1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 /* 71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 72 * not change behaviour from the previous unplug mechanism, experimentation 73 * may prove this needs changing. 74 */ 75 #define SCSI_QUEUE_DELAY 3 76 77 /* 78 * Function: scsi_unprep_request() 79 * 80 * Purpose: Remove all preparation done for a request, including its 81 * associated scsi_cmnd, so that it can be requeued. 82 * 83 * Arguments: req - request to unprepare 84 * 85 * Lock status: Assumed that no locks are held upon entry. 86 * 87 * Returns: Nothing. 88 */ 89 static void scsi_unprep_request(struct request *req) 90 { 91 struct scsi_cmnd *cmd = req->special; 92 93 blk_unprep_request(req); 94 req->special = NULL; 95 96 scsi_put_command(cmd); 97 } 98 99 /** 100 * __scsi_queue_insert - private queue insertion 101 * @cmd: The SCSI command being requeued 102 * @reason: The reason for the requeue 103 * @unbusy: Whether the queue should be unbusied 104 * 105 * This is a private queue insertion. The public interface 106 * scsi_queue_insert() always assumes the queue should be unbusied 107 * because it's always called before the completion. This function is 108 * for a requeue after completion, which should only occur in this 109 * file. 110 */ 111 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 112 { 113 struct Scsi_Host *host = cmd->device->host; 114 struct scsi_device *device = cmd->device; 115 struct scsi_target *starget = scsi_target(device); 116 struct request_queue *q = device->request_queue; 117 unsigned long flags; 118 119 SCSI_LOG_MLQUEUE(1, 120 printk("Inserting command %p into mlqueue\n", cmd)); 121 122 /* 123 * Set the appropriate busy bit for the device/host. 124 * 125 * If the host/device isn't busy, assume that something actually 126 * completed, and that we should be able to queue a command now. 127 * 128 * Note that the prior mid-layer assumption that any host could 129 * always queue at least one command is now broken. The mid-layer 130 * will implement a user specifiable stall (see 131 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 132 * if a command is requeued with no other commands outstanding 133 * either for the device or for the host. 134 */ 135 switch (reason) { 136 case SCSI_MLQUEUE_HOST_BUSY: 137 host->host_blocked = host->max_host_blocked; 138 break; 139 case SCSI_MLQUEUE_DEVICE_BUSY: 140 device->device_blocked = device->max_device_blocked; 141 break; 142 case SCSI_MLQUEUE_TARGET_BUSY: 143 starget->target_blocked = starget->max_target_blocked; 144 break; 145 } 146 147 /* 148 * Decrement the counters, since these commands are no longer 149 * active on the host/device. 150 */ 151 if (unbusy) 152 scsi_device_unbusy(device); 153 154 /* 155 * Requeue this command. It will go before all other commands 156 * that are already in the queue. 157 */ 158 spin_lock_irqsave(q->queue_lock, flags); 159 blk_requeue_request(q, cmd->request); 160 spin_unlock_irqrestore(q->queue_lock, flags); 161 162 kblockd_schedule_work(q, &device->requeue_work); 163 164 return 0; 165 } 166 167 /* 168 * Function: scsi_queue_insert() 169 * 170 * Purpose: Insert a command in the midlevel queue. 171 * 172 * Arguments: cmd - command that we are adding to queue. 173 * reason - why we are inserting command to queue. 174 * 175 * Lock status: Assumed that lock is not held upon entry. 176 * 177 * Returns: Nothing. 178 * 179 * Notes: We do this for one of two cases. Either the host is busy 180 * and it cannot accept any more commands for the time being, 181 * or the device returned QUEUE_FULL and can accept no more 182 * commands. 183 * Notes: This could be called either from an interrupt context or a 184 * normal process context. 185 */ 186 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 187 { 188 return __scsi_queue_insert(cmd, reason, 1); 189 } 190 /** 191 * scsi_execute - insert request and wait for the result 192 * @sdev: scsi device 193 * @cmd: scsi command 194 * @data_direction: data direction 195 * @buffer: data buffer 196 * @bufflen: len of buffer 197 * @sense: optional sense buffer 198 * @timeout: request timeout in seconds 199 * @retries: number of times to retry request 200 * @flags: or into request flags; 201 * @resid: optional residual length 202 * 203 * returns the req->errors value which is the scsi_cmnd result 204 * field. 205 */ 206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 207 int data_direction, void *buffer, unsigned bufflen, 208 unsigned char *sense, int timeout, int retries, int flags, 209 int *resid) 210 { 211 struct request *req; 212 int write = (data_direction == DMA_TO_DEVICE); 213 int ret = DRIVER_ERROR << 24; 214 215 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 216 if (!req) 217 return ret; 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 /* if the device is dead, sdev will be NULL, so no queue to run */ 408 if (!sdev) 409 return; 410 411 shost = sdev->host; 412 if (scsi_target(sdev)->single_lun) 413 scsi_single_lun_run(sdev); 414 415 spin_lock_irqsave(shost->host_lock, flags); 416 list_splice_init(&shost->starved_list, &starved_list); 417 418 while (!list_empty(&starved_list)) { 419 /* 420 * As long as shost is accepting commands and we have 421 * starved queues, call blk_run_queue. scsi_request_fn 422 * drops the queue_lock and can add us back to the 423 * starved_list. 424 * 425 * host_lock protects the starved_list and starved_entry. 426 * scsi_request_fn must get the host_lock before checking 427 * or modifying starved_list or starved_entry. 428 */ 429 if (scsi_host_is_busy(shost)) 430 break; 431 432 sdev = list_entry(starved_list.next, 433 struct scsi_device, starved_entry); 434 list_del_init(&sdev->starved_entry); 435 if (scsi_target_is_busy(scsi_target(sdev))) { 436 list_move_tail(&sdev->starved_entry, 437 &shost->starved_list); 438 continue; 439 } 440 441 spin_unlock(shost->host_lock); 442 spin_lock(sdev->request_queue->queue_lock); 443 __blk_run_queue(sdev->request_queue); 444 spin_unlock(sdev->request_queue->queue_lock); 445 spin_lock(shost->host_lock); 446 } 447 /* put any unprocessed entries back */ 448 list_splice(&starved_list, &shost->starved_list); 449 spin_unlock_irqrestore(shost->host_lock, flags); 450 451 blk_run_queue(q); 452 } 453 454 void scsi_requeue_run_queue(struct work_struct *work) 455 { 456 struct scsi_device *sdev; 457 struct request_queue *q; 458 459 sdev = container_of(work, struct scsi_device, requeue_work); 460 q = sdev->request_queue; 461 scsi_run_queue(q); 462 } 463 464 /* 465 * Function: scsi_requeue_command() 466 * 467 * Purpose: Handle post-processing of completed commands. 468 * 469 * Arguments: q - queue to operate on 470 * cmd - command that may need to be requeued. 471 * 472 * Returns: Nothing 473 * 474 * Notes: After command completion, there may be blocks left 475 * over which weren't finished by the previous command 476 * this can be for a number of reasons - the main one is 477 * I/O errors in the middle of the request, in which case 478 * we need to request the blocks that come after the bad 479 * sector. 480 * Notes: Upon return, cmd is a stale pointer. 481 */ 482 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 483 { 484 struct request *req = cmd->request; 485 unsigned long flags; 486 487 spin_lock_irqsave(q->queue_lock, flags); 488 scsi_unprep_request(req); 489 blk_requeue_request(q, req); 490 spin_unlock_irqrestore(q->queue_lock, flags); 491 492 scsi_run_queue(q); 493 } 494 495 void scsi_next_command(struct scsi_cmnd *cmd) 496 { 497 struct scsi_device *sdev = cmd->device; 498 struct request_queue *q = sdev->request_queue; 499 500 /* need to hold a reference on the device before we let go of the cmd */ 501 get_device(&sdev->sdev_gendev); 502 503 scsi_put_command(cmd); 504 scsi_run_queue(q); 505 506 /* ok to remove device now */ 507 put_device(&sdev->sdev_gendev); 508 } 509 510 void scsi_run_host_queues(struct Scsi_Host *shost) 511 { 512 struct scsi_device *sdev; 513 514 shost_for_each_device(sdev, shost) 515 scsi_run_queue(sdev->request_queue); 516 } 517 518 static void __scsi_release_buffers(struct scsi_cmnd *, int); 519 520 /* 521 * Function: scsi_end_request() 522 * 523 * Purpose: Post-processing of completed commands (usually invoked at end 524 * of upper level post-processing and scsi_io_completion). 