xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 84d517f3)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY	3
77 
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92 	struct Scsi_Host *host = cmd->device->host;
93 	struct scsi_device *device = cmd->device;
94 	struct scsi_target *starget = scsi_target(device);
95 	struct request_queue *q = device->request_queue;
96 	unsigned long flags;
97 
98 	SCSI_LOG_MLQUEUE(1,
99 		 printk("Inserting command %p into mlqueue\n", cmd));
100 
101 	/*
102 	 * Set the appropriate busy bit for the device/host.
103 	 *
104 	 * If the host/device isn't busy, assume that something actually
105 	 * completed, and that we should be able to queue a command now.
106 	 *
107 	 * Note that the prior mid-layer assumption that any host could
108 	 * always queue at least one command is now broken.  The mid-layer
109 	 * will implement a user specifiable stall (see
110 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111 	 * if a command is requeued with no other commands outstanding
112 	 * either for the device or for the host.
113 	 */
114 	switch (reason) {
115 	case SCSI_MLQUEUE_HOST_BUSY:
116 		host->host_blocked = host->max_host_blocked;
117 		break;
118 	case SCSI_MLQUEUE_DEVICE_BUSY:
119 	case SCSI_MLQUEUE_EH_RETRY:
120 		device->device_blocked = device->max_device_blocked;
121 		break;
122 	case SCSI_MLQUEUE_TARGET_BUSY:
123 		starget->target_blocked = starget->max_target_blocked;
124 		break;
125 	}
126 
127 	/*
128 	 * Decrement the counters, since these commands are no longer
129 	 * active on the host/device.
130 	 */
131 	if (unbusy)
132 		scsi_device_unbusy(device);
133 
134 	/*
135 	 * Requeue this command.  It will go before all other commands
136 	 * that are already in the queue. Schedule requeue work under
137 	 * lock such that the kblockd_schedule_work() call happens
138 	 * before blk_cleanup_queue() finishes.
139 	 */
140 	cmd->result = 0;
141 	spin_lock_irqsave(q->queue_lock, flags);
142 	blk_requeue_request(q, cmd->request);
143 	kblockd_schedule_work(&device->requeue_work);
144 	spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146 
147 /*
148  * Function:    scsi_queue_insert()
149  *
150  * Purpose:     Insert a command in the midlevel queue.
151  *
152  * Arguments:   cmd    - command that we are adding to queue.
153  *              reason - why we are inserting command to queue.
154  *
155  * Lock status: Assumed that lock is not held upon entry.
156  *
157  * Returns:     Nothing.
158  *
159  * Notes:       We do this for one of two cases.  Either the host is busy
160  *              and it cannot accept any more commands for the time being,
161  *              or the device returned QUEUE_FULL and can accept no more
162  *              commands.
163  * Notes:       This could be called either from an interrupt context or a
164  *              normal process context.
165  */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168 	__scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171  * scsi_execute - insert request and wait for the result
172  * @sdev:	scsi device
173  * @cmd:	scsi command
174  * @data_direction: data direction
175  * @buffer:	data buffer
176  * @bufflen:	len of buffer
177  * @sense:	optional sense buffer
178  * @timeout:	request timeout in seconds
179  * @retries:	number of times to retry request
180  * @flags:	or into request flags;
181  * @resid:	optional residual length
182  *
183  * returns the req->errors value which is the scsi_cmnd result
184  * field.
185  */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187 		 int data_direction, void *buffer, unsigned bufflen,
188 		 unsigned char *sense, int timeout, int retries, u64 flags,
189 		 int *resid)
190 {
191 	struct request *req;
192 	int write = (data_direction == DMA_TO_DEVICE);
193 	int ret = DRIVER_ERROR << 24;
194 
195 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196 	if (!req)
197 		return ret;
198 
199 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
200 					buffer, bufflen, __GFP_WAIT))
201 		goto out;
202 
203 	req->cmd_len = COMMAND_SIZE(cmd[0]);
204 	memcpy(req->cmd, cmd, req->cmd_len);
205 	req->sense = sense;
206 	req->sense_len = 0;
207 	req->retries = retries;
208 	req->timeout = timeout;
209 	req->cmd_type = REQ_TYPE_BLOCK_PC;
210 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211 
212 	/*
213 	 * head injection *required* here otherwise quiesce won't work
214 	 */
215 	blk_execute_rq(req->q, NULL, req, 1);
216 
217 	/*
218 	 * Some devices (USB mass-storage in particular) may transfer
219 	 * garbage data together with a residue indicating that the data
220 	 * is invalid.  Prevent the garbage from being misinterpreted
221 	 * and prevent security leaks by zeroing out the excess data.
222 	 */
223 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225 
226 	if (resid)
227 		*resid = req->resid_len;
228 	ret = req->errors;
229  out:
230 	blk_put_request(req);
231 
232 	return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235 
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237 		     int data_direction, void *buffer, unsigned bufflen,
238 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
239 		     int *resid, u64 flags)
240 {
241 	char *sense = NULL;
242 	int result;
243 
244 	if (sshdr) {
245 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246 		if (!sense)
247 			return DRIVER_ERROR << 24;
248 	}
249 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250 			      sense, timeout, retries, flags, resid);
251 	if (sshdr)
252 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253 
254 	kfree(sense);
255 	return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258 
259 /*
260  * Function:    scsi_init_cmd_errh()
261  *
262  * Purpose:     Initialize cmd fields related to error handling.
263  *
264  * Arguments:   cmd	- command that is ready to be queued.
265  *
266  * Notes:       This function has the job of initializing a number of
267  *              fields related to error handling.   Typically this will
268  *              be called once for each command, as required.
269  */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272 	cmd->serial_number = 0;
273 	scsi_set_resid(cmd, 0);
274 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275 	if (cmd->cmd_len == 0)
276 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278 
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281 	struct Scsi_Host *shost = sdev->host;
282 	struct scsi_target *starget = scsi_target(sdev);
283 	unsigned long flags;
284 
285 	spin_lock_irqsave(shost->host_lock, flags);
286 	shost->host_busy--;
287 	starget->target_busy--;
288 	if (unlikely(scsi_host_in_recovery(shost) &&
289 		     (shost->host_failed || shost->host_eh_scheduled)))
290 		scsi_eh_wakeup(shost);
291 	spin_unlock(shost->host_lock);
292 	spin_lock(sdev->request_queue->queue_lock);
293 	sdev->device_busy--;
294 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296 
297 /*
298  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299  * and call blk_run_queue for all the scsi_devices on the target -
300  * including current_sdev first.
301  *
302  * Called with *no* scsi locks held.
303  */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306 	struct Scsi_Host *shost = current_sdev->host;
307 	struct scsi_device *sdev, *tmp;
308 	struct scsi_target *starget = scsi_target(current_sdev);
309 	unsigned long flags;
310 
311 	spin_lock_irqsave(shost->host_lock, flags);
312 	starget->starget_sdev_user = NULL;
313 	spin_unlock_irqrestore(shost->host_lock, flags);
314 
315 	/*
316 	 * Call blk_run_queue for all LUNs on the target, starting with
317 	 * current_sdev. We race with others (to set starget_sdev_user),
318 	 * but in most cases, we will be first. Ideally, each LU on the
319 	 * target would get some limited time or requests on the target.
320 	 */
321 	blk_run_queue(current_sdev->request_queue);
322 
323 	spin_lock_irqsave(shost->host_lock, flags);
324 	if (starget->starget_sdev_user)
325 		goto out;
326 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
327 			same_target_siblings) {
328 		if (sdev == current_sdev)
329 			continue;
330 		if (scsi_device_get(sdev))
331 			continue;
332 
333 		spin_unlock_irqrestore(shost->host_lock, flags);
334 		blk_run_queue(sdev->request_queue);
335 		spin_lock_irqsave(shost->host_lock, flags);
336 
337 		scsi_device_put(sdev);
338 	}
339  out:
340 	spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342 
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346 		return 1;
347 
348 	return 0;
349 }
350 
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353 	return ((starget->can_queue > 0 &&
354 		 starget->target_busy >= starget->can_queue) ||
355 		 starget->target_blocked);
356 }
357 
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361 	    shost->host_blocked || shost->host_self_blocked)
362 		return 1;
363 
364 	return 0;
365 }
366 
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369 	LIST_HEAD(starved_list);
370 	struct scsi_device *sdev;
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(shost->host_lock, flags);
374 	list_splice_init(&shost->starved_list, &starved_list);
375 
376 	while (!list_empty(&starved_list)) {
377 		struct request_queue *slq;
378 
379 		/*
380 		 * As long as shost is accepting commands and we have
381 		 * starved queues, call blk_run_queue. scsi_request_fn
382 		 * drops the queue_lock and can add us back to the
383 		 * starved_list.
384 		 *
385 		 * host_lock protects the starved_list and starved_entry.
386 		 * scsi_request_fn must get the host_lock before checking
387 		 * or modifying starved_list or starved_entry.
388 		 */
389 		if (scsi_host_is_busy(shost))
390 			break;
391 
392 		sdev = list_entry(starved_list.next,
393 				  struct scsi_device, starved_entry);
394 		list_del_init(&sdev->starved_entry);
395 		if (scsi_target_is_busy(scsi_target(sdev))) {
396 			list_move_tail(&sdev->starved_entry,
397 				       &shost->starved_list);
398 			continue;
399 		}
400 
401 		/*
402 		 * Once we drop the host lock, a racing scsi_remove_device()
403 		 * call may remove the sdev from the starved list and destroy
404 		 * it and the queue.  Mitigate by taking a reference to the
405 		 * queue and never touching the sdev again after we drop the
406 		 * host lock.  Note: if __scsi_remove_device() invokes
407 		 * blk_cleanup_queue() before the queue is run from this
408 		 * function then blk_run_queue() will return immediately since
409 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410 		 */
411 		slq = sdev->request_queue;
412 		if (!blk_get_queue(slq))
413 			continue;
414 		spin_unlock_irqrestore(shost->host_lock, flags);
415 
416 		blk_run_queue(slq);
417 		blk_put_queue(slq);
418 
419 		spin_lock_irqsave(shost->host_lock, flags);
420 	}
421 	/* put any unprocessed entries back */
422 	list_splice(&starved_list, &shost->starved_list);
423 	spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425 
426 /*
427  * Function:   scsi_run_queue()
428  *
429  * Purpose:    Select a proper request queue to serve next
430  *
431  * Arguments:  q       - last request's queue
432  *
433  * Returns:     Nothing
434  *
435  * Notes:      The previous command was completely finished, start
436  *             a new one if possible.
