1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static DEFINE_MUTEX(scsi_sense_cache_mutex); 57 58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 59 60 int scsi_init_sense_cache(struct Scsi_Host *shost) 61 { 62 int ret = 0; 63 64 mutex_lock(&scsi_sense_cache_mutex); 65 if (!scsi_sense_cache) { 66 scsi_sense_cache = 67 kmem_cache_create_usercopy("scsi_sense_cache", 68 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 69 0, SCSI_SENSE_BUFFERSIZE, NULL); 70 if (!scsi_sense_cache) 71 ret = -ENOMEM; 72 } 73 mutex_unlock(&scsi_sense_cache_mutex); 74 return ret; 75 } 76 77 /* 78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 79 * not change behaviour from the previous unplug mechanism, experimentation 80 * may prove this needs changing. 81 */ 82 #define SCSI_QUEUE_DELAY 3 83 84 static void 85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 86 { 87 struct Scsi_Host *host = cmd->device->host; 88 struct scsi_device *device = cmd->device; 89 struct scsi_target *starget = scsi_target(device); 90 91 /* 92 * Set the appropriate busy bit for the device/host. 93 * 94 * If the host/device isn't busy, assume that something actually 95 * completed, and that we should be able to queue a command now. 96 * 97 * Note that the prior mid-layer assumption that any host could 98 * always queue at least one command is now broken. The mid-layer 99 * will implement a user specifiable stall (see 100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 101 * if a command is requeued with no other commands outstanding 102 * either for the device or for the host. 103 */ 104 switch (reason) { 105 case SCSI_MLQUEUE_HOST_BUSY: 106 atomic_set(&host->host_blocked, host->max_host_blocked); 107 break; 108 case SCSI_MLQUEUE_DEVICE_BUSY: 109 case SCSI_MLQUEUE_EH_RETRY: 110 atomic_set(&device->device_blocked, 111 device->max_device_blocked); 112 break; 113 case SCSI_MLQUEUE_TARGET_BUSY: 114 atomic_set(&starget->target_blocked, 115 starget->max_target_blocked); 116 break; 117 } 118 } 119 120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 121 { 122 struct request *rq = scsi_cmd_to_rq(cmd); 123 124 if (rq->rq_flags & RQF_DONTPREP) { 125 rq->rq_flags &= ~RQF_DONTPREP; 126 scsi_mq_uninit_cmd(cmd); 127 } else { 128 WARN_ON_ONCE(true); 129 } 130 blk_mq_requeue_request(rq, true); 131 } 132 133 /** 134 * __scsi_queue_insert - private queue insertion 135 * @cmd: The SCSI command being requeued 136 * @reason: The reason for the requeue 137 * @unbusy: Whether the queue should be unbusied 138 * 139 * This is a private queue insertion. The public interface 140 * scsi_queue_insert() always assumes the queue should be unbusied 141 * because it's always called before the completion. This function is 142 * for a requeue after completion, which should only occur in this 143 * file. 144 */ 145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 146 { 147 struct scsi_device *device = cmd->device; 148 149 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 150 "Inserting command %p into mlqueue\n", cmd)); 151 152 scsi_set_blocked(cmd, reason); 153 154 /* 155 * Decrement the counters, since these commands are no longer 156 * active on the host/device. 157 */ 158 if (unbusy) 159 scsi_device_unbusy(device, cmd); 160 161 /* 162 * Requeue this command. It will go before all other commands 163 * that are already in the queue. Schedule requeue work under 164 * lock such that the kblockd_schedule_work() call happens 165 * before blk_cleanup_queue() finishes. 166 */ 167 cmd->result = 0; 168 169 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 170 } 171 172 /** 173 * scsi_queue_insert - Reinsert a command in the queue. 174 * @cmd: command that we are adding to queue. 175 * @reason: why we are inserting command to queue. 176 * 177 * We do this for one of two cases. Either the host is busy and it cannot accept 178 * any more commands for the time being, or the device returned QUEUE_FULL and 179 * can accept no more commands. 180 * 181 * Context: This could be called either from an interrupt context or a normal 182 * process context. 183 */ 184 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 185 { 186 __scsi_queue_insert(cmd, reason, true); 187 } 188 189 190 /** 191 * __scsi_execute - insert request and wait for the result 192 * @sdev: scsi device 193 * @cmd: scsi command 194 * @data_direction: data direction 195 * @buffer: data buffer 196 * @bufflen: len of buffer 197 * @sense: optional sense buffer 198 * @sshdr: optional decoded sense header 199 * @timeout: request timeout in HZ 200 * @retries: number of times to retry request 201 * @flags: flags for ->cmd_flags 202 * @rq_flags: flags for ->rq_flags 203 * @resid: optional residual length 204 * 205 * Returns the scsi_cmnd result field if a command was executed, or a negative 206 * Linux error code if we didn't get that far. 207 */ 208 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, struct scsi_sense_hdr *sshdr, 211 int timeout, int retries, u64 flags, req_flags_t rq_flags, 212 int *resid) 213 { 214 struct request *req; 215 struct scsi_request *rq; 216 int ret; 217 218 req = blk_get_request(sdev->request_queue, 219 data_direction == DMA_TO_DEVICE ? 220 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 221 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0); 222 if (IS_ERR(req)) 223 return PTR_ERR(req); 224 225 rq = scsi_req(req); 226 227 if (bufflen) { 228 ret = blk_rq_map_kern(sdev->request_queue, req, 229 buffer, bufflen, GFP_NOIO); 230 if (ret) 231 goto out; 232 } 233 rq->cmd_len = COMMAND_SIZE(cmd[0]); 234 memcpy(rq->cmd, cmd, rq->cmd_len); 235 rq->retries = retries; 236 req->timeout = timeout; 237 req->cmd_flags |= flags; 238 req->rq_flags |= rq_flags | RQF_QUIET; 239 240 /* 241 * head injection *required* here otherwise quiesce won't work 242 */ 243 blk_execute_rq(NULL, req, 1); 244 245 /* 246 * Some devices (USB mass-storage in particular) may transfer 247 * garbage data together with a residue indicating that the data 248 * is invalid. Prevent the garbage from being misinterpreted 249 * and prevent security leaks by zeroing out the excess data. 250 */ 251 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 252 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 253 254 if (resid) 255 *resid = rq->resid_len; 256 if (sense && rq->sense_len) 257 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 258 if (sshdr) 259 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 260 ret = rq->result; 261 out: 262 blk_put_request(req); 263 264 return ret; 265 } 266 EXPORT_SYMBOL(__scsi_execute); 267 268 /* 269 * Wake up the error handler if necessary. Avoid as follows that the error 270 * handler is not woken up if host in-flight requests number == 271 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 272 * with an RCU read lock in this function to ensure that this function in 273 * its entirety either finishes before scsi_eh_scmd_add() increases the 274 * host_failed counter or that it notices the shost state change made by 275 * scsi_eh_scmd_add(). 276 */ 277 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 278 { 279 unsigned long flags; 280 281 rcu_read_lock(); 282 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 283 if (unlikely(scsi_host_in_recovery(shost))) { 284 spin_lock_irqsave(shost->host_lock, flags); 285 if (shost->host_failed || shost->host_eh_scheduled) 286 scsi_eh_wakeup(shost); 287 spin_unlock_irqrestore(shost->host_lock, flags); 288 } 289 rcu_read_unlock(); 290 } 291 292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 293 { 294 struct Scsi_Host *shost = sdev->host; 295 struct scsi_target *starget = scsi_target(sdev); 296 297 scsi_dec_host_busy(shost, cmd); 298 299 if (starget->can_queue > 0) 300 atomic_dec(&starget->target_busy); 301 302 sbitmap_put(&sdev->budget_map, cmd->budget_token); 303 cmd->budget_token = -1; 304 } 305 306 static void scsi_kick_queue(struct request_queue *q) 307 { 308 blk_mq_run_hw_queues(q, false); 309 } 310 311 /* 312 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 313 * and call blk_run_queue for all the scsi_devices on the target - 314 * including current_sdev first. 315 * 316 * Called with *no* scsi locks held. 317 */ 318 static void scsi_single_lun_run(struct scsi_device *current_sdev) 319 { 320 struct Scsi_Host *shost = current_sdev->host; 321 struct scsi_device *sdev, *tmp; 322 struct scsi_target *starget = scsi_target(current_sdev); 323 unsigned long flags; 324 325 spin_lock_irqsave(shost->host_lock, flags); 326 starget->starget_sdev_user = NULL; 327 spin_unlock_irqrestore(shost->host_lock, flags); 328 329 /* 330 * Call blk_run_queue for all LUNs on the target, starting with 331 * current_sdev. We race with others (to set starget_sdev_user), 332 * but in most cases, we will be first. Ideally, each LU on the 333 * target would get some limited time or requests on the target. 334 */ 335 scsi_kick_queue(current_sdev->request_queue); 336 337 spin_lock_irqsave(shost->host_lock, flags); 338 if (starget->starget_sdev_user) 339 goto out; 340 list_for_each_entry_safe(sdev, tmp, &starget->devices, 341 same_target_siblings) { 342 if (sdev == current_sdev) 343 continue; 344 if (scsi_device_get(sdev)) 345 continue; 346 347 spin_unlock_irqrestore(shost->host_lock, flags); 348 scsi_kick_queue(sdev->request_queue); 349 spin_lock_irqsave(shost->host_lock, flags); 350 351 scsi_device_put(sdev); 352 } 353 out: 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 } 356 357 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 358 { 359 if (scsi_device_busy(sdev) >= sdev->queue_depth) 360 return true; 361 if (atomic_read(&sdev->device_blocked) > 0) 362 return true; 363 return false; 364 } 365 366 static inline bool scsi_target_is_busy(struct scsi_target *starget) 367 { 368 if (starget->can_queue > 0) { 369 if (atomic_read(&starget->target_busy) >= starget->can_queue) 370 return true; 371 if (atomic_read(&starget->target_blocked) > 0) 372 return true; 373 } 374 return false; 375 } 376 377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 378 { 379 if (atomic_read(&shost->host_blocked) > 0) 380 return true; 381 if (shost->host_self_blocked) 382 return true; 383 return false; 384 } 385 386 static void scsi_starved_list_run(struct Scsi_Host *shost) 387 { 388 LIST_HEAD(starved_list); 389 struct scsi_device *sdev; 390 unsigned long flags; 391 392 spin_lock_irqsave(shost->host_lock, flags); 393 list_splice_init(&shost->starved_list, &starved_list); 394 395 while (!list_empty(&starved_list)) { 396 struct request_queue *slq; 397 398 /* 399 * As long as shost is accepting commands and we have 400 * starved queues, call blk_run_queue. scsi_request_fn 401 * drops the queue_lock and can add us back to the 402 * starved_list. 403 * 404 * host_lock protects the starved_list and starved_entry. 405 * scsi_request_fn must get the host_lock before checking 406 * or modifying starved_list or starved_entry. 407 */ 408 if (scsi_host_is_busy(shost)) 409 break; 410 411 sdev = list_entry(starved_list.next, 412 struct scsi_device, starved_entry); 413 list_del_init(&sdev->starved_entry); 414 if (scsi_target_is_busy(scsi_target(sdev))) { 415 list_move_tail(&sdev->starved_entry, 416 &shost->starved_list); 417 continue; 418 } 419 420 /* 421 * Once we drop the host lock, a racing scsi_remove_device() 422 * call may remove the sdev from the starved list and destroy 423 * it and the queue. Mitigate by taking a reference to the 424 * queue and never touching the sdev again after we drop the 425 * host lock. Note: if __scsi_remove_device() invokes 426 * blk_cleanup_queue() before the queue is run from this 427 * function then blk_run_queue() will return immediately since 428 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 429 */ 430 slq = sdev->request_queue; 431 if (!blk_get_queue(slq)) 432 continue; 433 spin_unlock_irqrestore(shost->host_lock, flags); 434 435 scsi_kick_queue(slq); 436 blk_put_queue(slq); 437 438 spin_lock_irqsave(shost->host_lock, flags); 439 } 440 /* put any unprocessed entries back */ 441 list_splice(&starved_list, &shost->starved_list); 442 spin_unlock_irqrestore(shost->host_lock, flags); 443 } 444 445 /** 446 * scsi_run_queue - Select a proper request queue to serve next. 447 * @q: last request's queue 448 * 449 * The previous command was completely finished, start a new one if possible. 