525 * 526 * Arguments: cmd - command that is complete. 527 * error - 0 if I/O indicates success, < 0 for I/O error. 528 * bytes - number of bytes of completed I/O 529 * requeue - indicates whether we should requeue leftovers. 530 * 531 * Lock status: Assumed that lock is not held upon entry. 532 * 533 * Returns: cmd if requeue required, NULL otherwise. 534 * 535 * Notes: This is called for block device requests in order to 536 * mark some number of sectors as complete. 537 * 538 * We are guaranteeing that the request queue will be goosed 539 * at some point during this call. 540 * Notes: If cmd was requeued, upon return it will be a stale pointer. 541 */ 542 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 543 int bytes, int requeue) 544 { 545 struct request_queue *q = cmd->device->request_queue; 546 struct request *req = cmd->request; 547 548 /* 549 * If there are blocks left over at the end, set up the command 550 * to queue the remainder of them. 551 */ 552 if (blk_end_request(req, error, bytes)) { 553 /* kill remainder if no retrys */ 554 if (error && scsi_noretry_cmd(cmd)) 555 blk_end_request_all(req, error); 556 else { 557 if (requeue) { 558 /* 559 * Bleah. Leftovers again. Stick the 560 * leftovers in the front of the 561 * queue, and goose the queue again. 562 */ 563 scsi_release_buffers(cmd); 564 scsi_requeue_command(q, cmd); 565 cmd = NULL; 566 } 567 return cmd; 568 } 569 } 570 571 /* 572 * This will goose the queue request function at the end, so we don't 573 * need to worry about launching another command. 574 */ 575 __scsi_release_buffers(cmd, 0); 576 scsi_next_command(cmd); 577 return NULL; 578 } 579 580 static inline unsigned int scsi_sgtable_index(unsigned short nents) 581 { 582 unsigned int index; 583 584 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 585 586 if (nents <= 8) 587 index = 0; 588 else 589 index = get_count_order(nents) - 3; 590 591 return index; 592 } 593 594 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 595 { 596 struct scsi_host_sg_pool *sgp; 597 598 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 599 mempool_free(sgl, sgp->pool); 600 } 601 602 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 603 { 604 struct scsi_host_sg_pool *sgp; 605 606 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 607 return mempool_alloc(sgp->pool, gfp_mask); 608 } 609 610 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 611 gfp_t gfp_mask) 612 { 613 int ret; 614 615 BUG_ON(!nents); 616 617 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 618 gfp_mask, scsi_sg_alloc); 619 if (unlikely(ret)) 620 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 621 scsi_sg_free); 622 623 return ret; 624 } 625 626 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 627 { 628 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 629 } 630 631 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 632 { 633 634 if (cmd->sdb.table.nents) 635 scsi_free_sgtable(&cmd->sdb); 636 637 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 638 639 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 640 struct scsi_data_buffer *bidi_sdb = 641 cmd->request->next_rq->special; 642 scsi_free_sgtable(bidi_sdb); 643 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 644 cmd->request->next_rq->special = NULL; 645 } 646 647 if (scsi_prot_sg_count(cmd)) 648 scsi_free_sgtable(cmd->prot_sdb); 649 } 650 651 /* 652 * Function: scsi_release_buffers() 653 * 654 * Purpose: Completion processing for block device I/O requests. 655 * 656 * Arguments: cmd - command that we are bailing. 657 * 658 * Lock status: Assumed that no lock is held upon entry. 659 * 660 * Returns: Nothing 661 * 662 * Notes: In the event that an upper level driver rejects a 663 * command, we must release resources allocated during 664 * the __init_io() function. Primarily this would involve 665 * the scatter-gather table, and potentially any bounce 666 * buffers. 667 */ 668 void scsi_release_buffers(struct scsi_cmnd *cmd) 669 { 670 __scsi_release_buffers(cmd, 1); 671 } 672 EXPORT_SYMBOL(scsi_release_buffers); 673 674 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 675 { 676 int error = 0; 677 678 switch(host_byte(result)) { 679 case DID_TRANSPORT_FAILFAST: 680 error = -ENOLINK; 681 break; 682 case DID_TARGET_FAILURE: 683 cmd->result |= (DID_OK << 16); 684 error = -EREMOTEIO; 685 break; 686 case DID_NEXUS_FAILURE: 687 cmd->result |= (DID_OK << 16); 688 error = -EBADE; 689 break; 690 default: 691 error = -EIO; 692 break; 693 } 694 695 return error; 696 } 697 698 /* 699 * Function: scsi_io_completion() 700 * 701 * Purpose: Completion processing for block device I/O requests. 702 * 703 * Arguments: cmd - command that is finished. 704 * 705 * Lock status: Assumed that no lock is held upon entry. 706 * 707 * Returns: Nothing 708 * 709 * Notes: This function is matched in terms of capabilities to 710 * the function that created the scatter-gather list. 711 * In other words, if there are no bounce buffers 712 * (the normal case for most drivers), we don't need 713 * the logic to deal with cleaning up afterwards. 714 * 715 * We must call scsi_end_request(). This will finish off 716 * the specified number of sectors. If we are done, the 717 * command block will be released and the queue function 718 * will be goosed. If we are not done then we have to 719 * figure out what to do next: 720 * 721 * a) We can call scsi_requeue_command(). The request 722 * will be unprepared and put back on the queue. Then 723 * a new command will be created for it. This should 724 * be used if we made forward progress, or if we want 725 * to switch from READ(10) to READ(6) for example. 726 * 727 * b) We can call scsi_queue_insert(). The request will 728 * be put back on the queue and retried using the same 729 * command as before, possibly after a delay. 730 * 731 * c) We can call blk_end_request() with -EIO to fail 732 * the remainder of the request. 733 */ 734 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 735 { 736 int result = cmd->result; 737 struct request_queue *q = cmd->device->request_queue; 738 struct request *req = cmd->request; 739 int error = 0; 740 struct scsi_sense_hdr sshdr; 741 int sense_valid = 0; 742 int sense_deferred = 0; 743 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 744 ACTION_DELAYED_RETRY} action; 745 char *description = NULL; 746 747 if (result) { 748 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 749 if (sense_valid) 750 sense_deferred = scsi_sense_is_deferred(&sshdr); 751 } 752 753 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 754 req->errors = result; 755 if (result) { 756 if (sense_valid && req->sense) { 757 /* 758 * SG_IO wants current and deferred errors 759 */ 760 int len = 8 + cmd->sense_buffer[7]; 761 762 if (len > SCSI_SENSE_BUFFERSIZE) 763 len = SCSI_SENSE_BUFFERSIZE; 764 memcpy(req->sense, cmd->sense_buffer, len); 765 req->sense_len = len; 766 } 767 if (!sense_deferred) 768 error = __scsi_error_from_host_byte(cmd, result); 769 } 770 771 req->resid_len = scsi_get_resid(cmd); 772 773 if (scsi_bidi_cmnd(cmd)) { 774 /* 775 * Bidi commands Must be complete as a whole, 776 * both sides at once. 777 */ 778 req->next_rq->resid_len = scsi_in(cmd)->resid; 779 780 scsi_release_buffers(cmd); 781 blk_end_request_all(req, 0); 782 783 scsi_next_command(cmd); 784 return; 785 } 786 } 787 788 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 789 BUG_ON(blk_bidi_rq(req)); 790 791 /* 792 * Next deal with any sectors which we were able to correctly 793 * handle. 794 */ 795 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 796 "%d bytes done.\n", 797 blk_rq_sectors(req), good_bytes)); 798 799 /* 800 * Recovered errors need reporting, but they're always treated 801 * as success, so fiddle the result code here. For BLOCK_PC 802 * we already took a copy of the original into rq->errors which 803 * is what gets returned to the user 804 */ 805 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 806 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 807 * print since caller wants ATA registers. Only occurs on 808 * SCSI ATA PASS_THROUGH commands when CK_COND=1 809 */ 810 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 811 ; 812 else if (!