host_lock, flags); 423 } 424 425 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 426 { 427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 428 return true; 429 if (atomic_read(&sdev->device_blocked) > 0) 430 return true; 431 return false; 432 } 433 434 static inline bool scsi_target_is_busy(struct scsi_target *starget) 435 { 436 if (starget->can_queue > 0) { 437 if (atomic_read(&starget->target_busy) >= starget->can_queue) 438 return true; 439 if (atomic_read(&starget->target_blocked) > 0) 440 return true; 441 } 442 return false; 443 } 444 445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 446 { 447 if (shost->can_queue > 0 && 448 atomic_read(&shost->host_busy) >= shost->can_queue) 449 return true; 450 if (atomic_read(&shost->host_blocked) > 0) 451 return true; 452 if (shost->host_self_blocked) 453 return true; 454 return false; 455 } 456 457 static void scsi_starved_list_run(struct Scsi_Host *shost) 458 { 459 LIST_HEAD(starved_list); 460 struct scsi_device *sdev; 461 unsigned long flags; 462 463 spin_lock_irqsave(shost->host_lock, flags); 464 list_splice_init(&shost->starved_list, &starved_list); 465 466 while (!list_empty(&starved_list)) { 467 struct request_queue *slq; 468 469 /* 470 * As long as shost is accepting commands and we have 471 * starved queues, call blk_run_queue. scsi_request_fn 472 * drops the queue_lock and can add us back to the 473 * starved_list. 474 * 475 * host_lock protects the starved_list and starved_entry. 476 * scsi_request_fn must get the host_lock before checking 477 * or modifying starved_list or starved_entry. 478 */ 479 if (scsi_host_is_busy(shost)) 480 break; 481 482 sdev = list_entry(starved_list.next, 483 struct scsi_device, starved_entry); 484 list_del_init(&sdev->starved_entry); 485 if (scsi_target_is_busy(scsi_target(sdev))) { 486 list_move_tail(&sdev->starved_entry, 487 &shost->starved_list); 488 continue; 489 } 490 491 /* 492 * Once we drop the host lock, a racing scsi_remove_device() 493 * call may remove the sdev from the starved list and destroy 494 * it and the queue. Mitigate by taking a reference to the 495 * queue and never touching the sdev again after we drop the 496 * host lock. Note: if __scsi_remove_device() invokes 497 * blk_cleanup_queue() before the queue is run from this 498 * function then blk_run_queue() will return immediately since 499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 500 */ 501 slq = sdev->request_queue; 502 if (!blk_get_queue(slq)) 503 continue; 504 spin_unlock_irqrestore(shost->host_lock, flags); 505 506 scsi_kick_queue(slq); 507 blk_put_queue(slq); 508 509 spin_lock_irqsave(shost->host_lock, flags); 510 } 511 /* put any unprocessed entries back */ 512 list_splice(&starved_list, &shost->starved_list); 513 spin_unlock_irqrestore(shost->host_lock, flags); 514 } 515 516 /* 517 * Function: scsi_run_queue() 518 * 519 * Purpose: Select a proper request queue to serve next 520 * 521 * Arguments: q - last request's queue 522 * 523 * Returns: Nothing 524 * 525 * Notes: The previous command was completely finished, start 526 * a new one if possible. 527 */ 528 static void scsi_run_queue(struct request_queue *q) 529 { 530 struct scsi_device *sdev = q->queuedata; 531 532 if (scsi_target(sdev)->single_lun) 533 scsi_single_lun_run(sdev); 534 if (!list_empty(&sdev->host->starved_list)) 535 scsi_starved_list_run(sdev->host); 536 537 if (q->mq_ops) 538 blk_mq_run_hw_queues(q, false); 539 else 540 blk_run_queue(q); 541 } 542 543 void scsi_requeue_run_queue(struct work_struct *work) 544 { 545 struct scsi_device *sdev; 546 struct request_queue *q; 547 548 sdev = container_of(work, struct scsi_device, requeue_work); 549 q = sdev->request_queue; 550 scsi_run_queue(q); 551 } 552 553 /* 554 * Function: scsi_requeue_command() 555 * 556 * Purpose: Handle post-processing of completed commands. 557 * 558 * Arguments: q - queue to operate on 559 * cmd - command that may need to be requeued. 560 * 561 * Returns: Nothing 562 * 563 * Notes: After command completion, there may be blocks left 564 * over which weren't finished by the previous command 565 * this can be for a number of reasons - the main one is 566 * I/O errors in the middle of the request, in which case 567 * we need to request the blocks that come after the bad 568 * sector. 569 * Notes: Upon return, cmd is a stale pointer. 570 */ 571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 572 { 573 struct scsi_device *sdev = cmd->device; 574 struct request *req = cmd->request; 575 unsigned long flags; 576 577 spin_lock_irqsave(q->queue_lock, flags); 578 blk_unprep_request(req); 579 req->special = NULL; 580 scsi_put_command(cmd); 581 blk_requeue_request(q, req); 582 spin_unlock_irqrestore(q->queue_lock, flags); 583 584 scsi_run_queue(q); 585 586 put_device(&sdev->sdev_gendev); 587 } 588 589 void scsi_run_host_queues(struct Scsi_Host *shost) 590 { 591 struct scsi_device *sdev; 592 593 shost_for_each_device(sdev, shost) 594 scsi_run_queue(sdev->request_queue); 595 } 596 597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 598 { 599 if (!blk_rq_is_passthrough(cmd->request)) { 600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 601 602 if (drv->uninit_command) 603 drv->uninit_command(cmd); 604 } 605 } 606 607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 608 { 609 struct scsi_data_buffer *sdb; 610 611 if (cmd->sdb.table.nents) 612 sg_free_table_chained(&cmd->sdb.table, true); 613 if (cmd->request->next_rq) { 614 sdb = cmd->request->next_rq->special; 615 if (sdb) 616 sg_free_table_chained(&sdb->table, true); 617 } 618 if (scsi_prot_sg_count(cmd)) 619 sg_free_table_chained(&cmd->prot_sdb->table, true); 620 } 621 622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 623 { 624 scsi_mq_free_sgtables(cmd); 625 scsi_uninit_cmd(cmd); 626 scsi_del_cmd_from_list(cmd); 627 } 628 629 /* 630 * Function: scsi_release_buffers() 631 * 632 * Purpose: Free resources allocate for a scsi_command. 633 * 634 * Arguments: cmd - command that we are bailing. 635 * 636 * Lock status: Assumed that no lock is held upon entry. 637 * 638 * Returns: Nothing 639 * 640 * Notes: In the event that an upper level driver rejects a 641 * command, we must release resources allocated during 642 * the __init_io() function. Primarily this would involve 643 * the scatter-gather table. 644 */ 645 static void scsi_release_buffers(struct scsi_cmnd *cmd) 646 { 647 if (cmd->sdb.table.nents) 648 sg_free_table_chained(&cmd->sdb.table, false); 649 650 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 651 652 if (scsi_prot_sg_count(cmd)) 653 sg_free_table_chained(&cmd->prot_sdb->table, false); 654 } 655 656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 657 { 658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 659 660 sg_free_table_chained(&bidi_sdb->table, false); 661 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 662 cmd->request->next_rq->special = NULL; 663 } 664 665 /* Returns false when no more bytes to process, true if there are more */ 666 static bool scsi_end_request(struct request *req, blk_status_t error, 667 unsigned int bytes, unsigned int bidi_bytes) 668 { 669 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 670 struct scsi_device *sdev = cmd->device; 671 struct request_queue *q = sdev->request_queue; 672 673 if (blk_update_request(req, error, bytes)) 674 return true; 675 676 /* Bidi request must be completed as a whole */ 677 if (unlikely(bidi_bytes) && 678 blk_update_request(req->next_rq, error, bidi_bytes)) 679 return true; 680 681 if (blk_queue_add_random(q)) 682 add_disk_randomness(req->rq_disk); 683 684 if (!blk_rq_is_scsi(req)) { 685 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 686 cmd->flags &= ~SCMD_INITIALIZED; 687 destroy_rcu_head(&cmd->rcu); 688 } 689 690 if (req->mq_ctx) { 691 /* 692 * In the MQ case the command gets freed by __blk_mq_end_request, 693 * so we have to do all cleanup that depends on it earlier. 694 * 695 * We also can't kick the queues from irq context, so we 696 * will have to defer it to a workqueue. 697 */ 698 scsi_mq_uninit_cmd(cmd); 699 700 __blk_mq_end_request(req, error); 701 702 if (scsi_target(sdev)->single_lun || 703 !list_empty(&sdev->host->starved_list)) 704 kblockd_schedule_work(&sdev->requeue_work); 705 else 706 blk_mq_run_hw_queues(q, true); 707 } else { 708 unsigned long flags; 709 710 if (bidi_bytes) 711 scsi_release_bidi_buffers(cmd); 712 scsi_release_buffers(cmd); 713 scsi_put_command(cmd); 714 715 spin_lock_irqsave(q->queue_lock, flags); 716 blk_finish_request(req, error); 717 spin_unlock_irqrestore(q->queue_lock, flags); 718 719 scsi_run_queue(q); 720 } 721 722 put_device(&sdev->sdev_gendev); 723 return false; 724 } 725 726 /** 727 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 728 * @cmd: SCSI command 729 * @result: scsi error code 730 * 731 * Translate a SCSI result code into a blk_status_t value. May reset the host 732 * byte of @cmd->result. 733 */ 734 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 735 { 736 switch (host_byte(result)) { 737 case DID_OK: 738 /* 739 * Also check the other bytes than the status byte in result 740 * to handle the case when a SCSI LLD sets result to 741 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 742 */ 743 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 744 return BLK_STS_OK; 745 return BLK_STS_IOERR; 746 case DID_TRANSPORT_FAILFAST: 747 return BLK_STS_TRANSPORT; 748 case DID_TARGET_FAILURE: 749 set_host_byte(cmd, DID_OK); 750 return BLK_STS_TARGET; 751 case DID_NEXUS_FAILURE: 752 return BLK_STS_NEXUS; 753 case DID_ALLOC_FAILURE: 754 set_host_byte(cmd, DID_OK); 755 return BLK_STS_NOSPC; 756 case DID_MEDIUM_ERROR: 757 set_host_byte(cmd, DID_OK); 758 return BLK_STS_MEDIUM; 759 default: 760 return BLK_STS_IOERR; 761 } 762 } 763 764 /* Helper for scsi_io_completion() when "reprep" action required. */ 765 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 766 struct request_queue *q) 767 { 768 /* A new command will be prepared and issued. */ 769 if (q->mq_ops) { 770 scsi_mq_requeue_cmd(cmd); 771 } else { 772 /* Unprep request and put it back at head of the queue. */ 773 scsi_release_buffers(cmd); 774 scsi_requeue_command(q, cmd); 775 } 776 } 777 778 /* Helper for scsi_io_completion() when special action required. */ 779 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 780 { 781 struct request_queue *q = cmd->device->request_queue; 782 struct request *req = cmd->request; 783 int level = 0; 784 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 785 ACTION_DELAYED_RETRY} action; 786 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 787 struct scsi_sense_hdr sshdr; 788 bool sense_valid; 789 bool sense_current = true; /* false implies "deferred sense" */ 790 blk_status_t blk_stat; 791 792 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 793 if (sense_valid) 794 sense_current = !scsi_sense_is_deferred(&sshdr); 795 796 blk_stat = scsi_result_to_blk_status(cmd, result); 797 798 if (host_byte(result) == DID_RESET) { 799 /* Third party bus reset or reset for error recovery 800 * reasons. Just retry the command and see what 801 * happens. 802 */ 803 action = ACTION_RETRY; 804 } else if (sense_valid && sense_current) { 805 switch (sshdr.sense_key) { 806 case UNIT_ATTENTION: 807 if (cmd->device->removable) { 808 /* Detected disc change. Set a bit 809 * and quietly refuse further access. 810 */ 811 cmd->device->changed = 1; 812 action = ACTION_FAIL; 813 } else { 814 /* Must have been a power glitch, or a 815 * bus reset. Could not have been a 816 * media change, so we just retry the 817 * command and see what happens. 