xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 81d67439)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 /*
71  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72  * not change behaviour from the previous unplug mechanism, experimentation
73  * may prove this needs changing.
74  */
75 #define SCSI_QUEUE_DELAY	3
76 
77 /*
78  * Function:	scsi_unprep_request()
79  *
80  * Purpose:	Remove all preparation done for a request, including its
81  *		associated scsi_cmnd, so that it can be requeued.
82  *
83  * Arguments:	req	- request to unprepare
84  *
85  * Lock status:	Assumed that no locks are held upon entry.
86  *
87  * Returns:	Nothing.
88  */
89 static void scsi_unprep_request(struct request *req)
90 {
91 	struct scsi_cmnd *cmd = req->special;
92 
93 	blk_unprep_request(req);
94 	req->special = NULL;
95 
96 	scsi_put_command(cmd);
97 }
98 
99 /**
100  * __scsi_queue_insert - private queue insertion
101  * @cmd: The SCSI command being requeued
102  * @reason:  The reason for the requeue
103  * @unbusy: Whether the queue should be unbusied
104  *
105  * This is a private queue insertion.  The public interface
106  * scsi_queue_insert() always assumes the queue should be unbusied
107  * because it's always called before the completion.  This function is
108  * for a requeue after completion, which should only occur in this
109  * file.
110  */
111 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
112 {
113 	struct Scsi_Host *host = cmd->device->host;
114 	struct scsi_device *device = cmd->device;
115 	struct scsi_target *starget = scsi_target(device);
116 	struct request_queue *q = device->request_queue;
117 	unsigned long flags;
118 
119 	SCSI_LOG_MLQUEUE(1,
120 		 printk("Inserting command %p into mlqueue\n", cmd));
121 
122 	/*
123 	 * Set the appropriate busy bit for the device/host.
124 	 *
125 	 * If the host/device isn't busy, assume that something actually
126 	 * completed, and that we should be able to queue a command now.
127 	 *
128 	 * Note that the prior mid-layer assumption that any host could
129 	 * always queue at least one command is now broken.  The mid-layer
130 	 * will implement a user specifiable stall (see
131 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132 	 * if a command is requeued with no other commands outstanding
133 	 * either for the device or for the host.
134 	 */
135 	switch (reason) {
136 	case SCSI_MLQUEUE_HOST_BUSY:
137 		host->host_blocked = host->max_host_blocked;
138 		break;
139 	case SCSI_MLQUEUE_DEVICE_BUSY:
140 		device->device_blocked = device->max_device_blocked;
141 		break;
142 	case SCSI_MLQUEUE_TARGET_BUSY:
143 		starget->target_blocked = starget->max_target_blocked;
144 		break;
145 	}
146 
147 	/*
148 	 * Decrement the counters, since these commands are no longer
149 	 * active on the host/device.
150 	 */
151 	if (unbusy)
152 		scsi_device_unbusy(device);
153 
154 	/*
155 	 * Requeue this command.  It will go before all other commands
156 	 * that are already in the queue.
157 	 */
158 	spin_lock_irqsave(q->queue_lock, flags);
159 	blk_requeue_request(q, cmd->request);
160 	spin_unlock_irqrestore(q->queue_lock, flags);
161 
162 	kblockd_schedule_work(q, &device->requeue_work);
163 
164 	return 0;
165 }
166 
167 /*
168  * Function:    scsi_queue_insert()
169  *
170  * Purpose:     Insert a command in the midlevel queue.
171  *
172  * Arguments:   cmd    - command that we are adding to queue.
173  *              reason - why we are inserting command to queue.
174  *
175  * Lock status: Assumed that lock is not held upon entry.
176  *
177  * Returns:     Nothing.
178  *
179  * Notes:       We do this for one of two cases.  Either the host is busy
180  *              and it cannot accept any more commands for the time being,
181  *              or the device returned QUEUE_FULL and can accept no more
182  *              commands.
183  * Notes:       This could be called either from an interrupt context or a
184  *              normal process context.
185  */
186 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
187 {
188 	return __scsi_queue_insert(cmd, reason, 1);
189 }
190 /**
191  * scsi_execute - insert request and wait for the result
192  * @sdev:	scsi device
193  * @cmd:	scsi command
194  * @data_direction: data direction
195  * @buffer:	data buffer
196  * @bufflen:	len of buffer
197  * @sense:	optional sense buffer
198  * @timeout:	request timeout in seconds
199  * @retries:	number of times to retry request
200  * @flags:	or into request flags;
201  * @resid:	optional residual length
202  *
203  * returns the req->errors value which is the scsi_cmnd result
204  * field.
205  */
206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 		 int data_direction, void *buffer, unsigned bufflen,
208 		 unsigned char *sense, int timeout, int retries, int flags,
209 		 int *resid)
210 {
211 	struct request *req;
212 	int write = (data_direction == DMA_TO_DEVICE);
213 	int ret = DRIVER_ERROR << 24;
214 
215 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
216 	if (!req)
217 		return ret;
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245 
246 	if (resid)
247 		*resid = req->resid_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	/* if the device is dead, sdev will be NULL, so no queue to run */
408 	if (!sdev)
409 		return;
410 
411 	shost = sdev->host;
412 	if (scsi_target(sdev)->single_lun)
413 		scsi_single_lun_run(sdev);
414 
415 	spin_lock_irqsave(shost->host_lock, flags);
416 	list_splice_init(&shost->starved_list, &starved_list);
417 
418 	while (!list_empty(&starved_list)) {
419 		/*
420 		 * As long as shost is accepting commands and we have
421 		 * starved queues, call blk_run_queue. scsi_request_fn
422 		 * drops the queue_lock and can add us back to the
423 		 * starved_list.
424 		 *
425 		 * host_lock protects the starved_list and starved_entry.
426 		 * scsi_request_fn must get the host_lock before checking
427 		 * or modifying starved_list or starved_entry.
428 		 */
429 		if (scsi_host_is_busy(shost))
430 			break;
431 
432 		sdev = list_entry(starved_list.next,
433 				  struct scsi_device, starved_entry);
434 		list_del_init(&sdev->starved_entry);
435 		if (scsi_target_is_busy(scsi_target(sdev))) {
436 			list_move_tail(&sdev->starved_entry,
437 				       &shost->starved_list);
438 			continue;
439 		}
440 
441 		spin_unlock(shost->host_lock);
442 		spin_lock(sdev->request_queue->queue_lock);
443 		__blk_run_queue(sdev->request_queue);
444 		spin_unlock(sdev->request_queue->queue_lock);
445 		spin_lock(shost->host_lock);
446 	}
447 	/* put any unprocessed entries back */
448 	list_splice(&starved_list, &shost->starved_list);
449 	spin_unlock_irqrestore(shost->host_lock, flags);
450 
451 	blk_run_queue(q);
452 }
453 
454 void scsi_requeue_run_queue(struct work_struct *work)
455 {
456 	struct scsi_device *sdev;
457 	struct request_queue *q;
458 
459 	sdev = container_of(work, struct scsi_device, requeue_work);
460 	q = sdev->request_queue;
461 	scsi_run_queue(q);
462 }
463 
464 /*
465  * Function:	scsi_requeue_command()
466  *
467  * Purpose:	Handle post-processing of completed commands.
468  *
469  * Arguments:	q	- queue to operate on
470  *		cmd	- command that may need to be requeued.
471  *
472  * Returns:	Nothing
473  *
474  * Notes:	After command completion, there may be blocks left
475  *		over which weren't finished by the previous command
476  *		this can be for a number of reasons - the main one is
477  *		I/O errors in the middle of the request, in which case
478  *		we need to request the blocks that come after the bad
479  *		sector.
480  * Notes:	Upon return, cmd is a stale pointer.
481  */
482 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
483 {
484 	struct request *req = cmd->request;
485 	unsigned long flags;
486 
487 	spin_lock_irqsave(q->queue_lock, flags);
488 	scsi_unprep_request(req);
489 	blk_requeue_request(q, req);
490 	spin_unlock_irqrestore(q->queue_lock, flags);
491 
492 	scsi_run_queue(q);
493 }
494 
495 void scsi_next_command(struct scsi_cmnd *cmd)
496 {
497 	struct scsi_device *sdev = cmd->device;
498 	struct request_queue *q = sdev->request_queue;
499 
500 	/* need to hold a reference on the device before we let go of the cmd */
501 	get_device(&sdev->sdev_gendev);
502 
503 	scsi_put_command(cmd);
504 	scsi_run_queue(q);
505 
506 	/* ok to remove device now */
507 	put_device(&sdev->sdev_gendev);
508 }
509 
510 void scsi_run_host_queues(struct Scsi_Host *shost)
511 {
512 	struct scsi_device *sdev;
513 
514 	shost_for_each_device(sdev, shost)
515 		scsi_run_queue(sdev->request_queue);
516 }
517 
518 static void __scsi_release_buffers(struct scsi_cmnd *, int);
519 
520 /*
521  * Function:    scsi_end_request()
522  *
523  * Purpose:     Post-processing of completed commands (usually invoked at end
524  *		of upper level post-processing and scsi_io_completion).
525  *
526  * Arguments:   cmd	 - command that is complete.
