1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sdb_cache; 56 static struct kmem_cache *scsi_sense_cache; 57 static struct kmem_cache *scsi_sense_isadma_cache; 58 static DEFINE_MUTEX(scsi_sense_cache_mutex); 59 60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 61 62 static inline struct kmem_cache * 63 scsi_select_sense_cache(bool unchecked_isa_dma) 64 { 65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 66 } 67 68 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 69 unsigned char *sense_buffer) 70 { 71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 72 sense_buffer); 73 } 74 75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 76 gfp_t gfp_mask, int numa_node) 77 { 78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 79 gfp_mask, numa_node); 80 } 81 82 int scsi_init_sense_cache(struct Scsi_Host *shost) 83 { 84 struct kmem_cache *cache; 85 int ret = 0; 86 87 mutex_lock(&scsi_sense_cache_mutex); 88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 89 if (cache) 90 goto exit; 91 92 if (shost->unchecked_isa_dma) { 93 scsi_sense_isadma_cache = 94 kmem_cache_create("scsi_sense_cache(DMA)", 95 SCSI_SENSE_BUFFERSIZE, 0, 96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 97 if (!scsi_sense_isadma_cache) 98 ret = -ENOMEM; 99 } else { 100 scsi_sense_cache = 101 kmem_cache_create_usercopy("scsi_sense_cache", 102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 103 0, SCSI_SENSE_BUFFERSIZE, NULL); 104 if (!scsi_sense_cache) 105 ret = -ENOMEM; 106 } 107 exit: 108 mutex_unlock(&scsi_sense_cache_mutex); 109 return ret; 110 } 111 112 /* 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 114 * not change behaviour from the previous unplug mechanism, experimentation 115 * may prove this needs changing. 116 */ 117 #define SCSI_QUEUE_DELAY 3 118 119 static void 120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 121 { 122 struct Scsi_Host *host = cmd->device->host; 123 struct scsi_device *device = cmd->device; 124 struct scsi_target *starget = scsi_target(device); 125 126 /* 127 * Set the appropriate busy bit for the device/host. 128 * 129 * If the host/device isn't busy, assume that something actually 130 * completed, and that we should be able to queue a command now. 131 * 132 * Note that the prior mid-layer assumption that any host could 133 * always queue at least one command is now broken. The mid-layer 134 * will implement a user specifiable stall (see 135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 136 * if a command is requeued with no other commands outstanding 137 * either for the device or for the host. 138 */ 139 switch (reason) { 140 case SCSI_MLQUEUE_HOST_BUSY: 141 atomic_set(&host->host_blocked, host->max_host_blocked); 142 break; 143 case SCSI_MLQUEUE_DEVICE_BUSY: 144 case SCSI_MLQUEUE_EH_RETRY: 145 atomic_set(&device->device_blocked, 146 device->max_device_blocked); 147 break; 148 case SCSI_MLQUEUE_TARGET_BUSY: 149 atomic_set(&starget->target_blocked, 150 starget->max_target_blocked); 151 break; 152 } 153 } 154 155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 156 { 157 if (cmd->request->rq_flags & RQF_DONTPREP) { 158 cmd->request->rq_flags &= ~RQF_DONTPREP; 159 scsi_mq_uninit_cmd(cmd); 160 } else { 161 WARN_ON_ONCE(true); 162 } 163 blk_mq_requeue_request(cmd->request, true); 164 } 165 166 /** 167 * __scsi_queue_insert - private queue insertion 168 * @cmd: The SCSI command being requeued 169 * @reason: The reason for the requeue 170 * @unbusy: Whether the queue should be unbusied 171 * 172 * This is a private queue insertion. The public interface 173 * scsi_queue_insert() always assumes the queue should be unbusied 174 * because it's always called before the completion. This function is 175 * for a requeue after completion, which should only occur in this 176 * file. 177 */ 178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 179 { 180 struct scsi_device *device = cmd->device; 181 182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 183 "Inserting command %p into mlqueue\n", cmd)); 184 185 scsi_set_blocked(cmd, reason); 186 187 /* 188 * Decrement the counters, since these commands are no longer 189 * active on the host/device. 190 */ 191 if (unbusy) 192 scsi_device_unbusy(device); 193 194 /* 195 * Requeue this command. It will go before all other commands 196 * that are already in the queue. Schedule requeue work under 197 * lock such that the kblockd_schedule_work() call happens 198 * before blk_cleanup_queue() finishes. 199 */ 200 cmd->result = 0; 201 202 blk_mq_requeue_request(cmd->request, true); 203 } 204 205 /* 206 * Function: scsi_queue_insert() 207 * 208 * Purpose: Insert a command in the midlevel queue. 209 * 210 * Arguments: cmd - command that we are adding to queue. 211 * reason - why we are inserting command to queue. 212 * 213 * Lock status: Assumed that lock is not held upon entry. 214 * 215 * Returns: Nothing. 216 * 217 * Notes: We do this for one of two cases. Either the host is busy 218 * and it cannot accept any more commands for the time being, 219 * or the device returned QUEUE_FULL and can accept no more 220 * commands. 221 * Notes: This could be called either from an interrupt context or a 222 * normal process context. 223 */ 224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 225 { 226 __scsi_queue_insert(cmd, reason, true); 227 } 228 229 230 /** 231 * __scsi_execute - insert request and wait for the result 232 * @sdev: scsi device 233 * @cmd: scsi command 234 * @data_direction: data direction 235 * @buffer: data buffer 236 * @bufflen: len of buffer 237 * @sense: optional sense buffer 238 * @sshdr: optional decoded sense header 239 * @timeout: request timeout in seconds 240 * @retries: number of times to retry request 241 * @flags: flags for ->cmd_flags 242 * @rq_flags: flags for ->rq_flags 243 * @resid: optional residual length 244 * 245 * Returns the scsi_cmnd result field if a command was executed, or a negative 246 * Linux error code if we didn't get that far. 247 */ 248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 249 int data_direction, void *buffer, unsigned bufflen, 250 unsigned char *sense, struct scsi_sense_hdr *sshdr, 251 int timeout, int retries, u64 flags, req_flags_t rq_flags, 252 int *resid) 253 { 254 struct request *req; 255 struct scsi_request *rq; 256 int ret = DRIVER_ERROR << 24; 257 258 req = blk_get_request(sdev->request_queue, 259 data_direction == DMA_TO_DEVICE ? 260 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 261 if (IS_ERR(req)) 262 return ret; 263 rq = scsi_req(req); 264 265 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 266 buffer, bufflen, GFP_NOIO)) 267 goto out; 268 269 rq->cmd_len = COMMAND_SIZE(cmd[0]); 270 memcpy(rq->cmd, cmd, rq->cmd_len); 271 rq->retries = retries; 272 req->timeout = timeout; 273 req->cmd_flags |= flags; 274 req->rq_flags |= rq_flags | RQF_QUIET; 275 276 /* 277 * head injection *required* here otherwise quiesce won't work 278 */ 279 blk_execute_rq(req->q, NULL, req, 1); 280 281 /* 282 * Some devices (USB mass-storage in particular) may transfer 283 * garbage data together with a residue indicating that the data 284 * is invalid. Prevent the garbage from being misinterpreted 285 * and prevent security leaks by zeroing out the excess data. 286 */ 287 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 288 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 289 290 if (resid) 291 *resid = rq->resid_len; 292 if (sense && rq->sense_len) 293 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 294 if (sshdr) 295 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 296 ret = rq->result; 297 out: 298 blk_put_request(req); 299 300 return ret; 301 } 302 EXPORT_SYMBOL(__scsi_execute); 303 304 /* 305 * Function: scsi_init_cmd_errh() 306 * 307 * Purpose: Initialize cmd fields related to error handling. 308 * 309 * Arguments: cmd - command that is ready to be queued. 310 * 311 * Notes: This function has the job of initializing a number of 312 * fields related to error handling. Typically this will 313 * be called once for each command, as required. 314 */ 315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 316 { 317 scsi_set_resid(cmd, 0); 318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 319 if (cmd->cmd_len == 0) 320 cmd->cmd_len = scsi_command_size(cmd->cmnd); 321 } 322 323 /* 324 * Decrement the host_busy counter and wake up the error handler if necessary. 325 * Avoid as follows that the error handler is not woken up if shost->host_busy 326 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 327 * with an RCU read lock in this function to ensure that this function in its 328 * entirety either finishes before scsi_eh_scmd_add() increases the 329 * host_failed counter or that it notices the shost state change made by 330 * scsi_eh_scmd_add(). 331 */ 332 static void scsi_dec_host_busy(struct Scsi_Host *shost) 333 { 334 unsigned long flags; 335 336 rcu_read_lock(); 337 atomic_dec(&shost->host_busy); 338 if (unlikely(scsi_host_in_recovery(shost))) { 339 spin_lock_irqsave(shost->host_lock, flags); 340 if (shost->host_failed || shost->host_eh_scheduled) 341 scsi_eh_wakeup(shost); 342 spin_unlock_irqrestore(shost->host_lock, flags); 343 } 344 rcu_read_unlock(); 345 } 346 347 void scsi_device_unbusy(struct scsi_device *sdev) 348 { 349 struct Scsi_Host *shost = sdev->host; 350 struct scsi_target *starget = scsi_target(sdev); 351 352 scsi_dec_host_busy(shost); 353 354 if (starget->can_queue > 0) 355 atomic_dec(&starget->target_busy); 356 357 atomic_dec(&sdev->device_busy); 358 } 359 360 static void scsi_kick_queue(struct request_queue *q) 361 { 362 blk_mq_run_hw_queues(q, false); 363 } 364 365 /* 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 367 * and call blk_run_queue for all the scsi_devices on the target - 368 * including current_sdev first. 369 * 370 * Called with *no* scsi locks held. 371 */ 372 static void scsi_single_lun_run(struct scsi_device *current_sdev) 373 { 374 struct Scsi_Host *shost = current_sdev->host; 375 struct scsi_device *sdev, *tmp; 376 struct scsi_target *starget = scsi_target(current_sdev); 377 unsigned long flags; 378 379 spin_lock_irqsave(shost->host_lock, flags); 380 starget->starget_sdev_user = NULL; 381 spin_unlock_irqrestore(shost->host_lock, flags); 382 383 /* 384 * Call blk_run_queue for all LUNs on the target, starting with 385 * current_sdev. We race with others (to set starget_sdev_user), 386 * but in most cases, we will be first. Ideally, each LU on the 387 * target would get some limited time or requests on the target. 