1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static struct kmem_cache *scsi_sense_isadma_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 static inline struct kmem_cache * 62 scsi_select_sense_cache(bool unchecked_isa_dma) 63 { 64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 65 } 66 67 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 68 unsigned char *sense_buffer) 69 { 70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 71 sense_buffer); 72 } 73 74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 75 gfp_t gfp_mask, int numa_node) 76 { 77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 78 gfp_mask, numa_node); 79 } 80 81 int scsi_init_sense_cache(struct Scsi_Host *shost) 82 { 83 struct kmem_cache *cache; 84 int ret = 0; 85 86 mutex_lock(&scsi_sense_cache_mutex); 87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 88 if (cache) 89 goto exit; 90 91 if (shost->unchecked_isa_dma) { 92 scsi_sense_isadma_cache = 93 kmem_cache_create("scsi_sense_cache(DMA)", 94 SCSI_SENSE_BUFFERSIZE, 0, 95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 96 if (!scsi_sense_isadma_cache) 97 ret = -ENOMEM; 98 } else { 99 scsi_sense_cache = 100 kmem_cache_create_usercopy("scsi_sense_cache", 101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 102 0, SCSI_SENSE_BUFFERSIZE, NULL); 103 if (!scsi_sense_cache) 104 ret = -ENOMEM; 105 } 106 exit: 107 mutex_unlock(&scsi_sense_cache_mutex); 108 return ret; 109 } 110 111 /* 112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 113 * not change behaviour from the previous unplug mechanism, experimentation 114 * may prove this needs changing. 115 */ 116 #define SCSI_QUEUE_DELAY 3 117 118 static void 119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 120 { 121 struct Scsi_Host *host = cmd->device->host; 122 struct scsi_device *device = cmd->device; 123 struct scsi_target *starget = scsi_target(device); 124 125 /* 126 * Set the appropriate busy bit for the device/host. 127 * 128 * If the host/device isn't busy, assume that something actually 129 * completed, and that we should be able to queue a command now. 130 * 131 * Note that the prior mid-layer assumption that any host could 132 * always queue at least one command is now broken. The mid-layer 133 * will implement a user specifiable stall (see 134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 135 * if a command is requeued with no other commands outstanding 136 * either for the device or for the host. 137 */ 138 switch (reason) { 139 case SCSI_MLQUEUE_HOST_BUSY: 140 atomic_set(&host->host_blocked, host->max_host_blocked); 141 break; 142 case SCSI_MLQUEUE_DEVICE_BUSY: 143 case SCSI_MLQUEUE_EH_RETRY: 144 atomic_set(&device->device_blocked, 145 device->max_device_blocked); 146 break; 147 case SCSI_MLQUEUE_TARGET_BUSY: 148 atomic_set(&starget->target_blocked, 149 starget->max_target_blocked); 150 break; 151 } 152 } 153 154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 155 { 156 if (cmd->request->rq_flags & RQF_DONTPREP) { 157 cmd->request->rq_flags &= ~RQF_DONTPREP; 158 scsi_mq_uninit_cmd(cmd); 159 } else { 160 WARN_ON_ONCE(true); 161 } 162 blk_mq_requeue_request(cmd->request, true); 163 } 164 165 /** 166 * __scsi_queue_insert - private queue insertion 167 * @cmd: The SCSI command being requeued 168 * @reason: The reason for the requeue 169 * @unbusy: Whether the queue should be unbusied 170 * 171 * This is a private queue insertion. The public interface 172 * scsi_queue_insert() always assumes the queue should be unbusied 173 * because it's always called before the completion. This function is 174 * for a requeue after completion, which should only occur in this 175 * file. 176 */ 177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 178 { 179 struct scsi_device *device = cmd->device; 180 181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 182 "Inserting command %p into mlqueue\n", cmd)); 183 184 scsi_set_blocked(cmd, reason); 185 186 /* 187 * Decrement the counters, since these commands are no longer 188 * active on the host/device. 189 */ 190 if (unbusy) 191 scsi_device_unbusy(device, cmd); 192 193 /* 194 * Requeue this command. It will go before all other commands 195 * that are already in the queue. Schedule requeue work under 196 * lock such that the kblockd_schedule_work() call happens 197 * before blk_cleanup_queue() finishes. 198 */ 199 cmd->result = 0; 200 201 blk_mq_requeue_request(cmd->request, true); 202 } 203 204 /** 205 * scsi_queue_insert - Reinsert a command in the queue. 206 * @cmd: command that we are adding to queue. 207 * @reason: why we are inserting command to queue. 208 * 209 * We do this for one of two cases. Either the host is busy and it cannot accept 210 * any more commands for the time being, or the device returned QUEUE_FULL and 211 * can accept no more commands. 212 * 213 * Context: This could be called either from an interrupt context or a normal 214 * process context. 215 */ 216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 217 { 218 __scsi_queue_insert(cmd, reason, true); 219 } 220 221 222 /** 223 * __scsi_execute - insert request and wait for the result 224 * @sdev: scsi device 225 * @cmd: scsi command 226 * @data_direction: data direction 227 * @buffer: data buffer 228 * @bufflen: len of buffer 229 * @sense: optional sense buffer 230 * @sshdr: optional decoded sense header 231 * @timeout: request timeout in seconds 232 * @retries: number of times to retry request 233 * @flags: flags for ->cmd_flags 234 * @rq_flags: flags for ->rq_flags 235 * @resid: optional residual length 236 * 237 * Returns the scsi_cmnd result field if a command was executed, or a negative 238 * Linux error code if we didn't get that far. 239 */ 240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 241 int data_direction, void *buffer, unsigned bufflen, 242 unsigned char *sense, struct scsi_sense_hdr *sshdr, 243 int timeout, int retries, u64 flags, req_flags_t rq_flags, 244 int *resid) 245 { 246 struct request *req; 247 struct scsi_request *rq; 248 int ret = DRIVER_ERROR << 24; 249 250 req = blk_get_request(sdev->request_queue, 251 data_direction == DMA_TO_DEVICE ? 252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, 253 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 254 if (IS_ERR(req)) 255 return ret; 256 rq = scsi_req(req); 257 258 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 259 buffer, bufflen, GFP_NOIO)) 260 goto out; 261 262 rq->cmd_len = COMMAND_SIZE(cmd[0]); 263 memcpy(rq->cmd, cmd, rq->cmd_len); 264 rq->retries = retries; 265 req->timeout = timeout; 266 req->cmd_flags |= flags; 267 req->rq_flags |= rq_flags | RQF_QUIET; 268 269 /* 270 * head injection *required* here otherwise quiesce won't work 271 */ 272 blk_execute_rq(NULL, req, 1); 273 274 /* 275 * Some devices (USB mass-storage in particular) may transfer 276 * garbage data together with a residue indicating that the data 277 * is invalid. Prevent the garbage from being misinterpreted 278 * and prevent security leaks by zeroing out the excess data. 279 */ 280 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 281 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 282 283 if (resid) 284 *resid = rq->resid_len; 285 if (sense && rq->sense_len) 286 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 287 if (sshdr) 288 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 289 ret = rq->result; 290 out: 291 blk_put_request(req); 292 293 return ret; 294 } 295 EXPORT_SYMBOL(__scsi_execute); 296 297 /* 298 * Wake up the error handler if necessary. Avoid as follows that the error 299 * handler is not woken up if host in-flight requests number == 300 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 301 * with an RCU read lock in this function to ensure that this function in 302 * its entirety either finishes before scsi_eh_scmd_add() increases the 303 * host_failed counter or that it notices the shost state change made by 304 * scsi_eh_scmd_add(). 305 */ 306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 307 { 308 unsigned long flags; 309 310 rcu_read_lock(); 311 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 312 if (unlikely(scsi_host_in_recovery(shost))) { 313 spin_lock_irqsave(shost->host_lock, flags); 314 if (shost->host_failed || shost->host_eh_scheduled) 315 scsi_eh_wakeup(shost); 316 spin_unlock_irqrestore(shost->host_lock, flags); 317 } 318 rcu_read_unlock(); 319 } 320 321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 322 { 323 struct Scsi_Host *shost = sdev->host; 324 struct scsi_target *starget = scsi_target(sdev); 325 326 scsi_dec_host_busy(shost, cmd); 327 328 if (starget->can_queue > 0) 329 atomic_dec(&starget->target_busy); 330 331 atomic_dec(&sdev->device_busy); 332 } 333 334 static void scsi_kick_queue(struct request_queue *q) 335 { 336 blk_mq_run_hw_queues(q, false); 337 } 338 339 /* 340 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 341 * and call blk_run_queue for all the scsi_devices on the target - 342 * including current_sdev first. 343 * 344 * Called with *no* scsi locks held. 345 */ 346 static void scsi_single_lun_run(struct scsi_device *current_sdev) 347 { 348 struct Scsi_Host *shost = current_sdev->host; 349 struct scsi_device *sdev, *tmp; 350 struct scsi_target *starget = scsi_target(current_sdev); 351 unsigned long flags; 352 353 spin_lock_irqsave(shost->host_lock, flags); 354 starget->starget_sdev_user = NULL; 355 spin_unlock_irqrestore(shost->host_lock, flags); 356 357 /* 358 * Call blk_run_queue for all LUNs on the target, starting with 359 * current_sdev. We race with others (to set starget_sdev_user), 360 * but in most cases, we will be first. Ideally, each LU on the 361 * target would get some limited time or requests on the target. 362 */ 363 scsi_kick_queue(current_sdev->request_queue); 364 365 spin_lock_irqsave(shost->host_lock, flags); 366 if (starget->starget_sdev_user) 367 goto out; 368 list_for_each_entry_safe(sdev, tmp, &starget->devices, 369 same_target_siblings) { 370 if (sdev == current_sdev) 371 continue; 372 if (scsi_device_get(sdev)) 373 continue; 374 375 spin_unlock_irqrestore(shost->host_lock, flags); 376 scsi_kick_queue(sdev->request_queue); 377 spin_lock_irqsave(shost->host_lock, flags); 378 379 scsi_device_put(sdev); 380 } 381 out: 382 spin_unlock_irqrestore(shost->host_lock, flags); 383 } 384 385 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 386 { 387 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 388 return true; 389 if (atomic_read(&sdev->device_blocked) > 0) 390 return true; 391 return false; 392 } 393 394 static inline bool scsi_target_is_busy(struct scsi_target *starget) 395 { 396 if (starget->can_queue > 0) { 397 if (atomic_read(&starget->target_busy) >= starget->can_queue) 398 return true; 399 if (atomic_read(&starget->target_blocked) > 0) 400 return true; 401 } 402 return false; 403 } 404 405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 406 { 407 if (atomic_read(&shost->host_blocked) > 0) 408 return true; 409 if (shost->host_self_blocked) 410 return true; 411 return false; 412 } 413 414 static void scsi_starved_list_run(struct Scsi_Host *shost) 415 { 416 LIST_HEAD(starved_list); 417 struct scsi_device *sdev; 418 unsigned long flags; 419 420 spin_lock_irqsave(shost->host_lock, flags); 421 list_splice_init(&shost->starved_list, &starved_list); 422 423 while (!list_empty(&starved_list)) { 424 struct request_queue *slq; 425 426 /* 427 * As long as shost is accepting commands and we have 428 * starved queues, call blk_run_queue. scsi_request_fn 429 * drops the queue_lock and can add us back to the 430 * starved_list. 431 * 432 * host_lock protects the starved_list and starved_entry. 