437  */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440 	struct scsi_device *sdev = q->queuedata;
441 
442 	if (scsi_target(sdev)->single_lun)
443 		scsi_single_lun_run(sdev);
444 	if (!list_empty(&sdev->host->starved_list))
445 		scsi_starved_list_run(sdev->host);
446 
447 	blk_run_queue(q);
448 }
449 
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452 	struct scsi_device *sdev;
453 	struct request_queue *q;
454 
455 	sdev = container_of(work, struct scsi_device, requeue_work);
456 	q = sdev->request_queue;
457 	scsi_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct scsi_device *sdev = cmd->device;
481 	struct request *req = cmd->request;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(q->queue_lock, flags);
485 	blk_unprep_request(req);
486 	req->special = NULL;
487 	scsi_put_command(cmd);
488 	blk_requeue_request(q, req);
489 	spin_unlock_irqrestore(q->queue_lock, flags);
490 
491 	scsi_run_queue(q);
492 
493 	put_device(&sdev->sdev_gendev);
494 }
495 
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498 	struct scsi_device *sdev = cmd->device;
499 	struct request_queue *q = sdev->request_queue;
500 
501 	scsi_put_command(cmd);
502 	scsi_run_queue(q);
503 
504 	put_device(&sdev->sdev_gendev);
505 }
506 
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509 	struct scsi_device *sdev;
510 
511 	shost_for_each_device(sdev, shost)
512 		scsi_run_queue(sdev->request_queue);
513 }
514 
515 static void __scsi_release_buffers(struct scsi_cmnd *, int);
516 
517 /*
518  * Function:    scsi_end_request()
519  *
520  * Purpose:     Post-processing of completed commands (usually invoked at end
521  *		of upper level post-processing and scsi_io_completion).
522  *
523  * Arguments:   cmd	 - command that is complete.
524  *              error    - 0 if I/O indicates success, < 0 for I/O error.
525  *              bytes    - number of bytes of completed I/O
526  *		requeue  - indicates whether we should requeue leftovers.
527  *
528  * Lock status: Assumed that lock is not held upon entry.
529  *
530  * Returns:     cmd if requeue required, NULL otherwise.
531  *
532  * Notes:       This is called for block device requests in order to
533  *              mark some number of sectors as complete.
534  *
535  *		We are guaranteeing that the request queue will be goosed
536  *		at some point during this call.
537  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
538  */
539 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
540 					  int bytes, int requeue)
541 {
542 	struct request_queue *q = cmd->device->request_queue;
543 	struct request *req = cmd->request;
544 
545 	/*
546 	 * If there are blocks left over at the end, set up the command
547 	 * to queue the remainder of them.
548 	 */
549 	if (blk_end_request(req, error, bytes)) {
550 		/* kill remainder if no retrys */
551 		if (error && scsi_noretry_cmd(cmd))
552 			blk_end_request_all(req, error);
553 		else {
554 			if (requeue) {
555 				/*
556 				 * Bleah.  Leftovers again.  Stick the
557 				 * leftovers in the front of the
558 				 * queue, and goose the queue again.
559 				 */
560 				scsi_release_buffers(cmd);
561 				scsi_requeue_command(q, cmd);
562 				cmd = NULL;
563 			}
564 			return cmd;
565 		}
566 	}
567 
568 	/*
569 	 * This will goose the queue request function at the end, so we don't
570 	 * need to worry about launching another command.
571 	 */
572 	__scsi_release_buffers(cmd, 0);
573 	scsi_next_command(cmd);
574 	return NULL;
575 }
576 
577 static inline unsigned int scsi_sgtable_index(unsigned short nents)
578 {
579 	unsigned int index;
580 
581 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
582 
583 	if (nents <= 8)
584 		index = 0;
585 	else
586 		index = get_count_order(nents) - 3;
587 
588 	return index;
589 }
590 
591 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
592 {
593 	struct scsi_host_sg_pool *sgp;
594 
595 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
596 	mempool_free(sgl, sgp->pool);
597 }
598 
599 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
600 {
601 	struct scsi_host_sg_pool *sgp;
602 
603 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
604 	return mempool_alloc(sgp->pool, gfp_mask);
605 }
606 
607 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
608 			      gfp_t gfp_mask)
609 {
610 	int ret;
611 
612 	BUG_ON(!nents);
613 
614 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
615 			       gfp_mask, scsi_sg_alloc);
616 	if (unlikely(ret))
617 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
618 				scsi_sg_free);
619 
620 	return ret;
621 }
622 
623 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
624 {
625 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
626 }
627 
628 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
629 {
630 
631 	if (cmd->sdb.table.nents)
632 		scsi_free_sgtable(&cmd->sdb);
633 
634 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
635 
636 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
637 		struct scsi_data_buffer *bidi_sdb =
638 			cmd->request->next_rq->special;
639 		scsi_free_sgtable(bidi_sdb);
640 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
641 		cmd->request->next_rq->special = NULL;
642 	}
643 
644 	if (scsi_prot_sg_count(cmd))
645 		scsi_free_sgtable(cmd->prot_sdb);
646 }
647 
648 /*
649  * Function:    scsi_release_buffers()
650  *
651  * Purpose:     Completion processing for block device I/O requests.
652  *
653  * Arguments:   cmd	- command that we are bailing.
654  *
655  * Lock status: Assumed that no lock is held upon entry.
656  *
657  * Returns:     Nothing
658  *
659  * Notes:       In the event that an upper level driver rejects a
660  *		command, we must release resources allocated during
661  *		the __init_io() function.  Primarily this would involve
662  *		the scatter-gather table, and potentially any bounce
663  *		buffers.
664  */
665 void scsi_release_buffers(struct scsi_cmnd *cmd)
666 {
667 	__scsi_release_buffers(cmd, 1);
668 }
669 EXPORT_SYMBOL(scsi_release_buffers);
670 
671 /**
672  * __scsi_error_from_host_byte - translate SCSI error code into errno
673  * @cmd:	SCSI command (unused)
674  * @result:	scsi error code
675  *
676  * Translate SCSI error code into standard UNIX errno.
677  * Return values:
678  * -ENOLINK	temporary transport failure
679  * -EREMOTEIO	permanent target failure, do not retry
680  * -EBADE	permanent nexus failure, retry on other path
681  * -ENOSPC	No write space available
682  * -ENODATA	Medium error
683  * -EIO		unspecified I/O error
684  */
685 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
686 {
687 	int error = 0;
688 
689 	switch(host_byte(result)) {
690 	case DID_TRANSPORT_FAILFAST:
691 		error = -ENOLINK;
692 		break;
693 	case DID_TARGET_FAILURE:
694 		set_host_byte(cmd, DID_OK);
695 		error = -EREMOTEIO;
696 		break;
697 	case DID_NEXUS_FAILURE:
698 		set_host_byte(cmd, DID_OK);
699 		error = -EBADE;
700 		break;
701 	case DID_ALLOC_FAILURE:
702 		set_host_byte(cmd, DID_OK);
703 		error = -ENOSPC;
704 		break;
705 	case DID_MEDIUM_ERROR:
706 		set_host_byte(cmd, DID_OK);
707 		error = -ENODATA;
708 		break;
709 	default:
710 		error = -EIO;
711 		break;
712 	}
713 
714 	return error;
715 }
716 
717 /*
718  * Function:    scsi_io_completion()
719  *
720  * Purpose:     Completion processing for block device I/O requests.
721  *
722  * Arguments:   cmd   - command that is finished.
723  *
724  * Lock status: Assumed that no lock is held upon entry.
725  *
726  * Returns:     Nothing
727  *
728  * Notes:       This function is matched in terms of capabilities to
729  *              the function that created the scatter-gather list.
730  *              In other words, if there are no bounce buffers
731  *              (the normal case for most drivers), we don't need
732  *              the logic to deal with cleaning up afterwards.
733  *
734  *		We must call scsi_end_request().  This will finish off
735  *		the specified number of sectors.  If we are done, the
736  *		command block will be released and the queue function
737  *		will be goosed.  If we are not done then we have to
738  *		figure out what to do next:
739  *
740  *		a) We can call scsi_requeue_command().  The request
741  *		   will be unprepared and put back on the queue.  Then
742  *		   a new command will be created for it.  This should
743  *		   be used if we made forward progress, or if we want
744  *		   to switch from READ(10) to READ(6) for example.
745  *
746  *		b) We can call scsi_queue_insert().  The request will
747  *		   be put back on the queue and retried using the same
748  *		   command as before, possibly after a delay.
749  *
750  *		c) We can call blk_end_request() with -EIO to fail
751  *		   the remainder of the request.