(req->cmd_flags & REQ_QUIET)) 813 scsi_print_sense("", cmd); 814 result = 0; 815 /* BLOCK_PC may have set error */ 816 error = 0; 817 } 818 819 /* 820 * A number of bytes were successfully read. If there 821 * are leftovers and there is some kind of error 822 * (result != 0), retry the rest. 823 */ 824 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 825 return; 826 827 error = __scsi_error_from_host_byte(cmd, result); 828 829 if (host_byte(result) == DID_RESET) { 830 /* Third party bus reset or reset for error recovery 831 * reasons. Just retry the command and see what 832 * happens. 833 */ 834 action = ACTION_RETRY; 835 } else if (sense_valid && !sense_deferred) { 836 switch (sshdr.sense_key) { 837 case UNIT_ATTENTION: 838 if (cmd->device->removable) { 839 /* Detected disc change. Set a bit 840 * and quietly refuse further access. 841 */ 842 cmd->device->changed = 1; 843 description = "Media Changed"; 844 action = ACTION_FAIL; 845 } else { 846 /* Must have been a power glitch, or a 847 * bus reset. Could not have been a 848 * media change, so we just retry the 849 * command and see what happens. 850 */ 851 action = ACTION_RETRY; 852 } 853 break; 854 case ILLEGAL_REQUEST: 855 /* If we had an ILLEGAL REQUEST returned, then 856 * we may have performed an unsupported 857 * command. The only thing this should be 858 * would be a ten byte read where only a six 859 * byte read was supported. Also, on a system 860 * where READ CAPACITY failed, we may have 861 * read past the end of the disk. 862 */ 863 if ((cmd->device->use_10_for_rw && 864 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 865 (cmd->cmnd[0] == READ_10 || 866 cmd->cmnd[0] == WRITE_10)) { 867 /* This will issue a new 6-byte command. */ 868 cmd->device->use_10_for_rw = 0; 869 action = ACTION_REPREP; 870 } else if (sshdr.asc == 0x10) /* DIX */ { 871 description = "Host Data Integrity Failure"; 872 action = ACTION_FAIL; 873 error = -EILSEQ; 874 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 875 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) && 876 (cmd->cmnd[0] == UNMAP || 877 cmd->cmnd[0] == WRITE_SAME_16 || 878 cmd->cmnd[0] == WRITE_SAME)) { 879 description = "Discard failure"; 880 action = ACTION_FAIL; 881 } else 882 action = ACTION_FAIL; 883 break; 884 case ABORTED_COMMAND: 885 action = ACTION_FAIL; 886 if (sshdr.asc == 0x10) { /* DIF */ 887 description = "Target Data Integrity Failure"; 888 error = -EILSEQ; 889 } 890 break; 891 case NOT_READY: 892 /* If the device is in the process of becoming 893 * ready, or has a temporary blockage, retry. 894 */ 895 if (sshdr.asc == 0x04) { 896 switch (sshdr.ascq) { 897 case 0x01: /* becoming ready */ 898 case 0x04: /* format in progress */ 899 case 0x05: /* rebuild in progress */ 900 case 0x06: /* recalculation in progress */ 901 case 0x07: /* operation in progress */ 902 case 0x08: /* Long write in progress */ 903 case 0x09: /* self test in progress */ 904 case 0x14: /* space allocation in progress */ 905 action = ACTION_DELAYED_RETRY; 906 break; 907 default: 908 description = "Device not ready"; 909 action = ACTION_FAIL; 910 break; 911 } 912 } else { 913 description = "Device not ready"; 914 action = ACTION_FAIL; 915 } 916 break; 917 case VOLUME_OVERFLOW: 918 /* See SSC3rXX or current. */ 919 action = ACTION_FAIL; 920 break; 921 default: 922 description = "Unhandled sense code"; 923 action = ACTION_FAIL; 924 break; 925 } 926 } else { 927 description = "Unhandled error code"; 928 action = ACTION_FAIL; 929 } 930 931 switch (action) { 932 case ACTION_FAIL: 933 /* Give up and fail the remainder of the request */ 934 scsi_release_buffers(cmd); 935 if (!(req->cmd_flags & REQ_QUIET)) { 936 if (description) 937 scmd_printk(KERN_INFO, cmd, "%s\n", 938 description); 939 scsi_print_result(cmd); 940 if (driver_byte(result) & DRIVER_SENSE) 941 scsi_print_sense("", cmd); 942 scsi_print_command(cmd); 943 } 944 if (blk_end_request_err(req, error)) 945 scsi_requeue_command(q, cmd); 946 else 947 scsi_next_command(cmd); 948 break; 949 case ACTION_REPREP: 950 /* Unprep the request and put it back at the head of the queue. 951 * A new command will be prepared and issued. 952 */ 953 scsi_release_buffers(cmd); 954 scsi_requeue_command(q, cmd); 955 break; 956 case ACTION_RETRY: 957 /* Retry the same command immediately */ 958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 959 break; 960 case ACTION_DELAYED_RETRY: 961 /* Retry the same command after a delay */ 962 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 963 break; 964 } 965 } 966 967 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 968 gfp_t gfp_mask) 969 { 970 int count; 971 972 /* 973 * If sg table allocation fails, requeue request later. 974 */ 975 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 976 gfp_mask))) { 977 return BLKPREP_DEFER; 978 } 979 980 req->buffer = NULL; 981 982 /* 983 * Next, walk the list, and fill in the addresses and sizes of 984 * each segment. 985 */ 986 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 987 BUG_ON(count > sdb->table.nents); 988 sdb->table.nents = count; 989 sdb->length = blk_rq_bytes(req); 990 return BLKPREP_OK; 991 } 992 993 /* 994 * Function: scsi_init_io() 995 * 996 * Purpose: SCSI I/O initialize function. 997 * 998 * Arguments: cmd - Command descriptor we wish to initialize 999 * 1000 * Returns: 0 on success 1001 * BLKPREP_DEFER if the failure is retryable 1002 * BLKPREP_KILL if the failure is fatal 1003 */ 1004 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1005 { 1006 struct request *rq = cmd->request; 1007 1008 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1009 if (error) 1010 goto err_exit; 1011 1012 if (blk_bidi_rq(rq)) { 1013 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1014 scsi_sdb_cache, GFP_ATOMIC); 1015 if (!bidi_sdb) { 1016 error = BLKPREP_DEFER; 1017 goto err_exit; 1018 } 1019 1020 rq->next_rq->special = bidi_sdb; 1021 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1022 if (error) 1023 goto err_exit; 1024 } 1025 1026 if (blk_integrity_rq(rq)) { 1027 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1028 int ivecs, count; 1029 1030 BUG_ON(prot_sdb == NULL); 1031 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1032 1033 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1034 error = BLKPREP_DEFER; 1035 goto err_exit; 1036 } 1037 1038 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1039 prot_sdb->table.sgl); 1040 BUG_ON(unlikely(count > ivecs)); 1041 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1042 1043 cmd->prot_sdb = prot_sdb; 1044 cmd->prot_sdb->table.nents = count; 1045 } 1046 1047 return BLKPREP_OK ; 1048 1049 err_exit: 1050 scsi_release_buffers(cmd); 1051 cmd->request->special = NULL; 1052 scsi_put_command(cmd); 1053 return error; 1054 } 1055 EXPORT_SYMBOL(scsi_init_io); 1056 1057 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1058 struct request *req) 1059 { 1060 struct scsi_cmnd *cmd; 1061 1062 if (!req->special) { 1063 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1064 if (unlikely(!cmd)) 1065 return NULL; 1066 req->special = cmd; 1067 } else { 1068 cmd = req->special; 1069 } 1070 1071 /* pull a tag out of the request if we have one */ 1072 cmd->tag = req->tag; 1073 cmd->request = req; 1074 1075 cmd->cmnd = req->cmd; 1076 cmd->prot_op = SCSI_PROT_NORMAL; 1077 1078 return cmd; 1079 } 1080 1081 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1082 { 1083 struct scsi_cmnd *cmd; 1084 int ret = scsi_prep_state_check(sdev, req); 1085 1086 if (ret != BLKPREP_OK) 1087 return ret; 1088 1089 cmd = scsi_get_cmd_from_req(sdev, req); 1090 if (unlikely(!cmd)) 1091 return BLKPREP_DEFER; 1092 1093 /* 1094 * BLOCK_PC requests may transfer data, in which case they must 1095 * a bio attached to them. Or they might contain a SCSI command 1096 * that does not transfer data, in which case they may optionally 1097 * submit a request without an attached bio. 1098 */ 1099 if (req->bio) { 1100 int ret; 1101 1102 BUG_ON(!req->nr_phys_segments); 1103 1104 ret = scsi_init_io(cmd, GFP_ATOMIC); 1105 if (unlikely(ret)) 1106 return ret; 1107 } else { 1108 BUG_ON(blk_rq_bytes(req)); 1109 1110 