818 */ 819 action = ACTION_RETRY; 820 } 821 break; 822 case ILLEGAL_REQUEST: 823 /* If we had an ILLEGAL REQUEST returned, then 824 * we may have performed an unsupported 825 * command. The only thing this should be 826 * would be a ten byte read where only a six 827 * byte read was supported. Also, on a system 828 * where READ CAPACITY failed, we may have 829 * read past the end of the disk. 830 */ 831 if ((cmd->device->use_10_for_rw && 832 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 833 (cmd->cmnd[0] == READ_10 || 834 cmd->cmnd[0] == WRITE_10)) { 835 /* This will issue a new 6-byte command. */ 836 cmd->device->use_10_for_rw = 0; 837 action = ACTION_REPREP; 838 } else if (sshdr.asc == 0x10) /* DIX */ { 839 action = ACTION_FAIL; 840 blk_stat = BLK_STS_PROTECTION; 841 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 842 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 843 action = ACTION_FAIL; 844 blk_stat = BLK_STS_TARGET; 845 } else 846 action = ACTION_FAIL; 847 break; 848 case ABORTED_COMMAND: 849 action = ACTION_FAIL; 850 if (sshdr.asc == 0x10) /* DIF */ 851 blk_stat = BLK_STS_PROTECTION; 852 break; 853 case NOT_READY: 854 /* If the device is in the process of becoming 855 * ready, or has a temporary blockage, retry. 856 */ 857 if (sshdr.asc == 0x04) { 858 switch (sshdr.ascq) { 859 case 0x01: /* becoming ready */ 860 case 0x04: /* format in progress */ 861 case 0x05: /* rebuild in progress */ 862 case 0x06: /* recalculation in progress */ 863 case 0x07: /* operation in progress */ 864 case 0x08: /* Long write in progress */ 865 case 0x09: /* self test in progress */ 866 case 0x14: /* space allocation in progress */ 867 case 0x1a: /* start stop unit in progress */ 868 case 0x1b: /* sanitize in progress */ 869 case 0x1d: /* configuration in progress */ 870 case 0x24: /* depopulation in progress */ 871 action = ACTION_DELAYED_RETRY; 872 break; 873 default: 874 action = ACTION_FAIL; 875 break; 876 } 877 } else 878 action = ACTION_FAIL; 879 break; 880 case VOLUME_OVERFLOW: 881 /* See SSC3rXX or current. */ 882 action = ACTION_FAIL; 883 break; 884 default: 885 action = ACTION_FAIL; 886 break; 887 } 888 } else 889 action = ACTION_FAIL; 890 891 if (action != ACTION_FAIL && 892 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 893 action = ACTION_FAIL; 894 895 switch (action) { 896 case ACTION_FAIL: 897 /* Give up and fail the remainder of the request */ 898 if (!(req->rq_flags & RQF_QUIET)) { 899 static DEFINE_RATELIMIT_STATE(_rs, 900 DEFAULT_RATELIMIT_INTERVAL, 901 DEFAULT_RATELIMIT_BURST); 902 903 if (unlikely(scsi_logging_level)) 904 level = 905 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 906 SCSI_LOG_MLCOMPLETE_BITS); 907 908 /* 909 * if logging is enabled the failure will be printed 910 * in scsi_log_completion(), so avoid duplicate messages 911 */ 912 if (!level && __ratelimit(&_rs)) { 913 scsi_print_result(cmd, NULL, FAILED); 914 if (driver_byte(result) == DRIVER_SENSE) 915 scsi_print_sense(cmd); 916 scsi_print_command(cmd); 917 } 918 } 919 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0)) 920 return; 921 /*FALLTHRU*/ 922 case ACTION_REPREP: 923 scsi_io_completion_reprep(cmd, q); 924 break; 925 case ACTION_RETRY: 926 /* Retry the same command immediately */ 927 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 928 break; 929 case ACTION_DELAYED_RETRY: 930 /* Retry the same command after a delay */ 931 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 932 break; 933 } 934 } 935 936 /* 937 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 938 * new result that may suppress further error checking. Also modifies 939 * *blk_statp in some cases. 940 */ 941 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 942 blk_status_t *blk_statp) 943 { 944 bool sense_valid; 945 bool sense_current = true; /* false implies "deferred sense" */ 946 struct request *req = cmd->request; 947 struct scsi_sense_hdr sshdr; 948 949 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 950 if (sense_valid) 951 sense_current = !scsi_sense_is_deferred(&sshdr); 952 953 if (blk_rq_is_passthrough(req)) { 954 if (sense_valid) { 955 /* 956 * SG_IO wants current and deferred errors 957 */ 958 scsi_req(req)->sense_len = 959 min(8 + cmd->sense_buffer[7], 960 SCSI_SENSE_BUFFERSIZE); 961 } 962 if (sense_current) 963 *blk_statp = scsi_result_to_blk_status(cmd, result); 964 } else if (blk_rq_bytes(req) == 0 && sense_current) { 965 /* 966 * Flush commands do not transfers any data, and thus cannot use 967 * good_bytes != blk_rq_bytes(req) as the signal for an error. 968 * This sets *blk_statp explicitly for the problem case. 969 */ 970 *blk_statp = scsi_result_to_blk_status(cmd, result); 971 } 972 /* 973 * Recovered errors need reporting, but they're always treated as 974 * success, so fiddle the result code here. For passthrough requests 975 * we already took a copy of the original into sreq->result which 976 * is what gets returned to the user 977 */ 978 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 979 bool do_print = true; 980 /* 981 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 982 * skip print since caller wants ATA registers. Only occurs 983 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 984 */ 985 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 986 do_print = false; 987 else if (req->rq_flags & RQF_QUIET) 988 do_print = false; 989 if (do_print) 990 scsi_print_sense(cmd); 991 result = 0; 992 /* for passthrough, *blk_statp may be set */ 993 *blk_statp = BLK_STS_OK; 994 } 995 /* 996 * Another corner case: the SCSI status byte is non-zero but 'good'. 997 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 998 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 999 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 1000 * intermediate statuses (both obsolete in SAM-4) as good. 1001 */ 1002 if (status_byte(result) && scsi_status_is_good(result)) { 1003 result = 0; 1004 *blk_statp = BLK_STS_OK; 1005 } 1006 return result; 1007 } 1008 1009 /* 1010 * Function: scsi_io_completion() 1011 * 1012 * Purpose: Completion processing for block device I/O requests. 1013 * 1014 * Arguments: cmd - command that is finished. 1015 * 1016 * Lock status: Assumed that no lock is held upon entry. 1017 * 1018 * Returns: Nothing 1019 * 1020 * Notes: We will finish off the specified number of sectors. If we 1021 * are done, the command block will be released and the queue 1022 * function will be goosed. If we are not done then we have to 1023 * figure out what to do next: 1024 * 1025 * a) We can call scsi_requeue_command(). The request 1026 * will be unprepared and put back on the queue. Then 1027 * a new command will be created for it. This should 1028 * be used if we made forward progress, or if we want 1029 * to switch from READ(10) to READ(6) for example. 1030 * 1031 * b) We can call __scsi_queue_insert(). The request will 1032 * be put back on the queue and retried using the same 1033 * command as before, possibly after a delay. 1034 * 1035 * c) We can call scsi_end_request() with blk_stat other than 1036 * BLK_STS_OK, to fail the remainder of the request. 1037 */ 1038 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 1039 { 1040 int result = cmd->result; 1041 struct request_queue *q = cmd->device->request_queue; 1042 struct request *req = cmd->request; 1043 blk_status_t blk_stat = BLK_STS_OK; 1044 1045 if (unlikely(result)) /* a nz result may or may not be an error */ 1046 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 1047 1048 if (unlikely(blk_rq_is_passthrough(req))) { 1049 /* 1050 * scsi_result_to_blk_status may have reset the host_byte 1051 */ 1052 scsi_req(req)->result = cmd->result; 1053 scsi_req(req)->resid_len = scsi_get_resid(cmd); 1054 1055 if (unlikely(scsi_bidi_cmnd(cmd))) { 1056 /* 1057 * Bidi commands Must be complete as a whole, 1058 * both sides at once. 1059 */ 1060 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 1061 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 1062 blk_rq_bytes(req->next_rq))) 1063 WARN_ONCE(true, 1064 "Bidi command with remaining bytes"); 1065 return; 1066 } 1067 } 1068 1069 /* no bidi support yet, other than in pass-through */ 1070 if (unlikely(blk_bidi_rq(req))) { 1071 WARN_ONCE(true, "Only support bidi command in passthrough"); 1072 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n"); 1073 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req), 1074 blk_rq_bytes(req->next_rq))) 1075 WARN_ONCE(true, "Bidi command with remaining bytes"); 1076 return; 1077 } 1078 1079 /* 1080 * Next deal with any sectors which we were able to correctly 1081 * handle. 1082 */ 1083 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 1084 "%u sectors total, %d bytes done.\n", 1085 blk_rq_sectors(req), good_bytes)); 1086 1087 /* 1088 * Next deal with any sectors which we were able to correctly 1089 * handle. Failed, zero length commands always need to drop down 1090 * to retry code. Fast path should return in this block. 1091 */ 1092 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 1093 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0))) 1094 return; /* no bytes remaining */ 1095 } 1096 1097 /* Kill remainder if no retries. */ 1098 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 1099 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0)) 1100 WARN_ONCE(true, 1101 "Bytes remaining after failed, no-retry command"); 1102 return; 1103 } 1104 1105 /* 1106 * If there had been no error, but we have leftover bytes in the 1107 * requeues just queue the command up again. 1108 */ 1109 if (likely(result == 0)) 1110 scsi_io_completion_reprep(cmd, q); 1111 else 1112 scsi_io_completion_action(cmd, result); 1113 } 1114 1115 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1116 { 1117 int count; 1118 1119 /* 1120 * If sg table allocation fails, requeue request later. 1121 */ 1122 if (unlikely(sg_alloc_table_chained(&sdb->table, 1123 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1124 return BLKPREP_DEFER; 1125 1126 /* 1127 * Next, walk the list, and fill in the addresses and sizes of 1128 * each segment. 1129 */ 1130 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1131 BUG_ON(count > sdb->table.nents); 1132 sdb->table.nents = count; 1133 sdb->length = blk_rq_payload_bytes(req); 1134 return BLKPREP_OK; 1135 } 1136 1137 /* 1138 * Function: scsi_init_io() 1139 * 1140 * Purpose: SCSI I/O initialize function. 1141 * 1142 * Arguments: cmd - Command descriptor we wish to initialize 1143 * 1144 * Returns: 0 on success 1145 * BLKPREP_DEFER if the failure is retryable 1146 * BLKPREP_KILL if the failure is fatal 1147 */ 1148 int scsi_init_io(struct scsi_cmnd *cmd) 1149 { 1150 struct scsi_device *sdev = cmd->device; 1151 struct request *rq = cmd->request; 1152 bool is_mq = (rq->mq_ctx != NULL); 1153 int error = BLKPREP_KILL; 1154 1155 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1156 goto err_exit; 1157 1158 error = scsi_init_sgtable(rq, &cmd->sdb); 1159 if (error) 1160 goto err_exit; 1161 1162 if (blk_bidi_rq(rq)) { 1163 if (!rq->q->mq_ops) { 1164 struct scsi_data_buffer *bidi_sdb = 1165 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1166 if (!bidi_sdb) { 1167 error = BLKPREP_DEFER; 1168 goto err_exit; 1169 } 1170 1171 rq->next_rq->special = bidi_sdb; 1172 } 1173 1174 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1175 if (error) 1176 goto err_exit; 1177 } 1178 1179 if (blk_integrity_rq(rq)) { 1180 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1181 int ivecs, count; 1182 1183 if (prot_sdb == NULL) { 1184 /* 1185 * This can happen if someone (e.g. multipath) 1186 * queues a command to a device on an adapter 1187 * that does not support DIX. 1188 */ 1189 WARN_ON_ONCE(1); 1190 error = BLKPREP_KILL; 1191 goto err_exit; 1192 } 1193 1194 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1195 1196 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1197 prot_sdb->table.sgl)) { 1198 error = BLKPREP_DEFER; 1199 goto err_exit; 1200 } 1201 1202 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1203 prot_sdb->table.sgl); 1204 BUG_ON(count > ivecs); 1205 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1206 1207 cmd->prot_sdb = prot_sdb; 1208 cmd->prot_sdb->table.nents = count; 1209 } 1210 1211 return BLKPREP_OK; 1212 err_exit: 1213 if (is_mq) { 1214 scsi_mq_free_sgtables(cmd); 1215 } else { 1216 scsi_release_buffers(cmd); 1217 cmd->request->special = NULL; 1218 scsi_put_command(cmd); 1219 put_device(&sdev->sdev_gendev); 1220 } 1221 return error; 1222 } 1223 EXPORT_SYMBOL(scsi_init_io); 1224 1225 /** 1226 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1227 * @rq: Request associated with the SCSI command to be initialized. 