xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 	if (IS_ERR(req))
254 		return ret;
255 	rq = scsi_req(req);
256 
257 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
258 					buffer, bufflen, GFP_NOIO))
259 		goto out;
260 
261 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 	memcpy(rq->cmd, cmd, rq->cmd_len);
263 	rq->retries = retries;
264 	req->timeout = timeout;
265 	req->cmd_flags |= flags;
266 	req->rq_flags |= rq_flags | RQF_QUIET;
267 
268 	/*
269 	 * head injection *required* here otherwise quiesce won't work
270 	 */
271 	blk_execute_rq(req->q, NULL, req, 1);
272 
273 	/*
274 	 * Some devices (USB mass-storage in particular) may transfer
275 	 * garbage data together with a residue indicating that the data
276 	 * is invalid.  Prevent the garbage from being misinterpreted
277 	 * and prevent security leaks by zeroing out the excess data.
278 	 */
279 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281 
282 	if (resid)
283 		*resid = rq->resid_len;
284 	if (sense && rq->sense_len)
285 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 	if (sshdr)
287 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 	ret = rq->result;
289  out:
290 	blk_put_request(req);
291 
292 	return ret;
293 }
294 EXPORT_SYMBOL(__scsi_execute);
295 
296 /**
297  * scsi_init_cmd_errh - Initialize cmd fields related to error handling.
298  * @cmd:  command that is ready to be queued.
299  *
300  * This function has the job of initializing a number of fields related to error
301  * handling. Typically this will be called once for each command, as required.
302  */
303 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
304 {
305 	scsi_set_resid(cmd, 0);
306 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
307 	if (cmd->cmd_len == 0)
308 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
309 }
310 
311 /*
312  * Wake up the error handler if necessary. Avoid as follows that the error
313  * handler is not woken up if host in-flight requests number ==
314  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
315  * with an RCU read lock in this function to ensure that this function in
316  * its entirety either finishes before scsi_eh_scmd_add() increases the
317  * host_failed counter or that it notices the shost state change made by
318  * scsi_eh_scmd_add().
319  */
320 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
321 {
322 	unsigned long flags;
323 
324 	rcu_read_lock();
325 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
326 	if (unlikely(scsi_host_in_recovery(shost))) {
327 		spin_lock_irqsave(shost->host_lock, flags);
328 		if (shost->host_failed || shost->host_eh_scheduled)
329 			scsi_eh_wakeup(shost);
330 		spin_unlock_irqrestore(shost->host_lock, flags);
331 	}
332 	rcu_read_unlock();
333 }
334 
335 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
336 {
337 	struct Scsi_Host *shost = sdev->host;
338 	struct scsi_target *starget = scsi_target(sdev);
339 
340 	scsi_dec_host_busy(shost, cmd);
341 
342 	if (starget->can_queue > 0)
343 		atomic_dec(&starget->target_busy);
344 
345 	atomic_dec(&sdev->device_busy);
346 }
347 
348 static void scsi_kick_queue(struct request_queue *q)
349 {
350 	blk_mq_run_hw_queues(q, false);
351 }
352 
353 /*
354  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
355  * and call blk_run_queue for all the scsi_devices on the target -
356  * including current_sdev first.
357  *
358  * Called with *no* scsi locks held.
359  */
360 static void scsi_single_lun_run(struct scsi_device *current_sdev)
361 {
362 	struct Scsi_Host *shost = current_sdev->host;
363 	struct scsi_device *sdev, *tmp;
364 	struct scsi_target *starget = scsi_target(current_sdev);
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(shost->host_lock, flags);
368 	starget->starget_sdev_user = NULL;
369 	spin_unlock_irqrestore(shost->host_lock, flags);
370 
371 	/*
372 	 * Call blk_run_queue for all LUNs on the target, starting with
373 	 * current_sdev. We race with others (to set starget_sdev_user),
374 	 * but in most cases, we will be first. Ideally, each LU on the
375 	 * target would get some limited time or requests on the target.
376 	 */
377 	scsi_kick_queue(current_sdev->request_queue);
378 
379 	spin_lock_irqsave(shost->host_lock, flags);
380 	if (starget->starget_sdev_user)
381 		goto out;
382 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
383 			same_target_siblings) {
384 		if (sdev == current_sdev)
385 			continue;
386 		if (scsi_device_get(sdev))
387 			continue;
388 
389 		spin_unlock_irqrestore(shost->host_lock, flags);
390 		scsi_kick_queue(sdev->request_queue);
391 		spin_lock_irqsave(shost->host_lock, flags);
392 
393 		scsi_device_put(sdev);
394 	}
395  out:
396 	spin_unlock_irqrestore(shost->host_lock, flags);
397 }
398 
399 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
400 {
401 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
402 		return true;
403 	if (atomic_read(&sdev->device_blocked) > 0)
404 		return true;
405 	return false;
406 }
407 
408 static inline bool scsi_target_is_busy(struct scsi_target *starget)
409 {
410 	if (starget->can_queue > 0) {
411 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
412 			return true;
413 		if (atomic_read(&starget->target_blocked) > 0)
414 			return true;
415 	}
416 	return false;
417 }
418 
419 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
420 {
421 	if (atomic_read(&shost->host_blocked) > 0)
422 		return true;
423 	if (shost->host_self_blocked)
424 		return true;
425 	return false;
426 }
427 
428 static void scsi_starved_list_run(struct Scsi_Host *shost)
429 {
430 	LIST_HEAD(starved_list);
431 	struct scsi_device *sdev;
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(shost->host_lock, flags);
435 	list_splice_init(&shost->starved_list, &starved_list);
436 
437 	while (!list_empty(&starved_list)) {
438 		struct request_queue *slq;
439 
440 		/*
441 		 * As long as shost is accepting commands and we have
442 		 * starved queues, call blk_run_queue. scsi_request_fn
443 		 * drops the queue_lock and can add us back to the
444 		 * starved_list.
445 		 *
446 		 * host_lock protects the starved_list and starved_entry.
447 		 * scsi_request_fn must get the host_lock before checking
448 		 * or modifying starved_list or starved_entry.
449 		 */
450 		if (scsi_host_is_busy(shost))
451 			break;
452 
453 		sdev = list_entry(starved_list.next,
454 				  struct scsi_device, starved_entry);
455 		list_del_init(&sdev->starved_entry);
456 		if (scsi_target_is_busy(scsi_target(sdev))) {
457 			list_move_tail(&sdev->starved_entry,
458 				       &shost->starved_list);
459 			continue;
460 		}
461 
462 		/*
463 		 * Once we drop the host lock, a racing scsi_remove_device()
464 		 * call may remove the sdev from the starved list and destroy
465 		 * it and the queue.  Mitigate by taking a reference to the
466 		 * queue and never touching the sdev again after we drop the
467 		 * host lock.  Note: if __scsi_remove_device() invokes
468 		 * blk_cleanup_queue() before the queue is run from this
469 		 * function then blk_run_queue() will return immediately since
470 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
471 		 */
472 		slq = sdev->request_queue;
473 		if (!blk_get_queue(slq))
474 			continue;
475 		spin_unlock_irqrestore(shost->host_lock, flags);
476 
477 		scsi_kick_queue(slq);
478 		blk_put_queue(slq);
479 
480 		spin_lock_irqsave(shost->host_lock, flags);
481 	}
482 	/* put any unprocessed entries back */
483 	list_splice(&starved_list, &shost->starved_list);
484 	spin_unlock_irqrestore(shost->host_lock, flags);
485 }
486 
487 /**
488  * scsi_run_queue - Select a proper request queue to serve next.