527  *              error    - 0 if I/O indicates success, < 0 for I/O error.
528  *              bytes    - number of bytes of completed I/O
529  *		requeue  - indicates whether we should requeue leftovers.
530  *
531  * Lock status: Assumed that lock is not held upon entry.
532  *
533  * Returns:     cmd if requeue required, NULL otherwise.
534  *
535  * Notes:       This is called for block device requests in order to
536  *              mark some number of sectors as complete.
537  *
538  *		We are guaranteeing that the request queue will be goosed
539  *		at some point during this call.
540  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
541  */
542 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
543 					  int bytes, int requeue)
544 {
545 	struct request_queue *q = cmd->device->request_queue;
546 	struct request *req = cmd->request;
547 
548 	/*
549 	 * If there are blocks left over at the end, set up the command
550 	 * to queue the remainder of them.
551 	 */
552 	if (blk_end_request(req, error, bytes)) {
553 		/* kill remainder if no retrys */
554 		if (error && scsi_noretry_cmd(cmd))
555 			blk_end_request_all(req, error);
556 		else {
557 			if (requeue) {
558 				/*
559 				 * Bleah.  Leftovers again.  Stick the
560 				 * leftovers in the front of the
561 				 * queue, and goose the queue again.
562 				 */
563 				scsi_release_buffers(cmd);
564 				scsi_requeue_command(q, cmd);
565 				cmd = NULL;
566 			}
567 			return cmd;
568 		}
569 	}
570 
571 	/*
572 	 * This will goose the queue request function at the end, so we don't
573 	 * need to worry about launching another command.
574 	 */
575 	__scsi_release_buffers(cmd, 0);
576 	scsi_next_command(cmd);
577 	return NULL;
578 }
579 
580 static inline unsigned int scsi_sgtable_index(unsigned short nents)
581 {
582 	unsigned int index;
583 
584 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
585 
586 	if (nents <= 8)
587 		index = 0;
588 	else
589 		index = get_count_order(nents) - 3;
590 
591 	return index;
592 }
593 
594 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
595 {
596 	struct scsi_host_sg_pool *sgp;
597 
598 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
599 	mempool_free(sgl, sgp->pool);
600 }
601 
602 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
603 {
604 	struct scsi_host_sg_pool *sgp;
605 
606 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
607 	return mempool_alloc(sgp->pool, gfp_mask);
608 }
609 
610 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
611 			      gfp_t gfp_mask)
612 {
613 	int ret;
614 
615 	BUG_ON(!nents);
616 
617 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
618 			       gfp_mask, scsi_sg_alloc);
619 	if (unlikely(ret))
620 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
621 				scsi_sg_free);
622 
623 	return ret;
624 }
625 
626 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
627 {
628 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
629 }
630 
631 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
632 {
633 
634 	if (cmd->sdb.table.nents)
635 		scsi_free_sgtable(&cmd->sdb);
636 
637 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
638 
639 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
640 		struct scsi_data_buffer *bidi_sdb =
641 			cmd->request->next_rq->special;
642 		scsi_free_sgtable(bidi_sdb);
643 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
644 		cmd->request->next_rq->special = NULL;
645 	}
646 
647 	if (scsi_prot_sg_count(cmd))
648 		scsi_free_sgtable(cmd->prot_sdb);
649 }
650 
651 /*
652  * Function:    scsi_release_buffers()
653  *
654  * Purpose:     Completion processing for block device I/O requests.
655  *
656  * Arguments:   cmd	- command that we are bailing.
657  *
658  * Lock status: Assumed that no lock is held upon entry.
659  *
660  * Returns:     Nothing
661  *
662  * Notes:       In the event that an upper level driver rejects a
663  *		command, we must release resources allocated during
664  *		the __init_io() function.  Primarily this would involve
665  *		the scatter-gather table, and potentially any bounce
666  *		buffers.
667  */
668 void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 	__scsi_release_buffers(cmd, 1);
671 }
672 EXPORT_SYMBOL(scsi_release_buffers);
673 
674 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
675 {
676 	int error = 0;
677 
678 	switch(host_byte(result)) {
679 	case DID_TRANSPORT_FAILFAST:
680 		error = -ENOLINK;
681 		break;
682 	case DID_TARGET_FAILURE:
683 		cmd->result |= (DID_OK << 16);
684 		error = -EREMOTEIO;
685 		break;
686 	case DID_NEXUS_FAILURE:
687 		cmd->result |= (DID_OK << 16);
688 		error = -EBADE;
689 		break;
690 	default:
691 		error = -EIO;
692 		break;
693 	}
694 
695 	return error;
696 }
697 
698 /*
699  * Function:    scsi_io_completion()
700  *
701  * Purpose:     Completion processing for block device I/O requests.
702  *
703  * Arguments:   cmd   - command that is finished.
704  *
705  * Lock status: Assumed that no lock is held upon entry.
706  *
707  * Returns:     Nothing
708  *
709  * Notes:       This function is matched in terms of capabilities to
710  *              the function that created the scatter-gather list.
711  *              In other words, if there are no bounce buffers
712  *              (the normal case for most drivers), we don't need
713  *              the logic to deal with cleaning up afterwards.
714  *
715  *		We must call scsi_end_request().  This will finish off
716  *		the specified number of sectors.  If we are done, the
717  *		command block will be released and the queue function
718  *		will be goosed.  If we are not done then we have to
719  *		figure out what to do next:
720  *
721  *		a) We can call scsi_requeue_command().  The request
722  *		   will be unprepared and put back on the queue.  Then
723  *		   a new command will be created for it.  This should
724  *		   be used if we made forward progress, or if we want
725  *		   to switch from READ(10) to READ(6) for example.
726  *
727  *		b) We can call scsi_queue_insert().  The request will
728  *		   be put back on the queue and retried using the same
729  *		   command as before, possibly after a delay.
730  *
731  *		c) We can call blk_end_request() with -EIO to fail
732  *		   the remainder of the request.
733  */
734 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
735 {
736 	int result = cmd->result;
737 	struct request_queue *q = cmd->device->request_queue;
738 	struct request *req = cmd->request;
739 	int error = 0;
740 	struct scsi_sense_hdr sshdr;
741 	int sense_valid = 0;
742 	int sense_deferred = 0;
743 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
744 	      ACTION_DELAYED_RETRY} action;
745 	char *description = NULL;
746 
747 	if (result) {
748 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
749 		if (sense_valid)
750 			sense_deferred = scsi_sense_is_deferred(&sshdr);
751 	}
752 
753 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
754 		req->errors = result;
755 		if (result) {
756 			if (sense_valid && req->sense) {
757 				/*
758 				 * SG_IO wants current and deferred errors
759 				 */
760 				int len = 8 + cmd->sense_buffer[7];
761 
762 				if (len > SCSI_SENSE_BUFFERSIZE)
763 					len = SCSI_SENSE_BUFFERSIZE;
764 				memcpy(req->sense, cmd->sense_buffer,  len);
765 				req->sense_len = len;
766 			}
767 			if (!sense_deferred)
768 				error = __scsi_error_from_host_byte(cmd, result);
769 		}
770 
771 		req->resid_len = scsi_get_resid(cmd);
772 
773 		if (scsi_bidi_cmnd(cmd)) {
774 			/*
775 			 * Bidi commands Must be complete as a whole,
776 			 * both sides at once.
777 			 */
778 			req->next_rq->resid_len = scsi_in(cmd)->resid;
779 
780 			scsi_release_buffers(cmd);
781 			blk_end_request_all(req, 0);
782 
783 			scsi_next_command(cmd);
784 			return;
785 		}
786 	}
787 
788 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
789 	BUG_ON(blk_bidi_rq(req));
790 
791 	/*
792 	 * Next deal with any sectors which we were able to correctly
793 	 * handle.
794 	 */
795 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
796 				      "%d bytes done.\n",
797 				      blk_rq_sectors(req), good_bytes));
798 
799 	/*
800 	 * Recovered errors need reporting, but they're always treated
801 	 * as success, so fiddle the result code here.  For BLOCK_PC
802 	 * we already took a copy of the original into rq->errors which
803 	 * is what gets returned to the user
804 	 */
805 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
806 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
807 		 * print since caller wants ATA registers. Only occurs on
808 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
809 		 */
810 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
811 			;
812 		else if (!(req->cmd_flags & REQ_QUIET))
813 			scsi_print_sense("", cmd);
814 		result = 0;
815 		/* BLOCK_PC may have set error */
816 		error = 0;
817 	}
818 
819 	/*
820 	 * A number of bytes were successfully read.  If there
821 	 * are leftovers and there is some kind of error
822 	 * (result != 0), retry the rest.
823 	 */
824 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
825 		return;
826 
827 	error = __scsi_error_from_host_byte(cmd, result);
828 
829 	if (host_byte(result) == DID_RESET) {
830 		/* Third party bus reset or reset for error recovery
831 		 * reasons.  Just retry the command and see what
832 		 * happens.
833 		 */
834 		action = ACTION_RETRY;
835 	} else if (sense_valid && !sense_deferred) {
836 		switch (sshdr.sense_key) {
837 		case UNIT_ATTENTION:
838 			if (cmd->device->removable) {
839 				/* Detected disc change.  Set a bit
840 				 * and quietly refuse further access.