388 */ 389 scsi_kick_queue(current_sdev->request_queue); 390 391 spin_lock_irqsave(shost->host_lock, flags); 392 if (starget->starget_sdev_user) 393 goto out; 394 list_for_each_entry_safe(sdev, tmp, &starget->devices, 395 same_target_siblings) { 396 if (sdev == current_sdev) 397 continue; 398 if (scsi_device_get(sdev)) 399 continue; 400 401 spin_unlock_irqrestore(shost->host_lock, flags); 402 scsi_kick_queue(sdev->request_queue); 403 spin_lock_irqsave(shost->host_lock, flags); 404 405 scsi_device_put(sdev); 406 } 407 out: 408 spin_unlock_irqrestore(shost->host_lock, flags); 409 } 410 411 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 412 { 413 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 414 return true; 415 if (atomic_read(&sdev->device_blocked) > 0) 416 return true; 417 return false; 418 } 419 420 static inline bool scsi_target_is_busy(struct scsi_target *starget) 421 { 422 if (starget->can_queue > 0) { 423 if (atomic_read(&starget->target_busy) >= starget->can_queue) 424 return true; 425 if (atomic_read(&starget->target_blocked) > 0) 426 return true; 427 } 428 return false; 429 } 430 431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 432 { 433 if (shost->can_queue > 0 && 434 atomic_read(&shost->host_busy) >= shost->can_queue) 435 return true; 436 if (atomic_read(&shost->host_blocked) > 0) 437 return true; 438 if (shost->host_self_blocked) 439 return true; 440 return false; 441 } 442 443 static void scsi_starved_list_run(struct Scsi_Host *shost) 444 { 445 LIST_HEAD(starved_list); 446 struct scsi_device *sdev; 447 unsigned long flags; 448 449 spin_lock_irqsave(shost->host_lock, flags); 450 list_splice_init(&shost->starved_list, &starved_list); 451 452 while (!list_empty(&starved_list)) { 453 struct request_queue *slq; 454 455 /* 456 * As long as shost is accepting commands and we have 457 * starved queues, call blk_run_queue. scsi_request_fn 458 * drops the queue_lock and can add us back to the 459 * starved_list. 460 * 461 * host_lock protects the starved_list and starved_entry. 462 * scsi_request_fn must get the host_lock before checking 463 * or modifying starved_list or starved_entry. 464 */ 465 if (scsi_host_is_busy(shost)) 466 break; 467 468 sdev = list_entry(starved_list.next, 469 struct scsi_device, starved_entry); 470 list_del_init(&sdev->starved_entry); 471 if (scsi_target_is_busy(scsi_target(sdev))) { 472 list_move_tail(&sdev->starved_entry, 473 &shost->starved_list); 474 continue; 475 } 476 477 /* 478 * Once we drop the host lock, a racing scsi_remove_device() 479 * call may remove the sdev from the starved list and destroy 480 * it and the queue. Mitigate by taking a reference to the 481 * queue and never touching the sdev again after we drop the 482 * host lock. Note: if __scsi_remove_device() invokes 483 * blk_cleanup_queue() before the queue is run from this 484 * function then blk_run_queue() will return immediately since 485 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 486 */ 487 slq = sdev->request_queue; 488 if (!blk_get_queue(slq)) 489 continue; 490 spin_unlock_irqrestore(shost->host_lock, flags); 491 492 scsi_kick_queue(slq); 493 blk_put_queue(slq); 494 495 spin_lock_irqsave(shost->host_lock, flags); 496 } 497 /* put any unprocessed entries back */ 498 list_splice(&starved_list, &shost->starved_list); 499 spin_unlock_irqrestore(shost->host_lock, flags); 500 } 501 502 /* 503 * Function: scsi_run_queue() 504 * 505 * Purpose: Select a proper request queue to serve next 506 * 507 * Arguments: q - last request's queue 508 * 509 * Returns: Nothing 510 * 511 * Notes: The previous command was completely finished, start 512 * a new one if possible. 513 */ 514 static void scsi_run_queue(struct request_queue *q) 515 { 516 struct scsi_device *sdev = q->queuedata; 517 518 if (scsi_target(sdev)->single_lun) 519 scsi_single_lun_run(sdev); 520 if (!list_empty(&sdev->host->starved_list)) 521 scsi_starved_list_run(sdev->host); 522 523 blk_mq_run_hw_queues(q, false); 524 } 525 526 void scsi_requeue_run_queue(struct work_struct *work) 527 { 528 struct scsi_device *sdev; 529 struct request_queue *q; 530 531 sdev = container_of(work, struct scsi_device, requeue_work); 532 q = sdev->request_queue; 533 scsi_run_queue(q); 534 } 535 536 void scsi_run_host_queues(struct Scsi_Host *shost) 537 { 538 struct scsi_device *sdev; 539 540 shost_for_each_device(sdev, shost) 541 scsi_run_queue(sdev->request_queue); 542 } 543 544 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 545 { 546 if (!blk_rq_is_passthrough(cmd->request)) { 547 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 548 549 if (drv->uninit_command) 550 drv->uninit_command(cmd); 551 } 552 } 553 554 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 555 { 556 if (cmd->sdb.table.nents) 557 sg_free_table_chained(&cmd->sdb.table, 558 SCSI_INLINE_SG_CNT); 559 if (scsi_prot_sg_count(cmd)) 560 sg_free_table_chained(&cmd->prot_sdb->table, 561 SCSI_INLINE_PROT_SG_CNT); 562 } 563 564 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 565 { 566 scsi_mq_free_sgtables(cmd); 567 scsi_uninit_cmd(cmd); 568 scsi_del_cmd_from_list(cmd); 569 } 570 571 /* Returns false when no more bytes to process, true if there are more */ 572 static bool scsi_end_request(struct request *req, blk_status_t error, 573 unsigned int bytes) 574 { 575 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 576 struct scsi_device *sdev = cmd->device; 577 struct request_queue *q = sdev->request_queue; 578 579 if (blk_update_request(req, error, bytes)) 580 return true; 581 582 if (blk_queue_add_random(q)) 583 add_disk_randomness(req->rq_disk); 584 585 if (!blk_rq_is_scsi(req)) { 586 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 587 cmd->flags &= ~SCMD_INITIALIZED; 588 } 589 590 /* 591 * Calling rcu_barrier() is not necessary here because the 592 * SCSI error handler guarantees that the function called by 593 * call_rcu() has been called before scsi_end_request() is 594 * called. 595 */ 596 destroy_rcu_head(&cmd->rcu); 597 598 /* 599 * In the MQ case the command gets freed by __blk_mq_end_request, 600 * so we have to do all cleanup that depends on it earlier. 601 * 602 * We also can't kick the queues from irq context, so we 603 * will have to defer it to a workqueue. 604 */ 605 scsi_mq_uninit_cmd(cmd); 606 607 /* 608 * queue is still alive, so grab the ref for preventing it 609 * from being cleaned up during running queue. 610 */ 611 percpu_ref_get(&q->q_usage_counter); 612 613 __blk_mq_end_request(req, error); 614 615 if (scsi_target(sdev)->single_lun || 616 !list_empty(&sdev->host->starved_list)) 617 kblockd_schedule_work(&sdev->requeue_work); 618 else 619 blk_mq_run_hw_queues(q, true); 620 621 percpu_ref_put(&q->q_usage_counter); 622 return false; 623 } 624 625 /** 626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 627 * @cmd: SCSI command 628 * @result: scsi error code 629 * 630 * Translate a SCSI result code into a blk_status_t value. May reset the host 631 * byte of @cmd->result. 632 */ 633 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 634 { 635 switch (host_byte(result)) { 636 case DID_OK: 637 /* 638 * Also check the other bytes than the status byte in result 639 * to handle the case when a SCSI LLD sets result to 640 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 641 */ 642 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 643 return BLK_STS_OK; 644 return BLK_STS_IOERR; 645 case DID_TRANSPORT_FAILFAST: 646 return BLK_STS_TRANSPORT; 647 case DID_TARGET_FAILURE: 648 set_host_byte(cmd, DID_OK); 649 return BLK_STS_TARGET; 650 case DID_NEXUS_FAILURE: 651 set_host_byte(cmd, DID_OK); 652 return BLK_STS_NEXUS; 653 case DID_ALLOC_FAILURE: 654 set_host_byte(cmd, DID_OK); 655 return BLK_STS_NOSPC; 656 case DID_MEDIUM_ERROR: 657 set_host_byte(cmd, DID_OK); 658 return BLK_STS_MEDIUM; 659 default: 660 return BLK_STS_IOERR; 661 } 662 } 663 664 /* Helper for scsi_io_completion() when "reprep" action required. */ 665 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 666 struct request_queue *q) 667 { 668 /* A new command will be prepared and issued. */ 669 scsi_mq_requeue_cmd(cmd); 670 } 671 672 /* Helper for scsi_io_completion() when special action required. */ 673 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 674 { 675 struct request_queue *q = cmd->device->request_queue; 676 struct request *req = cmd->request; 677 int level = 0; 678 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 679 ACTION_DELAYED_RETRY} action; 680 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 681 struct scsi_sense_hdr sshdr; 682 bool sense_valid; 683 bool sense_current = true; /* false implies "deferred sense" */ 684 blk_status_t blk_stat; 685 686 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 687 if (sense_valid) 688 sense_current = !scsi_sense_is_deferred(&sshdr); 689 690 blk_stat = scsi_result_to_blk_status(cmd, result); 691 692 if (host_byte(result) == DID_RESET) { 693 /* Third party bus reset or reset for error recovery 694 * reasons. Just retry the command and see what 695 * happens. 696 */ 697 action = ACTION_RETRY; 698 } else if (sense_valid && sense_current) { 699 switch (sshdr.sense_key) { 700 case UNIT_ATTENTION: 701 if (cmd->device->removable) { 702 /* Detected disc change. Set a bit 703 * and quietly refuse further access. 704 */ 705 cmd->device->changed = 1; 706 action = ACTION_FAIL; 707 } else { 708 /* Must have been a power glitch, or a 709 * bus reset. Could not have been a 710 * media change, so we just retry the 711 * command and see what happens. 712 */ 713 action = ACTION_RETRY; 714 } 715 break; 716 case ILLEGAL_REQUEST: 717 /* If we had an ILLEGAL REQUEST returned, then 718 * we may have performed an unsupported 719 * command. The only thing this should be 720 * would be a ten byte read where only a six 721 * byte read was supported. Also, on a system 722 * where READ CAPACITY failed, we may have 723 * read past the end of the disk. 724 */ 725 if ((cmd->device->use_10_for_rw && 726 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 727 (cmd->cmnd[0] == READ_10 || 728 cmd->cmnd[0] == WRITE_10)) { 729 /* This will issue a new 6-byte command. */ 730 cmd->device->use_10_for_rw = 0; 731 action = ACTION_REPREP; 732 } else if (sshdr.asc == 0x10) /* DIX */ { 733 action = ACTION_FAIL; 734 blk_stat = BLK_STS_PROTECTION; 735 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 736 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 737 action = ACTION_FAIL; 738 blk_stat = BLK_STS_TARGET; 739 } else 740 action = ACTION_FAIL; 741 break; 742 case ABORTED_COMMAND: 743 action = ACTION_FAIL; 744 if (sshdr.asc == 0x10) /* DIF */ 745 blk_stat = BLK_STS_PROTECTION; 746 break; 747 case NOT_READY: 748 /* If the device is in the process of becoming 749 * ready, or has a temporary blockage, retry. 750 */ 751 if (sshdr.asc == 0x04) { 752 switch (sshdr.ascq) { 753 case 0x01: /* becoming ready */ 754 case 0x04: /* format in progress */ 755 case 0x05: /* rebuild in progress */ 756 case 0x06: /* recalculation in progress */ 757 case 0x07: /* operation in progress */ 758 case 0x08: /* Long write in progress */ 759 case 0x09: /* self test in progress */ 760 case 0x14: /* space allocation in progress */ 761 case 0x1a: /* start stop unit in progress */ 762 case 0x1b: /* sanitize in progress */ 763 case 0x1d: /* configuration in progress */ 764 case 0x24: /* depopulation in progress */ 765 action = ACTION_DELAYED_RETRY; 766 break; 767 default: 768 action = ACTION_FAIL; 769 break; 770 } 771 } else 772 action = ACTION_FAIL; 773 break; 774 case VOLUME_OVERFLOW: 775 /* See SSC3rXX or current. */ 776 action = ACTION_FAIL; 777 break; 778 default: 779 action = ACTION_FAIL; 780 break; 781 } 782 } else 783 action = ACTION_FAIL; 784 785 if (action != ACTION_FAIL && 786 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 787 action = ACTION_FAIL; 788 789 switch (action) { 790 case ACTION_FAIL: 791 /* Give up and fail the remainder of the request */ 792 if (!