433 * scsi_request_fn must get the host_lock before checking 434 * or modifying starved_list or starved_entry. 435 */ 436 if (scsi_host_is_busy(shost)) 437 break; 438 439 sdev = list_entry(starved_list.next, 440 struct scsi_device, starved_entry); 441 list_del_init(&sdev->starved_entry); 442 if (scsi_target_is_busy(scsi_target(sdev))) { 443 list_move_tail(&sdev->starved_entry, 444 &shost->starved_list); 445 continue; 446 } 447 448 /* 449 * Once we drop the host lock, a racing scsi_remove_device() 450 * call may remove the sdev from the starved list and destroy 451 * it and the queue. Mitigate by taking a reference to the 452 * queue and never touching the sdev again after we drop the 453 * host lock. Note: if __scsi_remove_device() invokes 454 * blk_cleanup_queue() before the queue is run from this 455 * function then blk_run_queue() will return immediately since 456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 457 */ 458 slq = sdev->request_queue; 459 if (!blk_get_queue(slq)) 460 continue; 461 spin_unlock_irqrestore(shost->host_lock, flags); 462 463 scsi_kick_queue(slq); 464 blk_put_queue(slq); 465 466 spin_lock_irqsave(shost->host_lock, flags); 467 } 468 /* put any unprocessed entries back */ 469 list_splice(&starved_list, &shost->starved_list); 470 spin_unlock_irqrestore(shost->host_lock, flags); 471 } 472 473 /** 474 * scsi_run_queue - Select a proper request queue to serve next. 475 * @q: last request's queue 476 * 477 * The previous command was completely finished, start a new one if possible. 478 */ 479 static void scsi_run_queue(struct request_queue *q) 480 { 481 struct scsi_device *sdev = q->queuedata; 482 483 if (scsi_target(sdev)->single_lun) 484 scsi_single_lun_run(sdev); 485 if (!list_empty(&sdev->host->starved_list)) 486 scsi_starved_list_run(sdev->host); 487 488 blk_mq_run_hw_queues(q, false); 489 } 490 491 void scsi_requeue_run_queue(struct work_struct *work) 492 { 493 struct scsi_device *sdev; 494 struct request_queue *q; 495 496 sdev = container_of(work, struct scsi_device, requeue_work); 497 q = sdev->request_queue; 498 scsi_run_queue(q); 499 } 500 501 void scsi_run_host_queues(struct Scsi_Host *shost) 502 { 503 struct scsi_device *sdev; 504 505 shost_for_each_device(sdev, shost) 506 scsi_run_queue(sdev->request_queue); 507 } 508 509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 510 { 511 if (!blk_rq_is_passthrough(cmd->request)) { 512 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 513 514 if (drv->uninit_command) 515 drv->uninit_command(cmd); 516 } 517 } 518 519 void scsi_free_sgtables(struct scsi_cmnd *cmd) 520 { 521 if (cmd->sdb.table.nents) 522 sg_free_table_chained(&cmd->sdb.table, 523 SCSI_INLINE_SG_CNT); 524 if (scsi_prot_sg_count(cmd)) 525 sg_free_table_chained(&cmd->prot_sdb->table, 526 SCSI_INLINE_PROT_SG_CNT); 527 } 528 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 529 530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 531 { 532 scsi_free_sgtables(cmd); 533 scsi_uninit_cmd(cmd); 534 } 535 536 static void scsi_run_queue_async(struct scsi_device *sdev) 537 { 538 if (scsi_target(sdev)->single_lun || 539 !list_empty(&sdev->host->starved_list)) { 540 kblockd_schedule_work(&sdev->requeue_work); 541 } else { 542 /* 543 * smp_mb() present in sbitmap_queue_clear() or implied in 544 * .end_io is for ordering writing .device_busy in 545 * scsi_device_unbusy() and reading sdev->restarts. 546 */ 547 int old = atomic_read(&sdev->restarts); 548 549 /* 550 * ->restarts has to be kept as non-zero if new budget 551 * contention occurs. 552 * 553 * No need to run queue when either another re-run 554 * queue wins in updating ->restarts or a new budget 555 * contention occurs. 556 */ 557 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 558 blk_mq_run_hw_queues(sdev->request_queue, true); 559 } 560 } 561 562 /* Returns false when no more bytes to process, true if there are more */ 563 static bool scsi_end_request(struct request *req, blk_status_t error, 564 unsigned int bytes) 565 { 566 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 567 struct scsi_device *sdev = cmd->device; 568 struct request_queue *q = sdev->request_queue; 569 570 if (blk_update_request(req, error, bytes)) 571 return true; 572 573 if (blk_queue_add_random(q)) 574 add_disk_randomness(req->rq_disk); 575 576 if (!blk_rq_is_scsi(req)) { 577 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 578 cmd->flags &= ~SCMD_INITIALIZED; 579 } 580 581 /* 582 * Calling rcu_barrier() is not necessary here because the 583 * SCSI error handler guarantees that the function called by 584 * call_rcu() has been called before scsi_end_request() is 585 * called. 586 */ 587 destroy_rcu_head(&cmd->rcu); 588 589 /* 590 * In the MQ case the command gets freed by __blk_mq_end_request, 591 * so we have to do all cleanup that depends on it earlier. 592 * 593 * We also can't kick the queues from irq context, so we 594 * will have to defer it to a workqueue. 595 */ 596 scsi_mq_uninit_cmd(cmd); 597 598 /* 599 * queue is still alive, so grab the ref for preventing it 600 * from being cleaned up during running queue. 601 */ 602 percpu_ref_get(&q->q_usage_counter); 603 604 __blk_mq_end_request(req, error); 605 606 scsi_run_queue_async(sdev); 607 608 percpu_ref_put(&q->q_usage_counter); 609 return false; 610 } 611 612 /** 613 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 614 * @cmd: SCSI command 615 * @result: scsi error code 616 * 617 * Translate a SCSI result code into a blk_status_t value. May reset the host 618 * byte of @cmd->result. 619 */ 620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 621 { 622 switch (host_byte(result)) { 623 case DID_OK: 624 /* 625 * Also check the other bytes than the status byte in result 626 * to handle the case when a SCSI LLD sets result to 627 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 628 */ 629 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 630 return BLK_STS_OK; 631 return BLK_STS_IOERR; 632 case DID_TRANSPORT_FAILFAST: 633 case DID_TRANSPORT_MARGINAL: 634 return BLK_STS_TRANSPORT; 635 case DID_TARGET_FAILURE: 636 set_host_byte(cmd, DID_OK); 637 return BLK_STS_TARGET; 638 case DID_NEXUS_FAILURE: 639 set_host_byte(cmd, DID_OK); 640 return BLK_STS_NEXUS; 641 case DID_ALLOC_FAILURE: 642 set_host_byte(cmd, DID_OK); 643 return BLK_STS_NOSPC; 644 case DID_MEDIUM_ERROR: 645 set_host_byte(cmd, DID_OK); 646 return BLK_STS_MEDIUM; 647 default: 648 return BLK_STS_IOERR; 649 } 650 } 651 652 /* Helper for scsi_io_completion() when "reprep" action required. */ 653 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 654 struct request_queue *q) 655 { 656 /* A new command will be prepared and issued. */ 657 scsi_mq_requeue_cmd(cmd); 658 } 659 660 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 661 { 662 struct request *req = cmd->request; 663 unsigned long wait_for; 664 665 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 666 return false; 667 668 wait_for = (cmd->allowed + 1) * req->timeout; 669 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 670 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 671 wait_for/HZ); 672 return true; 673 } 674 return false; 675 } 676 677 /* Helper for scsi_io_completion() when special action required. */ 678 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 679 { 680 struct request_queue *q = cmd->device->request_queue; 681 struct request *req = cmd->request; 682 int level = 0; 683 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 684 ACTION_DELAYED_RETRY} action; 685 struct scsi_sense_hdr sshdr; 686 bool sense_valid; 687 bool sense_current = true; /* false implies "deferred sense" */ 688 blk_status_t blk_stat; 689 690 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 691 if (sense_valid) 692 sense_current = !scsi_sense_is_deferred(&sshdr); 693 694 blk_stat = scsi_result_to_blk_status(cmd, result); 695 696 if (host_byte(result) == DID_RESET) { 697 /* Third party bus reset or reset for error recovery 698 * reasons. Just retry the command and see what 699 * happens. 700 */ 701 action = ACTION_RETRY; 702 } else if (sense_valid && sense_current) { 703 switch (sshdr.sense_key) { 704 case UNIT_ATTENTION: 705 if (cmd->device->removable) { 706 /* Detected disc change. Set a bit 707 * and quietly refuse further access. 708 */ 709 cmd->device->changed = 1; 710 action = ACTION_FAIL; 711 } else { 712 /* Must have been a power glitch, or a 713 * bus reset. Could not have been a 714 * media change, so we just retry the 715 * command and see what happens. 716 */ 717 action = ACTION_RETRY; 718 } 719 break; 720 case ILLEGAL_REQUEST: 721 /* If we had an ILLEGAL REQUEST returned, then 722 * we may have performed an unsupported 723 * command. The only thing this should be 724 * would be a ten byte read where only a six 725 * byte read was supported. Also, on a system 726 * where READ CAPACITY failed, we may have 727 * read past the end of the disk. 728 */ 729 if ((cmd->device->use_10_for_rw && 730 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 731 (cmd->cmnd[0] == READ_10 || 732 cmd->cmnd[0] == WRITE_10)) { 733 /* This will issue a new 6-byte command. */ 734 cmd->device->use_10_for_rw = 0; 735 action = ACTION_REPREP; 736 } else if (sshdr.asc == 0x10) /* DIX */ { 737 action = ACTION_FAIL; 738 blk_stat = BLK_STS_PROTECTION; 739 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 740 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 741 action = ACTION_FAIL; 742 blk_stat = BLK_STS_TARGET; 743 } else 744 action = ACTION_FAIL; 745 break; 746 case ABORTED_COMMAND: 747 action = ACTION_FAIL; 748 if (sshdr.asc == 0x10) /* DIF */ 749 blk_stat = BLK_STS_PROTECTION; 750 break; 751 case NOT_READY: 752 /* If the device is in the process of becoming 753 * ready, or has a temporary blockage, retry. 754 */ 755 if (sshdr.asc == 0x04) { 756 switch (sshdr.ascq) { 757 case 0x01: /* becoming ready */ 758 case 0x04: /* format in progress */ 759 case 0x05: /* rebuild in progress */ 760 case 0x06: /* recalculation in progress */ 761 case 0x07: /* operation in progress */ 762 case 0x08: /* Long write in progress */ 763 case 0x09: /* self test in progress */ 764 case 0x14: /* space allocation in progress */ 765 case 0x1a: /* start stop unit in progress */ 766 case 0x1b: /* sanitize in progress */ 767 case 0x1d: /* configuration in progress */ 768 case 0x24: /* depopulation in progress */ 769 action = ACTION_DELAYED_RETRY; 770 break; 771 case 0x0a: /* ALUA state transition */ 772 blk_stat = BLK_STS_AGAIN; 773 fallthrough; 774 default: 775 action = ACTION_FAIL; 776 break; 777 } 778 } else 779 action = ACTION_FAIL; 780 break; 781 case VOLUME_OVERFLOW: 782 /* See SSC3rXX or current. */ 783 action = ACTION_FAIL; 784 break; 785 case DATA_PROTECT: 786 action = ACTION_FAIL; 787 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 788 (sshdr.asc == 0x55 && 789 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 790 /* Insufficient zone resources */ 791 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 792 } 793 break; 794 default: 795 action = ACTION_FAIL; 796 break; 797 } 798 } else 799 action = ACTION_FAIL; 800 801 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 802 action = ACTION_FAIL; 803 804 switch (action) { 805 case ACTION_FAIL: 806 /* Give up and fail the remainder of the request */ 807 if (!