841 				 */
842 				cmd->device->changed = 1;
843 				description = "Media Changed";
844 				action = ACTION_FAIL;
845 			} else {
846 				/* Must have been a power glitch, or a
847 				 * bus reset.  Could not have been a
848 				 * media change, so we just retry the
849 				 * command and see what happens.
850 				 */
851 				action = ACTION_RETRY;
852 			}
853 			break;
854 		case ILLEGAL_REQUEST:
855 			/* If we had an ILLEGAL REQUEST returned, then
856 			 * we may have performed an unsupported
857 			 * command.  The only thing this should be
858 			 * would be a ten byte read where only a six
859 			 * byte read was supported.  Also, on a system
860 			 * where READ CAPACITY failed, we may have
861 			 * read past the end of the disk.
862 			 */
863 			if ((cmd->device->use_10_for_rw &&
864 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
865 			    (cmd->cmnd[0] == READ_10 ||
866 			     cmd->cmnd[0] == WRITE_10)) {
867 				/* This will issue a new 6-byte command. */
868 				cmd->device->use_10_for_rw = 0;
869 				action = ACTION_REPREP;
870 			} else if (sshdr.asc == 0x10) /* DIX */ {
871 				description = "Host Data Integrity Failure";
872 				action = ACTION_FAIL;
873 				error = -EILSEQ;
874 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
875 			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
876 				   (cmd->cmnd[0] == UNMAP ||
877 				    cmd->cmnd[0] == WRITE_SAME_16 ||
878 				    cmd->cmnd[0] == WRITE_SAME)) {
879 				description = "Discard failure";
880 				action = ACTION_FAIL;
881 			} else
882 				action = ACTION_FAIL;
883 			break;
884 		case ABORTED_COMMAND:
885 			action = ACTION_FAIL;
886 			if (sshdr.asc == 0x10) { /* DIF */
887 				description = "Target Data Integrity Failure";
888 				error = -EILSEQ;
889 			}
890 			break;
891 		case NOT_READY:
892 			/* If the device is in the process of becoming
893 			 * ready, or has a temporary blockage, retry.
894 			 */
895 			if (sshdr.asc == 0x04) {
896 				switch (sshdr.ascq) {
897 				case 0x01: /* becoming ready */
898 				case 0x04: /* format in progress */
899 				case 0x05: /* rebuild in progress */
900 				case 0x06: /* recalculation in progress */
901 				case 0x07: /* operation in progress */
902 				case 0x08: /* Long write in progress */
903 				case 0x09: /* self test in progress */
904 				case 0x14: /* space allocation in progress */
905 					action = ACTION_DELAYED_RETRY;
906 					break;
907 				default:
908 					description = "Device not ready";
909 					action = ACTION_FAIL;
910 					break;
911 				}
912 			} else {
913 				description = "Device not ready";
914 				action = ACTION_FAIL;
915 			}
916 			break;
917 		case VOLUME_OVERFLOW:
918 			/* See SSC3rXX or current. */
919 			action = ACTION_FAIL;
920 			break;
921 		default:
922 			description = "Unhandled sense code";
923 			action = ACTION_FAIL;
924 			break;
925 		}
926 	} else {
927 		description = "Unhandled error code";
928 		action = ACTION_FAIL;
929 	}
930 
931 	switch (action) {
932 	case ACTION_FAIL:
933 		/* Give up and fail the remainder of the request */
934 		scsi_release_buffers(cmd);
935 		if (!(req->cmd_flags & REQ_QUIET)) {
936 			if (description)
937 				scmd_printk(KERN_INFO, cmd, "%s\n",
938 					    description);
939 			scsi_print_result(cmd);
940 			if (driver_byte(result) & DRIVER_SENSE)
941 				scsi_print_sense("", cmd);
942 			scsi_print_command(cmd);
943 		}
944 		if (blk_end_request_err(req, error))
945 			scsi_requeue_command(q, cmd);
946 		else
947 			scsi_next_command(cmd);
948 		break;
949 	case ACTION_REPREP:
950 		/* Unprep the request and put it back at the head of the queue.
951 		 * A new command will be prepared and issued.
952 		 */
953 		scsi_release_buffers(cmd);
954 		scsi_requeue_command(q, cmd);
955 		break;
956 	case ACTION_RETRY:
957 		/* Retry the same command immediately */
958 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
959 		break;
960 	case ACTION_DELAYED_RETRY:
961 		/* Retry the same command after a delay */
962 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
963 		break;
964 	}
965 }
966 
967 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
968 			     gfp_t gfp_mask)
969 {
970 	int count;
971 
972 	/*
973 	 * If sg table allocation fails, requeue request later.
974 	 */
975 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
976 					gfp_mask))) {
977 		return BLKPREP_DEFER;
978 	}
979 
980 	req->buffer = NULL;
981 
982 	/*
983 	 * Next, walk the list, and fill in the addresses and sizes of
984 	 * each segment.
985 	 */
986 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
987 	BUG_ON(count > sdb->table.nents);
988 	sdb->table.nents = count;
989 	sdb->length = blk_rq_bytes(req);
990 	return BLKPREP_OK;
991 }
992 
993 /*
994  * Function:    scsi_init_io()
995  *
996  * Purpose:     SCSI I/O initialize function.
997  *
998  * Arguments:   cmd   - Command descriptor we wish to initialize
999  *
1000  * Returns:     0 on success
1001  *		BLKPREP_DEFER if the failure is retryable
1002  *		BLKPREP_KILL if the failure is fatal
1003  */
1004 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1005 {
1006 	struct request *rq = cmd->request;
1007 
1008 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1009 	if (error)
1010 		goto err_exit;
1011 
1012 	if (blk_bidi_rq(rq)) {
1013 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1014 			scsi_sdb_cache, GFP_ATOMIC);
1015 		if (!bidi_sdb) {
1016 			error = BLKPREP_DEFER;
1017 			goto err_exit;
1018 		}
1019 
1020 		rq->next_rq->special = bidi_sdb;
1021 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1022 		if (error)
1023 			goto err_exit;
1024 	}
1025 
1026 	if (blk_integrity_rq(rq)) {
1027 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1028 		int ivecs, count;
1029 
1030 		BUG_ON(prot_sdb == NULL);
1031 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1032 
1033 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1034 			error = BLKPREP_DEFER;
1035 			goto err_exit;
1036 		}
1037 
1038 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1039 						prot_sdb->table.sgl);
1040 		BUG_ON(unlikely(count > ivecs));
1041 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1042 
1043 		cmd->prot_sdb = prot_sdb;
1044 		cmd->prot_sdb->table.nents = count;
1045 	}
1046 
1047 	return BLKPREP_OK ;
1048 
1049 err_exit:
1050 	scsi_release_buffers(cmd);
1051 	cmd->request->special = NULL;
1052 	scsi_put_command(cmd);
1053 	return error;
1054 }
1055 EXPORT_SYMBOL(scsi_init_io);
1056 
1057 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1058 		struct request *req)
1059 {
1060 	struct scsi_cmnd *cmd;
1061 
1062 	if (!req->special) {
1063 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1064 		if (unlikely(!cmd))
1065 			return NULL;
1066 		req->special = cmd;
1067 	} else {
1068 		cmd = req->special;
1069 	}
1070 
1071 	/* pull a tag out of the request if we have one */
1072 	cmd->tag = req->tag;
1073 	cmd->request = req;
1074 
1075 	cmd->cmnd = req->cmd;
1076 	cmd->prot_op = SCSI_PROT_NORMAL;
1077 
1078 	return cmd;
1079 }
1080 
1081 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1082 {
1083 	struct scsi_cmnd *cmd;
1084 	int ret = scsi_prep_state_check(sdev, req);
1085 
1086 	if (ret != BLKPREP_OK)
1087 		return ret;
1088 
1089 	cmd = scsi_get_cmd_from_req(sdev, req);
1090 	if (unlikely(!cmd))
1091 		return BLKPREP_DEFER;
1092 
1093 	/*
1094 	 * BLOCK_PC requests may transfer data, in which case they must
1095 	 * a bio attached to them.  Or they might contain a SCSI command
1096 	 * that does not transfer data, in which case they may optionally
1097 	 * submit a request without an attached bio.
1098 	 */
1099 	if (req->bio) {
1100 		int ret;
1101 
1102 		BUG_ON(!req->nr_phys_segments);
1103 
1104 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1105 		if (unlikely(ret))
1106 			return ret;
1107 	} else {
1108 		BUG_ON(blk_rq_bytes(req));
1109 
1110 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1111 		req->buffer = NULL;
1112 	}
1113 
1114 	cmd->cmd_len = req->cmd_len;
1115 	if (!blk_rq_bytes(req))
1116 		cmd->sc_data_direction = DMA_NONE;
1117 	else if (rq_data_dir(req) == WRITE)
1118 		cmd->sc_data_direction = DMA_TO_DEVICE;
1119 	else
1120 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1121 
1122 	cmd->transfersize = blk_rq_bytes(req);
1123 	cmd->allowed = req->retries;
1124 	return BLKPREP_OK;
1125 }
1126 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1127 
1128 /*
1129  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1130  * from filesystems that still need to be translated to SCSI CDBs from
1131  * the ULD.