(req->rq_flags & RQF_QUIET)) { 793 static DEFINE_RATELIMIT_STATE(_rs, 794 DEFAULT_RATELIMIT_INTERVAL, 795 DEFAULT_RATELIMIT_BURST); 796 797 if (unlikely(scsi_logging_level)) 798 level = 799 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 800 SCSI_LOG_MLCOMPLETE_BITS); 801 802 /* 803 * if logging is enabled the failure will be printed 804 * in scsi_log_completion(), so avoid duplicate messages 805 */ 806 if (!level && __ratelimit(&_rs)) { 807 scsi_print_result(cmd, NULL, FAILED); 808 if (driver_byte(result) == DRIVER_SENSE) 809 scsi_print_sense(cmd); 810 scsi_print_command(cmd); 811 } 812 } 813 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 814 return; 815 /*FALLTHRU*/ 816 case ACTION_REPREP: 817 scsi_io_completion_reprep(cmd, q); 818 break; 819 case ACTION_RETRY: 820 /* Retry the same command immediately */ 821 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 822 break; 823 case ACTION_DELAYED_RETRY: 824 /* Retry the same command after a delay */ 825 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 826 break; 827 } 828 } 829 830 /* 831 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 832 * new result that may suppress further error checking. Also modifies 833 * *blk_statp in some cases. 834 */ 835 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 836 blk_status_t *blk_statp) 837 { 838 bool sense_valid; 839 bool sense_current = true; /* false implies "deferred sense" */ 840 struct request *req = cmd->request; 841 struct scsi_sense_hdr sshdr; 842 843 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 844 if (sense_valid) 845 sense_current = !scsi_sense_is_deferred(&sshdr); 846 847 if (blk_rq_is_passthrough(req)) { 848 if (sense_valid) { 849 /* 850 * SG_IO wants current and deferred errors 851 */ 852 scsi_req(req)->sense_len = 853 min(8 + cmd->sense_buffer[7], 854 SCSI_SENSE_BUFFERSIZE); 855 } 856 if (sense_current) 857 *blk_statp = scsi_result_to_blk_status(cmd, result); 858 } else if (blk_rq_bytes(req) == 0 && sense_current) { 859 /* 860 * Flush commands do not transfers any data, and thus cannot use 861 * good_bytes != blk_rq_bytes(req) as the signal for an error. 862 * This sets *blk_statp explicitly for the problem case. 863 */ 864 *blk_statp = scsi_result_to_blk_status(cmd, result); 865 } 866 /* 867 * Recovered errors need reporting, but they're always treated as 868 * success, so fiddle the result code here. For passthrough requests 869 * we already took a copy of the original into sreq->result which 870 * is what gets returned to the user 871 */ 872 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 873 bool do_print = true; 874 /* 875 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 876 * skip print since caller wants ATA registers. Only occurs 877 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 878 */ 879 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 880 do_print = false; 881 else if (req->rq_flags & RQF_QUIET) 882 do_print = false; 883 if (do_print) 884 scsi_print_sense(cmd); 885 result = 0; 886 /* for passthrough, *blk_statp may be set */ 887 *blk_statp = BLK_STS_OK; 888 } 889 /* 890 * Another corner case: the SCSI status byte is non-zero but 'good'. 891 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 892 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 893 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 894 * intermediate statuses (both obsolete in SAM-4) as good. 895 */ 896 if (status_byte(result) && scsi_status_is_good(result)) { 897 result = 0; 898 *blk_statp = BLK_STS_OK; 899 } 900 return result; 901 } 902 903 /* 904 * Function: scsi_io_completion() 905 * 906 * Purpose: Completion processing for block device I/O requests. 907 * 908 * Arguments: cmd - command that is finished. 909 * 910 * Lock status: Assumed that no lock is held upon entry. 911 * 912 * Returns: Nothing 913 * 914 * Notes: We will finish off the specified number of sectors. If we 915 * are done, the command block will be released and the queue 916 * function will be goosed. If we are not done then we have to 917 * figure out what to do next: 918 * 919 * a) We can call scsi_requeue_command(). The request 920 * will be unprepared and put back on the queue. Then 921 * a new command will be created for it. This should 922 * be used if we made forward progress, or if we want 923 * to switch from READ(10) to READ(6) for example. 924 * 925 * b) We can call __scsi_queue_insert(). The request will 926 * be put back on the queue and retried using the same 927 * command as before, possibly after a delay. 928 * 929 * c) We can call scsi_end_request() with blk_stat other than 930 * BLK_STS_OK, to fail the remainder of the request. 931 */ 932 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 933 { 934 int result = cmd->result; 935 struct request_queue *q = cmd->device->request_queue; 936 struct request *req = cmd->request; 937 blk_status_t blk_stat = BLK_STS_OK; 938 939 if (unlikely(result)) /* a nz result may or may not be an error */ 940 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 941 942 if (unlikely(blk_rq_is_passthrough(req))) { 943 /* 944 * scsi_result_to_blk_status may have reset the host_byte 945 */ 946 scsi_req(req)->result = cmd->result; 947 } 948 949 /* 950 * Next deal with any sectors which we were able to correctly 951 * handle. 952 */ 953 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 954 "%u sectors total, %d bytes done.\n", 955 blk_rq_sectors(req), good_bytes)); 956 957 /* 958 * Next deal with any sectors which we were able to correctly 959 * handle. Failed, zero length commands always need to drop down 960 * to retry code. Fast path should return in this block. 961 */ 962 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 963 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 964 return; /* no bytes remaining */ 965 } 966 967 /* Kill remainder if no retries. */ 968 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 969 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 970 WARN_ONCE(true, 971 "Bytes remaining after failed, no-retry command"); 972 return; 973 } 974 975 /* 976 * If there had been no error, but we have leftover bytes in the 977 * requeues just queue the command up again. 978 */ 979 if (likely(result == 0)) 980 scsi_io_completion_reprep(cmd, q); 981 else 982 scsi_io_completion_action(cmd, result); 983 } 984 985 static blk_status_t scsi_init_sgtable(struct request *req, 986 struct scsi_data_buffer *sdb) 987 { 988 int count; 989 990 /* 991 * If sg table allocation fails, requeue request later. 992 */ 993 if (unlikely(sg_alloc_table_chained(&sdb->table, 994 blk_rq_nr_phys_segments(req), sdb->table.sgl, 995 SCSI_INLINE_SG_CNT))) 996 return BLK_STS_RESOURCE; 997 998 /* 999 * Next, walk the list, and fill in the addresses and sizes of 1000 * each segment. 1001 */ 1002 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1003 BUG_ON(count > sdb->table.nents); 1004 sdb->table.nents = count; 1005 sdb->length = blk_rq_payload_bytes(req); 1006 return BLK_STS_OK; 1007 } 1008 1009 /* 1010 * Function: scsi_init_io() 1011 * 1012 * Purpose: SCSI I/O initialize function. 1013 * 1014 * Arguments: cmd - Command descriptor we wish to initialize 1015 * 1016 * Returns: BLK_STS_OK on success 1017 * BLK_STS_RESOURCE if the failure is retryable 1018 * BLK_STS_IOERR if the failure is fatal 1019 */ 1020 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1021 { 1022 struct request *rq = cmd->request; 1023 blk_status_t ret; 1024 1025 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1026 return BLK_STS_IOERR; 1027 1028 ret = scsi_init_sgtable(rq, &cmd->sdb); 1029 if (ret) 1030 return ret; 1031 1032 if (blk_integrity_rq(rq)) { 1033 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1034 int ivecs, count; 1035 1036 if (WARN_ON_ONCE(!prot_sdb)) { 1037 /* 1038 * This can happen if someone (e.g. multipath) 1039 * queues a command to a device on an adapter 1040 * that does not support DIX. 1041 */ 1042 ret = BLK_STS_IOERR; 1043 goto out_free_sgtables; 1044 } 1045 1046 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1047 1048 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1049 prot_sdb->table.sgl, 1050 SCSI_INLINE_PROT_SG_CNT)) { 1051 ret = BLK_STS_RESOURCE; 1052 goto out_free_sgtables; 1053 } 1054 1055 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1056 prot_sdb->table.sgl); 1057 BUG_ON(count > ivecs); 1058 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1059 1060 cmd->prot_sdb = prot_sdb; 1061 cmd->prot_sdb->table.nents = count; 1062 } 1063 1064 return BLK_STS_OK; 1065 out_free_sgtables: 1066 scsi_mq_free_sgtables(cmd); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(scsi_init_io); 1070 1071 /** 1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1073 * @rq: Request associated with the SCSI command to be initialized. 1074 * 1075 * This function initializes the members of struct scsi_cmnd that must be 1076 * initialized before request processing starts and that won't be 1077 * reinitialized if a SCSI command is requeued. 1078 * 1079 * Called from inside blk_get_request() for pass-through requests and from 1080 * inside scsi_init_command() for filesystem requests. 1081 */ 1082 static void scsi_initialize_rq(struct request *rq) 1083 { 1084 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1085 1086 scsi_req_init(&cmd->req); 1087 init_rcu_head(&cmd->rcu); 1088 cmd->jiffies_at_alloc = jiffies; 1089 cmd->retries = 0; 1090 } 1091 1092 /* 1093 * Only called when the request isn't completed by SCSI, and not freed by 1094 * SCSI 1095 */ 1096 static void scsi_cleanup_rq(struct request *rq) 1097 { 1098 if (rq->rq_flags & RQF_DONTPREP) { 1099 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1100 rq->rq_flags &= ~RQF_DONTPREP; 1101 } 1102 } 1103 1104 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1105 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1106 { 1107 struct scsi_device *sdev = cmd->device; 1108 struct Scsi_Host *shost = sdev->host; 1109 unsigned long flags; 1110 1111 if (shost->use_cmd_list) { 1112 spin_lock_irqsave(&sdev->list_lock, flags); 1113 list_add_tail(&cmd->list, &sdev->cmd_list); 1114 spin_unlock_irqrestore(&sdev->list_lock, flags); 1115 } 1116 } 1117 1118 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1119 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1120 { 1121 struct scsi_device *sdev = cmd->device; 1122 struct Scsi_Host *shost = sdev->host; 1123 unsigned long flags; 1124 1125 if (shost->use_cmd_list) { 1126 spin_lock_irqsave(&sdev->list_lock, flags); 1127 BUG_ON(list_empty(&cmd->list)); 1128 list_del_init(&cmd->list); 1129 spin_unlock_irqrestore(&sdev->list_lock, flags); 1130 } 1131 } 1132 1133 /* Called after a request has been started. */ 1134 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1135 { 1136 void *buf = cmd->sense_buffer; 1137 void *prot = cmd->prot_sdb; 1138 struct request *rq = blk_mq_rq_from_pdu(cmd); 1139 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1140 unsigned long jiffies_at_alloc; 1141 int retries; 1142 1143 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1144 flags |= SCMD_INITIALIZED; 1145 scsi_initialize_rq(rq); 1146 } 1147 1148 jiffies_at_alloc = cmd->jiffies_at_alloc; 1149 retries = cmd->retries; 1150 /* zero out the cmd, except for the embedded scsi_request */ 1151 memset((char *)cmd + sizeof(cmd->req), 0, 1152 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1153 1154 cmd->device = dev; 1155 cmd->sense_buffer = buf; 1156 cmd->prot_sdb = prot; 1157 cmd->flags = flags; 1158 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1159 cmd->jiffies_at_alloc = jiffies_at_alloc; 