(req->rq_flags & RQF_QUIET)) { 808 static DEFINE_RATELIMIT_STATE(_rs, 809 DEFAULT_RATELIMIT_INTERVAL, 810 DEFAULT_RATELIMIT_BURST); 811 812 if (unlikely(scsi_logging_level)) 813 level = 814 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 815 SCSI_LOG_MLCOMPLETE_BITS); 816 817 /* 818 * if logging is enabled the failure will be printed 819 * in scsi_log_completion(), so avoid duplicate messages 820 */ 821 if (!level && __ratelimit(&_rs)) { 822 scsi_print_result(cmd, NULL, FAILED); 823 if (driver_byte(result) == DRIVER_SENSE) 824 scsi_print_sense(cmd); 825 scsi_print_command(cmd); 826 } 827 } 828 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 829 return; 830 fallthrough; 831 case ACTION_REPREP: 832 scsi_io_completion_reprep(cmd, q); 833 break; 834 case ACTION_RETRY: 835 /* Retry the same command immediately */ 836 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 837 break; 838 case ACTION_DELAYED_RETRY: 839 /* Retry the same command after a delay */ 840 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 841 break; 842 } 843 } 844 845 /* 846 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 847 * new result that may suppress further error checking. Also modifies 848 * *blk_statp in some cases. 849 */ 850 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 851 blk_status_t *blk_statp) 852 { 853 bool sense_valid; 854 bool sense_current = true; /* false implies "deferred sense" */ 855 struct request *req = cmd->request; 856 struct scsi_sense_hdr sshdr; 857 858 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 859 if (sense_valid) 860 sense_current = !scsi_sense_is_deferred(&sshdr); 861 862 if (blk_rq_is_passthrough(req)) { 863 if (sense_valid) { 864 /* 865 * SG_IO wants current and deferred errors 866 */ 867 scsi_req(req)->sense_len = 868 min(8 + cmd->sense_buffer[7], 869 SCSI_SENSE_BUFFERSIZE); 870 } 871 if (sense_current) 872 *blk_statp = scsi_result_to_blk_status(cmd, result); 873 } else if (blk_rq_bytes(req) == 0 && sense_current) { 874 /* 875 * Flush commands do not transfers any data, and thus cannot use 876 * good_bytes != blk_rq_bytes(req) as the signal for an error. 877 * This sets *blk_statp explicitly for the problem case. 878 */ 879 *blk_statp = scsi_result_to_blk_status(cmd, result); 880 } 881 /* 882 * Recovered errors need reporting, but they're always treated as 883 * success, so fiddle the result code here. For passthrough requests 884 * we already took a copy of the original into sreq->result which 885 * is what gets returned to the user 886 */ 887 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 888 bool do_print = true; 889 /* 890 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 891 * skip print since caller wants ATA registers. Only occurs 892 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 893 */ 894 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 895 do_print = false; 896 else if (req->rq_flags & RQF_QUIET) 897 do_print = false; 898 if (do_print) 899 scsi_print_sense(cmd); 900 result = 0; 901 /* for passthrough, *blk_statp may be set */ 902 *blk_statp = BLK_STS_OK; 903 } 904 /* 905 * Another corner case: the SCSI status byte is non-zero but 'good'. 906 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 907 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 908 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 909 * intermediate statuses (both obsolete in SAM-4) as good. 910 */ 911 if (status_byte(result) && scsi_status_is_good(result)) { 912 result = 0; 913 *blk_statp = BLK_STS_OK; 914 } 915 return result; 916 } 917 918 /** 919 * scsi_io_completion - Completion processing for SCSI commands. 920 * @cmd: command that is finished. 921 * @good_bytes: number of processed bytes. 922 * 923 * We will finish off the specified number of sectors. If we are done, the 924 * command block will be released and the queue function will be goosed. If we 925 * are not done then we have to figure out what to do next: 926 * 927 * a) We can call scsi_io_completion_reprep(). The request will be 928 * unprepared and put back on the queue. Then a new command will 929 * be created for it. This should be used if we made forward 930 * progress, or if we want to switch from READ(10) to READ(6) for 931 * example. 932 * 933 * b) We can call scsi_io_completion_action(). The request will be 934 * put back on the queue and retried using the same command as 935 * before, possibly after a delay. 936 * 937 * c) We can call scsi_end_request() with blk_stat other than 938 * BLK_STS_OK, to fail the remainder of the request. 939 */ 940 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 941 { 942 int result = cmd->result; 943 struct request_queue *q = cmd->device->request_queue; 944 struct request *req = cmd->request; 945 blk_status_t blk_stat = BLK_STS_OK; 946 947 if (unlikely(result)) /* a nz result may or may not be an error */ 948 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 949 950 if (unlikely(blk_rq_is_passthrough(req))) { 951 /* 952 * scsi_result_to_blk_status may have reset the host_byte 953 */ 954 scsi_req(req)->result = cmd->result; 955 } 956 957 /* 958 * Next deal with any sectors which we were able to correctly 959 * handle. 960 */ 961 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 962 "%u sectors total, %d bytes done.\n", 963 blk_rq_sectors(req), good_bytes)); 964 965 /* 966 * Failed, zero length commands always need to drop down 967 * to retry code. Fast path should return in this block. 968 */ 969 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 970 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 971 return; /* no bytes remaining */ 972 } 973 974 /* Kill remainder if no retries. */ 975 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 976 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 977 WARN_ONCE(true, 978 "Bytes remaining after failed, no-retry command"); 979 return; 980 } 981 982 /* 983 * If there had been no error, but we have leftover bytes in the 984 * requeues just queue the command up again. 985 */ 986 if (likely(result == 0)) 987 scsi_io_completion_reprep(cmd, q); 988 else 989 scsi_io_completion_action(cmd, result); 990 } 991 992 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 993 struct request *rq) 994 { 995 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 996 !op_is_write(req_op(rq)) && 997 sdev->host->hostt->dma_need_drain(rq); 998 } 999 1000 /** 1001 * scsi_alloc_sgtables - allocate S/G tables for a command 1002 * @cmd: command descriptor we wish to initialize 1003 * 1004 * Returns: 1005 * * BLK_STS_OK - on success 1006 * * BLK_STS_RESOURCE - if the failure is retryable 1007 * * BLK_STS_IOERR - if the failure is fatal 1008 */ 1009 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1010 { 1011 struct scsi_device *sdev = cmd->device; 1012 struct request *rq = cmd->request; 1013 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1014 struct scatterlist *last_sg = NULL; 1015 blk_status_t ret; 1016 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1017 int count; 1018 1019 if (WARN_ON_ONCE(!nr_segs)) 1020 return BLK_STS_IOERR; 1021 1022 /* 1023 * Make sure there is space for the drain. The driver must adjust 1024 * max_hw_segments to be prepared for this. 1025 */ 1026 if (need_drain) 1027 nr_segs++; 1028 1029 /* 1030 * If sg table allocation fails, requeue request later. 1031 */ 1032 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1033 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1034 return BLK_STS_RESOURCE; 1035 1036 /* 1037 * Next, walk the list, and fill in the addresses and sizes of 1038 * each segment. 1039 */ 1040 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1041 1042 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1043 unsigned int pad_len = 1044 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1045 1046 last_sg->length += pad_len; 1047 cmd->extra_len += pad_len; 1048 } 1049 1050 if (need_drain) { 1051 sg_unmark_end(last_sg); 1052 last_sg = sg_next(last_sg); 1053 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1054 sg_mark_end(last_sg); 1055 1056 cmd->extra_len += sdev->dma_drain_len; 1057 count++; 1058 } 1059 1060 BUG_ON(count > cmd->sdb.table.nents); 1061 cmd->sdb.table.nents = count; 1062 cmd->sdb.length = blk_rq_payload_bytes(rq); 1063 1064 if (blk_integrity_rq(rq)) { 1065 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1066 int ivecs; 1067 1068 if (WARN_ON_ONCE(!prot_sdb)) { 1069 /* 1070 * This can happen if someone (e.g. multipath) 1071 * queues a command to a device on an adapter 1072 * that does not support DIX. 1073 */ 1074 ret = BLK_STS_IOERR; 1075 goto out_free_sgtables; 1076 } 1077 1078 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1079 1080 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1081 prot_sdb->table.sgl, 1082 SCSI_INLINE_PROT_SG_CNT)) { 1083 ret = BLK_STS_RESOURCE; 1084 goto out_free_sgtables; 1085 } 1086 1087 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1088 prot_sdb->table.sgl); 1089 BUG_ON(count > ivecs); 1090 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1091 1092 cmd->prot_sdb = prot_sdb; 1093 cmd->prot_sdb->table.nents = count; 1094 } 1095 1096 return BLK_STS_OK; 1097 out_free_sgtables: 1098 scsi_free_sgtables(cmd); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL(scsi_alloc_sgtables); 1102 1103 /** 1104 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1105 * @rq: Request associated with the SCSI command to be initialized. 1106 * 1107 * This function initializes the members of struct scsi_cmnd that must be 1108 * initialized before request processing starts and that won't be 1109 * reinitialized if a SCSI command is requeued. 1110 * 1111 * Called from inside blk_get_request() for pass-through requests and from 1112 * inside scsi_init_command() for filesystem requests. 1113 */ 1114 static void scsi_initialize_rq(struct request *rq) 1115 { 1116 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1117 1118 scsi_req_init(&cmd->req); 1119 init_rcu_head(&cmd->rcu); 1120 cmd->jiffies_at_alloc = jiffies; 1121 cmd->retries = 0; 1122 } 1123 1124 /* 1125 * Only called when the request isn't completed by SCSI, and not freed by 1126 * SCSI 1127 */ 1128 static void scsi_cleanup_rq(struct request *rq) 1129 { 1130 if (rq->rq_flags & RQF_DONTPREP) { 1131 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1132 rq->rq_flags &= ~RQF_DONTPREP; 1133 } 1134 } 1135 1136 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1138 { 1139 void *buf = cmd->sense_buffer; 1140 void *prot = cmd->prot_sdb; 1141 struct request *rq = blk_mq_rq_from_pdu(cmd); 1142 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1143 unsigned long jiffies_at_alloc; 1144 int retries, to_clear; 1145 bool in_flight; 1146 1147 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1148 flags |= SCMD_INITIALIZED; 1149 scsi_initialize_rq(rq); 1150 } 1151 1152 jiffies_at_alloc = cmd->jiffies_at_alloc; 1153 retries = cmd->retries; 1154 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1155 /* 1156 * Zero out the cmd, except for the embedded scsi_request. Only clear 1157 * the driver-private command data if the LLD does not supply a 1158 * function to initialize that data. 1159 */ 1160 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1161 if (!dev->host->hostt->init_cmd_priv) 1162 to_clear += dev->host->hostt->cmd_size; 1163 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1164 1165 cmd->device = dev; 1166 cmd->sense_buffer = buf; 1167 cmd->prot_sdb = prot; 1168 cmd->flags = flags; 1169 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1170 cmd->jiffies_at_alloc = jiffies_at_alloc; 1171 cmd->retries = retries; 1172 if (in_flight) 1173 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1174 1175 } 1176 1177 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1178 struct request *req) 1179 { 1180 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1181 1182 /* 1183 * Passthrough requests may transfer data, in which case they must 1184 * a bio attached to them. Or they might contain a SCSI command 1185 * that does not transfer data, in which case they may optionally 1186 * submit a request without an attached bio. 1187 */ 1188 if (req->bio) { 1189 blk_status_t ret = scsi_alloc_sgtables(cmd); 1190 if (unlikely(ret != BLK_STS_OK)) 1191 return ret; 1192 } else { 1193 BUG_ON(blk_rq_bytes(req)); 1194 1195 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1196 } 1197 1198 cmd->cmd_len = scsi_req(req)->cmd_len; 1199 if (cmd->cmd_len == 0) 1200 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1201 cmd->cmnd = scsi_req(req)->cmd; 1202 cmd->transfersize = blk_rq_bytes(req); 1203 cmd->allowed = scsi_req(req)->retries; 1204 return BLK_STS_OK; 1205 } 1206 1207 static blk_status_t 1208 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1209 { 1210 switch (sdev->sdev_state) { 1211 case SDEV_CREATED: 1212 return BLK_STS_OK; 1213 case SDEV_OFFLINE: 1214 case SDEV_TRANSPORT_OFFLINE: 1215 /* 1216 * If the device is offline we refuse to process any 1217 * commands. The device must be brought online 1218 * before trying any recovery commands. 