489  * @q:  last request's queue
490  *
491  * The previous command was completely finished, start a new one if possible.
492  */
493 static void scsi_run_queue(struct request_queue *q)
494 {
495 	struct scsi_device *sdev = q->queuedata;
496 
497 	if (scsi_target(sdev)->single_lun)
498 		scsi_single_lun_run(sdev);
499 	if (!list_empty(&sdev->host->starved_list))
500 		scsi_starved_list_run(sdev->host);
501 
502 	blk_mq_run_hw_queues(q, false);
503 }
504 
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 	struct scsi_device *sdev;
508 	struct request_queue *q;
509 
510 	sdev = container_of(work, struct scsi_device, requeue_work);
511 	q = sdev->request_queue;
512 	scsi_run_queue(q);
513 }
514 
515 void scsi_run_host_queues(struct Scsi_Host *shost)
516 {
517 	struct scsi_device *sdev;
518 
519 	shost_for_each_device(sdev, shost)
520 		scsi_run_queue(sdev->request_queue);
521 }
522 
523 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
524 {
525 	if (!blk_rq_is_passthrough(cmd->request)) {
526 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
527 
528 		if (drv->uninit_command)
529 			drv->uninit_command(cmd);
530 	}
531 }
532 
533 static void scsi_free_sgtables(struct scsi_cmnd *cmd)
534 {
535 	if (cmd->sdb.table.nents)
536 		sg_free_table_chained(&cmd->sdb.table,
537 				SCSI_INLINE_SG_CNT);
538 	if (scsi_prot_sg_count(cmd))
539 		sg_free_table_chained(&cmd->prot_sdb->table,
540 				SCSI_INLINE_PROT_SG_CNT);
541 }
542 
543 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
544 {
545 	scsi_free_sgtables(cmd);
546 	scsi_uninit_cmd(cmd);
547 }
548 
549 static void scsi_run_queue_async(struct scsi_device *sdev)
550 {
551 	if (scsi_target(sdev)->single_lun ||
552 	    !list_empty(&sdev->host->starved_list)) {
553 		kblockd_schedule_work(&sdev->requeue_work);
554 	} else {
555 		/*
556 		 * smp_mb() present in sbitmap_queue_clear() or implied in
557 		 * .end_io is for ordering writing .device_busy in
558 		 * scsi_device_unbusy() and reading sdev->restarts.
559 		 */
560 		int old = atomic_read(&sdev->restarts);
561 
562 		/*
563 		 * ->restarts has to be kept as non-zero if new budget
564 		 *  contention occurs.
565 		 *
566 		 *  No need to run queue when either another re-run
567 		 *  queue wins in updating ->restarts or a new budget
568 		 *  contention occurs.
569 		 */
570 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
571 			blk_mq_run_hw_queues(sdev->request_queue, true);
572 	}
573 }
574 
575 /* Returns false when no more bytes to process, true if there are more */
576 static bool scsi_end_request(struct request *req, blk_status_t error,
577 		unsigned int bytes)
578 {
579 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
580 	struct scsi_device *sdev = cmd->device;
581 	struct request_queue *q = sdev->request_queue;
582 
583 	if (blk_update_request(req, error, bytes))
584 		return true;
585 
586 	if (blk_queue_add_random(q))
587 		add_disk_randomness(req->rq_disk);
588 
589 	if (!blk_rq_is_scsi(req)) {
590 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
591 		cmd->flags &= ~SCMD_INITIALIZED;
592 	}
593 
594 	/*
595 	 * Calling rcu_barrier() is not necessary here because the
596 	 * SCSI error handler guarantees that the function called by
597 	 * call_rcu() has been called before scsi_end_request() is
598 	 * called.
599 	 */
600 	destroy_rcu_head(&cmd->rcu);
601 
602 	/*
603 	 * In the MQ case the command gets freed by __blk_mq_end_request,
604 	 * so we have to do all cleanup that depends on it earlier.
605 	 *
606 	 * We also can't kick the queues from irq context, so we
607 	 * will have to defer it to a workqueue.
608 	 */
609 	scsi_mq_uninit_cmd(cmd);
610 
611 	/*
612 	 * queue is still alive, so grab the ref for preventing it
613 	 * from being cleaned up during running queue.
614 	 */
615 	percpu_ref_get(&q->q_usage_counter);
616 
617 	__blk_mq_end_request(req, error);
618 
619 	scsi_run_queue_async(sdev);
620 
621 	percpu_ref_put(&q->q_usage_counter);
622 	return false;
623 }
624 
625 /**
626  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
627  * @cmd:	SCSI command
628  * @result:	scsi error code
629  *
630  * Translate a SCSI result code into a blk_status_t value. May reset the host
631  * byte of @cmd->result.
632  */
633 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
634 {
635 	switch (host_byte(result)) {
636 	case DID_OK:
637 		/*
638 		 * Also check the other bytes than the status byte in result
639 		 * to handle the case when a SCSI LLD sets result to
640 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
641 		 */
642 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
643 			return BLK_STS_OK;
644 		return BLK_STS_IOERR;
645 	case DID_TRANSPORT_FAILFAST:
646 		return BLK_STS_TRANSPORT;
647 	case DID_TARGET_FAILURE:
648 		set_host_byte(cmd, DID_OK);
649 		return BLK_STS_TARGET;
650 	case DID_NEXUS_FAILURE:
651 		set_host_byte(cmd, DID_OK);
652 		return BLK_STS_NEXUS;
653 	case DID_ALLOC_FAILURE:
654 		set_host_byte(cmd, DID_OK);
655 		return BLK_STS_NOSPC;
656 	case DID_MEDIUM_ERROR:
657 		set_host_byte(cmd, DID_OK);
658 		return BLK_STS_MEDIUM;
659 	default:
660 		return BLK_STS_IOERR;
661 	}
662 }
663 
664 /* Helper for scsi_io_completion() when "reprep" action required. */
665 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
666 				      struct request_queue *q)
667 {
668 	/* A new command will be prepared and issued. */
669 	scsi_mq_requeue_cmd(cmd);
670 }
671 
672 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
673 {
674 	struct request *req = cmd->request;
675 	unsigned long wait_for;
676 
677 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
678 		return false;
679 
680 	wait_for = (cmd->allowed + 1) * req->timeout;
681 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
682 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
683 			    wait_for/HZ);
684 		return true;
685 	}
686 	return false;
687 }
688 
689 /* Helper for scsi_io_completion() when special action required. */
690 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
691 {
692 	struct request_queue *q = cmd->device->request_queue;
693 	struct request *req = cmd->request;
694 	int level = 0;
695 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
696 	      ACTION_DELAYED_RETRY} action;
697 	struct scsi_sense_hdr sshdr;
698 	bool sense_valid;
699 	bool sense_current = true;      /* false implies "deferred sense" */
700 	blk_status_t blk_stat;
701 
702 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
703 	if (sense_valid)
704 		sense_current = !scsi_sense_is_deferred(&sshdr);
705 
706 	blk_stat = scsi_result_to_blk_status(cmd, result);
707 
708 	if (host_byte(result) == DID_RESET) {
709 		/* Third party bus reset or reset for error recovery
710 		 * reasons.  Just retry the command and see what
711 		 * happens.
