1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 32 #include "scsi_priv.h" 33 #include "scsi_logging.h" 34 35 36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 37 #define SG_MEMPOOL_SIZE 2 38 39 struct scsi_host_sg_pool { 40 size_t size; 41 char *name; 42 struct kmem_cache *slab; 43 mempool_t *pool; 44 }; 45 46 #define SP(x) { x, "sgpool-" __stringify(x) } 47 #if (SCSI_MAX_SG_SEGMENTS < 32) 48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 49 #endif 50 static struct scsi_host_sg_pool scsi_sg_pools[] = { 51 SP(8), 52 SP(16), 53 #if (SCSI_MAX_SG_SEGMENTS > 32) 54 SP(32), 55 #if (SCSI_MAX_SG_SEGMENTS > 64) 56 SP(64), 57 #if (SCSI_MAX_SG_SEGMENTS > 128) 58 SP(128), 59 #if (SCSI_MAX_SG_SEGMENTS > 256) 60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 61 #endif 62 #endif 63 #endif 64 #endif 65 SP(SCSI_MAX_SG_SEGMENTS) 66 }; 67 #undef SP 68 69 struct kmem_cache *scsi_sdb_cache; 70 71 /* 72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 73 * not change behaviour from the previous unplug mechanism, experimentation 74 * may prove this needs changing. 75 */ 76 #define SCSI_QUEUE_DELAY 3 77 78 /** 79 * __scsi_queue_insert - private queue insertion 80 * @cmd: The SCSI command being requeued 81 * @reason: The reason for the requeue 82 * @unbusy: Whether the queue should be unbusied 83 * 84 * This is a private queue insertion. The public interface 85 * scsi_queue_insert() always assumes the queue should be unbusied 86 * because it's always called before the completion. This function is 87 * for a requeue after completion, which should only occur in this 88 * file. 89 */ 90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 91 { 92 struct Scsi_Host *host = cmd->device->host; 93 struct scsi_device *device = cmd->device; 94 struct scsi_target *starget = scsi_target(device); 95 struct request_queue *q = device->request_queue; 96 unsigned long flags; 97 98 SCSI_LOG_MLQUEUE(1, 99 printk("Inserting command %p into mlqueue\n", cmd)); 100 101 /* 102 * Set the appropriate busy bit for the device/host. 103 * 104 * If the host/device isn't busy, assume that something actually 105 * completed, and that we should be able to queue a command now. 106 * 107 * Note that the prior mid-layer assumption that any host could 108 * always queue at least one command is now broken. The mid-layer 109 * will implement a user specifiable stall (see 110 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 111 * if a command is requeued with no other commands outstanding 112 * either for the device or for the host. 113 */ 114 switch (reason) { 115 case SCSI_MLQUEUE_HOST_BUSY: 116 host->host_blocked = host->max_host_blocked; 117 break; 118 case SCSI_MLQUEUE_DEVICE_BUSY: 119 case SCSI_MLQUEUE_EH_RETRY: 120 device->device_blocked = device->max_device_blocked; 121 break; 122 case SCSI_MLQUEUE_TARGET_BUSY: 123 starget->target_blocked = starget->max_target_blocked; 124 break; 125 } 126 127 /* 128 * Decrement the counters, since these commands are no longer 129 * active on the host/device. 130 */ 131 if (unbusy) 132 scsi_device_unbusy(device); 133 134 /* 135 * Requeue this command. It will go before all other commands 136 * that are already in the queue. Schedule requeue work under 137 * lock such that the kblockd_schedule_work() call happens 138 * before blk_cleanup_queue() finishes. 139 */ 140 cmd->result = 0; 141 spin_lock_irqsave(q->queue_lock, flags); 142 blk_requeue_request(q, cmd->request); 143 kblockd_schedule_work(&device->requeue_work); 144 spin_unlock_irqrestore(q->queue_lock, flags); 145 } 146 147 /* 148 * Function: scsi_queue_insert() 149 * 150 * Purpose: Insert a command in the midlevel queue. 151 * 152 * Arguments: cmd - command that we are adding to queue. 153 * reason - why we are inserting command to queue. 154 * 155 * Lock status: Assumed that lock is not held upon entry. 156 * 157 * Returns: Nothing. 158 * 159 * Notes: We do this for one of two cases. Either the host is busy 160 * and it cannot accept any more commands for the time being, 161 * or the device returned QUEUE_FULL and can accept no more 162 * commands. 163 * Notes: This could be called either from an interrupt context or a 164 * normal process context. 165 */ 166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 167 { 168 __scsi_queue_insert(cmd, reason, 1); 169 } 170 /** 171 * scsi_execute - insert request and wait for the result 172 * @sdev: scsi device 173 * @cmd: scsi command 174 * @data_direction: data direction 175 * @buffer: data buffer 176 * @bufflen: len of buffer 177 * @sense: optional sense buffer 178 * @timeout: request timeout in seconds 179 * @retries: number of times to retry request 180 * @flags: or into request flags; 181 * @resid: optional residual length 182 * 183 * returns the req->errors value which is the scsi_cmnd result 184 * field. 185 */ 186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 187 int data_direction, void *buffer, unsigned bufflen, 188 unsigned char *sense, int timeout, int retries, u64 flags, 189 int *resid) 190 { 191 struct request *req; 192 int write = (data_direction == DMA_TO_DEVICE); 193 int ret = DRIVER_ERROR << 24; 194 195 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 196 if (!req) 197 return ret; 198 199 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 200 buffer, bufflen, __GFP_WAIT)) 201 goto out; 202 203 req->cmd_len = COMMAND_SIZE(cmd[0]); 204 memcpy(req->cmd, cmd, req->cmd_len); 205 req->sense = sense; 206 req->sense_len = 0; 207 req->retries = retries; 208 req->timeout = timeout; 209 req->cmd_type = REQ_TYPE_BLOCK_PC; 210 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 211 212 /* 213 * head injection *required* here otherwise quiesce won't work 214 */ 215 blk_execute_rq(req->q, NULL, req, 1); 216 217 /* 218 * Some devices (USB mass-storage in particular) may transfer 219 * garbage data together with a residue indicating that the data 220 * is invalid. Prevent the garbage from being misinterpreted 221 * and prevent security leaks by zeroing out the excess data. 222 */ 223 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 224 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 225 226 if (resid) 227 *resid = req->resid_len; 228 ret = req->errors; 229 out: 230 blk_put_request(req); 231 232 return ret; 233 } 234 EXPORT_SYMBOL(scsi_execute); 235 236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd, 237 int data_direction, void *buffer, unsigned bufflen, 238 struct scsi_sense_hdr *sshdr, int timeout, int retries, 239 int *resid, u64 flags) 240 { 241 char *sense = NULL; 242 int result; 243 244 if (sshdr) { 245 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 246 if (!sense) 247 return DRIVER_ERROR << 24; 248 } 249 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 250 sense, timeout, retries, flags, resid); 251 if (sshdr) 252 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 253 254 kfree(sense); 255 return result; 256 } 257 EXPORT_SYMBOL(scsi_execute_req_flags); 258 259 /* 260 * Function: scsi_init_cmd_errh() 261 * 262 * Purpose: Initialize cmd fields related to error handling. 263 * 264 * Arguments: cmd - command that is ready to be queued. 265 * 266 * Notes: This function has the job of initializing a number of 267 * fields related to error handling. Typically this will 268 * be called once for each command, as required. 269 */ 270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 271 { 272 cmd->serial_number = 0; 273 scsi_set_resid(cmd, 0); 274 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 275 if (cmd->cmd_len == 0) 276 cmd->cmd_len = scsi_command_size(cmd->cmnd); 277 } 278 279 void scsi_device_unbusy(struct scsi_device *sdev) 280 { 281 struct Scsi_Host *shost = sdev->host; 282 struct scsi_target *starget = scsi_target(sdev); 283 unsigned long flags; 284 285 spin_lock_irqsave(shost->host_lock, flags); 286 shost->host_busy--; 287 starget->target_busy--; 288 if (unlikely(scsi_host_in_recovery(shost) && 289 (shost->host_failed || shost->host_eh_scheduled))) 290 scsi_eh_wakeup(shost); 291 spin_unlock(shost->host_lock); 292 spin_lock(sdev->request_queue->queue_lock); 293 sdev->device_busy--; 294 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 295 } 296 297 /* 298 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 299 * and call blk_run_queue for all the scsi_devices on the target - 300 * including current_sdev first. 301 * 302 * Called with *no* scsi locks held. 303 */ 304 static void scsi_single_lun_run(struct scsi_device *current_sdev) 305 { 306 struct Scsi_Host *shost = current_sdev->host; 307 struct scsi_device *sdev, *tmp; 308 struct scsi_target *starget = scsi_target(current_sdev); 309 unsigned long flags; 310 311 spin_lock_irqsave(shost->host_lock, flags); 312 starget->starget_sdev_user = NULL; 313 spin_unlock_irqrestore(shost->host_lock, flags); 314 315 /* 316 * Call blk_run_queue for all LUNs on the target, starting with 317 * current_sdev. We race with others (to set starget_sdev_user), 318 * but in most cases, we will be first. Ideally, each LU on the 319 * target would get some limited time or requests on the target. 