1219 */ 1220 if (!sdev->offline_already) { 1221 sdev->offline_already = true; 1222 sdev_printk(KERN_ERR, sdev, 1223 "rejecting I/O to offline device\n"); 1224 } 1225 return BLK_STS_IOERR; 1226 case SDEV_DEL: 1227 /* 1228 * If the device is fully deleted, we refuse to 1229 * process any commands as well. 1230 */ 1231 sdev_printk(KERN_ERR, sdev, 1232 "rejecting I/O to dead device\n"); 1233 return BLK_STS_IOERR; 1234 case SDEV_BLOCK: 1235 case SDEV_CREATED_BLOCK: 1236 return BLK_STS_RESOURCE; 1237 case SDEV_QUIESCE: 1238 /* 1239 * If the device is blocked we only accept power management 1240 * commands. 1241 */ 1242 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1243 return BLK_STS_RESOURCE; 1244 return BLK_STS_OK; 1245 default: 1246 /* 1247 * For any other not fully online state we only allow 1248 * power management commands. 1249 */ 1250 if (req && !(req->rq_flags & RQF_PM)) 1251 return BLK_STS_IOERR; 1252 return BLK_STS_OK; 1253 } 1254 } 1255 1256 /* 1257 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1258 * return 0. 1259 * 1260 * Called with the queue_lock held. 1261 */ 1262 static inline int scsi_dev_queue_ready(struct request_queue *q, 1263 struct scsi_device *sdev) 1264 { 1265 unsigned int busy; 1266 1267 busy = atomic_inc_return(&sdev->device_busy) - 1; 1268 if (atomic_read(&sdev->device_blocked)) { 1269 if (busy) 1270 goto out_dec; 1271 1272 /* 1273 * unblock after device_blocked iterates to zero 1274 */ 1275 if (atomic_dec_return(&sdev->device_blocked) > 0) 1276 goto out_dec; 1277 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1278 "unblocking device at zero depth\n")); 1279 } 1280 1281 if (busy >= sdev->queue_depth) 1282 goto out_dec; 1283 1284 return 1; 1285 out_dec: 1286 atomic_dec(&sdev->device_busy); 1287 return 0; 1288 } 1289 1290 /* 1291 * scsi_target_queue_ready: checks if there we can send commands to target 1292 * @sdev: scsi device on starget to check. 1293 */ 1294 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1295 struct scsi_device *sdev) 1296 { 1297 struct scsi_target *starget = scsi_target(sdev); 1298 unsigned int busy; 1299 1300 if (starget->single_lun) { 1301 spin_lock_irq(shost->host_lock); 1302 if (starget->starget_sdev_user && 1303 starget->starget_sdev_user != sdev) { 1304 spin_unlock_irq(shost->host_lock); 1305 return 0; 1306 } 1307 starget->starget_sdev_user = sdev; 1308 spin_unlock_irq(shost->host_lock); 1309 } 1310 1311 if (starget->can_queue <= 0) 1312 return 1; 1313 1314 busy = atomic_inc_return(&starget->target_busy) - 1; 1315 if (atomic_read(&starget->target_blocked) > 0) { 1316 if (busy) 1317 goto starved; 1318 1319 /* 1320 * unblock after target_blocked iterates to zero 1321 */ 1322 if (atomic_dec_return(&starget->target_blocked) > 0) 1323 goto out_dec; 1324 1325 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1326 "unblocking target at zero depth\n")); 1327 } 1328 1329 if (busy >= starget->can_queue) 1330 goto starved; 1331 1332 return 1; 1333 1334 starved: 1335 spin_lock_irq(shost->host_lock); 1336 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1337 spin_unlock_irq(shost->host_lock); 1338 out_dec: 1339 if (starget->can_queue > 0) 1340 atomic_dec(&starget->target_busy); 1341 return 0; 1342 } 1343 1344 /* 1345 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1346 * return 0. We must end up running the queue again whenever 0 is 1347 * returned, else IO can hang. 1348 */ 1349 static inline int scsi_host_queue_ready(struct request_queue *q, 1350 struct Scsi_Host *shost, 1351 struct scsi_device *sdev, 1352 struct scsi_cmnd *cmd) 1353 { 1354 if (scsi_host_in_recovery(shost)) 1355 return 0; 1356 1357 if (atomic_read(&shost->host_blocked) > 0) { 1358 if (scsi_host_busy(shost) > 0) 1359 goto starved; 1360 1361 /* 1362 * unblock after host_blocked iterates to zero 1363 */ 1364 if (atomic_dec_return(&shost->host_blocked) > 0) 1365 goto out_dec; 1366 1367 SCSI_LOG_MLQUEUE(3, 1368 shost_printk(KERN_INFO, shost, 1369 "unblocking host at zero depth\n")); 1370 } 1371 1372 if (shost->host_self_blocked) 1373 goto starved; 1374 1375 /* We're OK to process the command, so we can't be starved */ 1376 if (!list_empty(&sdev->starved_entry)) { 1377 spin_lock_irq(shost->host_lock); 1378 if (!list_empty(&sdev->starved_entry)) 1379 list_del_init(&sdev->starved_entry); 1380 spin_unlock_irq(shost->host_lock); 1381 } 1382 1383 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1384 1385 return 1; 1386 1387 starved: 1388 spin_lock_irq(shost->host_lock); 1389 if (list_empty(&sdev->starved_entry)) 1390 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1391 spin_unlock_irq(shost->host_lock); 1392 out_dec: 1393 scsi_dec_host_busy(shost, cmd); 1394 return 0; 1395 } 1396 1397 /* 1398 * Busy state exporting function for request stacking drivers. 1399 * 1400 * For efficiency, no lock is taken to check the busy state of 1401 * shost/starget/sdev, since the returned value is not guaranteed and 1402 * may be changed after request stacking drivers call the function, 1403 * regardless of taking lock or not. 1404 * 1405 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1406 * needs to return 'not busy'. Otherwise, request stacking drivers 1407 * may hold requests forever. 1408 */ 1409 static bool scsi_mq_lld_busy(struct request_queue *q) 1410 { 1411 struct scsi_device *sdev = q->queuedata; 1412 struct Scsi_Host *shost; 1413 1414 if (blk_queue_dying(q)) 1415 return false; 1416 1417 shost = sdev->host; 1418 1419 /* 1420 * Ignore host/starget busy state. 1421 * Since block layer does not have a concept of fairness across 1422 * multiple queues, congestion of host/starget needs to be handled 1423 * in SCSI layer. 1424 */ 1425 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 static void scsi_softirq_done(struct request *rq) 1432 { 1433 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1434 int disposition; 1435 1436 INIT_LIST_HEAD(&cmd->eh_entry); 1437 1438 atomic_inc(&cmd->device->iodone_cnt); 1439 if (cmd->result) 1440 atomic_inc(&cmd->device->ioerr_cnt); 1441 1442 disposition = scsi_decide_disposition(cmd); 1443 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1444 disposition = SUCCESS; 1445 1446 scsi_log_completion(cmd, disposition); 1447 1448 switch (disposition) { 1449 case SUCCESS: 1450 scsi_finish_command(cmd); 1451 break; 1452 case NEEDS_RETRY: 1453 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1454 break; 1455 case ADD_TO_MLQUEUE: 1456 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1457 break; 1458 default: 1459 scsi_eh_scmd_add(cmd); 1460 break; 1461 } 1462 } 1463 1464 /** 1465 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1466 * @cmd: command block we are dispatching. 1467 * 1468 * Return: nonzero return request was rejected and device's queue needs to be 1469 * plugged. 1470 */ 1471 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1472 { 1473 struct Scsi_Host *host = cmd->device->host; 1474 int rtn = 0; 1475 1476 atomic_inc(&cmd->device->iorequest_cnt); 1477 1478 /* check if the device is still usable */ 1479 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1480 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1481 * returns an immediate error upwards, and signals 1482 * that the device is no longer present */ 1483 cmd->result = DID_NO_CONNECT << 16; 1484 goto done; 1485 } 1486 1487 /* Check to see if the scsi lld made this device blocked. */ 1488 if (unlikely(scsi_device_blocked(cmd->device))) { 1489 /* 1490 * in blocked state, the command is just put back on 1491 * the device queue. The suspend state has already 1492 * blocked the queue so future requests should not 1493 * occur until the device transitions out of the 1494 * suspend state. 1495 */ 1496 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1497 "queuecommand : device blocked\n")); 1498 return SCSI_MLQUEUE_DEVICE_BUSY; 1499 } 1500 1501 /* Store the LUN value in cmnd, if needed. */ 1502 if (cmd->device->lun_in_cdb) 1503 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1504 (cmd->device->lun << 5 & 0xe0); 1505 1506 scsi_log_send(cmd); 1507 1508 /* 1509 * Before we queue this command, check if the command 1510 * length exceeds what the host adapter can handle. 1511 */ 1512 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1513 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1514 "queuecommand : command too long. " 1515 "cdb_size=%d host->max_cmd_len=%d\n", 1516 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1517 cmd->result = (DID_ABORT << 16); 1518 goto done; 1519 } 1520 1521 if (unlikely(host->shost_state == SHOST_DEL)) { 1522 cmd->result = (DID_NO_CONNECT << 16); 1523 goto done; 1524 1525 } 1526 1527 trace_scsi_dispatch_cmd_start(cmd); 1528 rtn = host->hostt->queuecommand(host, cmd); 1529 if (rtn) { 1530 trace_scsi_dispatch_cmd_error(cmd, rtn); 1531 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1532 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1533 rtn = SCSI_MLQUEUE_HOST_BUSY; 1534 1535 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1536 "queuecommand : request rejected\n")); 1537 } 1538 1539 return rtn; 1540 done: 1541 cmd->scsi_done(cmd); 1542 return 0; 1543 } 1544 1545 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1546 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1547 { 1548 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1549 sizeof(struct scatterlist); 1550 } 1551 1552 static blk_status_t scsi_prepare_cmd(struct request *req) 1553 { 1554 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1555 struct scsi_device *sdev = req->q->queuedata; 1556 struct Scsi_Host *shost = sdev->host; 1557 struct scatterlist *sg; 1558 1559 scsi_init_command(sdev, cmd); 1560 1561 cmd->request = req; 1562 cmd->tag = req->tag; 1563 cmd->prot_op = SCSI_PROT_NORMAL; 1564 if (blk_rq_bytes(req)) 1565 cmd->sc_data_direction = rq_dma_dir(req); 1566 else 1567 cmd->sc_data_direction = DMA_NONE; 1568 1569 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1570 cmd->sdb.table.sgl = sg; 1571 1572 if (scsi_host_get_prot(shost)) { 1573 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1574 1575 cmd->prot_sdb->table.sgl = 1576 (struct scatterlist *)(cmd->prot_sdb + 1); 1577 } 1578 1579 /* 1580 * Special handling for passthrough commands, which don't go to the ULP 1581 * at all: 1582 */ 1583 if (blk_rq_is_scsi(req)) 1584 return scsi_setup_scsi_cmnd(sdev, req); 1585 1586 if (sdev->handler && sdev->handler->prep_fn) { 1587 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1588 1589 if (ret != BLK_STS_OK) 1590 return ret; 1591 } 1592 1593 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1594 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1595 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1596 } 1597 1598 static void scsi_mq_done(struct scsi_cmnd *cmd) 1599 { 1600 if (unlikely(blk_should_fake_timeout(cmd->request->q))) 1601 return; 1602 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1603 return; 1604 trace_scsi_dispatch_cmd_done(cmd); 1605 blk_mq_complete_request(cmd->request); 1606 } 1607 1608 static void scsi_mq_put_budget(struct request_queue *q) 1609 { 1610 struct scsi_device *sdev = q->queuedata; 1611 1612 atomic_dec(&sdev->device_busy); 1613 } 1614 1615 static bool scsi_mq_get_budget(struct request_queue *q) 1616 { 1617 struct scsi_device *sdev = q->queuedata; 1618 1619 if (scsi_dev_queue_ready(q, sdev)) 1620 return true; 1621 1622 atomic_inc(&sdev->restarts); 1623 1624 /* 1625 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1626 * .restarts must be incremented before .device_busy is read because the 1627 * code in scsi_run_queue_async() depends on the order of these operations. 