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1111 req->buffer = NULL; 1112 } 1113 1114 cmd->cmd_len = req->cmd_len; 1115 if (!blk_rq_bytes(req)) 1116 cmd->sc_data_direction = DMA_NONE; 1117 else if (rq_data_dir(req) == WRITE) 1118 cmd->sc_data_direction = DMA_TO_DEVICE; 1119 else 1120 cmd->sc_data_direction = DMA_FROM_DEVICE; 1121 1122 cmd->transfersize = blk_rq_bytes(req); 1123 cmd->allowed = req->retries; 1124 return BLKPREP_OK; 1125 } 1126 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1127 1128 /* 1129 * Setup a REQ_TYPE_FS command. These are simple read/write request 1130 * from filesystems that still need to be translated to SCSI CDBs from 1131 * the ULD. 1132 */ 1133 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1134 { 1135 struct scsi_cmnd *cmd; 1136 int ret = scsi_prep_state_check(sdev, req); 1137 1138 if (ret != BLKPREP_OK) 1139 return ret; 1140 1141 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1142 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1143 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1144 if (ret != BLKPREP_OK) 1145 return ret; 1146 } 1147 1148 /* 1149 * Filesystem requests must transfer data. 1150 */ 1151 BUG_ON(!req->nr_phys_segments); 1152 1153 cmd = scsi_get_cmd_from_req(sdev, req); 1154 if (unlikely(!cmd)) 1155 return BLKPREP_DEFER; 1156 1157 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1158 return scsi_init_io(cmd, GFP_ATOMIC); 1159 } 1160 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1161 1162 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1163 { 1164 int ret = BLKPREP_OK; 1165 1166 /* 1167 * If the device is not in running state we will reject some 1168 * or all commands. 1169 */ 1170 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1171 switch (sdev->sdev_state) { 1172 case SDEV_OFFLINE: 1173 /* 1174 * If the device is offline we refuse to process any 1175 * commands. The device must be brought online 1176 * before trying any recovery commands. 1177 */ 1178 sdev_printk(KERN_ERR, sdev, 1179 "rejecting I/O to offline device\n"); 1180 ret = BLKPREP_KILL; 1181 break; 1182 case SDEV_DEL: 1183 /* 1184 * If the device is fully deleted, we refuse to 1185 * process any commands as well. 1186 */ 1187 sdev_printk(KERN_ERR, sdev, 1188 "rejecting I/O to dead device\n"); 1189 ret = BLKPREP_KILL; 1190 break; 1191 case SDEV_QUIESCE: 1192 case SDEV_BLOCK: 1193 case SDEV_CREATED_BLOCK: 1194 /* 1195 * If the devices is blocked we defer normal commands. 1196 */ 1197 if (!(req->cmd_flags & REQ_PREEMPT)) 1198 ret = BLKPREP_DEFER; 1199 break; 1200 default: 1201 /* 1202 * For any other not fully online state we only allow 1203 * special commands. In particular any user initiated 1204 * command is not allowed. 1205 */ 1206 if (!(req->cmd_flags & REQ_PREEMPT)) 1207 ret = BLKPREP_KILL; 1208 break; 1209 } 1210 } 1211 return ret; 1212 } 1213 EXPORT_SYMBOL(scsi_prep_state_check); 1214 1215 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1216 { 1217 struct scsi_device *sdev = q->queuedata; 1218 1219 switch (ret) { 1220 case BLKPREP_KILL: 1221 req->errors = DID_NO_CONNECT << 16; 1222 /* release the command and kill it */ 1223 if (req->special) { 1224 struct scsi_cmnd *cmd = req->special; 1225 scsi_release_buffers(cmd); 1226 scsi_put_command(cmd); 1227 req->special = NULL; 1228 } 1229 break; 1230 case BLKPREP_DEFER: 1231 /* 1232 * If we defer, the blk_peek_request() returns NULL, but the 1233 * queue must be restarted, so we schedule a callback to happen 1234 * shortly. 1235 */ 1236 if (sdev->device_busy == 0) 1237 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1238 break; 1239 default: 1240 req->cmd_flags |= REQ_DONTPREP; 1241 } 1242 1243 return ret; 1244 } 1245 EXPORT_SYMBOL(scsi_prep_return); 1246 1247 int scsi_prep_fn(struct request_queue *q, struct request *req) 1248 { 1249 struct scsi_device *sdev = q->queuedata; 1250 int ret = BLKPREP_KILL; 1251 1252 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1253 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1254 return scsi_prep_return(q, req, ret); 1255 } 1256 EXPORT_SYMBOL(scsi_prep_fn); 1257 1258 /* 1259 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1260 * return 0. 1261 * 1262 * Called with the queue_lock held. 1263 */ 1264 static inline int scsi_dev_queue_ready(struct request_queue *q, 1265 struct scsi_device *sdev) 1266 { 1267 if (sdev->device_busy == 0 && sdev->device_blocked) { 1268 /* 1269 * unblock after device_blocked iterates to zero 1270 */ 1271 if (--sdev->device_blocked == 0) { 1272 SCSI_LOG_MLQUEUE(3, 1273 sdev_printk(KERN_INFO, sdev, 1274 "unblocking device at zero depth\n")); 1275 } else { 1276 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1277 return 0; 1278 } 1279 } 1280 if (scsi_device_is_busy(sdev)) 1281 return 0; 1282 1283 return 1; 1284 } 1285 1286 1287 /* 1288 * scsi_target_queue_ready: checks if there we can send commands to target 1289 * @sdev: scsi device on starget to check. 1290 * 1291 * Called with the host lock held. 1292 */ 1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1294 struct scsi_device *sdev) 1295 { 1296 struct scsi_target *starget = scsi_target(sdev); 1297 1298 if (starget->single_lun) { 1299 if (starget->starget_sdev_user && 1300 starget->starget_sdev_user != sdev) 1301 return 0; 1302 starget->starget_sdev_user = sdev; 1303 } 1304 1305 if (starget->target_busy == 0 && starget->target_blocked) { 1306 /* 1307 * unblock after target_blocked iterates to zero 1308 */ 1309 if (--starget->target_blocked == 0) { 1310 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1311 "unblocking target at zero depth\n")); 1312 } else 1313 return 0; 1314 } 1315 1316 if (scsi_target_is_busy(starget)) { 1317 if (list_empty(&sdev->starved_entry)) 1318 list_add_tail(&sdev->starved_entry, 1319 &shost->starved_list); 1320 return 0; 1321 } 1322 1323 /* We're OK to process the command, so we can't be starved */ 1324 if (!list_empty(&sdev->starved_entry)) 1325 list_del_init(&sdev->starved_entry); 1326 return 1; 1327 } 1328 1329 /* 1330 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1331 * return 0. We must end up running the queue again whenever 0 is 1332 * returned, else IO can hang. 1333 * 1334 * Called with host_lock held. 1335 */ 1336 static inline int scsi_host_queue_ready(struct request_queue *q, 1337 struct Scsi_Host *shost, 1338 struct scsi_device *sdev) 1339 { 1340 if (scsi_host_in_recovery(shost)) 1341 return 0; 1342 if (shost->host_busy == 0 && shost->host_blocked) { 1343 /* 1344 * unblock after host_blocked iterates to zero 1345 */ 1346 if (--shost->host_blocked == 0) { 1347 SCSI_LOG_MLQUEUE(3, 1348 printk("scsi%d unblocking host at zero depth\n", 1349 shost->host_no)); 1350 } else { 1351 return 0; 1352 } 1353 } 1354 if (scsi_host_is_busy(shost)) { 1355 if (list_empty(&sdev->starved_entry)) 1356 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1357 return 0; 1358 } 1359 1360 /* We're OK to process the command, so we can't be starved */ 1361 if (!list_empty(&sdev->starved_entry)) 1362 list_del_init(&sdev->starved_entry); 1363 1364 return 1; 1365 } 1366 1367 /* 1368 * Busy state exporting function for request stacking drivers. 1369 * 1370 * For efficiency, no lock is taken to check the busy state of 1371 * shost/starget/sdev, since the returned value is not guaranteed and 1372 * may be changed after request stacking drivers call the function, 1373 * regardless of taking lock or not. 1374 * 1375 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1376 * (e.g. !sdev), scsi needs to return 'not busy'. 1377 * Otherwise, request stacking drivers may hold requests forever. 