712 		 */
713 		action = ACTION_RETRY;
714 	} else if (sense_valid && sense_current) {
715 		switch (sshdr.sense_key) {
716 		case UNIT_ATTENTION:
717 			if (cmd->device->removable) {
718 				/* Detected disc change.  Set a bit
719 				 * and quietly refuse further access.
720 				 */
721 				cmd->device->changed = 1;
722 				action = ACTION_FAIL;
723 			} else {
724 				/* Must have been a power glitch, or a
725 				 * bus reset.  Could not have been a
726 				 * media change, so we just retry the
727 				 * command and see what happens.
728 				 */
729 				action = ACTION_RETRY;
730 			}
731 			break;
732 		case ILLEGAL_REQUEST:
733 			/* If we had an ILLEGAL REQUEST returned, then
734 			 * we may have performed an unsupported
735 			 * command.  The only thing this should be
736 			 * would be a ten byte read where only a six
737 			 * byte read was supported.  Also, on a system
738 			 * where READ CAPACITY failed, we may have
739 			 * read past the end of the disk.
740 			 */
741 			if ((cmd->device->use_10_for_rw &&
742 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
743 			    (cmd->cmnd[0] == READ_10 ||
744 			     cmd->cmnd[0] == WRITE_10)) {
745 				/* This will issue a new 6-byte command. */
746 				cmd->device->use_10_for_rw = 0;
747 				action = ACTION_REPREP;
748 			} else if (sshdr.asc == 0x10) /* DIX */ {
749 				action = ACTION_FAIL;
750 				blk_stat = BLK_STS_PROTECTION;
751 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
752 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
753 				action = ACTION_FAIL;
754 				blk_stat = BLK_STS_TARGET;
755 			} else
756 				action = ACTION_FAIL;
757 			break;
758 		case ABORTED_COMMAND:
759 			action = ACTION_FAIL;
760 			if (sshdr.asc == 0x10) /* DIF */
761 				blk_stat = BLK_STS_PROTECTION;
762 			break;
763 		case NOT_READY:
764 			/* If the device is in the process of becoming
765 			 * ready, or has a temporary blockage, retry.
766 			 */
767 			if (sshdr.asc == 0x04) {
768 				switch (sshdr.ascq) {
769 				case 0x01: /* becoming ready */
770 				case 0x04: /* format in progress */
771 				case 0x05: /* rebuild in progress */
772 				case 0x06: /* recalculation in progress */
773 				case 0x07: /* operation in progress */
774 				case 0x08: /* Long write in progress */
775 				case 0x09: /* self test in progress */
776 				case 0x14: /* space allocation in progress */
777 				case 0x1a: /* start stop unit in progress */
778 				case 0x1b: /* sanitize in progress */
779 				case 0x1d: /* configuration in progress */
780 				case 0x24: /* depopulation in progress */
781 					action = ACTION_DELAYED_RETRY;
782 					break;
783 				default:
784 					action = ACTION_FAIL;
785 					break;
786 				}
787 			} else
788 				action = ACTION_FAIL;
789 			break;
790 		case VOLUME_OVERFLOW:
791 			/* See SSC3rXX or current. */
792 			action = ACTION_FAIL;
793 			break;
794 		default:
795 			action = ACTION_FAIL;
796 			break;
797 		}
798 	} else
799 		action = ACTION_FAIL;
800 
801 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
802 		action = ACTION_FAIL;
803 
804 	switch (action) {
805 	case ACTION_FAIL:
806 		/* Give up and fail the remainder of the request */
807 		if (!(req->rq_flags & RQF_QUIET)) {
808 			static DEFINE_RATELIMIT_STATE(_rs,
809 					DEFAULT_RATELIMIT_INTERVAL,
810 					DEFAULT_RATELIMIT_BURST);
811 
812 			if (unlikely(scsi_logging_level))
813 				level =
814 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
815 						    SCSI_LOG_MLCOMPLETE_BITS);
816 
817 			/*
818 			 * if logging is enabled the failure will be printed
819 			 * in scsi_log_completion(), so avoid duplicate messages
820 			 */
821 			if (!level && __ratelimit(&_rs)) {
822 				scsi_print_result(cmd, NULL, FAILED);
823 				if (driver_byte(result) == DRIVER_SENSE)
824 					scsi_print_sense(cmd);
825 				scsi_print_command(cmd);
826 			}
827 		}
828 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
829 			return;
830 		fallthrough;
831 	case ACTION_REPREP:
832 		scsi_io_completion_reprep(cmd, q);
833 		break;
834 	case ACTION_RETRY:
835 		/* Retry the same command immediately */
836 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
837 		break;
838 	case ACTION_DELAYED_RETRY:
839 		/* Retry the same command after a delay */
840 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
841 		break;
842 	}
843 }
844 
845 /*
846  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
847  * new result that may suppress further error checking. Also modifies
848  * *blk_statp in some cases.
849  */
850 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
851 					blk_status_t *blk_statp)
852 {
853 	bool sense_valid;
854 	bool sense_current = true;	/* false implies "deferred sense" */
855 	struct request *req = cmd->request;
856 	struct scsi_sense_hdr sshdr;
857 
858 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
859 	if (sense_valid)
860 		sense_current = !scsi_sense_is_deferred(&sshdr);
861 
862 	if (blk_rq_is_passthrough(req)) {
863 		if (sense_valid) {
864 			/*
865 			 * SG_IO wants current and deferred errors
866 			 */
867 			scsi_req(req)->sense_len =
868 				min(8 + cmd->sense_buffer[7],
869 				    SCSI_SENSE_BUFFERSIZE);
870 		}
871 		if (sense_current)
872 			*blk_statp = scsi_result_to_blk_status(cmd, result);
873 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
874 		/*
875 		 * Flush commands do not transfers any data, and thus cannot use
876 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
877 		 * This sets *blk_statp explicitly for the problem case.