320 */ 321 blk_run_queue(current_sdev->request_queue); 322 323 spin_lock_irqsave(shost->host_lock, flags); 324 if (starget->starget_sdev_user) 325 goto out; 326 list_for_each_entry_safe(sdev, tmp, &starget->devices, 327 same_target_siblings) { 328 if (sdev == current_sdev) 329 continue; 330 if (scsi_device_get(sdev)) 331 continue; 332 333 spin_unlock_irqrestore(shost->host_lock, flags); 334 blk_run_queue(sdev->request_queue); 335 spin_lock_irqsave(shost->host_lock, flags); 336 337 scsi_device_put(sdev); 338 } 339 out: 340 spin_unlock_irqrestore(shost->host_lock, flags); 341 } 342 343 static inline int scsi_device_is_busy(struct scsi_device *sdev) 344 { 345 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 346 return 1; 347 348 return 0; 349 } 350 351 static inline int scsi_target_is_busy(struct scsi_target *starget) 352 { 353 return ((starget->can_queue > 0 && 354 starget->target_busy >= starget->can_queue) || 355 starget->target_blocked); 356 } 357 358 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 359 { 360 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 361 shost->host_blocked || shost->host_self_blocked) 362 return 1; 363 364 return 0; 365 } 366 367 static void scsi_starved_list_run(struct Scsi_Host *shost) 368 { 369 LIST_HEAD(starved_list); 370 struct scsi_device *sdev; 371 unsigned long flags; 372 373 spin_lock_irqsave(shost->host_lock, flags); 374 list_splice_init(&shost->starved_list, &starved_list); 375 376 while (!list_empty(&starved_list)) { 377 struct request_queue *slq; 378 379 /* 380 * As long as shost is accepting commands and we have 381 * starved queues, call blk_run_queue. scsi_request_fn 382 * drops the queue_lock and can add us back to the 383 * starved_list. 384 * 385 * host_lock protects the starved_list and starved_entry. 386 * scsi_request_fn must get the host_lock before checking 387 * or modifying starved_list or starved_entry. 388 */ 389 if (scsi_host_is_busy(shost)) 390 break; 391 392 sdev = list_entry(starved_list.next, 393 struct scsi_device, starved_entry); 394 list_del_init(&sdev->starved_entry); 395 if (scsi_target_is_busy(scsi_target(sdev))) { 396 list_move_tail(&sdev->starved_entry, 397 &shost->starved_list); 398 continue; 399 } 400 401 /* 402 * Once we drop the host lock, a racing scsi_remove_device() 403 * call may remove the sdev from the starved list and destroy 404 * it and the queue. Mitigate by taking a reference to the 405 * queue and never touching the sdev again after we drop the 406 * host lock. Note: if __scsi_remove_device() invokes 407 * blk_cleanup_queue() before the queue is run from this 408 * function then blk_run_queue() will return immediately since 409 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 410 */ 411 slq = sdev->request_queue; 412 if (!blk_get_queue(slq)) 413 continue; 414 spin_unlock_irqrestore(shost->host_lock, flags); 415 416 blk_run_queue(slq); 417 blk_put_queue(slq); 418 419 spin_lock_irqsave(shost->host_lock, flags); 420 } 421 /* put any unprocessed entries back */ 422 list_splice(&starved_list, &shost->starved_list); 423 spin_unlock_irqrestore(shost->host_lock, flags); 424 } 425 426 /* 427 * Function: scsi_run_queue() 428 * 429 * Purpose: Select a proper request queue to serve next 430 * 431 * Arguments: q - last request's queue 432 * 433 * Returns: Nothing 434 * 435 * Notes: The previous command was completely finished, start 436 * a new one if possible. 437 */ 438 static void scsi_run_queue(struct request_queue *q) 439 { 440 struct scsi_device *sdev = q->queuedata; 441 442 if (scsi_target(sdev)->single_lun) 443 scsi_single_lun_run(sdev); 444 if (!list_empty(&sdev->host->starved_list)) 445 scsi_starved_list_run(sdev->host); 446 447 blk_run_queue(q); 448 } 449 450 void scsi_requeue_run_queue(struct work_struct *work) 451 { 452 struct scsi_device *sdev; 453 struct request_queue *q; 454 455 sdev = container_of(work, struct scsi_device, requeue_work); 456 q = sdev->request_queue; 457 scsi_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct scsi_device *sdev = cmd->device; 481 struct request *req = cmd->request; 482 unsigned long flags; 483 484 spin_lock_irqsave(q->queue_lock, flags); 485 blk_unprep_request(req); 486 req->special = NULL; 487 scsi_put_command(cmd); 488 blk_requeue_request(q, req); 489 spin_unlock_irqrestore(q->queue_lock, flags); 490 491 scsi_run_queue(q); 492 493 put_device(&sdev->sdev_gendev); 494 } 495 496 void scsi_next_command(struct scsi_cmnd *cmd) 497 { 498 struct scsi_device *sdev = cmd->device; 499 struct request_queue *q = sdev->request_queue; 500 501 scsi_put_command(cmd); 502 scsi_run_queue(q); 503 504 put_device(&sdev->sdev_gendev); 505 } 506 507 void scsi_run_host_queues(struct Scsi_Host *shost) 508 { 509 struct scsi_device *sdev; 510 511 shost_for_each_device(sdev, shost) 512 scsi_run_queue(sdev->request_queue); 513 } 514 515 static void __scsi_release_buffers(struct scsi_cmnd *, int); 516 517 /* 518 * Function: scsi_end_request() 519 * 520 * Purpose: Post-processing of completed commands (usually invoked at end 521 * of upper level post-processing and scsi_io_completion). 522 * 523 * Arguments: cmd - command that is complete. 524 * error - 0 if I/O indicates success, < 0 for I/O error. 525 * bytes - number of bytes of completed I/O 526 * requeue - indicates whether we should requeue leftovers. 527 * 528 * Lock status: Assumed that lock is not held upon entry. 529 * 530 * Returns: cmd if requeue required, NULL otherwise. 531 * 532 * Notes: This is called for block device requests in order to 533 * mark some number of sectors as complete. 534 * 535 * We are guaranteeing that the request queue will be goosed 536 * at some point during this call. 537 * Notes: If cmd was requeued, upon return it will be a stale pointer. 538 */ 539 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 540 int bytes, int requeue) 541 { 542 struct request_queue *q = cmd->device->request_queue; 543 struct request *req = cmd->request; 544 545 /* 546 * If there are blocks left over at the end, set up the command 547 * to queue the remainder of them. 548 */ 549 if (blk_end_request(req, error, bytes)) { 550 /* kill remainder if no retrys */ 551 if (error && scsi_noretry_cmd(cmd)) 552 blk_end_request_all(req, error); 553 else { 554 if (requeue) { 555 /* 556 * Bleah. Leftovers again. Stick the 557 * leftovers in the front of the 558 * queue, and goose the queue again. 559 */ 560 scsi_release_buffers(cmd); 561 scsi_requeue_command(q, cmd); 562 cmd = NULL; 563 } 564 return cmd; 565 } 566 } 567 568 /* 569 * This will goose the queue request function at the end, so we don't 570 * need to worry about launching another command. 571 */ 572 __scsi_release_buffers(cmd, 0); 573 scsi_next_command(cmd); 574 return NULL; 575 } 576 577 static inline unsigned int scsi_sgtable_index(unsigned short nents) 578 { 579 unsigned int index; 580 581 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 582 583 if (nents <= 8) 584 index = 0; 585 else 586 index = get_count_order(nents) - 3; 587 588 return index; 589 } 590 591 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 592 { 593 struct scsi_host_sg_pool *sgp; 594 595 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 596 mempool_free(sgl, sgp->pool); 597 } 598 599 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 600 { 601 struct scsi_host_sg_pool *sgp; 602 603 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 604 return mempool_alloc(sgp->pool, gfp_mask); 605 } 606 607 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 608 gfp_t gfp_mask) 609 { 610 int ret; 611 612 BUG_ON(!nents); 613 614 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 615 gfp_mask, scsi_sg_alloc); 616 if (unlikely(ret)) 617 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 618 scsi_sg_free); 619 620 return ret; 621 } 622 623 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 624 { 625 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 626 } 627 628 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 629 { 630 631 if (cmd->sdb.table.nents) 632 scsi_free_sgtable(&cmd->sdb); 633 634 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 635 636 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 637 struct scsi_data_buffer *bidi_sdb = 638 cmd->request->next_rq->special; 639 scsi_free_sgtable(bidi_sdb); 640 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 641 cmd->request->next_rq->special = NULL; 642 } 643 644 if (scsi_prot_sg_count(cmd)) 645 scsi_free_sgtable(cmd->prot_sdb); 646 } 647 648 /* 649 * Function: scsi_release_buffers() 650 * 651 * Purpose: Completion processing for block device I/O requests. 652 * 653 * Arguments: cmd - command that we are bailing. 654 * 655 * Lock status: Assumed that no lock is held upon entry. 656 * 657 * Returns: Nothing 658 * 659 * Notes: In the event that an upper level driver rejects a 660 * command, we must release resources allocated during 661 * the __init_io() function. Primarily this would involve 662 * the scatter-gather table, and potentially any bounce 663 * buffers. 664 */ 665 void scsi_release_buffers(struct scsi_cmnd *cmd) 666 { 667 __scsi_release_buffers(cmd, 1); 668 } 669 EXPORT_SYMBOL(scsi_release_buffers); 670 671 /** 672 * __scsi_error_from_host_byte - translate SCSI error code into errno 673 * @cmd: SCSI command (unused) 674 * @result: scsi error code 675 * 676 * Translate SCSI error code into standard UNIX errno. 