1628 */ 1629 smp_mb__after_atomic(); 1630 1631 /* 1632 * If all in-flight requests originated from this LUN are completed 1633 * before reading .device_busy, sdev->device_busy will be observed as 1634 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1635 * soon. Otherwise, completion of one of these requests will observe 1636 * the .restarts flag, and the request queue will be run for handling 1637 * this request, see scsi_end_request(). 1638 */ 1639 if (unlikely(atomic_read(&sdev->device_busy) == 0 && 1640 !scsi_device_blocked(sdev))) 1641 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1642 return false; 1643 } 1644 1645 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1646 const struct blk_mq_queue_data *bd) 1647 { 1648 struct request *req = bd->rq; 1649 struct request_queue *q = req->q; 1650 struct scsi_device *sdev = q->queuedata; 1651 struct Scsi_Host *shost = sdev->host; 1652 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1653 blk_status_t ret; 1654 int reason; 1655 1656 /* 1657 * If the device is not in running state we will reject some or all 1658 * commands. 1659 */ 1660 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1661 ret = scsi_device_state_check(sdev, req); 1662 if (ret != BLK_STS_OK) 1663 goto out_put_budget; 1664 } 1665 1666 ret = BLK_STS_RESOURCE; 1667 if (!scsi_target_queue_ready(shost, sdev)) 1668 goto out_put_budget; 1669 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1670 goto out_dec_target_busy; 1671 1672 if (!(req->rq_flags & RQF_DONTPREP)) { 1673 ret = scsi_prepare_cmd(req); 1674 if (ret != BLK_STS_OK) 1675 goto out_dec_host_busy; 1676 req->rq_flags |= RQF_DONTPREP; 1677 } else { 1678 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1679 } 1680 1681 cmd->flags &= SCMD_PRESERVED_FLAGS; 1682 if (sdev->simple_tags) 1683 cmd->flags |= SCMD_TAGGED; 1684 if (bd->last) 1685 cmd->flags |= SCMD_LAST; 1686 1687 scsi_set_resid(cmd, 0); 1688 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1689 cmd->scsi_done = scsi_mq_done; 1690 1691 blk_mq_start_request(req); 1692 reason = scsi_dispatch_cmd(cmd); 1693 if (reason) { 1694 scsi_set_blocked(cmd, reason); 1695 ret = BLK_STS_RESOURCE; 1696 goto out_dec_host_busy; 1697 } 1698 1699 return BLK_STS_OK; 1700 1701 out_dec_host_busy: 1702 scsi_dec_host_busy(shost, cmd); 1703 out_dec_target_busy: 1704 if (scsi_target(sdev)->can_queue > 0) 1705 atomic_dec(&scsi_target(sdev)->target_busy); 1706 out_put_budget: 1707 scsi_mq_put_budget(q); 1708 switch (ret) { 1709 case BLK_STS_OK: 1710 break; 1711 case BLK_STS_RESOURCE: 1712 case BLK_STS_ZONE_RESOURCE: 1713 if (scsi_device_blocked(sdev)) 1714 ret = BLK_STS_DEV_RESOURCE; 1715 break; 1716 case BLK_STS_AGAIN: 1717 scsi_req(req)->result = DID_BUS_BUSY << 16; 1718 if (req->rq_flags & RQF_DONTPREP) 1719 scsi_mq_uninit_cmd(cmd); 1720 break; 1721 default: 1722 if (unlikely(!scsi_device_online(sdev))) 1723 scsi_req(req)->result = DID_NO_CONNECT << 16; 1724 else 1725 scsi_req(req)->result = DID_ERROR << 16; 1726 /* 1727 * Make sure to release all allocated resources when 1728 * we hit an error, as we will never see this command 1729 * again. 1730 */ 1731 if (req->rq_flags & RQF_DONTPREP) 1732 scsi_mq_uninit_cmd(cmd); 1733 scsi_run_queue_async(sdev); 1734 break; 1735 } 1736 return ret; 1737 } 1738 1739 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1740 bool reserved) 1741 { 1742 if (reserved) 1743 return BLK_EH_RESET_TIMER; 1744 return scsi_times_out(req); 1745 } 1746 1747 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1748 unsigned int hctx_idx, unsigned int numa_node) 1749 { 1750 struct Scsi_Host *shost = set->driver_data; 1751 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1752 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1753 struct scatterlist *sg; 1754 int ret = 0; 1755 1756 if (unchecked_isa_dma) 1757 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1758 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1759 GFP_KERNEL, numa_node); 1760 if (!cmd->sense_buffer) 1761 return -ENOMEM; 1762 cmd->req.sense = cmd->sense_buffer; 1763 1764 if (scsi_host_get_prot(shost)) { 1765 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1766 shost->hostt->cmd_size; 1767 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1768 } 1769 1770 if (shost->hostt->init_cmd_priv) { 1771 ret = shost->hostt->init_cmd_priv(shost, cmd); 1772 if (ret < 0) 1773 scsi_free_sense_buffer(unchecked_isa_dma, 1774 cmd->sense_buffer); 1775 } 1776 1777 return ret; 1778 } 1779 1780 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1781 unsigned int hctx_idx) 1782 { 1783 struct Scsi_Host *shost = set->driver_data; 1784 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1785 1786 if (shost->hostt->exit_cmd_priv) 1787 shost->hostt->exit_cmd_priv(shost, cmd); 1788 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1789 cmd->sense_buffer); 1790 } 1791 1792 static int scsi_map_queues(struct blk_mq_tag_set *set) 1793 { 1794 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1795 1796 if (shost->hostt->map_queues) 1797 return shost->hostt->map_queues(shost); 1798 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1799 } 1800 1801 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1802 { 1803 struct device *dev = shost->dma_dev; 1804 1805 /* 1806 * this limit is imposed by hardware restrictions 1807 */ 1808 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1809 SG_MAX_SEGMENTS)); 1810 1811 if (scsi_host_prot_dma(shost)) { 1812 shost->sg_prot_tablesize = 1813 min_not_zero(shost->sg_prot_tablesize, 1814 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1815 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1816 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1817 } 1818 1819 if (dev->dma_mask) { 1820 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1821 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1822 } 1823 blk_queue_max_hw_sectors(q, shost->max_sectors); 1824 if (shost->unchecked_isa_dma) 1825 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1826 blk_queue_segment_boundary(q, shost->dma_boundary); 1827 dma_set_seg_boundary(dev, shost->dma_boundary); 1828 1829 blk_queue_max_segment_size(q, shost->max_segment_size); 1830 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1831 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1832 1833 /* 1834 * Set a reasonable default alignment: The larger of 32-byte (dword), 1835 * which is a common minimum for HBAs, and the minimum DMA alignment, 1836 * which is set by the platform. 1837 * 1838 * Devices that require a bigger alignment can increase it later. 1839 */ 1840 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1841 } 1842 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1843 1844 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1845 .get_budget = scsi_mq_get_budget, 1846 .put_budget = scsi_mq_put_budget, 1847 .queue_rq = scsi_queue_rq, 1848 .complete = scsi_softirq_done, 1849 .timeout = scsi_timeout, 1850 #ifdef CONFIG_BLK_DEBUG_FS 1851 .show_rq = scsi_show_rq, 1852 #endif 1853 .init_request = scsi_mq_init_request, 1854 .exit_request = scsi_mq_exit_request, 1855 .initialize_rq_fn = scsi_initialize_rq, 1856 .cleanup_rq = scsi_cleanup_rq, 1857 .busy = scsi_mq_lld_busy, 1858 .map_queues = scsi_map_queues, 1859 }; 1860 1861 1862 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1863 { 1864 struct request_queue *q = hctx->queue; 1865 struct scsi_device *sdev = q->queuedata; 1866 struct Scsi_Host *shost = sdev->host; 1867 1868 shost->hostt->commit_rqs(shost, hctx->queue_num); 1869 } 1870 1871 static const struct blk_mq_ops scsi_mq_ops = { 1872 .get_budget = scsi_mq_get_budget, 1873 .put_budget = scsi_mq_put_budget, 1874 .queue_rq = scsi_queue_rq, 1875 .commit_rqs = scsi_commit_rqs, 1876 .complete = scsi_softirq_done, 1877 .timeout = scsi_timeout, 1878 #ifdef CONFIG_BLK_DEBUG_FS 1879 .show_rq = scsi_show_rq, 1880 #endif 1881 .init_request = scsi_mq_init_request, 1882 .exit_request = scsi_mq_exit_request, 1883 .initialize_rq_fn = scsi_initialize_rq, 1884 .cleanup_rq = scsi_cleanup_rq, 1885 .busy = scsi_mq_lld_busy, 1886 .map_queues = scsi_map_queues, 1887 }; 1888 1889 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1890 { 1891 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1892 if (IS_ERR(sdev->request_queue)) 1893 return NULL; 1894 1895 sdev->request_queue->queuedata = sdev; 1896 __scsi_init_queue(sdev->host, sdev->request_queue); 1897 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1898 return sdev->request_queue; 1899 } 1900 1901 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1902 { 1903 unsigned int cmd_size, sgl_size; 1904 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1905 1906 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1907 scsi_mq_inline_sgl_size(shost)); 1908 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1909 if (scsi_host_get_prot(shost)) 1910 cmd_size += sizeof(struct scsi_data_buffer) + 1911 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1912 1913 memset(tag_set, 0, sizeof(*tag_set)); 1914 if (shost->hostt->commit_rqs) 1915 tag_set->ops = &scsi_mq_ops; 1916 else 1917 tag_set->ops = &scsi_mq_ops_no_commit; 1918 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1919 tag_set->queue_depth = shost->can_queue; 1920 tag_set->cmd_size = cmd_size; 1921 tag_set->numa_node = NUMA_NO_NODE; 1922 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1923 tag_set->flags |= 1924 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1925 tag_set->driver_data = shost; 1926 if (shost->host_tagset) 1927 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1928 1929 return blk_mq_alloc_tag_set(tag_set); 1930 } 1931 1932 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1933 { 1934 blk_mq_free_tag_set(&shost->tag_set); 1935 } 1936 1937 /** 1938 * scsi_device_from_queue - return sdev associated with a request_queue 1939 * @q: The request queue to return the sdev from 1940 * 1941 * Return the sdev associated with a request queue or NULL if the 1942 * request_queue does not reference a SCSI device. 1943 */ 1944 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1945 { 1946 struct scsi_device *sdev = NULL; 1947 1948 if (q->mq_ops == &scsi_mq_ops_no_commit || 1949 q->mq_ops == &scsi_mq_ops) 1950 sdev = q->queuedata; 1951 if (!sdev || !get_device(&sdev->sdev_gendev)) 1952 sdev = NULL; 1953 1954 return sdev; 1955 } 1956 1957 /** 1958 * scsi_block_requests - Utility function used by low-level drivers to prevent 1959 * further commands from being queued to the device. 