1160 cmd->retries = retries; 1161 1162 scsi_add_cmd_to_list(cmd); 1163 } 1164 1165 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1166 struct request *req) 1167 { 1168 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1169 1170 /* 1171 * Passthrough requests may transfer data, in which case they must 1172 * a bio attached to them. Or they might contain a SCSI command 1173 * that does not transfer data, in which case they may optionally 1174 * submit a request without an attached bio. 1175 */ 1176 if (req->bio) { 1177 blk_status_t ret = scsi_init_io(cmd); 1178 if (unlikely(ret != BLK_STS_OK)) 1179 return ret; 1180 } else { 1181 BUG_ON(blk_rq_bytes(req)); 1182 1183 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1184 } 1185 1186 cmd->cmd_len = scsi_req(req)->cmd_len; 1187 cmd->cmnd = scsi_req(req)->cmd; 1188 cmd->transfersize = blk_rq_bytes(req); 1189 cmd->allowed = scsi_req(req)->retries; 1190 return BLK_STS_OK; 1191 } 1192 1193 /* 1194 * Setup a normal block command. These are simple request from filesystems 1195 * that still need to be translated to SCSI CDBs from the ULD. 1196 */ 1197 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1198 struct request *req) 1199 { 1200 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1201 1202 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1203 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1204 if (ret != BLK_STS_OK) 1205 return ret; 1206 } 1207 1208 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1209 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1210 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1211 } 1212 1213 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1214 struct request *req) 1215 { 1216 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1217 1218 if (!blk_rq_bytes(req)) 1219 cmd->sc_data_direction = DMA_NONE; 1220 else if (rq_data_dir(req) == WRITE) 1221 cmd->sc_data_direction = DMA_TO_DEVICE; 1222 else 1223 cmd->sc_data_direction = DMA_FROM_DEVICE; 1224 1225 if (blk_rq_is_scsi(req)) 1226 return scsi_setup_scsi_cmnd(sdev, req); 1227 else 1228 return scsi_setup_fs_cmnd(sdev, req); 1229 } 1230 1231 static blk_status_t 1232 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1233 { 1234 switch (sdev->sdev_state) { 1235 case SDEV_OFFLINE: 1236 case SDEV_TRANSPORT_OFFLINE: 1237 /* 1238 * If the device is offline we refuse to process any 1239 * commands. The device must be brought online 1240 * before trying any recovery commands. 1241 */ 1242 sdev_printk(KERN_ERR, sdev, 1243 "rejecting I/O to offline device\n"); 1244 return BLK_STS_IOERR; 1245 case SDEV_DEL: 1246 /* 1247 * If the device is fully deleted, we refuse to 1248 * process any commands as well. 1249 */ 1250 sdev_printk(KERN_ERR, sdev, 1251 "rejecting I/O to dead device\n"); 1252 return BLK_STS_IOERR; 1253 case SDEV_BLOCK: 1254 case SDEV_CREATED_BLOCK: 1255 return BLK_STS_RESOURCE; 1256 case SDEV_QUIESCE: 1257 /* 1258 * If the devices is blocked we defer normal commands. 1259 */ 1260 if (req && !(req->rq_flags & RQF_PREEMPT)) 1261 return BLK_STS_RESOURCE; 1262 return BLK_STS_OK; 1263 default: 1264 /* 1265 * For any other not fully online state we only allow 1266 * special commands. In particular any user initiated 1267 * command is not allowed. 1268 */ 1269 if (req && !(req->rq_flags & RQF_PREEMPT)) 1270 return BLK_STS_IOERR; 1271 return BLK_STS_OK; 1272 } 1273 } 1274 1275 /* 1276 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1277 * return 0. 1278 * 1279 * Called with the queue_lock held. 1280 */ 1281 static inline int scsi_dev_queue_ready(struct request_queue *q, 1282 struct scsi_device *sdev) 1283 { 1284 unsigned int busy; 1285 1286 busy = atomic_inc_return(&sdev->device_busy) - 1; 1287 if (atomic_read(&sdev->device_blocked)) { 1288 if (busy) 1289 goto out_dec; 1290 1291 /* 1292 * unblock after device_blocked iterates to zero 1293 */ 1294 if (atomic_dec_return(&sdev->device_blocked) > 0) 1295 goto out_dec; 1296 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1297 "unblocking device at zero depth\n")); 1298 } 1299 1300 if (busy >= sdev->queue_depth) 1301 goto out_dec; 1302 1303 return 1; 1304 out_dec: 1305 atomic_dec(&sdev->device_busy); 1306 return 0; 1307 } 1308 1309 /* 1310 * scsi_target_queue_ready: checks if there we can send commands to target 1311 * @sdev: scsi device on starget to check. 1312 */ 1313 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1314 struct scsi_device *sdev) 1315 { 1316 struct scsi_target *starget = scsi_target(sdev); 1317 unsigned int busy; 1318 1319 if (starget->single_lun) { 1320 spin_lock_irq(shost->host_lock); 1321 if (starget->starget_sdev_user && 1322 starget->starget_sdev_user != sdev) { 1323 spin_unlock_irq(shost->host_lock); 1324 return 0; 1325 } 1326 starget->starget_sdev_user = sdev; 1327 spin_unlock_irq(shost->host_lock); 1328 } 1329 1330 if (starget->can_queue <= 0) 1331 return 1; 1332 1333 busy = atomic_inc_return(&starget->target_busy) - 1; 1334 if (atomic_read(&starget->target_blocked) > 0) { 1335 if (busy) 1336 goto starved; 1337 1338 /* 1339 * unblock after target_blocked iterates to zero 1340 */ 1341 if (atomic_dec_return(&starget->target_blocked) > 0) 1342 goto out_dec; 1343 1344 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1345 "unblocking target at zero depth\n")); 1346 } 1347 1348 if (busy >= starget->can_queue) 1349 goto starved; 1350 1351 return 1; 1352 1353 starved: 1354 spin_lock_irq(shost->host_lock); 1355 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1356 spin_unlock_irq(shost->host_lock); 1357 out_dec: 1358 if (starget->can_queue > 0) 1359 atomic_dec(&starget->target_busy); 1360 return 0; 1361 } 1362 1363 /* 1364 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1365 * return 0. We must end up running the queue again whenever 0 is 1366 * returned, else IO can hang. 1367 */ 1368 static inline int scsi_host_queue_ready(struct request_queue *q, 1369 struct Scsi_Host *shost, 1370 struct scsi_device *sdev) 1371 { 1372 unsigned int busy; 1373 1374 if (scsi_host_in_recovery(shost)) 1375 return 0; 1376 1377 busy = atomic_inc_return(&shost->host_busy) - 1; 1378 if (atomic_read(&shost->host_blocked) > 0) { 1379 if (busy) 1380 goto starved; 1381 1382 /* 1383 * unblock after host_blocked iterates to zero 1384 */ 1385 if (atomic_dec_return(&shost->host_blocked) > 0) 1386 goto out_dec; 1387 1388 SCSI_LOG_MLQUEUE(3, 1389 shost_printk(KERN_INFO, shost, 1390 "unblocking host at zero depth\n")); 1391 } 1392 1393 if (shost->can_queue > 0 && busy >= shost->can_queue) 1394 goto starved; 1395 if (shost->host_self_blocked) 1396 goto starved; 1397 1398 /* We're OK to process the command, so we can't be starved */ 1399 if (!list_empty(&sdev->starved_entry)) { 1400 spin_lock_irq(shost->host_lock); 1401 if (!list_empty(&sdev->starved_entry)) 1402 list_del_init(&sdev->starved_entry); 1403 spin_unlock_irq(shost->host_lock); 1404 } 1405 1406 return 1; 1407 1408 starved: 1409 spin_lock_irq(shost->host_lock); 1410 if (list_empty(&sdev->starved_entry)) 1411 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1412 spin_unlock_irq(shost->host_lock); 1413 out_dec: 1414 scsi_dec_host_busy(shost); 1415 return 0; 1416 } 1417 1418 /* 1419 * Busy state exporting function for request stacking drivers. 1420 * 1421 * For efficiency, no lock is taken to check the busy state of 1422 * shost/starget/sdev, since the returned value is not guaranteed and 1423 * may be changed after request stacking drivers call the function, 1424 * regardless of taking lock or not. 1425 * 1426 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1427 * needs to return 'not busy'. Otherwise, request stacking drivers 1428 * may hold requests forever. 1429 */ 1430 static bool scsi_mq_lld_busy(struct request_queue *q) 1431 { 1432 struct scsi_device *sdev = q->queuedata; 1433 struct Scsi_Host *shost; 1434 1435 if (blk_queue_dying(q)) 1436 return false; 1437 1438 shost = sdev->host; 1439 1440 /* 1441 * Ignore host/starget busy state. 1442 * Since block layer does not have a concept of fairness across 1443 * multiple queues, congestion of host/starget needs to be handled 1444 * in SCSI layer. 1445 */ 1446 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1447 return true; 1448 1449 return false; 1450 } 1451 1452 static void scsi_softirq_done(struct request *rq) 1453 { 1454 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1455 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1456 int disposition; 1457 1458 INIT_LIST_HEAD(&cmd->eh_entry); 1459 1460 atomic_inc(&cmd->device->iodone_cnt); 1461 if (cmd->result) 1462 atomic_inc(&cmd->device->ioerr_cnt); 1463 1464 disposition = scsi_decide_disposition(cmd); 1465 if (disposition != SUCCESS && 1466 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1467 scmd_printk(KERN_ERR, cmd, 1468 "timing out command, waited %lus\n", 1469 wait_for/HZ); 1470 disposition = SUCCESS; 1471 } 1472 1473 scsi_log_completion(cmd, disposition); 1474 1475 switch (disposition) { 1476 case SUCCESS: 1477 scsi_finish_command(cmd); 1478 break; 1479 case NEEDS_RETRY: 1480 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1481 break; 1482 case ADD_TO_MLQUEUE: 1483 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1484 break; 1485 default: 1486 scsi_eh_scmd_add(cmd); 1487 break; 1488 } 1489 } 1490 1491 /** 1492 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1493 * @cmd: command block we are dispatching. 1494 * 1495 * Return: nonzero return request was rejected and device's queue needs to be 1496 * plugged. 1497 */ 1498 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1499 { 1500 struct Scsi_Host *host = cmd->device->host; 1501 int rtn = 0; 1502 1503 atomic_inc(&cmd->device->iorequest_cnt); 1504 1505 /* check if the device is still usable */ 1506 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1507 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1508 * returns an immediate error upwards, and signals 1509 * that the device is no longer present */ 1510 cmd->result = DID_NO_CONNECT << 16; 1511 goto done; 1512 } 1513 1514 /* Check to see if the scsi lld made this device blocked. */ 1515 if (unlikely(scsi_device_blocked(cmd->device))) { 1516 /* 1517 * in blocked state, the command is just put back on 1518 * the device queue. The suspend state has already 1519 * blocked the queue so future requests should not 1520 * occur until the device transitions out of the 1521 * suspend state. 1522 */ 1523 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1524 "queuecommand : device blocked\n")); 1525 return SCSI_MLQUEUE_DEVICE_BUSY; 1526 } 1527 1528 /* Store the LUN value in cmnd, if needed. */ 1529 if (cmd->device->lun_in_cdb) 1530 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1531 (cmd->device->lun << 5 & 0xe0); 1532 1533 scsi_log_send(cmd); 1534 1535 /* 1536 * Before we queue this command, check if the command 1537 * length exceeds what the host adapter can handle. 