1132  */
1133 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1134 {
1135 	struct scsi_cmnd *cmd;
1136 	int ret = scsi_prep_state_check(sdev, req);
1137 
1138 	if (ret != BLKPREP_OK)
1139 		return ret;
1140 
1141 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1142 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1143 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1144 		if (ret != BLKPREP_OK)
1145 			return ret;
1146 	}
1147 
1148 	/*
1149 	 * Filesystem requests must transfer data.
1150 	 */
1151 	BUG_ON(!req->nr_phys_segments);
1152 
1153 	cmd = scsi_get_cmd_from_req(sdev, req);
1154 	if (unlikely(!cmd))
1155 		return BLKPREP_DEFER;
1156 
1157 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1158 	return scsi_init_io(cmd, GFP_ATOMIC);
1159 }
1160 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1161 
1162 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1163 {
1164 	int ret = BLKPREP_OK;
1165 
1166 	/*
1167 	 * If the device is not in running state we will reject some
1168 	 * or all commands.
1169 	 */
1170 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1171 		switch (sdev->sdev_state) {
1172 		case SDEV_OFFLINE:
1173 			/*
1174 			 * If the device is offline we refuse to process any
1175 			 * commands.  The device must be brought online
1176 			 * before trying any recovery commands.
1177 			 */
1178 			sdev_printk(KERN_ERR, sdev,
1179 				    "rejecting I/O to offline device\n");
1180 			ret = BLKPREP_KILL;
1181 			break;
1182 		case SDEV_DEL:
1183 			/*
1184 			 * If the device is fully deleted, we refuse to
1185 			 * process any commands as well.
1186 			 */
1187 			sdev_printk(KERN_ERR, sdev,
1188 				    "rejecting I/O to dead device\n");
1189 			ret = BLKPREP_KILL;
1190 			break;
1191 		case SDEV_QUIESCE:
1192 		case SDEV_BLOCK:
1193 		case SDEV_CREATED_BLOCK:
1194 			/*
1195 			 * If the devices is blocked we defer normal commands.
1196 			 */
1197 			if (!(req->cmd_flags & REQ_PREEMPT))
1198 				ret = BLKPREP_DEFER;
1199 			break;
1200 		default:
1201 			/*
1202 			 * For any other not fully online state we only allow
1203 			 * special commands.  In particular any user initiated
1204 			 * command is not allowed.
1205 			 */
1206 			if (!(req->cmd_flags & REQ_PREEMPT))
1207 				ret = BLKPREP_KILL;
1208 			break;
1209 		}
1210 	}
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(scsi_prep_state_check);
1214 
1215 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1216 {
1217 	struct scsi_device *sdev = q->queuedata;
1218 
1219 	switch (ret) {
1220 	case BLKPREP_KILL:
1221 		req->errors = DID_NO_CONNECT << 16;
1222 		/* release the command and kill it */
1223 		if (req->special) {
1224 			struct scsi_cmnd *cmd = req->special;
1225 			scsi_release_buffers(cmd);
1226 			scsi_put_command(cmd);
1227 			req->special = NULL;
1228 		}
1229 		break;
1230 	case BLKPREP_DEFER:
1231 		/*
1232 		 * If we defer, the blk_peek_request() returns NULL, but the
1233 		 * queue must be restarted, so we schedule a callback to happen
1234 		 * shortly.
1235 		 */
1236 		if (sdev->device_busy == 0)
1237 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1238 		break;
1239 	default:
1240 		req->cmd_flags |= REQ_DONTPREP;
1241 	}
1242 
1243 	return ret;
1244 }
1245 EXPORT_SYMBOL(scsi_prep_return);
1246 
1247 int scsi_prep_fn(struct request_queue *q, struct request *req)
1248 {
1249 	struct scsi_device *sdev = q->queuedata;
1250 	int ret = BLKPREP_KILL;
1251 
1252 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1253 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1254 	return scsi_prep_return(q, req, ret);
1255 }
1256 EXPORT_SYMBOL(scsi_prep_fn);
1257 
1258 /*
1259  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1260  * return 0.
1261  *
1262  * Called with the queue_lock held.
1263  */
1264 static inline int scsi_dev_queue_ready(struct request_queue *q,
1265 				  struct scsi_device *sdev)
1266 {
1267 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1268 		/*
1269 		 * unblock after device_blocked iterates to zero
1270 		 */
1271 		if (--sdev->device_blocked == 0) {
1272 			SCSI_LOG_MLQUEUE(3,
1273 				   sdev_printk(KERN_INFO, sdev,
1274 				   "unblocking device at zero depth\n"));
1275 		} else {
1276 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1277 			return 0;
1278 		}
1279 	}
1280 	if (scsi_device_is_busy(sdev))
1281 		return 0;
1282 
1283 	return 1;
1284 }
1285 
1286 
1287 /*
1288  * scsi_target_queue_ready: checks if there we can send commands to target
1289  * @sdev: scsi device on starget to check.
1290  *
1291  * Called with the host lock held.
1292  */
1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1294 					   struct scsi_device *sdev)
1295 {
1296 	struct scsi_target *starget = scsi_target(sdev);
1297 
1298 	if (starget->single_lun) {
1299 		if (starget->starget_sdev_user &&
1300 		    starget->starget_sdev_user != sdev)
1301 			return 0;
1302 		starget->starget_sdev_user = sdev;
1303 	}
1304 
1305 	if (starget->target_busy == 0 && starget->target_blocked) {
1306 		/*
1307 		 * unblock after target_blocked iterates to zero
1308 		 */
1309 		if (--starget->target_blocked == 0) {
1310 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1311 					 "unblocking target at zero depth\n"));
1312 		} else
1313 			return 0;
1314 	}
1315 
1316 	if (scsi_target_is_busy(starget)) {
1317 		if (list_empty(&sdev->starved_entry))
1318 			list_add_tail(&sdev->starved_entry,
1319 				      &shost->starved_list);
1320 		return 0;
1321 	}
1322 
1323 	/* We're OK to process the command, so we can't be starved */
1324 	if (!list_empty(&sdev->starved_entry))
1325 		list_del_init(&sdev->starved_entry);
1326 	return 1;
1327 }
1328 
1329 /*
1330  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331  * return 0. We must end up running the queue again whenever 0 is
1332  * returned, else IO can hang.
1333  *
1334  * Called with host_lock held.
1335  */
1336 static inline int scsi_host_queue_ready(struct request_queue *q,
1337 				   struct Scsi_Host *shost,
1338 				   struct scsi_device *sdev)
1339 {
1340 	if (scsi_host_in_recovery(shost))
1341 		return 0;
1342 	if (shost->host_busy == 0 && shost->host_blocked) {
1343 		/*
1344 		 * unblock after host_blocked iterates to zero
1345 		 */
1346 		if (--shost->host_blocked == 0) {
1347 			SCSI_LOG_MLQUEUE(3,
1348 				printk("scsi%d unblocking host at zero depth\n",
1349 					shost->host_no));
1350 		} else {
1351 			return 0;
1352 		}
1353 	}
1354 	if (scsi_host_is_busy(shost)) {
1355 		if (list_empty(&sdev->starved_entry))
1356 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1357 		return 0;
1358 	}
1359 
1360 	/* We're OK to process the command, so we can't be starved */
1361 	if (!list_empty(&sdev->starved_entry))
1362 		list_del_init(&sdev->starved_entry);
1363 
1364 	return 1;
1365 }
1366 
1367 /*
1368  * Busy state exporting function for request stacking drivers.
1369  *
1370  * For efficiency, no lock is taken to check the busy state of
1371  * shost/starget/sdev, since the returned value is not guaranteed and
1372  * may be changed after request stacking drivers call the function,
1373  * regardless of taking lock or not.
1374  *
1375  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1376  * (e.g. !sdev), scsi needs to return 'not busy'.
1377  * Otherwise, request stacking drivers may hold requests forever.
1378  */
1379 static int scsi_lld_busy(struct request_queue *q)
1380 {
1381 	struct scsi_device *sdev = q->queuedata;
1382 	struct Scsi_Host *shost;
1383 	struct scsi_target *starget;
1384 
1385 	if (!sdev)
1386 		return 0;
1387 
1388 	shost = sdev->host;
1389 	starget = scsi_target(sdev);
1390 
1391 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1392 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1393 		return 1;
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * Kill a request for a dead device
1400  */
1401 static void scsi_kill_request(struct request *req, struct request_queue *q)
1402 {
1403 	struct scsi_cmnd *cmd = req->special;
1404 	struct scsi_device *sdev;
1405 	struct scsi_target *starget;
1406 	struct Scsi_Host *shost;
1407 
1408 	blk_start_request(req);
1409 
1410 	sdev = cmd->device;
1411 	starget = scsi_target(sdev);
1412 	shost = sdev->host;
1413 	scsi_init_cmd_errh(cmd);
1414 	cmd->result = DID_NO_CONNECT << 16;
1415 	atomic_inc(&cmd->device->iorequest_cnt);
1416 
1417 	/*
1418 	 * SCSI request completion path will do scsi_device_unbusy(),
1419 	 * bump busy counts.  To bump the counters, we need to dance
1420 	 * with the locks as normal issue path does.