1960 * @shost: host in question 1961 * 1962 * There is no timer nor any other means by which the requests get unblocked 1963 * other than the low-level driver calling scsi_unblock_requests(). 1964 */ 1965 void scsi_block_requests(struct Scsi_Host *shost) 1966 { 1967 shost->host_self_blocked = 1; 1968 } 1969 EXPORT_SYMBOL(scsi_block_requests); 1970 1971 /** 1972 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1973 * further commands to be queued to the device. 1974 * @shost: host in question 1975 * 1976 * There is no timer nor any other means by which the requests get unblocked 1977 * other than the low-level driver calling scsi_unblock_requests(). This is done 1978 * as an API function so that changes to the internals of the scsi mid-layer 1979 * won't require wholesale changes to drivers that use this feature. 1980 */ 1981 void scsi_unblock_requests(struct Scsi_Host *shost) 1982 { 1983 shost->host_self_blocked = 0; 1984 scsi_run_host_queues(shost); 1985 } 1986 EXPORT_SYMBOL(scsi_unblock_requests); 1987 1988 void scsi_exit_queue(void) 1989 { 1990 kmem_cache_destroy(scsi_sense_cache); 1991 kmem_cache_destroy(scsi_sense_isadma_cache); 1992 } 1993 1994 /** 1995 * scsi_mode_select - issue a mode select 1996 * @sdev: SCSI device to be queried 1997 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1998 * @sp: Save page bit (0 == don't save, 1 == save) 1999 * @modepage: mode page being requested 2000 * @buffer: request buffer (may not be smaller than eight bytes) 2001 * @len: length of request buffer. 2002 * @timeout: command timeout 2003 * @retries: number of retries before failing 2004 * @data: returns a structure abstracting the mode header data 2005 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2006 * must be SCSI_SENSE_BUFFERSIZE big. 2007 * 2008 * Returns zero if successful; negative error number or scsi 2009 * status on error 2010 * 2011 */ 2012 int 2013 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2014 unsigned char *buffer, int len, int timeout, int retries, 2015 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2016 { 2017 unsigned char cmd[10]; 2018 unsigned char *real_buffer; 2019 int ret; 2020 2021 memset(cmd, 0, sizeof(cmd)); 2022 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2023 2024 if (sdev->use_10_for_ms) { 2025 if (len > 65535) 2026 return -EINVAL; 2027 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2028 if (!real_buffer) 2029 return -ENOMEM; 2030 memcpy(real_buffer + 8, buffer, len); 2031 len += 8; 2032 real_buffer[0] = 0; 2033 real_buffer[1] = 0; 2034 real_buffer[2] = data->medium_type; 2035 real_buffer[3] = data->device_specific; 2036 real_buffer[4] = data->longlba ? 0x01 : 0; 2037 real_buffer[5] = 0; 2038 real_buffer[6] = data->block_descriptor_length >> 8; 2039 real_buffer[7] = data->block_descriptor_length; 2040 2041 cmd[0] = MODE_SELECT_10; 2042 cmd[7] = len >> 8; 2043 cmd[8] = len; 2044 } else { 2045 if (len > 255 || data->block_descriptor_length > 255 || 2046 data->longlba) 2047 return -EINVAL; 2048 2049 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2050 if (!real_buffer) 2051 return -ENOMEM; 2052 memcpy(real_buffer + 4, buffer, len); 2053 len += 4; 2054 real_buffer[0] = 0; 2055 real_buffer[1] = data->medium_type; 2056 real_buffer[2] = data->device_specific; 2057 real_buffer[3] = data->block_descriptor_length; 2058 2059 cmd[0] = MODE_SELECT; 2060 cmd[4] = len; 2061 } 2062 2063 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2064 sshdr, timeout, retries, NULL); 2065 kfree(real_buffer); 2066 return ret; 2067 } 2068 EXPORT_SYMBOL_GPL(scsi_mode_select); 2069 2070 /** 2071 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2072 * @sdev: SCSI device to be queried 2073 * @dbd: set if mode sense will allow block descriptors to be returned 2074 * @modepage: mode page being requested 2075 * @buffer: request buffer (may not be smaller than eight bytes) 2076 * @len: length of request buffer. 2077 * @timeout: command timeout 2078 * @retries: number of retries before failing 2079 * @data: returns a structure abstracting the mode header data 2080 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2081 * must be SCSI_SENSE_BUFFERSIZE big. 2082 * 2083 * Returns zero if unsuccessful, or the header offset (either 4 2084 * or 8 depending on whether a six or ten byte command was 2085 * issued) if successful. 2086 */ 2087 int 2088 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2089 unsigned char *buffer, int len, int timeout, int retries, 2090 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2091 { 2092 unsigned char cmd[12]; 2093 int use_10_for_ms; 2094 int header_length; 2095 int result, retry_count = retries; 2096 struct scsi_sense_hdr my_sshdr; 2097 2098 memset(data, 0, sizeof(*data)); 2099 memset(&cmd[0], 0, 12); 2100 2101 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2102 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2103 cmd[2] = modepage; 2104 2105 /* caller might not be interested in sense, but we need it */ 2106 if (!sshdr) 2107 sshdr = &my_sshdr; 2108 2109 retry: 2110 use_10_for_ms = sdev->use_10_for_ms; 2111 2112 if (use_10_for_ms) { 2113 if (len < 8) 2114 len = 8; 2115 2116 cmd[0] = MODE_SENSE_10; 2117 cmd[8] = len; 2118 header_length = 8; 2119 } else { 2120 if (len < 4) 2121 len = 4; 2122 2123 cmd[0] = MODE_SENSE; 2124 cmd[4] = len; 2125 header_length = 4; 2126 } 2127 2128 memset(buffer, 0, len); 2129 2130 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2131 sshdr, timeout, retries, NULL); 2132 2133 /* This code looks awful: what it's doing is making sure an 2134 * ILLEGAL REQUEST sense return identifies the actual command 2135 * byte as the problem. MODE_SENSE commands can return 2136 * ILLEGAL REQUEST if the code page isn't supported */ 2137 2138 if (use_10_for_ms && !scsi_status_is_good(result) && 2139 driver_byte(result) == DRIVER_SENSE) { 2140 if (scsi_sense_valid(sshdr)) { 2141 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2142 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2143 /* 2144 * Invalid command operation code 2145 */ 2146 sdev->use_10_for_ms = 0; 2147 goto retry; 2148 } 2149 } 2150 } 2151 2152 if (scsi_status_is_good(result)) { 2153 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2154 (modepage == 6 || modepage == 8))) { 2155 /* Initio breakage? */ 2156 header_length = 0; 2157 data->length = 13; 2158 data->medium_type = 0; 2159 data->device_specific = 0; 2160 data->longlba = 0; 2161 data->block_descriptor_length = 0; 2162 } else if (use_10_for_ms) { 2163 data->length = buffer[0]*256 + buffer[1] + 2; 2164 data->medium_type = buffer[2]; 2165 data->device_specific = buffer[3]; 2166 data->longlba = buffer[4] & 0x01; 2167 data->block_descriptor_length = buffer[6]*256 2168 + buffer[7]; 2169 } else { 2170 data->length = buffer[0] + 1; 2171 data->medium_type = buffer[1]; 2172 data->device_specific = buffer[2]; 2173 data->block_descriptor_length = buffer[3]; 2174 } 2175 data->header_length = header_length; 2176 } else if ((status_byte(result) == CHECK_CONDITION) && 2177 scsi_sense_valid(sshdr) && 2178 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2179 retry_count--; 2180 goto retry; 2181 } 2182 2183 return result; 2184 } 2185 EXPORT_SYMBOL(scsi_mode_sense); 2186 2187 /** 2188 * scsi_test_unit_ready - test if unit is ready 2189 * @sdev: scsi device to change the state of. 2190 * @timeout: command timeout 2191 * @retries: number of retries before failing 2192 * @sshdr: outpout pointer for decoded sense information. 2193 * 2194 * Returns zero if unsuccessful or an error if TUR failed. For 2195 * removable media, UNIT_ATTENTION sets ->changed flag. 2196 **/ 2197 int 2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2199 struct scsi_sense_hdr *sshdr) 2200 { 2201 char cmd[] = { 2202 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2203 }; 2204 int result; 2205 2206 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2207 do { 2208 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2209 timeout, 1, NULL); 2210 if (sdev->removable && scsi_sense_valid(sshdr) && 2211 sshdr->sense_key == UNIT_ATTENTION) 2212 sdev->changed = 1; 2213 } while (scsi_sense_valid(sshdr) && 2214 sshdr->sense_key == UNIT_ATTENTION && --retries); 2215 2216 return result; 2217 } 2218 EXPORT_SYMBOL(scsi_test_unit_ready); 2219 2220 /** 2221 * scsi_device_set_state - Take the given device through the device state model. 2222 * @sdev: scsi device to change the state of. 2223 * @state: state to change to. 2224 * 2225 * Returns zero if successful or an error if the requested 2226 * transition is illegal. 2227 */ 2228 int 2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2230 { 2231 enum scsi_device_state oldstate = sdev->sdev_state; 2232 2233 if (state == oldstate) 2234 return 0; 2235 2236 switch (state) { 2237 case SDEV_CREATED: 2238 switch (oldstate) { 2239 case SDEV_CREATED_BLOCK: 2240 break; 2241 default: 2242 goto illegal; 2243 } 2244 break; 2245 2246 case SDEV_RUNNING: 2247 switch (oldstate) { 2248 case SDEV_CREATED: 2249 case SDEV_OFFLINE: 2250 case SDEV_TRANSPORT_OFFLINE: 2251 case SDEV_QUIESCE: 2252 case SDEV_BLOCK: 2253 break; 2254 default: 2255 goto illegal; 2256 } 2257 break; 2258 2259 case SDEV_QUIESCE: 2260 switch (oldstate) { 2261 case SDEV_RUNNING: 2262 case SDEV_OFFLINE: 2263 case SDEV_TRANSPORT_OFFLINE: 2264 break; 2265 default: 2266 goto illegal; 2267 } 2268 break; 2269 2270 case SDEV_OFFLINE: 2271 case SDEV_TRANSPORT_OFFLINE: 2272 switch (oldstate) { 2273 case SDEV_CREATED: 2274 case SDEV_RUNNING: 2275 case SDEV_QUIESCE: 2276 case SDEV_BLOCK: 2277 break; 2278 default: 2279 goto illegal; 2280 } 2281 break; 2282 2283 case SDEV_BLOCK: 2284 switch (oldstate) { 2285 case SDEV_RUNNING: 2286 case SDEV_CREATED_BLOCK: 2287 case SDEV_QUIESCE: 2288 case SDEV_OFFLINE: 2289 break; 2290 default: 2291 goto illegal; 2292 } 2293 break; 2294 2295 case SDEV_CREATED_BLOCK: 2296 switch (oldstate) { 2297 case SDEV_CREATED: 2298 break; 2299 default: 2300 goto illegal; 2301 } 2302 break; 2303 2304 case SDEV_CANCEL: 2305 switch (oldstate) { 2306 case SDEV_CREATED: 2307 case SDEV_RUNNING: 2308 case SDEV_QUIESCE: 2309 case SDEV_OFFLINE: 2310 case SDEV_TRANSPORT_OFFLINE: 2311 break; 2312 default: 2313 goto illegal; 2314 } 2315 break; 2316 2317 case SDEV_DEL: 2318 switch (oldstate) { 2319 case SDEV_CREATED: 2320 case SDEV_RUNNING: 2321 case SDEV_OFFLINE: 2322 case SDEV_TRANSPORT_OFFLINE: 2323 case SDEV_CANCEL: 2324 case SDEV_BLOCK: 2325 case SDEV_CREATED_BLOCK: 2326 break; 2327 default: 2328 goto illegal; 2329 } 2330 break; 2331 2332 } 2333 sdev->offline_already = false; 2334 sdev->sdev_state = state; 2335 return 0; 2336 2337 illegal: 2338 SCSI_LOG_ERROR_RECOVERY(1, 2339 sdev_printk(KERN_ERR, sdev, 2340 "Illegal state transition %s->%s", 2341 scsi_device_state_name(oldstate), 2342 scsi_device_state_name(state)) 2343 ); 2344 return -EINVAL; 2345 } 2346 EXPORT_SYMBOL(scsi_device_set_state); 2347 2348 /** 2349 * scsi_evt_emit - emit a single SCSI device uevent 2350 * @sdev: associated SCSI device 2351 * @evt: event to emit 2352 * 2353 * Send a single uevent (scsi_event) to the associated scsi_device. 