677 * Return values: 678 * -ENOLINK temporary transport failure 679 * -EREMOTEIO permanent target failure, do not retry 680 * -EBADE permanent nexus failure, retry on other path 681 * -ENOSPC No write space available 682 * -ENODATA Medium error 683 * -EIO unspecified I/O error 684 */ 685 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 686 { 687 int error = 0; 688 689 switch(host_byte(result)) { 690 case DID_TRANSPORT_FAILFAST: 691 error = -ENOLINK; 692 break; 693 case DID_TARGET_FAILURE: 694 set_host_byte(cmd, DID_OK); 695 error = -EREMOTEIO; 696 break; 697 case DID_NEXUS_FAILURE: 698 set_host_byte(cmd, DID_OK); 699 error = -EBADE; 700 break; 701 case DID_ALLOC_FAILURE: 702 set_host_byte(cmd, DID_OK); 703 error = -ENOSPC; 704 break; 705 case DID_MEDIUM_ERROR: 706 set_host_byte(cmd, DID_OK); 707 error = -ENODATA; 708 break; 709 default: 710 error = -EIO; 711 break; 712 } 713 714 return error; 715 } 716 717 /* 718 * Function: scsi_io_completion() 719 * 720 * Purpose: Completion processing for block device I/O requests. 721 * 722 * Arguments: cmd - command that is finished. 723 * 724 * Lock status: Assumed that no lock is held upon entry. 725 * 726 * Returns: Nothing 727 * 728 * Notes: This function is matched in terms of capabilities to 729 * the function that created the scatter-gather list. 730 * In other words, if there are no bounce buffers 731 * (the normal case for most drivers), we don't need 732 * the logic to deal with cleaning up afterwards. 733 * 734 * We must call scsi_end_request(). This will finish off 735 * the specified number of sectors. If we are done, the 736 * command block will be released and the queue function 737 * will be goosed. If we are not done then we have to 738 * figure out what to do next: 739 * 740 * a) We can call scsi_requeue_command(). The request 741 * will be unprepared and put back on the queue. Then 742 * a new command will be created for it. This should 743 * be used if we made forward progress, or if we want 744 * to switch from READ(10) to READ(6) for example. 745 * 746 * b) We can call scsi_queue_insert(). The request will 747 * be put back on the queue and retried using the same 748 * command as before, possibly after a delay. 749 * 750 * c) We can call blk_end_request() with -EIO to fail 751 * the remainder of the request. 752 */ 753 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 754 { 755 int result = cmd->result; 756 struct request_queue *q = cmd->device->request_queue; 757 struct request *req = cmd->request; 758 int error = 0; 759 struct scsi_sense_hdr sshdr; 760 int sense_valid = 0; 761 int sense_deferred = 0; 762 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 763 ACTION_DELAYED_RETRY} action; 764 char *description = NULL; 765 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 766 767 if (result) { 768 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 769 if (sense_valid) 770 sense_deferred = scsi_sense_is_deferred(&sshdr); 771 } 772 773 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 774 if (result) { 775 if (sense_valid && req->sense) { 776 /* 777 * SG_IO wants current and deferred errors 778 */ 779 int len = 8 + cmd->sense_buffer[7]; 780 781 if (len > SCSI_SENSE_BUFFERSIZE) 782 len = SCSI_SENSE_BUFFERSIZE; 783 memcpy(req->sense, cmd->sense_buffer, len); 784 req->sense_len = len; 785 } 786 if (!sense_deferred) 787 error = __scsi_error_from_host_byte(cmd, result); 788 } 789 /* 790 * __scsi_error_from_host_byte may have reset the host_byte 791 */ 792 req->errors = cmd->result; 793 794 req->resid_len = scsi_get_resid(cmd); 795 796 if (scsi_bidi_cmnd(cmd)) { 797 /* 798 * Bidi commands Must be complete as a whole, 799 * both sides at once. 800 */ 801 req->next_rq->resid_len = scsi_in(cmd)->resid; 802 803 scsi_release_buffers(cmd); 804 blk_end_request_all(req, 0); 805 806 scsi_next_command(cmd); 807 return; 808 } 809 } 810 811 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 812 BUG_ON(blk_bidi_rq(req)); 813 814 /* 815 * Next deal with any sectors which we were able to correctly 816 * handle. 817 */ 818 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 819 "%d bytes done.\n", 820 blk_rq_sectors(req), good_bytes)); 821 822 /* 823 * Recovered errors need reporting, but they're always treated 824 * as success, so fiddle the result code here. For BLOCK_PC 825 * we already took a copy of the original into rq->errors which 826 * is what gets returned to the user 827 */ 828 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 829 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 830 * print since caller wants ATA registers. Only occurs on 831 * SCSI ATA PASS_THROUGH commands when CK_COND=1 832 */ 833 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 834 ; 835 else if (!(req->cmd_flags & REQ_QUIET)) 836 scsi_print_sense("", cmd); 837 result = 0; 838 /* BLOCK_PC may have set error */ 839 error = 0; 840 } 841 842 /* 843 * A number of bytes were successfully read. If there 844 * are leftovers and there is some kind of error 845 * (result != 0), retry the rest. 846 */ 847 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 848 return; 849 850 error = __scsi_error_from_host_byte(cmd, result); 851 852 if (host_byte(result) == DID_RESET) { 853 /* Third party bus reset or reset for error recovery 854 * reasons. Just retry the command and see what 855 * happens. 856 */ 857 action = ACTION_RETRY; 858 } else if (sense_valid && !sense_deferred) { 859 switch (sshdr.sense_key) { 860 case UNIT_ATTENTION: 861 if (cmd->device->removable) { 862 /* Detected disc change. Set a bit 863 * and quietly refuse further access. 864 */ 865 cmd->device->changed = 1; 866 description = "Media Changed"; 867 action = ACTION_FAIL; 868 } else { 869 /* Must have been a power glitch, or a 870 * bus reset. Could not have been a 871 * media change, so we just retry the 872 * command and see what happens. 873 */ 874 action = ACTION_RETRY; 875 } 876 break; 877 case ILLEGAL_REQUEST: 878 /* If we had an ILLEGAL REQUEST returned, then 879 * we may have performed an unsupported 880 * command. The only thing this should be 881 * would be a ten byte read where only a six 882 * byte read was supported. Also, on a system 883 * where READ CAPACITY failed, we may have 884 * read past the end of the disk. 885 */ 886 if ((cmd->device->use_10_for_rw && 887 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 888 (cmd->cmnd[0] == READ_10 || 889 cmd->cmnd[0] == WRITE_10)) { 890 /* This will issue a new 6-byte command. */ 891 cmd->device->use_10_for_rw = 0; 892 action = ACTION_REPREP; 893 } else if (sshdr.asc == 0x10) /* DIX */ { 894 description = "Host Data Integrity Failure"; 895 action = ACTION_FAIL; 896 error = -EILSEQ; 897 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 898 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 899 switch (cmd->cmnd[0]) { 900 case UNMAP: 901 description = "Discard failure"; 902 break; 903 case WRITE_SAME: 904 case WRITE_SAME_16: 905 if (cmd->cmnd[1] & 0x8) 906 description = "Discard failure"; 907 else 908 description = 909 "Write same failure"; 910 break; 911 default: 912 description = "Invalid command failure"; 913 break; 914 } 915 action = ACTION_FAIL; 916 error = -EREMOTEIO; 917 } else 918 action = ACTION_FAIL; 919 break; 920 case ABORTED_COMMAND: 921 action = ACTION_FAIL; 922 if (sshdr.asc == 0x10) { /* DIF */ 923 description = "Target Data Integrity Failure"; 924 error = -EILSEQ; 925 } 926 break; 927 case NOT_READY: 928 /* If the device is in the process of becoming 929 * ready, or has a temporary blockage, retry. 930 */ 931 if (sshdr.asc == 0x04) { 932 switch (sshdr.ascq) { 933 case 0x01: /* becoming ready */ 934 case 0x04: /* format in progress */ 935 case 0x05: /* rebuild in progress */ 936 case 0x06: /* recalculation in progress */ 937 case 0x07: /* operation in progress */ 938 case 0x08: /* Long write in progress */ 939 case 0x09: /* self test in progress */ 940 case 0x14: /* space allocation in progress */ 941 action = ACTION_DELAYED_RETRY; 942 break; 943 default: 944 description = "Device not ready"; 945 action = ACTION_FAIL; 946 break; 947 } 948 } else { 949 description = "Device not ready"; 950 action = ACTION_FAIL; 951 } 952 break; 953 case VOLUME_OVERFLOW: 954 /* See SSC3rXX or current. */ 955 action = ACTION_FAIL; 956 break; 957 default: 958 description = "Unhandled sense code"; 959 action = ACTION_FAIL; 960 break; 961 } 962 } else { 963 description = "Unhandled error code"; 964 action = ACTION_FAIL; 965 } 966 967 if (action != ACTION_FAIL && 968 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 969 action = ACTION_FAIL; 970 description = "Command timed out"; 971 } 972 973 switch (action) { 974 case ACTION_FAIL: 975 /* Give up and fail the remainder of the request */ 976 scsi_release_buffers(cmd); 977 if (!(req->cmd_flags & REQ_QUIET)) { 978 if (description) 979 scmd_printk(KERN_INFO, cmd, "%s\n", 980 description); 981 scsi_print_result(cmd); 982 if (driver_byte(result) & DRIVER_SENSE) 983 scsi_print_sense("", cmd); 984 scsi_print_command(cmd); 985 } 986 if (blk_end_request_err(req, error)) 987 scsi_requeue_command(q, cmd); 988 else 989 scsi_next_command(cmd); 990 break; 991 case ACTION_REPREP: 992 /* Unprep the request and put it back at the head of the queue. 993 * A new command will be prepared and issued. 