752  */
753 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
754 {
755 	int result = cmd->result;
756 	struct request_queue *q = cmd->device->request_queue;
757 	struct request *req = cmd->request;
758 	int error = 0;
759 	struct scsi_sense_hdr sshdr;
760 	int sense_valid = 0;
761 	int sense_deferred = 0;
762 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
763 	      ACTION_DELAYED_RETRY} action;
764 	char *description = NULL;
765 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
766 
767 	if (result) {
768 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
769 		if (sense_valid)
770 			sense_deferred = scsi_sense_is_deferred(&sshdr);
771 	}
772 
773 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
774 		if (result) {
775 			if (sense_valid && req->sense) {
776 				/*
777 				 * SG_IO wants current and deferred errors
778 				 */
779 				int len = 8 + cmd->sense_buffer[7];
780 
781 				if (len > SCSI_SENSE_BUFFERSIZE)
782 					len = SCSI_SENSE_BUFFERSIZE;
783 				memcpy(req->sense, cmd->sense_buffer,  len);
784 				req->sense_len = len;
785 			}
786 			if (!sense_deferred)
787 				error = __scsi_error_from_host_byte(cmd, result);
788 		}
789 		/*
790 		 * __scsi_error_from_host_byte may have reset the host_byte
791 		 */
792 		req->errors = cmd->result;
793 
794 		req->resid_len = scsi_get_resid(cmd);
795 
796 		if (scsi_bidi_cmnd(cmd)) {
797 			/*
798 			 * Bidi commands Must be complete as a whole,
799 			 * both sides at once.
800 			 */
801 			req->next_rq->resid_len = scsi_in(cmd)->resid;
802 
803 			scsi_release_buffers(cmd);
804 			blk_end_request_all(req, 0);
805 
806 			scsi_next_command(cmd);
807 			return;
808 		}
809 	}
810 
811 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
812 	BUG_ON(blk_bidi_rq(req));
813 
814 	/*
815 	 * Next deal with any sectors which we were able to correctly
816 	 * handle.
817 	 */
818 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
819 				      "%d bytes done.\n",
820 				      blk_rq_sectors(req), good_bytes));
821 
822 	/*
823 	 * Recovered errors need reporting, but they're always treated
824 	 * as success, so fiddle the result code here.  For BLOCK_PC
825 	 * we already took a copy of the original into rq->errors which
826 	 * is what gets returned to the user
827 	 */
828 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
829 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
830 		 * print since caller wants ATA registers. Only occurs on
831 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
832 		 */
833 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
834 			;
835 		else if (!(req->cmd_flags & REQ_QUIET))
836 			scsi_print_sense("", cmd);
837 		result = 0;
838 		/* BLOCK_PC may have set error */
839 		error = 0;
840 	}
841 
842 	/*
843 	 * A number of bytes were successfully read.  If there
844 	 * are leftovers and there is some kind of error
845 	 * (result != 0), retry the rest.
846 	 */
847 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
848 		return;
849 
850 	error = __scsi_error_from_host_byte(cmd, result);
851 
852 	if (host_byte(result) == DID_RESET) {
853 		/* Third party bus reset or reset for error recovery
854 		 * reasons.  Just retry the command and see what
855 		 * happens.
856 		 */
857 		action = ACTION_RETRY;
858 	} else if (sense_valid && !sense_deferred) {
859 		switch (sshdr.sense_key) {
860 		case UNIT_ATTENTION:
861 			if (cmd->device->removable) {
862 				/* Detected disc change.  Set a bit
863 				 * and quietly refuse further access.
864 				 */
865 				cmd->device->changed = 1;
866 				description = "Media Changed";
867 				action = ACTION_FAIL;
868 			} else {
869 				/* Must have been a power glitch, or a
870 				 * bus reset.  Could not have been a
871 				 * media change, so we just retry the
872 				 * command and see what happens.
873 				 */
874 				action = ACTION_RETRY;
875 			}
876 			break;
877 		case ILLEGAL_REQUEST:
878 			/* If we had an ILLEGAL REQUEST returned, then
879 			 * we may have performed an unsupported
880 			 * command.  The only thing this should be
881 			 * would be a ten byte read where only a six
882 			 * byte read was supported.  Also, on a system
883 			 * where READ CAPACITY failed, we may have
884 			 * read past the end of the disk.
885 			 */
886 			if ((cmd->device->use_10_for_rw &&
887 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
888 			    (cmd->cmnd[0] == READ_10 ||
889 			     cmd->cmnd[0] == WRITE_10)) {
890 				/* This will issue a new 6-byte command. */
891 				cmd->device->use_10_for_rw = 0;
892 				action = ACTION_REPREP;
893 			} else if (sshdr.asc == 0x10) /* DIX */ {
894 				description = "Host Data Integrity Failure";
895 				action = ACTION_FAIL;
896 				error = -EILSEQ;
897 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
898 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
899 				switch (cmd->cmnd[0]) {
900 				case UNMAP:
901 					description = "Discard failure";
902 					break;
903 				case WRITE_SAME:
904 				case WRITE_SAME_16:
905 					if (cmd->cmnd[1] & 0x8)
906 						description = "Discard failure";
907 					else
908 						description =
909 							"Write same failure";
910 					break;
911 				default:
912 					description = "Invalid command failure";
913 					break;
914 				}
915 				action = ACTION_FAIL;
916 				error = -EREMOTEIO;
917 			} else
918 				action = ACTION_FAIL;
919 			break;
920 		case ABORTED_COMMAND:
921 			action = ACTION_FAIL;
922 			if (sshdr.asc == 0x10) { /* DIF */
923 				description = "Target Data Integrity Failure";
924 				error = -EILSEQ;
925 			}
926 			break;
927 		case NOT_READY:
928 			/* If the device is in the process of becoming
929 			 * ready, or has a temporary blockage, retry.
930 			 */
931 			if (sshdr.asc == 0x04) {
932 				switch (sshdr.ascq) {
933 				case 0x01: /* becoming ready */
934 				case 0x04: /* format in progress */
935 				case 0x05: /* rebuild in progress */
936 				case 0x06: /* recalculation in progress */
937 				case 0x07: /* operation in progress */
938 				case 0x08: /* Long write in progress */
939 				case 0x09: /* self test in progress */
940 				case 0x14: /* space allocation in progress */
941 					action = ACTION_DELAYED_RETRY;
942 					break;
943 				default:
944 					description = "Device not ready";
945 					action = ACTION_FAIL;
946 					break;
947 				}
948 			} else {
949 				description = "Device not ready";
950 				action = ACTION_FAIL;
951 			}
952 			break;
953 		case VOLUME_OVERFLOW:
954 			/* See SSC3rXX or current. */
955 			action = ACTION_FAIL;
956 			break;
957 		default:
958 			description = "Unhandled sense code";
959 			action = ACTION_FAIL;
960 			break;
961 		}
962 	} else {
963 		description = "Unhandled error code";
964 		action = ACTION_FAIL;
965 	}
966 
967 	if (action != ACTION_FAIL &&
968 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
969 		action = ACTION_FAIL;
970 		description = "Command timed out";
971 	}
972 
973 	switch (action) {
974 	case ACTION_FAIL:
975 		/* Give up and fail the remainder of the request */
976 		scsi_release_buffers(cmd);
977 		if (!(req->cmd_flags & REQ_QUIET)) {
978 			if (description)
979 				scmd_printk(KERN_INFO, cmd, "%s\n",
980 					    description);
981 			scsi_print_result(cmd);
982 			if (driver_byte(result) & DRIVER_SENSE)
983 				scsi_print_sense("", cmd);
984 			scsi_print_command(cmd);
985 		}
986 		if (blk_end_request_err(req, error))
987 			scsi_requeue_command(q, cmd);
988 		else
989 			scsi_next_command(cmd);
990 		break;
991 	case ACTION_REPREP:
992 		/* Unprep the request and put it back at the head of the queue.
993 		 * A new command will be prepared and issued.
994 		 */
995 		scsi_release_buffers(cmd);
996 		scsi_requeue_command(q, cmd);
997 		break;
998 	case ACTION_RETRY:
999 		/* Retry the same command immediately */
1000 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1001 		break;
1002 	case ACTION_DELAYED_RETRY:
1003 		/* Retry the same command after a delay */
1004 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1005 		break;
1006 	}
1007 }
1008 
1009 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1010 			     gfp_t gfp_mask)
1011 {
1012 	int count;
1013 
1014 	/*
1015 	 * If sg table allocation fails, requeue request later.
1016 	 */
1017 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1018 					gfp_mask))) {
1019 		return BLKPREP_DEFER;
1020 	}
1021 
1022 	/*
1023 	 * Next, walk the list, and fill in the addresses and sizes of
1024 	 * each segment.
1025 	 */
1026 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1027 	BUG_ON(count > sdb->table.nents);
1028 	sdb->table.nents = count;
1029 	sdb->length = blk_rq_bytes(req);
1030 	return BLKPREP_OK;
1031 }
1032 
1033 /*
1034  * Function:    scsi_init_io()
1035  *
1036  * Purpose:     SCSI I/O initialize function.