450 */ 451 static void scsi_run_queue(struct request_queue *q) 452 { 453 struct scsi_device *sdev = q->queuedata; 454 455 if (scsi_target(sdev)->single_lun) 456 scsi_single_lun_run(sdev); 457 if (!list_empty(&sdev->host->starved_list)) 458 scsi_starved_list_run(sdev->host); 459 460 blk_mq_run_hw_queues(q, false); 461 } 462 463 void scsi_requeue_run_queue(struct work_struct *work) 464 { 465 struct scsi_device *sdev; 466 struct request_queue *q; 467 468 sdev = container_of(work, struct scsi_device, requeue_work); 469 q = sdev->request_queue; 470 scsi_run_queue(q); 471 } 472 473 void scsi_run_host_queues(struct Scsi_Host *shost) 474 { 475 struct scsi_device *sdev; 476 477 shost_for_each_device(sdev, shost) 478 scsi_run_queue(sdev->request_queue); 479 } 480 481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 482 { 483 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 484 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 485 486 if (drv->uninit_command) 487 drv->uninit_command(cmd); 488 } 489 } 490 491 void scsi_free_sgtables(struct scsi_cmnd *cmd) 492 { 493 if (cmd->sdb.table.nents) 494 sg_free_table_chained(&cmd->sdb.table, 495 SCSI_INLINE_SG_CNT); 496 if (scsi_prot_sg_count(cmd)) 497 sg_free_table_chained(&cmd->prot_sdb->table, 498 SCSI_INLINE_PROT_SG_CNT); 499 } 500 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 501 502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 503 { 504 scsi_free_sgtables(cmd); 505 scsi_uninit_cmd(cmd); 506 } 507 508 static void scsi_run_queue_async(struct scsi_device *sdev) 509 { 510 if (scsi_target(sdev)->single_lun || 511 !list_empty(&sdev->host->starved_list)) { 512 kblockd_schedule_work(&sdev->requeue_work); 513 } else { 514 /* 515 * smp_mb() present in sbitmap_queue_clear() or implied in 516 * .end_io is for ordering writing .device_busy in 517 * scsi_device_unbusy() and reading sdev->restarts. 518 */ 519 int old = atomic_read(&sdev->restarts); 520 521 /* 522 * ->restarts has to be kept as non-zero if new budget 523 * contention occurs. 524 * 525 * No need to run queue when either another re-run 526 * queue wins in updating ->restarts or a new budget 527 * contention occurs. 528 */ 529 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 530 blk_mq_run_hw_queues(sdev->request_queue, true); 531 } 532 } 533 534 /* Returns false when no more bytes to process, true if there are more */ 535 static bool scsi_end_request(struct request *req, blk_status_t error, 536 unsigned int bytes) 537 { 538 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 539 struct scsi_device *sdev = cmd->device; 540 struct request_queue *q = sdev->request_queue; 541 542 if (blk_update_request(req, error, bytes)) 543 return true; 544 545 if (blk_queue_add_random(q)) 546 add_disk_randomness(req->rq_disk); 547 548 if (!blk_rq_is_passthrough(req)) { 549 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 550 cmd->flags &= ~SCMD_INITIALIZED; 551 } 552 553 /* 554 * Calling rcu_barrier() is not necessary here because the 555 * SCSI error handler guarantees that the function called by 556 * call_rcu() has been called before scsi_end_request() is 557 * called. 558 */ 559 destroy_rcu_head(&cmd->rcu); 560 561 /* 562 * In the MQ case the command gets freed by __blk_mq_end_request, 563 * so we have to do all cleanup that depends on it earlier. 564 * 565 * We also can't kick the queues from irq context, so we 566 * will have to defer it to a workqueue. 567 */ 568 scsi_mq_uninit_cmd(cmd); 569 570 /* 571 * queue is still alive, so grab the ref for preventing it 572 * from being cleaned up during running queue. 573 */ 574 percpu_ref_get(&q->q_usage_counter); 575 576 __blk_mq_end_request(req, error); 577 578 scsi_run_queue_async(sdev); 579 580 percpu_ref_put(&q->q_usage_counter); 581 return false; 582 } 583 584 /** 585 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 586 * @cmd: SCSI command 587 * @result: scsi error code 588 * 589 * Translate a SCSI result code into a blk_status_t value. May reset the host 590 * byte of @cmd->result. 591 */ 592 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 593 { 594 switch (host_byte(result)) { 595 case DID_OK: 596 if (scsi_status_is_good(result)) 597 return BLK_STS_OK; 598 return BLK_STS_IOERR; 599 case DID_TRANSPORT_FAILFAST: 600 case DID_TRANSPORT_MARGINAL: 601 return BLK_STS_TRANSPORT; 602 case DID_TARGET_FAILURE: 603 set_host_byte(cmd, DID_OK); 604 return BLK_STS_TARGET; 605 case DID_NEXUS_FAILURE: 606 set_host_byte(cmd, DID_OK); 607 return BLK_STS_NEXUS; 608 case DID_ALLOC_FAILURE: 609 set_host_byte(cmd, DID_OK); 610 return BLK_STS_NOSPC; 611 case DID_MEDIUM_ERROR: 612 set_host_byte(cmd, DID_OK); 613 return BLK_STS_MEDIUM; 614 default: 615 return BLK_STS_IOERR; 616 } 617 } 618 619 /* Helper for scsi_io_completion() when "reprep" action required. */ 620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 621 struct request_queue *q) 622 { 623 /* A new command will be prepared and issued. */ 624 scsi_mq_requeue_cmd(cmd); 625 } 626 627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 628 { 629 struct request *req = scsi_cmd_to_rq(cmd); 630 unsigned long wait_for; 631 632 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 633 return false; 634 635 wait_for = (cmd->allowed + 1) * req->timeout; 636 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 637 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 638 wait_for/HZ); 639 return true; 640 } 641 return false; 642 } 643 644 /* Helper for scsi_io_completion() when special action required. */ 645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 646 { 647 struct request_queue *q = cmd->device->request_queue; 648 struct request *req = scsi_cmd_to_rq(cmd); 649 int level = 0; 650 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 651 ACTION_DELAYED_RETRY} action; 652 struct scsi_sense_hdr sshdr; 653 bool sense_valid; 654 bool sense_current = true; /* false implies "deferred sense" */ 655 blk_status_t blk_stat; 656 657 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 658 if (sense_valid) 659 sense_current = !scsi_sense_is_deferred(&sshdr); 660 661 blk_stat = scsi_result_to_blk_status(cmd, result); 662 663 if (host_byte(result) == DID_RESET) { 664 /* Third party bus reset or reset for error recovery 665 * reasons. Just retry the command and see what 666 * happens. 667 */ 668 action = ACTION_RETRY; 669 } else if (sense_valid && sense_current) { 670 switch (sshdr.sense_key) { 671 case UNIT_ATTENTION: 672 if (cmd->device->removable) { 673 /* Detected disc change. Set a bit 674 * and quietly refuse further access. 675 */ 676 cmd->device->changed = 1; 677 action = ACTION_FAIL; 678 } else { 679 /* Must have been a power glitch, or a 680 * bus reset. Could not have been a 681 * media change, so we just retry the 682 * command and see what happens. 683 */ 684 action = ACTION_RETRY; 685 } 686 break; 687 case ILLEGAL_REQUEST: 688 /* If we had an ILLEGAL REQUEST returned, then 689 * we may have performed an unsupported 690 * command. The only thing this should be 691 * would be a ten byte read where only a six 692 * byte read was supported. Also, on a system 693 * where READ CAPACITY failed, we may have 694 * read past the end of the disk. 695 */ 696 if ((cmd->device->use_10_for_rw && 697 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 698 (cmd->cmnd[0] == READ_10 || 699 cmd->cmnd[0] == WRITE_10)) { 700 /* This will issue a new 6-byte command. */ 701 cmd->device->use_10_for_rw = 0; 702 action = ACTION_REPREP; 703 } else if (sshdr.asc == 0x10) /* DIX */ { 704 action = ACTION_FAIL; 705 blk_stat = BLK_STS_PROTECTION; 706 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 707 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 708 action = ACTION_FAIL; 709 blk_stat = BLK_STS_TARGET; 710 } else 711 action = ACTION_FAIL; 712 break; 713 case ABORTED_COMMAND: 714 action = ACTION_FAIL; 715 if (sshdr.asc == 0x10) /* DIF */ 716 blk_stat = BLK_STS_PROTECTION; 717 break; 718 case NOT_READY: 719 /* If the device is in the process of becoming 720 * ready, or has a temporary blockage, retry. 721 */ 722 if (sshdr.asc == 0x04) { 723 switch (sshdr.ascq) { 724 case 0x01: /* becoming ready */ 725 case 0x04: /* format in progress */ 726 case 0x05: /* rebuild in progress */ 727 case 0x06: /* recalculation in progress */ 728 case 0x07: /* operation in progress */ 729 case 0x08: /* Long write in progress */ 730 case 0x09: /* self test in progress */ 731 case 0x11: /* notify (enable spinup) required */ 732 case 0x14: /* space allocation in progress */ 733 case 0x1a: /* start stop unit in progress */ 734 case 0x1b: /* sanitize in progress */ 735 case 0x1d: /* configuration in progress */ 736 case 0x24: /* depopulation in progress */ 737 action = ACTION_DELAYED_RETRY; 738 break; 739 case 0x0a: /* ALUA state transition */ 740 blk_stat = BLK_STS_AGAIN; 741 fallthrough; 742 default: 743 action = ACTION_FAIL; 744 break; 745 } 746 } else 747 action = ACTION_FAIL; 748 break; 749 case VOLUME_OVERFLOW: 750 /* See SSC3rXX or current. */ 751 action = ACTION_FAIL; 752 break; 753 case DATA_PROTECT: 754 action = ACTION_FAIL; 755 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 756 (sshdr.asc == 0x55 && 757 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 758 /* Insufficient zone resources */ 759 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 760 } 761 break; 762 default: 763 action = ACTION_FAIL; 764 break; 765 } 766 } else 767 action = ACTION_FAIL; 768 769 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 770 action = ACTION_FAIL; 771 772 switch (action) { 773 case ACTION_FAIL: 774 /* Give up and fail the remainder of the request */ 775 if (!(req->rq_flags & RQF_QUIET)) { 776 static DEFINE_RATELIMIT_STATE(_rs, 777 DEFAULT_RATELIMIT_INTERVAL, 778 DEFAULT_RATELIMIT_BURST); 779 780 if (unlikely(scsi_logging_level)) 781 level = 782 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 783 SCSI_LOG_MLCOMPLETE_BITS); 784 785 /* 786 * if logging is enabled the failure will be printed 787 * in scsi_log_completion(), so avoid duplicate messages 788 */ 789 if (!level && __ratelimit(&_rs)) { 790 scsi_print_result(cmd, NULL, FAILED); 791 if (sense_valid) 792 scsi_print_sense(cmd); 793 scsi_print_command(cmd); 794 } 795 } 796 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 797 return; 798 fallthrough; 799 case ACTION_REPREP: 800 scsi_io_completion_reprep(cmd, q); 801 break; 802 case ACTION_RETRY: 803 /* Retry the same command immediately */ 804 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 805 break; 806 case ACTION_DELAYED_RETRY: 807 /* Retry the same command after a delay */ 808 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 809 break; 810 } 811 } 812 813 /* 814 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 815 * new result that may suppress further error checking. Also modifies 816 * *blk_statp in some cases. 