994 */ 995 scsi_release_buffers(cmd); 996 scsi_requeue_command(q, cmd); 997 break; 998 case ACTION_RETRY: 999 /* Retry the same command immediately */ 1000 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1001 break; 1002 case ACTION_DELAYED_RETRY: 1003 /* Retry the same command after a delay */ 1004 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1005 break; 1006 } 1007 } 1008 1009 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1010 gfp_t gfp_mask) 1011 { 1012 int count; 1013 1014 /* 1015 * If sg table allocation fails, requeue request later. 1016 */ 1017 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1018 gfp_mask))) { 1019 return BLKPREP_DEFER; 1020 } 1021 1022 /* 1023 * Next, walk the list, and fill in the addresses and sizes of 1024 * each segment. 1025 */ 1026 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1027 BUG_ON(count > sdb->table.nents); 1028 sdb->table.nents = count; 1029 sdb->length = blk_rq_bytes(req); 1030 return BLKPREP_OK; 1031 } 1032 1033 /* 1034 * Function: scsi_init_io() 1035 * 1036 * Purpose: SCSI I/O initialize function. 1037 * 1038 * Arguments: cmd - Command descriptor we wish to initialize 1039 * 1040 * Returns: 0 on success 1041 * BLKPREP_DEFER if the failure is retryable 1042 * BLKPREP_KILL if the failure is fatal 1043 */ 1044 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1045 { 1046 struct scsi_device *sdev = cmd->device; 1047 struct request *rq = cmd->request; 1048 1049 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1050 if (error) 1051 goto err_exit; 1052 1053 if (blk_bidi_rq(rq)) { 1054 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1055 scsi_sdb_cache, GFP_ATOMIC); 1056 if (!bidi_sdb) { 1057 error = BLKPREP_DEFER; 1058 goto err_exit; 1059 } 1060 1061 rq->next_rq->special = bidi_sdb; 1062 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1063 if (error) 1064 goto err_exit; 1065 } 1066 1067 if (blk_integrity_rq(rq)) { 1068 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1069 int ivecs, count; 1070 1071 BUG_ON(prot_sdb == NULL); 1072 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1073 1074 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1075 error = BLKPREP_DEFER; 1076 goto err_exit; 1077 } 1078 1079 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1080 prot_sdb->table.sgl); 1081 BUG_ON(unlikely(count > ivecs)); 1082 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1083 1084 cmd->prot_sdb = prot_sdb; 1085 cmd->prot_sdb->table.nents = count; 1086 } 1087 1088 return BLKPREP_OK ; 1089 1090 err_exit: 1091 scsi_release_buffers(cmd); 1092 cmd->request->special = NULL; 1093 scsi_put_command(cmd); 1094 put_device(&sdev->sdev_gendev); 1095 return error; 1096 } 1097 EXPORT_SYMBOL(scsi_init_io); 1098 1099 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1100 struct request *req) 1101 { 1102 struct scsi_cmnd *cmd; 1103 1104 if (!req->special) { 1105 /* Bail if we can't get a reference to the device */ 1106 if (!get_device(&sdev->sdev_gendev)) 1107 return NULL; 1108 1109 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1110 if (unlikely(!cmd)) { 1111 put_device(&sdev->sdev_gendev); 1112 return NULL; 1113 } 1114 req->special = cmd; 1115 } else { 1116 cmd = req->special; 1117 } 1118 1119 /* pull a tag out of the request if we have one */ 1120 cmd->tag = req->tag; 1121 cmd->request = req; 1122 1123 cmd->cmnd = req->cmd; 1124 cmd->prot_op = SCSI_PROT_NORMAL; 1125 1126 return cmd; 1127 } 1128 1129 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1130 { 1131 struct scsi_cmnd *cmd; 1132 int ret = scsi_prep_state_check(sdev, req); 1133 1134 if (ret != BLKPREP_OK) 1135 return ret; 1136 1137 cmd = scsi_get_cmd_from_req(sdev, req); 1138 if (unlikely(!cmd)) 1139 return BLKPREP_DEFER; 1140 1141 /* 1142 * BLOCK_PC requests may transfer data, in which case they must 1143 * a bio attached to them. Or they might contain a SCSI command 1144 * that does not transfer data, in which case they may optionally 1145 * submit a request without an attached bio. 1146 */ 1147 if (req->bio) { 1148 int ret; 1149 1150 BUG_ON(!req->nr_phys_segments); 1151 1152 ret = scsi_init_io(cmd, GFP_ATOMIC); 1153 if (unlikely(ret)) 1154 return ret; 1155 } else { 1156 BUG_ON(blk_rq_bytes(req)); 1157 1158 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1159 } 1160 1161 cmd->cmd_len = req->cmd_len; 1162 if (!blk_rq_bytes(req)) 1163 cmd->sc_data_direction = DMA_NONE; 1164 else if (rq_data_dir(req) == WRITE) 1165 cmd->sc_data_direction = DMA_TO_DEVICE; 1166 else 1167 cmd->sc_data_direction = DMA_FROM_DEVICE; 1168 1169 cmd->transfersize = blk_rq_bytes(req); 1170 cmd->allowed = req->retries; 1171 return BLKPREP_OK; 1172 } 1173 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1174 1175 /* 1176 * Setup a REQ_TYPE_FS command. These are simple read/write request 1177 * from filesystems that still need to be translated to SCSI CDBs from 1178 * the ULD. 1179 */ 1180 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1181 { 1182 struct scsi_cmnd *cmd; 1183 int ret = scsi_prep_state_check(sdev, req); 1184 1185 if (ret != BLKPREP_OK) 1186 return ret; 1187 1188 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1189 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1190 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1191 if (ret != BLKPREP_OK) 1192 return ret; 1193 } 1194 1195 /* 1196 * Filesystem requests must transfer data. 1197 */ 1198 BUG_ON(!req->nr_phys_segments); 1199 1200 cmd = scsi_get_cmd_from_req(sdev, req); 1201 if (unlikely(!cmd)) 1202 return BLKPREP_DEFER; 1203 1204 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1205 return scsi_init_io(cmd, GFP_ATOMIC); 1206 } 1207 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1208 1209 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1210 { 1211 int ret = BLKPREP_OK; 1212 1213 /* 1214 * If the device is not in running state we will reject some 1215 * or all commands. 1216 */ 1217 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1218 switch (sdev->sdev_state) { 1219 case SDEV_OFFLINE: 1220 case SDEV_TRANSPORT_OFFLINE: 1221 /* 1222 * If the device is offline we refuse to process any 1223 * commands. The device must be brought online 1224 * before trying any recovery commands. 1225 */ 1226 sdev_printk(KERN_ERR, sdev, 1227 "rejecting I/O to offline device\n"); 1228 ret = BLKPREP_KILL; 1229 break; 1230 case SDEV_DEL: 1231 /* 1232 * If the device is fully deleted, we refuse to 1233 * process any commands as well. 1234 */ 1235 sdev_printk(KERN_ERR, sdev, 1236 "rejecting I/O to dead device\n"); 1237 ret = BLKPREP_KILL; 1238 break; 1239 case SDEV_QUIESCE: 1240 case SDEV_BLOCK: 1241 case SDEV_CREATED_BLOCK: 1242 /* 1243 * If the devices is blocked we defer normal commands. 1244 */ 1245 if (!(req->cmd_flags & REQ_PREEMPT)) 1246 ret = BLKPREP_DEFER; 1247 break; 1248 default: 1249 /* 1250 * For any other not fully online state we only allow 1251 * special commands. In particular any user initiated 1252 * command is not allowed. 1253 */ 1254 if (!(req->cmd_flags & REQ_PREEMPT)) 1255 ret = BLKPREP_KILL; 1256 break; 1257 } 1258 } 1259 return ret; 1260 } 1261 EXPORT_SYMBOL(scsi_prep_state_check); 1262 1263 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1264 { 1265 struct scsi_device *sdev = q->queuedata; 1266 1267 switch (ret) { 1268 case BLKPREP_KILL: 1269 req->errors = DID_NO_CONNECT << 16; 1270 /* release the command and kill it */ 1271 if (req->special) { 1272 struct scsi_cmnd *cmd = req->special; 1273 scsi_release_buffers(cmd); 1274 scsi_put_command(cmd); 1275 put_device(&sdev->sdev_gendev); 1276 req->special = NULL; 1277 } 1278 break; 1279 case BLKPREP_DEFER: 1280 /* 1281 * If we defer, the blk_peek_request() returns NULL, but the 1282 * queue must be restarted, so we schedule a callback to happen 1283 * shortly. 1284 */ 1285 if (sdev->device_busy == 0) 1286 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1287 break; 1288 default: 1289 req->cmd_flags |= REQ_DONTPREP; 1290 } 1291 1292 return ret; 1293 } 1294 EXPORT_SYMBOL(scsi_prep_return); 1295 1296 int scsi_prep_fn(struct request_queue *q, struct request *req) 1297 { 1298 struct scsi_device *sdev = q->queuedata; 1299 int ret = BLKPREP_KILL; 1300 1301 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1302 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1303 return scsi_prep_return(q, req, ret); 1304 } 1305 EXPORT_SYMBOL(scsi_prep_fn); 1306 1307 /* 1308 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1309 * return 0. 1310 * 1311 * Called with the queue_lock held. 1312 */ 1313 static inline int scsi_dev_queue_ready(struct request_queue *q, 1314 struct scsi_device *sdev) 1315 { 1316 if (sdev->device_busy == 0 && sdev->device_blocked) { 1317 /* 1318 * unblock after device_blocked iterates to zero 1319 */ 1320 if (--sdev->device_blocked == 0) { 1321 SCSI_LOG_MLQUEUE(3, 1322 sdev_printk(KERN_INFO, sdev, 1323 "unblocking device at zero depth\n")); 1324 } else { 1325 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1326 return 0; 1327 } 1328 } 1329 if (scsi_device_is_busy(sdev)) 1330 return 0; 1331 1332 return 1; 1333 } 1334 1335 1336 /* 1337 * scsi_target_queue_ready: checks if there we can send commands to target 1338 * @sdev: scsi device on starget to check. 