1228 * 1229 * This function initializes the members of struct scsi_cmnd that must be 1230 * initialized before request processing starts and that won't be 1231 * reinitialized if a SCSI command is requeued. 1232 * 1233 * Called from inside blk_get_request() for pass-through requests and from 1234 * inside scsi_init_command() for filesystem requests. 1235 */ 1236 static void scsi_initialize_rq(struct request *rq) 1237 { 1238 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1239 1240 scsi_req_init(&cmd->req); 1241 init_rcu_head(&cmd->rcu); 1242 cmd->jiffies_at_alloc = jiffies; 1243 cmd->retries = 0; 1244 } 1245 1246 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1247 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1248 { 1249 struct scsi_device *sdev = cmd->device; 1250 struct Scsi_Host *shost = sdev->host; 1251 unsigned long flags; 1252 1253 if (shost->use_cmd_list) { 1254 spin_lock_irqsave(&sdev->list_lock, flags); 1255 list_add_tail(&cmd->list, &sdev->cmd_list); 1256 spin_unlock_irqrestore(&sdev->list_lock, flags); 1257 } 1258 } 1259 1260 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1261 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1262 { 1263 struct scsi_device *sdev = cmd->device; 1264 struct Scsi_Host *shost = sdev->host; 1265 unsigned long flags; 1266 1267 if (shost->use_cmd_list) { 1268 spin_lock_irqsave(&sdev->list_lock, flags); 1269 BUG_ON(list_empty(&cmd->list)); 1270 list_del_init(&cmd->list); 1271 spin_unlock_irqrestore(&sdev->list_lock, flags); 1272 } 1273 } 1274 1275 /* Called after a request has been started. */ 1276 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1277 { 1278 void *buf = cmd->sense_buffer; 1279 void *prot = cmd->prot_sdb; 1280 struct request *rq = blk_mq_rq_from_pdu(cmd); 1281 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1282 unsigned long jiffies_at_alloc; 1283 int retries; 1284 1285 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1286 flags |= SCMD_INITIALIZED; 1287 scsi_initialize_rq(rq); 1288 } 1289 1290 jiffies_at_alloc = cmd->jiffies_at_alloc; 1291 retries = cmd->retries; 1292 /* zero out the cmd, except for the embedded scsi_request */ 1293 memset((char *)cmd + sizeof(cmd->req), 0, 1294 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1295 1296 cmd->device = dev; 1297 cmd->sense_buffer = buf; 1298 cmd->prot_sdb = prot; 1299 cmd->flags = flags; 1300 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1301 cmd->jiffies_at_alloc = jiffies_at_alloc; 1302 cmd->retries = retries; 1303 1304 scsi_add_cmd_to_list(cmd); 1305 } 1306 1307 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1308 { 1309 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1310 1311 /* 1312 * Passthrough requests may transfer data, in which case they must 1313 * a bio attached to them. Or they might contain a SCSI command 1314 * that does not transfer data, in which case they may optionally 1315 * submit a request without an attached bio. 1316 */ 1317 if (req->bio) { 1318 int ret = scsi_init_io(cmd); 1319 if (unlikely(ret)) 1320 return ret; 1321 } else { 1322 BUG_ON(blk_rq_bytes(req)); 1323 1324 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1325 } 1326 1327 cmd->cmd_len = scsi_req(req)->cmd_len; 1328 cmd->cmnd = scsi_req(req)->cmd; 1329 cmd->transfersize = blk_rq_bytes(req); 1330 cmd->allowed = scsi_req(req)->retries; 1331 return BLKPREP_OK; 1332 } 1333 1334 /* 1335 * Setup a normal block command. These are simple request from filesystems 1336 * that still need to be translated to SCSI CDBs from the ULD. 1337 */ 1338 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1339 { 1340 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1341 1342 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1343 int ret = sdev->handler->prep_fn(sdev, req); 1344 if (ret != BLKPREP_OK) 1345 return ret; 1346 } 1347 1348 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1349 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1350 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1351 } 1352 1353 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1354 { 1355 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1356 1357 if (!blk_rq_bytes(req)) 1358 cmd->sc_data_direction = DMA_NONE; 1359 else if (rq_data_dir(req) == WRITE) 1360 cmd->sc_data_direction = DMA_TO_DEVICE; 1361 else 1362 cmd->sc_data_direction = DMA_FROM_DEVICE; 1363 1364 if (blk_rq_is_scsi(req)) 1365 return scsi_setup_scsi_cmnd(sdev, req); 1366 else 1367 return scsi_setup_fs_cmnd(sdev, req); 1368 } 1369 1370 static int 1371 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1372 { 1373 int ret = BLKPREP_OK; 1374 1375 /* 1376 * If the device is not in running state we will reject some 1377 * or all commands. 1378 */ 1379 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1380 switch (sdev->sdev_state) { 1381 case SDEV_OFFLINE: 1382 case SDEV_TRANSPORT_OFFLINE: 1383 /* 1384 * If the device is offline we refuse to process any 1385 * commands. The device must be brought online 1386 * before trying any recovery commands. 1387 */ 1388 sdev_printk(KERN_ERR, sdev, 1389 "rejecting I/O to offline device\n"); 1390 ret = BLKPREP_KILL; 1391 break; 1392 case SDEV_DEL: 1393 /* 1394 * If the device is fully deleted, we refuse to 1395 * process any commands as well. 1396 */ 1397 sdev_printk(KERN_ERR, sdev, 1398 "rejecting I/O to dead device\n"); 1399 ret = BLKPREP_KILL; 1400 break; 1401 case SDEV_BLOCK: 1402 case SDEV_CREATED_BLOCK: 1403 ret = BLKPREP_DEFER; 1404 break; 1405 case SDEV_QUIESCE: 1406 /* 1407 * If the devices is blocked we defer normal commands. 1408 */ 1409 if (req && !(req->rq_flags & RQF_PREEMPT)) 1410 ret = BLKPREP_DEFER; 1411 break; 1412 default: 1413 /* 1414 * For any other not fully online state we only allow 1415 * special commands. In particular any user initiated 1416 * command is not allowed. 1417 */ 1418 if (req && !(req->rq_flags & RQF_PREEMPT)) 1419 ret = BLKPREP_KILL; 1420 break; 1421 } 1422 } 1423 return ret; 1424 } 1425 1426 static int 1427 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1428 { 1429 struct scsi_device *sdev = q->queuedata; 1430 1431 switch (ret) { 1432 case BLKPREP_KILL: 1433 case BLKPREP_INVALID: 1434 scsi_req(req)->result = DID_NO_CONNECT << 16; 1435 /* release the command and kill it */ 1436 if (req->special) { 1437 struct scsi_cmnd *cmd = req->special; 1438 scsi_release_buffers(cmd); 1439 scsi_put_command(cmd); 1440 put_device(&sdev->sdev_gendev); 1441 req->special = NULL; 1442 } 1443 break; 1444 case BLKPREP_DEFER: 1445 /* 1446 * If we defer, the blk_peek_request() returns NULL, but the 1447 * queue must be restarted, so we schedule a callback to happen 1448 * shortly. 1449 */ 1450 if (atomic_read(&sdev->device_busy) == 0) 1451 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1452 break; 1453 default: 1454 req->rq_flags |= RQF_DONTPREP; 1455 } 1456 1457 return ret; 1458 } 1459 1460 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1461 { 1462 struct scsi_device *sdev = q->queuedata; 1463 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1464 int ret; 1465 1466 ret = scsi_prep_state_check(sdev, req); 1467 if (ret != BLKPREP_OK) 1468 goto out; 1469 1470 if (!req->special) { 1471 /* Bail if we can't get a reference to the device */ 1472 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1473 ret = BLKPREP_DEFER; 1474 goto out; 1475 } 1476 1477 scsi_init_command(sdev, cmd); 1478 req->special = cmd; 1479 } 1480 1481 cmd->tag = req->tag; 1482 cmd->request = req; 1483 cmd->prot_op = SCSI_PROT_NORMAL; 1484 1485 ret = scsi_setup_cmnd(sdev, req); 1486 out: 1487 return scsi_prep_return(q, req, ret); 1488 } 1489 1490 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1491 { 1492 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1493 } 1494 1495 /* 1496 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1497 * return 0. 1498 * 1499 * Called with the queue_lock held. 1500 */ 1501 static inline int scsi_dev_queue_ready(struct request_queue *q, 1502 struct scsi_device *sdev) 1503 { 1504 unsigned int busy; 1505 1506 busy = atomic_inc_return(&sdev->device_busy) - 1; 1507 if (atomic_read(&sdev->device_blocked)) { 1508 if (busy) 1509 goto out_dec; 1510 1511 /* 1512 * unblock after device_blocked iterates to zero 1513 */ 1514 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1515 /* 1516 * For the MQ case we take care of this in the caller. 1517 */ 1518 if (!q->mq_ops) 1519 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1520 goto out_dec; 1521 } 1522 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1523 "unblocking device at zero depth\n")); 1524 } 1525 1526 if (busy >= sdev->queue_depth) 1527 goto out_dec; 1528 1529 return 1; 1530 out_dec: 1531 atomic_dec(&sdev->device_busy); 1532 return 0; 1533 } 1534 1535 /* 1536 * scsi_target_queue_ready: checks if there we can send commands to target 1537 * @sdev: scsi device on starget to check. 1538 */ 1539 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1540 struct scsi_device *sdev) 1541 { 1542 struct scsi_target *starget = scsi_target(sdev); 1543 unsigned int busy; 1544 1545 if (starget->single_lun) { 1546 spin_lock_irq(shost->host_lock); 1547 if (starget->starget_sdev_user && 1548 starget->starget_sdev_user != sdev) { 1549 spin_unlock_irq(shost->host_lock); 1550 return 0; 1551 } 1552 starget->starget_sdev_user = sdev; 1553 spin_unlock_irq(shost->host_lock); 1554 } 1555 1556 if (starget->can_queue <= 0) 1557 return 1; 1558 1559 busy = atomic_inc_return(&starget->target_busy) - 1; 1560 if (atomic_read(&starget->target_blocked) > 0) { 1561 if (busy) 1562 goto starved; 1563 1564 /* 1565 * unblock after target_blocked iterates to zero 1566 */ 1567 if (atomic_dec_return(&starget->target_blocked) > 0) 1568 goto out_dec; 1569 1570 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1571 "unblocking target at zero depth\n")); 1572 } 1573 1574 if (busy >= starget->can_queue) 1575 goto starved; 1576 1577 return 1; 1578 1579 starved: 1580 spin_lock_irq(shost->host_lock); 1581 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1582 spin_unlock_irq(shost->host_lock); 1583 out_dec: 1584 if (starget->can_queue > 0) 1585 atomic_dec(&starget->target_busy); 1586 return 0; 1587 } 1588 1589 /* 1590 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1591 * return 0. We must end up running the queue again whenever 0 is 1592 * returned, else IO can hang. 1593 */ 1594 static inline int scsi_host_queue_ready(struct request_queue *q, 1595 struct Scsi_Host *shost, 1596 struct scsi_device *sdev) 1597 { 1598 unsigned int busy; 1599 1600 if (scsi_host_in_recovery(shost)) 1601 return 0; 1602 1603 busy = atomic_inc_return(&shost->host_busy) - 1; 1604 if (atomic_read(&shost->host_blocked) > 0) { 1605 if (busy) 1606 goto starved; 1607 1608 /* 1609 * unblock after host_blocked iterates to zero 1610 */ 1611 if (atomic_dec_return(&shost->host_blocked) > 0) 1612 goto out_dec; 1613 1614 SCSI_LOG_MLQUEUE(3, 1615 shost_printk(KERN_INFO, shost, 1616 "unblocking host at zero depth\n")); 1617 } 1618 1619 if (shost->can_queue > 0 && busy >= shost->can_queue) 1620 goto starved; 1621 if (shost->host_self_blocked) 1622 goto starved; 1623 1624 /* We're OK to process the command, so we can't be starved */ 1625 if (!list_empty(&sdev->starved_entry)) { 1626 spin_lock_irq(shost->host_lock); 1627 if (!list_empty(&sdev->starved_entry)) 1628 list_del_init(&sdev->starved_entry); 1629 spin_unlock_irq(shost->host_lock); 1630 } 1631 1632 return 1; 1633 1634 starved: 1635 spin_lock_irq(shost->host_lock); 1636 if (list_empty(&sdev->starved_entry)) 1637 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1638 spin_unlock_irq(shost->host_lock); 1639 out_dec: 1640 scsi_dec_host_busy(shost); 1641 return 0; 1642 } 1643 1644 /* 1645 * Busy state exporting function for request stacking drivers. 