1037  *
1038  * Arguments:   cmd   - Command descriptor we wish to initialize
1039  *
1040  * Returns:     0 on success
1041  *		BLKPREP_DEFER if the failure is retryable
1042  *		BLKPREP_KILL if the failure is fatal
1043  */
1044 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1045 {
1046 	struct scsi_device *sdev = cmd->device;
1047 	struct request *rq = cmd->request;
1048 
1049 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1050 	if (error)
1051 		goto err_exit;
1052 
1053 	if (blk_bidi_rq(rq)) {
1054 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1055 			scsi_sdb_cache, GFP_ATOMIC);
1056 		if (!bidi_sdb) {
1057 			error = BLKPREP_DEFER;
1058 			goto err_exit;
1059 		}
1060 
1061 		rq->next_rq->special = bidi_sdb;
1062 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1063 		if (error)
1064 			goto err_exit;
1065 	}
1066 
1067 	if (blk_integrity_rq(rq)) {
1068 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069 		int ivecs, count;
1070 
1071 		BUG_ON(prot_sdb == NULL);
1072 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073 
1074 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1075 			error = BLKPREP_DEFER;
1076 			goto err_exit;
1077 		}
1078 
1079 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1080 						prot_sdb->table.sgl);
1081 		BUG_ON(unlikely(count > ivecs));
1082 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1083 
1084 		cmd->prot_sdb = prot_sdb;
1085 		cmd->prot_sdb->table.nents = count;
1086 	}
1087 
1088 	return BLKPREP_OK ;
1089 
1090 err_exit:
1091 	scsi_release_buffers(cmd);
1092 	cmd->request->special = NULL;
1093 	scsi_put_command(cmd);
1094 	put_device(&sdev->sdev_gendev);
1095 	return error;
1096 }
1097 EXPORT_SYMBOL(scsi_init_io);
1098 
1099 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1100 		struct request *req)
1101 {
1102 	struct scsi_cmnd *cmd;
1103 
1104 	if (!req->special) {
1105 		/* Bail if we can't get a reference to the device */
1106 		if (!get_device(&sdev->sdev_gendev))
1107 			return NULL;
1108 
1109 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110 		if (unlikely(!cmd)) {
1111 			put_device(&sdev->sdev_gendev);
1112 			return NULL;
1113 		}
1114 		req->special = cmd;
1115 	} else {
1116 		cmd = req->special;
1117 	}
1118 
1119 	/* pull a tag out of the request if we have one */
1120 	cmd->tag = req->tag;
1121 	cmd->request = req;
1122 
1123 	cmd->cmnd = req->cmd;
1124 	cmd->prot_op = SCSI_PROT_NORMAL;
1125 
1126 	return cmd;
1127 }
1128 
1129 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1130 {
1131 	struct scsi_cmnd *cmd;
1132 	int ret = scsi_prep_state_check(sdev, req);
1133 
1134 	if (ret != BLKPREP_OK)
1135 		return ret;
1136 
1137 	cmd = scsi_get_cmd_from_req(sdev, req);
1138 	if (unlikely(!cmd))
1139 		return BLKPREP_DEFER;
1140 
1141 	/*
1142 	 * BLOCK_PC requests may transfer data, in which case they must
1143 	 * a bio attached to them.  Or they might contain a SCSI command
1144 	 * that does not transfer data, in which case they may optionally
1145 	 * submit a request without an attached bio.
1146 	 */
1147 	if (req->bio) {
1148 		int ret;
1149 
1150 		BUG_ON(!req->nr_phys_segments);
1151 
1152 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1153 		if (unlikely(ret))
1154 			return ret;
1155 	} else {
1156 		BUG_ON(blk_rq_bytes(req));
1157 
1158 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1159 	}
1160 
1161 	cmd->cmd_len = req->cmd_len;
1162 	if (!blk_rq_bytes(req))
1163 		cmd->sc_data_direction = DMA_NONE;
1164 	else if (rq_data_dir(req) == WRITE)
1165 		cmd->sc_data_direction = DMA_TO_DEVICE;
1166 	else
1167 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1168 
1169 	cmd->transfersize = blk_rq_bytes(req);
1170 	cmd->allowed = req->retries;
1171 	return BLKPREP_OK;
1172 }
1173 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1174 
1175 /*
1176  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1177  * from filesystems that still need to be translated to SCSI CDBs from
1178  * the ULD.
1179  */
1180 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1181 {
1182 	struct scsi_cmnd *cmd;
1183 	int ret = scsi_prep_state_check(sdev, req);
1184 
1185 	if (ret != BLKPREP_OK)
1186 		return ret;
1187 
1188 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1189 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1190 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1191 		if (ret != BLKPREP_OK)
1192 			return ret;
1193 	}
1194 
1195 	/*
1196 	 * Filesystem requests must transfer data.
1197 	 */
1198 	BUG_ON(!req->nr_phys_segments);
1199 
1200 	cmd = scsi_get_cmd_from_req(sdev, req);
1201 	if (unlikely(!cmd))
1202 		return BLKPREP_DEFER;
1203 
1204 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1205 	return scsi_init_io(cmd, GFP_ATOMIC);
1206 }
1207 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1208 
1209 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1210 {
1211 	int ret = BLKPREP_OK;
1212 
1213 	/*
1214 	 * If the device is not in running state we will reject some
1215 	 * or all commands.
1216 	 */
1217 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1218 		switch (sdev->sdev_state) {
1219 		case SDEV_OFFLINE:
1220 		case SDEV_TRANSPORT_OFFLINE:
1221 			/*
1222 			 * If the device is offline we refuse to process any
1223 			 * commands.  The device must be brought online
1224 			 * before trying any recovery commands.
1225 			 */
1226 			sdev_printk(KERN_ERR, sdev,
1227 				    "rejecting I/O to offline device\n");
1228 			ret = BLKPREP_KILL;
1229 			break;
1230 		case SDEV_DEL:
1231 			/*
1232 			 * If the device is fully deleted, we refuse to
1233 			 * process any commands as well.
1234 			 */
1235 			sdev_printk(KERN_ERR, sdev,
1236 				    "rejecting I/O to dead device\n");
1237 			ret = BLKPREP_KILL;
1238 			break;
1239 		case SDEV_QUIESCE:
1240 		case SDEV_BLOCK:
1241 		case SDEV_CREATED_BLOCK:
1242 			/*
1243 			 * If the devices is blocked we defer normal commands.
1244 			 */
1245 			if (!(req->cmd_flags & REQ_PREEMPT))
1246 				ret = BLKPREP_DEFER;
1247 			break;
1248 		default:
1249 			/*
1250 			 * For any other not fully online state we only allow
1251 			 * special commands.  In particular any user initiated
1252 			 * command is not allowed.
1253 			 */
1254 			if (!(req->cmd_flags & REQ_PREEMPT))
1255 				ret = BLKPREP_KILL;
1256 			break;
1257 		}
1258 	}
1259 	return ret;
1260 }
1261 EXPORT_SYMBOL(scsi_prep_state_check);
1262 
1263 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1264 {
1265 	struct scsi_device *sdev = q->queuedata;
1266 
1267 	switch (ret) {
1268 	case BLKPREP_KILL:
1269 		req->errors = DID_NO_CONNECT << 16;
1270 		/* release the command and kill it */
1271 		if (req->special) {
1272 			struct scsi_cmnd *cmd = req->special;
1273 			scsi_release_buffers(cmd);
1274 			scsi_put_command(cmd);
1275 			put_device(&sdev->sdev_gendev);
1276 			req->special = NULL;
1277 		}
1278 		break;
1279 	case BLKPREP_DEFER:
1280 		/*
1281 		 * If we defer, the blk_peek_request() returns NULL, but the
1282 		 * queue must be restarted, so we schedule a callback to happen
1283 		 * shortly.
1284 		 */
1285 		if (sdev->device_busy == 0)
1286 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1287 		break;
1288 	default:
1289 		req->cmd_flags |= REQ_DONTPREP;
1290 	}
1291 
1292 	return ret;
1293 }
1294 EXPORT_SYMBOL(scsi_prep_return);
1295 
1296 int scsi_prep_fn(struct request_queue *q, struct request *req)
1297 {
1298 	struct scsi_device *sdev = q->queuedata;
1299 	int ret = BLKPREP_KILL;
1300 
1301 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1302 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1303 	return scsi_prep_return(q, req, ret);
1304 }
1305 EXPORT_SYMBOL(scsi_prep_fn);
1306 
1307 /*
1308  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1309  * return 0.
1310  *
1311  * Called with the queue_lock held.
1312  */
1313 static inline int scsi_dev_queue_ready(struct request_queue *q,
1314 				  struct scsi_device *sdev)
1315 {
1316 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1317 		/*
1318 		 * unblock after device_blocked iterates to zero
1319 		 */
1320 		if (--sdev->device_blocked == 0) {
1321 			SCSI_LOG_MLQUEUE(3,
1322 				   sdev_printk(KERN_INFO, sdev,
1323 				   "unblocking device at zero depth\n"));
1324 		} else {
1325 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1326 			return 0;
1327 		}
1328 	}
1329 	if (scsi_device_is_busy(sdev))
1330 		return 0;
1331 
1332 	return 1;
1333 }
1334 
1335 
1336 /*
1337  * scsi_target_queue_ready: checks if there we can send commands to target
1338  * @sdev: scsi device on starget to check.
1339  *
1340  * Called with the host lock held.
1341  */
1342 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1343 					   struct scsi_device *sdev)
1344 {
1345 	struct scsi_target *starget = scsi_target(sdev);
1346 
1347 	if (starget->single_lun) {
1348 		if (starget->starget_sdev_user &&
1349 		    starget->starget_sdev_user != sdev)
1350 			return 0;
1351 		starget->starget_sdev_user = sdev;
1352 	}
1353 
1354 	if (starget->target_busy == 0 && starget->target_blocked) {
1355 		/*
1356 		 * unblock after target_blocked iterates to zero
1357 		 */
1358 		if (--starget->target_blocked == 0) {
1359 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1360 					 "unblocking target at zero depth\n"));
1361 		} else
1362 			return 0;
1363 	}
1364 
1365 	if (scsi_target_is_busy(starget)) {
1366 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1367 		return 0;
1368 	}
1369 
1370 	return 1;
1371 }
1372 
1373 /*
1374  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1375  * return 0. We must end up running the queue again whenever 0 is
1376  * returned, else IO can hang.
1377  *
1378  * Called with host_lock held.
1379  */
1380 static inline int scsi_host_queue_ready(struct request_queue *q,
1381 				   struct Scsi_Host *shost,
1382 				   struct scsi_device *sdev)
1383 {
1384 	if (scsi_host_in_recovery(shost))
1385 		return 0;
1386 	if (shost->host_busy == 0 && shost->host_blocked) {
1387 		/*
1388 		 * unblock after host_blocked iterates to zero
1389 		 */
1390 		if (--shost->host_blocked == 0) {
1391 			SCSI_LOG_MLQUEUE(3,
1392 				printk("scsi%d unblocking host at zero depth\n",
1393 					shost->host_no));
1394 		} else {
1395 			return 0;
1396 		}
1397 	}
1398 	if (scsi_host_is_busy(shost)) {
1399 		if (list_empty(&sdev->starved_entry))
1400 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1401 		return 0;
1402 	}
1403 
1404 	/* We're OK to process the command, so we can't be starved */
1405 	if (!list_empty(&sdev->starved_entry))
1406 		list_del_init(&sdev->starved_entry);
1407 
1408 	return 1;
1409 }
1410 
1411 /*
1412  * Busy state exporting function for request stacking drivers.