878 		 */
879 		*blk_statp = scsi_result_to_blk_status(cmd, result);
880 	}
881 	/*
882 	 * Recovered errors need reporting, but they're always treated as
883 	 * success, so fiddle the result code here.  For passthrough requests
884 	 * we already took a copy of the original into sreq->result which
885 	 * is what gets returned to the user
886 	 */
887 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
888 		bool do_print = true;
889 		/*
890 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
891 		 * skip print since caller wants ATA registers. Only occurs
892 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
893 		 */
894 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
895 			do_print = false;
896 		else if (req->rq_flags & RQF_QUIET)
897 			do_print = false;
898 		if (do_print)
899 			scsi_print_sense(cmd);
900 		result = 0;
901 		/* for passthrough, *blk_statp may be set */
902 		*blk_statp = BLK_STS_OK;
903 	}
904 	/*
905 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
906 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
907 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
908 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
909 	 * intermediate statuses (both obsolete in SAM-4) as good.
910 	 */
911 	if (status_byte(result) && scsi_status_is_good(result)) {
912 		result = 0;
913 		*blk_statp = BLK_STS_OK;
914 	}
915 	return result;
916 }
917 
918 /**
919  * scsi_io_completion - Completion processing for SCSI commands.
920  * @cmd:	command that is finished.
921  * @good_bytes:	number of processed bytes.
922  *
923  * We will finish off the specified number of sectors. If we are done, the
924  * command block will be released and the queue function will be goosed. If we
925  * are not done then we have to figure out what to do next:
926  *
927  *   a) We can call scsi_io_completion_reprep().  The request will be
928  *	unprepared and put back on the queue.  Then a new command will
929  *	be created for it.  This should be used if we made forward
930  *	progress, or if we want to switch from READ(10) to READ(6) for
931  *	example.
932  *
933  *   b) We can call scsi_io_completion_action().  The request will be
934  *	put back on the queue and retried using the same command as
935  *	before, possibly after a delay.
936  *
937  *   c) We can call scsi_end_request() with blk_stat other than
938  *	BLK_STS_OK, to fail the remainder of the request.
939  */
940 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
941 {
942 	int result = cmd->result;
943 	struct request_queue *q = cmd->device->request_queue;
944 	struct request *req = cmd->request;
945 	blk_status_t blk_stat = BLK_STS_OK;
946 
947 	if (unlikely(result))	/* a nz result may or may not be an error */
948 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
949 
950 	if (unlikely(blk_rq_is_passthrough(req))) {
951 		/*
952 		 * scsi_result_to_blk_status may have reset the host_byte
953 		 */
954 		scsi_req(req)->result = cmd->result;
955 	}
956 
957 	/*
958 	 * Next deal with any sectors which we were able to correctly
959 	 * handle.
960 	 */
961 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
962 		"%u sectors total, %d bytes done.\n",
963 		blk_rq_sectors(req), good_bytes));
964 
965 	/*
966 	 * Failed, zero length commands always need to drop down
967 	 * to retry code. Fast path should return in this block.
968 	 */
969 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
970 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
971 			return; /* no bytes remaining */
972 	}
973 
974 	/* Kill remainder if no retries. */
975 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
976 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
977 			WARN_ONCE(true,
978 			    "Bytes remaining after failed, no-retry command");
979 		return;
980 	}
981 
982 	/*
983 	 * If there had been no error, but we have leftover bytes in the
984 	 * requeues just queue the command up again.
985 	 */
986 	if (likely(result == 0))
987 		scsi_io_completion_reprep(cmd, q);
988 	else
989 		scsi_io_completion_action(cmd, result);
990 }
991 
992 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
993 		struct request *rq)
994 {
995 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
996 	       !op_is_write(req_op(rq)) &&
997 	       sdev->host->hostt->dma_need_drain(rq);
998 }
999 
1000 /**
1001  * scsi_init_io - SCSI I/O initialization function.
1002  * @cmd:  command descriptor we wish to initialize
1003  *
1004  * Returns:
1005  * * BLK_STS_OK       - on success
1006  * * BLK_STS_RESOURCE - if the failure is retryable
1007  * * BLK_STS_IOERR    - if the failure is fatal
1008  */
1009 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1010 {
1011 	struct scsi_device *sdev = cmd->device;
1012 	struct request *rq = cmd->request;
1013 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1014 	struct scatterlist *last_sg = NULL;
1015 	blk_status_t ret;
1016 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1017 	int count;
1018 
1019 	if (WARN_ON_ONCE(!nr_segs))
1020 		return BLK_STS_IOERR;
1021 
1022 	/*
1023 	 * Make sure there is space for the drain.  The driver must adjust
1024 	 * max_hw_segments to be prepared for this.
1025 	 */
1026 	if (need_drain)
1027 		nr_segs++;
1028 
1029 	/*
1030 	 * If sg table allocation fails, requeue request later.
1031 	 */
1032 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1033 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1034 		return BLK_STS_RESOURCE;
1035 
1036 	/*
1037 	 * Next, walk the list, and fill in the addresses and sizes of
1038 	 * each segment.
1039 	 */
1040 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1041 
1042 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1043 		unsigned int pad_len =
1044 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1045 
1046 		last_sg->length += pad_len;
1047 		cmd->extra_len += pad_len;
1048 	}
1049 
1050 	if (need_drain) {
1051 		sg_unmark_end(last_sg);
1052 		last_sg = sg_next(last_sg);
1053 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1054 		sg_mark_end(last_sg);
1055 
1056 		cmd->extra_len += sdev->dma_drain_len;
1057 		count++;
1058 	}
1059 
1060 	BUG_ON(count > cmd->sdb.table.nents);
1061 	cmd->sdb.table.nents = count;
1062 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1063 
1064 	if (blk_integrity_rq(rq)) {
1065 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1066 		int ivecs;
1067 
1068 		if (WARN_ON_ONCE(!prot_sdb)) {
1069 			/*
1070 			 * This can happen if someone (e.g. multipath)
1071 			 * queues a command to a device on an adapter
1072 			 * that does not support DIX.
1073 			 */
1074 			ret = BLK_STS_IOERR;
1075 			goto out_free_sgtables;
1076 		}
1077 
1078 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079 
1080 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081 				prot_sdb->table.sgl,
1082 				SCSI_INLINE_PROT_SG_CNT)) {
1083 			ret = BLK_STS_RESOURCE;
1084 			goto out_free_sgtables;
1085 		}
1086 
1087 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1088 						prot_sdb->table.sgl);
1089 		BUG_ON(count > ivecs);
1090 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1091 
1092 		cmd->prot_sdb = prot_sdb;
1093 		cmd->prot_sdb->table.nents = count;
1094 	}
1095 
1096 	return BLK_STS_OK;
1097 out_free_sgtables:
1098 	scsi_free_sgtables(cmd);
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL(scsi_init_io);
1102 
1103 /**
1104  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1105  * @rq: Request associated with the SCSI command to be initialized.