1538 */ 1539 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1540 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1541 "queuecommand : command too long. " 1542 "cdb_size=%d host->max_cmd_len=%d\n", 1543 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1544 cmd->result = (DID_ABORT << 16); 1545 goto done; 1546 } 1547 1548 if (unlikely(host->shost_state == SHOST_DEL)) { 1549 cmd->result = (DID_NO_CONNECT << 16); 1550 goto done; 1551 1552 } 1553 1554 trace_scsi_dispatch_cmd_start(cmd); 1555 rtn = host->hostt->queuecommand(host, cmd); 1556 if (rtn) { 1557 trace_scsi_dispatch_cmd_error(cmd, rtn); 1558 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1559 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1560 rtn = SCSI_MLQUEUE_HOST_BUSY; 1561 1562 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1563 "queuecommand : request rejected\n")); 1564 } 1565 1566 return rtn; 1567 done: 1568 cmd->scsi_done(cmd); 1569 return 0; 1570 } 1571 1572 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1573 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1574 { 1575 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1576 sizeof(struct scatterlist); 1577 } 1578 1579 static blk_status_t scsi_mq_prep_fn(struct request *req) 1580 { 1581 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1582 struct scsi_device *sdev = req->q->queuedata; 1583 struct Scsi_Host *shost = sdev->host; 1584 struct scatterlist *sg; 1585 1586 scsi_init_command(sdev, cmd); 1587 1588 cmd->request = req; 1589 cmd->tag = req->tag; 1590 cmd->prot_op = SCSI_PROT_NORMAL; 1591 1592 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1593 cmd->sdb.table.sgl = sg; 1594 1595 if (scsi_host_get_prot(shost)) { 1596 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1597 1598 cmd->prot_sdb->table.sgl = 1599 (struct scatterlist *)(cmd->prot_sdb + 1); 1600 } 1601 1602 blk_mq_start_request(req); 1603 1604 return scsi_setup_cmnd(sdev, req); 1605 } 1606 1607 static void scsi_mq_done(struct scsi_cmnd *cmd) 1608 { 1609 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1610 return; 1611 trace_scsi_dispatch_cmd_done(cmd); 1612 1613 /* 1614 * If the block layer didn't complete the request due to a timeout 1615 * injection, scsi must clear its internal completed state so that the 1616 * timeout handler will see it needs to escalate its own error 1617 * recovery. 1618 */ 1619 if (unlikely(!blk_mq_complete_request(cmd->request))) 1620 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1621 } 1622 1623 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1624 { 1625 struct request_queue *q = hctx->queue; 1626 struct scsi_device *sdev = q->queuedata; 1627 1628 atomic_dec(&sdev->device_busy); 1629 } 1630 1631 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1632 { 1633 struct request_queue *q = hctx->queue; 1634 struct scsi_device *sdev = q->queuedata; 1635 1636 if (scsi_dev_queue_ready(q, sdev)) 1637 return true; 1638 1639 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev)) 1640 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1641 return false; 1642 } 1643 1644 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1645 const struct blk_mq_queue_data *bd) 1646 { 1647 struct request *req = bd->rq; 1648 struct request_queue *q = req->q; 1649 struct scsi_device *sdev = q->queuedata; 1650 struct Scsi_Host *shost = sdev->host; 1651 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1652 blk_status_t ret; 1653 int reason; 1654 1655 /* 1656 * If the device is not in running state we will reject some or all 1657 * commands. 1658 */ 1659 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1660 ret = scsi_prep_state_check(sdev, req); 1661 if (ret != BLK_STS_OK) 1662 goto out_put_budget; 1663 } 1664 1665 ret = BLK_STS_RESOURCE; 1666 if (!scsi_target_queue_ready(shost, sdev)) 1667 goto out_put_budget; 1668 if (!scsi_host_queue_ready(q, shost, sdev)) 1669 goto out_dec_target_busy; 1670 1671 if (!(req->rq_flags & RQF_DONTPREP)) { 1672 ret = scsi_mq_prep_fn(req); 1673 if (ret != BLK_STS_OK) 1674 goto out_dec_host_busy; 1675 req->rq_flags |= RQF_DONTPREP; 1676 } else { 1677 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1678 blk_mq_start_request(req); 1679 } 1680 1681 cmd->flags &= SCMD_PRESERVED_FLAGS; 1682 if (sdev->simple_tags) 1683 cmd->flags |= SCMD_TAGGED; 1684 if (bd->last) 1685 cmd->flags |= SCMD_LAST; 1686 1687 scsi_init_cmd_errh(cmd); 1688 cmd->scsi_done = scsi_mq_done; 1689 1690 reason = scsi_dispatch_cmd(cmd); 1691 if (reason) { 1692 scsi_set_blocked(cmd, reason); 1693 ret = BLK_STS_RESOURCE; 1694 goto out_dec_host_busy; 1695 } 1696 1697 return BLK_STS_OK; 1698 1699 out_dec_host_busy: 1700 scsi_dec_host_busy(shost); 1701 out_dec_target_busy: 1702 if (scsi_target(sdev)->can_queue > 0) 1703 atomic_dec(&scsi_target(sdev)->target_busy); 1704 out_put_budget: 1705 scsi_mq_put_budget(hctx); 1706 switch (ret) { 1707 case BLK_STS_OK: 1708 break; 1709 case BLK_STS_RESOURCE: 1710 if (atomic_read(&sdev->device_busy) || 1711 scsi_device_blocked(sdev)) 1712 ret = BLK_STS_DEV_RESOURCE; 1713 break; 1714 default: 1715 if (unlikely(!scsi_device_online(sdev))) 1716 scsi_req(req)->result = DID_NO_CONNECT << 16; 1717 else 1718 scsi_req(req)->result = DID_ERROR << 16; 1719 /* 1720 * Make sure to release all allocated resources when 1721 * we hit an error, as we will never see this command 1722 * again. 1723 */ 1724 if (req->rq_flags & RQF_DONTPREP) 1725 scsi_mq_uninit_cmd(cmd); 1726 break; 1727 } 1728 return ret; 1729 } 1730 1731 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1732 bool reserved) 1733 { 1734 if (reserved) 1735 return BLK_EH_RESET_TIMER; 1736 return scsi_times_out(req); 1737 } 1738 1739 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1740 unsigned int hctx_idx, unsigned int numa_node) 1741 { 1742 struct Scsi_Host *shost = set->driver_data; 1743 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1744 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1745 struct scatterlist *sg; 1746 1747 if (unchecked_isa_dma) 1748 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1749 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1750 GFP_KERNEL, numa_node); 1751 if (!cmd->sense_buffer) 1752 return -ENOMEM; 1753 cmd->req.sense = cmd->sense_buffer; 1754 1755 if (scsi_host_get_prot(shost)) { 1756 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1757 shost->hostt->cmd_size; 1758 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1759 } 1760 1761 return 0; 1762 } 1763 1764 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1765 unsigned int hctx_idx) 1766 { 1767 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1768 1769 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1770 cmd->sense_buffer); 1771 } 1772 1773 static int scsi_map_queues(struct blk_mq_tag_set *set) 1774 { 1775 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1776 1777 if (shost->hostt->map_queues) 1778 return shost->hostt->map_queues(shost); 1779 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1780 } 1781 1782 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1783 { 1784 struct device *dev = shost->dma_dev; 1785 1786 /* 1787 * this limit is imposed by hardware restrictions 1788 */ 1789 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1790 SG_MAX_SEGMENTS)); 1791 1792 if (scsi_host_prot_dma(shost)) { 1793 shost->sg_prot_tablesize = 1794 min_not_zero(shost->sg_prot_tablesize, 1795 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1796 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1797 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1798 } 1799 1800 if (dev->dma_mask) { 1801 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1802 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1803 } 1804 blk_queue_max_hw_sectors(q, shost->max_sectors); 1805 if (shost->unchecked_isa_dma) 1806 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1807 blk_queue_segment_boundary(q, shost->dma_boundary); 1808 dma_set_seg_boundary(dev, shost->dma_boundary); 1809 1810 blk_queue_max_segment_size(q, shost->max_segment_size); 1811 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1812 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1813 1814 /* 1815 * Set a reasonable default alignment: The larger of 32-byte (dword), 1816 * which is a common minimum for HBAs, and the minimum DMA alignment, 1817 * which is set by the platform. 1818 * 1819 * Devices that require a bigger alignment can increase it later. 1820 */ 1821 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1822 } 1823 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1824 1825 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1826 .get_budget = scsi_mq_get_budget, 1827 .put_budget = scsi_mq_put_budget, 1828 .queue_rq = scsi_queue_rq, 1829 .complete = scsi_softirq_done, 1830 .timeout = scsi_timeout, 1831 #ifdef CONFIG_BLK_DEBUG_FS 1832 .show_rq = scsi_show_rq, 1833 #endif 1834 .init_request = scsi_mq_init_request, 1835 .exit_request = scsi_mq_exit_request, 1836 .initialize_rq_fn = scsi_initialize_rq, 1837 .busy = scsi_mq_lld_busy, 1838 .map_queues = scsi_map_queues, 1839 }; 1840 1841 1842 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1843 { 1844 struct request_queue *q = hctx->queue; 1845 struct scsi_device *sdev = q->queuedata; 1846 struct Scsi_Host *shost = sdev->host; 1847 1848 shost->hostt->commit_rqs(shost, hctx->queue_num); 1849 } 1850 1851 static const struct blk_mq_ops scsi_mq_ops = { 1852 .get_budget = scsi_mq_get_budget, 1853 .put_budget = scsi_mq_put_budget, 1854 .queue_rq = scsi_queue_rq, 1855 .commit_rqs = scsi_commit_rqs, 1856 .complete = scsi_softirq_done, 1857 .timeout = scsi_timeout, 1858 #ifdef CONFIG_BLK_DEBUG_FS 1859 .show_rq = scsi_show_rq, 1860 #endif 1861 .init_request = scsi_mq_init_request, 1862 .exit_request = scsi_mq_exit_request, 1863 .initialize_rq_fn = scsi_initialize_rq, 1864 .cleanup_rq = scsi_cleanup_rq, 1865 .busy = scsi_mq_lld_busy, 1866 .map_queues = scsi_map_queues, 1867 }; 1868 1869 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1870 { 1871 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1872 if (IS_ERR(sdev->request_queue)) 1873 return NULL; 1874 1875 sdev->request_queue->queuedata = sdev; 1876 __scsi_init_queue(sdev->host, sdev->request_queue); 1877 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1878 return sdev->request_queue; 1879 } 1880 1881 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1882 { 1883 unsigned int cmd_size, sgl_size; 1884 1885 sgl_size = scsi_mq_inline_sgl_size(shost); 1886 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1887 if (scsi_host_get_prot(shost)) 1888 cmd_size += sizeof(struct scsi_data_buffer) + 1889 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1890 1891 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1892 if (shost->hostt->commit_rqs) 1893 shost->tag_set.ops = &scsi_mq_ops; 1894 else 1895 shost->tag_set.ops = &scsi_mq_ops_no_commit; 1896 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1897 shost->tag_set.queue_depth = shost->can_queue; 1898 shost->tag_set.cmd_size = cmd_size; 1899 shost->tag_set.numa_node = NUMA_NO_NODE; 1900 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1901 shost->tag_set.flags |= 1902 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1903 shost->tag_set.driver_data = shost; 1904 1905 return blk_mq_alloc_tag_set(&shost->tag_set); 1906 } 1907 1908 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1909 { 1910 blk_mq_free_tag_set(&shost->tag_set); 1911 } 1912 1913 /** 1914 * scsi_device_from_queue - return sdev associated with a request_queue 1915 * @q: The request queue to return the sdev from 1916 * 1917 * Return the sdev associated with a request queue or NULL if the 1918 * request_queue does not reference a SCSI device. 