1413  *
1414  * For efficiency, no lock is taken to check the busy state of
1415  * shost/starget/sdev, since the returned value is not guaranteed and
1416  * may be changed after request stacking drivers call the function,
1417  * regardless of taking lock or not.
1418  *
1419  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1420  * needs to return 'not busy'. Otherwise, request stacking drivers
1421  * may hold requests forever.
1422  */
1423 static int scsi_lld_busy(struct request_queue *q)
1424 {
1425 	struct scsi_device *sdev = q->queuedata;
1426 	struct Scsi_Host *shost;
1427 
1428 	if (blk_queue_dying(q))
1429 		return 0;
1430 
1431 	shost = sdev->host;
1432 
1433 	/*
1434 	 * Ignore host/starget busy state.
1435 	 * Since block layer does not have a concept of fairness across
1436 	 * multiple queues, congestion of host/starget needs to be handled
1437 	 * in SCSI layer.
1438 	 */
1439 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1440 		return 1;
1441 
1442 	return 0;
1443 }
1444 
1445 /*
1446  * Kill a request for a dead device
1447  */
1448 static void scsi_kill_request(struct request *req, struct request_queue *q)
1449 {
1450 	struct scsi_cmnd *cmd = req->special;
1451 	struct scsi_device *sdev;
1452 	struct scsi_target *starget;
1453 	struct Scsi_Host *shost;
1454 
1455 	blk_start_request(req);
1456 
1457 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1458 
1459 	sdev = cmd->device;
1460 	starget = scsi_target(sdev);
1461 	shost = sdev->host;
1462 	scsi_init_cmd_errh(cmd);
1463 	cmd->result = DID_NO_CONNECT << 16;
1464 	atomic_inc(&cmd->device->iorequest_cnt);
1465 
1466 	/*
1467 	 * SCSI request completion path will do scsi_device_unbusy(),
1468 	 * bump busy counts.  To bump the counters, we need to dance
1469 	 * with the locks as normal issue path does.
1470 	 */
1471 	sdev->device_busy++;
1472 	spin_unlock(sdev->request_queue->queue_lock);
1473 	spin_lock(shost->host_lock);
1474 	shost->host_busy++;
1475 	starget->target_busy++;
1476 	spin_unlock(shost->host_lock);
1477 	spin_lock(sdev->request_queue->queue_lock);
1478 
1479 	blk_complete_request(req);
1480 }
1481 
1482 static void scsi_softirq_done(struct request *rq)
1483 {
1484 	struct scsi_cmnd *cmd = rq->special;
1485 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1486 	int disposition;
1487 
1488 	INIT_LIST_HEAD(&cmd->eh_entry);
1489 
1490 	atomic_inc(&cmd->device->iodone_cnt);
1491 	if (cmd->result)
1492 		atomic_inc(&cmd->device->ioerr_cnt);
1493 
1494 	disposition = scsi_decide_disposition(cmd);
1495 	if (disposition != SUCCESS &&
1496 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1497 		sdev_printk(KERN_ERR, cmd->device,
1498 			    "timing out command, waited %lus\n",
1499 			    wait_for/HZ);
1500 		disposition = SUCCESS;
1501 	}
1502 
1503 	scsi_log_completion(cmd, disposition);
1504 
1505 	switch (disposition) {
1506 		case SUCCESS:
1507 			scsi_finish_command(cmd);
1508 			break;
1509 		case NEEDS_RETRY:
1510 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1511 			break;
1512 		case ADD_TO_MLQUEUE:
1513 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1514 			break;
1515 		default:
1516 			if (!scsi_eh_scmd_add(cmd, 0))
1517 				scsi_finish_command(cmd);
1518 	}
1519 }
1520 
1521 /*
1522  * Function:    scsi_request_fn()
1523  *
1524  * Purpose:     Main strategy routine for SCSI.
1525  *
1526  * Arguments:   q       - Pointer to actual queue.
1527  *
1528  * Returns:     Nothing
1529  *
1530  * Lock status: IO request lock assumed to be held when called.
1531  */
1532 static void scsi_request_fn(struct request_queue *q)
1533 	__releases(q->queue_lock)
1534 	__acquires(q->queue_lock)
1535 {
1536 	struct scsi_device *sdev = q->queuedata;
1537 	struct Scsi_Host *shost;
1538 	struct scsi_cmnd *cmd;
1539 	struct request *req;
1540 
1541 	/*
1542 	 * To start with, we keep looping until the queue is empty, or until
1543 	 * the host is no longer able to accept any more requests.
1544 	 */
1545 	shost = sdev->host;
1546 	for (;;) {
1547 		int rtn;
1548 		/*
1549 		 * get next queueable request.  We do this early to make sure
1550 		 * that the request is fully prepared even if we cannot
1551 		 * accept it.
1552 		 */
1553 		req = blk_peek_request(q);
1554 		if (!req || !scsi_dev_queue_ready(q, sdev))
1555 			break;
1556 
1557 		if (unlikely(!scsi_device_online(sdev))) {
1558 			sdev_printk(KERN_ERR, sdev,
1559 				    "rejecting I/O to offline device\n");
1560 			scsi_kill_request(req, q);
1561 			continue;
1562 		}
1563 
1564 
1565 		/*
1566 		 * Remove the request from the request list.
1567 		 */
1568 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1569 			blk_start_request(req);
1570 		sdev->device_busy++;
1571 
1572 		spin_unlock(q->queue_lock);
1573 		cmd = req->special;
1574 		if (unlikely(cmd == NULL)) {
1575 			printk(KERN_CRIT "impossible request in %s.\n"
1576 					 "please mail a stack trace to "
1577 					 "linux-scsi@vger.kernel.org\n",
1578 					 __func__);
1579 			blk_dump_rq_flags(req, "foo");
1580 			BUG();
1581 		}
1582 		spin_lock(shost->host_lock);
1583 
1584 		/*
1585 		 * We hit this when the driver is using a host wide
1586 		 * tag map. For device level tag maps the queue_depth check
1587 		 * in the device ready fn would prevent us from trying
1588 		 * to allocate a tag. Since the map is a shared host resource
1589 		 * we add the dev to the starved list so it eventually gets
1590 		 * a run when a tag is freed.
1591 		 */
1592 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1593 			if (list_empty(&sdev->starved_entry))
1594 				list_add_tail(&sdev->starved_entry,
1595 					      &shost->starved_list);
1596 			goto not_ready;
1597 		}
1598 
1599 		if (!scsi_target_queue_ready(shost, sdev))
1600 			goto not_ready;
1601 
1602 		if (!scsi_host_queue_ready(q, shost, sdev))
1603 			goto not_ready;
1604 
1605 		scsi_target(sdev)->target_busy++;
1606 		shost->host_busy++;
1607 
1608 		/*
1609 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1610 		 *		take the lock again.
1611 		 */
1612 		spin_unlock_irq(shost->host_lock);
1613 
1614 		/*
1615 		 * Finally, initialize any error handling parameters, and set up
1616 		 * the timers for timeouts.
1617 		 */
1618 		scsi_init_cmd_errh(cmd);
1619 
1620 		/*
1621 		 * Dispatch the command to the low-level driver.
1622 		 */
1623 		rtn = scsi_dispatch_cmd(cmd);
1624 		spin_lock_irq(q->queue_lock);
1625 		if (rtn)
1626 			goto out_delay;
1627 	}
1628 
1629 	return;
1630 
1631  not_ready:
1632 	spin_unlock_irq(shost->host_lock);
1633 
1634 	/*
1635 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1636 	 * must return with queue_lock held.
1637 	 *
1638 	 * Decrementing device_busy without checking it is OK, as all such
1639 	 * cases (host limits or settings) should run the queue at some
1640 	 * later time.
1641 	 */
1642 	spin_lock_irq(q->queue_lock);
1643 	blk_requeue_request(q, req);
1644 	sdev->device_busy--;
1645 out_delay:
1646 	if (sdev->device_busy == 0)
1647 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1648 }
1649 
1650 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1651 {
1652 	struct device *host_dev;
1653 	u64 bounce_limit = 0xffffffff;
1654 
1655 	if (shost->unchecked_isa_dma)
1656 		return BLK_BOUNCE_ISA;
1657 	/*
1658 	 * Platforms with virtual-DMA translation
1659 	 * hardware have no practical limit.
1660 	 */
1661 	if (!PCI_DMA_BUS_IS_PHYS)
1662 		return BLK_BOUNCE_ANY;
1663 
1664 	host_dev = scsi_get_device(shost);
1665 	if (host_dev && host_dev->dma_mask)
1666 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1667 
1668 	return bounce_limit;
1669 }
1670 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1671 
1672 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1673 					 request_fn_proc *request_fn)
1674 {
1675 	struct request_queue *q;
1676 	struct device *dev = shost->dma_dev;
1677 
1678 	q = blk_init_queue(request_fn, NULL);
1679 	if (!q)
1680 		return NULL;
1681 
1682 	/*
1683 	 * this limit is imposed by hardware restrictions
1684 	 */
1685 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1686 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1687 
1688 	if (scsi_host_prot_dma(shost)) {
1689 		shost->sg_prot_tablesize =
1690 			min_not_zero(shost->sg_prot_tablesize,
1691 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1692 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1693 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1694 	}
1695 
1696 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1697 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1698 	blk_queue_segment_boundary(q, shost->dma_boundary);
1699 	dma_set_seg_boundary(dev, shost->dma_boundary);
1700 
1701 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1702 
1703 	if (!shost->use_clustering)
1704 		q->limits.cluster = 0;
1705 
1706 	/*
1707 	 * set a reasonable default alignment on word boundaries: the
1708 	 * host and device may alter it using
1709 	 * blk_queue_update_dma_alignment() later.