1106  *
1107  * This function initializes the members of struct scsi_cmnd that must be
1108  * initialized before request processing starts and that won't be
1109  * reinitialized if a SCSI command is requeued.
1110  *
1111  * Called from inside blk_get_request() for pass-through requests and from
1112  * inside scsi_init_command() for filesystem requests.
1113  */
1114 static void scsi_initialize_rq(struct request *rq)
1115 {
1116 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1117 
1118 	scsi_req_init(&cmd->req);
1119 	init_rcu_head(&cmd->rcu);
1120 	cmd->jiffies_at_alloc = jiffies;
1121 	cmd->retries = 0;
1122 }
1123 
1124 /*
1125  * Only called when the request isn't completed by SCSI, and not freed by
1126  * SCSI
1127  */
1128 static void scsi_cleanup_rq(struct request *rq)
1129 {
1130 	if (rq->rq_flags & RQF_DONTPREP) {
1131 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1132 		rq->rq_flags &= ~RQF_DONTPREP;
1133 	}
1134 }
1135 
1136 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1138 {
1139 	void *buf = cmd->sense_buffer;
1140 	void *prot = cmd->prot_sdb;
1141 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1142 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1143 	unsigned long jiffies_at_alloc;
1144 	int retries, to_clear;
1145 	bool in_flight;
1146 
1147 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1148 		flags |= SCMD_INITIALIZED;
1149 		scsi_initialize_rq(rq);
1150 	}
1151 
1152 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1153 	retries = cmd->retries;
1154 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1155 	/*
1156 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1157 	 * the driver-private command data if the LLD does not supply a
1158 	 * function to initialize that data.
1159 	 */
1160 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1161 	if (!dev->host->hostt->init_cmd_priv)
1162 		to_clear += dev->host->hostt->cmd_size;
1163 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1164 
1165 	cmd->device = dev;
1166 	cmd->sense_buffer = buf;
1167 	cmd->prot_sdb = prot;
1168 	cmd->flags = flags;
1169 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1171 	cmd->retries = retries;
1172 	if (in_flight)
1173 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1174 
1175 }
1176 
1177 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1178 		struct request *req)
1179 {
1180 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181 
1182 	/*
1183 	 * Passthrough requests may transfer data, in which case they must
1184 	 * a bio attached to them.  Or they might contain a SCSI command
1185 	 * that does not transfer data, in which case they may optionally
1186 	 * submit a request without an attached bio.
1187 	 */
1188 	if (req->bio) {
1189 		blk_status_t ret = scsi_init_io(cmd);
1190 		if (unlikely(ret != BLK_STS_OK))
1191 			return ret;
1192 	} else {
1193 		BUG_ON(blk_rq_bytes(req));
1194 
1195 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1196 	}
1197 
1198 	cmd->cmd_len = scsi_req(req)->cmd_len;
1199 	cmd->cmnd = scsi_req(req)->cmd;
1200 	cmd->transfersize = blk_rq_bytes(req);
1201 	cmd->allowed = scsi_req(req)->retries;
1202 	return BLK_STS_OK;
1203 }
1204 
1205 /*
1206  * Setup a normal block command.  These are simple request from filesystems
1207  * that still need to be translated to SCSI CDBs from the ULD.
1208  */
1209 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1210 		struct request *req)
1211 {
1212 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1213 
1214 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1215 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1216 		if (ret != BLK_STS_OK)
1217 			return ret;
1218 	}
1219 
1220 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1221 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1222 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1223 }
1224 
1225 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1226 		struct request *req)
1227 {
1228 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1229 	blk_status_t ret;
1230 
1231 	if (!blk_rq_bytes(req))
1232 		cmd->sc_data_direction = DMA_NONE;
1233 	else if (rq_data_dir(req) == WRITE)
1234 		cmd->sc_data_direction = DMA_TO_DEVICE;
1235 	else
1236 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1237 
1238 	if (blk_rq_is_scsi(req))
1239 		ret = scsi_setup_scsi_cmnd(sdev, req);
1240 	else
1241 		ret = scsi_setup_fs_cmnd(sdev, req);
1242 
1243 	if (ret != BLK_STS_OK)
1244 		scsi_free_sgtables(cmd);
1245 
1246 	return ret;
1247 }
1248 
1249 static blk_status_t
1250 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1251 {
1252 	switch (sdev->sdev_state) {
1253 	case SDEV_OFFLINE:
1254 	case SDEV_TRANSPORT_OFFLINE:
1255 		/*
1256 		 * If the device is offline we refuse to process any
1257 		 * commands.  The device must be brought online
1258 		 * before trying any recovery commands.
1259 		 */
1260 		if (!sdev->offline_already) {
1261 			sdev->offline_already = true;
1262 			sdev_printk(KERN_ERR, sdev,
1263 				    "rejecting I/O to offline device\n");
1264 		}
1265 		return BLK_STS_IOERR;
1266 	case SDEV_DEL:
1267 		/*
1268 		 * If the device is fully deleted, we refuse to
1269 		 * process any commands as well.
1270 		 */
1271 		sdev_printk(KERN_ERR, sdev,
1272 			    "rejecting I/O to dead device\n");
1273 		return BLK_STS_IOERR;
1274 	case SDEV_BLOCK:
1275 	case SDEV_CREATED_BLOCK:
1276 		return BLK_STS_RESOURCE;
1277 	case SDEV_QUIESCE:
1278 		/*
1279 		 * If the devices is blocked we defer normal commands.
1280 		 */
1281 		if (req && !(req->rq_flags & RQF_PREEMPT))
1282 			return BLK_STS_RESOURCE;
1283 		return BLK_STS_OK;
1284 	default:
1285 		/*
1286 		 * For any other not fully online state we only allow
1287 		 * special commands.  In particular any user initiated
1288 		 * command is not allowed.
1289 		 */
1290 		if (req && !(req->rq_flags & RQF_PREEMPT))
1291 			return BLK_STS_IOERR;
1292 		return BLK_STS_OK;
1293 	}
1294 }
1295 
1296 /*
1297  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1298  * return 0.
1299  *
1300  * Called with the queue_lock held.
1301  */
1302 static inline int scsi_dev_queue_ready(struct request_queue *q,
1303 				  struct scsi_device *sdev)
1304 {
1305 	unsigned int busy;
1306 
1307 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1308 	if (atomic_read(&sdev->device_blocked)) {
1309 		if (busy)
1310 			goto out_dec;
1311 
1312 		/*
1313 		 * unblock after device_blocked iterates to zero
1314 		 */
1315 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1316 			goto out_dec;
1317 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1318 				   "unblocking device at zero depth\n"));
1319 	}
1320 
1321 	if (busy >= sdev->queue_depth)
1322 		goto out_dec;
1323 
1324 	return 1;
1325 out_dec:
1326 	atomic_dec(&sdev->device_busy);
1327 	return 0;
1328 }
1329 
1330 /*
1331  * scsi_target_queue_ready: checks if there we can send commands to target
1332  * @sdev: scsi device on starget to check.