1919 */ 1920 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1921 { 1922 struct scsi_device *sdev = NULL; 1923 1924 if (q->mq_ops == &scsi_mq_ops) 1925 sdev = q->queuedata; 1926 if (!sdev || !get_device(&sdev->sdev_gendev)) 1927 sdev = NULL; 1928 1929 return sdev; 1930 } 1931 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1932 1933 /* 1934 * Function: scsi_block_requests() 1935 * 1936 * Purpose: Utility function used by low-level drivers to prevent further 1937 * commands from being queued to the device. 1938 * 1939 * Arguments: shost - Host in question 1940 * 1941 * Returns: Nothing 1942 * 1943 * Lock status: No locks are assumed held. 1944 * 1945 * Notes: There is no timer nor any other means by which the requests 1946 * get unblocked other than the low-level driver calling 1947 * scsi_unblock_requests(). 1948 */ 1949 void scsi_block_requests(struct Scsi_Host *shost) 1950 { 1951 shost->host_self_blocked = 1; 1952 } 1953 EXPORT_SYMBOL(scsi_block_requests); 1954 1955 /* 1956 * Function: scsi_unblock_requests() 1957 * 1958 * Purpose: Utility function used by low-level drivers to allow further 1959 * commands from being queued to the device. 1960 * 1961 * Arguments: shost - Host in question 1962 * 1963 * Returns: Nothing 1964 * 1965 * Lock status: No locks are assumed held. 1966 * 1967 * Notes: There is no timer nor any other means by which the requests 1968 * get unblocked other than the low-level driver calling 1969 * scsi_unblock_requests(). 1970 * 1971 * This is done as an API function so that changes to the 1972 * internals of the scsi mid-layer won't require wholesale 1973 * changes to drivers that use this feature. 1974 */ 1975 void scsi_unblock_requests(struct Scsi_Host *shost) 1976 { 1977 shost->host_self_blocked = 0; 1978 scsi_run_host_queues(shost); 1979 } 1980 EXPORT_SYMBOL(scsi_unblock_requests); 1981 1982 int __init scsi_init_queue(void) 1983 { 1984 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1985 sizeof(struct scsi_data_buffer), 1986 0, 0, NULL); 1987 if (!scsi_sdb_cache) { 1988 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1989 return -ENOMEM; 1990 } 1991 1992 return 0; 1993 } 1994 1995 void scsi_exit_queue(void) 1996 { 1997 kmem_cache_destroy(scsi_sense_cache); 1998 kmem_cache_destroy(scsi_sense_isadma_cache); 1999 kmem_cache_destroy(scsi_sdb_cache); 2000 } 2001 2002 /** 2003 * scsi_mode_select - issue a mode select 2004 * @sdev: SCSI device to be queried 2005 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2006 * @sp: Save page bit (0 == don't save, 1 == save) 2007 * @modepage: mode page being requested 2008 * @buffer: request buffer (may not be smaller than eight bytes) 2009 * @len: length of request buffer. 2010 * @timeout: command timeout 2011 * @retries: number of retries before failing 2012 * @data: returns a structure abstracting the mode header data 2013 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2014 * must be SCSI_SENSE_BUFFERSIZE big. 2015 * 2016 * Returns zero if successful; negative error number or scsi 2017 * status on error 2018 * 2019 */ 2020 int 2021 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2022 unsigned char *buffer, int len, int timeout, int retries, 2023 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2024 { 2025 unsigned char cmd[10]; 2026 unsigned char *real_buffer; 2027 int ret; 2028 2029 memset(cmd, 0, sizeof(cmd)); 2030 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2031 2032 if (sdev->use_10_for_ms) { 2033 if (len > 65535) 2034 return -EINVAL; 2035 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2036 if (!real_buffer) 2037 return -ENOMEM; 2038 memcpy(real_buffer + 8, buffer, len); 2039 len += 8; 2040 real_buffer[0] = 0; 2041 real_buffer[1] = 0; 2042 real_buffer[2] = data->medium_type; 2043 real_buffer[3] = data->device_specific; 2044 real_buffer[4] = data->longlba ? 0x01 : 0; 2045 real_buffer[5] = 0; 2046 real_buffer[6] = data->block_descriptor_length >> 8; 2047 real_buffer[7] = data->block_descriptor_length; 2048 2049 cmd[0] = MODE_SELECT_10; 2050 cmd[7] = len >> 8; 2051 cmd[8] = len; 2052 } else { 2053 if (len > 255 || data->block_descriptor_length > 255 || 2054 data->longlba) 2055 return -EINVAL; 2056 2057 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2058 if (!real_buffer) 2059 return -ENOMEM; 2060 memcpy(real_buffer + 4, buffer, len); 2061 len += 4; 2062 real_buffer[0] = 0; 2063 real_buffer[1] = data->medium_type; 2064 real_buffer[2] = data->device_specific; 2065 real_buffer[3] = data->block_descriptor_length; 2066 2067 2068 cmd[0] = MODE_SELECT; 2069 cmd[4] = len; 2070 } 2071 2072 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2073 sshdr, timeout, retries, NULL); 2074 kfree(real_buffer); 2075 return ret; 2076 } 2077 EXPORT_SYMBOL_GPL(scsi_mode_select); 2078 2079 /** 2080 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2081 * @sdev: SCSI device to be queried 2082 * @dbd: set if mode sense will allow block descriptors to be returned 2083 * @modepage: mode page being requested 2084 * @buffer: request buffer (may not be smaller than eight bytes) 2085 * @len: length of request buffer. 2086 * @timeout: command timeout 2087 * @retries: number of retries before failing 2088 * @data: returns a structure abstracting the mode header data 2089 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2090 * must be SCSI_SENSE_BUFFERSIZE big. 2091 * 2092 * Returns zero if unsuccessful, or the header offset (either 4 2093 * or 8 depending on whether a six or ten byte command was 2094 * issued) if successful. 2095 */ 2096 int 2097 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2098 unsigned char *buffer, int len, int timeout, int retries, 2099 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2100 { 2101 unsigned char cmd[12]; 2102 int use_10_for_ms; 2103 int header_length; 2104 int result, retry_count = retries; 2105 struct scsi_sense_hdr my_sshdr; 2106 2107 memset(data, 0, sizeof(*data)); 2108 memset(&cmd[0], 0, 12); 2109 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2110 cmd[2] = modepage; 2111 2112 /* caller might not be interested in sense, but we need it */ 2113 if (!sshdr) 2114 sshdr = &my_sshdr; 2115 2116 retry: 2117 use_10_for_ms = sdev->use_10_for_ms; 2118 2119 if (use_10_for_ms) { 2120 if (len < 8) 2121 len = 8; 2122 2123 cmd[0] = MODE_SENSE_10; 2124 cmd[8] = len; 2125 header_length = 8; 2126 } else { 2127 if (len < 4) 2128 len = 4; 2129 2130 cmd[0] = MODE_SENSE; 2131 cmd[4] = len; 2132 header_length = 4; 2133 } 2134 2135 memset(buffer, 0, len); 2136 2137 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2138 sshdr, timeout, retries, NULL); 2139 2140 /* This code looks awful: what it's doing is making sure an 2141 * ILLEGAL REQUEST sense return identifies the actual command 2142 * byte as the problem. MODE_SENSE commands can return 2143 * ILLEGAL REQUEST if the code page isn't supported */ 2144 2145 if (use_10_for_ms && !scsi_status_is_good(result) && 2146 driver_byte(result) == DRIVER_SENSE) { 2147 if (scsi_sense_valid(sshdr)) { 2148 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2149 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2150 /* 2151 * Invalid command operation code 2152 */ 2153 sdev->use_10_for_ms = 0; 2154 goto retry; 2155 } 2156 } 2157 } 2158 2159 if(scsi_status_is_good(result)) { 2160 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2161 (modepage == 6 || modepage == 8))) { 2162 /* Initio breakage? */ 2163 header_length = 0; 2164 data->length = 13; 2165 data->medium_type = 0; 2166 data->device_specific = 0; 2167 data->longlba = 0; 2168 data->block_descriptor_length = 0; 2169 } else if(use_10_for_ms) { 2170 data->length = buffer[0]*256 + buffer[1] + 2; 2171 data->medium_type = buffer[2]; 2172 data->device_specific = buffer[3]; 2173 data->longlba = buffer[4] & 0x01; 2174 data->block_descriptor_length = buffer[6]*256 2175 + buffer[7]; 2176 } else { 2177 data->length = buffer[0] + 1; 2178 data->medium_type = buffer[1]; 2179 data->device_specific = buffer[2]; 2180 data->block_descriptor_length = buffer[3]; 2181 } 2182 data->header_length = header_length; 2183 } else if ((status_byte(result) == CHECK_CONDITION) && 2184 scsi_sense_valid(sshdr) && 2185 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2186 retry_count--; 2187 goto retry; 2188 } 2189 2190 return result; 2191 } 2192 EXPORT_SYMBOL(scsi_mode_sense); 2193 2194 /** 2195 * scsi_test_unit_ready - test if unit is ready 2196 * @sdev: scsi device to change the state of. 2197 * @timeout: command timeout 2198 * @retries: number of retries before failing 2199 * @sshdr: outpout pointer for decoded sense information. 2200 * 2201 * Returns zero if unsuccessful or an error if TUR failed. For 2202 * removable media, UNIT_ATTENTION sets ->changed flag. 2203 **/ 2204 int 2205 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2206 struct scsi_sense_hdr *sshdr) 2207 { 2208 char cmd[] = { 2209 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2210 }; 2211 int result; 2212 2213 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2214 do { 2215 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2216 timeout, 1, NULL); 2217 if (sdev->removable && scsi_sense_valid(sshdr) && 2218 sshdr->sense_key == UNIT_ATTENTION) 2219 sdev->changed = 1; 2220 } while (scsi_sense_valid(sshdr) && 2221 sshdr->sense_key == UNIT_ATTENTION && --retries); 2222 2223 return result; 2224 } 2225 EXPORT_SYMBOL(scsi_test_unit_ready); 2226 2227 /** 2228 * scsi_device_set_state - Take the given device through the device state model. 2229 * @sdev: scsi device to change the state of. 2230 * @state: state to change to. 2231 * 2232 * Returns zero if successful or an error if the requested 2233 * transition is illegal. 2234 */ 2235 int 2236 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2237 { 2238 enum scsi_device_state oldstate = sdev->sdev_state; 2239 2240 if (state == oldstate) 2241 return 0; 2242 2243 switch (state) { 2244 case SDEV_CREATED: 2245 switch (oldstate) { 2246 case SDEV_CREATED_BLOCK: 2247 break; 2248 default: 2249 goto illegal; 2250 } 2251 break; 2252 2253 case SDEV_RUNNING: 2254 switch (oldstate) { 2255 case SDEV_CREATED: 2256 case SDEV_OFFLINE: 2257 case SDEV_TRANSPORT_OFFLINE: 2258 case SDEV_QUIESCE: 2259 case SDEV_BLOCK: 2260 break; 2261 default: 2262 goto illegal; 2263 } 2264 break; 2265 2266 case SDEV_QUIESCE: 2267 switch (oldstate) { 2268 case SDEV_RUNNING: 2269 case SDEV_OFFLINE: 2270 case SDEV_TRANSPORT_OFFLINE: 2271 break; 2272 default: 2273 goto illegal; 2274 } 2275 break; 2276 2277 case SDEV_OFFLINE: 2278 case SDEV_TRANSPORT_OFFLINE: 2279 switch (oldstate) { 2280 case SDEV_CREATED: 2281 case SDEV_RUNNING: 2282 case SDEV_QUIESCE: 2283 case SDEV_BLOCK: 2284 break; 2285 default: 2286 goto illegal; 2287 } 2288 break; 2289 2290 case SDEV_BLOCK: 2291 switch (oldstate) { 2292 case SDEV_RUNNING: 2293 case SDEV_CREATED_BLOCK: 2294 case SDEV_OFFLINE: 2295 break; 2296 default: 2297 goto illegal; 2298 } 2299 break; 2300 2301 case SDEV_CREATED_BLOCK: 2302 switch (oldstate) { 2303 case SDEV_CREATED: 2304 break; 2305 default: 2306 goto illegal; 2307 } 2308 break; 2309 2310 case SDEV_CANCEL: 2311 switch (oldstate) { 2312 case SDEV_CREATED: 2313 case SDEV_RUNNING: 2314 case SDEV_QUIESCE: 2315 case SDEV_OFFLINE: 2316 case SDEV_TRANSPORT_OFFLINE: 2317 break; 2318 default: 2319 goto illegal; 2320 } 2321 break; 2322 2323 case SDEV_DEL: 2324 switch (oldstate) { 2325 case SDEV_CREATED: 2326 case SDEV_RUNNING: 2327 case SDEV_OFFLINE: 2328 case SDEV_TRANSPORT_OFFLINE: 2329 case SDEV_CANCEL: 2330 case SDEV_BLOCK: 2331 case SDEV_CREATED_BLOCK: 2332 break; 2333 default: 2334 goto illegal; 2335 } 2336 break; 2337 2338 } 2339 sdev->sdev_state = state; 2340 return 0; 2341 2342 illegal: 2343 SCSI_LOG_ERROR_RECOVERY(1, 2344 sdev_printk(KERN_ERR, sdev, 2345 "Illegal state transition %s->%s", 2346 scsi_device_state_name(oldstate), 2347 scsi_device_state_name(state)) 2348 ); 2349 return -EINVAL; 2350 } 2351 EXPORT_SYMBOL(scsi_device_set_state); 2352 2353 /** 2354 * sdev_evt_emit - emit a single SCSI device uevent 2355 * @sdev: associated SCSI device 2356 * @evt: event to emit 2357 * 2358 * Send a single uevent (scsi_event) to the associated scsi_device. 