1339 * 1340 * Called with the host lock held. 1341 */ 1342 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1343 struct scsi_device *sdev) 1344 { 1345 struct scsi_target *starget = scsi_target(sdev); 1346 1347 if (starget->single_lun) { 1348 if (starget->starget_sdev_user && 1349 starget->starget_sdev_user != sdev) 1350 return 0; 1351 starget->starget_sdev_user = sdev; 1352 } 1353 1354 if (starget->target_busy == 0 && starget->target_blocked) { 1355 /* 1356 * unblock after target_blocked iterates to zero 1357 */ 1358 if (--starget->target_blocked == 0) { 1359 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1360 "unblocking target at zero depth\n")); 1361 } else 1362 return 0; 1363 } 1364 1365 if (scsi_target_is_busy(starget)) { 1366 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1367 return 0; 1368 } 1369 1370 return 1; 1371 } 1372 1373 /* 1374 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1375 * return 0. We must end up running the queue again whenever 0 is 1376 * returned, else IO can hang. 1377 * 1378 * Called with host_lock held. 1379 */ 1380 static inline int scsi_host_queue_ready(struct request_queue *q, 1381 struct Scsi_Host *shost, 1382 struct scsi_device *sdev) 1383 { 1384 if (scsi_host_in_recovery(shost)) 1385 return 0; 1386 if (shost->host_busy == 0 && shost->host_blocked) { 1387 /* 1388 * unblock after host_blocked iterates to zero 1389 */ 1390 if (--shost->host_blocked == 0) { 1391 SCSI_LOG_MLQUEUE(3, 1392 printk("scsi%d unblocking host at zero depth\n", 1393 shost->host_no)); 1394 } else { 1395 return 0; 1396 } 1397 } 1398 if (scsi_host_is_busy(shost)) { 1399 if (list_empty(&sdev->starved_entry)) 1400 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1401 return 0; 1402 } 1403 1404 /* We're OK to process the command, so we can't be starved */ 1405 if (!list_empty(&sdev->starved_entry)) 1406 list_del_init(&sdev->starved_entry); 1407 1408 return 1; 1409 } 1410 1411 /* 1412 * Busy state exporting function for request stacking drivers. 1413 * 1414 * For efficiency, no lock is taken to check the busy state of 1415 * shost/starget/sdev, since the returned value is not guaranteed and 1416 * may be changed after request stacking drivers call the function, 1417 * regardless of taking lock or not. 1418 * 1419 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1420 * needs to return 'not busy'. Otherwise, request stacking drivers 1421 * may hold requests forever. 1422 */ 1423 static int scsi_lld_busy(struct request_queue *q) 1424 { 1425 struct scsi_device *sdev = q->queuedata; 1426 struct Scsi_Host *shost; 1427 1428 if (blk_queue_dying(q)) 1429 return 0; 1430 1431 shost = sdev->host; 1432 1433 /* 1434 * Ignore host/starget busy state. 1435 * Since block layer does not have a concept of fairness across 1436 * multiple queues, congestion of host/starget needs to be handled 1437 * in SCSI layer. 1438 */ 1439 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1440 return 1; 1441 1442 return 0; 1443 } 1444 1445 /* 1446 * Kill a request for a dead device 1447 */ 1448 static void scsi_kill_request(struct request *req, struct request_queue *q) 1449 { 1450 struct scsi_cmnd *cmd = req->special; 1451 struct scsi_device *sdev; 1452 struct scsi_target *starget; 1453 struct Scsi_Host *shost; 1454 1455 blk_start_request(req); 1456 1457 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1458 1459 sdev = cmd->device; 1460 starget = scsi_target(sdev); 1461 shost = sdev->host; 1462 scsi_init_cmd_errh(cmd); 1463 cmd->result = DID_NO_CONNECT << 16; 1464 atomic_inc(&cmd->device->iorequest_cnt); 1465 1466 /* 1467 * SCSI request completion path will do scsi_device_unbusy(), 1468 * bump busy counts. To bump the counters, we need to dance 1469 * with the locks as normal issue path does. 1470 */ 1471 sdev->device_busy++; 1472 spin_unlock(sdev->request_queue->queue_lock); 1473 spin_lock(shost->host_lock); 1474 shost->host_busy++; 1475 starget->target_busy++; 1476 spin_unlock(shost->host_lock); 1477 spin_lock(sdev->request_queue->queue_lock); 1478 1479 blk_complete_request(req); 1480 } 1481 1482 static void scsi_softirq_done(struct request *rq) 1483 { 1484 struct scsi_cmnd *cmd = rq->special; 1485 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1486 int disposition; 1487 1488 INIT_LIST_HEAD(&cmd->eh_entry); 1489 1490 atomic_inc(&cmd->device->iodone_cnt); 1491 if (cmd->result) 1492 atomic_inc(&cmd->device->ioerr_cnt); 1493 1494 disposition = scsi_decide_disposition(cmd); 1495 if (disposition != SUCCESS && 1496 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1497 sdev_printk(KERN_ERR, cmd->device, 1498 "timing out command, waited %lus\n", 1499 wait_for/HZ); 1500 disposition = SUCCESS; 1501 } 1502 1503 scsi_log_completion(cmd, disposition); 1504 1505 switch (disposition) { 1506 case SUCCESS: 1507 scsi_finish_command(cmd); 1508 break; 1509 case NEEDS_RETRY: 1510 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1511 break; 1512 case ADD_TO_MLQUEUE: 1513 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1514 break; 1515 default: 1516 if (!scsi_eh_scmd_add(cmd, 0)) 1517 scsi_finish_command(cmd); 1518 } 1519 } 1520 1521 /* 1522 * Function: scsi_request_fn() 1523 * 1524 * Purpose: Main strategy routine for SCSI. 1525 * 1526 * Arguments: q - Pointer to actual queue. 1527 * 1528 * Returns: Nothing 1529 * 1530 * Lock status: IO request lock assumed to be held when called. 1531 */ 1532 static void scsi_request_fn(struct request_queue *q) 1533 __releases(q->queue_lock) 1534 __acquires(q->queue_lock) 1535 { 1536 struct scsi_device *sdev = q->queuedata; 1537 struct Scsi_Host *shost; 1538 struct scsi_cmnd *cmd; 1539 struct request *req; 1540 1541 /* 1542 * To start with, we keep looping until the queue is empty, or until 1543 * the host is no longer able to accept any more requests. 1544 */ 1545 shost = sdev->host; 1546 for (;;) { 1547 int rtn; 1548 /* 1549 * get next queueable request. We do this early to make sure 1550 * that the request is fully prepared even if we cannot 1551 * accept it. 1552 */ 1553 req = blk_peek_request(q); 1554 if (!req || !scsi_dev_queue_ready(q, sdev)) 1555 break; 1556 1557 if (unlikely(!scsi_device_online(sdev))) { 1558 sdev_printk(KERN_ERR, sdev, 1559 "rejecting I/O to offline device\n"); 1560 scsi_kill_request(req, q); 1561 continue; 1562 } 1563 1564 1565 /* 1566 * Remove the request from the request list. 1567 */ 1568 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1569 blk_start_request(req); 1570 sdev->device_busy++; 1571 1572 spin_unlock(q->queue_lock); 1573 cmd = req->special; 1574 if (unlikely(cmd == NULL)) { 1575 printk(KERN_CRIT "impossible request in %s.\n" 1576 "please mail a stack trace to " 1577 "linux-scsi@vger.kernel.org\n", 1578 __func__); 1579 blk_dump_rq_flags(req, "foo"); 1580 BUG(); 1581 } 1582 spin_lock(shost->host_lock); 1583 1584 /* 1585 * We hit this when the driver is using a host wide 1586 * tag map. For device level tag maps the queue_depth check 1587 * in the device ready fn would prevent us from trying 1588 * to allocate a tag. Since the map is a shared host resource 1589 * we add the dev to the starved list so it eventually gets 1590 * a run when a tag is freed. 1591 */ 1592 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1593 if (list_empty(&sdev->starved_entry)) 1594 list_add_tail(&sdev->starved_entry, 1595 &shost->starved_list); 1596 goto not_ready; 1597 } 1598 1599 if (!scsi_target_queue_ready(shost, sdev)) 1600 goto not_ready; 1601 1602 if (!scsi_host_queue_ready(q, shost, sdev)) 1603 goto not_ready; 1604 1605 scsi_target(sdev)->target_busy++; 1606 shost->host_busy++; 1607 1608 /* 1609 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1610 * take the lock again. 1611 */ 1612 spin_unlock_irq(shost->host_lock); 1613 1614 /* 1615 * Finally, initialize any error handling parameters, and set up 1616 * the timers for timeouts. 1617 */ 1618 scsi_init_cmd_errh(cmd); 1619 1620 /* 1621 * Dispatch the command to the low-level driver. 1622 */ 1623 rtn = scsi_dispatch_cmd(cmd); 1624 spin_lock_irq(q->queue_lock); 1625 if (rtn) 1626 goto out_delay; 1627 } 1628 1629 return; 1630 1631 not_ready: 1632 spin_unlock_irq(shost->host_lock); 1633 1634 /* 1635 * lock q, handle tag, requeue req, and decrement device_busy. We 1636 * must return with queue_lock held. 1637 * 1638 * Decrementing device_busy without checking it is OK, as all such 1639 * cases (host limits or settings) should run the queue at some 1640 * later time. 1641 */ 1642 spin_lock_irq(q->queue_lock); 1643 blk_requeue_request(q, req); 1644 sdev->device_busy--; 1645 out_delay: 1646 if (sdev->device_busy == 0) 1647 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1648 } 1649 1650 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1651 { 1652 struct device *host_dev; 1653 u64 bounce_limit = 0xffffffff; 1654 1655 if (shost->unchecked_isa_dma) 1656 return BLK_BOUNCE_ISA; 1657 /* 1658 * Platforms with virtual-DMA translation 1659 * hardware have no practical limit. 