1646 * 1647 * For efficiency, no lock is taken to check the busy state of 1648 * shost/starget/sdev, since the returned value is not guaranteed and 1649 * may be changed after request stacking drivers call the function, 1650 * regardless of taking lock or not. 1651 * 1652 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1653 * needs to return 'not busy'. Otherwise, request stacking drivers 1654 * may hold requests forever. 1655 */ 1656 static int scsi_lld_busy(struct request_queue *q) 1657 { 1658 struct scsi_device *sdev = q->queuedata; 1659 struct Scsi_Host *shost; 1660 1661 if (blk_queue_dying(q)) 1662 return 0; 1663 1664 shost = sdev->host; 1665 1666 /* 1667 * Ignore host/starget busy state. 1668 * Since block layer does not have a concept of fairness across 1669 * multiple queues, congestion of host/starget needs to be handled 1670 * in SCSI layer. 1671 */ 1672 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1673 return 1; 1674 1675 return 0; 1676 } 1677 1678 /* 1679 * Kill a request for a dead device 1680 */ 1681 static void scsi_kill_request(struct request *req, struct request_queue *q) 1682 { 1683 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1684 struct scsi_device *sdev; 1685 struct scsi_target *starget; 1686 struct Scsi_Host *shost; 1687 1688 blk_start_request(req); 1689 1690 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1691 1692 sdev = cmd->device; 1693 starget = scsi_target(sdev); 1694 shost = sdev->host; 1695 scsi_init_cmd_errh(cmd); 1696 cmd->result = DID_NO_CONNECT << 16; 1697 atomic_inc(&cmd->device->iorequest_cnt); 1698 1699 /* 1700 * SCSI request completion path will do scsi_device_unbusy(), 1701 * bump busy counts. To bump the counters, we need to dance 1702 * with the locks as normal issue path does. 1703 */ 1704 atomic_inc(&sdev->device_busy); 1705 atomic_inc(&shost->host_busy); 1706 if (starget->can_queue > 0) 1707 atomic_inc(&starget->target_busy); 1708 1709 blk_complete_request(req); 1710 } 1711 1712 static void scsi_softirq_done(struct request *rq) 1713 { 1714 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1715 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1716 int disposition; 1717 1718 INIT_LIST_HEAD(&cmd->eh_entry); 1719 1720 atomic_inc(&cmd->device->iodone_cnt); 1721 if (cmd->result) 1722 atomic_inc(&cmd->device->ioerr_cnt); 1723 1724 disposition = scsi_decide_disposition(cmd); 1725 if (disposition != SUCCESS && 1726 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1727 sdev_printk(KERN_ERR, cmd->device, 1728 "timing out command, waited %lus\n", 1729 wait_for/HZ); 1730 disposition = SUCCESS; 1731 } 1732 1733 scsi_log_completion(cmd, disposition); 1734 1735 switch (disposition) { 1736 case SUCCESS: 1737 scsi_finish_command(cmd); 1738 break; 1739 case NEEDS_RETRY: 1740 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1741 break; 1742 case ADD_TO_MLQUEUE: 1743 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1744 break; 1745 default: 1746 scsi_eh_scmd_add(cmd); 1747 break; 1748 } 1749 } 1750 1751 /** 1752 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1753 * @cmd: command block we are dispatching. 1754 * 1755 * Return: nonzero return request was rejected and device's queue needs to be 1756 * plugged. 1757 */ 1758 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1759 { 1760 struct Scsi_Host *host = cmd->device->host; 1761 int rtn = 0; 1762 1763 atomic_inc(&cmd->device->iorequest_cnt); 1764 1765 /* check if the device is still usable */ 1766 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1767 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1768 * returns an immediate error upwards, and signals 1769 * that the device is no longer present */ 1770 cmd->result = DID_NO_CONNECT << 16; 1771 goto done; 1772 } 1773 1774 /* Check to see if the scsi lld made this device blocked. */ 1775 if (unlikely(scsi_device_blocked(cmd->device))) { 1776 /* 1777 * in blocked state, the command is just put back on 1778 * the device queue. The suspend state has already 1779 * blocked the queue so future requests should not 1780 * occur until the device transitions out of the 1781 * suspend state. 1782 */ 1783 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1784 "queuecommand : device blocked\n")); 1785 return SCSI_MLQUEUE_DEVICE_BUSY; 1786 } 1787 1788 /* Store the LUN value in cmnd, if needed. */ 1789 if (cmd->device->lun_in_cdb) 1790 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1791 (cmd->device->lun << 5 & 0xe0); 1792 1793 scsi_log_send(cmd); 1794 1795 /* 1796 * Before we queue this command, check if the command 1797 * length exceeds what the host adapter can handle. 1798 */ 1799 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1800 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1801 "queuecommand : command too long. " 1802 "cdb_size=%d host->max_cmd_len=%d\n", 1803 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1804 cmd->result = (DID_ABORT << 16); 1805 goto done; 1806 } 1807 1808 if (unlikely(host->shost_state == SHOST_DEL)) { 1809 cmd->result = (DID_NO_CONNECT << 16); 1810 goto done; 1811 1812 } 1813 1814 trace_scsi_dispatch_cmd_start(cmd); 1815 rtn = host->hostt->queuecommand(host, cmd); 1816 if (rtn) { 1817 trace_scsi_dispatch_cmd_error(cmd, rtn); 1818 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1819 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1820 rtn = SCSI_MLQUEUE_HOST_BUSY; 1821 1822 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1823 "queuecommand : request rejected\n")); 1824 } 1825 1826 return rtn; 1827 done: 1828 cmd->scsi_done(cmd); 1829 return 0; 1830 } 1831 1832 /** 1833 * scsi_done - Invoke completion on finished SCSI command. 1834 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1835 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1836 * 1837 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1838 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1839 * calls blk_complete_request() for further processing. 1840 * 1841 * This function is interrupt context safe. 1842 */ 1843 static void scsi_done(struct scsi_cmnd *cmd) 1844 { 1845 trace_scsi_dispatch_cmd_done(cmd); 1846 blk_complete_request(cmd->request); 1847 } 1848 1849 /* 1850 * Function: scsi_request_fn() 1851 * 1852 * Purpose: Main strategy routine for SCSI. 1853 * 1854 * Arguments: q - Pointer to actual queue. 1855 * 1856 * Returns: Nothing 1857 * 1858 * Lock status: request queue lock assumed to be held when called. 1859 * 1860 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order 1861 * protection for ZBC disks. 1862 */ 1863 static void scsi_request_fn(struct request_queue *q) 1864 __releases(q->queue_lock) 1865 __acquires(q->queue_lock) 1866 { 1867 struct scsi_device *sdev = q->queuedata; 1868 struct Scsi_Host *shost; 1869 struct scsi_cmnd *cmd; 1870 struct request *req; 1871 1872 /* 1873 * To start with, we keep looping until the queue is empty, or until 1874 * the host is no longer able to accept any more requests. 1875 */ 1876 shost = sdev->host; 1877 for (;;) { 1878 int rtn; 1879 /* 1880 * get next queueable request. We do this early to make sure 1881 * that the request is fully prepared even if we cannot 1882 * accept it. 1883 */ 1884 req = blk_peek_request(q); 1885 if (!req) 1886 break; 1887 1888 if (unlikely(!scsi_device_online(sdev))) { 1889 sdev_printk(KERN_ERR, sdev, 1890 "rejecting I/O to offline device\n"); 1891 scsi_kill_request(req, q); 1892 continue; 1893 } 1894 1895 if (!scsi_dev_queue_ready(q, sdev)) 1896 break; 1897 1898 /* 1899 * Remove the request from the request list. 1900 */ 1901 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1902 blk_start_request(req); 1903 1904 spin_unlock_irq(q->queue_lock); 1905 cmd = blk_mq_rq_to_pdu(req); 1906 if (cmd != req->special) { 1907 printk(KERN_CRIT "impossible request in %s.\n" 1908 "please mail a stack trace to " 1909 "linux-scsi@vger.kernel.org\n", 1910 __func__); 1911 blk_dump_rq_flags(req, "foo"); 1912 BUG(); 1913 } 1914 1915 /* 1916 * We hit this when the driver is using a host wide 1917 * tag map. For device level tag maps the queue_depth check 1918 * in the device ready fn would prevent us from trying 1919 * to allocate a tag. Since the map is a shared host resource 1920 * we add the dev to the starved list so it eventually gets 1921 * a run when a tag is freed. 1922 */ 1923 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1924 spin_lock_irq(shost->host_lock); 1925 if (list_empty(&sdev->starved_entry)) 1926 list_add_tail(&sdev->starved_entry, 1927 &shost->starved_list); 1928 spin_unlock_irq(shost->host_lock); 1929 goto not_ready; 1930 } 1931 1932 if (!scsi_target_queue_ready(shost, sdev)) 1933 goto not_ready; 1934 1935 if (!scsi_host_queue_ready(q, shost, sdev)) 1936 goto host_not_ready; 1937 1938 if (sdev->simple_tags) 1939 cmd->flags |= SCMD_TAGGED; 1940 else 1941 cmd->flags &= ~SCMD_TAGGED; 1942 1943 /* 1944 * Finally, initialize any error handling parameters, and set up 1945 * the timers for timeouts. 1946 */ 1947 scsi_init_cmd_errh(cmd); 1948 1949 /* 1950 * Dispatch the command to the low-level driver. 