817 */ 818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 819 blk_status_t *blk_statp) 820 { 821 bool sense_valid; 822 bool sense_current = true; /* false implies "deferred sense" */ 823 struct request *req = scsi_cmd_to_rq(cmd); 824 struct scsi_sense_hdr sshdr; 825 826 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 827 if (sense_valid) 828 sense_current = !scsi_sense_is_deferred(&sshdr); 829 830 if (blk_rq_is_passthrough(req)) { 831 if (sense_valid) { 832 /* 833 * SG_IO wants current and deferred errors 834 */ 835 scsi_req(req)->sense_len = 836 min(8 + cmd->sense_buffer[7], 837 SCSI_SENSE_BUFFERSIZE); 838 } 839 if (sense_current) 840 *blk_statp = scsi_result_to_blk_status(cmd, result); 841 } else if (blk_rq_bytes(req) == 0 && sense_current) { 842 /* 843 * Flush commands do not transfers any data, and thus cannot use 844 * good_bytes != blk_rq_bytes(req) as the signal for an error. 845 * This sets *blk_statp explicitly for the problem case. 846 */ 847 *blk_statp = scsi_result_to_blk_status(cmd, result); 848 } 849 /* 850 * Recovered errors need reporting, but they're always treated as 851 * success, so fiddle the result code here. For passthrough requests 852 * we already took a copy of the original into sreq->result which 853 * is what gets returned to the user 854 */ 855 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 856 bool do_print = true; 857 /* 858 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 859 * skip print since caller wants ATA registers. Only occurs 860 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 861 */ 862 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 863 do_print = false; 864 else if (req->rq_flags & RQF_QUIET) 865 do_print = false; 866 if (do_print) 867 scsi_print_sense(cmd); 868 result = 0; 869 /* for passthrough, *blk_statp may be set */ 870 *blk_statp = BLK_STS_OK; 871 } 872 /* 873 * Another corner case: the SCSI status byte is non-zero but 'good'. 874 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 875 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 876 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 877 * intermediate statuses (both obsolete in SAM-4) as good. 878 */ 879 if ((result & 0xff) && scsi_status_is_good(result)) { 880 result = 0; 881 *blk_statp = BLK_STS_OK; 882 } 883 return result; 884 } 885 886 /** 887 * scsi_io_completion - Completion processing for SCSI commands. 888 * @cmd: command that is finished. 889 * @good_bytes: number of processed bytes. 890 * 891 * We will finish off the specified number of sectors. If we are done, the 892 * command block will be released and the queue function will be goosed. If we 893 * are not done then we have to figure out what to do next: 894 * 895 * a) We can call scsi_io_completion_reprep(). The request will be 896 * unprepared and put back on the queue. Then a new command will 897 * be created for it. This should be used if we made forward 898 * progress, or if we want to switch from READ(10) to READ(6) for 899 * example. 900 * 901 * b) We can call scsi_io_completion_action(). The request will be 902 * put back on the queue and retried using the same command as 903 * before, possibly after a delay. 904 * 905 * c) We can call scsi_end_request() with blk_stat other than 906 * BLK_STS_OK, to fail the remainder of the request. 907 */ 908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 909 { 910 int result = cmd->result; 911 struct request_queue *q = cmd->device->request_queue; 912 struct request *req = scsi_cmd_to_rq(cmd); 913 blk_status_t blk_stat = BLK_STS_OK; 914 915 if (unlikely(result)) /* a nz result may or may not be an error */ 916 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 917 918 if (unlikely(blk_rq_is_passthrough(req))) { 919 /* 920 * scsi_result_to_blk_status may have reset the host_byte 921 */ 922 scsi_req(req)->result = cmd->result; 923 } 924 925 /* 926 * Next deal with any sectors which we were able to correctly 927 * handle. 928 */ 929 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 930 "%u sectors total, %d bytes done.\n", 931 blk_rq_sectors(req), good_bytes)); 932 933 /* 934 * Failed, zero length commands always need to drop down 935 * to retry code. Fast path should return in this block. 936 */ 937 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 938 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 939 return; /* no bytes remaining */ 940 } 941 942 /* Kill remainder if no retries. */ 943 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 944 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 945 WARN_ONCE(true, 946 "Bytes remaining after failed, no-retry command"); 947 return; 948 } 949 950 /* 951 * If there had been no error, but we have leftover bytes in the 952 * requeues just queue the command up again. 953 */ 954 if (likely(result == 0)) 955 scsi_io_completion_reprep(cmd, q); 956 else 957 scsi_io_completion_action(cmd, result); 958 } 959 960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 961 struct request *rq) 962 { 963 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 964 !op_is_write(req_op(rq)) && 965 sdev->host->hostt->dma_need_drain(rq); 966 } 967 968 /** 969 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 970 * @cmd: SCSI command data structure to initialize. 971 * 972 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 973 * for @cmd. 974 * 975 * Returns: 976 * * BLK_STS_OK - on success 977 * * BLK_STS_RESOURCE - if the failure is retryable 978 * * BLK_STS_IOERR - if the failure is fatal 979 */ 980 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 981 { 982 struct scsi_device *sdev = cmd->device; 983 struct request *rq = scsi_cmd_to_rq(cmd); 984 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 985 struct scatterlist *last_sg = NULL; 986 blk_status_t ret; 987 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 988 int count; 989 990 if (WARN_ON_ONCE(!nr_segs)) 991 return BLK_STS_IOERR; 992 993 /* 994 * Make sure there is space for the drain. The driver must adjust 995 * max_hw_segments to be prepared for this. 996 */ 997 if (need_drain) 998 nr_segs++; 999 1000 /* 1001 * If sg table allocation fails, requeue request later. 1002 */ 1003 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1004 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1005 return BLK_STS_RESOURCE; 1006 1007 /* 1008 * Next, walk the list, and fill in the addresses and sizes of 1009 * each segment. 1010 */ 1011 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1012 1013 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1014 unsigned int pad_len = 1015 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1016 1017 last_sg->length += pad_len; 1018 cmd->extra_len += pad_len; 1019 } 1020 1021 if (need_drain) { 1022 sg_unmark_end(last_sg); 1023 last_sg = sg_next(last_sg); 1024 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1025 sg_mark_end(last_sg); 1026 1027 cmd->extra_len += sdev->dma_drain_len; 1028 count++; 1029 } 1030 1031 BUG_ON(count > cmd->sdb.table.nents); 1032 cmd->sdb.table.nents = count; 1033 cmd->sdb.length = blk_rq_payload_bytes(rq); 1034 1035 if (blk_integrity_rq(rq)) { 1036 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1037 int ivecs; 1038 1039 if (WARN_ON_ONCE(!prot_sdb)) { 1040 /* 1041 * This can happen if someone (e.g. multipath) 1042 * queues a command to a device on an adapter 1043 * that does not support DIX. 1044 */ 1045 ret = BLK_STS_IOERR; 1046 goto out_free_sgtables; 1047 } 1048 1049 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1050 1051 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1052 prot_sdb->table.sgl, 1053 SCSI_INLINE_PROT_SG_CNT)) { 1054 ret = BLK_STS_RESOURCE; 1055 goto out_free_sgtables; 1056 } 1057 1058 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1059 prot_sdb->table.sgl); 1060 BUG_ON(count > ivecs); 1061 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1062 1063 cmd->prot_sdb = prot_sdb; 1064 cmd->prot_sdb->table.nents = count; 1065 } 1066 1067 return BLK_STS_OK; 1068 out_free_sgtables: 1069 scsi_free_sgtables(cmd); 1070 return ret; 1071 } 1072 EXPORT_SYMBOL(scsi_alloc_sgtables); 1073 1074 /** 1075 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1076 * @rq: Request associated with the SCSI command to be initialized. 1077 * 1078 * This function initializes the members of struct scsi_cmnd that must be 1079 * initialized before request processing starts and that won't be 1080 * reinitialized if a SCSI command is requeued. 1081 * 1082 * Called from inside blk_get_request() for pass-through requests and from 1083 * inside scsi_init_command() for filesystem requests. 1084 */ 1085 static void scsi_initialize_rq(struct request *rq) 1086 { 1087 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1088 struct scsi_request *req = &cmd->req; 1089 1090 memset(req->__cmd, 0, sizeof(req->__cmd)); 1091 req->cmd = req->__cmd; 1092 req->cmd_len = BLK_MAX_CDB; 1093 req->sense_len = 0; 1094 1095 init_rcu_head(&cmd->rcu); 1096 cmd->jiffies_at_alloc = jiffies; 1097 cmd->retries = 0; 1098 } 1099 1100 /* 1101 * Only called when the request isn't completed by SCSI, and not freed by 1102 * SCSI 1103 */ 1104 static void scsi_cleanup_rq(struct request *rq) 1105 { 1106 if (rq->rq_flags & RQF_DONTPREP) { 1107 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1108 rq->rq_flags &= ~RQF_DONTPREP; 1109 } 1110 } 1111 1112 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1113 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1114 { 1115 void *buf = cmd->sense_buffer; 1116 void *prot = cmd->prot_sdb; 1117 struct request *rq = scsi_cmd_to_rq(cmd); 1118 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1119 unsigned long jiffies_at_alloc; 1120 int retries, to_clear; 1121 bool in_flight; 1122 int budget_token = cmd->budget_token; 1123 1124 if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) { 1125 flags |= SCMD_INITIALIZED; 1126 scsi_initialize_rq(rq); 1127 } 1128 1129 jiffies_at_alloc = cmd->jiffies_at_alloc; 1130 retries = cmd->retries; 1131 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1132 /* 1133 * Zero out the cmd, except for the embedded scsi_request. Only clear 1134 * the driver-private command data if the LLD does not supply a 1135 * function to initialize that data. 1136 */ 1137 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1138 if (!dev->host->hostt->init_cmd_priv) 1139 to_clear += dev->host->hostt->cmd_size; 1140 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1141 1142 cmd->device = dev; 1143 cmd->sense_buffer = buf; 1144 cmd->prot_sdb = prot; 1145 cmd->flags = flags; 1146 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1147 cmd->jiffies_at_alloc = jiffies_at_alloc; 1148 cmd->retries = retries; 1149 if (in_flight) 1150 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1151 cmd->budget_token = budget_token; 1152 1153 } 1154 1155 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1156 struct request *req) 1157 { 1158 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1159 1160 /* 1161 * Passthrough requests may transfer data, in which case they must 1162 * a bio attached to them. Or they might contain a SCSI command 1163 * that does not transfer data, in which case they may optionally 1164 * submit a request without an attached bio. 1165 */ 1166 if (req->bio) { 1167 blk_status_t ret = scsi_alloc_sgtables(cmd); 1168 if (unlikely(ret != BLK_STS_OK)) 1169 return ret; 1170 } else { 1171 BUG_ON(blk_rq_bytes(req)); 1172 1173 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1174 } 1175 1176 cmd->cmd_len = scsi_req(req)->cmd_len; 1177 if (cmd->cmd_len == 0) 1178 cmd->cmd_len = scsi_command_size(cmd->cmnd); 1179 cmd->cmnd = scsi_req(req)->cmd; 1180 cmd->transfersize = blk_rq_bytes(req); 1181 cmd->allowed = scsi_req(req)->retries; 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t 1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1187 { 1188 switch (sdev->sdev_state) { 1189 case SDEV_CREATED: 1190 return BLK_STS_OK; 1191 case SDEV_OFFLINE: 1192 case SDEV_TRANSPORT_OFFLINE: 1193 /* 1194 * If the device is offline we refuse to process any 1195 * commands. The device must be brought online 1196 * before trying any recovery commands. 