2359 */ 2360 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2361 { 2362 int idx = 0; 2363 char *envp[3]; 2364 2365 switch (evt->evt_type) { 2366 case SDEV_EVT_MEDIA_CHANGE: 2367 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2368 break; 2369 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2370 scsi_rescan_device(&sdev->sdev_gendev); 2371 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2372 break; 2373 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2374 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2375 break; 2376 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2377 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2378 break; 2379 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2380 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2381 break; 2382 case SDEV_EVT_LUN_CHANGE_REPORTED: 2383 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2384 break; 2385 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2386 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2387 break; 2388 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2389 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2390 break; 2391 default: 2392 /* do nothing */ 2393 break; 2394 } 2395 2396 envp[idx++] = NULL; 2397 2398 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2399 } 2400 2401 /** 2402 * sdev_evt_thread - send a uevent for each scsi event 2403 * @work: work struct for scsi_device 2404 * 2405 * Dispatch queued events to their associated scsi_device kobjects 2406 * as uevents. 2407 */ 2408 void scsi_evt_thread(struct work_struct *work) 2409 { 2410 struct scsi_device *sdev; 2411 enum scsi_device_event evt_type; 2412 LIST_HEAD(event_list); 2413 2414 sdev = container_of(work, struct scsi_device, event_work); 2415 2416 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2417 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2418 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2419 2420 while (1) { 2421 struct scsi_event *evt; 2422 struct list_head *this, *tmp; 2423 unsigned long flags; 2424 2425 spin_lock_irqsave(&sdev->list_lock, flags); 2426 list_splice_init(&sdev->event_list, &event_list); 2427 spin_unlock_irqrestore(&sdev->list_lock, flags); 2428 2429 if (list_empty(&event_list)) 2430 break; 2431 2432 list_for_each_safe(this, tmp, &event_list) { 2433 evt = list_entry(this, struct scsi_event, node); 2434 list_del(&evt->node); 2435 scsi_evt_emit(sdev, evt); 2436 kfree(evt); 2437 } 2438 } 2439 } 2440 2441 /** 2442 * sdev_evt_send - send asserted event to uevent thread 2443 * @sdev: scsi_device event occurred on 2444 * @evt: event to send 2445 * 2446 * Assert scsi device event asynchronously. 2447 */ 2448 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2449 { 2450 unsigned long flags; 2451 2452 #if 0 2453 /* FIXME: currently this check eliminates all media change events 2454 * for polled devices. Need to update to discriminate between AN 2455 * and polled events */ 2456 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2457 kfree(evt); 2458 return; 2459 } 2460 #endif 2461 2462 spin_lock_irqsave(&sdev->list_lock, flags); 2463 list_add_tail(&evt->node, &sdev->event_list); 2464 schedule_work(&sdev->event_work); 2465 spin_unlock_irqrestore(&sdev->list_lock, flags); 2466 } 2467 EXPORT_SYMBOL_GPL(sdev_evt_send); 2468 2469 /** 2470 * sdev_evt_alloc - allocate a new scsi event 2471 * @evt_type: type of event to allocate 2472 * @gfpflags: GFP flags for allocation 2473 * 2474 * Allocates and returns a new scsi_event. 2475 */ 2476 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2477 gfp_t gfpflags) 2478 { 2479 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2480 if (!evt) 2481 return NULL; 2482 2483 evt->evt_type = evt_type; 2484 INIT_LIST_HEAD(&evt->node); 2485 2486 /* evt_type-specific initialization, if any */ 2487 switch (evt_type) { 2488 case SDEV_EVT_MEDIA_CHANGE: 2489 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2490 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2491 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2492 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2493 case SDEV_EVT_LUN_CHANGE_REPORTED: 2494 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2495 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2496 default: 2497 /* do nothing */ 2498 break; 2499 } 2500 2501 return evt; 2502 } 2503 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2504 2505 /** 2506 * sdev_evt_send_simple - send asserted event to uevent thread 2507 * @sdev: scsi_device event occurred on 2508 * @evt_type: type of event to send 2509 * @gfpflags: GFP flags for allocation 2510 * 2511 * Assert scsi device event asynchronously, given an event type. 2512 */ 2513 void sdev_evt_send_simple(struct scsi_device *sdev, 2514 enum scsi_device_event evt_type, gfp_t gfpflags) 2515 { 2516 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2517 if (!evt) { 2518 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2519 evt_type); 2520 return; 2521 } 2522 2523 sdev_evt_send(sdev, evt); 2524 } 2525 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2526 2527 /** 2528 * scsi_device_quiesce - Block user issued commands. 2529 * @sdev: scsi device to quiesce. 2530 * 2531 * This works by trying to transition to the SDEV_QUIESCE state 2532 * (which must be a legal transition). When the device is in this 2533 * state, only special requests will be accepted, all others will 2534 * be deferred. Since special requests may also be requeued requests, 2535 * a successful return doesn't guarantee the device will be 2536 * totally quiescent. 2537 * 2538 * Must be called with user context, may sleep. 2539 * 2540 * Returns zero if unsuccessful or an error if not. 2541 */ 2542 int 2543 scsi_device_quiesce(struct scsi_device *sdev) 2544 { 2545 struct request_queue *q = sdev->request_queue; 2546 int err; 2547 2548 /* 2549 * It is allowed to call scsi_device_quiesce() multiple times from 2550 * the same context but concurrent scsi_device_quiesce() calls are 2551 * not allowed. 2552 */ 2553 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2554 2555 if (sdev->quiesced_by == current) 2556 return 0; 2557 2558 blk_set_pm_only(q); 2559 2560 blk_mq_freeze_queue(q); 2561 /* 2562 * Ensure that the effect of blk_set_pm_only() will be visible 2563 * for percpu_ref_tryget() callers that occur after the queue 2564 * unfreeze even if the queue was already frozen before this function 2565 * was called. See also https://lwn.net/Articles/573497/. 2566 */ 2567 synchronize_rcu(); 2568 blk_mq_unfreeze_queue(q); 2569 2570 mutex_lock(&sdev->state_mutex); 2571 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2572 if (err == 0) 2573 sdev->quiesced_by = current; 2574 else 2575 blk_clear_pm_only(q); 2576 mutex_unlock(&sdev->state_mutex); 2577 2578 return err; 2579 } 2580 EXPORT_SYMBOL(scsi_device_quiesce); 2581 2582 /** 2583 * scsi_device_resume - Restart user issued commands to a quiesced device. 2584 * @sdev: scsi device to resume. 2585 * 2586 * Moves the device from quiesced back to running and restarts the 2587 * queues. 2588 * 2589 * Must be called with user context, may sleep. 2590 */ 2591 void scsi_device_resume(struct scsi_device *sdev) 2592 { 2593 /* check if the device state was mutated prior to resume, and if 2594 * so assume the state is being managed elsewhere (for example 2595 * device deleted during suspend) 2596 */ 2597 mutex_lock(&sdev->state_mutex); 2598 if (sdev->quiesced_by) { 2599 sdev->quiesced_by = NULL; 2600 blk_clear_pm_only(sdev->request_queue); 2601 } 2602 if (sdev->sdev_state == SDEV_QUIESCE) 2603 scsi_device_set_state(sdev, SDEV_RUNNING); 2604 mutex_unlock(&sdev->state_mutex); 2605 } 2606 EXPORT_SYMBOL(scsi_device_resume); 2607 2608 static void 2609 device_quiesce_fn(struct scsi_device *sdev, void *data) 2610 { 2611 scsi_device_quiesce(sdev); 2612 } 2613 2614 void 2615 scsi_target_quiesce(struct scsi_target *starget) 2616 { 2617 starget_for_each_device(starget, NULL, device_quiesce_fn); 2618 } 2619 EXPORT_SYMBOL(scsi_target_quiesce); 2620 2621 static void 2622 device_resume_fn(struct scsi_device *sdev, void *data) 2623 { 2624 scsi_device_resume(sdev); 2625 } 2626 2627 void 2628 scsi_target_resume(struct scsi_target *starget) 2629 { 2630 starget_for_each_device(starget, NULL, device_resume_fn); 2631 } 2632 EXPORT_SYMBOL(scsi_target_resume); 2633 2634 /** 2635 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2636 * @sdev: device to block 2637 * 2638 * Pause SCSI command processing on the specified device. Does not sleep. 2639 * 2640 * Returns zero if successful or a negative error code upon failure. 2641 * 2642 * Notes: 2643 * This routine transitions the device to the SDEV_BLOCK state (which must be 2644 * a legal transition). When the device is in this state, command processing 2645 * is paused until the device leaves the SDEV_BLOCK state. See also 2646 * scsi_internal_device_unblock_nowait(). 2647 */ 2648 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2649 { 2650 struct request_queue *q = sdev->request_queue; 2651 int err = 0; 2652 2653 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2654 if (err) { 2655 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2656 2657 if (err) 2658 return err; 2659 } 2660 2661 /* 2662 * The device has transitioned to SDEV_BLOCK. Stop the 2663 * block layer from calling the midlayer with this device's 2664 * request queue. 2665 */ 2666 blk_mq_quiesce_queue_nowait(q); 2667 return 0; 2668 } 2669 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2670 2671 /** 2672 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2673 * @sdev: device to block 2674 * 2675 * Pause SCSI command processing on the specified device and wait until all 2676 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2677 * 2678 * Returns zero if successful or a negative error code upon failure. 2679 * 2680 * Note: 2681 * This routine transitions the device to the SDEV_BLOCK state (which must be 2682 * a legal transition). When the device is in this state, command processing 2683 * is paused until the device leaves the SDEV_BLOCK state. See also 2684 * scsi_internal_device_unblock(). 2685 */ 2686 static int scsi_internal_device_block(struct scsi_device *sdev) 2687 { 2688 struct request_queue *q = sdev->request_queue; 2689 int err; 2690 2691 mutex_lock(&sdev->state_mutex); 2692 err = scsi_internal_device_block_nowait(sdev); 2693 if (err == 0) 2694 blk_mq_quiesce_queue(q); 2695 mutex_unlock(&sdev->state_mutex); 2696 2697 return err; 2698 } 2699 2700 void scsi_start_queue(struct scsi_device *sdev) 2701 { 2702 struct request_queue *q = sdev->request_queue; 2703 2704 blk_mq_unquiesce_queue(q); 2705 } 2706 2707 /** 2708 * scsi_internal_device_unblock_nowait - resume a device after a block request 2709 * @sdev: device to resume 2710 * @new_state: state to set the device to after unblocking 2711 * 2712 * Restart the device queue for a previously suspended SCSI device. Does not 2713 * sleep. 