1951 */ 1952 cmd->scsi_done = scsi_done; 1953 rtn = scsi_dispatch_cmd(cmd); 1954 if (rtn) { 1955 scsi_queue_insert(cmd, rtn); 1956 spin_lock_irq(q->queue_lock); 1957 goto out_delay; 1958 } 1959 spin_lock_irq(q->queue_lock); 1960 } 1961 1962 return; 1963 1964 host_not_ready: 1965 if (scsi_target(sdev)->can_queue > 0) 1966 atomic_dec(&scsi_target(sdev)->target_busy); 1967 not_ready: 1968 /* 1969 * lock q, handle tag, requeue req, and decrement device_busy. We 1970 * must return with queue_lock held. 1971 * 1972 * Decrementing device_busy without checking it is OK, as all such 1973 * cases (host limits or settings) should run the queue at some 1974 * later time. 1975 */ 1976 spin_lock_irq(q->queue_lock); 1977 blk_requeue_request(q, req); 1978 atomic_dec(&sdev->device_busy); 1979 out_delay: 1980 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1981 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1982 } 1983 1984 static inline blk_status_t prep_to_mq(int ret) 1985 { 1986 switch (ret) { 1987 case BLKPREP_OK: 1988 return BLK_STS_OK; 1989 case BLKPREP_DEFER: 1990 return BLK_STS_RESOURCE; 1991 default: 1992 return BLK_STS_IOERR; 1993 } 1994 } 1995 1996 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1997 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1998 { 1999 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 2000 sizeof(struct scatterlist); 2001 } 2002 2003 static int scsi_mq_prep_fn(struct request *req) 2004 { 2005 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2006 struct scsi_device *sdev = req->q->queuedata; 2007 struct Scsi_Host *shost = sdev->host; 2008 struct scatterlist *sg; 2009 2010 scsi_init_command(sdev, cmd); 2011 2012 req->special = cmd; 2013 2014 cmd->request = req; 2015 2016 cmd->tag = req->tag; 2017 cmd->prot_op = SCSI_PROT_NORMAL; 2018 2019 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2020 cmd->sdb.table.sgl = sg; 2021 2022 if (scsi_host_get_prot(shost)) { 2023 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 2024 2025 cmd->prot_sdb->table.sgl = 2026 (struct scatterlist *)(cmd->prot_sdb + 1); 2027 } 2028 2029 if (blk_bidi_rq(req)) { 2030 struct request *next_rq = req->next_rq; 2031 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 2032 2033 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 2034 bidi_sdb->table.sgl = 2035 (struct scatterlist *)(bidi_sdb + 1); 2036 2037 next_rq->special = bidi_sdb; 2038 } 2039 2040 blk_mq_start_request(req); 2041 2042 return scsi_setup_cmnd(sdev, req); 2043 } 2044 2045 static void scsi_mq_done(struct scsi_cmnd *cmd) 2046 { 2047 trace_scsi_dispatch_cmd_done(cmd); 2048 blk_mq_complete_request(cmd->request); 2049 } 2050 2051 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 2052 { 2053 struct request_queue *q = hctx->queue; 2054 struct scsi_device *sdev = q->queuedata; 2055 2056 atomic_dec(&sdev->device_busy); 2057 put_device(&sdev->sdev_gendev); 2058 } 2059 2060 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 2061 { 2062 struct request_queue *q = hctx->queue; 2063 struct scsi_device *sdev = q->queuedata; 2064 2065 if (!get_device(&sdev->sdev_gendev)) 2066 goto out; 2067 if (!scsi_dev_queue_ready(q, sdev)) 2068 goto out_put_device; 2069 2070 return true; 2071 2072 out_put_device: 2073 put_device(&sdev->sdev_gendev); 2074 out: 2075 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 2076 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 2077 return false; 2078 } 2079 2080 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 2081 const struct blk_mq_queue_data *bd) 2082 { 2083 struct request *req = bd->rq; 2084 struct request_queue *q = req->q; 2085 struct scsi_device *sdev = q->queuedata; 2086 struct Scsi_Host *shost = sdev->host; 2087 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 2088 blk_status_t ret; 2089 int reason; 2090 2091 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 2092 if (ret != BLK_STS_OK) 2093 goto out_put_budget; 2094 2095 ret = BLK_STS_RESOURCE; 2096 if (!scsi_target_queue_ready(shost, sdev)) 2097 goto out_put_budget; 2098 if (!scsi_host_queue_ready(q, shost, sdev)) 2099 goto out_dec_target_busy; 2100 2101 if (!(req->rq_flags & RQF_DONTPREP)) { 2102 ret = prep_to_mq(scsi_mq_prep_fn(req)); 2103 if (ret != BLK_STS_OK) 2104 goto out_dec_host_busy; 2105 req->rq_flags |= RQF_DONTPREP; 2106 } else { 2107 blk_mq_start_request(req); 2108 } 2109 2110 if (sdev->simple_tags) 2111 cmd->flags |= SCMD_TAGGED; 2112 else 2113 cmd->flags &= ~SCMD_TAGGED; 2114 2115 scsi_init_cmd_errh(cmd); 2116 cmd->scsi_done = scsi_mq_done; 2117 2118 reason = scsi_dispatch_cmd(cmd); 2119 if (reason) { 2120 scsi_set_blocked(cmd, reason); 2121 ret = BLK_STS_RESOURCE; 2122 goto out_dec_host_busy; 2123 } 2124 2125 return BLK_STS_OK; 2126 2127 out_dec_host_busy: 2128 scsi_dec_host_busy(shost); 2129 out_dec_target_busy: 2130 if (scsi_target(sdev)->can_queue > 0) 2131 atomic_dec(&scsi_target(sdev)->target_busy); 2132 out_put_budget: 2133 scsi_mq_put_budget(hctx); 2134 switch (ret) { 2135 case BLK_STS_OK: 2136 break; 2137 case BLK_STS_RESOURCE: 2138 if (atomic_read(&sdev->device_busy) || 2139 scsi_device_blocked(sdev)) 2140 ret = BLK_STS_DEV_RESOURCE; 2141 break; 2142 default: 2143 /* 2144 * Make sure to release all allocated ressources when 2145 * we hit an error, as we will never see this command 2146 * again. 2147 */ 2148 if (req->rq_flags & RQF_DONTPREP) 2149 scsi_mq_uninit_cmd(cmd); 2150 break; 2151 } 2152 return ret; 2153 } 2154 2155 static enum blk_eh_timer_return scsi_timeout(struct request *req, 2156 bool reserved) 2157 { 2158 if (reserved) 2159 return BLK_EH_RESET_TIMER; 2160 return scsi_times_out(req); 2161 } 2162 2163 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2164 unsigned int hctx_idx, unsigned int numa_node) 2165 { 2166 struct Scsi_Host *shost = set->driver_data; 2167 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2168 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2169 struct scatterlist *sg; 2170 2171 if (unchecked_isa_dma) 2172 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2173 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2174 GFP_KERNEL, numa_node); 2175 if (!cmd->sense_buffer) 2176 return -ENOMEM; 2177 cmd->req.sense = cmd->sense_buffer; 2178 2179 if (scsi_host_get_prot(shost)) { 2180 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2181 shost->hostt->cmd_size; 2182 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2183 } 2184 2185 return 0; 2186 } 2187 2188 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2189 unsigned int hctx_idx) 2190 { 2191 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2192 2193 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2194 cmd->sense_buffer); 2195 } 2196 2197 static int scsi_map_queues(struct blk_mq_tag_set *set) 2198 { 2199 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2200 2201 if (shost->hostt->map_queues) 2202 return shost->hostt->map_queues(shost); 2203 return blk_mq_map_queues(set); 2204 } 2205 2206 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2207 { 2208 struct device *dev = shost->dma_dev; 2209 2210 /* 2211 * this limit is imposed by hardware restrictions 2212 */ 2213 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2214 SG_MAX_SEGMENTS)); 2215 2216 if (scsi_host_prot_dma(shost)) { 2217 shost->sg_prot_tablesize = 2218 min_not_zero(shost->sg_prot_tablesize, 2219 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2220 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2221 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2222 } 2223 2224 blk_queue_max_hw_sectors(q, shost->max_sectors); 2225 if (shost->unchecked_isa_dma) 2226 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 2227 blk_queue_segment_boundary(q, shost->dma_boundary); 2228 dma_set_seg_boundary(dev, shost->dma_boundary); 2229 2230 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2231 2232 if (!shost->use_clustering) 2233 q->limits.cluster = 0; 2234 2235 /* 2236 * Set a reasonable default alignment: The larger of 32-byte (dword), 2237 * which is a common minimum for HBAs, and the minimum DMA alignment, 2238 * which is set by the platform. 2239 * 2240 * Devices that require a bigger alignment can increase it later. 2241 */ 2242 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 2243 } 2244 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2245 2246 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2247 gfp_t gfp) 2248 { 2249 struct Scsi_Host *shost = q->rq_alloc_data; 2250 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2251 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2252 2253 memset(cmd, 0, sizeof(*cmd)); 2254 2255 if (unchecked_isa_dma) 2256 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2257 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2258 NUMA_NO_NODE); 2259 if (!cmd->sense_buffer) 2260 goto fail; 2261 cmd->req.sense = cmd->sense_buffer; 2262 2263 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2264 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2265 if (!cmd->prot_sdb) 2266 goto fail_free_sense; 2267 } 2268 2269 return 0; 2270 2271 fail_free_sense: 2272 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2273 fail: 2274 return -ENOMEM; 2275 } 2276 2277 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2278 { 2279 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2280 2281 if (cmd->prot_sdb) 2282 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2283 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2284 cmd->sense_buffer); 2285 } 2286 2287 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2288 { 2289 struct Scsi_Host *shost = sdev->host; 2290 struct request_queue *q; 2291 2292 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); 2293 if (!q) 2294 return NULL; 2295 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2296 q->rq_alloc_data = shost; 2297 q->request_fn = scsi_request_fn; 2298 q->init_rq_fn = scsi_old_init_rq; 2299 q->exit_rq_fn = scsi_old_exit_rq; 2300 q->initialize_rq_fn = scsi_initialize_rq; 2301 2302 if (blk_init_allocated_queue(q) < 0) { 2303 blk_cleanup_queue(q); 2304 return NULL; 2305 } 2306 2307 __scsi_init_queue(shost, q); 2308 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2309 blk_queue_prep_rq(q, scsi_prep_fn); 2310 blk_queue_unprep_rq(q, scsi_unprep_fn); 2311 blk_queue_softirq_done(q, scsi_softirq_done); 2312 blk_queue_rq_timed_out(q, scsi_times_out); 2313 blk_queue_lld_busy(q, scsi_lld_busy); 2314 return q; 2315 } 2316 2317 static const struct blk_mq_ops scsi_mq_ops = { 2318 .get_budget = scsi_mq_get_budget, 2319 .put_budget = scsi_mq_put_budget, 2320 .queue_rq = scsi_queue_rq, 2321 .complete = scsi_softirq_done, 2322 .timeout = scsi_timeout, 2323 #ifdef CONFIG_BLK_DEBUG_FS 2324 .show_rq = scsi_show_rq, 2325 #endif 2326 .init_request = scsi_mq_init_request, 2327 .exit_request = scsi_mq_exit_request, 2328 .initialize_rq_fn = scsi_initialize_rq, 2329 .map_queues = scsi_map_queues, 2330 }; 2331 2332 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2333 { 2334 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2335 if (IS_ERR(sdev->request_queue)) 2336 return NULL; 2337 2338 sdev->request_queue->queuedata = sdev; 2339 __scsi_init_queue(sdev->host, sdev->request_queue); 2340 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 2341 return sdev->request_queue; 2342 } 2343 2344 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2345 { 2346 unsigned int cmd_size, sgl_size; 2347 2348 sgl_size = scsi_mq_sgl_size(shost); 2349 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2350 if (scsi_host_get_prot(shost)) 2351 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2352 2353 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2354 shost->tag_set.ops = &scsi_mq_ops; 2355 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2356 shost->tag_set.queue_depth = shost->can_queue; 2357 shost->tag_set.cmd_size = cmd_size; 2358 shost->tag_set.numa_node = NUMA_NO_NODE; 2359 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2360 shost->tag_set.flags |= 2361 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2362 shost->tag_set.driver_data = shost; 2363 2364 return blk_mq_alloc_tag_set(&shost->tag_set); 2365 } 2366 2367 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2368 { 2369 blk_mq_free_tag_set(&shost->tag_set); 2370 } 2371 2372 /** 2373 * scsi_device_from_queue - return sdev associated with a request_queue 2374 * @q: The request queue to return the sdev from 2375 * 2376 * Return the sdev associated with a request queue or NULL if the 2377 * request_queue does not reference a SCSI device. 2378 */ 2379 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2380 { 2381 struct scsi_device *sdev = NULL; 2382 2383 if (q->mq_ops) { 2384 if (q->mq_ops == &scsi_mq_ops) 2385 sdev = q->queuedata; 2386 } else if (q->request_fn == scsi_request_fn) 2387 sdev = q->queuedata; 2388 if (!sdev || !get_device(&sdev->sdev_gendev)) 2389 sdev = NULL; 2390 2391 return sdev; 2392 } 2393 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2394 2395 /* 2396 * Function: scsi_block_requests() 2397 * 2398 * Purpose: Utility function used by low-level drivers to prevent further 2399 * commands from being queued to the device. 