1421 	 */
1422 	sdev->device_busy++;
1423 	spin_unlock(sdev->request_queue->queue_lock);
1424 	spin_lock(shost->host_lock);
1425 	shost->host_busy++;
1426 	starget->target_busy++;
1427 	spin_unlock(shost->host_lock);
1428 	spin_lock(sdev->request_queue->queue_lock);
1429 
1430 	blk_complete_request(req);
1431 }
1432 
1433 static void scsi_softirq_done(struct request *rq)
1434 {
1435 	struct scsi_cmnd *cmd = rq->special;
1436 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1437 	int disposition;
1438 
1439 	INIT_LIST_HEAD(&cmd->eh_entry);
1440 
1441 	atomic_inc(&cmd->device->iodone_cnt);
1442 	if (cmd->result)
1443 		atomic_inc(&cmd->device->ioerr_cnt);
1444 
1445 	disposition = scsi_decide_disposition(cmd);
1446 	if (disposition != SUCCESS &&
1447 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1448 		sdev_printk(KERN_ERR, cmd->device,
1449 			    "timing out command, waited %lus\n",
1450 			    wait_for/HZ);
1451 		disposition = SUCCESS;
1452 	}
1453 
1454 	scsi_log_completion(cmd, disposition);
1455 
1456 	switch (disposition) {
1457 		case SUCCESS:
1458 			scsi_finish_command(cmd);
1459 			break;
1460 		case NEEDS_RETRY:
1461 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1462 			break;
1463 		case ADD_TO_MLQUEUE:
1464 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1465 			break;
1466 		default:
1467 			if (!scsi_eh_scmd_add(cmd, 0))
1468 				scsi_finish_command(cmd);
1469 	}
1470 }
1471 
1472 /*
1473  * Function:    scsi_request_fn()
1474  *
1475  * Purpose:     Main strategy routine for SCSI.
1476  *
1477  * Arguments:   q       - Pointer to actual queue.
1478  *
1479  * Returns:     Nothing
1480  *
1481  * Lock status: IO request lock assumed to be held when called.
1482  */
1483 static void scsi_request_fn(struct request_queue *q)
1484 {
1485 	struct scsi_device *sdev = q->queuedata;
1486 	struct Scsi_Host *shost;
1487 	struct scsi_cmnd *cmd;
1488 	struct request *req;
1489 
1490 	if (!sdev) {
1491 		printk("scsi: killing requests for dead queue\n");
1492 		while ((req = blk_peek_request(q)) != NULL)
1493 			scsi_kill_request(req, q);
1494 		return;
1495 	}
1496 
1497 	if(!get_device(&sdev->sdev_gendev))
1498 		/* We must be tearing the block queue down already */
1499 		return;
1500 
1501 	/*
1502 	 * To start with, we keep looping until the queue is empty, or until
1503 	 * the host is no longer able to accept any more requests.
1504 	 */
1505 	shost = sdev->host;
1506 	for (;;) {
1507 		int rtn;
1508 		/*
1509 		 * get next queueable request.  We do this early to make sure
1510 		 * that the request is fully prepared even if we cannot
1511 		 * accept it.
1512 		 */
1513 		req = blk_peek_request(q);
1514 		if (!req || !scsi_dev_queue_ready(q, sdev))
1515 			break;
1516 
1517 		if (unlikely(!scsi_device_online(sdev))) {
1518 			sdev_printk(KERN_ERR, sdev,
1519 				    "rejecting I/O to offline device\n");
1520 			scsi_kill_request(req, q);
1521 			continue;
1522 		}
1523 
1524 
1525 		/*
1526 		 * Remove the request from the request list.
1527 		 */
1528 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1529 			blk_start_request(req);
1530 		sdev->device_busy++;
1531 
1532 		spin_unlock(q->queue_lock);
1533 		cmd = req->special;
1534 		if (unlikely(cmd == NULL)) {
1535 			printk(KERN_CRIT "impossible request in %s.\n"
1536 					 "please mail a stack trace to "
1537 					 "linux-scsi@vger.kernel.org\n",
1538 					 __func__);
1539 			blk_dump_rq_flags(req, "foo");
1540 			BUG();
1541 		}
1542 		spin_lock(shost->host_lock);
1543 
1544 		/*
1545 		 * We hit this when the driver is using a host wide
1546 		 * tag map. For device level tag maps the queue_depth check
1547 		 * in the device ready fn would prevent us from trying
1548 		 * to allocate a tag. Since the map is a shared host resource
1549 		 * we add the dev to the starved list so it eventually gets
1550 		 * a run when a tag is freed.
1551 		 */
1552 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1553 			if (list_empty(&sdev->starved_entry))
1554 				list_add_tail(&sdev->starved_entry,
1555 					      &shost->starved_list);
1556 			goto not_ready;
1557 		}
1558 
1559 		if (!scsi_target_queue_ready(shost, sdev))
1560 			goto not_ready;
1561 
1562 		if (!scsi_host_queue_ready(q, shost, sdev))
1563 			goto not_ready;
1564 
1565 		scsi_target(sdev)->target_busy++;
1566 		shost->host_busy++;
1567 
1568 		/*
1569 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1570 		 *		take the lock again.
1571 		 */
1572 		spin_unlock_irq(shost->host_lock);
1573 
1574 		/*
1575 		 * Finally, initialize any error handling parameters, and set up
1576 		 * the timers for timeouts.
1577 		 */
1578 		scsi_init_cmd_errh(cmd);
1579 
1580 		/*
1581 		 * Dispatch the command to the low-level driver.
1582 		 */
1583 		rtn = scsi_dispatch_cmd(cmd);
1584 		spin_lock_irq(q->queue_lock);
1585 		if (rtn)
1586 			goto out_delay;
1587 	}
1588 
1589 	goto out;
1590 
1591  not_ready:
1592 	spin_unlock_irq(shost->host_lock);
1593 
1594 	/*
1595 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1596 	 * must return with queue_lock held.
1597 	 *
1598 	 * Decrementing device_busy without checking it is OK, as all such
1599 	 * cases (host limits or settings) should run the queue at some
1600 	 * later time.
1601 	 */
1602 	spin_lock_irq(q->queue_lock);
1603 	blk_requeue_request(q, req);
1604 	sdev->device_busy--;
1605 out_delay:
1606 	if (sdev->device_busy == 0)
1607 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1608 out:
1609 	/* must be careful here...if we trigger the ->remove() function
1610 	 * we cannot be holding the q lock */
1611 	spin_unlock_irq(q->queue_lock);
1612 	put_device(&sdev->sdev_gendev);
1613 	spin_lock_irq(q->queue_lock);
1614 }
1615 
1616 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1617 {
1618 	struct device *host_dev;
1619 	u64 bounce_limit = 0xffffffff;
1620 
1621 	if (shost->unchecked_isa_dma)
1622 		return BLK_BOUNCE_ISA;
1623 	/*
1624 	 * Platforms with virtual-DMA translation
1625 	 * hardware have no practical limit.
1626 	 */
1627 	if (!PCI_DMA_BUS_IS_PHYS)
1628 		return BLK_BOUNCE_ANY;
1629 
1630 	host_dev = scsi_get_device(shost);
1631 	if (host_dev && host_dev->dma_mask)
1632 		bounce_limit = *host_dev->dma_mask;
1633 
1634 	return bounce_limit;
1635 }
1636 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1637 
1638 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1639 					 request_fn_proc *request_fn)
1640 {
1641 	struct request_queue *q;
1642 	struct device *dev = shost->shost_gendev.parent;
1643 
1644 	q = blk_init_queue(request_fn, NULL);
1645 	if (!q)
1646 		return NULL;
1647 
1648 	/*
1649 	 * this limit is imposed by hardware restrictions
1650 	 */
1651 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1652 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1653 
1654 	if (scsi_host_prot_dma(shost)) {
1655 		shost->sg_prot_tablesize =
1656 			min_not_zero(shost->sg_prot_tablesize,
1657 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1658 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1659 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1660 	}
1661 
1662 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1663 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1664 	blk_queue_segment_boundary(q, shost->dma_boundary);
1665 	dma_set_seg_boundary(dev, shost->dma_boundary);
1666 
1667 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1668 
1669 	if (!shost->use_clustering)
1670 		q->limits.cluster = 0;
1671 
1672 	/*
1673 	 * set a reasonable default alignment on word boundaries: the
1674 	 * host and device may alter it using
1675 	 * blk_queue_update_dma_alignment() later.
1676 	 */
1677 	blk_queue_dma_alignment(q, 0x03);
1678 
1679 	return q;
1680 }
1681 EXPORT_SYMBOL(__scsi_alloc_queue);
1682 
1683 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1684 {
1685 	struct request_queue *q;
1686 
1687 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1688 	if (!q)
1689 		return NULL;
1690 
1691 	blk_queue_prep_rq(q, scsi_prep_fn);
1692 	blk_queue_softirq_done(q, scsi_softirq_done);
1693 	blk_queue_rq_timed_out(q, scsi_times_out);
1694 	blk_queue_lld_busy(q, scsi_lld_busy);
1695 	return q;
1696 }
1697 
1698 void scsi_free_queue(struct request_queue *q)
1699 {
1700 	blk_cleanup_queue(q);
1701 }
1702 
1703 /*
1704  * Function:    scsi_block_requests()
1705  *
1706  * Purpose:     Utility function used by low-level drivers to prevent further
1707  *		commands from being queued to the device.