1333  */
1334 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1335 					   struct scsi_device *sdev)
1336 {
1337 	struct scsi_target *starget = scsi_target(sdev);
1338 	unsigned int busy;
1339 
1340 	if (starget->single_lun) {
1341 		spin_lock_irq(shost->host_lock);
1342 		if (starget->starget_sdev_user &&
1343 		    starget->starget_sdev_user != sdev) {
1344 			spin_unlock_irq(shost->host_lock);
1345 			return 0;
1346 		}
1347 		starget->starget_sdev_user = sdev;
1348 		spin_unlock_irq(shost->host_lock);
1349 	}
1350 
1351 	if (starget->can_queue <= 0)
1352 		return 1;
1353 
1354 	busy = atomic_inc_return(&starget->target_busy) - 1;
1355 	if (atomic_read(&starget->target_blocked) > 0) {
1356 		if (busy)
1357 			goto starved;
1358 
1359 		/*
1360 		 * unblock after target_blocked iterates to zero
1361 		 */
1362 		if (atomic_dec_return(&starget->target_blocked) > 0)
1363 			goto out_dec;
1364 
1365 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1366 				 "unblocking target at zero depth\n"));
1367 	}
1368 
1369 	if (busy >= starget->can_queue)
1370 		goto starved;
1371 
1372 	return 1;
1373 
1374 starved:
1375 	spin_lock_irq(shost->host_lock);
1376 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1377 	spin_unlock_irq(shost->host_lock);
1378 out_dec:
1379 	if (starget->can_queue > 0)
1380 		atomic_dec(&starget->target_busy);
1381 	return 0;
1382 }
1383 
1384 /*
1385  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1386  * return 0. We must end up running the queue again whenever 0 is
1387  * returned, else IO can hang.
1388  */
1389 static inline int scsi_host_queue_ready(struct request_queue *q,
1390 				   struct Scsi_Host *shost,
1391 				   struct scsi_device *sdev,
1392 				   struct scsi_cmnd *cmd)
1393 {
1394 	if (scsi_host_in_recovery(shost))
1395 		return 0;
1396 
1397 	if (atomic_read(&shost->host_blocked) > 0) {
1398 		if (scsi_host_busy(shost) > 0)
1399 			goto starved;
1400 
1401 		/*
1402 		 * unblock after host_blocked iterates to zero
1403 		 */
1404 		if (atomic_dec_return(&shost->host_blocked) > 0)
1405 			goto out_dec;
1406 
1407 		SCSI_LOG_MLQUEUE(3,
1408 			shost_printk(KERN_INFO, shost,
1409 				     "unblocking host at zero depth\n"));
1410 	}
1411 
1412 	if (shost->host_self_blocked)
1413 		goto starved;
1414 
1415 	/* We're OK to process the command, so we can't be starved */
1416 	if (!list_empty(&sdev->starved_entry)) {
1417 		spin_lock_irq(shost->host_lock);
1418 		if (!list_empty(&sdev->starved_entry))
1419 			list_del_init(&sdev->starved_entry);
1420 		spin_unlock_irq(shost->host_lock);
1421 	}
1422 
1423 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1424 
1425 	return 1;
1426 
1427 starved:
1428 	spin_lock_irq(shost->host_lock);
1429 	if (list_empty(&sdev->starved_entry))
1430 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1431 	spin_unlock_irq(shost->host_lock);
1432 out_dec:
1433 	scsi_dec_host_busy(shost, cmd);
1434 	return 0;
1435 }
1436 
1437 /*
1438  * Busy state exporting function for request stacking drivers.
1439  *
1440  * For efficiency, no lock is taken to check the busy state of
1441  * shost/starget/sdev, since the returned value is not guaranteed and
1442  * may be changed after request stacking drivers call the function,
1443  * regardless of taking lock or not.
1444  *
1445  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1446  * needs to return 'not busy'. Otherwise, request stacking drivers
1447  * may hold requests forever.
1448  */
1449 static bool scsi_mq_lld_busy(struct request_queue *q)
1450 {
1451 	struct scsi_device *sdev = q->queuedata;
1452 	struct Scsi_Host *shost;
1453 
1454 	if (blk_queue_dying(q))
1455 		return false;
1456 
1457 	shost = sdev->host;
1458 
1459 	/*
1460 	 * Ignore host/starget busy state.
1461 	 * Since block layer does not have a concept of fairness across
1462 	 * multiple queues, congestion of host/starget needs to be handled
1463 	 * in SCSI layer.
1464 	 */
1465 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1466 		return true;
1467 
1468 	return false;
1469 }
1470 
1471 static void scsi_softirq_done(struct request *rq)
1472 {
1473 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1474 	int disposition;
1475 
1476 	INIT_LIST_HEAD(&cmd->eh_entry);
1477 
1478 	atomic_inc(&cmd->device->iodone_cnt);
1479 	if (cmd->result)
1480 		atomic_inc(&cmd->device->ioerr_cnt);
1481 
1482 	disposition = scsi_decide_disposition(cmd);
1483 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1484 		disposition = SUCCESS;
1485 
1486 	scsi_log_completion(cmd, disposition);
1487 
1488 	switch (disposition) {
1489 	case SUCCESS:
1490 		scsi_finish_command(cmd);
1491 		break;
1492 	case NEEDS_RETRY:
1493 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1494 		break;
1495 	case ADD_TO_MLQUEUE:
1496 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1497 		break;
1498 	default:
1499 		scsi_eh_scmd_add(cmd);
1500 		break;
1501 	}
1502 }
1503 
1504 /**
1505  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1506  * @cmd: command block we are dispatching.
1507  *
1508  * Return: nonzero return request was rejected and device's queue needs to be
1509  * plugged.
1510  */
1511 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1512 {
1513 	struct Scsi_Host *host = cmd->device->host;
1514 	int rtn = 0;
1515 
1516 	atomic_inc(&cmd->device->iorequest_cnt);
1517 
1518 	/* check if the device is still usable */
1519 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1520 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1521 		 * returns an immediate error upwards, and signals
1522 		 * that the device is no longer present */
1523 		cmd->result = DID_NO_CONNECT << 16;
1524 		goto done;
1525 	}
1526 
1527 	/* Check to see if the scsi lld made this device blocked. */
1528 	if (unlikely(scsi_device_blocked(cmd->device))) {
1529 		/*
1530 		 * in blocked state, the command is just put back on
1531 		 * the device queue.  The suspend state has already
1532 		 * blocked the queue so future requests should not
1533 		 * occur until the device transitions out of the
1534 		 * suspend state.