1378 */ 1379 static int scsi_lld_busy(struct request_queue *q) 1380 { 1381 struct scsi_device *sdev = q->queuedata; 1382 struct Scsi_Host *shost; 1383 struct scsi_target *starget; 1384 1385 if (!sdev) 1386 return 0; 1387 1388 shost = sdev->host; 1389 starget = scsi_target(sdev); 1390 1391 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1392 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1393 return 1; 1394 1395 return 0; 1396 } 1397 1398 /* 1399 * Kill a request for a dead device 1400 */ 1401 static void scsi_kill_request(struct request *req, struct request_queue *q) 1402 { 1403 struct scsi_cmnd *cmd = req->special; 1404 struct scsi_device *sdev; 1405 struct scsi_target *starget; 1406 struct Scsi_Host *shost; 1407 1408 blk_start_request(req); 1409 1410 sdev = cmd->device; 1411 starget = scsi_target(sdev); 1412 shost = sdev->host; 1413 scsi_init_cmd_errh(cmd); 1414 cmd->result = DID_NO_CONNECT << 16; 1415 atomic_inc(&cmd->device->iorequest_cnt); 1416 1417 /* 1418 * SCSI request completion path will do scsi_device_unbusy(), 1419 * bump busy counts. To bump the counters, we need to dance 1420 * with the locks as normal issue path does. 1421 */ 1422 sdev->device_busy++; 1423 spin_unlock(sdev->request_queue->queue_lock); 1424 spin_lock(shost->host_lock); 1425 shost->host_busy++; 1426 starget->target_busy++; 1427 spin_unlock(shost->host_lock); 1428 spin_lock(sdev->request_queue->queue_lock); 1429 1430 blk_complete_request(req); 1431 } 1432 1433 static void scsi_softirq_done(struct request *rq) 1434 { 1435 struct scsi_cmnd *cmd = rq->special; 1436 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1437 int disposition; 1438 1439 INIT_LIST_HEAD(&cmd->eh_entry); 1440 1441 atomic_inc(&cmd->device->iodone_cnt); 1442 if (cmd->result) 1443 atomic_inc(&cmd->device->ioerr_cnt); 1444 1445 disposition = scsi_decide_disposition(cmd); 1446 if (disposition != SUCCESS && 1447 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1448 sdev_printk(KERN_ERR, cmd->device, 1449 "timing out command, waited %lus\n", 1450 wait_for/HZ); 1451 disposition = SUCCESS; 1452 } 1453 1454 scsi_log_completion(cmd, disposition); 1455 1456 switch (disposition) { 1457 case SUCCESS: 1458 scsi_finish_command(cmd); 1459 break; 1460 case NEEDS_RETRY: 1461 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1462 break; 1463 case ADD_TO_MLQUEUE: 1464 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1465 break; 1466 default: 1467 if (!scsi_eh_scmd_add(cmd, 0)) 1468 scsi_finish_command(cmd); 1469 } 1470 } 1471 1472 /* 1473 * Function: scsi_request_fn() 1474 * 1475 * Purpose: Main strategy routine for SCSI. 1476 * 1477 * Arguments: q - Pointer to actual queue. 1478 * 1479 * Returns: Nothing 1480 * 1481 * Lock status: IO request lock assumed to be held when called. 1482 */ 1483 static void scsi_request_fn(struct request_queue *q) 1484 { 1485 struct scsi_device *sdev = q->queuedata; 1486 struct Scsi_Host *shost; 1487 struct scsi_cmnd *cmd; 1488 struct request *req; 1489 1490 if (!sdev) { 1491 printk("scsi: killing requests for dead queue\n"); 1492 while ((req = blk_peek_request(q)) != NULL) 1493 scsi_kill_request(req, q); 1494 return; 1495 } 1496 1497 if(!get_device(&sdev->sdev_gendev)) 1498 /* We must be tearing the block queue down already */ 1499 return; 1500 1501 /* 1502 * To start with, we keep looping until the queue is empty, or until 1503 * the host is no longer able to accept any more requests. 1504 */ 1505 shost = sdev->host; 1506 for (;;) { 1507 int rtn; 1508 /* 1509 * get next queueable request. We do this early to make sure 1510 * that the request is fully prepared even if we cannot 1511 * accept it. 1512 */ 1513 req = blk_peek_request(q); 1514 if (!req || !scsi_dev_queue_ready(q, sdev)) 1515 break; 1516 1517 if (unlikely(!scsi_device_online(sdev))) { 1518 sdev_printk(KERN_ERR, sdev, 1519 "rejecting I/O to offline device\n"); 1520 scsi_kill_request(req, q); 1521 continue; 1522 } 1523 1524 1525 /* 1526 * Remove the request from the request list. 1527 */ 1528 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1529 blk_start_request(req); 1530 sdev->device_busy++; 1531 1532 spin_unlock(q->queue_lock); 1533 cmd = req->special; 1534 if (unlikely(cmd == NULL)) { 1535 printk(KERN_CRIT "impossible request in %s.\n" 1536 "please mail a stack trace to " 1537 "linux-scsi@vger.kernel.org\n", 1538 __func__); 1539 blk_dump_rq_flags(req, "foo"); 1540 BUG(); 1541 } 1542 spin_lock(shost->host_lock); 1543 1544 /* 1545 * We hit this when the driver is using a host wide 1546 * tag map. For device level tag maps the queue_depth check 1547 * in the device ready fn would prevent us from trying 1548 * to allocate a tag. Since the map is a shared host resource 1549 * we add the dev to the starved list so it eventually gets 1550 * a run when a tag is freed. 1551 */ 1552 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1553 if (list_empty(&sdev->starved_entry)) 1554 list_add_tail(&sdev->starved_entry, 1555 &shost->starved_list); 1556 goto not_ready; 1557 } 1558 1559 if (!scsi_target_queue_ready(shost, sdev)) 1560 goto not_ready; 1561 1562 if (!scsi_host_queue_ready(q, shost, sdev)) 1563 goto not_ready; 1564 1565 scsi_target(sdev)->target_busy++; 1566 shost->host_busy++; 1567 1568 /* 1569 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1570 * take the lock again. 1571 */ 1572 spin_unlock_irq(shost->host_lock); 1573 1574 /* 1575 * Finally, initialize any error handling parameters, and set up 1576 * the timers for timeouts. 1577 */ 1578 scsi_init_cmd_errh(cmd); 1579 1580 /* 1581 * Dispatch the command to the low-level driver. 1582 */ 1583 rtn = scsi_dispatch_cmd(cmd); 1584 spin_lock_irq(q->queue_lock); 1585 if (rtn) 1586 goto out_delay; 1587 } 1588 1589 goto out; 1590 1591 not_ready: 1592 spin_unlock_irq(shost->host_lock); 1593 1594 /* 1595 * lock q, handle tag, requeue req, and decrement device_busy. We 1596 * must return with queue_lock held. 1597 * 1598 * Decrementing device_busy without checking it is OK, as all such 1599 * cases (host limits or settings) should run the queue at some 1600 * later time. 1601 */ 1602 spin_lock_irq(q->queue_lock); 1603 blk_requeue_request(q, req); 1604 sdev->device_busy--; 1605 out_delay: 1606 if (sdev->device_busy == 0) 1607 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1608 out: 1609 /* must be careful here...if we trigger the ->remove() function 1610 * we cannot be holding the q lock */ 1611 spin_unlock_irq(q->queue_lock); 1612 put_device(&sdev->sdev_gendev); 1613 spin_lock_irq(q->queue_lock); 1614 } 1615 1616 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1617 { 1618 struct device *host_dev; 1619 u64 bounce_limit = 0xffffffff; 1620 1621 if (shost->unchecked_isa_dma) 1622 return BLK_BOUNCE_ISA; 1623 /* 1624 * Platforms with virtual-DMA translation 1625 * hardware have no practical limit. 1626 */ 1627 if (!PCI_DMA_BUS_IS_PHYS) 1628 return BLK_BOUNCE_ANY; 1629 1630 host_dev = scsi_get_device(shost); 1631 if (host_dev && host_dev->dma_mask) 1632 bounce_limit = *host_dev->dma_mask; 1633 1634 return bounce_limit; 1635 } 1636 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1637 1638 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1639 request_fn_proc *request_fn) 1640 { 1641 struct request_queue *q; 1642 struct device *dev = shost->shost_gendev.parent; 1643 1644 q = blk_init_queue(request_fn, NULL); 1645 if (!q) 1646 return NULL; 1647 1648 /* 1649 * this limit is imposed by hardware restrictions 1650 */ 1651 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1652 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1653 1654 if (scsi_host_prot_dma(shost)) { 1655 shost->sg_prot_tablesize = 1656 min_not_zero(shost->sg_prot_tablesize, 1657 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1658 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1659 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1660 } 1661 1662 blk_queue_max_hw_sectors(q, shost->max_sectors); 1663 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1664 blk_queue_segment_boundary(q, shost->dma_boundary); 1665 dma_set_seg_boundary(dev, shost->dma_boundary); 1666 1667 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1668 1669 if (!shost->use_clustering) 1670 q->limits.cluster = 0; 1671 1672 /* 1673 * set a reasonable default alignment on word boundaries: the 1674 * host and device may alter it using 1675 * blk_queue_update_dma_alignment() later. 1676 */ 1677 blk_queue_dma_alignment(q, 0x03); 1678 1679 return q; 1680 } 1681 EXPORT_SYMBOL(__scsi_alloc_queue); 1682 1683 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1684 { 1685 struct request_queue *q; 1686 1687 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1688 if (!q) 1689 return NULL; 1690 1691 blk_queue_prep_rq(q, scsi_prep_fn); 1692 blk_queue_softirq_done(q, scsi_softirq_done); 1693 blk_queue_rq_timed_out(q, scsi_times_out); 1694 blk_queue_lld_busy(q, scsi_lld_busy); 1695 return q; 1696 } 1697 1698 void scsi_free_queue(struct request_queue *q) 1699 { 1700 blk_cleanup_queue(q); 1701 } 1702 1703 /* 1704 * Function: scsi_block_requests() 1705 * 1706 * Purpose: Utility function used by low-level drivers to prevent further 1707 * commands from being queued to the device. 