1708  *
1709  * Arguments:   shost       - Host in question
1710  *
1711  * Returns:     Nothing
1712  *
1713  * Lock status: No locks are assumed held.
1714  *
1715  * Notes:       There is no timer nor any other means by which the requests
1716  *		get unblocked other than the low-level driver calling
1717  *		scsi_unblock_requests().
1718  */
1719 void scsi_block_requests(struct Scsi_Host *shost)
1720 {
1721 	shost->host_self_blocked = 1;
1722 }
1723 EXPORT_SYMBOL(scsi_block_requests);
1724 
1725 /*
1726  * Function:    scsi_unblock_requests()
1727  *
1728  * Purpose:     Utility function used by low-level drivers to allow further
1729  *		commands from being queued to the device.
1730  *
1731  * Arguments:   shost       - Host in question
1732  *
1733  * Returns:     Nothing
1734  *
1735  * Lock status: No locks are assumed held.
1736  *
1737  * Notes:       There is no timer nor any other means by which the requests
1738  *		get unblocked other than the low-level driver calling
1739  *		scsi_unblock_requests().
1740  *
1741  *		This is done as an API function so that changes to the
1742  *		internals of the scsi mid-layer won't require wholesale
1743  *		changes to drivers that use this feature.
1744  */
1745 void scsi_unblock_requests(struct Scsi_Host *shost)
1746 {
1747 	shost->host_self_blocked = 0;
1748 	scsi_run_host_queues(shost);
1749 }
1750 EXPORT_SYMBOL(scsi_unblock_requests);
1751 
1752 int __init scsi_init_queue(void)
1753 {
1754 	int i;
1755 
1756 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1757 					   sizeof(struct scsi_data_buffer),
1758 					   0, 0, NULL);
1759 	if (!scsi_sdb_cache) {
1760 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1761 		return -ENOMEM;
1762 	}
1763 
1764 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1765 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1766 		int size = sgp->size * sizeof(struct scatterlist);
1767 
1768 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1769 				SLAB_HWCACHE_ALIGN, NULL);
1770 		if (!sgp->slab) {
1771 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1772 					sgp->name);
1773 			goto cleanup_sdb;
1774 		}
1775 
1776 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1777 						     sgp->slab);
1778 		if (!sgp->pool) {
1779 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1780 					sgp->name);
1781 			goto cleanup_sdb;
1782 		}
1783 	}
1784 
1785 	return 0;
1786 
1787 cleanup_sdb:
1788 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1789 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1790 		if (sgp->pool)
1791 			mempool_destroy(sgp->pool);
1792 		if (sgp->slab)
1793 			kmem_cache_destroy(sgp->slab);
1794 	}
1795 	kmem_cache_destroy(scsi_sdb_cache);
1796 
1797 	return -ENOMEM;
1798 }
1799 
1800 void scsi_exit_queue(void)
1801 {
1802 	int i;
1803 
1804 	kmem_cache_destroy(scsi_sdb_cache);
1805 
1806 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1807 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1808 		mempool_destroy(sgp->pool);
1809 		kmem_cache_destroy(sgp->slab);
1810 	}
1811 }
1812 
1813 /**
1814  *	scsi_mode_select - issue a mode select
1815  *	@sdev:	SCSI device to be queried
1816  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1817  *	@sp:	Save page bit (0 == don't save, 1 == save)
1818  *	@modepage: mode page being requested
1819  *	@buffer: request buffer (may not be smaller than eight bytes)
1820  *	@len:	length of request buffer.
1821  *	@timeout: command timeout
1822  *	@retries: number of retries before failing
1823  *	@data: returns a structure abstracting the mode header data
1824  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1825  *		must be SCSI_SENSE_BUFFERSIZE big.
1826  *
1827  *	Returns zero if successful; negative error number or scsi
1828  *	status on error
1829  *
1830  */
1831 int
1832 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1833 		 unsigned char *buffer, int len, int timeout, int retries,
1834 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1835 {
1836 	unsigned char cmd[10];
1837 	unsigned char *real_buffer;
1838 	int ret;
1839 
1840 	memset(cmd, 0, sizeof(cmd));
1841 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1842 
1843 	if (sdev->use_10_for_ms) {
1844 		if (len > 65535)
1845 			return -EINVAL;
1846 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1847 		if (!real_buffer)
1848 			return -ENOMEM;
1849 		memcpy(real_buffer + 8, buffer, len);
1850 		len += 8;
1851 		real_buffer[0] = 0;
1852 		real_buffer[1] = 0;
1853 		real_buffer[2] = data->medium_type;
1854 		real_buffer[3] = data->device_specific;
1855 		real_buffer[4] = data->longlba ? 0x01 : 0;
1856 		real_buffer[5] = 0;
1857 		real_buffer[6] = data->block_descriptor_length >> 8;
1858 		real_buffer[7] = data->block_descriptor_length;
1859 
1860 		cmd[0] = MODE_SELECT_10;
1861 		cmd[7] = len >> 8;
1862 		cmd[8] = len;
1863 	} else {
1864 		if (len > 255 || data->block_descriptor_length > 255 ||
1865 		    data->longlba)
1866 			return -EINVAL;
1867 
1868 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1869 		if (!real_buffer)
1870 			return -ENOMEM;
1871 		memcpy(real_buffer + 4, buffer, len);
1872 		len += 4;
1873 		real_buffer[0] = 0;
1874 		real_buffer[1] = data->medium_type;
1875 		real_buffer[2] = data->device_specific;
1876 		real_buffer[3] = data->block_descriptor_length;
1877 
1878 
1879 		cmd[0] = MODE_SELECT;
1880 		cmd[4] = len;
1881 	}
1882 
1883 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1884 			       sshdr, timeout, retries, NULL);
1885 	kfree(real_buffer);
1886 	return ret;
1887 }
1888 EXPORT_SYMBOL_GPL(scsi_mode_select);
1889 
1890 /**
1891  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1892  *	@sdev:	SCSI device to be queried
1893  *	@dbd:	set if mode sense will allow block descriptors to be returned
1894  *	@modepage: mode page being requested
1895  *	@buffer: request buffer (may not be smaller than eight bytes)
1896  *	@len:	length of request buffer.
1897  *	@timeout: command timeout
1898  *	@retries: number of retries before failing
1899  *	@data: returns a structure abstracting the mode header data
1900  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1901  *		must be SCSI_SENSE_BUFFERSIZE big.
1902  *
1903  *	Returns zero if unsuccessful, or the header offset (either 4
1904  *	or 8 depending on whether a six or ten byte command was
1905  *	issued) if successful.
1906  */
1907 int
1908 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1909 		  unsigned char *buffer, int len, int timeout, int retries,
1910 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1911 {
1912 	unsigned char cmd[12];
1913 	int use_10_for_ms;
1914 	int header_length;
1915 	int result;
1916 	struct scsi_sense_hdr my_sshdr;
1917 
1918 	memset(data, 0, sizeof(*data));
1919 	memset(&cmd[0], 0, 12);
1920 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1921 	cmd[2] = modepage;
1922 
1923 	/* caller might not be interested in sense, but we need it */
1924 	if (!sshdr)
1925 		sshdr = &my_sshdr;
1926 
1927  retry:
1928 	use_10_for_ms = sdev->use_10_for_ms;
1929 
1930 	if (use_10_for_ms) {
1931 		if (len < 8)
1932 			len = 8;
1933 
1934 		cmd[0] = MODE_SENSE_10;
1935 		cmd[8] = len;
1936 		header_length = 8;
1937 	} else {
1938 		if (len < 4)
1939 			len = 4;
1940 
1941 		cmd[0] = MODE_SENSE;
1942 		cmd[4] = len;
1943 		header_length = 4;
1944 	}
1945 
1946 	memset(buffer, 0, len);
1947 
1948 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1949 				  sshdr, timeout, retries, NULL);
1950 
1951 	/* This code looks awful: what it's doing is making sure an
1952 	 * ILLEGAL REQUEST sense return identifies the actual command
1953 	 * byte as the problem.  MODE_SENSE commands can return
1954 	 * ILLEGAL REQUEST if the code page isn't supported */
1955 
1956 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1957 	    (driver_byte(result) & DRIVER_SENSE)) {
1958 		if (scsi_sense_valid(sshdr)) {
1959 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1960 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1961 				/*
1962 				 * Invalid command operation code
1963 				 */
1964 				sdev->use_10_for_ms = 0;
1965 				goto retry;
1966 			}
1967 		}
1968 	}
1969 
1970 	if(scsi_status_is_good(result)) {
1971 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1972 			     (modepage == 6 || modepage == 8))) {
1973 			/* Initio breakage? */
1974 			header_length = 0;
1975 			data->length = 13;
1976 			data->medium_type = 0;
1977 			data->device_specific = 0;
1978 			data->longlba = 0;
1979 			data->block_descriptor_length = 0;
1980 		} else if(use_10_for_ms) {
1981 			data->length = buffer[0]*256 + buffer[1] + 2;
1982 			data->medium_type = buffer[2];
1983 			data->device_specific = buffer[3];
1984 			data->longlba = buffer[4] & 0x01;
1985 			data->block_descriptor_length = buffer[6]*256
1986 				+ buffer[7];
1987 		} else {
1988 			data->length = buffer[0] + 1;
1989 			data->medium_type = buffer[1];
1990 			data->device_specific = buffer[2];
1991 			data->block_descriptor_length = buffer[3];
1992 		}
1993 		data->header_length = header_length;
1994 	}
1995 
1996 	return result;
1997 }
1998 EXPORT_SYMBOL(scsi_mode_sense);
1999 
2000 /**
2001  *	scsi_test_unit_ready - test if unit is ready
2002  *	@sdev:	scsi device to change the state of.