1535 		 */
1536 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1537 			"queuecommand : device blocked\n"));
1538 		return SCSI_MLQUEUE_DEVICE_BUSY;
1539 	}
1540 
1541 	/* Store the LUN value in cmnd, if needed. */
1542 	if (cmd->device->lun_in_cdb)
1543 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1544 			       (cmd->device->lun << 5 & 0xe0);
1545 
1546 	scsi_log_send(cmd);
1547 
1548 	/*
1549 	 * Before we queue this command, check if the command
1550 	 * length exceeds what the host adapter can handle.
1551 	 */
1552 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1553 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1554 			       "queuecommand : command too long. "
1555 			       "cdb_size=%d host->max_cmd_len=%d\n",
1556 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1557 		cmd->result = (DID_ABORT << 16);
1558 		goto done;
1559 	}
1560 
1561 	if (unlikely(host->shost_state == SHOST_DEL)) {
1562 		cmd->result = (DID_NO_CONNECT << 16);
1563 		goto done;
1564 
1565 	}
1566 
1567 	trace_scsi_dispatch_cmd_start(cmd);
1568 	rtn = host->hostt->queuecommand(host, cmd);
1569 	if (rtn) {
1570 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1571 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1572 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1573 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1574 
1575 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1576 			"queuecommand : request rejected\n"));
1577 	}
1578 
1579 	return rtn;
1580  done:
1581 	cmd->scsi_done(cmd);
1582 	return 0;
1583 }
1584 
1585 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1586 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1587 {
1588 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1589 		sizeof(struct scatterlist);
1590 }
1591 
1592 static blk_status_t scsi_mq_prep_fn(struct request *req)
1593 {
1594 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1595 	struct scsi_device *sdev = req->q->queuedata;
1596 	struct Scsi_Host *shost = sdev->host;
1597 	struct scatterlist *sg;
1598 
1599 	scsi_init_command(sdev, cmd);
1600 
1601 	cmd->request = req;
1602 	cmd->tag = req->tag;
1603 	cmd->prot_op = SCSI_PROT_NORMAL;
1604 
1605 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1606 	cmd->sdb.table.sgl = sg;
1607 
1608 	if (scsi_host_get_prot(shost)) {
1609 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1610 
1611 		cmd->prot_sdb->table.sgl =
1612 			(struct scatterlist *)(cmd->prot_sdb + 1);
1613 	}
1614 
1615 	blk_mq_start_request(req);
1616 
1617 	return scsi_setup_cmnd(sdev, req);
1618 }
1619 
1620 static void scsi_mq_done(struct scsi_cmnd *cmd)
1621 {
1622 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1623 		return;
1624 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1625 		return;
1626 	trace_scsi_dispatch_cmd_done(cmd);
1627 	blk_mq_complete_request(cmd->request);
1628 }
1629 
1630 static void scsi_mq_put_budget(struct request_queue *q)
1631 {
1632 	struct scsi_device *sdev = q->queuedata;
1633 
1634 	atomic_dec(&sdev->device_busy);
1635 }
1636 
1637 static bool scsi_mq_get_budget(struct request_queue *q)
1638 {
1639 	struct scsi_device *sdev = q->queuedata;
1640 
1641 	if (scsi_dev_queue_ready(q, sdev))
1642 		return true;
1643 
1644 	atomic_inc(&sdev->restarts);
1645 
1646 	/*
1647 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1648 	 * .restarts must be incremented before .device_busy is read because the
1649 	 * code in scsi_run_queue_async() depends on the order of these operations.
1650 	 */
1651 	smp_mb__after_atomic();
1652 
1653 	/*
1654 	 * If all in-flight requests originated from this LUN are completed
1655 	 * before reading .device_busy, sdev->device_busy will be observed as
1656 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1657 	 * soon. Otherwise, completion of one of these requests will observe
1658 	 * the .restarts flag, and the request queue will be run for handling
1659 	 * this request, see scsi_end_request().
1660 	 */
1661 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1662 				!scsi_device_blocked(sdev)))
1663 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1664 	return false;
1665 }
1666 
1667 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1668 			 const struct blk_mq_queue_data *bd)
1669 {
1670 	struct request *req = bd->rq;
1671 	struct request_queue *q = req->q;
1672 	struct scsi_device *sdev = q->queuedata;
1673 	struct Scsi_Host *shost = sdev->host;
1674 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1675 	blk_status_t ret;
1676 	int reason;
1677 
1678 	/*
1679 	 * If the device is not in running state we will reject some or all
1680 	 * commands.
1681 	 */
1682 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1683 		ret = scsi_prep_state_check(sdev, req);
1684 		if (ret != BLK_STS_OK)
1685 			goto out_put_budget;
1686 	}
1687 
1688 	ret = BLK_STS_RESOURCE;
1689 	if (!scsi_target_queue_ready(shost, sdev))
1690 		goto out_put_budget;
1691 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1692 		goto out_dec_target_busy;
1693 
1694 	if (!(req->rq_flags & RQF_DONTPREP)) {
1695 		ret = scsi_mq_prep_fn(req);
1696 		if (ret != BLK_STS_OK)
1697 			goto out_dec_host_busy;
1698 		req->rq_flags |= RQF_DONTPREP;
1699 	} else {
1700 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1701 		blk_mq_start_request(req);
1702 	}
1703 
1704 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1705 	if (sdev->simple_tags)
1706 		cmd->flags |= SCMD_TAGGED;
1707 	if (bd->last)
1708 		cmd->flags |= SCMD_LAST;
1709 
1710 	scsi_init_cmd_errh(cmd);
1711 	cmd->scsi_done = scsi_mq_done;
1712 
1713 	reason = scsi_dispatch_cmd(cmd);
1714 	if (reason) {
1715 		scsi_set_blocked(cmd, reason);
1716 		ret = BLK_STS_RESOURCE;
1717 		goto out_dec_host_busy;
1718 	}
1719 
1720 	return BLK_STS_OK;
1721 
1722 out_dec_host_busy:
1723 	scsi_dec_host_busy(shost, cmd);
1724 out_dec_target_busy:
1725 	if (scsi_target(sdev)->can_queue > 0)
1726 		atomic_dec(&scsi_target(sdev)->target_busy);
1727 out_put_budget:
1728 	scsi_mq_put_budget(q);
1729 	switch (ret) {
1730 	case BLK_STS_OK:
1731 		break;
1732 	case BLK_STS_RESOURCE:
1733 	case BLK_STS_ZONE_RESOURCE:
1734 		if (atomic_read(&sdev->device_busy) ||
1735 		    scsi_device_blocked(sdev))
1736 			ret = BLK_STS_DEV_RESOURCE;
1737 		break;
1738 	default:
1739 		if (unlikely(!scsi_device_online(sdev)))
1740 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1741 		else
1742 			scsi_req(req)->result = DID_ERROR << 16;
1743 		/*
1744 		 * Make sure to release all allocated resources when
1745 		 * we hit an error, as we will never see this command
1746 		 * again.