2400 * 2401 * Arguments: shost - Host in question 2402 * 2403 * Returns: Nothing 2404 * 2405 * Lock status: No locks are assumed held. 2406 * 2407 * Notes: There is no timer nor any other means by which the requests 2408 * get unblocked other than the low-level driver calling 2409 * scsi_unblock_requests(). 2410 */ 2411 void scsi_block_requests(struct Scsi_Host *shost) 2412 { 2413 shost->host_self_blocked = 1; 2414 } 2415 EXPORT_SYMBOL(scsi_block_requests); 2416 2417 /* 2418 * Function: scsi_unblock_requests() 2419 * 2420 * Purpose: Utility function used by low-level drivers to allow further 2421 * commands from being queued to the device. 2422 * 2423 * Arguments: shost - Host in question 2424 * 2425 * Returns: Nothing 2426 * 2427 * Lock status: No locks are assumed held. 2428 * 2429 * Notes: There is no timer nor any other means by which the requests 2430 * get unblocked other than the low-level driver calling 2431 * scsi_unblock_requests(). 2432 * 2433 * This is done as an API function so that changes to the 2434 * internals of the scsi mid-layer won't require wholesale 2435 * changes to drivers that use this feature. 2436 */ 2437 void scsi_unblock_requests(struct Scsi_Host *shost) 2438 { 2439 shost->host_self_blocked = 0; 2440 scsi_run_host_queues(shost); 2441 } 2442 EXPORT_SYMBOL(scsi_unblock_requests); 2443 2444 int __init scsi_init_queue(void) 2445 { 2446 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2447 sizeof(struct scsi_data_buffer), 2448 0, 0, NULL); 2449 if (!scsi_sdb_cache) { 2450 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2451 return -ENOMEM; 2452 } 2453 2454 return 0; 2455 } 2456 2457 void scsi_exit_queue(void) 2458 { 2459 kmem_cache_destroy(scsi_sense_cache); 2460 kmem_cache_destroy(scsi_sense_isadma_cache); 2461 kmem_cache_destroy(scsi_sdb_cache); 2462 } 2463 2464 /** 2465 * scsi_mode_select - issue a mode select 2466 * @sdev: SCSI device to be queried 2467 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2468 * @sp: Save page bit (0 == don't save, 1 == save) 2469 * @modepage: mode page being requested 2470 * @buffer: request buffer (may not be smaller than eight bytes) 2471 * @len: length of request buffer. 2472 * @timeout: command timeout 2473 * @retries: number of retries before failing 2474 * @data: returns a structure abstracting the mode header data 2475 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2476 * must be SCSI_SENSE_BUFFERSIZE big. 2477 * 2478 * Returns zero if successful; negative error number or scsi 2479 * status on error 2480 * 2481 */ 2482 int 2483 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2484 unsigned char *buffer, int len, int timeout, int retries, 2485 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2486 { 2487 unsigned char cmd[10]; 2488 unsigned char *real_buffer; 2489 int ret; 2490 2491 memset(cmd, 0, sizeof(cmd)); 2492 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2493 2494 if (sdev->use_10_for_ms) { 2495 if (len > 65535) 2496 return -EINVAL; 2497 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2498 if (!real_buffer) 2499 return -ENOMEM; 2500 memcpy(real_buffer + 8, buffer, len); 2501 len += 8; 2502 real_buffer[0] = 0; 2503 real_buffer[1] = 0; 2504 real_buffer[2] = data->medium_type; 2505 real_buffer[3] = data->device_specific; 2506 real_buffer[4] = data->longlba ? 0x01 : 0; 2507 real_buffer[5] = 0; 2508 real_buffer[6] = data->block_descriptor_length >> 8; 2509 real_buffer[7] = data->block_descriptor_length; 2510 2511 cmd[0] = MODE_SELECT_10; 2512 cmd[7] = len >> 8; 2513 cmd[8] = len; 2514 } else { 2515 if (len > 255 || data->block_descriptor_length > 255 || 2516 data->longlba) 2517 return -EINVAL; 2518 2519 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2520 if (!real_buffer) 2521 return -ENOMEM; 2522 memcpy(real_buffer + 4, buffer, len); 2523 len += 4; 2524 real_buffer[0] = 0; 2525 real_buffer[1] = data->medium_type; 2526 real_buffer[2] = data->device_specific; 2527 real_buffer[3] = data->block_descriptor_length; 2528 2529 2530 cmd[0] = MODE_SELECT; 2531 cmd[4] = len; 2532 } 2533 2534 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2535 sshdr, timeout, retries, NULL); 2536 kfree(real_buffer); 2537 return ret; 2538 } 2539 EXPORT_SYMBOL_GPL(scsi_mode_select); 2540 2541 /** 2542 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2543 * @sdev: SCSI device to be queried 2544 * @dbd: set if mode sense will allow block descriptors to be returned 2545 * @modepage: mode page being requested 2546 * @buffer: request buffer (may not be smaller than eight bytes) 2547 * @len: length of request buffer. 2548 * @timeout: command timeout 2549 * @retries: number of retries before failing 2550 * @data: returns a structure abstracting the mode header data 2551 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2552 * must be SCSI_SENSE_BUFFERSIZE big. 2553 * 2554 * Returns zero if unsuccessful, or the header offset (either 4 2555 * or 8 depending on whether a six or ten byte command was 2556 * issued) if successful. 2557 */ 2558 int 2559 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2560 unsigned char *buffer, int len, int timeout, int retries, 2561 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2562 { 2563 unsigned char cmd[12]; 2564 int use_10_for_ms; 2565 int header_length; 2566 int result, retry_count = retries; 2567 struct scsi_sense_hdr my_sshdr; 2568 2569 memset(data, 0, sizeof(*data)); 2570 memset(&cmd[0], 0, 12); 2571 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2572 cmd[2] = modepage; 2573 2574 /* caller might not be interested in sense, but we need it */ 2575 if (!sshdr) 2576 sshdr = &my_sshdr; 2577 2578 retry: 2579 use_10_for_ms = sdev->use_10_for_ms; 2580 2581 if (use_10_for_ms) { 2582 if (len < 8) 2583 len = 8; 2584 2585 cmd[0] = MODE_SENSE_10; 2586 cmd[8] = len; 2587 header_length = 8; 2588 } else { 2589 if (len < 4) 2590 len = 4; 2591 2592 cmd[0] = MODE_SENSE; 2593 cmd[4] = len; 2594 header_length = 4; 2595 } 2596 2597 memset(buffer, 0, len); 2598 2599 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2600 sshdr, timeout, retries, NULL); 2601 2602 /* This code looks awful: what it's doing is making sure an 2603 * ILLEGAL REQUEST sense return identifies the actual command 2604 * byte as the problem. MODE_SENSE commands can return 2605 * ILLEGAL REQUEST if the code page isn't supported */ 2606 2607 if (use_10_for_ms && !scsi_status_is_good(result) && 2608 driver_byte(result) == DRIVER_SENSE) { 2609 if (scsi_sense_valid(sshdr)) { 2610 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2611 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2612 /* 2613 * Invalid command operation code 2614 */ 2615 sdev->use_10_for_ms = 0; 2616 goto retry; 2617 } 2618 } 2619 } 2620 2621 if(scsi_status_is_good(result)) { 2622 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2623 (modepage == 6 || modepage == 8))) { 2624 /* Initio breakage? */ 2625 header_length = 0; 2626 data->length = 13; 2627 data->medium_type = 0; 2628 data->device_specific = 0; 2629 data->longlba = 0; 2630 data->block_descriptor_length = 0; 2631 } else if(use_10_for_ms) { 2632 data->length = buffer[0]*256 + buffer[1] + 2; 2633 data->medium_type = buffer[2]; 2634 data->device_specific = buffer[3]; 2635 data->longlba = buffer[4] & 0x01; 2636 data->block_descriptor_length = buffer[6]*256 2637 + buffer[7]; 2638 } else { 2639 data->length = buffer[0] + 1; 2640 data->medium_type = buffer[1]; 2641 data->device_specific = buffer[2]; 2642 data->block_descriptor_length = buffer[3]; 2643 } 2644 data->header_length = header_length; 2645 } else if ((status_byte(result) == CHECK_CONDITION) && 2646 scsi_sense_valid(sshdr) && 2647 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2648 retry_count--; 2649 goto retry; 2650 } 2651 2652 return result; 2653 } 2654 EXPORT_SYMBOL(scsi_mode_sense); 2655 2656 /** 2657 * scsi_test_unit_ready - test if unit is ready 2658 * @sdev: scsi device to change the state of. 2659 * @timeout: command timeout 2660 * @retries: number of retries before failing 2661 * @sshdr: outpout pointer for decoded sense information. 2662 * 2663 * Returns zero if unsuccessful or an error if TUR failed. For 2664 * removable media, UNIT_ATTENTION sets ->changed flag. 2665 **/ 2666 int 2667 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2668 struct scsi_sense_hdr *sshdr) 2669 { 2670 char cmd[] = { 2671 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2672 }; 2673 int result; 2674 2675 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2676 do { 2677 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2678 timeout, 1, NULL); 2679 if (sdev->removable && scsi_sense_valid(sshdr) && 2680 sshdr->sense_key == UNIT_ATTENTION) 2681 sdev->changed = 1; 2682 } while (scsi_sense_valid(sshdr) && 2683 sshdr->sense_key == UNIT_ATTENTION && --retries); 2684 2685 return result; 2686 } 2687 EXPORT_SYMBOL(scsi_test_unit_ready); 2688 2689 /** 2690 * scsi_device_set_state - Take the given device through the device state model. 2691 * @sdev: scsi device to change the state of. 2692 * @state: state to change to. 2693 * 2694 * Returns zero if successful or an error if the requested 2695 * transition is illegal. 2696 */ 2697 int 2698 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2699 { 2700 enum scsi_device_state oldstate = sdev->sdev_state; 2701 2702 if (state == oldstate) 2703 return 0; 2704 2705 switch (state) { 2706 case SDEV_CREATED: 2707 switch (oldstate) { 2708 case SDEV_CREATED_BLOCK: 2709 break; 2710 default: 2711 goto illegal; 2712 } 2713 break; 2714 2715 case SDEV_RUNNING: 2716 switch (oldstate) { 2717 case SDEV_CREATED: 2718 case SDEV_OFFLINE: 2719 case SDEV_TRANSPORT_OFFLINE: 2720 case SDEV_QUIESCE: 2721 case SDEV_BLOCK: 2722 break; 2723 default: 2724 goto illegal; 2725 } 2726 break; 2727 2728 case SDEV_QUIESCE: 2729 switch (oldstate) { 2730 case SDEV_RUNNING: 2731 case SDEV_OFFLINE: 2732 case SDEV_TRANSPORT_OFFLINE: 2733 break; 2734 default: 2735 goto illegal; 2736 } 2737 break; 2738 2739 case SDEV_OFFLINE: 2740 case SDEV_TRANSPORT_OFFLINE: 2741 switch (oldstate) { 2742 case SDEV_CREATED: 2743 case SDEV_RUNNING: 2744 case SDEV_QUIESCE: 2745 case SDEV_BLOCK: 2746 break; 2747 default: 2748 goto illegal; 2749 } 2750 break; 2751 2752 case SDEV_BLOCK: 2753 switch (oldstate) { 2754 case SDEV_RUNNING: 2755 case SDEV_CREATED_BLOCK: 2756 case SDEV_OFFLINE: 2757 break; 2758 default: 2759 goto illegal; 2760 } 2761 break; 2762 2763 case SDEV_CREATED_BLOCK: 2764 switch (oldstate) { 2765 case SDEV_CREATED: 2766 break; 2767 default: 2768 goto illegal; 2769 } 2770 break; 2771 2772 case SDEV_CANCEL: 2773 switch (oldstate) { 2774 case SDEV_CREATED: 2775 case SDEV_RUNNING: 2776 case SDEV_QUIESCE: 2777 case SDEV_OFFLINE: 2778 case SDEV_TRANSPORT_OFFLINE: 2779 break; 2780 default: 2781 goto illegal; 2782 } 2783 break; 2784 2785 case SDEV_DEL: 2786 switch (oldstate) { 2787 case SDEV_CREATED: 2788 case SDEV_RUNNING: 2789 case SDEV_OFFLINE: 2790 case SDEV_TRANSPORT_OFFLINE: 2791 case SDEV_CANCEL: 2792 case SDEV_BLOCK: 2793 case SDEV_CREATED_BLOCK: 2794 break; 2795 default: 2796 goto illegal; 2797 } 2798 break; 2799 2800 } 2801 sdev->sdev_state = state; 2802 return 0; 2803 2804 illegal: 2805 SCSI_LOG_ERROR_RECOVERY(1, 2806 sdev_printk(KERN_ERR, sdev, 2807 "Illegal state transition %s->%s", 2808 scsi_device_state_name(oldstate), 2809 scsi_device_state_name(state)) 2810 ); 2811 return -EINVAL; 2812 } 2813 EXPORT_SYMBOL(scsi_device_set_state); 2814 2815 /** 2816 * sdev_evt_emit - emit a single SCSI device uevent 2817 * @sdev: associated SCSI device 2818 * @evt: event to emit 2819 * 2820 * Send a single uevent (scsi_event) to the associated scsi_device. 