2003  *	@timeout: command timeout
2004  *	@retries: number of retries before failing
2005  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2006  *		returning sense. Make sure that this is cleared before passing
2007  *		in.
2008  *
2009  *	Returns zero if unsuccessful or an error if TUR failed.  For
2010  *	removable media, UNIT_ATTENTION sets ->changed flag.
2011  **/
2012 int
2013 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2014 		     struct scsi_sense_hdr *sshdr_external)
2015 {
2016 	char cmd[] = {
2017 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2018 	};
2019 	struct scsi_sense_hdr *sshdr;
2020 	int result;
2021 
2022 	if (!sshdr_external)
2023 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2024 	else
2025 		sshdr = sshdr_external;
2026 
2027 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2028 	do {
2029 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2030 					  timeout, retries, NULL);
2031 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2032 		    sshdr->sense_key == UNIT_ATTENTION)
2033 			sdev->changed = 1;
2034 	} while (scsi_sense_valid(sshdr) &&
2035 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2036 
2037 	if (!sshdr_external)
2038 		kfree(sshdr);
2039 	return result;
2040 }
2041 EXPORT_SYMBOL(scsi_test_unit_ready);
2042 
2043 /**
2044  *	scsi_device_set_state - Take the given device through the device state model.
2045  *	@sdev:	scsi device to change the state of.
2046  *	@state:	state to change to.
2047  *
2048  *	Returns zero if unsuccessful or an error if the requested
2049  *	transition is illegal.
2050  */
2051 int
2052 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2053 {
2054 	enum scsi_device_state oldstate = sdev->sdev_state;
2055 
2056 	if (state == oldstate)
2057 		return 0;
2058 
2059 	switch (state) {
2060 	case SDEV_CREATED:
2061 		switch (oldstate) {
2062 		case SDEV_CREATED_BLOCK:
2063 			break;
2064 		default:
2065 			goto illegal;
2066 		}
2067 		break;
2068 
2069 	case SDEV_RUNNING:
2070 		switch (oldstate) {
2071 		case SDEV_CREATED:
2072 		case SDEV_OFFLINE:
2073 		case SDEV_QUIESCE:
2074 		case SDEV_BLOCK:
2075 			break;
2076 		default:
2077 			goto illegal;
2078 		}
2079 		break;
2080 
2081 	case SDEV_QUIESCE:
2082 		switch (oldstate) {
2083 		case SDEV_RUNNING:
2084 		case SDEV_OFFLINE:
2085 			break;
2086 		default:
2087 			goto illegal;
2088 		}
2089 		break;
2090 
2091 	case SDEV_OFFLINE:
2092 		switch (oldstate) {
2093 		case SDEV_CREATED:
2094 		case SDEV_RUNNING:
2095 		case SDEV_QUIESCE:
2096 		case SDEV_BLOCK:
2097 			break;
2098 		default:
2099 			goto illegal;
2100 		}
2101 		break;
2102 
2103 	case SDEV_BLOCK:
2104 		switch (oldstate) {
2105 		case SDEV_RUNNING:
2106 		case SDEV_CREATED_BLOCK:
2107 			break;
2108 		default:
2109 			goto illegal;
2110 		}
2111 		break;
2112 
2113 	case SDEV_CREATED_BLOCK:
2114 		switch (oldstate) {
2115 		case SDEV_CREATED:
2116 			break;
2117 		default:
2118 			goto illegal;
2119 		}
2120 		break;
2121 
2122 	case SDEV_CANCEL:
2123 		switch (oldstate) {
2124 		case SDEV_CREATED:
2125 		case SDEV_RUNNING:
2126 		case SDEV_QUIESCE:
2127 		case SDEV_OFFLINE:
2128 		case SDEV_BLOCK:
2129 			break;
2130 		default:
2131 			goto illegal;
2132 		}
2133 		break;
2134 
2135 	case SDEV_DEL:
2136 		switch (oldstate) {
2137 		case SDEV_CREATED:
2138 		case SDEV_RUNNING:
2139 		case SDEV_OFFLINE:
2140 		case SDEV_CANCEL:
2141 			break;
2142 		default:
2143 			goto illegal;
2144 		}
2145 		break;
2146 
2147 	}
2148 	sdev->sdev_state = state;
2149 	return 0;
2150 
2151  illegal:
2152 	SCSI_LOG_ERROR_RECOVERY(1,
2153 				sdev_printk(KERN_ERR, sdev,
2154 					    "Illegal state transition %s->%s\n",
2155 					    scsi_device_state_name(oldstate),
2156 					    scsi_device_state_name(state))
2157 				);
2158 	return -EINVAL;
2159 }
2160 EXPORT_SYMBOL(scsi_device_set_state);
2161 
2162 /**
2163  * 	sdev_evt_emit - emit a single SCSI device uevent
2164  *	@sdev: associated SCSI device
2165  *	@evt: event to emit
2166  *
2167  *	Send a single uevent (scsi_event) to the associated scsi_device.
2168  */
2169 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2170 {
2171 	int idx = 0;
2172 	char *envp[3];
2173 
2174 	switch (evt->evt_type) {
2175 	case SDEV_EVT_MEDIA_CHANGE:
2176 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2177 		break;
2178 
2179 	default:
2180 		/* do nothing */
2181 		break;
2182 	}
2183 
2184 	envp[idx++] = NULL;
2185 
2186 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2187 }
2188 
2189 /**
2190  * 	sdev_evt_thread - send a uevent for each scsi event
2191  *	@work: work struct for scsi_device
2192  *
2193  *	Dispatch queued events to their associated scsi_device kobjects
2194  *	as uevents.
2195  */
2196 void scsi_evt_thread(struct work_struct *work)
2197 {
2198 	struct scsi_device *sdev;
2199 	LIST_HEAD(event_list);
2200 
2201 	sdev = container_of(work, struct scsi_device, event_work);
2202 
2203 	while (1) {
2204 		struct scsi_event *evt;
2205 		struct list_head *this, *tmp;
2206 		unsigned long flags;
2207 
2208 		spin_lock_irqsave(&sdev->list_lock, flags);
2209 		list_splice_init(&sdev->event_list, &event_list);
2210 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2211 
2212 		if (list_empty(&event_list))
2213 			break;
2214 
2215 		list_for_each_safe(this, tmp, &event_list) {
2216 			evt = list_entry(this, struct scsi_event, node);
2217 			list_del(&evt->node);
2218 			scsi_evt_emit(sdev, evt);
2219 			kfree(evt);
2220 		}
2221 	}
2222 }
2223 
2224 /**
2225  * 	sdev_evt_send - send asserted event to uevent thread
2226  *	@sdev: scsi_device event occurred on
2227  *	@evt: event to send
2228  *
2229  *	Assert scsi device event asynchronously.
2230  */
2231 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2232 {
2233 	unsigned long flags;
2234 
2235 #if 0
2236 	/* FIXME: currently this check eliminates all media change events
2237 	 * for polled devices.  Need to update to discriminate between AN
2238 	 * and polled events */
2239 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2240 		kfree(evt);
2241 		return;
2242 	}
2243 #endif
2244 
2245 	spin_lock_irqsave(&sdev->list_lock, flags);
2246 	list_add_tail(&evt->node, &sdev->event_list);
2247 	schedule_work(&sdev->event_work);
2248 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2249 }
2250 EXPORT_SYMBOL_GPL(sdev_evt_send);
2251 
2252 /**
2253  * 	sdev_evt_alloc - allocate a new scsi event
2254  *	@evt_type: type of event to allocate
2255  *	@gfpflags: GFP flags for allocation
2256  *
2257  *	Allocates and returns a new scsi_event.
2258  */
2259 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2260 				  gfp_t gfpflags)
2261 {
2262 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2263 	if (!evt)
2264 		return NULL;
2265 
2266 	evt->evt_type = evt_type;
2267 	INIT_LIST_HEAD(&evt->node);
2268 
2269 	/* evt_type-specific initialization, if any */
2270 	switch (evt_type) {
2271 	case SDEV_EVT_MEDIA_CHANGE:
2272 	default:
2273 		/* do nothing */
2274 		break;
2275 	}
2276 
2277 	return evt;
2278 }
2279 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2280 
2281 /**
2282  * 	sdev_evt_send_simple - send asserted event to uevent thread
2283  *	@sdev: scsi_device event occurred on
2284  *	@evt_type: type of event to send
2285  *	@gfpflags: GFP flags for allocation
2286  *
2287  *	Assert scsi device event asynchronously, given an event type.