1660 */ 1661 if (!PCI_DMA_BUS_IS_PHYS) 1662 return BLK_BOUNCE_ANY; 1663 1664 host_dev = scsi_get_device(shost); 1665 if (host_dev && host_dev->dma_mask) 1666 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 1667 1668 return bounce_limit; 1669 } 1670 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1671 1672 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1673 request_fn_proc *request_fn) 1674 { 1675 struct request_queue *q; 1676 struct device *dev = shost->dma_dev; 1677 1678 q = blk_init_queue(request_fn, NULL); 1679 if (!q) 1680 return NULL; 1681 1682 /* 1683 * this limit is imposed by hardware restrictions 1684 */ 1685 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1686 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1687 1688 if (scsi_host_prot_dma(shost)) { 1689 shost->sg_prot_tablesize = 1690 min_not_zero(shost->sg_prot_tablesize, 1691 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1692 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1693 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1694 } 1695 1696 blk_queue_max_hw_sectors(q, shost->max_sectors); 1697 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1698 blk_queue_segment_boundary(q, shost->dma_boundary); 1699 dma_set_seg_boundary(dev, shost->dma_boundary); 1700 1701 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1702 1703 if (!shost->use_clustering) 1704 q->limits.cluster = 0; 1705 1706 /* 1707 * set a reasonable default alignment on word boundaries: the 1708 * host and device may alter it using 1709 * blk_queue_update_dma_alignment() later. 1710 */ 1711 blk_queue_dma_alignment(q, 0x03); 1712 1713 return q; 1714 } 1715 EXPORT_SYMBOL(__scsi_alloc_queue); 1716 1717 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1718 { 1719 struct request_queue *q; 1720 1721 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1722 if (!q) 1723 return NULL; 1724 1725 blk_queue_prep_rq(q, scsi_prep_fn); 1726 blk_queue_softirq_done(q, scsi_softirq_done); 1727 blk_queue_rq_timed_out(q, scsi_times_out); 1728 blk_queue_lld_busy(q, scsi_lld_busy); 1729 return q; 1730 } 1731 1732 /* 1733 * Function: scsi_block_requests() 1734 * 1735 * Purpose: Utility function used by low-level drivers to prevent further 1736 * commands from being queued to the device. 1737 * 1738 * Arguments: shost - Host in question 1739 * 1740 * Returns: Nothing 1741 * 1742 * Lock status: No locks are assumed held. 1743 * 1744 * Notes: There is no timer nor any other means by which the requests 1745 * get unblocked other than the low-level driver calling 1746 * scsi_unblock_requests(). 1747 */ 1748 void scsi_block_requests(struct Scsi_Host *shost) 1749 { 1750 shost->host_self_blocked = 1; 1751 } 1752 EXPORT_SYMBOL(scsi_block_requests); 1753 1754 /* 1755 * Function: scsi_unblock_requests() 1756 * 1757 * Purpose: Utility function used by low-level drivers to allow further 1758 * commands from being queued to the device. 1759 * 1760 * Arguments: shost - Host in question 1761 * 1762 * Returns: Nothing 1763 * 1764 * Lock status: No locks are assumed held. 1765 * 1766 * Notes: There is no timer nor any other means by which the requests 1767 * get unblocked other than the low-level driver calling 1768 * scsi_unblock_requests(). 1769 * 1770 * This is done as an API function so that changes to the 1771 * internals of the scsi mid-layer won't require wholesale 1772 * changes to drivers that use this feature. 1773 */ 1774 void scsi_unblock_requests(struct Scsi_Host *shost) 1775 { 1776 shost->host_self_blocked = 0; 1777 scsi_run_host_queues(shost); 1778 } 1779 EXPORT_SYMBOL(scsi_unblock_requests); 1780 1781 int __init scsi_init_queue(void) 1782 { 1783 int i; 1784 1785 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1786 sizeof(struct scsi_data_buffer), 1787 0, 0, NULL); 1788 if (!scsi_sdb_cache) { 1789 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1790 return -ENOMEM; 1791 } 1792 1793 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1794 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1795 int size = sgp->size * sizeof(struct scatterlist); 1796 1797 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1798 SLAB_HWCACHE_ALIGN, NULL); 1799 if (!sgp->slab) { 1800 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1801 sgp->name); 1802 goto cleanup_sdb; 1803 } 1804 1805 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1806 sgp->slab); 1807 if (!sgp->pool) { 1808 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1809 sgp->name); 1810 goto cleanup_sdb; 1811 } 1812 } 1813 1814 return 0; 1815 1816 cleanup_sdb: 1817 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1818 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1819 if (sgp->pool) 1820 mempool_destroy(sgp->pool); 1821 if (sgp->slab) 1822 kmem_cache_destroy(sgp->slab); 1823 } 1824 kmem_cache_destroy(scsi_sdb_cache); 1825 1826 return -ENOMEM; 1827 } 1828 1829 void scsi_exit_queue(void) 1830 { 1831 int i; 1832 1833 kmem_cache_destroy(scsi_sdb_cache); 1834 1835 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1836 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1837 mempool_destroy(sgp->pool); 1838 kmem_cache_destroy(sgp->slab); 1839 } 1840 } 1841 1842 /** 1843 * scsi_mode_select - issue a mode select 1844 * @sdev: SCSI device to be queried 1845 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1846 * @sp: Save page bit (0 == don't save, 1 == save) 1847 * @modepage: mode page being requested 1848 * @buffer: request buffer (may not be smaller than eight bytes) 1849 * @len: length of request buffer. 1850 * @timeout: command timeout 1851 * @retries: number of retries before failing 1852 * @data: returns a structure abstracting the mode header data 1853 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1854 * must be SCSI_SENSE_BUFFERSIZE big. 1855 * 1856 * Returns zero if successful; negative error number or scsi 1857 * status on error 1858 * 1859 */ 1860 int 1861 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1862 unsigned char *buffer, int len, int timeout, int retries, 1863 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1864 { 1865 unsigned char cmd[10]; 1866 unsigned char *real_buffer; 1867 int ret; 1868 1869 memset(cmd, 0, sizeof(cmd)); 1870 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1871 1872 if (sdev->use_10_for_ms) { 1873 if (len > 65535) 1874 return -EINVAL; 1875 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1876 if (!real_buffer) 1877 return -ENOMEM; 1878 memcpy(real_buffer + 8, buffer, len); 1879 len += 8; 1880 real_buffer[0] = 0; 1881 real_buffer[1] = 0; 1882 real_buffer[2] = data->medium_type; 1883 real_buffer[3] = data->device_specific; 1884 real_buffer[4] = data->longlba ? 0x01 : 0; 1885 real_buffer[5] = 0; 1886 real_buffer[6] = data->block_descriptor_length >> 8; 1887 real_buffer[7] = data->block_descriptor_length; 1888 1889 cmd[0] = MODE_SELECT_10; 1890 cmd[7] = len >> 8; 1891 cmd[8] = len; 1892 } else { 1893 if (len > 255 || data->block_descriptor_length > 255 || 1894 data->longlba) 1895 return -EINVAL; 1896 1897 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1898 if (!real_buffer) 1899 return -ENOMEM; 1900 memcpy(real_buffer + 4, buffer, len); 1901 len += 4; 1902 real_buffer[0] = 0; 1903 real_buffer[1] = data->medium_type; 1904 real_buffer[2] = data->device_specific; 1905 real_buffer[3] = data->block_descriptor_length; 1906 1907 1908 cmd[0] = MODE_SELECT; 1909 cmd[4] = len; 1910 } 1911 1912 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1913 sshdr, timeout, retries, NULL); 1914 kfree(real_buffer); 1915 return ret; 1916 } 1917 EXPORT_SYMBOL_GPL(scsi_mode_select); 1918 1919 /** 1920 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1921 * @sdev: SCSI device to be queried 1922 * @dbd: set if mode sense will allow block descriptors to be returned 1923 * @modepage: mode page being requested 1924 * @buffer: request buffer (may not be smaller than eight bytes) 1925 * @len: length of request buffer. 1926 * @timeout: command timeout 1927 * @retries: number of retries before failing 1928 * @data: returns a structure abstracting the mode header data 1929 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1930 * must be SCSI_SENSE_BUFFERSIZE big. 1931 * 1932 * Returns zero if unsuccessful, or the header offset (either 4 1933 * or 8 depending on whether a six or ten byte command was 1934 * issued) if successful. 1935 */ 1936 int 1937 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1938 unsigned char *buffer, int len, int timeout, int retries, 1939 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1940 { 1941 unsigned char cmd[12]; 1942 int use_10_for_ms; 1943 int header_length; 1944 int result; 1945 struct scsi_sense_hdr my_sshdr; 1946 1947 memset(data, 0, sizeof(*data)); 1948 memset(&cmd[0], 0, 12); 1949 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1950 cmd[2] = modepage; 1951 1952 /* caller might not be interested in sense, but we need it */ 1953 if (!sshdr) 1954 sshdr = &my_sshdr; 1955 1956 retry: 1957 use_10_for_ms = sdev->use_10_for_ms; 1958 1959 if (use_10_for_ms) { 1960 if (len < 8) 1961 len = 8; 1962 1963 cmd[0] = MODE_SENSE_10; 1964 cmd[8] = len; 1965 header_length = 8; 1966 } else { 1967 if (len < 4) 1968 len = 4; 1969 1970 cmd[0] = MODE_SENSE; 1971 cmd[4] = len; 1972 header_length = 4; 1973 } 1974 1975 memset(buffer, 0, len); 1976 1977 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1978 sshdr, timeout, retries, NULL); 1979 1980 /* This code looks awful: what it's doing is making sure an 1981 * ILLEGAL REQUEST sense return identifies the actual command 1982 * byte as the problem. MODE_SENSE commands can return 1983 * ILLEGAL REQUEST if the code page isn't supported */ 1984 1985 if (use_10_for_ms && !scsi_status_is_good(result) && 1986 (driver_byte(result) & DRIVER_SENSE)) { 1987 if (scsi_sense_valid(sshdr)) { 1988 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1989 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1990 /* 1991 * Invalid command operation code 1992 */ 1993 sdev->use_10_for_ms = 0; 1994 goto retry; 1995 } 1996 } 1997 } 1998 1999 