2354 */ 2355 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2356 { 2357 int idx = 0; 2358 char *envp[3]; 2359 2360 switch (evt->evt_type) { 2361 case SDEV_EVT_MEDIA_CHANGE: 2362 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2363 break; 2364 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2365 scsi_rescan_device(&sdev->sdev_gendev); 2366 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2367 break; 2368 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2369 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2370 break; 2371 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2372 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2373 break; 2374 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2375 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2376 break; 2377 case SDEV_EVT_LUN_CHANGE_REPORTED: 2378 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2379 break; 2380 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2381 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2382 break; 2383 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2384 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2385 break; 2386 default: 2387 /* do nothing */ 2388 break; 2389 } 2390 2391 envp[idx++] = NULL; 2392 2393 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2394 } 2395 2396 /** 2397 * scsi_evt_thread - send a uevent for each scsi event 2398 * @work: work struct for scsi_device 2399 * 2400 * Dispatch queued events to their associated scsi_device kobjects 2401 * as uevents. 2402 */ 2403 void scsi_evt_thread(struct work_struct *work) 2404 { 2405 struct scsi_device *sdev; 2406 enum scsi_device_event evt_type; 2407 LIST_HEAD(event_list); 2408 2409 sdev = container_of(work, struct scsi_device, event_work); 2410 2411 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2412 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2413 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2414 2415 while (1) { 2416 struct scsi_event *evt; 2417 struct list_head *this, *tmp; 2418 unsigned long flags; 2419 2420 spin_lock_irqsave(&sdev->list_lock, flags); 2421 list_splice_init(&sdev->event_list, &event_list); 2422 spin_unlock_irqrestore(&sdev->list_lock, flags); 2423 2424 if (list_empty(&event_list)) 2425 break; 2426 2427 list_for_each_safe(this, tmp, &event_list) { 2428 evt = list_entry(this, struct scsi_event, node); 2429 list_del(&evt->node); 2430 scsi_evt_emit(sdev, evt); 2431 kfree(evt); 2432 } 2433 } 2434 } 2435 2436 /** 2437 * sdev_evt_send - send asserted event to uevent thread 2438 * @sdev: scsi_device event occurred on 2439 * @evt: event to send 2440 * 2441 * Assert scsi device event asynchronously. 2442 */ 2443 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2444 { 2445 unsigned long flags; 2446 2447 #if 0 2448 /* FIXME: currently this check eliminates all media change events 2449 * for polled devices. Need to update to discriminate between AN 2450 * and polled events */ 2451 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2452 kfree(evt); 2453 return; 2454 } 2455 #endif 2456 2457 spin_lock_irqsave(&sdev->list_lock, flags); 2458 list_add_tail(&evt->node, &sdev->event_list); 2459 schedule_work(&sdev->event_work); 2460 spin_unlock_irqrestore(&sdev->list_lock, flags); 2461 } 2462 EXPORT_SYMBOL_GPL(sdev_evt_send); 2463 2464 /** 2465 * sdev_evt_alloc - allocate a new scsi event 2466 * @evt_type: type of event to allocate 2467 * @gfpflags: GFP flags for allocation 2468 * 2469 * Allocates and returns a new scsi_event. 2470 */ 2471 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2472 gfp_t gfpflags) 2473 { 2474 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2475 if (!evt) 2476 return NULL; 2477 2478 evt->evt_type = evt_type; 2479 INIT_LIST_HEAD(&evt->node); 2480 2481 /* evt_type-specific initialization, if any */ 2482 switch (evt_type) { 2483 case SDEV_EVT_MEDIA_CHANGE: 2484 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2485 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2486 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2487 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2488 case SDEV_EVT_LUN_CHANGE_REPORTED: 2489 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2490 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2491 default: 2492 /* do nothing */ 2493 break; 2494 } 2495 2496 return evt; 2497 } 2498 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2499 2500 /** 2501 * sdev_evt_send_simple - send asserted event to uevent thread 2502 * @sdev: scsi_device event occurred on 2503 * @evt_type: type of event to send 2504 * @gfpflags: GFP flags for allocation 2505 * 2506 * Assert scsi device event asynchronously, given an event type. 2507 */ 2508 void sdev_evt_send_simple(struct scsi_device *sdev, 2509 enum scsi_device_event evt_type, gfp_t gfpflags) 2510 { 2511 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2512 if (!evt) { 2513 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2514 evt_type); 2515 return; 2516 } 2517 2518 sdev_evt_send(sdev, evt); 2519 } 2520 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2521 2522 /** 2523 * scsi_device_quiesce - Block all commands except power management. 2524 * @sdev: scsi device to quiesce. 2525 * 2526 * This works by trying to transition to the SDEV_QUIESCE state 2527 * (which must be a legal transition). When the device is in this 2528 * state, only power management requests will be accepted, all others will 2529 * be deferred. 2530 * 2531 * Must be called with user context, may sleep. 2532 * 2533 * Returns zero if unsuccessful or an error if not. 2534 */ 2535 int 2536 scsi_device_quiesce(struct scsi_device *sdev) 2537 { 2538 struct request_queue *q = sdev->request_queue; 2539 int err; 2540 2541 /* 2542 * It is allowed to call scsi_device_quiesce() multiple times from 2543 * the same context but concurrent scsi_device_quiesce() calls are 2544 * not allowed. 2545 */ 2546 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2547 2548 if (sdev->quiesced_by == current) 2549 return 0; 2550 2551 blk_set_pm_only(q); 2552 2553 blk_mq_freeze_queue(q); 2554 /* 2555 * Ensure that the effect of blk_set_pm_only() will be visible 2556 * for percpu_ref_tryget() callers that occur after the queue 2557 * unfreeze even if the queue was already frozen before this function 2558 * was called. See also https://lwn.net/Articles/573497/. 2559 */ 2560 synchronize_rcu(); 2561 blk_mq_unfreeze_queue(q); 2562 2563 mutex_lock(&sdev->state_mutex); 2564 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2565 if (err == 0) 2566 sdev->quiesced_by = current; 2567 else 2568 blk_clear_pm_only(q); 2569 mutex_unlock(&sdev->state_mutex); 2570 2571 return err; 2572 } 2573 EXPORT_SYMBOL(scsi_device_quiesce); 2574 2575 /** 2576 * scsi_device_resume - Restart user issued commands to a quiesced device. 2577 * @sdev: scsi device to resume. 2578 * 2579 * Moves the device from quiesced back to running and restarts the 2580 * queues. 2581 * 2582 * Must be called with user context, may sleep. 2583 */ 2584 void scsi_device_resume(struct scsi_device *sdev) 2585 { 2586 /* check if the device state was mutated prior to resume, and if 2587 * so assume the state is being managed elsewhere (for example 2588 * device deleted during suspend) 2589 */ 2590 mutex_lock(&sdev->state_mutex); 2591 if (sdev->sdev_state == SDEV_QUIESCE) 2592 scsi_device_set_state(sdev, SDEV_RUNNING); 2593 if (sdev->quiesced_by) { 2594 sdev->quiesced_by = NULL; 2595 blk_clear_pm_only(sdev->request_queue); 2596 } 2597 mutex_unlock(&sdev->state_mutex); 2598 } 2599 EXPORT_SYMBOL(scsi_device_resume); 2600 2601 static void 2602 device_quiesce_fn(struct scsi_device *sdev, void *data) 2603 { 2604 scsi_device_quiesce(sdev); 2605 } 2606 2607 void 2608 scsi_target_quiesce(struct scsi_target *starget) 2609 { 2610 starget_for_each_device(starget, NULL, device_quiesce_fn); 2611 } 2612 EXPORT_SYMBOL(scsi_target_quiesce); 2613 2614 static void 2615 device_resume_fn(struct scsi_device *sdev, void *data) 2616 { 2617 scsi_device_resume(sdev); 2618 } 2619 2620 void 2621 scsi_target_resume(struct scsi_target *starget) 2622 { 2623 starget_for_each_device(starget, NULL, device_resume_fn); 2624 } 2625 EXPORT_SYMBOL(scsi_target_resume); 2626 2627 /** 2628 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2629 * @sdev: device to block 2630 * 2631 * Pause SCSI command processing on the specified device. Does not sleep. 2632 * 2633 * Returns zero if successful or a negative error code upon failure. 2634 * 2635 * Notes: 2636 * This routine transitions the device to the SDEV_BLOCK state (which must be 2637 * a legal transition). When the device is in this state, command processing 2638 * is paused until the device leaves the SDEV_BLOCK state. See also 2639 * scsi_internal_device_unblock_nowait(). 2640 */ 2641 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2642 { 2643 struct request_queue *q = sdev->request_queue; 2644 int err = 0; 2645 2646 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2647 if (err) { 2648 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2649 2650 if (err) 2651 return err; 2652 } 2653 2654 /* 2655 * The device has transitioned to SDEV_BLOCK. Stop the 2656 * block layer from calling the midlayer with this device's 2657 * request queue. 2658 */ 2659 blk_mq_quiesce_queue_nowait(q); 2660 return 0; 2661 } 2662 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2663 2664 /** 2665 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2666 * @sdev: device to block 2667 * 2668 * Pause SCSI command processing on the specified device and wait until all 2669 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2670 * 2671 * Returns zero if successful or a negative error code upon failure. 2672 * 2673 * Note: 2674 * This routine transitions the device to the SDEV_BLOCK state (which must be 2675 * a legal transition). When the device is in this state, command processing 2676 * is paused until the device leaves the SDEV_BLOCK state. See also 2677 * scsi_internal_device_unblock(). 2678 */ 2679 static int scsi_internal_device_block(struct scsi_device *sdev) 2680 { 2681 struct request_queue *q = sdev->request_queue; 2682 int err; 2683 2684 mutex_lock(&sdev->state_mutex); 2685 err = scsi_internal_device_block_nowait(sdev); 2686 if (err == 0) 2687 blk_mq_quiesce_queue(q); 2688 mutex_unlock(&sdev->state_mutex); 2689 2690 return err; 2691 } 2692 2693 void scsi_start_queue(struct scsi_device *sdev) 2694 { 2695 struct request_queue *q = sdev->request_queue; 2696 2697 blk_mq_unquiesce_queue(q); 2698 } 2699 2700 /** 2701 * scsi_internal_device_unblock_nowait - resume a device after a block request 2702 * @sdev: device to resume 2703 * @new_state: state to set the device to after unblocking 2704 * 2705 * Restart the device queue for a previously suspended SCSI device. Does not 2706 * sleep. 2707 * 2708 * Returns zero if successful or a negative error code upon failure. 2709 * 2710 * Notes: 2711 * This routine transitions the device to the SDEV_RUNNING state or to one of 2712 * the offline states (which must be a legal transition) allowing the midlayer 2713 * to goose the queue for this device. 2714 */ 2715 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2716 enum scsi_device_state new_state) 2717 { 2718 switch (new_state) { 2719 case SDEV_RUNNING: 2720 case SDEV_TRANSPORT_OFFLINE: 2721 break; 2722 default: 2723 return -EINVAL; 2724 } 2725 2726 /* 2727 * Try to transition the scsi device to SDEV_RUNNING or one of the 2728 * offlined states and goose the device queue if successful. 2729 */ 2730 switch (sdev->sdev_state) { 2731 case SDEV_BLOCK: 2732 case SDEV_TRANSPORT_OFFLINE: 2733 sdev->sdev_state = new_state; 2734 break; 2735 case SDEV_CREATED_BLOCK: 2736 if (new_state == SDEV_TRANSPORT_OFFLINE || 2737 new_state == SDEV_OFFLINE) 2738 sdev->sdev_state = new_state; 2739 else 2740 sdev->sdev_state = SDEV_CREATED; 2741 break; 2742 case SDEV_CANCEL: 2743 case SDEV_OFFLINE: 2744 break; 2745 default: 2746 return -EINVAL; 2747 } 2748 scsi_start_queue(sdev); 2749 2750 return 0; 2751 } 2752 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2753 2754 /** 2755 * scsi_internal_device_unblock - resume a device after a block request 2756 * @sdev: device to resume 2757 * @new_state: state to set the device to after unblocking 2758 * 2759 * Restart the device queue for a previously suspended SCSI device. May sleep. 