2714 * 2715 * Returns zero if successful or a negative error code upon failure. 2716 * 2717 * Notes: 2718 * This routine transitions the device to the SDEV_RUNNING state or to one of 2719 * the offline states (which must be a legal transition) allowing the midlayer 2720 * to goose the queue for this device. 2721 */ 2722 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2723 enum scsi_device_state new_state) 2724 { 2725 switch (new_state) { 2726 case SDEV_RUNNING: 2727 case SDEV_TRANSPORT_OFFLINE: 2728 break; 2729 default: 2730 return -EINVAL; 2731 } 2732 2733 /* 2734 * Try to transition the scsi device to SDEV_RUNNING or one of the 2735 * offlined states and goose the device queue if successful. 2736 */ 2737 switch (sdev->sdev_state) { 2738 case SDEV_BLOCK: 2739 case SDEV_TRANSPORT_OFFLINE: 2740 sdev->sdev_state = new_state; 2741 break; 2742 case SDEV_CREATED_BLOCK: 2743 if (new_state == SDEV_TRANSPORT_OFFLINE || 2744 new_state == SDEV_OFFLINE) 2745 sdev->sdev_state = new_state; 2746 else 2747 sdev->sdev_state = SDEV_CREATED; 2748 break; 2749 case SDEV_CANCEL: 2750 case SDEV_OFFLINE: 2751 break; 2752 default: 2753 return -EINVAL; 2754 } 2755 scsi_start_queue(sdev); 2756 2757 return 0; 2758 } 2759 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2760 2761 /** 2762 * scsi_internal_device_unblock - resume a device after a block request 2763 * @sdev: device to resume 2764 * @new_state: state to set the device to after unblocking 2765 * 2766 * Restart the device queue for a previously suspended SCSI device. May sleep. 2767 * 2768 * Returns zero if successful or a negative error code upon failure. 2769 * 2770 * Notes: 2771 * This routine transitions the device to the SDEV_RUNNING state or to one of 2772 * the offline states (which must be a legal transition) allowing the midlayer 2773 * to goose the queue for this device. 2774 */ 2775 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2776 enum scsi_device_state new_state) 2777 { 2778 int ret; 2779 2780 mutex_lock(&sdev->state_mutex); 2781 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2782 mutex_unlock(&sdev->state_mutex); 2783 2784 return ret; 2785 } 2786 2787 static void 2788 device_block(struct scsi_device *sdev, void *data) 2789 { 2790 int ret; 2791 2792 ret = scsi_internal_device_block(sdev); 2793 2794 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2795 dev_name(&sdev->sdev_gendev), ret); 2796 } 2797 2798 static int 2799 target_block(struct device *dev, void *data) 2800 { 2801 if (scsi_is_target_device(dev)) 2802 starget_for_each_device(to_scsi_target(dev), NULL, 2803 device_block); 2804 return 0; 2805 } 2806 2807 void 2808 scsi_target_block(struct device *dev) 2809 { 2810 if (scsi_is_target_device(dev)) 2811 starget_for_each_device(to_scsi_target(dev), NULL, 2812 device_block); 2813 else 2814 device_for_each_child(dev, NULL, target_block); 2815 } 2816 EXPORT_SYMBOL_GPL(scsi_target_block); 2817 2818 static void 2819 device_unblock(struct scsi_device *sdev, void *data) 2820 { 2821 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2822 } 2823 2824 static int 2825 target_unblock(struct device *dev, void *data) 2826 { 2827 if (scsi_is_target_device(dev)) 2828 starget_for_each_device(to_scsi_target(dev), data, 2829 device_unblock); 2830 return 0; 2831 } 2832 2833 void 2834 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2835 { 2836 if (scsi_is_target_device(dev)) 2837 starget_for_each_device(to_scsi_target(dev), &new_state, 2838 device_unblock); 2839 else 2840 device_for_each_child(dev, &new_state, target_unblock); 2841 } 2842 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2843 2844 /** 2845 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2846 * @sgl: scatter-gather list 2847 * @sg_count: number of segments in sg 2848 * @offset: offset in bytes into sg, on return offset into the mapped area 2849 * @len: bytes to map, on return number of bytes mapped 2850 * 2851 * Returns virtual address of the start of the mapped page 2852 */ 2853 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2854 size_t *offset, size_t *len) 2855 { 2856 int i; 2857 size_t sg_len = 0, len_complete = 0; 2858 struct scatterlist *sg; 2859 struct page *page; 2860 2861 WARN_ON(!irqs_disabled()); 2862 2863 for_each_sg(sgl, sg, sg_count, i) { 2864 len_complete = sg_len; /* Complete sg-entries */ 2865 sg_len += sg->length; 2866 if (sg_len > *offset) 2867 break; 2868 } 2869 2870 if (unlikely(i == sg_count)) { 2871 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2872 "elements %d\n", 2873 __func__, sg_len, *offset, sg_count); 2874 WARN_ON(1); 2875 return NULL; 2876 } 2877 2878 /* Offset starting from the beginning of first page in this sg-entry */ 2879 *offset = *offset - len_complete + sg->offset; 2880 2881 /* Assumption: contiguous pages can be accessed as "page + i" */ 2882 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2883 *offset &= ~PAGE_MASK; 2884 2885 /* Bytes in this sg-entry from *offset to the end of the page */ 2886 sg_len = PAGE_SIZE - *offset; 2887 if (*len > sg_len) 2888 *len = sg_len; 2889 2890 return kmap_atomic(page); 2891 } 2892 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2893 2894 /** 2895 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2896 * @virt: virtual address to be unmapped 2897 */ 2898 void scsi_kunmap_atomic_sg(void *virt) 2899 { 2900 kunmap_atomic(virt); 2901 } 2902 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2903 2904 void sdev_disable_disk_events(struct scsi_device *sdev) 2905 { 2906 atomic_inc(&sdev->disk_events_disable_depth); 2907 } 2908 EXPORT_SYMBOL(sdev_disable_disk_events); 2909 2910 void sdev_enable_disk_events(struct scsi_device *sdev) 2911 { 2912 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2913 return; 2914 atomic_dec(&sdev->disk_events_disable_depth); 2915 } 2916 EXPORT_SYMBOL(sdev_enable_disk_events); 2917 2918 /** 2919 * scsi_vpd_lun_id - return a unique device identification 2920 * @sdev: SCSI device 2921 * @id: buffer for the identification 2922 * @id_len: length of the buffer 2923 * 2924 * Copies a unique device identification into @id based 2925 * on the information in the VPD page 0x83 of the device. 2926 * The string will be formatted as a SCSI name string. 2927 * 2928 * Returns the length of the identification or error on failure. 2929 * If the identifier is longer than the supplied buffer the actual 2930 * identifier length is returned and the buffer is not zero-padded. 2931 */ 2932 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2933 { 2934 u8 cur_id_type = 0xff; 2935 u8 cur_id_size = 0; 2936 const unsigned char *d, *cur_id_str; 2937 const struct scsi_vpd *vpd_pg83; 2938 int id_size = -EINVAL; 2939 2940 rcu_read_lock(); 2941 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2942 if (!vpd_pg83) { 2943 rcu_read_unlock(); 2944 return -ENXIO; 2945 } 2946 2947 /* 2948 * Look for the correct descriptor. 2949 * Order of preference for lun descriptor: 2950 * - SCSI name string 2951 * - NAA IEEE Registered Extended 2952 * - EUI-64 based 16-byte 2953 * - EUI-64 based 12-byte 2954 * - NAA IEEE Registered 2955 * - NAA IEEE Extended 2956 * - T10 Vendor ID 2957 * as longer descriptors reduce the likelyhood 2958 * of identification clashes. 2959 */ 2960 2961 /* The id string must be at least 20 bytes + terminating NULL byte */ 2962 if (id_len < 21) { 2963 rcu_read_unlock(); 2964 return -EINVAL; 2965 } 2966 2967 memset(id, 0, id_len); 2968 d = vpd_pg83->data + 4; 2969 while (d < vpd_pg83->data + vpd_pg83->len) { 2970 /* Skip designators not referring to the LUN */ 2971 if ((d[1] & 0x30) != 0x00) 2972 goto next_desig; 2973 2974 switch (d[1] & 0xf) { 2975 case 0x1: 2976 /* T10 Vendor ID */ 2977 if (cur_id_size > d[3]) 2978 break; 2979 /* Prefer anything */ 2980 if (cur_id_type > 0x01 && cur_id_type != 0xff) 2981 break; 2982 cur_id_size = d[3]; 2983 if (cur_id_size + 4 > id_len) 2984 cur_id_size = id_len - 4; 2985 cur_id_str = d + 4; 2986 cur_id_type = d[1] & 0xf; 2987 id_size = snprintf(id, id_len, "t10.%*pE", 2988 cur_id_size, cur_id_str); 2989 break; 2990 case 0x2: 2991 /* EUI-64 */ 2992 if (cur_id_size > d[3]) 2993 break; 2994 /* Prefer NAA IEEE Registered Extended */ 2995 if (cur_id_type == 0x3 && 2996 cur_id_size == d[3]) 2997 break; 2998 cur_id_size = d[3]; 2999 cur_id_str = d + 4; 3000 cur_id_type = d[1] & 0xf; 3001 switch (cur_id_size) { 3002 case 8: 3003 id_size = snprintf(id, id_len, 3004 "eui.%8phN", 3005 cur_id_str); 3006 break; 3007 case 12: 3008 id_size = snprintf(id, id_len, 3009 "eui.%12phN", 3010 cur_id_str); 3011 break; 3012 case 16: 3013 id_size = snprintf(id, id_len, 3014 "eui.%16phN", 3015 cur_id_str); 3016 break; 3017 default: 3018 cur_id_size = 0; 3019 break; 3020 } 3021 break; 3022 case 0x3: 3023 /* NAA */ 3024 if (cur_id_size > d[3]) 3025 break; 3026 cur_id_size = d[3]; 3027 cur_id_str = d + 4; 3028 cur_id_type = d[1] & 0xf; 3029 switch (cur_id_size) { 3030 case 8: 3031 id_size = snprintf(id, id_len, 3032 "naa.%8phN", 3033 cur_id_str); 3034 break; 3035 case 16: 3036 id_size = snprintf(id, id_len, 3037 "naa.%16phN", 3038 cur_id_str); 3039 break; 3040 default: 3041 cur_id_size = 0; 3042 break; 3043 } 3044 break; 3045 case 0x8: 3046 /* SCSI name string */ 3047 if (cur_id_size + 4 > d[3]) 3048 break; 3049 /* Prefer others for truncated descriptor */ 3050 if (cur_id_size && d[3] > id_len) 3051 break; 3052 cur_id_size = id_size = d[3]; 3053 cur_id_str = d + 4; 3054 cur_id_type = d[1] & 0xf; 3055 if (cur_id_size >= id_len) 3056 cur_id_size = id_len - 1; 3057 memcpy(id, cur_id_str, cur_id_size); 3058 /* Decrease priority for truncated descriptor */ 3059 if (cur_id_size != id_size) 3060 cur_id_size = 6; 3061 break; 3062 default: 3063 break; 3064 } 3065 next_desig: 3066 d += d[3] + 4; 3067 } 3068 rcu_read_unlock(); 3069 3070 return id_size; 3071 } 3072 EXPORT_SYMBOL(scsi_vpd_lun_id); 3073 3074 /* 3075 * scsi_vpd_tpg_id - return a target port group identifier 3076 * @sdev: SCSI device 3077 * 3078 * Returns the Target Port Group identifier from the information 3079 * froom VPD page 0x83 of the device. 3080 * 3081 * Returns the identifier or error on failure. 3082 */ 3083 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3084 { 3085 const unsigned char *d; 3086 const struct scsi_vpd *vpd_pg83; 3087 int group_id = -EAGAIN, rel_port = -1; 3088 3089 rcu_read_lock(); 3090 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3091 if (!vpd_pg83) { 3092 rcu_read_unlock(); 3093 return -ENXIO; 3094 } 3095 3096 d = vpd_pg83->data + 4; 3097 while (d < vpd_pg83->data + vpd_pg83->len) { 3098 switch (d[1] & 0xf) { 3099 case 0x4: 3100 /* Relative target port */ 3101 rel_port = get_unaligned_be16(&d[6]); 3102 break; 3103 case 0x5: 3104 /* Target port group */ 3105 group_id = get_unaligned_be16(&d[6]); 3106 break; 3107 default: 3108 break; 3109 } 3110 d += d[3] + 4; 3111 } 3112 rcu_read_unlock(); 3113 3114 if (group_id >= 0 && rel_id && rel_port != -1) 3115 *rel_id = rel_port; 3116 3117 return group_id; 3118 } 3119 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3120