1708 * 1709 * Arguments: shost - Host in question 1710 * 1711 * Returns: Nothing 1712 * 1713 * Lock status: No locks are assumed held. 1714 * 1715 * Notes: There is no timer nor any other means by which the requests 1716 * get unblocked other than the low-level driver calling 1717 * scsi_unblock_requests(). 1718 */ 1719 void scsi_block_requests(struct Scsi_Host *shost) 1720 { 1721 shost->host_self_blocked = 1; 1722 } 1723 EXPORT_SYMBOL(scsi_block_requests); 1724 1725 /* 1726 * Function: scsi_unblock_requests() 1727 * 1728 * Purpose: Utility function used by low-level drivers to allow further 1729 * commands from being queued to the device. 1730 * 1731 * Arguments: shost - Host in question 1732 * 1733 * Returns: Nothing 1734 * 1735 * Lock status: No locks are assumed held. 1736 * 1737 * Notes: There is no timer nor any other means by which the requests 1738 * get unblocked other than the low-level driver calling 1739 * scsi_unblock_requests(). 1740 * 1741 * This is done as an API function so that changes to the 1742 * internals of the scsi mid-layer won't require wholesale 1743 * changes to drivers that use this feature. 1744 */ 1745 void scsi_unblock_requests(struct Scsi_Host *shost) 1746 { 1747 shost->host_self_blocked = 0; 1748 scsi_run_host_queues(shost); 1749 } 1750 EXPORT_SYMBOL(scsi_unblock_requests); 1751 1752 int __init scsi_init_queue(void) 1753 { 1754 int i; 1755 1756 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1757 sizeof(struct scsi_data_buffer), 1758 0, 0, NULL); 1759 if (!scsi_sdb_cache) { 1760 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1761 return -ENOMEM; 1762 } 1763 1764 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1765 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1766 int size = sgp->size * sizeof(struct scatterlist); 1767 1768 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1769 SLAB_HWCACHE_ALIGN, NULL); 1770 if (!sgp->slab) { 1771 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1772 sgp->name); 1773 goto cleanup_sdb; 1774 } 1775 1776 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1777 sgp->slab); 1778 if (!sgp->pool) { 1779 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1780 sgp->name); 1781 goto cleanup_sdb; 1782 } 1783 } 1784 1785 return 0; 1786 1787 cleanup_sdb: 1788 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1789 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1790 if (sgp->pool) 1791 mempool_destroy(sgp->pool); 1792 if (sgp->slab) 1793 kmem_cache_destroy(sgp->slab); 1794 } 1795 kmem_cache_destroy(scsi_sdb_cache); 1796 1797 return -ENOMEM; 1798 } 1799 1800 void scsi_exit_queue(void) 1801 { 1802 int i; 1803 1804 kmem_cache_destroy(scsi_sdb_cache); 1805 1806 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1807 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1808 mempool_destroy(sgp->pool); 1809 kmem_cache_destroy(sgp->slab); 1810 } 1811 } 1812 1813 /** 1814 * scsi_mode_select - issue a mode select 1815 * @sdev: SCSI device to be queried 1816 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1817 * @sp: Save page bit (0 == don't save, 1 == save) 1818 * @modepage: mode page being requested 1819 * @buffer: request buffer (may not be smaller than eight bytes) 1820 * @len: length of request buffer. 1821 * @timeout: command timeout 1822 * @retries: number of retries before failing 1823 * @data: returns a structure abstracting the mode header data 1824 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1825 * must be SCSI_SENSE_BUFFERSIZE big. 1826 * 1827 * Returns zero if successful; negative error number or scsi 1828 * status on error 1829 * 1830 */ 1831 int 1832 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1833 unsigned char *buffer, int len, int timeout, int retries, 1834 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1835 { 1836 unsigned char cmd[10]; 1837 unsigned char *real_buffer; 1838 int ret; 1839 1840 memset(cmd, 0, sizeof(cmd)); 1841 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1842 1843 if (sdev->use_10_for_ms) { 1844 if (len > 65535) 1845 return -EINVAL; 1846 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1847 if (!real_buffer) 1848 return -ENOMEM; 1849 memcpy(real_buffer + 8, buffer, len); 1850 len += 8; 1851 real_buffer[0] = 0; 1852 real_buffer[1] = 0; 1853 real_buffer[2] = data->medium_type; 1854 real_buffer[3] = data->device_specific; 1855 real_buffer[4] = data->longlba ? 0x01 : 0; 1856 real_buffer[5] = 0; 1857 real_buffer[6] = data->block_descriptor_length >> 8; 1858 real_buffer[7] = data->block_descriptor_length; 1859 1860 cmd[0] = MODE_SELECT_10; 1861 cmd[7] = len >> 8; 1862 cmd[8] = len; 1863 } else { 1864 if (len > 255 || data->block_descriptor_length > 255 || 1865 data->longlba) 1866 return -EINVAL; 1867 1868 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1869 if (!real_buffer) 1870 return -ENOMEM; 1871 memcpy(real_buffer + 4, buffer, len); 1872 len += 4; 1873 real_buffer[0] = 0; 1874 real_buffer[1] = data->medium_type; 1875 real_buffer[2] = data->device_specific; 1876 real_buffer[3] = data->block_descriptor_length; 1877 1878 1879 cmd[0] = MODE_SELECT; 1880 cmd[4] = len; 1881 } 1882 1883 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1884 sshdr, timeout, retries, NULL); 1885 kfree(real_buffer); 1886 return ret; 1887 } 1888 EXPORT_SYMBOL_GPL(scsi_mode_select); 1889 1890 /** 1891 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1892 * @sdev: SCSI device to be queried 1893 * @dbd: set if mode sense will allow block descriptors to be returned 1894 * @modepage: mode page being requested 1895 * @buffer: request buffer (may not be smaller than eight bytes) 1896 * @len: length of request buffer. 1897 * @timeout: command timeout 1898 * @retries: number of retries before failing 1899 * @data: returns a structure abstracting the mode header data 1900 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1901 * must be SCSI_SENSE_BUFFERSIZE big. 1902 * 1903 * Returns zero if unsuccessful, or the header offset (either 4 1904 * or 8 depending on whether a six or ten byte command was 1905 * issued) if successful. 1906 */ 1907 int 1908 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1909 unsigned char *buffer, int len, int timeout, int retries, 1910 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1911 { 1912 unsigned char cmd[12]; 1913 int use_10_for_ms; 1914 int header_length; 1915 int result; 1916 struct scsi_sense_hdr my_sshdr; 1917 1918 memset(data, 0, sizeof(*data)); 1919 memset(&cmd[0], 0, 12); 1920 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1921 cmd[2] = modepage; 1922 1923 /* caller might not be interested in sense, but we need it */ 1924 if (!sshdr) 1925 sshdr = &my_sshdr; 1926 1927 retry: 1928 use_10_for_ms = sdev->use_10_for_ms; 1929 1930 if (use_10_for_ms) { 1931 if (len < 8) 1932 len = 8; 1933 1934 cmd[0] = MODE_SENSE_10; 1935 cmd[8] = len; 1936 header_length = 8; 1937 } else { 1938 if (len < 4) 1939 len = 4; 1940 1941 cmd[0] = MODE_SENSE; 1942 cmd[4] = len; 1943 header_length = 4; 1944 } 1945 1946 memset(buffer, 0, len); 1947 1948 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1949 sshdr, timeout, retries, NULL); 1950 1951 /* This code looks awful: what it's doing is making sure an 1952 * ILLEGAL REQUEST sense return identifies the actual command 1953 * byte as the problem. MODE_SENSE commands can return 1954 * ILLEGAL REQUEST if the code page isn't supported */ 1955 1956 if (use_10_for_ms && !scsi_status_is_good(result) && 1957 (driver_byte(result) & DRIVER_SENSE)) { 1958 if (scsi_sense_valid(sshdr)) { 1959 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1960 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1961 /* 1962 * Invalid command operation code 1963 */ 1964 sdev->use_10_for_ms = 0; 1965 goto retry; 1966 } 1967 } 1968 } 1969 1970 if(scsi_status_is_good(result)) { 1971 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1972 (modepage == 6 || modepage == 8))) { 1973 /* Initio breakage? */ 1974 header_length = 0; 1975 data->length = 13; 1976 data->medium_type = 0; 1977 data->device_specific = 0; 1978 data->longlba = 0; 1979 data->block_descriptor_length = 0; 1980 } else if(use_10_for_ms) { 1981 data->length = buffer[0]*256 + buffer[1] + 2; 1982 data->medium_type = buffer[2]; 1983 data->device_specific = buffer[3]; 1984 data->longlba = buffer[4] & 0x01; 1985 data->block_descriptor_length = buffer[6]*256 1986 + buffer[7]; 1987 } else { 1988 data->length = buffer[0] + 1; 1989 data->medium_type = buffer[1]; 1990 data->device_specific = buffer[2]; 1991 data->block_descriptor_length = buffer[3]; 1992 } 1993 data->header_length = header_length; 1994 } 1995 1996 return result; 1997 } 1998 EXPORT_SYMBOL(scsi_mode_sense); 1999 2000 /** 2001 * scsi_test_unit_ready - test if unit is ready 2002 * @sdev: scsi device to change the state of. 2003 * @timeout: command timeout 2004 * @retries: number of retries before failing 2005 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2006 * returning sense. Make sure that this is cleared before passing 2007 * in. 2008 * 2009 * Returns zero if unsuccessful or an error if TUR failed. For 2010 * removable media, UNIT_ATTENTION sets ->changed flag. 2011 **/ 2012 int 2013 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2014 struct scsi_sense_hdr *sshdr_external) 2015 { 2016 char cmd[] = { 2017 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2018 }; 2019 struct scsi_sense_hdr *sshdr; 2020 int result; 2021 2022 if (!sshdr_external) 2023 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2024 else 2025 sshdr = sshdr_external; 2026 2027 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2028 do { 2029 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2030 timeout, retries, NULL); 2031 if (sdev->removable && scsi_sense_valid(sshdr) && 2032 sshdr->sense_key == UNIT_ATTENTION) 2033 sdev->changed = 1; 2034 } while (scsi_sense_valid(sshdr) && 2035 sshdr->sense_key == UNIT_ATTENTION && --retries); 2036 2037 if (!sshdr_external) 2038 kfree(sshdr); 2039 return result; 2040 } 2041 EXPORT_SYMBOL(scsi_test_unit_ready); 2042 2043 /** 2044 * scsi_device_set_state - Take the given device through the device state model. 2045 * @sdev: scsi device to change the state of. 2046 * @state: state to change to. 2047 * 2048 * Returns zero if unsuccessful or an error if the requested 2049 * transition is illegal. 2050 */ 2051 int 2052 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2053 { 2054 enum scsi_device_state oldstate = sdev->sdev_state; 2055 2056 if (state == oldstate) 2057 return 0; 2058 2059 switch (state) { 2060 case SDEV_CREATED: 2061 switch (oldstate) { 2062 case SDEV_CREATED_BLOCK: 2063 break; 2064 default: 2065 goto illegal; 2066 } 2067 break; 2068 2069 case SDEV_RUNNING: 2070 switch (oldstate) { 2071 case SDEV_CREATED: 2072 case SDEV_OFFLINE: 2073 case SDEV_QUIESCE: 2074 case SDEV_BLOCK: 2075 break; 2076 default: 2077 goto illegal; 2078 } 2079 break; 2080 2081 case SDEV_QUIESCE: 2082 switch (oldstate) { 2083 case SDEV_RUNNING: 2084 case SDEV_OFFLINE: 2085 break; 2086 default: 2087 goto illegal; 2088 } 2089 break; 2090 2091 case SDEV_OFFLINE: 2092 switch (oldstate) { 2093 case SDEV_CREATED: 2094 case SDEV_RUNNING: 2095 case SDEV_QUIESCE: 2096 case SDEV_BLOCK: 2097 break; 2098 default: 2099 goto illegal; 2100 } 2101 break; 2102 2103 case SDEV_BLOCK: 2104 switch (oldstate) { 2105 case SDEV_RUNNING: 2106 case SDEV_CREATED_BLOCK: 2107 break; 2108 default: 2109 goto illegal; 2110 } 2111 break; 2112 2113 case SDEV_CREATED_BLOCK: 2114 switch (oldstate) { 2115 case SDEV_CREATED: 2116 break; 2117 default: 2118 goto illegal; 2119 } 2120 break; 2121 2122 case SDEV_CANCEL: 2123 switch (oldstate) { 2124 case SDEV_CREATED: 2125 case SDEV_RUNNING: 2126 case SDEV_QUIESCE: 2127 case SDEV_OFFLINE: 2128 case SDEV_BLOCK: 2129 break; 2130 default: 2131 goto illegal; 2132 } 2133 break; 2134 2135 case SDEV_DEL: 2136 switch (oldstate) { 2137 case SDEV_CREATED: 2138 case SDEV_RUNNING: 2139 case SDEV_OFFLINE: 2140 case SDEV_CANCEL: 2141 break; 2142 default: 2143 goto illegal; 2144 } 2145 break; 2146 2147 } 2148 sdev->sdev_state = state; 2149 return 0; 2150 2151 illegal: 2152 SCSI_LOG_ERROR_RECOVERY(1, 2153 sdev_printk(KERN_ERR, sdev, 2154 "Illegal state transition %s->%s\n", 2155 scsi_device_state_name(oldstate), 2156 scsi_device_state_name(state)) 2157 ); 2158 return -EINVAL; 2159 } 2160 EXPORT_SYMBOL(scsi_device_set_state); 2161 2162 /** 2163 * sdev_evt_emit - emit a single SCSI device uevent 2164 * @sdev: associated SCSI device 2165 * @evt: event to emit 2166 * 2167 * Send a single uevent (scsi_event) to the associated scsi_device. 2168 */ 2169 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2170 { 2171 int idx = 0; 2172 char *envp[3]; 2173 2174 switch (evt->evt_type) { 2175 case SDEV_EVT_MEDIA_CHANGE: 2176 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2177 break; 2178 2179 default: 2180 /* do nothing */ 2181 break; 2182 } 2183 2184 envp[idx++] = NULL; 2185 2186 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2187 } 2188 2189 /** 2190 * sdev_evt_thread - send a uevent for each scsi event 2191 * @work: work struct for scsi_device 2192 * 2193 * Dispatch queued events to their associated scsi_device kobjects 2194 * as uevents. 2195 */ 2196 void scsi_evt_thread(struct work_struct *work) 2197 { 2198 struct scsi_device *sdev; 2199 LIST_HEAD(event_list); 2200 2201 sdev = container_of(work, struct scsi_device, event_work); 2202 2203 while (1) { 2204 struct scsi_event *evt; 2205 struct list_head *this, *tmp; 2206 unsigned long flags; 2207 2208 spin_lock_irqsave(&sdev->list_lock, flags); 2209 list_splice_init(&sdev->event_list, &event_list); 2210 spin_unlock_irqrestore(&sdev->list_lock, flags); 2211 2212 if (list_empty(&event_list)) 2213 break; 2214 2215 list_for_each_safe(this, tmp, &event_list) { 2216 evt = list_entry(this, struct scsi_event, node); 2217 list_del(&evt->node); 2218 scsi_evt_emit(sdev, evt); 2219 kfree(evt); 2220 } 2221 } 2222 } 2223 2224 /** 2225 * sdev_evt_send - send asserted event to uevent thread 2226 * @sdev: scsi_device event occurred on 2227 * @evt: event to send 2228 * 2229 * Assert scsi device event asynchronously. 2230 */ 2231 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2232 { 2233 unsigned long flags; 2234 2235 #if 0 2236 /* FIXME: currently this check eliminates all media change events 2237 * for polled devices. Need to update to discriminate between AN 2238 * and polled events */ 2239 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2240 kfree(evt); 2241 return; 2242 } 2243 #endif 2244 2245 spin_lock_irqsave(&sdev->list_lock, flags); 2246 list_add_tail(&evt->node, &sdev->event_list); 2247 schedule_work(&sdev->event_work); 2248 spin_unlock_irqrestore(&sdev->list_lock, flags); 2249 } 2250 EXPORT_SYMBOL_GPL(sdev_evt_send); 2251 2252 /** 2253 * sdev_evt_alloc - allocate a new scsi event 2254 * @evt_type: type of event to allocate 2255 * @gfpflags: GFP flags for allocation 2256 * 2257 * Allocates and returns a new scsi_event. 2258 */ 2259 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2260 gfp_t gfpflags) 2261 { 2262 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2263 if (!evt) 2264 return NULL; 2265 2266 evt->evt_type = evt_type; 2267 INIT_LIST_HEAD(&evt->node); 2268 2269 /* evt_type-specific initialization, if any */ 2270 switch (evt_type) { 2271 case SDEV_EVT_MEDIA_CHANGE: 2272 default: 2273 /* do nothing */ 2274 break; 2275 } 2276 2277 return evt; 2278 } 2279 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2280 2281 /** 2282 * sdev_evt_send_simple - send asserted event to uevent thread 2283 * @sdev: scsi_device event occurred on 2284 * @evt_type: type of event to send 2285 * @gfpflags: GFP flags for allocation 2286 * 2287 * Assert scsi device event asynchronously, given an event type. 2288 */ 2289 void sdev_evt_send_simple(struct scsi_device *sdev, 2290 enum scsi_device_event evt_type, gfp_t gfpflags) 2291 { 2292 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2293 if (!evt) { 2294 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2295 evt_type); 2296 return; 2297 } 2298 2299 sdev_evt_send(sdev, evt); 2300 } 2301 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2302 2303 /** 2304 * scsi_device_quiesce - Block user issued commands. 