1710 	 */
1711 	blk_queue_dma_alignment(q, 0x03);
1712 
1713 	return q;
1714 }
1715 EXPORT_SYMBOL(__scsi_alloc_queue);
1716 
1717 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1718 {
1719 	struct request_queue *q;
1720 
1721 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1722 	if (!q)
1723 		return NULL;
1724 
1725 	blk_queue_prep_rq(q, scsi_prep_fn);
1726 	blk_queue_softirq_done(q, scsi_softirq_done);
1727 	blk_queue_rq_timed_out(q, scsi_times_out);
1728 	blk_queue_lld_busy(q, scsi_lld_busy);
1729 	return q;
1730 }
1731 
1732 /*
1733  * Function:    scsi_block_requests()
1734  *
1735  * Purpose:     Utility function used by low-level drivers to prevent further
1736  *		commands from being queued to the device.
1737  *
1738  * Arguments:   shost       - Host in question
1739  *
1740  * Returns:     Nothing
1741  *
1742  * Lock status: No locks are assumed held.
1743  *
1744  * Notes:       There is no timer nor any other means by which the requests
1745  *		get unblocked other than the low-level driver calling
1746  *		scsi_unblock_requests().
1747  */
1748 void scsi_block_requests(struct Scsi_Host *shost)
1749 {
1750 	shost->host_self_blocked = 1;
1751 }
1752 EXPORT_SYMBOL(scsi_block_requests);
1753 
1754 /*
1755  * Function:    scsi_unblock_requests()
1756  *
1757  * Purpose:     Utility function used by low-level drivers to allow further
1758  *		commands from being queued to the device.
1759  *
1760  * Arguments:   shost       - Host in question
1761  *
1762  * Returns:     Nothing
1763  *
1764  * Lock status: No locks are assumed held.
1765  *
1766  * Notes:       There is no timer nor any other means by which the requests
1767  *		get unblocked other than the low-level driver calling
1768  *		scsi_unblock_requests().
1769  *
1770  *		This is done as an API function so that changes to the
1771  *		internals of the scsi mid-layer won't require wholesale
1772  *		changes to drivers that use this feature.
1773  */
1774 void scsi_unblock_requests(struct Scsi_Host *shost)
1775 {
1776 	shost->host_self_blocked = 0;
1777 	scsi_run_host_queues(shost);
1778 }
1779 EXPORT_SYMBOL(scsi_unblock_requests);
1780 
1781 int __init scsi_init_queue(void)
1782 {
1783 	int i;
1784 
1785 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1786 					   sizeof(struct scsi_data_buffer),
1787 					   0, 0, NULL);
1788 	if (!scsi_sdb_cache) {
1789 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1790 		return -ENOMEM;
1791 	}
1792 
1793 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1794 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1795 		int size = sgp->size * sizeof(struct scatterlist);
1796 
1797 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1798 				SLAB_HWCACHE_ALIGN, NULL);
1799 		if (!sgp->slab) {
1800 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1801 					sgp->name);
1802 			goto cleanup_sdb;
1803 		}
1804 
1805 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1806 						     sgp->slab);
1807 		if (!sgp->pool) {
1808 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1809 					sgp->name);
1810 			goto cleanup_sdb;
1811 		}
1812 	}
1813 
1814 	return 0;
1815 
1816 cleanup_sdb:
1817 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1818 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1819 		if (sgp->pool)
1820 			mempool_destroy(sgp->pool);
1821 		if (sgp->slab)
1822 			kmem_cache_destroy(sgp->slab);
1823 	}
1824 	kmem_cache_destroy(scsi_sdb_cache);
1825 
1826 	return -ENOMEM;
1827 }
1828 
1829 void scsi_exit_queue(void)
1830 {
1831 	int i;
1832 
1833 	kmem_cache_destroy(scsi_sdb_cache);
1834 
1835 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1836 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1837 		mempool_destroy(sgp->pool);
1838 		kmem_cache_destroy(sgp->slab);
1839 	}
1840 }
1841 
1842 /**
1843  *	scsi_mode_select - issue a mode select
1844  *	@sdev:	SCSI device to be queried
1845  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1846  *	@sp:	Save page bit (0 == don't save, 1 == save)
1847  *	@modepage: mode page being requested
1848  *	@buffer: request buffer (may not be smaller than eight bytes)
1849  *	@len:	length of request buffer.
1850  *	@timeout: command timeout
1851  *	@retries: number of retries before failing
1852  *	@data: returns a structure abstracting the mode header data
1853  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1854  *		must be SCSI_SENSE_BUFFERSIZE big.
1855  *
1856  *	Returns zero if successful; negative error number or scsi
1857  *	status on error
1858  *
1859  */
1860 int
1861 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1862 		 unsigned char *buffer, int len, int timeout, int retries,
1863 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1864 {
1865 	unsigned char cmd[10];
1866 	unsigned char *real_buffer;
1867 	int ret;
1868 
1869 	memset(cmd, 0, sizeof(cmd));
1870 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1871 
1872 	if (sdev->use_10_for_ms) {
1873 		if (len > 65535)
1874 			return -EINVAL;
1875 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1876 		if (!real_buffer)
1877 			return -ENOMEM;
1878 		memcpy(real_buffer + 8, buffer, len);
1879 		len += 8;
1880 		real_buffer[0] = 0;
1881 		real_buffer[1] = 0;
1882 		real_buffer[2] = data->medium_type;
1883 		real_buffer[3] = data->device_specific;
1884 		real_buffer[4] = data->longlba ? 0x01 : 0;
1885 		real_buffer[5] = 0;
1886 		real_buffer[6] = data->block_descriptor_length >> 8;
1887 		real_buffer[7] = data->block_descriptor_length;
1888 
1889 		cmd[0] = MODE_SELECT_10;
1890 		cmd[7] = len >> 8;
1891 		cmd[8] = len;
1892 	} else {
1893 		if (len > 255 || data->block_descriptor_length > 255 ||
1894 		    data->longlba)
1895 			return -EINVAL;
1896 
1897 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1898 		if (!real_buffer)
1899 			return -ENOMEM;
1900 		memcpy(real_buffer + 4, buffer, len);
1901 		len += 4;
1902 		real_buffer[0] = 0;
1903 		real_buffer[1] = data->medium_type;
1904 		real_buffer[2] = data->device_specific;
1905 		real_buffer[3] = data->block_descriptor_length;
1906 
1907 
1908 		cmd[0] = MODE_SELECT;
1909 		cmd[4] = len;
1910 	}
1911 
1912 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1913 			       sshdr, timeout, retries, NULL);
1914 	kfree(real_buffer);
1915 	return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(scsi_mode_select);
1918 
1919 /**
1920  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1921  *	@sdev:	SCSI device to be queried
1922  *	@dbd:	set if mode sense will allow block descriptors to be returned
1923  *	@modepage: mode page being requested
1924  *	@buffer: request buffer (may not be smaller than eight bytes)
1925  *	@len:	length of request buffer.
1926  *	@timeout: command timeout
1927  *	@retries: number of retries before failing
1928  *	@data: returns a structure abstracting the mode header data
1929  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1930  *		must be SCSI_SENSE_BUFFERSIZE big.
1931  *
1932  *	Returns zero if unsuccessful, or the header offset (either 4
1933  *	or 8 depending on whether a six or ten byte command was
1934  *	issued) if successful.
1935  */
1936 int
1937 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1938 		  unsigned char *buffer, int len, int timeout, int retries,
1939 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1940 {
1941 	unsigned char cmd[12];
1942 	int use_10_for_ms;
1943 	int header_length;
1944 	int result;
1945 	struct scsi_sense_hdr my_sshdr;
1946 
1947 	memset(data, 0, sizeof(*data));
1948 	memset(&cmd[0], 0, 12);
1949 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1950 	cmd[2] = modepage;
1951 
1952 	/* caller might not be interested in sense, but we need it */
1953 	if (!sshdr)
1954 		sshdr = &my_sshdr;
1955 
1956  retry:
1957 	use_10_for_ms = sdev->use_10_for_ms;
1958 
1959 	if (use_10_for_ms) {
1960 		if (len < 8)
1961 			len = 8;
1962 
1963 		cmd[0] = MODE_SENSE_10;
1964 		cmd[8] = len;
1965 		header_length = 8;
1966 	} else {
1967 		if (len < 4)
1968 			len = 4;
1969 
1970 		cmd[0] = MODE_SENSE;
1971 		cmd[4] = len;
1972 		header_length = 4;
1973 	}
1974 
1975 	memset(buffer, 0, len);
1976 
1977 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1978 				  sshdr, timeout, retries, NULL);
1979 
1980 	/* This code looks awful: what it's doing is making sure an
1981 	 * ILLEGAL REQUEST sense return identifies the actual command
1982 	 * byte as the problem.  MODE_SENSE commands can return
1983 	 * ILLEGAL REQUEST if the code page isn't supported */
1984 
1985 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1986 	    (driver_byte(result) & DRIVER_SENSE)) {
1987 		if (scsi_sense_valid(sshdr)) {
1988 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1989 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1990 				/*
1991 				 * Invalid command operation code
1992 				 */
1993 				sdev->use_10_for_ms = 0;
1994 				goto retry;
1995 			}
1996 		}
1997 	}
1998 
1999 	if(scsi_status_is_good(result)) {
2000 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2001 			     (modepage == 6 || modepage == 8))) {
2002 			/* Initio breakage? */
2003 			header_length = 0;
2004 			data->length = 13;
2005 			data->medium_type = 0;
2006 			data->device_specific = 0;
2007 			data->longlba = 0;
2008 			data->block_descriptor_length = 0;
2009 		} else if(use_10_for_ms) {
2010 			data->length = buffer[0]*256 + buffer[1] + 2;
2011 			data->medium_type = buffer[2];
2012 			data->device_specific = buffer[3];
2013 			data->longlba = buffer[4] & 0x01;
2014 			data->block_descriptor_length = buffer[6]*256
2015 				+ buffer[7];
2016 		} else {
2017 			data->length = buffer[0] + 1;
2018 			data->medium_type = buffer[1];
2019 			data->device_specific = buffer[2];
2020 			data->block_descriptor_length = buffer[3];
2021 		}
2022 		data->header_length = header_length;
2023 	}
2024 
2025 	return result;
2026 }
2027 EXPORT_SYMBOL(scsi_mode_sense);
2028 
2029 /**
2030  *	scsi_test_unit_ready - test if unit is ready
2031  *	@sdev:	scsi device to change the state of.