2288  */
2289 void sdev_evt_send_simple(struct scsi_device *sdev,
2290 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2291 {
2292 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2293 	if (!evt) {
2294 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2295 			    evt_type);
2296 		return;
2297 	}
2298 
2299 	sdev_evt_send(sdev, evt);
2300 }
2301 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2302 
2303 /**
2304  *	scsi_device_quiesce - Block user issued commands.
2305  *	@sdev:	scsi device to quiesce.
2306  *
2307  *	This works by trying to transition to the SDEV_QUIESCE state
2308  *	(which must be a legal transition).  When the device is in this
2309  *	state, only special requests will be accepted, all others will
2310  *	be deferred.  Since special requests may also be requeued requests,
2311  *	a successful return doesn't guarantee the device will be
2312  *	totally quiescent.
2313  *
2314  *	Must be called with user context, may sleep.
2315  *
2316  *	Returns zero if unsuccessful or an error if not.
2317  */
2318 int
2319 scsi_device_quiesce(struct scsi_device *sdev)
2320 {
2321 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2322 	if (err)
2323 		return err;
2324 
2325 	scsi_run_queue(sdev->request_queue);
2326 	while (sdev->device_busy) {
2327 		msleep_interruptible(200);
2328 		scsi_run_queue(sdev->request_queue);
2329 	}
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL(scsi_device_quiesce);
2333 
2334 /**
2335  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2336  *	@sdev:	scsi device to resume.
2337  *
2338  *	Moves the device from quiesced back to running and restarts the
2339  *	queues.
2340  *
2341  *	Must be called with user context, may sleep.
2342  */
2343 void
2344 scsi_device_resume(struct scsi_device *sdev)
2345 {
2346 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2347 		return;
2348 	scsi_run_queue(sdev->request_queue);
2349 }
2350 EXPORT_SYMBOL(scsi_device_resume);
2351 
2352 static void
2353 device_quiesce_fn(struct scsi_device *sdev, void *data)
2354 {
2355 	scsi_device_quiesce(sdev);
2356 }
2357 
2358 void
2359 scsi_target_quiesce(struct scsi_target *starget)
2360 {
2361 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2362 }
2363 EXPORT_SYMBOL(scsi_target_quiesce);
2364 
2365 static void
2366 device_resume_fn(struct scsi_device *sdev, void *data)
2367 {
2368 	scsi_device_resume(sdev);
2369 }
2370 
2371 void
2372 scsi_target_resume(struct scsi_target *starget)
2373 {
2374 	starget_for_each_device(starget, NULL, device_resume_fn);
2375 }
2376 EXPORT_SYMBOL(scsi_target_resume);
2377 
2378 /**
2379  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2380  * @sdev:	device to block
2381  *
2382  * Block request made by scsi lld's to temporarily stop all
2383  * scsi commands on the specified device.  Called from interrupt
2384  * or normal process context.
2385  *
2386  * Returns zero if successful or error if not
2387  *
2388  * Notes:
2389  *	This routine transitions the device to the SDEV_BLOCK state
2390  *	(which must be a legal transition).  When the device is in this
2391  *	state, all commands are deferred until the scsi lld reenables
2392  *	the device with scsi_device_unblock or device_block_tmo fires.
2393  *	This routine assumes the host_lock is held on entry.
2394  */
2395 int
2396 scsi_internal_device_block(struct scsi_device *sdev)
2397 {
2398 	struct request_queue *q = sdev->request_queue;
2399 	unsigned long flags;
2400 	int err = 0;
2401 
2402 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2403 	if (err) {
2404 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2405 
2406 		if (err)
2407 			return err;
2408 	}
2409 
2410 	/*
2411 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2412 	 * block layer from calling the midlayer with this device's
2413 	 * request queue.
2414 	 */
2415 	spin_lock_irqsave(q->queue_lock, flags);
2416 	blk_stop_queue(q);
2417 	spin_unlock_irqrestore(q->queue_lock, flags);
2418 
2419 	return 0;
2420 }
2421 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2422 
2423 /**
2424  * scsi_internal_device_unblock - resume a device after a block request
2425  * @sdev:	device to resume
2426  *
2427  * Called by scsi lld's or the midlayer to restart the device queue
2428  * for the previously suspended scsi device.  Called from interrupt or
2429  * normal process context.
2430  *
2431  * Returns zero if successful or error if not.
2432  *
2433  * Notes:
2434  *	This routine transitions the device to the SDEV_RUNNING state
2435  *	(which must be a legal transition) allowing the midlayer to
2436  *	goose the queue for this device.  This routine assumes the
2437  *	host_lock is held upon entry.
2438  */
2439 int
2440 scsi_internal_device_unblock(struct scsi_device *sdev)
2441 {
2442 	struct request_queue *q = sdev->request_queue;
2443 	unsigned long flags;
2444 
2445 	/*
2446 	 * Try to transition the scsi device to SDEV_RUNNING
2447 	 * and goose the device queue if successful.
2448 	 */
2449 	if (sdev->sdev_state == SDEV_BLOCK)
2450 		sdev->sdev_state = SDEV_RUNNING;
2451 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2452 		sdev->sdev_state = SDEV_CREATED;
2453 	else if (sdev->sdev_state != SDEV_CANCEL &&
2454 		 sdev->sdev_state != SDEV_OFFLINE)
2455 		return -EINVAL;
2456 
2457 	spin_lock_irqsave(q->queue_lock, flags);
2458 	blk_start_queue(q);
2459 	spin_unlock_irqrestore(q->queue_lock, flags);
2460 
2461 	return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2464 
2465 static void
2466 device_block(struct scsi_device *sdev, void *data)
2467 {
2468 	scsi_internal_device_block(sdev);
2469 }
2470 
2471 static int
2472 target_block(struct device *dev, void *data)
2473 {
2474 	if (scsi_is_target_device(dev))
2475 		starget_for_each_device(to_scsi_target(dev), NULL,
2476 					device_block);
2477 	return 0;
2478 }
2479 
2480 void
2481 scsi_target_block(struct device *dev)
2482 {
2483 	if (scsi_is_target_device(dev))
2484 		starget_for_each_device(to_scsi_target(dev), NULL,
2485 					device_block);
2486 	else
2487 		device_for_each_child(dev, NULL, target_block);
2488 }
2489 EXPORT_SYMBOL_GPL(scsi_target_block);
2490 
2491 static void
2492 device_unblock(struct scsi_device *sdev, void *data)
2493 {
2494 	scsi_internal_device_unblock(sdev);
2495 }
2496 
2497 static int
2498 target_unblock(struct device *dev, void *data)
2499 {
2500 	if (scsi_is_target_device(dev))
2501 		starget_for_each_device(to_scsi_target(dev), NULL,
2502 					device_unblock);
2503 	return 0;
2504 }
2505 
2506 void
2507 scsi_target_unblock(struct device *dev)
2508 {
2509 	if (scsi_is_target_device(dev))
2510 		starget_for_each_device(to_scsi_target(dev), NULL,
2511 					device_unblock);
2512 	else
2513 		device_for_each_child(dev, NULL, target_unblock);
2514 }
2515 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2516 
2517 /**
2518  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2519  * @sgl:	scatter-gather list
2520  * @sg_count:	number of segments in sg
2521  * @offset:	offset in bytes into sg, on return offset into the mapped area
2522  * @len:	bytes to map, on return number of bytes mapped
2523  *
2524  * Returns virtual address of the start of the mapped page
2525  */
2526 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2527 			  size_t *offset, size_t *len)
2528 {
2529 	int i;
2530 	size_t sg_len = 0, len_complete = 0;
2531 	struct scatterlist *sg;
2532 	struct page *page;
2533 
2534 	WARN_ON(!irqs_disabled());
2535 
2536 	for_each_sg(sgl, sg, sg_count, i) {
2537 		len_complete = sg_len; /* Complete sg-entries */
2538 		sg_len += sg->length;
2539 		if (sg_len > *offset)
2540 			break;
2541 	}
2542 
2543 	if (unlikely(i == sg_count)) {
2544 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2545 			"elements %d\n",
2546 		       __func__, sg_len, *offset, sg_count);
2547 		WARN_ON(1);
2548 		return NULL;
2549 	}
2550 
2551 	/* Offset starting from the beginning of first page in this sg-entry */
2552 	*offset = *offset - len_complete + sg->offset;
2553 
2554 	/* Assumption: contiguous pages can be accessed as "page + i" */
2555 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2556 	*offset &= ~PAGE_MASK;
2557 
2558 	/* Bytes in this sg-entry from *offset to the end of the page */
2559 	sg_len = PAGE_SIZE - *offset;
2560 	if (*len > sg_len)
2561 		*len = sg_len;
2562 
2563 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2564 }
2565 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2566 
2567 /**
2568  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2569  * @virt:	virtual address to be unmapped
2570  */
2571 void scsi_kunmap_atomic_sg(void *virt)
2572 {
2573 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2574 }
2575 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2576