1197 */ 1198 if (!sdev->offline_already) { 1199 sdev->offline_already = true; 1200 sdev_printk(KERN_ERR, sdev, 1201 "rejecting I/O to offline device\n"); 1202 } 1203 return BLK_STS_IOERR; 1204 case SDEV_DEL: 1205 /* 1206 * If the device is fully deleted, we refuse to 1207 * process any commands as well. 1208 */ 1209 sdev_printk(KERN_ERR, sdev, 1210 "rejecting I/O to dead device\n"); 1211 return BLK_STS_IOERR; 1212 case SDEV_BLOCK: 1213 case SDEV_CREATED_BLOCK: 1214 return BLK_STS_RESOURCE; 1215 case SDEV_QUIESCE: 1216 /* 1217 * If the device is blocked we only accept power management 1218 * commands. 1219 */ 1220 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1221 return BLK_STS_RESOURCE; 1222 return BLK_STS_OK; 1223 default: 1224 /* 1225 * For any other not fully online state we only allow 1226 * power management commands. 1227 */ 1228 if (req && !(req->rq_flags & RQF_PM)) 1229 return BLK_STS_IOERR; 1230 return BLK_STS_OK; 1231 } 1232 } 1233 1234 /* 1235 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1236 * and return the token else return -1. 1237 */ 1238 static inline int scsi_dev_queue_ready(struct request_queue *q, 1239 struct scsi_device *sdev) 1240 { 1241 int token; 1242 1243 token = sbitmap_get(&sdev->budget_map); 1244 if (atomic_read(&sdev->device_blocked)) { 1245 if (token < 0) 1246 goto out; 1247 1248 if (scsi_device_busy(sdev) > 1) 1249 goto out_dec; 1250 1251 /* 1252 * unblock after device_blocked iterates to zero 1253 */ 1254 if (atomic_dec_return(&sdev->device_blocked) > 0) 1255 goto out_dec; 1256 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1257 "unblocking device at zero depth\n")); 1258 } 1259 1260 return token; 1261 out_dec: 1262 if (token >= 0) 1263 sbitmap_put(&sdev->budget_map, token); 1264 out: 1265 return -1; 1266 } 1267 1268 /* 1269 * scsi_target_queue_ready: checks if there we can send commands to target 1270 * @sdev: scsi device on starget to check. 1271 */ 1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1273 struct scsi_device *sdev) 1274 { 1275 struct scsi_target *starget = scsi_target(sdev); 1276 unsigned int busy; 1277 1278 if (starget->single_lun) { 1279 spin_lock_irq(shost->host_lock); 1280 if (starget->starget_sdev_user && 1281 starget->starget_sdev_user != sdev) { 1282 spin_unlock_irq(shost->host_lock); 1283 return 0; 1284 } 1285 starget->starget_sdev_user = sdev; 1286 spin_unlock_irq(shost->host_lock); 1287 } 1288 1289 if (starget->can_queue <= 0) 1290 return 1; 1291 1292 busy = atomic_inc_return(&starget->target_busy) - 1; 1293 if (atomic_read(&starget->target_blocked) > 0) { 1294 if (busy) 1295 goto starved; 1296 1297 /* 1298 * unblock after target_blocked iterates to zero 1299 */ 1300 if (atomic_dec_return(&starget->target_blocked) > 0) 1301 goto out_dec; 1302 1303 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1304 "unblocking target at zero depth\n")); 1305 } 1306 1307 if (busy >= starget->can_queue) 1308 goto starved; 1309 1310 return 1; 1311 1312 starved: 1313 spin_lock_irq(shost->host_lock); 1314 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1315 spin_unlock_irq(shost->host_lock); 1316 out_dec: 1317 if (starget->can_queue > 0) 1318 atomic_dec(&starget->target_busy); 1319 return 0; 1320 } 1321 1322 /* 1323 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1324 * return 0. We must end up running the queue again whenever 0 is 1325 * returned, else IO can hang. 1326 */ 1327 static inline int scsi_host_queue_ready(struct request_queue *q, 1328 struct Scsi_Host *shost, 1329 struct scsi_device *sdev, 1330 struct scsi_cmnd *cmd) 1331 { 1332 if (scsi_host_in_recovery(shost)) 1333 return 0; 1334 1335 if (atomic_read(&shost->host_blocked) > 0) { 1336 if (scsi_host_busy(shost) > 0) 1337 goto starved; 1338 1339 /* 1340 * unblock after host_blocked iterates to zero 1341 */ 1342 if (atomic_dec_return(&shost->host_blocked) > 0) 1343 goto out_dec; 1344 1345 SCSI_LOG_MLQUEUE(3, 1346 shost_printk(KERN_INFO, shost, 1347 "unblocking host at zero depth\n")); 1348 } 1349 1350 if (shost->host_self_blocked) 1351 goto starved; 1352 1353 /* We're OK to process the command, so we can't be starved */ 1354 if (!list_empty(&sdev->starved_entry)) { 1355 spin_lock_irq(shost->host_lock); 1356 if (!list_empty(&sdev->starved_entry)) 1357 list_del_init(&sdev->starved_entry); 1358 spin_unlock_irq(shost->host_lock); 1359 } 1360 1361 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1362 1363 return 1; 1364 1365 starved: 1366 spin_lock_irq(shost->host_lock); 1367 if (list_empty(&sdev->starved_entry)) 1368 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1369 spin_unlock_irq(shost->host_lock); 1370 out_dec: 1371 scsi_dec_host_busy(shost, cmd); 1372 return 0; 1373 } 1374 1375 /* 1376 * Busy state exporting function for request stacking drivers. 1377 * 1378 * For efficiency, no lock is taken to check the busy state of 1379 * shost/starget/sdev, since the returned value is not guaranteed and 1380 * may be changed after request stacking drivers call the function, 1381 * regardless of taking lock or not. 1382 * 1383 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1384 * needs to return 'not busy'. Otherwise, request stacking drivers 1385 * may hold requests forever. 1386 */ 1387 static bool scsi_mq_lld_busy(struct request_queue *q) 1388 { 1389 struct scsi_device *sdev = q->queuedata; 1390 struct Scsi_Host *shost; 1391 1392 if (blk_queue_dying(q)) 1393 return false; 1394 1395 shost = sdev->host; 1396 1397 /* 1398 * Ignore host/starget busy state. 1399 * Since block layer does not have a concept of fairness across 1400 * multiple queues, congestion of host/starget needs to be handled 1401 * in SCSI layer. 1402 */ 1403 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1404 return true; 1405 1406 return false; 1407 } 1408 1409 /* 1410 * Block layer request completion callback. May be called from interrupt 1411 * context. 1412 */ 1413 static void scsi_complete(struct request *rq) 1414 { 1415 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1416 enum scsi_disposition disposition; 1417 1418 INIT_LIST_HEAD(&cmd->eh_entry); 1419 1420 atomic_inc(&cmd->device->iodone_cnt); 1421 if (cmd->result) 1422 atomic_inc(&cmd->device->ioerr_cnt); 1423 1424 disposition = scsi_decide_disposition(cmd); 1425 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1426 disposition = SUCCESS; 1427 1428 scsi_log_completion(cmd, disposition); 1429 1430 switch (disposition) { 1431 case SUCCESS: 1432 scsi_finish_command(cmd); 1433 break; 1434 case NEEDS_RETRY: 1435 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1436 break; 1437 case ADD_TO_MLQUEUE: 1438 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1439 break; 1440 default: 1441 scsi_eh_scmd_add(cmd); 1442 break; 1443 } 1444 } 1445 1446 /** 1447 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1448 * @cmd: command block we are dispatching. 1449 * 1450 * Return: nonzero return request was rejected and device's queue needs to be 1451 * plugged. 1452 */ 1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1454 { 1455 struct Scsi_Host *host = cmd->device->host; 1456 int rtn = 0; 1457 1458 atomic_inc(&cmd->device->iorequest_cnt); 1459 1460 /* check if the device is still usable */ 1461 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1462 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1463 * returns an immediate error upwards, and signals 1464 * that the device is no longer present */ 1465 cmd->result = DID_NO_CONNECT << 16; 1466 goto done; 1467 } 1468 1469 /* Check to see if the scsi lld made this device blocked. */ 1470 if (unlikely(scsi_device_blocked(cmd->device))) { 1471 /* 1472 * in blocked state, the command is just put back on 1473 * the device queue. The suspend state has already 1474 * blocked the queue so future requests should not 1475 * occur until the device transitions out of the 1476 * suspend state. 1477 */ 1478 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1479 "queuecommand : device blocked\n")); 1480 return SCSI_MLQUEUE_DEVICE_BUSY; 1481 } 1482 1483 /* Store the LUN value in cmnd, if needed. */ 1484 if (cmd->device->lun_in_cdb) 1485 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1486 (cmd->device->lun << 5 & 0xe0); 1487 1488 scsi_log_send(cmd); 1489 1490 /* 1491 * Before we queue this command, check if the command 1492 * length exceeds what the host adapter can handle. 1493 */ 1494 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1495 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1496 "queuecommand : command too long. " 1497 "cdb_size=%d host->max_cmd_len=%d\n", 1498 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1499 cmd->result = (DID_ABORT << 16); 1500 goto done; 1501 } 1502 1503 if (unlikely(host->shost_state == SHOST_DEL)) { 1504 cmd->result = (DID_NO_CONNECT << 16); 1505 goto done; 1506 1507 } 1508 1509 trace_scsi_dispatch_cmd_start(cmd); 1510 rtn = host->hostt->queuecommand(host, cmd); 1511 if (rtn) { 1512 trace_scsi_dispatch_cmd_error(cmd, rtn); 1513 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1514 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1515 rtn = SCSI_MLQUEUE_HOST_BUSY; 1516 1517 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1518 "queuecommand : request rejected\n")); 1519 } 1520 1521 return rtn; 1522 done: 1523 cmd->scsi_done(cmd); 1524 return 0; 1525 } 1526 1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1529 { 1530 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1531 sizeof(struct scatterlist); 1532 } 1533 1534 static blk_status_t scsi_prepare_cmd(struct request *req) 1535 { 1536 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1537 struct scsi_device *sdev = req->q->queuedata; 1538 struct Scsi_Host *shost = sdev->host; 1539 struct scatterlist *sg; 1540 1541 scsi_init_command(sdev, cmd); 1542 1543 cmd->prot_op = SCSI_PROT_NORMAL; 1544 if (blk_rq_bytes(req)) 1545 cmd->sc_data_direction = rq_dma_dir(req); 1546 else 1547 cmd->sc_data_direction = DMA_NONE; 1548 1549 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1550 cmd->sdb.table.sgl = sg; 1551 1552 if (scsi_host_get_prot(shost)) { 1553 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1554 1555 cmd->prot_sdb->table.sgl = 1556 (struct scatterlist *)(cmd->prot_sdb + 1); 1557 } 1558 1559 /* 1560 * Special handling for passthrough commands, which don't go to the ULP 1561 * at all: 1562 */ 1563 if (blk_rq_is_passthrough(req)) 1564 return scsi_setup_scsi_cmnd(sdev, req); 1565 1566 if (sdev->handler && sdev->handler->prep_fn) { 1567 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1568 1569 if (ret != BLK_STS_OK) 1570 return ret; 1571 } 1572 1573 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1574 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1575 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1576 } 1577 1578 static void scsi_mq_done(struct scsi_cmnd *cmd) 1579 { 1580 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1581 return; 1582 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1583 return; 1584 trace_scsi_dispatch_cmd_done(cmd); 1585 blk_mq_complete_request(scsi_cmd_to_rq(cmd)); 1586 } 1587 1588 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1589 { 1590 struct scsi_device *sdev = q->queuedata; 1591 1592 sbitmap_put(&sdev->budget_map, budget_token); 1593 } 1594 1595 static int scsi_mq_get_budget(struct request_queue *q) 1596 { 1597 struct scsi_device *sdev = q->queuedata; 1598 int token = scsi_dev_queue_ready(q, sdev); 1599 1600 if (token >= 0) 1601 return token; 1602 1603 atomic_inc(&sdev->restarts); 1604 1605 /* 1606 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1607 * .restarts must be incremented before .device_busy is read because the 1608 * code in scsi_run_queue_async() depends on the order of these operations. 