if(scsi_status_is_good(result)) { 2000 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2001 (modepage == 6 || modepage == 8))) { 2002 /* Initio breakage? */ 2003 header_length = 0; 2004 data->length = 13; 2005 data->medium_type = 0; 2006 data->device_specific = 0; 2007 data->longlba = 0; 2008 data->block_descriptor_length = 0; 2009 } else if(use_10_for_ms) { 2010 data->length = buffer[0]*256 + buffer[1] + 2; 2011 data->medium_type = buffer[2]; 2012 data->device_specific = buffer[3]; 2013 data->longlba = buffer[4] & 0x01; 2014 data->block_descriptor_length = buffer[6]*256 2015 + buffer[7]; 2016 } else { 2017 data->length = buffer[0] + 1; 2018 data->medium_type = buffer[1]; 2019 data->device_specific = buffer[2]; 2020 data->block_descriptor_length = buffer[3]; 2021 } 2022 data->header_length = header_length; 2023 } 2024 2025 return result; 2026 } 2027 EXPORT_SYMBOL(scsi_mode_sense); 2028 2029 /** 2030 * scsi_test_unit_ready - test if unit is ready 2031 * @sdev: scsi device to change the state of. 2032 * @timeout: command timeout 2033 * @retries: number of retries before failing 2034 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2035 * returning sense. Make sure that this is cleared before passing 2036 * in. 2037 * 2038 * Returns zero if unsuccessful or an error if TUR failed. For 2039 * removable media, UNIT_ATTENTION sets ->changed flag. 2040 **/ 2041 int 2042 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2043 struct scsi_sense_hdr *sshdr_external) 2044 { 2045 char cmd[] = { 2046 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2047 }; 2048 struct scsi_sense_hdr *sshdr; 2049 int result; 2050 2051 if (!sshdr_external) 2052 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2053 else 2054 sshdr = sshdr_external; 2055 2056 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2057 do { 2058 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2059 timeout, retries, NULL); 2060 if (sdev->removable && scsi_sense_valid(sshdr) && 2061 sshdr->sense_key == UNIT_ATTENTION) 2062 sdev->changed = 1; 2063 } while (scsi_sense_valid(sshdr) && 2064 sshdr->sense_key == UNIT_ATTENTION && --retries); 2065 2066 if (!sshdr_external) 2067 kfree(sshdr); 2068 return result; 2069 } 2070 EXPORT_SYMBOL(scsi_test_unit_ready); 2071 2072 /** 2073 * scsi_device_set_state - Take the given device through the device state model. 2074 * @sdev: scsi device to change the state of. 2075 * @state: state to change to. 2076 * 2077 * Returns zero if unsuccessful or an error if the requested 2078 * transition is illegal. 2079 */ 2080 int 2081 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2082 { 2083 enum scsi_device_state oldstate = sdev->sdev_state; 2084 2085 if (state == oldstate) 2086 return 0; 2087 2088 switch (state) { 2089 case SDEV_CREATED: 2090 switch (oldstate) { 2091 case SDEV_CREATED_BLOCK: 2092 break; 2093 default: 2094 goto illegal; 2095 } 2096 break; 2097 2098 case SDEV_RUNNING: 2099 switch (oldstate) { 2100 case SDEV_CREATED: 2101 case SDEV_OFFLINE: 2102 case SDEV_TRANSPORT_OFFLINE: 2103 case SDEV_QUIESCE: 2104 case SDEV_BLOCK: 2105 break; 2106 default: 2107 goto illegal; 2108 } 2109 break; 2110 2111 case SDEV_QUIESCE: 2112 switch (oldstate) { 2113 case SDEV_RUNNING: 2114 case SDEV_OFFLINE: 2115 case SDEV_TRANSPORT_OFFLINE: 2116 break; 2117 default: 2118 goto illegal; 2119 } 2120 break; 2121 2122 case SDEV_OFFLINE: 2123 case SDEV_TRANSPORT_OFFLINE: 2124 switch (oldstate) { 2125 case SDEV_CREATED: 2126 case SDEV_RUNNING: 2127 case SDEV_QUIESCE: 2128 case SDEV_BLOCK: 2129 break; 2130 default: 2131 goto illegal; 2132 } 2133 break; 2134 2135 case SDEV_BLOCK: 2136 switch (oldstate) { 2137 case SDEV_RUNNING: 2138 case SDEV_CREATED_BLOCK: 2139 break; 2140 default: 2141 goto illegal; 2142 } 2143 break; 2144 2145 case SDEV_CREATED_BLOCK: 2146 switch (oldstate) { 2147 case SDEV_CREATED: 2148 break; 2149 default: 2150 goto illegal; 2151 } 2152 break; 2153 2154 case SDEV_CANCEL: 2155 switch (oldstate) { 2156 case SDEV_CREATED: 2157 case SDEV_RUNNING: 2158 case SDEV_QUIESCE: 2159 case SDEV_OFFLINE: 2160 case SDEV_TRANSPORT_OFFLINE: 2161 case SDEV_BLOCK: 2162 break; 2163 default: 2164 goto illegal; 2165 } 2166 break; 2167 2168 case SDEV_DEL: 2169 switch (oldstate) { 2170 case SDEV_CREATED: 2171 case SDEV_RUNNING: 2172 case SDEV_OFFLINE: 2173 case SDEV_TRANSPORT_OFFLINE: 2174 case SDEV_CANCEL: 2175 case SDEV_CREATED_BLOCK: 2176 break; 2177 default: 2178 goto illegal; 2179 } 2180 break; 2181 2182 } 2183 sdev->sdev_state = state; 2184 return 0; 2185 2186 illegal: 2187 SCSI_LOG_ERROR_RECOVERY(1, 2188 sdev_printk(KERN_ERR, sdev, 2189 "Illegal state transition %s->%s\n", 2190 scsi_device_state_name(oldstate), 2191 scsi_device_state_name(state)) 2192 ); 2193 return -EINVAL; 2194 } 2195 EXPORT_SYMBOL(scsi_device_set_state); 2196 2197 /** 2198 * sdev_evt_emit - emit a single SCSI device uevent 2199 * @sdev: associated SCSI device 2200 * @evt: event to emit 2201 * 2202 * Send a single uevent (scsi_event) to the associated scsi_device. 2203 */ 2204 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2205 { 2206 int idx = 0; 2207 char *envp[3]; 2208 2209 switch (evt->evt_type) { 2210 case SDEV_EVT_MEDIA_CHANGE: 2211 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2212 break; 2213 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2214 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2215 break; 2216 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2217 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2218 break; 2219 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2220 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2221 break; 2222 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2223 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2224 break; 2225 case SDEV_EVT_LUN_CHANGE_REPORTED: 2226 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2227 break; 2228 default: 2229 /* do nothing */ 2230 break; 2231 } 2232 2233 envp[idx++] = NULL; 2234 2235 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2236 } 2237 2238 /** 2239 * sdev_evt_thread - send a uevent for each scsi event 2240 * @work: work struct for scsi_device 2241 * 2242 * Dispatch queued events to their associated scsi_device kobjects 2243 * as uevents. 2244 */ 2245 void scsi_evt_thread(struct work_struct *work) 2246 { 2247 struct scsi_device *sdev; 2248 enum scsi_device_event evt_type; 2249 LIST_HEAD(event_list); 2250 2251 sdev = container_of(work, struct scsi_device, event_work); 2252 2253 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2254 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2255 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2256 2257 while (1) { 2258 struct scsi_event *evt; 2259 struct list_head *this, *tmp; 2260 unsigned long flags; 2261 2262 spin_lock_irqsave(&sdev->list_lock, flags); 2263 list_splice_init(&sdev->event_list, &event_list); 2264 spin_unlock_irqrestore(&sdev->list_lock, flags); 2265 2266 if (list_empty(&event_list)) 2267 break; 2268 2269 list_for_each_safe(this, tmp, &event_list) { 2270 evt = list_entry(this, struct scsi_event, node); 2271 list_del(&evt->node); 2272 scsi_evt_emit(sdev, evt); 2273 kfree(evt); 2274 } 2275 } 2276 } 2277 2278 /** 2279 * sdev_evt_send - send asserted event to uevent thread 2280 * @sdev: scsi_device event occurred on 2281 * @evt: event to send 2282 * 2283 * Assert scsi device event asynchronously. 2284 */ 2285 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2286 { 2287 unsigned long flags; 2288 2289 #if 0 2290 /* FIXME: currently this check eliminates all media change events 2291 * for polled devices. Need to update to discriminate between AN 2292 * and polled events */ 2293 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2294 kfree(evt); 2295 return; 2296 } 2297 #endif 2298 2299 spin_lock_irqsave(&sdev->list_lock, flags); 2300 list_add_tail(&evt->node, &sdev->event_list); 2301 schedule_work(&sdev->event_work); 2302 spin_unlock_irqrestore(&sdev->list_lock, flags); 2303 } 2304 EXPORT_SYMBOL_GPL(sdev_evt_send); 2305 2306 /** 2307 * sdev_evt_alloc - allocate a new scsi event 2308 * @evt_type: type of event to allocate 2309 * @gfpflags: GFP flags for allocation 2310 * 2311 * Allocates and returns a new scsi_event. 2312 */ 2313 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2314 gfp_t gfpflags) 2315 { 2316 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2317 if (!evt) 2318 return NULL; 2319 2320 evt->evt_type = evt_type; 2321 INIT_LIST_HEAD(&evt->node); 2322 2323 /* evt_type-specific initialization, if any */ 2324 switch (evt_type) { 2325 case SDEV_EVT_MEDIA_CHANGE: 2326 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2327 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2328 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2329 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2330 case SDEV_EVT_LUN_CHANGE_REPORTED: 2331 default: 2332 /* do nothing */ 2333 break; 2334 } 2335 2336 return evt; 2337 } 2338 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2339 2340 /** 2341 * sdev_evt_send_simple - send asserted event to uevent thread 2342 * @sdev: scsi_device event occurred on 2343 * @evt_type: type of event to send 2344 * @gfpflags: GFP flags for allocation 2345 * 2346 * Assert scsi device event asynchronously, given an event type. 2347 */ 2348 void sdev_evt_send_simple(struct scsi_device *sdev, 2349 enum scsi_device_event evt_type, gfp_t gfpflags) 2350 { 2351 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2352 if (!evt) { 2353 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2354 evt_type); 2355 return; 2356 } 2357 2358 sdev_evt_send(sdev, evt); 2359 } 2360 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2361 2362 /** 2363 * scsi_device_quiesce - Block user issued commands. 