2821 */ 2822 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2823 { 2824 int idx = 0; 2825 char *envp[3]; 2826 2827 switch (evt->evt_type) { 2828 case SDEV_EVT_MEDIA_CHANGE: 2829 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2830 break; 2831 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2832 scsi_rescan_device(&sdev->sdev_gendev); 2833 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2834 break; 2835 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2836 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2837 break; 2838 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2839 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2840 break; 2841 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2842 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2843 break; 2844 case SDEV_EVT_LUN_CHANGE_REPORTED: 2845 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2846 break; 2847 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2848 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2849 break; 2850 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2851 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2852 break; 2853 default: 2854 /* do nothing */ 2855 break; 2856 } 2857 2858 envp[idx++] = NULL; 2859 2860 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2861 } 2862 2863 /** 2864 * sdev_evt_thread - send a uevent for each scsi event 2865 * @work: work struct for scsi_device 2866 * 2867 * Dispatch queued events to their associated scsi_device kobjects 2868 * as uevents. 2869 */ 2870 void scsi_evt_thread(struct work_struct *work) 2871 { 2872 struct scsi_device *sdev; 2873 enum scsi_device_event evt_type; 2874 LIST_HEAD(event_list); 2875 2876 sdev = container_of(work, struct scsi_device, event_work); 2877 2878 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2879 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2880 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2881 2882 while (1) { 2883 struct scsi_event *evt; 2884 struct list_head *this, *tmp; 2885 unsigned long flags; 2886 2887 spin_lock_irqsave(&sdev->list_lock, flags); 2888 list_splice_init(&sdev->event_list, &event_list); 2889 spin_unlock_irqrestore(&sdev->list_lock, flags); 2890 2891 if (list_empty(&event_list)) 2892 break; 2893 2894 list_for_each_safe(this, tmp, &event_list) { 2895 evt = list_entry(this, struct scsi_event, node); 2896 list_del(&evt->node); 2897 scsi_evt_emit(sdev, evt); 2898 kfree(evt); 2899 } 2900 } 2901 } 2902 2903 /** 2904 * sdev_evt_send - send asserted event to uevent thread 2905 * @sdev: scsi_device event occurred on 2906 * @evt: event to send 2907 * 2908 * Assert scsi device event asynchronously. 2909 */ 2910 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2911 { 2912 unsigned long flags; 2913 2914 #if 0 2915 /* FIXME: currently this check eliminates all media change events 2916 * for polled devices. Need to update to discriminate between AN 2917 * and polled events */ 2918 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2919 kfree(evt); 2920 return; 2921 } 2922 #endif 2923 2924 spin_lock_irqsave(&sdev->list_lock, flags); 2925 list_add_tail(&evt->node, &sdev->event_list); 2926 schedule_work(&sdev->event_work); 2927 spin_unlock_irqrestore(&sdev->list_lock, flags); 2928 } 2929 EXPORT_SYMBOL_GPL(sdev_evt_send); 2930 2931 /** 2932 * sdev_evt_alloc - allocate a new scsi event 2933 * @evt_type: type of event to allocate 2934 * @gfpflags: GFP flags for allocation 2935 * 2936 * Allocates and returns a new scsi_event. 2937 */ 2938 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2939 gfp_t gfpflags) 2940 { 2941 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2942 if (!evt) 2943 return NULL; 2944 2945 evt->evt_type = evt_type; 2946 INIT_LIST_HEAD(&evt->node); 2947 2948 /* evt_type-specific initialization, if any */ 2949 switch (evt_type) { 2950 case SDEV_EVT_MEDIA_CHANGE: 2951 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2952 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2953 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2954 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2955 case SDEV_EVT_LUN_CHANGE_REPORTED: 2956 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2957 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2958 default: 2959 /* do nothing */ 2960 break; 2961 } 2962 2963 return evt; 2964 } 2965 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2966 2967 /** 2968 * sdev_evt_send_simple - send asserted event to uevent thread 2969 * @sdev: scsi_device event occurred on 2970 * @evt_type: type of event to send 2971 * @gfpflags: GFP flags for allocation 2972 * 2973 * Assert scsi device event asynchronously, given an event type. 2974 */ 2975 void sdev_evt_send_simple(struct scsi_device *sdev, 2976 enum scsi_device_event evt_type, gfp_t gfpflags) 2977 { 2978 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2979 if (!evt) { 2980 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2981 evt_type); 2982 return; 2983 } 2984 2985 sdev_evt_send(sdev, evt); 2986 } 2987 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2988 2989 /** 2990 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2991 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2992 */ 2993 static int scsi_request_fn_active(struct scsi_device *sdev) 2994 { 2995 struct request_queue *q = sdev->request_queue; 2996 int request_fn_active; 2997 2998 WARN_ON_ONCE(sdev->host->use_blk_mq); 2999 3000 spin_lock_irq(q->queue_lock); 3001 request_fn_active = q->request_fn_active; 3002 spin_unlock_irq(q->queue_lock); 3003 3004 return request_fn_active; 3005 } 3006 3007 /** 3008 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 3009 * @sdev: SCSI device pointer. 3010 * 3011 * Wait until the ongoing shost->hostt->queuecommand() calls that are 3012 * invoked from scsi_request_fn() have finished. 3013 */ 3014 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 3015 { 3016 WARN_ON_ONCE(sdev->host->use_blk_mq); 3017 3018 while (scsi_request_fn_active(sdev)) 3019 msleep(20); 3020 } 3021 3022 /** 3023 * scsi_device_quiesce - Block user issued commands. 3024 * @sdev: scsi device to quiesce. 3025 * 3026 * This works by trying to transition to the SDEV_QUIESCE state 3027 * (which must be a legal transition). When the device is in this 3028 * state, only special requests will be accepted, all others will 3029 * be deferred. Since special requests may also be requeued requests, 3030 * a successful return doesn't guarantee the device will be 3031 * totally quiescent. 3032 * 3033 * Must be called with user context, may sleep. 3034 * 3035 * Returns zero if unsuccessful or an error if not. 3036 */ 3037 int 3038 scsi_device_quiesce(struct scsi_device *sdev) 3039 { 3040 struct request_queue *q = sdev->request_queue; 3041 int err; 3042 3043 /* 3044 * It is allowed to call scsi_device_quiesce() multiple times from 3045 * the same context but concurrent scsi_device_quiesce() calls are 3046 * not allowed. 3047 */ 3048 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 3049 3050 if (sdev->quiesced_by == current) 3051 return 0; 3052 3053 blk_set_pm_only(q); 3054 3055 blk_mq_freeze_queue(q); 3056 /* 3057 * Ensure that the effect of blk_set_pm_only() will be visible 3058 * for percpu_ref_tryget() callers that occur after the queue 3059 * unfreeze even if the queue was already frozen before this function 3060 * was called. See also https://lwn.net/Articles/573497/. 3061 */ 3062 synchronize_rcu(); 3063 blk_mq_unfreeze_queue(q); 3064 3065 mutex_lock(&sdev->state_mutex); 3066 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 3067 if (err == 0) 3068 sdev->quiesced_by = current; 3069 else 3070 blk_clear_pm_only(q); 3071 mutex_unlock(&sdev->state_mutex); 3072 3073 return err; 3074 } 3075 EXPORT_SYMBOL(scsi_device_quiesce); 3076 3077 /** 3078 * scsi_device_resume - Restart user issued commands to a quiesced device. 3079 * @sdev: scsi device to resume. 3080 * 3081 * Moves the device from quiesced back to running and restarts the 3082 * queues. 3083 * 3084 * Must be called with user context, may sleep. 3085 */ 3086 void scsi_device_resume(struct scsi_device *sdev) 3087 { 3088 /* check if the device state was mutated prior to resume, and if 3089 * so assume the state is being managed elsewhere (for example 3090 * device deleted during suspend) 3091 */ 3092 mutex_lock(&sdev->state_mutex); 3093 WARN_ON_ONCE(!sdev->quiesced_by); 3094 sdev->quiesced_by = NULL; 3095 blk_clear_pm_only(sdev->request_queue); 3096 if (sdev->sdev_state == SDEV_QUIESCE) 3097 scsi_device_set_state(sdev, SDEV_RUNNING); 3098 mutex_unlock(&sdev->state_mutex); 3099 } 3100 EXPORT_SYMBOL(scsi_device_resume); 3101 3102 static void 3103 device_quiesce_fn(struct scsi_device *sdev, void *data) 3104 { 3105 scsi_device_quiesce(sdev); 3106 } 3107 3108 void 3109 scsi_target_quiesce(struct scsi_target *starget) 3110 { 3111 starget_for_each_device(starget, NULL, device_quiesce_fn); 3112 } 3113 EXPORT_SYMBOL(scsi_target_quiesce); 3114 3115 static void 3116 device_resume_fn(struct scsi_device *sdev, void *data) 3117 { 3118 scsi_device_resume(sdev); 3119 } 3120 3121 void 3122 scsi_target_resume(struct scsi_target *starget) 3123 { 3124 starget_for_each_device(starget, NULL, device_resume_fn); 3125 } 3126 EXPORT_SYMBOL(scsi_target_resume); 3127 3128 /** 3129 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 3130 * @sdev: device to block 3131 * 3132 * Pause SCSI command processing on the specified device. Does not sleep. 3133 * 3134 * Returns zero if successful or a negative error code upon failure. 3135 * 3136 * Notes: 3137 * This routine transitions the device to the SDEV_BLOCK state (which must be 3138 * a legal transition). When the device is in this state, command processing 3139 * is paused until the device leaves the SDEV_BLOCK state. See also 3140 * scsi_internal_device_unblock_nowait(). 3141 */ 3142 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 3143 { 3144 struct request_queue *q = sdev->request_queue; 3145 unsigned long flags; 3146 int err = 0; 3147 3148 err = scsi_device_set_state(sdev, SDEV_BLOCK); 3149 if (err) { 3150 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 3151 3152 if (err) 3153 return err; 3154 } 3155 3156 /* 3157 * The device has transitioned to SDEV_BLOCK. Stop the 3158 * block layer from calling the midlayer with this device's 3159 * request queue. 3160 */ 3161 if (q->mq_ops) { 3162 blk_mq_quiesce_queue_nowait(q); 3163 } else { 3164 spin_lock_irqsave(q->queue_lock, flags); 3165 blk_stop_queue(q); 3166 spin_unlock_irqrestore(q->queue_lock, flags); 3167 } 3168 3169 return 0; 3170 } 3171 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3172 3173 /** 3174 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3175 * @sdev: device to block 3176 * 3177 * Pause SCSI command processing on the specified device and wait until all 3178 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3179 * 3180 * Returns zero if successful or a negative error code upon failure. 3181 * 3182 * Note: 3183 * This routine transitions the device to the SDEV_BLOCK state (which must be 3184 * a legal transition). When the device is in this state, command processing 3185 * is paused until the device leaves the SDEV_BLOCK state. See also 3186 * scsi_internal_device_unblock(). 