1609 */ 1610 smp_mb__after_atomic(); 1611 1612 /* 1613 * If all in-flight requests originated from this LUN are completed 1614 * before reading .device_busy, sdev->device_busy will be observed as 1615 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1616 * soon. Otherwise, completion of one of these requests will observe 1617 * the .restarts flag, and the request queue will be run for handling 1618 * this request, see scsi_end_request(). 1619 */ 1620 if (unlikely(scsi_device_busy(sdev) == 0 && 1621 !scsi_device_blocked(sdev))) 1622 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1623 return -1; 1624 } 1625 1626 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1627 { 1628 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1629 1630 cmd->budget_token = token; 1631 } 1632 1633 static int scsi_mq_get_rq_budget_token(struct request *req) 1634 { 1635 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1636 1637 return cmd->budget_token; 1638 } 1639 1640 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1641 const struct blk_mq_queue_data *bd) 1642 { 1643 struct request *req = bd->rq; 1644 struct request_queue *q = req->q; 1645 struct scsi_device *sdev = q->queuedata; 1646 struct Scsi_Host *shost = sdev->host; 1647 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1648 blk_status_t ret; 1649 int reason; 1650 1651 WARN_ON_ONCE(cmd->budget_token < 0); 1652 1653 /* 1654 * If the device is not in running state we will reject some or all 1655 * commands. 1656 */ 1657 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1658 ret = scsi_device_state_check(sdev, req); 1659 if (ret != BLK_STS_OK) 1660 goto out_put_budget; 1661 } 1662 1663 ret = BLK_STS_RESOURCE; 1664 if (!scsi_target_queue_ready(shost, sdev)) 1665 goto out_put_budget; 1666 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1667 goto out_dec_target_busy; 1668 1669 if (!(req->rq_flags & RQF_DONTPREP)) { 1670 ret = scsi_prepare_cmd(req); 1671 if (ret != BLK_STS_OK) 1672 goto out_dec_host_busy; 1673 req->rq_flags |= RQF_DONTPREP; 1674 } else { 1675 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1676 } 1677 1678 cmd->flags &= SCMD_PRESERVED_FLAGS; 1679 if (sdev->simple_tags) 1680 cmd->flags |= SCMD_TAGGED; 1681 if (bd->last) 1682 cmd->flags |= SCMD_LAST; 1683 1684 scsi_set_resid(cmd, 0); 1685 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1686 cmd->scsi_done = scsi_mq_done; 1687 1688 blk_mq_start_request(req); 1689 reason = scsi_dispatch_cmd(cmd); 1690 if (reason) { 1691 scsi_set_blocked(cmd, reason); 1692 ret = BLK_STS_RESOURCE; 1693 goto out_dec_host_busy; 1694 } 1695 1696 return BLK_STS_OK; 1697 1698 out_dec_host_busy: 1699 scsi_dec_host_busy(shost, cmd); 1700 out_dec_target_busy: 1701 if (scsi_target(sdev)->can_queue > 0) 1702 atomic_dec(&scsi_target(sdev)->target_busy); 1703 out_put_budget: 1704 scsi_mq_put_budget(q, cmd->budget_token); 1705 cmd->budget_token = -1; 1706 switch (ret) { 1707 case BLK_STS_OK: 1708 break; 1709 case BLK_STS_RESOURCE: 1710 case BLK_STS_ZONE_RESOURCE: 1711 if (scsi_device_blocked(sdev)) 1712 ret = BLK_STS_DEV_RESOURCE; 1713 break; 1714 case BLK_STS_AGAIN: 1715 scsi_req(req)->result = DID_BUS_BUSY << 16; 1716 if (req->rq_flags & RQF_DONTPREP) 1717 scsi_mq_uninit_cmd(cmd); 1718 break; 1719 default: 1720 if (unlikely(!scsi_device_online(sdev))) 1721 scsi_req(req)->result = DID_NO_CONNECT << 16; 1722 else 1723 scsi_req(req)->result = DID_ERROR << 16; 1724 /* 1725 * Make sure to release all allocated resources when 1726 * we hit an error, as we will never see this command 1727 * again. 1728 */ 1729 if (req->rq_flags & RQF_DONTPREP) 1730 scsi_mq_uninit_cmd(cmd); 1731 scsi_run_queue_async(sdev); 1732 break; 1733 } 1734 return ret; 1735 } 1736 1737 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1738 bool reserved) 1739 { 1740 if (reserved) 1741 return BLK_EH_RESET_TIMER; 1742 return scsi_times_out(req); 1743 } 1744 1745 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1746 unsigned int hctx_idx, unsigned int numa_node) 1747 { 1748 struct Scsi_Host *shost = set->driver_data; 1749 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1750 struct scatterlist *sg; 1751 int ret = 0; 1752 1753 cmd->sense_buffer = 1754 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1755 if (!cmd->sense_buffer) 1756 return -ENOMEM; 1757 cmd->req.sense = cmd->sense_buffer; 1758 1759 if (scsi_host_get_prot(shost)) { 1760 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1761 shost->hostt->cmd_size; 1762 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1763 } 1764 1765 if (shost->hostt->init_cmd_priv) { 1766 ret = shost->hostt->init_cmd_priv(shost, cmd); 1767 if (ret < 0) 1768 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1769 } 1770 1771 return ret; 1772 } 1773 1774 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1775 unsigned int hctx_idx) 1776 { 1777 struct Scsi_Host *shost = set->driver_data; 1778 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1779 1780 if (shost->hostt->exit_cmd_priv) 1781 shost->hostt->exit_cmd_priv(shost, cmd); 1782 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1783 } 1784 1785 1786 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx) 1787 { 1788 struct Scsi_Host *shost = hctx->driver_data; 1789 1790 if (shost->hostt->mq_poll) 1791 return shost->hostt->mq_poll(shost, hctx->queue_num); 1792 1793 return 0; 1794 } 1795 1796 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1797 unsigned int hctx_idx) 1798 { 1799 struct Scsi_Host *shost = data; 1800 1801 hctx->driver_data = shost; 1802 return 0; 1803 } 1804 1805 static int scsi_map_queues(struct blk_mq_tag_set *set) 1806 { 1807 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1808 1809 if (shost->hostt->map_queues) 1810 return shost->hostt->map_queues(shost); 1811 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1812 } 1813 1814 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1815 { 1816 struct device *dev = shost->dma_dev; 1817 1818 /* 1819 * this limit is imposed by hardware restrictions 1820 */ 1821 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1822 SG_MAX_SEGMENTS)); 1823 1824 if (scsi_host_prot_dma(shost)) { 1825 shost->sg_prot_tablesize = 1826 min_not_zero(shost->sg_prot_tablesize, 1827 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1828 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1829 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1830 } 1831 1832 if (dev->dma_mask) { 1833 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1834 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1835 } 1836 blk_queue_max_hw_sectors(q, shost->max_sectors); 1837 blk_queue_segment_boundary(q, shost->dma_boundary); 1838 dma_set_seg_boundary(dev, shost->dma_boundary); 1839 1840 blk_queue_max_segment_size(q, shost->max_segment_size); 1841 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1842 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1843 1844 /* 1845 * Set a reasonable default alignment: The larger of 32-byte (dword), 1846 * which is a common minimum for HBAs, and the minimum DMA alignment, 1847 * which is set by the platform. 1848 * 1849 * Devices that require a bigger alignment can increase it later. 1850 */ 1851 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1852 } 1853 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1854 1855 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1856 .get_budget = scsi_mq_get_budget, 1857 .put_budget = scsi_mq_put_budget, 1858 .queue_rq = scsi_queue_rq, 1859 .complete = scsi_complete, 1860 .timeout = scsi_timeout, 1861 #ifdef CONFIG_BLK_DEBUG_FS 1862 .show_rq = scsi_show_rq, 1863 #endif 1864 .init_request = scsi_mq_init_request, 1865 .exit_request = scsi_mq_exit_request, 1866 .initialize_rq_fn = scsi_initialize_rq, 1867 .cleanup_rq = scsi_cleanup_rq, 1868 .busy = scsi_mq_lld_busy, 1869 .map_queues = scsi_map_queues, 1870 .init_hctx = scsi_init_hctx, 1871 .poll = scsi_mq_poll, 1872 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1873 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1874 }; 1875 1876 1877 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1878 { 1879 struct Scsi_Host *shost = hctx->driver_data; 1880 1881 shost->hostt->commit_rqs(shost, hctx->queue_num); 1882 } 1883 1884 static const struct blk_mq_ops scsi_mq_ops = { 1885 .get_budget = scsi_mq_get_budget, 1886 .put_budget = scsi_mq_put_budget, 1887 .queue_rq = scsi_queue_rq, 1888 .commit_rqs = scsi_commit_rqs, 1889 .complete = scsi_complete, 1890 .timeout = scsi_timeout, 1891 #ifdef CONFIG_BLK_DEBUG_FS 1892 .show_rq = scsi_show_rq, 1893 #endif 1894 .init_request = scsi_mq_init_request, 1895 .exit_request = scsi_mq_exit_request, 1896 .initialize_rq_fn = scsi_initialize_rq, 1897 .cleanup_rq = scsi_cleanup_rq, 1898 .busy = scsi_mq_lld_busy, 1899 .map_queues = scsi_map_queues, 1900 .init_hctx = scsi_init_hctx, 1901 .poll = scsi_mq_poll, 1902 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1903 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1904 }; 1905 1906 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1907 { 1908 unsigned int cmd_size, sgl_size; 1909 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1910 1911 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1912 scsi_mq_inline_sgl_size(shost)); 1913 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1914 if (scsi_host_get_prot(shost)) 1915 cmd_size += sizeof(struct scsi_data_buffer) + 1916 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1917 1918 memset(tag_set, 0, sizeof(*tag_set)); 1919 if (shost->hostt->commit_rqs) 1920 tag_set->ops = &scsi_mq_ops; 1921 else 1922 tag_set->ops = &scsi_mq_ops_no_commit; 1923 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1924 tag_set->nr_maps = shost->nr_maps ? : 1; 1925 tag_set->queue_depth = shost->can_queue; 1926 tag_set->cmd_size = cmd_size; 1927 tag_set->numa_node = NUMA_NO_NODE; 1928 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1929 tag_set->flags |= 1930 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1931 tag_set->driver_data = shost; 1932 if (shost->host_tagset) 1933 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1934 1935 return blk_mq_alloc_tag_set(tag_set); 1936 } 1937 1938 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1939 { 1940 blk_mq_free_tag_set(&shost->tag_set); 1941 } 1942 1943 /** 1944 * scsi_device_from_queue - return sdev associated with a request_queue 1945 * @q: The request queue to return the sdev from 1946 * 1947 * Return the sdev associated with a request queue or NULL if the 1948 * request_queue does not reference a SCSI device. 1949 */ 1950 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1951 { 1952 struct scsi_device *sdev = NULL; 1953 1954 if (q->mq_ops == &scsi_mq_ops_no_commit || 1955 q->mq_ops == &scsi_mq_ops) 1956 sdev = q->queuedata; 1957 if (!sdev || !get_device(&sdev->sdev_gendev)) 1958 sdev = NULL; 1959 1960 return sdev; 1961 } 1962 1963 /** 1964 * scsi_block_requests - Utility function used by low-level drivers to prevent 1965 * further commands from being queued to the device. 1966 * @shost: host in question 1967 * 1968 * There is no timer nor any other means by which the requests get unblocked 1969 * other than the low-level driver calling scsi_unblock_requests(). 