2760 * 2761 * Returns zero if successful or a negative error code upon failure. 2762 * 2763 * Notes: 2764 * This routine transitions the device to the SDEV_RUNNING state or to one of 2765 * the offline states (which must be a legal transition) allowing the midlayer 2766 * to goose the queue for this device. 2767 */ 2768 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2769 enum scsi_device_state new_state) 2770 { 2771 int ret; 2772 2773 mutex_lock(&sdev->state_mutex); 2774 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2775 mutex_unlock(&sdev->state_mutex); 2776 2777 return ret; 2778 } 2779 2780 static void 2781 device_block(struct scsi_device *sdev, void *data) 2782 { 2783 int ret; 2784 2785 ret = scsi_internal_device_block(sdev); 2786 2787 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2788 dev_name(&sdev->sdev_gendev), ret); 2789 } 2790 2791 static int 2792 target_block(struct device *dev, void *data) 2793 { 2794 if (scsi_is_target_device(dev)) 2795 starget_for_each_device(to_scsi_target(dev), NULL, 2796 device_block); 2797 return 0; 2798 } 2799 2800 void 2801 scsi_target_block(struct device *dev) 2802 { 2803 if (scsi_is_target_device(dev)) 2804 starget_for_each_device(to_scsi_target(dev), NULL, 2805 device_block); 2806 else 2807 device_for_each_child(dev, NULL, target_block); 2808 } 2809 EXPORT_SYMBOL_GPL(scsi_target_block); 2810 2811 static void 2812 device_unblock(struct scsi_device *sdev, void *data) 2813 { 2814 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2815 } 2816 2817 static int 2818 target_unblock(struct device *dev, void *data) 2819 { 2820 if (scsi_is_target_device(dev)) 2821 starget_for_each_device(to_scsi_target(dev), data, 2822 device_unblock); 2823 return 0; 2824 } 2825 2826 void 2827 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2828 { 2829 if (scsi_is_target_device(dev)) 2830 starget_for_each_device(to_scsi_target(dev), &new_state, 2831 device_unblock); 2832 else 2833 device_for_each_child(dev, &new_state, target_unblock); 2834 } 2835 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2836 2837 int 2838 scsi_host_block(struct Scsi_Host *shost) 2839 { 2840 struct scsi_device *sdev; 2841 int ret = 0; 2842 2843 /* 2844 * Call scsi_internal_device_block_nowait so we can avoid 2845 * calling synchronize_rcu() for each LUN. 2846 */ 2847 shost_for_each_device(sdev, shost) { 2848 mutex_lock(&sdev->state_mutex); 2849 ret = scsi_internal_device_block_nowait(sdev); 2850 mutex_unlock(&sdev->state_mutex); 2851 if (ret) { 2852 scsi_device_put(sdev); 2853 break; 2854 } 2855 } 2856 2857 /* 2858 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2859 * calling synchronize_rcu() once is enough. 2860 */ 2861 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2862 2863 if (!ret) 2864 synchronize_rcu(); 2865 2866 return ret; 2867 } 2868 EXPORT_SYMBOL_GPL(scsi_host_block); 2869 2870 int 2871 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2872 { 2873 struct scsi_device *sdev; 2874 int ret = 0; 2875 2876 shost_for_each_device(sdev, shost) { 2877 ret = scsi_internal_device_unblock(sdev, new_state); 2878 if (ret) { 2879 scsi_device_put(sdev); 2880 break; 2881 } 2882 } 2883 return ret; 2884 } 2885 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2886 2887 /** 2888 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2889 * @sgl: scatter-gather list 2890 * @sg_count: number of segments in sg 2891 * @offset: offset in bytes into sg, on return offset into the mapped area 2892 * @len: bytes to map, on return number of bytes mapped 2893 * 2894 * Returns virtual address of the start of the mapped page 2895 */ 2896 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2897 size_t *offset, size_t *len) 2898 { 2899 int i; 2900 size_t sg_len = 0, len_complete = 0; 2901 struct scatterlist *sg; 2902 struct page *page; 2903 2904 WARN_ON(!irqs_disabled()); 2905 2906 for_each_sg(sgl, sg, sg_count, i) { 2907 len_complete = sg_len; /* Complete sg-entries */ 2908 sg_len += sg->length; 2909 if (sg_len > *offset) 2910 break; 2911 } 2912 2913 if (unlikely(i == sg_count)) { 2914 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2915 "elements %d\n", 2916 __func__, sg_len, *offset, sg_count); 2917 WARN_ON(1); 2918 return NULL; 2919 } 2920 2921 /* Offset starting from the beginning of first page in this sg-entry */ 2922 *offset = *offset - len_complete + sg->offset; 2923 2924 /* Assumption: contiguous pages can be accessed as "page + i" */ 2925 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2926 *offset &= ~PAGE_MASK; 2927 2928 /* Bytes in this sg-entry from *offset to the end of the page */ 2929 sg_len = PAGE_SIZE - *offset; 2930 if (*len > sg_len) 2931 *len = sg_len; 2932 2933 return kmap_atomic(page); 2934 } 2935 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2936 2937 /** 2938 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2939 * @virt: virtual address to be unmapped 2940 */ 2941 void scsi_kunmap_atomic_sg(void *virt) 2942 { 2943 kunmap_atomic(virt); 2944 } 2945 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2946 2947 void sdev_disable_disk_events(struct scsi_device *sdev) 2948 { 2949 atomic_inc(&sdev->disk_events_disable_depth); 2950 } 2951 EXPORT_SYMBOL(sdev_disable_disk_events); 2952 2953 void sdev_enable_disk_events(struct scsi_device *sdev) 2954 { 2955 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2956 return; 2957 atomic_dec(&sdev->disk_events_disable_depth); 2958 } 2959 EXPORT_SYMBOL(sdev_enable_disk_events); 2960 2961 static unsigned char designator_prio(const unsigned char *d) 2962 { 2963 if (d[1] & 0x30) 2964 /* not associated with LUN */ 2965 return 0; 2966 2967 if (d[3] == 0) 2968 /* invalid length */ 2969 return 0; 2970 2971 /* 2972 * Order of preference for lun descriptor: 2973 * - SCSI name string 2974 * - NAA IEEE Registered Extended 2975 * - EUI-64 based 16-byte 2976 * - EUI-64 based 12-byte 2977 * - NAA IEEE Registered 2978 * - NAA IEEE Extended 2979 * - EUI-64 based 8-byte 2980 * - SCSI name string (truncated) 2981 * - T10 Vendor ID 2982 * as longer descriptors reduce the likelyhood 2983 * of identification clashes. 2984 */ 2985 2986 switch (d[1] & 0xf) { 2987 case 8: 2988 /* SCSI name string, variable-length UTF-8 */ 2989 return 9; 2990 case 3: 2991 switch (d[4] >> 4) { 2992 case 6: 2993 /* NAA registered extended */ 2994 return 8; 2995 case 5: 2996 /* NAA registered */ 2997 return 5; 2998 case 4: 2999 /* NAA extended */ 3000 return 4; 3001 case 3: 3002 /* NAA locally assigned */ 3003 return 1; 3004 default: 3005 break; 3006 } 3007 break; 3008 case 2: 3009 switch (d[3]) { 3010 case 16: 3011 /* EUI64-based, 16 byte */ 3012 return 7; 3013 case 12: 3014 /* EUI64-based, 12 byte */ 3015 return 6; 3016 case 8: 3017 /* EUI64-based, 8 byte */ 3018 return 3; 3019 default: 3020 break; 3021 } 3022 break; 3023 case 1: 3024 /* T10 vendor ID */ 3025 return 1; 3026 default: 3027 break; 3028 } 3029 3030 return 0; 3031 } 3032 3033 /** 3034 * scsi_vpd_lun_id - return a unique device identification 3035 * @sdev: SCSI device 3036 * @id: buffer for the identification 3037 * @id_len: length of the buffer 3038 * 3039 * Copies a unique device identification into @id based 3040 * on the information in the VPD page 0x83 of the device. 3041 * The string will be formatted as a SCSI name string. 3042 * 3043 * Returns the length of the identification or error on failure. 3044 * If the identifier is longer than the supplied buffer the actual 3045 * identifier length is returned and the buffer is not zero-padded. 3046 */ 3047 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3048 { 3049 u8 cur_id_prio = 0; 3050 u8 cur_id_size = 0; 3051 const unsigned char *d, *cur_id_str; 3052 const struct scsi_vpd *vpd_pg83; 3053 int id_size = -EINVAL; 3054 3055 rcu_read_lock(); 3056 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3057 if (!vpd_pg83) { 3058 rcu_read_unlock(); 3059 return -ENXIO; 3060 } 3061 3062 /* The id string must be at least 20 bytes + terminating NULL byte */ 3063 if (id_len < 21) { 3064 rcu_read_unlock(); 3065 return -EINVAL; 3066 } 3067 3068 memset(id, 0, id_len); 3069 for (d = vpd_pg83->data + 4; 3070 d < vpd_pg83->data + vpd_pg83->len; 3071 d += d[3] + 4) { 3072 u8 prio = designator_prio(d); 3073 3074 if (prio == 0 || cur_id_prio > prio) 3075 continue; 3076 3077 switch (d[1] & 0xf) { 3078 case 0x1: 3079 /* T10 Vendor ID */ 3080 if (cur_id_size > d[3]) 3081 break; 3082 cur_id_prio = prio; 3083 cur_id_size = d[3]; 3084 if (cur_id_size + 4 > id_len) 3085 cur_id_size = id_len - 4; 3086 cur_id_str = d + 4; 3087 id_size = snprintf(id, id_len, "t10.%*pE", 3088 cur_id_size, cur_id_str); 3089 break; 3090 case 0x2: 3091 /* EUI-64 */ 3092 cur_id_prio = prio; 3093 cur_id_size = d[3]; 3094 cur_id_str = d + 4; 3095 switch (cur_id_size) { 3096 case 8: 3097 id_size = snprintf(id, id_len, 3098 "eui.%8phN", 3099 cur_id_str); 3100 break; 3101 case 12: 3102 id_size = snprintf(id, id_len, 3103 "eui.%12phN", 3104 cur_id_str); 3105 break; 3106 case 16: 3107 id_size = snprintf(id, id_len, 3108 "eui.%16phN", 3109 cur_id_str); 3110 break; 3111 default: 3112 break; 3113 } 3114 break; 3115 case 0x3: 3116 /* NAA */ 3117 cur_id_prio = prio; 3118 cur_id_size = d[3]; 3119 cur_id_str = d + 4; 3120 switch (cur_id_size) { 3121 case 8: 3122 id_size = snprintf(id, id_len, 3123 "naa.%8phN", 3124 cur_id_str); 3125 break; 3126 case 16: 3127 id_size = snprintf(id, id_len, 3128 "naa.%16phN", 3129 cur_id_str); 3130 break; 3131 default: 3132 break; 3133 } 3134 break; 3135 case 0x8: 3136 /* SCSI name string */ 3137 if (cur_id_size > d[3]) 3138 break; 3139 /* Prefer others for truncated descriptor */ 3140 if (d[3] > id_len) { 3141 prio = 2; 3142 if (cur_id_prio > prio) 3143 break; 3144 } 3145 cur_id_prio = prio; 3146 cur_id_size = id_size = d[3]; 3147 cur_id_str = d + 4; 3148 if (cur_id_size >= id_len) 3149 cur_id_size = id_len - 1; 3150 memcpy(id, cur_id_str, cur_id_size); 3151 break; 3152 default: 3153 break; 3154 } 3155 } 3156 rcu_read_unlock(); 3157 3158 return id_size; 3159 } 3160 EXPORT_SYMBOL(scsi_vpd_lun_id); 3161 3162 /* 3163 * scsi_vpd_tpg_id - return a target port group identifier 3164 * @sdev: SCSI device 3165 * 3166 * Returns the Target Port Group identifier from the information 3167 * froom VPD page 0x83 of the device. 3168 * 3169 * Returns the identifier or error on failure. 3170 */ 3171 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3172 { 3173 const unsigned char *d; 3174 const struct scsi_vpd *vpd_pg83; 3175 int group_id = -EAGAIN, rel_port = -1; 3176 3177 rcu_read_lock(); 3178 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3179 if (!vpd_pg83) { 3180 rcu_read_unlock(); 3181 return -ENXIO; 3182 } 3183 3184 d = vpd_pg83->data + 4; 3185 while (d < vpd_pg83->data + vpd_pg83->len) { 3186 switch (d[1] & 0xf) { 3187 case 0x4: 3188 /* Relative target port */ 3189 rel_port = get_unaligned_be16(&d[6]); 3190 break; 3191 case 0x5: 3192 /* Target port group */ 3193 group_id = get_unaligned_be16(&d[6]); 3194 break; 3195 default: 3196 break; 3197 } 3198 d += d[3] + 4; 3199 } 3200 rcu_read_unlock(); 3201 3202 if (group_id >= 0 && rel_id && rel_port != -1) 3203 *rel_id = rel_port; 3204 3205 return group_id; 3206 } 3207 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3208