2032  *	@timeout: command timeout
2033  *	@retries: number of retries before failing
2034  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2035  *		returning sense. Make sure that this is cleared before passing
2036  *		in.
2037  *
2038  *	Returns zero if unsuccessful or an error if TUR failed.  For
2039  *	removable media, UNIT_ATTENTION sets ->changed flag.
2040  **/
2041 int
2042 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2043 		     struct scsi_sense_hdr *sshdr_external)
2044 {
2045 	char cmd[] = {
2046 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2047 	};
2048 	struct scsi_sense_hdr *sshdr;
2049 	int result;
2050 
2051 	if (!sshdr_external)
2052 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2053 	else
2054 		sshdr = sshdr_external;
2055 
2056 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2057 	do {
2058 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2059 					  timeout, retries, NULL);
2060 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2061 		    sshdr->sense_key == UNIT_ATTENTION)
2062 			sdev->changed = 1;
2063 	} while (scsi_sense_valid(sshdr) &&
2064 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2065 
2066 	if (!sshdr_external)
2067 		kfree(sshdr);
2068 	return result;
2069 }
2070 EXPORT_SYMBOL(scsi_test_unit_ready);
2071 
2072 /**
2073  *	scsi_device_set_state - Take the given device through the device state model.
2074  *	@sdev:	scsi device to change the state of.
2075  *	@state:	state to change to.
2076  *
2077  *	Returns zero if unsuccessful or an error if the requested
2078  *	transition is illegal.
2079  */
2080 int
2081 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2082 {
2083 	enum scsi_device_state oldstate = sdev->sdev_state;
2084 
2085 	if (state == oldstate)
2086 		return 0;
2087 
2088 	switch (state) {
2089 	case SDEV_CREATED:
2090 		switch (oldstate) {
2091 		case SDEV_CREATED_BLOCK:
2092 			break;
2093 		default:
2094 			goto illegal;
2095 		}
2096 		break;
2097 
2098 	case SDEV_RUNNING:
2099 		switch (oldstate) {
2100 		case SDEV_CREATED:
2101 		case SDEV_OFFLINE:
2102 		case SDEV_TRANSPORT_OFFLINE:
2103 		case SDEV_QUIESCE:
2104 		case SDEV_BLOCK:
2105 			break;
2106 		default:
2107 			goto illegal;
2108 		}
2109 		break;
2110 
2111 	case SDEV_QUIESCE:
2112 		switch (oldstate) {
2113 		case SDEV_RUNNING:
2114 		case SDEV_OFFLINE:
2115 		case SDEV_TRANSPORT_OFFLINE:
2116 			break;
2117 		default:
2118 			goto illegal;
2119 		}
2120 		break;
2121 
2122 	case SDEV_OFFLINE:
2123 	case SDEV_TRANSPORT_OFFLINE:
2124 		switch (oldstate) {
2125 		case SDEV_CREATED:
2126 		case SDEV_RUNNING:
2127 		case SDEV_QUIESCE:
2128 		case SDEV_BLOCK:
2129 			break;
2130 		default:
2131 			goto illegal;
2132 		}
2133 		break;
2134 
2135 	case SDEV_BLOCK:
2136 		switch (oldstate) {
2137 		case SDEV_RUNNING:
2138 		case SDEV_CREATED_BLOCK:
2139 			break;
2140 		default:
2141 			goto illegal;
2142 		}
2143 		break;
2144 
2145 	case SDEV_CREATED_BLOCK:
2146 		switch (oldstate) {
2147 		case SDEV_CREATED:
2148 			break;
2149 		default:
2150 			goto illegal;
2151 		}
2152 		break;
2153 
2154 	case SDEV_CANCEL:
2155 		switch (oldstate) {
2156 		case SDEV_CREATED:
2157 		case SDEV_RUNNING:
2158 		case SDEV_QUIESCE:
2159 		case SDEV_OFFLINE:
2160 		case SDEV_TRANSPORT_OFFLINE:
2161 		case SDEV_BLOCK:
2162 			break;
2163 		default:
2164 			goto illegal;
2165 		}
2166 		break;
2167 
2168 	case SDEV_DEL:
2169 		switch (oldstate) {
2170 		case SDEV_CREATED:
2171 		case SDEV_RUNNING:
2172 		case SDEV_OFFLINE:
2173 		case SDEV_TRANSPORT_OFFLINE:
2174 		case SDEV_CANCEL:
2175 		case SDEV_CREATED_BLOCK:
2176 			break;
2177 		default:
2178 			goto illegal;
2179 		}
2180 		break;
2181 
2182 	}
2183 	sdev->sdev_state = state;
2184 	return 0;
2185 
2186  illegal:
2187 	SCSI_LOG_ERROR_RECOVERY(1,
2188 				sdev_printk(KERN_ERR, sdev,
2189 					    "Illegal state transition %s->%s\n",
2190 					    scsi_device_state_name(oldstate),
2191 					    scsi_device_state_name(state))
2192 				);
2193 	return -EINVAL;
2194 }
2195 EXPORT_SYMBOL(scsi_device_set_state);
2196 
2197 /**
2198  * 	sdev_evt_emit - emit a single SCSI device uevent
2199  *	@sdev: associated SCSI device
2200  *	@evt: event to emit
2201  *
2202  *	Send a single uevent (scsi_event) to the associated scsi_device.
2203  */
2204 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2205 {
2206 	int idx = 0;
2207 	char *envp[3];
2208 
2209 	switch (evt->evt_type) {
2210 	case SDEV_EVT_MEDIA_CHANGE:
2211 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2212 		break;
2213 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2214 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2215 		break;
2216 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2217 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2218 		break;
2219 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2220 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2221 		break;
2222 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2223 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2224 		break;
2225 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2226 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2227 		break;
2228 	default:
2229 		/* do nothing */
2230 		break;
2231 	}
2232 
2233 	envp[idx++] = NULL;
2234 
2235 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2236 }
2237 
2238 /**
2239  * 	sdev_evt_thread - send a uevent for each scsi event
2240  *	@work: work struct for scsi_device
2241  *
2242  *	Dispatch queued events to their associated scsi_device kobjects
2243  *	as uevents.
2244  */
2245 void scsi_evt_thread(struct work_struct *work)
2246 {
2247 	struct scsi_device *sdev;
2248 	enum scsi_device_event evt_type;
2249 	LIST_HEAD(event_list);
2250 
2251 	sdev = container_of(work, struct scsi_device, event_work);
2252 
2253 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2254 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2255 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2256 
2257 	while (1) {
2258 		struct scsi_event *evt;
2259 		struct list_head *this, *tmp;
2260 		unsigned long flags;
2261 
2262 		spin_lock_irqsave(&sdev->list_lock, flags);
2263 		list_splice_init(&sdev->event_list, &event_list);
2264 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2265 
2266 		if (list_empty(&event_list))
2267 			break;
2268 
2269 		list_for_each_safe(this, tmp, &event_list) {
2270 			evt = list_entry(this, struct scsi_event, node);
2271 			list_del(&evt->node);
2272 			scsi_evt_emit(sdev, evt);
2273 			kfree(evt);
2274 		}
2275 	}
2276 }
2277 
2278 /**
2279  * 	sdev_evt_send - send asserted event to uevent thread
2280  *	@sdev: scsi_device event occurred on
2281  *	@evt: event to send
2282  *
2283  *	Assert scsi device event asynchronously.
2284  */
2285 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2286 {
2287 	unsigned long flags;
2288 
2289 #if 0
2290 	/* FIXME: currently this check eliminates all media change events
2291 	 * for polled devices.  Need to update to discriminate between AN
2292 	 * and polled events */
2293 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2294 		kfree(evt);
2295 		return;
2296 	}
2297 #endif
2298 
2299 	spin_lock_irqsave(&sdev->list_lock, flags);
2300 	list_add_tail(&evt->node, &sdev->event_list);
2301 	schedule_work(&sdev->event_work);
2302 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2303 }
2304 EXPORT_SYMBOL_GPL(sdev_evt_send);
2305 
2306 /**
2307  * 	sdev_evt_alloc - allocate a new scsi event
2308  *	@evt_type: type of event to allocate
2309  *	@gfpflags: GFP flags for allocation
2310  *
2311  *	Allocates and returns a new scsi_event.
2312  */
2313 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2314 				  gfp_t gfpflags)
2315 {
2316 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2317 	if (!evt)
2318 		return NULL;
2319 
2320 	evt->evt_type = evt_type;
2321 	INIT_LIST_HEAD(&evt->node);
2322 
2323 	/* evt_type-specific initialization, if any */
2324 	switch (evt_type) {
2325 	case SDEV_EVT_MEDIA_CHANGE:
2326 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2327 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2328 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2329 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2330 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2331 	default:
2332 		/* do nothing */
2333 		break;
2334 	}
2335 
2336 	return evt;
2337 }
2338 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2339 
2340 /**
2341  * 	sdev_evt_send_simple - send asserted event to uevent thread
2342  *	@sdev: scsi_device event occurred on
2343  *	@evt_type: type of event to send
2344  *	@gfpflags: GFP flags for allocation
2345  *
2346  *	Assert scsi device event asynchronously, given an event type.