1970 */ 1971 void scsi_block_requests(struct Scsi_Host *shost) 1972 { 1973 shost->host_self_blocked = 1; 1974 } 1975 EXPORT_SYMBOL(scsi_block_requests); 1976 1977 /** 1978 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1979 * further commands to be queued to the device. 1980 * @shost: host in question 1981 * 1982 * There is no timer nor any other means by which the requests get unblocked 1983 * other than the low-level driver calling scsi_unblock_requests(). This is done 1984 * as an API function so that changes to the internals of the scsi mid-layer 1985 * won't require wholesale changes to drivers that use this feature. 1986 */ 1987 void scsi_unblock_requests(struct Scsi_Host *shost) 1988 { 1989 shost->host_self_blocked = 0; 1990 scsi_run_host_queues(shost); 1991 } 1992 EXPORT_SYMBOL(scsi_unblock_requests); 1993 1994 void scsi_exit_queue(void) 1995 { 1996 kmem_cache_destroy(scsi_sense_cache); 1997 } 1998 1999 /** 2000 * scsi_mode_select - issue a mode select 2001 * @sdev: SCSI device to be queried 2002 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2003 * @sp: Save page bit (0 == don't save, 1 == save) 2004 * @modepage: mode page being requested 2005 * @buffer: request buffer (may not be smaller than eight bytes) 2006 * @len: length of request buffer. 2007 * @timeout: command timeout 2008 * @retries: number of retries before failing 2009 * @data: returns a structure abstracting the mode header data 2010 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2011 * must be SCSI_SENSE_BUFFERSIZE big. 2012 * 2013 * Returns zero if successful; negative error number or scsi 2014 * status on error 2015 * 2016 */ 2017 int 2018 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2019 unsigned char *buffer, int len, int timeout, int retries, 2020 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2021 { 2022 unsigned char cmd[10]; 2023 unsigned char *real_buffer; 2024 int ret; 2025 2026 memset(cmd, 0, sizeof(cmd)); 2027 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2028 2029 if (sdev->use_10_for_ms) { 2030 if (len > 65535) 2031 return -EINVAL; 2032 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2033 if (!real_buffer) 2034 return -ENOMEM; 2035 memcpy(real_buffer + 8, buffer, len); 2036 len += 8; 2037 real_buffer[0] = 0; 2038 real_buffer[1] = 0; 2039 real_buffer[2] = data->medium_type; 2040 real_buffer[3] = data->device_specific; 2041 real_buffer[4] = data->longlba ? 0x01 : 0; 2042 real_buffer[5] = 0; 2043 real_buffer[6] = data->block_descriptor_length >> 8; 2044 real_buffer[7] = data->block_descriptor_length; 2045 2046 cmd[0] = MODE_SELECT_10; 2047 cmd[7] = len >> 8; 2048 cmd[8] = len; 2049 } else { 2050 if (len > 255 || data->block_descriptor_length > 255 || 2051 data->longlba) 2052 return -EINVAL; 2053 2054 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2055 if (!real_buffer) 2056 return -ENOMEM; 2057 memcpy(real_buffer + 4, buffer, len); 2058 len += 4; 2059 real_buffer[0] = 0; 2060 real_buffer[1] = data->medium_type; 2061 real_buffer[2] = data->device_specific; 2062 real_buffer[3] = data->block_descriptor_length; 2063 2064 cmd[0] = MODE_SELECT; 2065 cmd[4] = len; 2066 } 2067 2068 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2069 sshdr, timeout, retries, NULL); 2070 kfree(real_buffer); 2071 return ret; 2072 } 2073 EXPORT_SYMBOL_GPL(scsi_mode_select); 2074 2075 /** 2076 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2077 * @sdev: SCSI device to be queried 2078 * @dbd: set if mode sense will allow block descriptors to be returned 2079 * @modepage: mode page being requested 2080 * @buffer: request buffer (may not be smaller than eight bytes) 2081 * @len: length of request buffer. 2082 * @timeout: command timeout 2083 * @retries: number of retries before failing 2084 * @data: returns a structure abstracting the mode header data 2085 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2086 * must be SCSI_SENSE_BUFFERSIZE big. 2087 * 2088 * Returns zero if successful, or a negative error number on failure 2089 */ 2090 int 2091 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2092 unsigned char *buffer, int len, int timeout, int retries, 2093 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2094 { 2095 unsigned char cmd[12]; 2096 int use_10_for_ms; 2097 int header_length; 2098 int result, retry_count = retries; 2099 struct scsi_sense_hdr my_sshdr; 2100 2101 memset(data, 0, sizeof(*data)); 2102 memset(&cmd[0], 0, 12); 2103 2104 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2105 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2106 cmd[2] = modepage; 2107 2108 /* caller might not be interested in sense, but we need it */ 2109 if (!sshdr) 2110 sshdr = &my_sshdr; 2111 2112 retry: 2113 use_10_for_ms = sdev->use_10_for_ms; 2114 2115 if (use_10_for_ms) { 2116 if (len < 8) 2117 len = 8; 2118 2119 cmd[0] = MODE_SENSE_10; 2120 cmd[8] = len; 2121 header_length = 8; 2122 } else { 2123 if (len < 4) 2124 len = 4; 2125 2126 cmd[0] = MODE_SENSE; 2127 cmd[4] = len; 2128 header_length = 4; 2129 } 2130 2131 memset(buffer, 0, len); 2132 2133 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2134 sshdr, timeout, retries, NULL); 2135 if (result < 0) 2136 return result; 2137 2138 /* This code looks awful: what it's doing is making sure an 2139 * ILLEGAL REQUEST sense return identifies the actual command 2140 * byte as the problem. MODE_SENSE commands can return 2141 * ILLEGAL REQUEST if the code page isn't supported */ 2142 2143 if (!scsi_status_is_good(result)) { 2144 if (scsi_sense_valid(sshdr)) { 2145 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2146 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2147 /* 2148 * Invalid command operation code 2149 */ 2150 if (use_10_for_ms) { 2151 sdev->use_10_for_ms = 0; 2152 goto retry; 2153 } 2154 } 2155 if (scsi_status_is_check_condition(result) && 2156 sshdr->sense_key == UNIT_ATTENTION && 2157 retry_count) { 2158 retry_count--; 2159 goto retry; 2160 } 2161 } 2162 return -EIO; 2163 } 2164 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2165 (modepage == 6 || modepage == 8))) { 2166 /* Initio breakage? */ 2167 header_length = 0; 2168 data->length = 13; 2169 data->medium_type = 0; 2170 data->device_specific = 0; 2171 data->longlba = 0; 2172 data->block_descriptor_length = 0; 2173 } else if (use_10_for_ms) { 2174 data->length = buffer[0]*256 + buffer[1] + 2; 2175 data->medium_type = buffer[2]; 2176 data->device_specific = buffer[3]; 2177 data->longlba = buffer[4] & 0x01; 2178 data->block_descriptor_length = buffer[6]*256 2179 + buffer[7]; 2180 } else { 2181 data->length = buffer[0] + 1; 2182 data->medium_type = buffer[1]; 2183 data->device_specific = buffer[2]; 2184 data->block_descriptor_length = buffer[3]; 2185 } 2186 data->header_length = header_length; 2187 2188 return 0; 2189 } 2190 EXPORT_SYMBOL(scsi_mode_sense); 2191 2192 /** 2193 * scsi_test_unit_ready - test if unit is ready 2194 * @sdev: scsi device to change the state of. 2195 * @timeout: command timeout 2196 * @retries: number of retries before failing 2197 * @sshdr: outpout pointer for decoded sense information. 2198 * 2199 * Returns zero if unsuccessful or an error if TUR failed. For 2200 * removable media, UNIT_ATTENTION sets ->changed flag. 2201 **/ 2202 int 2203 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2204 struct scsi_sense_hdr *sshdr) 2205 { 2206 char cmd[] = { 2207 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2208 }; 2209 int result; 2210 2211 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2212 do { 2213 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2214 timeout, 1, NULL); 2215 if (sdev->removable && scsi_sense_valid(sshdr) && 2216 sshdr->sense_key == UNIT_ATTENTION) 2217 sdev->changed = 1; 2218 } while (scsi_sense_valid(sshdr) && 2219 sshdr->sense_key == UNIT_ATTENTION && --retries); 2220 2221 return result; 2222 } 2223 EXPORT_SYMBOL(scsi_test_unit_ready); 2224 2225 /** 2226 * scsi_device_set_state - Take the given device through the device state model. 2227 * @sdev: scsi device to change the state of. 2228 * @state: state to change to. 2229 * 2230 * Returns zero if successful or an error if the requested 2231 * transition is illegal. 2232 */ 2233 int 2234 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2235 { 2236 enum scsi_device_state oldstate = sdev->sdev_state; 2237 2238 if (state == oldstate) 2239 return 0; 2240 2241 switch (state) { 2242 case SDEV_CREATED: 2243 switch (oldstate) { 2244 case SDEV_CREATED_BLOCK: 2245 break; 2246 default: 2247 goto illegal; 2248 } 2249 break; 2250 2251 case SDEV_RUNNING: 2252 switch (oldstate) { 2253 case SDEV_CREATED: 2254 case SDEV_OFFLINE: 2255 case SDEV_TRANSPORT_OFFLINE: 2256 case SDEV_QUIESCE: 2257 case SDEV_BLOCK: 2258 break; 2259 default: 2260 goto illegal; 2261 } 2262 break; 2263 2264 case SDEV_QUIESCE: 2265 switch (oldstate) { 2266 case SDEV_RUNNING: 2267 case SDEV_OFFLINE: 2268 case SDEV_TRANSPORT_OFFLINE: 2269 break; 2270 default: 2271 goto illegal; 2272 } 2273 break; 2274 2275 case SDEV_OFFLINE: 2276 case SDEV_TRANSPORT_OFFLINE: 2277 switch (oldstate) { 2278 case SDEV_CREATED: 2279 case SDEV_RUNNING: 2280 case SDEV_QUIESCE: 2281 case SDEV_BLOCK: 2282 break; 2283 default: 2284 goto illegal; 2285 } 2286 break; 2287 2288 case SDEV_BLOCK: 2289 switch (oldstate) { 2290 case SDEV_RUNNING: 2291 case SDEV_CREATED_BLOCK: 2292 case SDEV_QUIESCE: 2293 case SDEV_OFFLINE: 2294 break; 2295 default: 2296 goto illegal; 2297 } 2298 break; 2299 2300 case SDEV_CREATED_BLOCK: 2301 switch (oldstate) { 2302 case SDEV_CREATED: 2303 break; 2304 default: 2305 goto illegal; 2306 } 2307 break; 2308 2309 case SDEV_CANCEL: 2310 switch (oldstate) { 2311 case SDEV_CREATED: 2312 case SDEV_RUNNING: 2313 case SDEV_QUIESCE: 2314 case SDEV_OFFLINE: 2315 case SDEV_TRANSPORT_OFFLINE: 2316 break; 2317 default: 2318 goto illegal; 2319 } 2320 break; 2321 2322 case SDEV_DEL: 2323 switch (oldstate) { 2324 case SDEV_CREATED: 2325 case SDEV_RUNNING: 2326 case SDEV_OFFLINE: 2327 case SDEV_TRANSPORT_OFFLINE: 2328 case SDEV_CANCEL: 2329 case SDEV_BLOCK: 2330 case SDEV_CREATED_BLOCK: 2331 break; 2332 default: 2333 goto illegal; 2334 } 2335 break; 2336 2337 } 2338 sdev->offline_already = false; 2339 sdev->sdev_state = state; 2340 return 0; 2341 2342 illegal: 2343 SCSI_LOG_ERROR_RECOVERY(1, 2344 sdev_printk(KERN_ERR, sdev, 2345 "Illegal state transition %s->%s", 2346 scsi_device_state_name(oldstate), 2347 scsi_device_state_name(state)) 2348 ); 2349 return -EINVAL; 2350 } 2351 EXPORT_SYMBOL(scsi_device_set_state); 2352 2353 /** 2354 * scsi_evt_emit - emit a single SCSI device uevent 2355 * @sdev: associated SCSI device 2356 * @evt: event to emit 2357 * 2358 * Send a single uevent (scsi_event) to the associated scsi_device. 2359 */ 2360 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2361 { 2362 int idx = 0; 2363 char *envp[3]; 2364 2365 switch (evt->evt_type) { 2366 case SDEV_EVT_MEDIA_CHANGE: 2367 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2368 break; 2369 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2370 scsi_rescan_device(&sdev->sdev_gendev); 2371 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2372 break; 2373 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2374 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2375 break; 2376 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2377 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2378 break; 2379 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2380 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2381 break; 2382 case SDEV_EVT_LUN_CHANGE_REPORTED: 2383 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2384 break; 2385 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2386 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2387 break; 2388 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2389 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2390 break; 2391 default: 2392 /* do nothing */ 2393 break; 2394 } 2395 2396 envp[idx++] = NULL; 2397 2398 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2399 } 2400 2401 /** 2402 * scsi_evt_thread - send a uevent for each scsi event 2403 * @work: work struct for scsi_device 2404 * 2405 * Dispatch queued events to their associated scsi_device kobjects 2406 * as uevents. 