3187 * 3188 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3189 * scsi_internal_device_block() has blocked a SCSI device and also 3190 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3191 */ 3192 static int scsi_internal_device_block(struct scsi_device *sdev) 3193 { 3194 struct request_queue *q = sdev->request_queue; 3195 int err; 3196 3197 mutex_lock(&sdev->state_mutex); 3198 err = scsi_internal_device_block_nowait(sdev); 3199 if (err == 0) { 3200 if (q->mq_ops) 3201 blk_mq_quiesce_queue(q); 3202 else 3203 scsi_wait_for_queuecommand(sdev); 3204 } 3205 mutex_unlock(&sdev->state_mutex); 3206 3207 return err; 3208 } 3209 3210 void scsi_start_queue(struct scsi_device *sdev) 3211 { 3212 struct request_queue *q = sdev->request_queue; 3213 unsigned long flags; 3214 3215 if (q->mq_ops) { 3216 blk_mq_unquiesce_queue(q); 3217 } else { 3218 spin_lock_irqsave(q->queue_lock, flags); 3219 blk_start_queue(q); 3220 spin_unlock_irqrestore(q->queue_lock, flags); 3221 } 3222 } 3223 3224 /** 3225 * scsi_internal_device_unblock_nowait - resume a device after a block request 3226 * @sdev: device to resume 3227 * @new_state: state to set the device to after unblocking 3228 * 3229 * Restart the device queue for a previously suspended SCSI device. Does not 3230 * sleep. 3231 * 3232 * Returns zero if successful or a negative error code upon failure. 3233 * 3234 * Notes: 3235 * This routine transitions the device to the SDEV_RUNNING state or to one of 3236 * the offline states (which must be a legal transition) allowing the midlayer 3237 * to goose the queue for this device. 3238 */ 3239 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3240 enum scsi_device_state new_state) 3241 { 3242 /* 3243 * Try to transition the scsi device to SDEV_RUNNING or one of the 3244 * offlined states and goose the device queue if successful. 3245 */ 3246 switch (sdev->sdev_state) { 3247 case SDEV_BLOCK: 3248 case SDEV_TRANSPORT_OFFLINE: 3249 sdev->sdev_state = new_state; 3250 break; 3251 case SDEV_CREATED_BLOCK: 3252 if (new_state == SDEV_TRANSPORT_OFFLINE || 3253 new_state == SDEV_OFFLINE) 3254 sdev->sdev_state = new_state; 3255 else 3256 sdev->sdev_state = SDEV_CREATED; 3257 break; 3258 case SDEV_CANCEL: 3259 case SDEV_OFFLINE: 3260 break; 3261 default: 3262 return -EINVAL; 3263 } 3264 scsi_start_queue(sdev); 3265 3266 return 0; 3267 } 3268 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3269 3270 /** 3271 * scsi_internal_device_unblock - resume a device after a block request 3272 * @sdev: device to resume 3273 * @new_state: state to set the device to after unblocking 3274 * 3275 * Restart the device queue for a previously suspended SCSI device. May sleep. 3276 * 3277 * Returns zero if successful or a negative error code upon failure. 3278 * 3279 * Notes: 3280 * This routine transitions the device to the SDEV_RUNNING state or to one of 3281 * the offline states (which must be a legal transition) allowing the midlayer 3282 * to goose the queue for this device. 3283 */ 3284 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3285 enum scsi_device_state new_state) 3286 { 3287 int ret; 3288 3289 mutex_lock(&sdev->state_mutex); 3290 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3291 mutex_unlock(&sdev->state_mutex); 3292 3293 return ret; 3294 } 3295 3296 static void 3297 device_block(struct scsi_device *sdev, void *data) 3298 { 3299 scsi_internal_device_block(sdev); 3300 } 3301 3302 static int 3303 target_block(struct device *dev, void *data) 3304 { 3305 if (scsi_is_target_device(dev)) 3306 starget_for_each_device(to_scsi_target(dev), NULL, 3307 device_block); 3308 return 0; 3309 } 3310 3311 void 3312 scsi_target_block(struct device *dev) 3313 { 3314 if (scsi_is_target_device(dev)) 3315 starget_for_each_device(to_scsi_target(dev), NULL, 3316 device_block); 3317 else 3318 device_for_each_child(dev, NULL, target_block); 3319 } 3320 EXPORT_SYMBOL_GPL(scsi_target_block); 3321 3322 static void 3323 device_unblock(struct scsi_device *sdev, void *data) 3324 { 3325 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3326 } 3327 3328 static int 3329 target_unblock(struct device *dev, void *data) 3330 { 3331 if (scsi_is_target_device(dev)) 3332 starget_for_each_device(to_scsi_target(dev), data, 3333 device_unblock); 3334 return 0; 3335 } 3336 3337 void 3338 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3339 { 3340 if (scsi_is_target_device(dev)) 3341 starget_for_each_device(to_scsi_target(dev), &new_state, 3342 device_unblock); 3343 else 3344 device_for_each_child(dev, &new_state, target_unblock); 3345 } 3346 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3347 3348 /** 3349 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3350 * @sgl: scatter-gather list 3351 * @sg_count: number of segments in sg 3352 * @offset: offset in bytes into sg, on return offset into the mapped area 3353 * @len: bytes to map, on return number of bytes mapped 3354 * 3355 * Returns virtual address of the start of the mapped page 3356 */ 3357 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3358 size_t *offset, size_t *len) 3359 { 3360 int i; 3361 size_t sg_len = 0, len_complete = 0; 3362 struct scatterlist *sg; 3363 struct page *page; 3364 3365 WARN_ON(!irqs_disabled()); 3366 3367 for_each_sg(sgl, sg, sg_count, i) { 3368 len_complete = sg_len; /* Complete sg-entries */ 3369 sg_len += sg->length; 3370 if (sg_len > *offset) 3371 break; 3372 } 3373 3374 if (unlikely(i == sg_count)) { 3375 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3376 "elements %d\n", 3377 __func__, sg_len, *offset, sg_count); 3378 WARN_ON(1); 3379 return NULL; 3380 } 3381 3382 /* Offset starting from the beginning of first page in this sg-entry */ 3383 *offset = *offset - len_complete + sg->offset; 3384 3385 /* Assumption: contiguous pages can be accessed as "page + i" */ 3386 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3387 *offset &= ~PAGE_MASK; 3388 3389 /* Bytes in this sg-entry from *offset to the end of the page */ 3390 sg_len = PAGE_SIZE - *offset; 3391 if (*len > sg_len) 3392 *len = sg_len; 3393 3394 return kmap_atomic(page); 3395 } 3396 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3397 3398 /** 3399 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3400 * @virt: virtual address to be unmapped 3401 */ 3402 void scsi_kunmap_atomic_sg(void *virt) 3403 { 3404 kunmap_atomic(virt); 3405 } 3406 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3407 3408 void sdev_disable_disk_events(struct scsi_device *sdev) 3409 { 3410 atomic_inc(&sdev->disk_events_disable_depth); 3411 } 3412 EXPORT_SYMBOL(sdev_disable_disk_events); 3413 3414 void sdev_enable_disk_events(struct scsi_device *sdev) 3415 { 3416 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3417 return; 3418 atomic_dec(&sdev->disk_events_disable_depth); 3419 } 3420 EXPORT_SYMBOL(sdev_enable_disk_events); 3421 3422 /** 3423 * scsi_vpd_lun_id - return a unique device identification 3424 * @sdev: SCSI device 3425 * @id: buffer for the identification 3426 * @id_len: length of the buffer 3427 * 3428 * Copies a unique device identification into @id based 3429 * on the information in the VPD page 0x83 of the device. 3430 * The string will be formatted as a SCSI name string. 3431 * 3432 * Returns the length of the identification or error on failure. 3433 * If the identifier is longer than the supplied buffer the actual 3434 * identifier length is returned and the buffer is not zero-padded. 3435 */ 3436 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3437 { 3438 u8 cur_id_type = 0xff; 3439 u8 cur_id_size = 0; 3440 const unsigned char *d, *cur_id_str; 3441 const struct scsi_vpd *vpd_pg83; 3442 int id_size = -EINVAL; 3443 3444 rcu_read_lock(); 3445 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3446 if (!vpd_pg83) { 3447 rcu_read_unlock(); 3448 return -ENXIO; 3449 } 3450 3451 /* 3452 * Look for the correct descriptor. 3453 * Order of preference for lun descriptor: 3454 * - SCSI name string 3455 * - NAA IEEE Registered Extended 3456 * - EUI-64 based 16-byte 3457 * - EUI-64 based 12-byte 3458 * - NAA IEEE Registered 3459 * - NAA IEEE Extended 3460 * - T10 Vendor ID 3461 * as longer descriptors reduce the likelyhood 3462 * of identification clashes. 3463 */ 3464 3465 /* The id string must be at least 20 bytes + terminating NULL byte */ 3466 if (id_len < 21) { 3467 rcu_read_unlock(); 3468 return -EINVAL; 3469 } 3470 3471 memset(id, 0, id_len); 3472 d = vpd_pg83->data + 4; 3473 while (d < vpd_pg83->data + vpd_pg83->len) { 3474 /* Skip designators not referring to the LUN */ 3475 if ((d[1] & 0x30) != 0x00) 3476 goto next_desig; 3477 3478 switch (d[1] & 0xf) { 3479 case 0x1: 3480 /* T10 Vendor ID */ 3481 if (cur_id_size > d[3]) 3482 break; 3483 /* Prefer anything */ 3484 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3485 break; 3486 cur_id_size = d[3]; 3487 if (cur_id_size + 4 > id_len) 3488 cur_id_size = id_len - 4; 3489 cur_id_str = d + 4; 3490 cur_id_type = d[1] & 0xf; 3491 id_size = snprintf(id, id_len, "t10.%*pE", 3492 cur_id_size, cur_id_str); 3493 break; 3494 case 0x2: 3495 /* EUI-64 */ 3496 if (cur_id_size > d[3]) 3497 break; 3498 /* Prefer NAA IEEE Registered Extended */ 3499 if (cur_id_type == 0x3 && 3500 cur_id_size == d[3]) 3501 break; 3502 cur_id_size = d[3]; 3503 cur_id_str = d + 4; 3504 cur_id_type = d[1] & 0xf; 3505 switch (cur_id_size) { 3506 case 8: 3507 id_size = snprintf(id, id_len, 3508 "eui.%8phN", 3509 cur_id_str); 3510 break; 3511 case 12: 3512 id_size = snprintf(id, id_len, 3513 "eui.%12phN", 3514 cur_id_str); 3515 break; 3516 case 16: 3517 id_size = snprintf(id, id_len, 3518 "eui.%16phN", 3519 cur_id_str); 3520 break; 3521 default: 3522 cur_id_size = 0; 3523 break; 3524 } 3525 break; 3526 case 0x3: 3527 /* NAA */ 3528 if (cur_id_size > d[3]) 3529 break; 3530 cur_id_size = d[3]; 3531 cur_id_str = d + 4; 3532 cur_id_type = d[1] & 0xf; 3533 switch (cur_id_size) { 3534 case 8: 3535 id_size = snprintf(id, id_len, 3536 "naa.%8phN", 3537 cur_id_str); 3538 break; 3539 case 16: 3540 id_size = snprintf(id, id_len, 3541 "naa.%16phN", 3542 cur_id_str); 3543 break; 3544 default: 3545 cur_id_size = 0; 3546 break; 3547 } 3548 break; 3549 case 0x8: 3550 /* SCSI name string */ 3551 if (cur_id_size + 4 > d[3]) 3552 break; 3553 /* Prefer others for truncated descriptor */ 3554 if (cur_id_size && d[3] > id_len) 3555 break; 3556 cur_id_size = id_size = d[3]; 3557 cur_id_str = d + 4; 3558 cur_id_type = d[1] & 0xf; 3559 if (cur_id_size >= id_len) 3560 cur_id_size = id_len - 1; 3561 memcpy(id, cur_id_str, cur_id_size); 3562 /* Decrease priority for truncated descriptor */ 3563 if (cur_id_size != id_size) 3564 cur_id_size = 6; 3565 break; 3566 default: 3567 break; 3568 } 3569 next_desig: 3570 d += d[3] + 4; 3571 } 3572 rcu_read_unlock(); 3573 3574 return id_size; 3575 } 3576 EXPORT_SYMBOL(scsi_vpd_lun_id); 3577 3578 /* 3579 * scsi_vpd_tpg_id - return a target port group identifier 3580 * @sdev: SCSI device 3581 * 3582 * Returns the Target Port Group identifier from the information 3583 * froom VPD page 0x83 of the device. 3584 * 3585 * Returns the identifier or error on failure. 3586 */ 3587 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3588 { 3589 const unsigned char *d; 3590 const struct scsi_vpd *vpd_pg83; 3591 int group_id = -EAGAIN, rel_port = -1; 3592 3593 rcu_read_lock(); 3594 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3595 if (!vpd_pg83) { 3596 rcu_read_unlock(); 3597 return -ENXIO; 3598 } 3599 3600 d = vpd_pg83->data + 4; 3601 while (d < vpd_pg83->data + vpd_pg83->len) { 3602 switch (d[1] & 0xf) { 3603 case 0x4: 3604 /* Relative target port */ 3605 rel_port = get_unaligned_be16(&d[6]); 3606 break; 3607 case 0x5: 3608 /* Target port group */ 3609 group_id = get_unaligned_be16(&d[6]); 3610 break; 3611 default: 3612 break; 3613 } 3614 d += d[3] + 4; 3615 } 3616 rcu_read_unlock(); 3617 3618 if (group_id >= 0 && rel_id && rel_port != -1) 3619 *rel_id = rel_port; 3620 3621 return group_id; 3622 } 3623 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3624