2364 * @sdev: scsi device to quiesce. 2365 * 2366 * This works by trying to transition to the SDEV_QUIESCE state 2367 * (which must be a legal transition). When the device is in this 2368 * state, only special requests will be accepted, all others will 2369 * be deferred. Since special requests may also be requeued requests, 2370 * a successful return doesn't guarantee the device will be 2371 * totally quiescent. 2372 * 2373 * Must be called with user context, may sleep. 2374 * 2375 * Returns zero if unsuccessful or an error if not. 2376 */ 2377 int 2378 scsi_device_quiesce(struct scsi_device *sdev) 2379 { 2380 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2381 if (err) 2382 return err; 2383 2384 scsi_run_queue(sdev->request_queue); 2385 while (sdev->device_busy) { 2386 msleep_interruptible(200); 2387 scsi_run_queue(sdev->request_queue); 2388 } 2389 return 0; 2390 } 2391 EXPORT_SYMBOL(scsi_device_quiesce); 2392 2393 /** 2394 * scsi_device_resume - Restart user issued commands to a quiesced device. 2395 * @sdev: scsi device to resume. 2396 * 2397 * Moves the device from quiesced back to running and restarts the 2398 * queues. 2399 * 2400 * Must be called with user context, may sleep. 2401 */ 2402 void scsi_device_resume(struct scsi_device *sdev) 2403 { 2404 /* check if the device state was mutated prior to resume, and if 2405 * so assume the state is being managed elsewhere (for example 2406 * device deleted during suspend) 2407 */ 2408 if (sdev->sdev_state != SDEV_QUIESCE || 2409 scsi_device_set_state(sdev, SDEV_RUNNING)) 2410 return; 2411 scsi_run_queue(sdev->request_queue); 2412 } 2413 EXPORT_SYMBOL(scsi_device_resume); 2414 2415 static void 2416 device_quiesce_fn(struct scsi_device *sdev, void *data) 2417 { 2418 scsi_device_quiesce(sdev); 2419 } 2420 2421 void 2422 scsi_target_quiesce(struct scsi_target *starget) 2423 { 2424 starget_for_each_device(starget, NULL, device_quiesce_fn); 2425 } 2426 EXPORT_SYMBOL(scsi_target_quiesce); 2427 2428 static void 2429 device_resume_fn(struct scsi_device *sdev, void *data) 2430 { 2431 scsi_device_resume(sdev); 2432 } 2433 2434 void 2435 scsi_target_resume(struct scsi_target *starget) 2436 { 2437 starget_for_each_device(starget, NULL, device_resume_fn); 2438 } 2439 EXPORT_SYMBOL(scsi_target_resume); 2440 2441 /** 2442 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2443 * @sdev: device to block 2444 * 2445 * Block request made by scsi lld's to temporarily stop all 2446 * scsi commands on the specified device. Called from interrupt 2447 * or normal process context. 2448 * 2449 * Returns zero if successful or error if not 2450 * 2451 * Notes: 2452 * This routine transitions the device to the SDEV_BLOCK state 2453 * (which must be a legal transition). When the device is in this 2454 * state, all commands are deferred until the scsi lld reenables 2455 * the device with scsi_device_unblock or device_block_tmo fires. 2456 */ 2457 int 2458 scsi_internal_device_block(struct scsi_device *sdev) 2459 { 2460 struct request_queue *q = sdev->request_queue; 2461 unsigned long flags; 2462 int err = 0; 2463 2464 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2465 if (err) { 2466 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2467 2468 if (err) 2469 return err; 2470 } 2471 2472 /* 2473 * The device has transitioned to SDEV_BLOCK. Stop the 2474 * block layer from calling the midlayer with this device's 2475 * request queue. 2476 */ 2477 spin_lock_irqsave(q->queue_lock, flags); 2478 blk_stop_queue(q); 2479 spin_unlock_irqrestore(q->queue_lock, flags); 2480 2481 return 0; 2482 } 2483 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2484 2485 /** 2486 * scsi_internal_device_unblock - resume a device after a block request 2487 * @sdev: device to resume 2488 * @new_state: state to set devices to after unblocking 2489 * 2490 * Called by scsi lld's or the midlayer to restart the device queue 2491 * for the previously suspended scsi device. Called from interrupt or 2492 * normal process context. 2493 * 2494 * Returns zero if successful or error if not. 2495 * 2496 * Notes: 2497 * This routine transitions the device to the SDEV_RUNNING state 2498 * or to one of the offline states (which must be a legal transition) 2499 * allowing the midlayer to goose the queue for this device. 2500 */ 2501 int 2502 scsi_internal_device_unblock(struct scsi_device *sdev, 2503 enum scsi_device_state new_state) 2504 { 2505 struct request_queue *q = sdev->request_queue; 2506 unsigned long flags; 2507 2508 /* 2509 * Try to transition the scsi device to SDEV_RUNNING or one of the 2510 * offlined states and goose the device queue if successful. 2511 */ 2512 if ((sdev->sdev_state == SDEV_BLOCK) || 2513 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 2514 sdev->sdev_state = new_state; 2515 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2516 if (new_state == SDEV_TRANSPORT_OFFLINE || 2517 new_state == SDEV_OFFLINE) 2518 sdev->sdev_state = new_state; 2519 else 2520 sdev->sdev_state = SDEV_CREATED; 2521 } else if (sdev->sdev_state != SDEV_CANCEL && 2522 sdev->sdev_state != SDEV_OFFLINE) 2523 return -EINVAL; 2524 2525 spin_lock_irqsave(q->queue_lock, flags); 2526 blk_start_queue(q); 2527 spin_unlock_irqrestore(q->queue_lock, flags); 2528 2529 return 0; 2530 } 2531 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2532 2533 static void 2534 device_block(struct scsi_device *sdev, void *data) 2535 { 2536 scsi_internal_device_block(sdev); 2537 } 2538 2539 static int 2540 target_block(struct device *dev, void *data) 2541 { 2542 if (scsi_is_target_device(dev)) 2543 starget_for_each_device(to_scsi_target(dev), NULL, 2544 device_block); 2545 return 0; 2546 } 2547 2548 void 2549 scsi_target_block(struct device *dev) 2550 { 2551 if (scsi_is_target_device(dev)) 2552 starget_for_each_device(to_scsi_target(dev), NULL, 2553 device_block); 2554 else 2555 device_for_each_child(dev, NULL, target_block); 2556 } 2557 EXPORT_SYMBOL_GPL(scsi_target_block); 2558 2559 static void 2560 device_unblock(struct scsi_device *sdev, void *data) 2561 { 2562 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2563 } 2564 2565 static int 2566 target_unblock(struct device *dev, void *data) 2567 { 2568 if (scsi_is_target_device(dev)) 2569 starget_for_each_device(to_scsi_target(dev), data, 2570 device_unblock); 2571 return 0; 2572 } 2573 2574 void 2575 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2576 { 2577 if (scsi_is_target_device(dev)) 2578 starget_for_each_device(to_scsi_target(dev), &new_state, 2579 device_unblock); 2580 else 2581 device_for_each_child(dev, &new_state, target_unblock); 2582 } 2583 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2584 2585 /** 2586 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2587 * @sgl: scatter-gather list 2588 * @sg_count: number of segments in sg 2589 * @offset: offset in bytes into sg, on return offset into the mapped area 2590 * @len: bytes to map, on return number of bytes mapped 2591 * 2592 * Returns virtual address of the start of the mapped page 2593 */ 2594 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2595 size_t *offset, size_t *len) 2596 { 2597 int i; 2598 size_t sg_len = 0, len_complete = 0; 2599 struct scatterlist *sg; 2600 struct page *page; 2601 2602 WARN_ON(!irqs_disabled()); 2603 2604 for_each_sg(sgl, sg, sg_count, i) { 2605 len_complete = sg_len; /* Complete sg-entries */ 2606 sg_len += sg->length; 2607 if (sg_len > *offset) 2608 break; 2609 } 2610 2611 if (unlikely(i == sg_count)) { 2612 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2613 "elements %d\n", 2614 __func__, sg_len, *offset, sg_count); 2615 WARN_ON(1); 2616 return NULL; 2617 } 2618 2619 /* Offset starting from the beginning of first page in this sg-entry */ 2620 *offset = *offset - len_complete + sg->offset; 2621 2622 /* Assumption: contiguous pages can be accessed as "page + i" */ 2623 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2624 *offset &= ~PAGE_MASK; 2625 2626 /* Bytes in this sg-entry from *offset to the end of the page */ 2627 sg_len = PAGE_SIZE - *offset; 2628 if (*len > sg_len) 2629 *len = sg_len; 2630 2631 return kmap_atomic(page); 2632 } 2633 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2634 2635 /** 2636 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2637 * @virt: virtual address to be unmapped 2638 */ 2639 void scsi_kunmap_atomic_sg(void *virt) 2640 { 2641 kunmap_atomic(virt); 2642 } 2643 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2644 2645 void sdev_disable_disk_events(struct scsi_device *sdev) 2646 { 2647 atomic_inc(&sdev->disk_events_disable_depth); 2648 } 2649 EXPORT_SYMBOL(sdev_disable_disk_events); 2650 2651 void sdev_enable_disk_events(struct scsi_device *sdev) 2652 { 2653 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2654 return; 2655 atomic_dec(&sdev->disk_events_disable_depth); 2656 } 2657 EXPORT_SYMBOL(sdev_enable_disk_events); 2658