2407 */ 2408 void scsi_evt_thread(struct work_struct *work) 2409 { 2410 struct scsi_device *sdev; 2411 enum scsi_device_event evt_type; 2412 LIST_HEAD(event_list); 2413 2414 sdev = container_of(work, struct scsi_device, event_work); 2415 2416 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2417 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2418 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2419 2420 while (1) { 2421 struct scsi_event *evt; 2422 struct list_head *this, *tmp; 2423 unsigned long flags; 2424 2425 spin_lock_irqsave(&sdev->list_lock, flags); 2426 list_splice_init(&sdev->event_list, &event_list); 2427 spin_unlock_irqrestore(&sdev->list_lock, flags); 2428 2429 if (list_empty(&event_list)) 2430 break; 2431 2432 list_for_each_safe(this, tmp, &event_list) { 2433 evt = list_entry(this, struct scsi_event, node); 2434 list_del(&evt->node); 2435 scsi_evt_emit(sdev, evt); 2436 kfree(evt); 2437 } 2438 } 2439 } 2440 2441 /** 2442 * sdev_evt_send - send asserted event to uevent thread 2443 * @sdev: scsi_device event occurred on 2444 * @evt: event to send 2445 * 2446 * Assert scsi device event asynchronously. 2447 */ 2448 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2449 { 2450 unsigned long flags; 2451 2452 #if 0 2453 /* FIXME: currently this check eliminates all media change events 2454 * for polled devices. Need to update to discriminate between AN 2455 * and polled events */ 2456 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2457 kfree(evt); 2458 return; 2459 } 2460 #endif 2461 2462 spin_lock_irqsave(&sdev->list_lock, flags); 2463 list_add_tail(&evt->node, &sdev->event_list); 2464 schedule_work(&sdev->event_work); 2465 spin_unlock_irqrestore(&sdev->list_lock, flags); 2466 } 2467 EXPORT_SYMBOL_GPL(sdev_evt_send); 2468 2469 /** 2470 * sdev_evt_alloc - allocate a new scsi event 2471 * @evt_type: type of event to allocate 2472 * @gfpflags: GFP flags for allocation 2473 * 2474 * Allocates and returns a new scsi_event. 2475 */ 2476 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2477 gfp_t gfpflags) 2478 { 2479 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2480 if (!evt) 2481 return NULL; 2482 2483 evt->evt_type = evt_type; 2484 INIT_LIST_HEAD(&evt->node); 2485 2486 /* evt_type-specific initialization, if any */ 2487 switch (evt_type) { 2488 case SDEV_EVT_MEDIA_CHANGE: 2489 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2490 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2491 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2492 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2493 case SDEV_EVT_LUN_CHANGE_REPORTED: 2494 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2495 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2496 default: 2497 /* do nothing */ 2498 break; 2499 } 2500 2501 return evt; 2502 } 2503 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2504 2505 /** 2506 * sdev_evt_send_simple - send asserted event to uevent thread 2507 * @sdev: scsi_device event occurred on 2508 * @evt_type: type of event to send 2509 * @gfpflags: GFP flags for allocation 2510 * 2511 * Assert scsi device event asynchronously, given an event type. 2512 */ 2513 void sdev_evt_send_simple(struct scsi_device *sdev, 2514 enum scsi_device_event evt_type, gfp_t gfpflags) 2515 { 2516 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2517 if (!evt) { 2518 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2519 evt_type); 2520 return; 2521 } 2522 2523 sdev_evt_send(sdev, evt); 2524 } 2525 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2526 2527 /** 2528 * scsi_device_quiesce - Block all commands except power management. 2529 * @sdev: scsi device to quiesce. 2530 * 2531 * This works by trying to transition to the SDEV_QUIESCE state 2532 * (which must be a legal transition). When the device is in this 2533 * state, only power management requests will be accepted, all others will 2534 * be deferred. 2535 * 2536 * Must be called with user context, may sleep. 2537 * 2538 * Returns zero if unsuccessful or an error if not. 2539 */ 2540 int 2541 scsi_device_quiesce(struct scsi_device *sdev) 2542 { 2543 struct request_queue *q = sdev->request_queue; 2544 int err; 2545 2546 /* 2547 * It is allowed to call scsi_device_quiesce() multiple times from 2548 * the same context but concurrent scsi_device_quiesce() calls are 2549 * not allowed. 2550 */ 2551 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2552 2553 if (sdev->quiesced_by == current) 2554 return 0; 2555 2556 blk_set_pm_only(q); 2557 2558 blk_mq_freeze_queue(q); 2559 /* 2560 * Ensure that the effect of blk_set_pm_only() will be visible 2561 * for percpu_ref_tryget() callers that occur after the queue 2562 * unfreeze even if the queue was already frozen before this function 2563 * was called. See also https://lwn.net/Articles/573497/. 2564 */ 2565 synchronize_rcu(); 2566 blk_mq_unfreeze_queue(q); 2567 2568 mutex_lock(&sdev->state_mutex); 2569 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2570 if (err == 0) 2571 sdev->quiesced_by = current; 2572 else 2573 blk_clear_pm_only(q); 2574 mutex_unlock(&sdev->state_mutex); 2575 2576 return err; 2577 } 2578 EXPORT_SYMBOL(scsi_device_quiesce); 2579 2580 /** 2581 * scsi_device_resume - Restart user issued commands to a quiesced device. 2582 * @sdev: scsi device to resume. 2583 * 2584 * Moves the device from quiesced back to running and restarts the 2585 * queues. 2586 * 2587 * Must be called with user context, may sleep. 2588 */ 2589 void scsi_device_resume(struct scsi_device *sdev) 2590 { 2591 /* check if the device state was mutated prior to resume, and if 2592 * so assume the state is being managed elsewhere (for example 2593 * device deleted during suspend) 2594 */ 2595 mutex_lock(&sdev->state_mutex); 2596 if (sdev->sdev_state == SDEV_QUIESCE) 2597 scsi_device_set_state(sdev, SDEV_RUNNING); 2598 if (sdev->quiesced_by) { 2599 sdev->quiesced_by = NULL; 2600 blk_clear_pm_only(sdev->request_queue); 2601 } 2602 mutex_unlock(&sdev->state_mutex); 2603 } 2604 EXPORT_SYMBOL(scsi_device_resume); 2605 2606 static void 2607 device_quiesce_fn(struct scsi_device *sdev, void *data) 2608 { 2609 scsi_device_quiesce(sdev); 2610 } 2611 2612 void 2613 scsi_target_quiesce(struct scsi_target *starget) 2614 { 2615 starget_for_each_device(starget, NULL, device_quiesce_fn); 2616 } 2617 EXPORT_SYMBOL(scsi_target_quiesce); 2618 2619 static void 2620 device_resume_fn(struct scsi_device *sdev, void *data) 2621 { 2622 scsi_device_resume(sdev); 2623 } 2624 2625 void 2626 scsi_target_resume(struct scsi_target *starget) 2627 { 2628 starget_for_each_device(starget, NULL, device_resume_fn); 2629 } 2630 EXPORT_SYMBOL(scsi_target_resume); 2631 2632 /** 2633 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2634 * @sdev: device to block 2635 * 2636 * Pause SCSI command processing on the specified device. Does not sleep. 2637 * 2638 * Returns zero if successful or a negative error code upon failure. 2639 * 2640 * Notes: 2641 * This routine transitions the device to the SDEV_BLOCK state (which must be 2642 * a legal transition). When the device is in this state, command processing 2643 * is paused until the device leaves the SDEV_BLOCK state. See also 2644 * scsi_internal_device_unblock_nowait(). 2645 */ 2646 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2647 { 2648 struct request_queue *q = sdev->request_queue; 2649 int err = 0; 2650 2651 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2652 if (err) { 2653 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2654 2655 if (err) 2656 return err; 2657 } 2658 2659 /* 2660 * The device has transitioned to SDEV_BLOCK. Stop the 2661 * block layer from calling the midlayer with this device's 2662 * request queue. 2663 */ 2664 blk_mq_quiesce_queue_nowait(q); 2665 return 0; 2666 } 2667 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2668 2669 /** 2670 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2671 * @sdev: device to block 2672 * 2673 * Pause SCSI command processing on the specified device and wait until all 2674 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2675 * 2676 * Returns zero if successful or a negative error code upon failure. 2677 * 2678 * Note: 2679 * This routine transitions the device to the SDEV_BLOCK state (which must be 2680 * a legal transition). When the device is in this state, command processing 2681 * is paused until the device leaves the SDEV_BLOCK state. See also 2682 * scsi_internal_device_unblock(). 2683 */ 2684 static int scsi_internal_device_block(struct scsi_device *sdev) 2685 { 2686 struct request_queue *q = sdev->request_queue; 2687 int err; 2688 2689 mutex_lock(&sdev->state_mutex); 2690 err = scsi_internal_device_block_nowait(sdev); 2691 if (err == 0) 2692 blk_mq_quiesce_queue(q); 2693 mutex_unlock(&sdev->state_mutex); 2694 2695 return err; 2696 } 2697 2698 void scsi_start_queue(struct scsi_device *sdev) 2699 { 2700 struct request_queue *q = sdev->request_queue; 2701 2702 blk_mq_unquiesce_queue(q); 2703 } 2704 2705 /** 2706 * scsi_internal_device_unblock_nowait - resume a device after a block request 2707 * @sdev: device to resume 2708 * @new_state: state to set the device to after unblocking 2709 * 2710 * Restart the device queue for a previously suspended SCSI device. Does not 2711 * sleep. 2712 * 2713 * Returns zero if successful or a negative error code upon failure. 2714 * 2715 * Notes: 2716 * This routine transitions the device to the SDEV_RUNNING state or to one of 2717 * the offline states (which must be a legal transition) allowing the midlayer 2718 * to goose the queue for this device. 2719 */ 2720 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2721 enum scsi_device_state new_state) 2722 { 2723 switch (new_state) { 2724 case SDEV_RUNNING: 2725 case SDEV_TRANSPORT_OFFLINE: 2726 break; 2727 default: 2728 return -EINVAL; 2729 } 2730 2731 /* 2732 * Try to transition the scsi device to SDEV_RUNNING or one of the 2733 * offlined states and goose the device queue if successful. 2734 */ 2735 switch (sdev->sdev_state) { 2736 case SDEV_BLOCK: 2737 case SDEV_TRANSPORT_OFFLINE: 2738 sdev->sdev_state = new_state; 2739 break; 2740 case SDEV_CREATED_BLOCK: 2741 if (new_state == SDEV_TRANSPORT_OFFLINE || 2742 new_state == SDEV_OFFLINE) 2743 sdev->sdev_state = new_state; 2744 else 2745 sdev->sdev_state = SDEV_CREATED; 2746 break; 2747 case SDEV_CANCEL: 2748 case SDEV_OFFLINE: 2749 break; 2750 default: 2751 return -EINVAL; 2752 } 2753 scsi_start_queue(sdev); 2754 2755 return 0; 2756 } 2757 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2758 2759 /** 2760 * scsi_internal_device_unblock - resume a device after a block request 2761 * @sdev: device to resume 2762 * @new_state: state to set the device to after unblocking 2763 * 2764 * Restart the device queue for a previously suspended SCSI device. May sleep. 2765 * 2766 * Returns zero if successful or a negative error code upon failure. 