2305 * @sdev: scsi device to quiesce. 2306 * 2307 * This works by trying to transition to the SDEV_QUIESCE state 2308 * (which must be a legal transition). When the device is in this 2309 * state, only special requests will be accepted, all others will 2310 * be deferred. Since special requests may also be requeued requests, 2311 * a successful return doesn't guarantee the device will be 2312 * totally quiescent. 2313 * 2314 * Must be called with user context, may sleep. 2315 * 2316 * Returns zero if unsuccessful or an error if not. 2317 */ 2318 int 2319 scsi_device_quiesce(struct scsi_device *sdev) 2320 { 2321 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2322 if (err) 2323 return err; 2324 2325 scsi_run_queue(sdev->request_queue); 2326 while (sdev->device_busy) { 2327 msleep_interruptible(200); 2328 scsi_run_queue(sdev->request_queue); 2329 } 2330 return 0; 2331 } 2332 EXPORT_SYMBOL(scsi_device_quiesce); 2333 2334 /** 2335 * scsi_device_resume - Restart user issued commands to a quiesced device. 2336 * @sdev: scsi device to resume. 2337 * 2338 * Moves the device from quiesced back to running and restarts the 2339 * queues. 2340 * 2341 * Must be called with user context, may sleep. 2342 */ 2343 void 2344 scsi_device_resume(struct scsi_device *sdev) 2345 { 2346 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2347 return; 2348 scsi_run_queue(sdev->request_queue); 2349 } 2350 EXPORT_SYMBOL(scsi_device_resume); 2351 2352 static void 2353 device_quiesce_fn(struct scsi_device *sdev, void *data) 2354 { 2355 scsi_device_quiesce(sdev); 2356 } 2357 2358 void 2359 scsi_target_quiesce(struct scsi_target *starget) 2360 { 2361 starget_for_each_device(starget, NULL, device_quiesce_fn); 2362 } 2363 EXPORT_SYMBOL(scsi_target_quiesce); 2364 2365 static void 2366 device_resume_fn(struct scsi_device *sdev, void *data) 2367 { 2368 scsi_device_resume(sdev); 2369 } 2370 2371 void 2372 scsi_target_resume(struct scsi_target *starget) 2373 { 2374 starget_for_each_device(starget, NULL, device_resume_fn); 2375 } 2376 EXPORT_SYMBOL(scsi_target_resume); 2377 2378 /** 2379 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2380 * @sdev: device to block 2381 * 2382 * Block request made by scsi lld's to temporarily stop all 2383 * scsi commands on the specified device. Called from interrupt 2384 * or normal process context. 2385 * 2386 * Returns zero if successful or error if not 2387 * 2388 * Notes: 2389 * This routine transitions the device to the SDEV_BLOCK state 2390 * (which must be a legal transition). When the device is in this 2391 * state, all commands are deferred until the scsi lld reenables 2392 * the device with scsi_device_unblock or device_block_tmo fires. 2393 * This routine assumes the host_lock is held on entry. 2394 */ 2395 int 2396 scsi_internal_device_block(struct scsi_device *sdev) 2397 { 2398 struct request_queue *q = sdev->request_queue; 2399 unsigned long flags; 2400 int err = 0; 2401 2402 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2403 if (err) { 2404 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2405 2406 if (err) 2407 return err; 2408 } 2409 2410 /* 2411 * The device has transitioned to SDEV_BLOCK. Stop the 2412 * block layer from calling the midlayer with this device's 2413 * request queue. 2414 */ 2415 spin_lock_irqsave(q->queue_lock, flags); 2416 blk_stop_queue(q); 2417 spin_unlock_irqrestore(q->queue_lock, flags); 2418 2419 return 0; 2420 } 2421 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2422 2423 /** 2424 * scsi_internal_device_unblock - resume a device after a block request 2425 * @sdev: device to resume 2426 * 2427 * Called by scsi lld's or the midlayer to restart the device queue 2428 * for the previously suspended scsi device. Called from interrupt or 2429 * normal process context. 2430 * 2431 * Returns zero if successful or error if not. 2432 * 2433 * Notes: 2434 * This routine transitions the device to the SDEV_RUNNING state 2435 * (which must be a legal transition) allowing the midlayer to 2436 * goose the queue for this device. This routine assumes the 2437 * host_lock is held upon entry. 2438 */ 2439 int 2440 scsi_internal_device_unblock(struct scsi_device *sdev) 2441 { 2442 struct request_queue *q = sdev->request_queue; 2443 unsigned long flags; 2444 2445 /* 2446 * Try to transition the scsi device to SDEV_RUNNING 2447 * and goose the device queue if successful. 2448 */ 2449 if (sdev->sdev_state == SDEV_BLOCK) 2450 sdev->sdev_state = SDEV_RUNNING; 2451 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2452 sdev->sdev_state = SDEV_CREATED; 2453 else if (sdev->sdev_state != SDEV_CANCEL && 2454 sdev->sdev_state != SDEV_OFFLINE) 2455 return -EINVAL; 2456 2457 spin_lock_irqsave(q->queue_lock, flags); 2458 blk_start_queue(q); 2459 spin_unlock_irqrestore(q->queue_lock, flags); 2460 2461 return 0; 2462 } 2463 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2464 2465 static void 2466 device_block(struct scsi_device *sdev, void *data) 2467 { 2468 scsi_internal_device_block(sdev); 2469 } 2470 2471 static int 2472 target_block(struct device *dev, void *data) 2473 { 2474 if (scsi_is_target_device(dev)) 2475 starget_for_each_device(to_scsi_target(dev), NULL, 2476 device_block); 2477 return 0; 2478 } 2479 2480 void 2481 scsi_target_block(struct device *dev) 2482 { 2483 if (scsi_is_target_device(dev)) 2484 starget_for_each_device(to_scsi_target(dev), NULL, 2485 device_block); 2486 else 2487 device_for_each_child(dev, NULL, target_block); 2488 } 2489 EXPORT_SYMBOL_GPL(scsi_target_block); 2490 2491 static void 2492 device_unblock(struct scsi_device *sdev, void *data) 2493 { 2494 scsi_internal_device_unblock(sdev); 2495 } 2496 2497 static int 2498 target_unblock(struct device *dev, void *data) 2499 { 2500 if (scsi_is_target_device(dev)) 2501 starget_for_each_device(to_scsi_target(dev), NULL, 2502 device_unblock); 2503 return 0; 2504 } 2505 2506 void 2507 scsi_target_unblock(struct device *dev) 2508 { 2509 if (scsi_is_target_device(dev)) 2510 starget_for_each_device(to_scsi_target(dev), NULL, 2511 device_unblock); 2512 else 2513 device_for_each_child(dev, NULL, target_unblock); 2514 } 2515 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2516 2517 /** 2518 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2519 * @sgl: scatter-gather list 2520 * @sg_count: number of segments in sg 2521 * @offset: offset in bytes into sg, on return offset into the mapped area 2522 * @len: bytes to map, on return number of bytes mapped 2523 * 2524 * Returns virtual address of the start of the mapped page 2525 */ 2526 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2527 size_t *offset, size_t *len) 2528 { 2529 int i; 2530 size_t sg_len = 0, len_complete = 0; 2531 struct scatterlist *sg; 2532 struct page *page; 2533 2534 WARN_ON(!irqs_disabled()); 2535 2536 for_each_sg(sgl, sg, sg_count, i) { 2537 len_complete = sg_len; /* Complete sg-entries */ 2538 sg_len += sg->length; 2539 if (sg_len > *offset) 2540 break; 2541 } 2542 2543 if (unlikely(i == sg_count)) { 2544 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2545 "elements %d\n", 2546 __func__, sg_len, *offset, sg_count); 2547 WARN_ON(1); 2548 return NULL; 2549 } 2550 2551 /* Offset starting from the beginning of first page in this sg-entry */ 2552 *offset = *offset - len_complete + sg->offset; 2553 2554 /* Assumption: contiguous pages can be accessed as "page + i" */ 2555 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2556 *offset &= ~PAGE_MASK; 2557 2558 /* Bytes in this sg-entry from *offset to the end of the page */ 2559 sg_len = PAGE_SIZE - *offset; 2560 if (*len > sg_len) 2561 *len = sg_len; 2562 2563 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2564 } 2565 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2566 2567 /** 2568 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2569 * @virt: virtual address to be unmapped 2570 */ 2571 void scsi_kunmap_atomic_sg(void *virt) 2572 { 2573 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2574 } 2575 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2576