2347  */
2348 void sdev_evt_send_simple(struct scsi_device *sdev,
2349 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2350 {
2351 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2352 	if (!evt) {
2353 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2354 			    evt_type);
2355 		return;
2356 	}
2357 
2358 	sdev_evt_send(sdev, evt);
2359 }
2360 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2361 
2362 /**
2363  *	scsi_device_quiesce - Block user issued commands.
2364  *	@sdev:	scsi device to quiesce.
2365  *
2366  *	This works by trying to transition to the SDEV_QUIESCE state
2367  *	(which must be a legal transition).  When the device is in this
2368  *	state, only special requests will be accepted, all others will
2369  *	be deferred.  Since special requests may also be requeued requests,
2370  *	a successful return doesn't guarantee the device will be
2371  *	totally quiescent.
2372  *
2373  *	Must be called with user context, may sleep.
2374  *
2375  *	Returns zero if unsuccessful or an error if not.
2376  */
2377 int
2378 scsi_device_quiesce(struct scsi_device *sdev)
2379 {
2380 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2381 	if (err)
2382 		return err;
2383 
2384 	scsi_run_queue(sdev->request_queue);
2385 	while (sdev->device_busy) {
2386 		msleep_interruptible(200);
2387 		scsi_run_queue(sdev->request_queue);
2388 	}
2389 	return 0;
2390 }
2391 EXPORT_SYMBOL(scsi_device_quiesce);
2392 
2393 /**
2394  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2395  *	@sdev:	scsi device to resume.
2396  *
2397  *	Moves the device from quiesced back to running and restarts the
2398  *	queues.
2399  *
2400  *	Must be called with user context, may sleep.
2401  */
2402 void scsi_device_resume(struct scsi_device *sdev)
2403 {
2404 	/* check if the device state was mutated prior to resume, and if
2405 	 * so assume the state is being managed elsewhere (for example
2406 	 * device deleted during suspend)
2407 	 */
2408 	if (sdev->sdev_state != SDEV_QUIESCE ||
2409 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2410 		return;
2411 	scsi_run_queue(sdev->request_queue);
2412 }
2413 EXPORT_SYMBOL(scsi_device_resume);
2414 
2415 static void
2416 device_quiesce_fn(struct scsi_device *sdev, void *data)
2417 {
2418 	scsi_device_quiesce(sdev);
2419 }
2420 
2421 void
2422 scsi_target_quiesce(struct scsi_target *starget)
2423 {
2424 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2425 }
2426 EXPORT_SYMBOL(scsi_target_quiesce);
2427 
2428 static void
2429 device_resume_fn(struct scsi_device *sdev, void *data)
2430 {
2431 	scsi_device_resume(sdev);
2432 }
2433 
2434 void
2435 scsi_target_resume(struct scsi_target *starget)
2436 {
2437 	starget_for_each_device(starget, NULL, device_resume_fn);
2438 }
2439 EXPORT_SYMBOL(scsi_target_resume);
2440 
2441 /**
2442  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2443  * @sdev:	device to block
2444  *
2445  * Block request made by scsi lld's to temporarily stop all
2446  * scsi commands on the specified device.  Called from interrupt
2447  * or normal process context.
2448  *
2449  * Returns zero if successful or error if not
2450  *
2451  * Notes:
2452  *	This routine transitions the device to the SDEV_BLOCK state
2453  *	(which must be a legal transition).  When the device is in this
2454  *	state, all commands are deferred until the scsi lld reenables
2455  *	the device with scsi_device_unblock or device_block_tmo fires.
2456  */
2457 int
2458 scsi_internal_device_block(struct scsi_device *sdev)
2459 {
2460 	struct request_queue *q = sdev->request_queue;
2461 	unsigned long flags;
2462 	int err = 0;
2463 
2464 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2465 	if (err) {
2466 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2467 
2468 		if (err)
2469 			return err;
2470 	}
2471 
2472 	/*
2473 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2474 	 * block layer from calling the midlayer with this device's
2475 	 * request queue.
2476 	 */
2477 	spin_lock_irqsave(q->queue_lock, flags);
2478 	blk_stop_queue(q);
2479 	spin_unlock_irqrestore(q->queue_lock, flags);
2480 
2481 	return 0;
2482 }
2483 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2484 
2485 /**
2486  * scsi_internal_device_unblock - resume a device after a block request
2487  * @sdev:	device to resume
2488  * @new_state:	state to set devices to after unblocking
2489  *
2490  * Called by scsi lld's or the midlayer to restart the device queue
2491  * for the previously suspended scsi device.  Called from interrupt or
2492  * normal process context.
2493  *
2494  * Returns zero if successful or error if not.
2495  *
2496  * Notes:
2497  *	This routine transitions the device to the SDEV_RUNNING state
2498  *	or to one of the offline states (which must be a legal transition)
2499  *	allowing the midlayer to goose the queue for this device.
2500  */
2501 int
2502 scsi_internal_device_unblock(struct scsi_device *sdev,
2503 			     enum scsi_device_state new_state)
2504 {
2505 	struct request_queue *q = sdev->request_queue;
2506 	unsigned long flags;
2507 
2508 	/*
2509 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2510 	 * offlined states and goose the device queue if successful.
2511 	 */
2512 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2513 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2514 		sdev->sdev_state = new_state;
2515 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2516 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2517 		    new_state == SDEV_OFFLINE)
2518 			sdev->sdev_state = new_state;
2519 		else
2520 			sdev->sdev_state = SDEV_CREATED;
2521 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2522 		 sdev->sdev_state != SDEV_OFFLINE)
2523 		return -EINVAL;
2524 
2525 	spin_lock_irqsave(q->queue_lock, flags);
2526 	blk_start_queue(q);
2527 	spin_unlock_irqrestore(q->queue_lock, flags);
2528 
2529 	return 0;
2530 }
2531 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2532 
2533 static void
2534 device_block(struct scsi_device *sdev, void *data)
2535 {
2536 	scsi_internal_device_block(sdev);
2537 }
2538 
2539 static int
2540 target_block(struct device *dev, void *data)
2541 {
2542 	if (scsi_is_target_device(dev))
2543 		starget_for_each_device(to_scsi_target(dev), NULL,
2544 					device_block);
2545 	return 0;
2546 }
2547 
2548 void
2549 scsi_target_block(struct device *dev)
2550 {
2551 	if (scsi_is_target_device(dev))
2552 		starget_for_each_device(to_scsi_target(dev), NULL,
2553 					device_block);
2554 	else
2555 		device_for_each_child(dev, NULL, target_block);
2556 }
2557 EXPORT_SYMBOL_GPL(scsi_target_block);
2558 
2559 static void
2560 device_unblock(struct scsi_device *sdev, void *data)
2561 {
2562 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2563 }
2564 
2565 static int
2566 target_unblock(struct device *dev, void *data)
2567 {
2568 	if (scsi_is_target_device(dev))
2569 		starget_for_each_device(to_scsi_target(dev), data,
2570 					device_unblock);
2571 	return 0;
2572 }
2573 
2574 void
2575 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2576 {
2577 	if (scsi_is_target_device(dev))
2578 		starget_for_each_device(to_scsi_target(dev), &new_state,
2579 					device_unblock);
2580 	else
2581 		device_for_each_child(dev, &new_state, target_unblock);
2582 }
2583 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2584 
2585 /**
2586  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2587  * @sgl:	scatter-gather list
2588  * @sg_count:	number of segments in sg
2589  * @offset:	offset in bytes into sg, on return offset into the mapped area
2590  * @len:	bytes to map, on return number of bytes mapped
2591  *
2592  * Returns virtual address of the start of the mapped page
2593  */
2594 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2595 			  size_t *offset, size_t *len)
2596 {
2597 	int i;
2598 	size_t sg_len = 0, len_complete = 0;
2599 	struct scatterlist *sg;
2600 	struct page *page;
2601 
2602 	WARN_ON(!irqs_disabled());
2603 
2604 	for_each_sg(sgl, sg, sg_count, i) {
2605 		len_complete = sg_len; /* Complete sg-entries */
2606 		sg_len += sg->length;
2607 		if (sg_len > *offset)
2608 			break;
2609 	}
2610 
2611 	if (unlikely(i == sg_count)) {
2612 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2613 			"elements %d\n",
2614 		       __func__, sg_len, *offset, sg_count);
2615 		WARN_ON(1);
2616 		return NULL;
2617 	}
2618 
2619 	/* Offset starting from the beginning of first page in this sg-entry */
2620 	*offset = *offset - len_complete + sg->offset;
2621 
2622 	/* Assumption: contiguous pages can be accessed as "page + i" */
2623 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2624 	*offset &= ~PAGE_MASK;
2625 
2626 	/* Bytes in this sg-entry from *offset to the end of the page */
2627 	sg_len = PAGE_SIZE - *offset;
2628 	if (*len > sg_len)
2629 		*len = sg_len;
2630 
2631 	return kmap_atomic(page);
2632 }
2633 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2634 
2635 /**
2636  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2637  * @virt:	virtual address to be unmapped
2638  */
2639 void scsi_kunmap_atomic_sg(void *virt)
2640 {
2641 	kunmap_atomic(virt);
2642 }
2643 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2644 
2645 void sdev_disable_disk_events(struct scsi_device *sdev)
2646 {
2647 	atomic_inc(&sdev->disk_events_disable_depth);
2648 }
2649 EXPORT_SYMBOL(sdev_disable_disk_events);
2650 
2651 void sdev_enable_disk_events(struct scsi_device *sdev)
2652 {
2653 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2654 		return;
2655 	atomic_dec(&sdev->disk_events_disable_depth);
2656 }
2657 EXPORT_SYMBOL(sdev_enable_disk_events);
2658