2767 * 2768 * Notes: 2769 * This routine transitions the device to the SDEV_RUNNING state or to one of 2770 * the offline states (which must be a legal transition) allowing the midlayer 2771 * to goose the queue for this device. 2772 */ 2773 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2774 enum scsi_device_state new_state) 2775 { 2776 int ret; 2777 2778 mutex_lock(&sdev->state_mutex); 2779 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2780 mutex_unlock(&sdev->state_mutex); 2781 2782 return ret; 2783 } 2784 2785 static void 2786 device_block(struct scsi_device *sdev, void *data) 2787 { 2788 int ret; 2789 2790 ret = scsi_internal_device_block(sdev); 2791 2792 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2793 dev_name(&sdev->sdev_gendev), ret); 2794 } 2795 2796 static int 2797 target_block(struct device *dev, void *data) 2798 { 2799 if (scsi_is_target_device(dev)) 2800 starget_for_each_device(to_scsi_target(dev), NULL, 2801 device_block); 2802 return 0; 2803 } 2804 2805 void 2806 scsi_target_block(struct device *dev) 2807 { 2808 if (scsi_is_target_device(dev)) 2809 starget_for_each_device(to_scsi_target(dev), NULL, 2810 device_block); 2811 else 2812 device_for_each_child(dev, NULL, target_block); 2813 } 2814 EXPORT_SYMBOL_GPL(scsi_target_block); 2815 2816 static void 2817 device_unblock(struct scsi_device *sdev, void *data) 2818 { 2819 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2820 } 2821 2822 static int 2823 target_unblock(struct device *dev, void *data) 2824 { 2825 if (scsi_is_target_device(dev)) 2826 starget_for_each_device(to_scsi_target(dev), data, 2827 device_unblock); 2828 return 0; 2829 } 2830 2831 void 2832 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2833 { 2834 if (scsi_is_target_device(dev)) 2835 starget_for_each_device(to_scsi_target(dev), &new_state, 2836 device_unblock); 2837 else 2838 device_for_each_child(dev, &new_state, target_unblock); 2839 } 2840 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2841 2842 int 2843 scsi_host_block(struct Scsi_Host *shost) 2844 { 2845 struct scsi_device *sdev; 2846 int ret = 0; 2847 2848 /* 2849 * Call scsi_internal_device_block_nowait so we can avoid 2850 * calling synchronize_rcu() for each LUN. 2851 */ 2852 shost_for_each_device(sdev, shost) { 2853 mutex_lock(&sdev->state_mutex); 2854 ret = scsi_internal_device_block_nowait(sdev); 2855 mutex_unlock(&sdev->state_mutex); 2856 if (ret) { 2857 scsi_device_put(sdev); 2858 break; 2859 } 2860 } 2861 2862 /* 2863 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2864 * calling synchronize_rcu() once is enough. 2865 */ 2866 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2867 2868 if (!ret) 2869 synchronize_rcu(); 2870 2871 return ret; 2872 } 2873 EXPORT_SYMBOL_GPL(scsi_host_block); 2874 2875 int 2876 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2877 { 2878 struct scsi_device *sdev; 2879 int ret = 0; 2880 2881 shost_for_each_device(sdev, shost) { 2882 ret = scsi_internal_device_unblock(sdev, new_state); 2883 if (ret) { 2884 scsi_device_put(sdev); 2885 break; 2886 } 2887 } 2888 return ret; 2889 } 2890 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2891 2892 /** 2893 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2894 * @sgl: scatter-gather list 2895 * @sg_count: number of segments in sg 2896 * @offset: offset in bytes into sg, on return offset into the mapped area 2897 * @len: bytes to map, on return number of bytes mapped 2898 * 2899 * Returns virtual address of the start of the mapped page 2900 */ 2901 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2902 size_t *offset, size_t *len) 2903 { 2904 int i; 2905 size_t sg_len = 0, len_complete = 0; 2906 struct scatterlist *sg; 2907 struct page *page; 2908 2909 WARN_ON(!irqs_disabled()); 2910 2911 for_each_sg(sgl, sg, sg_count, i) { 2912 len_complete = sg_len; /* Complete sg-entries */ 2913 sg_len += sg->length; 2914 if (sg_len > *offset) 2915 break; 2916 } 2917 2918 if (unlikely(i == sg_count)) { 2919 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2920 "elements %d\n", 2921 __func__, sg_len, *offset, sg_count); 2922 WARN_ON(1); 2923 return NULL; 2924 } 2925 2926 /* Offset starting from the beginning of first page in this sg-entry */ 2927 *offset = *offset - len_complete + sg->offset; 2928 2929 /* Assumption: contiguous pages can be accessed as "page + i" */ 2930 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2931 *offset &= ~PAGE_MASK; 2932 2933 /* Bytes in this sg-entry from *offset to the end of the page */ 2934 sg_len = PAGE_SIZE - *offset; 2935 if (*len > sg_len) 2936 *len = sg_len; 2937 2938 return kmap_atomic(page); 2939 } 2940 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2941 2942 /** 2943 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2944 * @virt: virtual address to be unmapped 2945 */ 2946 void scsi_kunmap_atomic_sg(void *virt) 2947 { 2948 kunmap_atomic(virt); 2949 } 2950 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2951 2952 void sdev_disable_disk_events(struct scsi_device *sdev) 2953 { 2954 atomic_inc(&sdev->disk_events_disable_depth); 2955 } 2956 EXPORT_SYMBOL(sdev_disable_disk_events); 2957 2958 void sdev_enable_disk_events(struct scsi_device *sdev) 2959 { 2960 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2961 return; 2962 atomic_dec(&sdev->disk_events_disable_depth); 2963 } 2964 EXPORT_SYMBOL(sdev_enable_disk_events); 2965 2966 static unsigned char designator_prio(const unsigned char *d) 2967 { 2968 if (d[1] & 0x30) 2969 /* not associated with LUN */ 2970 return 0; 2971 2972 if (d[3] == 0) 2973 /* invalid length */ 2974 return 0; 2975 2976 /* 2977 * Order of preference for lun descriptor: 2978 * - SCSI name string 2979 * - NAA IEEE Registered Extended 2980 * - EUI-64 based 16-byte 2981 * - EUI-64 based 12-byte 2982 * - NAA IEEE Registered 2983 * - NAA IEEE Extended 2984 * - EUI-64 based 8-byte 2985 * - SCSI name string (truncated) 2986 * - T10 Vendor ID 2987 * as longer descriptors reduce the likelyhood 2988 * of identification clashes. 2989 */ 2990 2991 switch (d[1] & 0xf) { 2992 case 8: 2993 /* SCSI name string, variable-length UTF-8 */ 2994 return 9; 2995 case 3: 2996 switch (d[4] >> 4) { 2997 case 6: 2998 /* NAA registered extended */ 2999 return 8; 3000 case 5: 3001 /* NAA registered */ 3002 return 5; 3003 case 4: 3004 /* NAA extended */ 3005 return 4; 3006 case 3: 3007 /* NAA locally assigned */ 3008 return 1; 3009 default: 3010 break; 3011 } 3012 break; 3013 case 2: 3014 switch (d[3]) { 3015 case 16: 3016 /* EUI64-based, 16 byte */ 3017 return 7; 3018 case 12: 3019 /* EUI64-based, 12 byte */ 3020 return 6; 3021 case 8: 3022 /* EUI64-based, 8 byte */ 3023 return 3; 3024 default: 3025 break; 3026 } 3027 break; 3028 case 1: 3029 /* T10 vendor ID */ 3030 return 1; 3031 default: 3032 break; 3033 } 3034 3035 return 0; 3036 } 3037 3038 /** 3039 * scsi_vpd_lun_id - return a unique device identification 3040 * @sdev: SCSI device 3041 * @id: buffer for the identification 3042 * @id_len: length of the buffer 3043 * 3044 * Copies a unique device identification into @id based 3045 * on the information in the VPD page 0x83 of the device. 3046 * The string will be formatted as a SCSI name string. 3047 * 3048 * Returns the length of the identification or error on failure. 3049 * If the identifier is longer than the supplied buffer the actual 3050 * identifier length is returned and the buffer is not zero-padded. 3051 */ 3052 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3053 { 3054 u8 cur_id_prio = 0; 3055 u8 cur_id_size = 0; 3056 const unsigned char *d, *cur_id_str; 3057 const struct scsi_vpd *vpd_pg83; 3058 int id_size = -EINVAL; 3059 3060 rcu_read_lock(); 3061 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3062 if (!vpd_pg83) { 3063 rcu_read_unlock(); 3064 return -ENXIO; 3065 } 3066 3067 /* The id string must be at least 20 bytes + terminating NULL byte */ 3068 if (id_len < 21) { 3069 rcu_read_unlock(); 3070 return -EINVAL; 3071 } 3072 3073 memset(id, 0, id_len); 3074 for (d = vpd_pg83->data + 4; 3075 d < vpd_pg83->data + vpd_pg83->len; 3076 d += d[3] + 4) { 3077 u8 prio = designator_prio(d); 3078 3079 if (prio == 0 || cur_id_prio > prio) 3080 continue; 3081 3082 switch (d[1] & 0xf) { 3083 case 0x1: 3084 /* T10 Vendor ID */ 3085 if (cur_id_size > d[3]) 3086 break; 3087 cur_id_prio = prio; 3088 cur_id_size = d[3]; 3089 if (cur_id_size + 4 > id_len) 3090 cur_id_size = id_len - 4; 3091 cur_id_str = d + 4; 3092 id_size = snprintf(id, id_len, "t10.%*pE", 3093 cur_id_size, cur_id_str); 3094 break; 3095 case 0x2: 3096 /* EUI-64 */ 3097 cur_id_prio = prio; 3098 cur_id_size = d[3]; 3099 cur_id_str = d + 4; 3100 switch (cur_id_size) { 3101 case 8: 3102 id_size = snprintf(id, id_len, 3103 "eui.%8phN", 3104 cur_id_str); 3105 break; 3106 case 12: 3107 id_size = snprintf(id, id_len, 3108 "eui.%12phN", 3109 cur_id_str); 3110 break; 3111 case 16: 3112 id_size = snprintf(id, id_len, 3113 "eui.%16phN", 3114 cur_id_str); 3115 break; 3116 default: 3117 break; 3118 } 3119 break; 3120 case 0x3: 3121 /* NAA */ 3122 cur_id_prio = prio; 3123 cur_id_size = d[3]; 3124 cur_id_str = d + 4; 3125 switch (cur_id_size) { 3126 case 8: 3127 id_size = snprintf(id, id_len, 3128 "naa.%8phN", 3129 cur_id_str); 3130 break; 3131 case 16: 3132 id_size = snprintf(id, id_len, 3133 "naa.%16phN", 3134 cur_id_str); 3135 break; 3136 default: 3137 break; 3138 } 3139 break; 3140 case 0x8: 3141 /* SCSI name string */ 3142 if (cur_id_size > d[3]) 3143 break; 3144 /* Prefer others for truncated descriptor */ 3145 if (d[3] > id_len) { 3146 prio = 2; 3147 if (cur_id_prio > prio) 3148 break; 3149 } 3150 cur_id_prio = prio; 3151 cur_id_size = id_size = d[3]; 3152 cur_id_str = d + 4; 3153 if (cur_id_size >= id_len) 3154 cur_id_size = id_len - 1; 3155 memcpy(id, cur_id_str, cur_id_size); 3156 break; 3157 default: 3158 break; 3159 } 3160 } 3161 rcu_read_unlock(); 3162 3163 return id_size; 3164 } 3165 EXPORT_SYMBOL(scsi_vpd_lun_id); 3166 3167 /* 3168 * scsi_vpd_tpg_id - return a target port group identifier 3169 * @sdev: SCSI device 3170 * 3171 * Returns the Target Port Group identifier from the information 3172 * froom VPD page 0x83 of the device. 3173 * 3174 * Returns the identifier or error on failure. 3175 */ 3176 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3177 { 3178 const unsigned char *d; 3179 const struct scsi_vpd *vpd_pg83; 3180 int group_id = -EAGAIN, rel_port = -1; 3181 3182 rcu_read_lock(); 3183 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3184 if (!vpd_pg83) { 3185 rcu_read_unlock(); 3186 return -ENXIO; 3187 } 3188 3189 d = vpd_pg83->data + 4; 3190 while (d < vpd_pg83->data + vpd_pg83->len) { 3191 switch (d[1] & 0xf) { 3192 case 0x4: 3193 /* Relative target port */ 3194 rel_port = get_unaligned_be16(&d[6]); 3195 break; 3196 case 0x5: 3197 /* Target port group */ 3198 group_id = get_unaligned_be16(&d[6]); 3199 break; 3200 default: 3201 break; 3202 } 3203 d += d[3] + 4; 3204 } 3205 rcu_read_unlock(); 3206 3207 if (group_id >= 0 && rel_id && rel_port != -1) 3208 *rel_id = rel_port; 3209 3210 return group_id; 3211 } 3212 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3213 3214 /** 3215 * scsi_build_sense - build sense data for a command 3216 * @scmd: scsi command for which the sense should be formatted 3217 * @desc: Sense format (non-zero == descriptor format, 3218 * 0 == fixed format) 3219 * @key: Sense key 3220 * @asc: Additional sense code 3221 * @ascq: Additional sense code qualifier 3222 * 3223 **/ 3224 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3225 { 3226 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3227 scmd->result = SAM_STAT_CHECK_CONDITION; 3228 } 3229 EXPORT_SYMBOL_GPL(scsi_build_sense); 3230