1747 		 */
1748 		if (req->rq_flags & RQF_DONTPREP)
1749 			scsi_mq_uninit_cmd(cmd);
1750 		scsi_run_queue_async(sdev);
1751 		break;
1752 	}
1753 	return ret;
1754 }
1755 
1756 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1757 		bool reserved)
1758 {
1759 	if (reserved)
1760 		return BLK_EH_RESET_TIMER;
1761 	return scsi_times_out(req);
1762 }
1763 
1764 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1765 				unsigned int hctx_idx, unsigned int numa_node)
1766 {
1767 	struct Scsi_Host *shost = set->driver_data;
1768 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1769 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1770 	struct scatterlist *sg;
1771 	int ret = 0;
1772 
1773 	if (unchecked_isa_dma)
1774 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1775 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1776 						    GFP_KERNEL, numa_node);
1777 	if (!cmd->sense_buffer)
1778 		return -ENOMEM;
1779 	cmd->req.sense = cmd->sense_buffer;
1780 
1781 	if (scsi_host_get_prot(shost)) {
1782 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1783 			shost->hostt->cmd_size;
1784 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1785 	}
1786 
1787 	if (shost->hostt->init_cmd_priv) {
1788 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1789 		if (ret < 0)
1790 			scsi_free_sense_buffer(unchecked_isa_dma,
1791 					       cmd->sense_buffer);
1792 	}
1793 
1794 	return ret;
1795 }
1796 
1797 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1798 				 unsigned int hctx_idx)
1799 {
1800 	struct Scsi_Host *shost = set->driver_data;
1801 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1802 
1803 	if (shost->hostt->exit_cmd_priv)
1804 		shost->hostt->exit_cmd_priv(shost, cmd);
1805 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1806 			       cmd->sense_buffer);
1807 }
1808 
1809 static int scsi_map_queues(struct blk_mq_tag_set *set)
1810 {
1811 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1812 
1813 	if (shost->hostt->map_queues)
1814 		return shost->hostt->map_queues(shost);
1815 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1816 }
1817 
1818 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1819 {
1820 	struct device *dev = shost->dma_dev;
1821 
1822 	/*
1823 	 * this limit is imposed by hardware restrictions
1824 	 */
1825 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1826 					SG_MAX_SEGMENTS));
1827 
1828 	if (scsi_host_prot_dma(shost)) {
1829 		shost->sg_prot_tablesize =
1830 			min_not_zero(shost->sg_prot_tablesize,
1831 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1832 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1833 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1834 	}
1835 
1836 	if (dev->dma_mask) {
1837 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1838 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1839 	}
1840 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1841 	if (shost->unchecked_isa_dma)
1842 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1843 	blk_queue_segment_boundary(q, shost->dma_boundary);
1844 	dma_set_seg_boundary(dev, shost->dma_boundary);
1845 
1846 	blk_queue_max_segment_size(q, shost->max_segment_size);
1847 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1848 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1849 
1850 	/*
1851 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1852 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1853 	 * which is set by the platform.
1854 	 *
1855 	 * Devices that require a bigger alignment can increase it later.
1856 	 */
1857 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1858 }
1859 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1860 
1861 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1862 	.get_budget	= scsi_mq_get_budget,
1863 	.put_budget	= scsi_mq_put_budget,
1864 	.queue_rq	= scsi_queue_rq,
1865 	.complete	= scsi_softirq_done,
1866 	.timeout	= scsi_timeout,
1867 #ifdef CONFIG_BLK_DEBUG_FS
1868 	.show_rq	= scsi_show_rq,
1869 #endif
1870 	.init_request	= scsi_mq_init_request,
1871 	.exit_request	= scsi_mq_exit_request,
1872 	.initialize_rq_fn = scsi_initialize_rq,
1873 	.cleanup_rq	= scsi_cleanup_rq,
1874 	.busy		= scsi_mq_lld_busy,
1875 	.map_queues	= scsi_map_queues,
1876 };
1877 
1878 
1879 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1880 {
1881 	struct request_queue *q = hctx->queue;
1882 	struct scsi_device *sdev = q->queuedata;
1883 	struct Scsi_Host *shost = sdev->host;
1884 
1885 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1886 }
1887 
1888 static const struct blk_mq_ops scsi_mq_ops = {
1889 	.get_budget	= scsi_mq_get_budget,
1890 	.put_budget	= scsi_mq_put_budget,
1891 	.queue_rq	= scsi_queue_rq,
1892 	.commit_rqs	= scsi_commit_rqs,
1893 	.complete	= scsi_softirq_done,
1894 	.timeout	= scsi_timeout,
1895 #ifdef CONFIG_BLK_DEBUG_FS
1896 	.show_rq	= scsi_show_rq,
1897 #endif
1898 	.init_request	= scsi_mq_init_request,
1899 	.exit_request	= scsi_mq_exit_request,
1900 	.initialize_rq_fn = scsi_initialize_rq,
1901 	.cleanup_rq	= scsi_cleanup_rq,
1902 	.busy		= scsi_mq_lld_busy,
1903 	.map_queues	= scsi_map_queues,
1904 };
1905 
1906 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1907 {
1908 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1909 	if (IS_ERR(sdev->request_queue))
1910 		return NULL;
1911 
1912 	sdev->request_queue->queuedata = sdev;
1913 	__scsi_init_queue(sdev->host, sdev->request_queue);
1914 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1915 	return sdev->request_queue;
1916 }
1917 
1918 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1919 {
1920 	unsigned int cmd_size, sgl_size;
1921 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1922 
1923 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1924 				scsi_mq_inline_sgl_size(shost));
1925 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1926 	if (scsi_host_get_prot(shost))
1927 		cmd_size += sizeof(struct scsi_data_buffer) +
1928 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1929 
1930 	memset(tag_set, 0, sizeof(*tag_set));
1931 	if (shost->hostt->commit_rqs)
1932 		tag_set->ops = &scsi_mq_ops;
1933 	else
1934 		tag_set->ops = &scsi_mq_ops_no_commit;
1935 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1936 	tag_set->queue_depth = shost->can_queue;
1937 	tag_set->cmd_size = cmd_size;
1938 	tag_set->numa_node = NUMA_NO_NODE;
1939 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1940 	tag_set->flags |=
1941 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1942 	tag_set->driver_data = shost;
1943 	if (shost->host_tagset)
1944 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1945 
1946 	return blk_mq_alloc_tag_set(tag_set);
1947 }
1948 
1949 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1950 {
1951 	blk_mq_free_tag_set(&shost->tag_set);
1952 }
1953 
1954 /**
1955  * scsi_device_from_queue - return sdev associated with a request_queue
1956  * @q: The request queue to return the sdev from
1957  *
1958  * Return the sdev associated with a request queue or NULL if the
1959  * request_queue does not reference a SCSI device.
1960  */
1961 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1962 {
1963 	struct scsi_device *sdev = NULL;
1964 
1965 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1966 	    q->mq_ops == &scsi_mq_ops)
1967 		sdev = q->queuedata;
1968 	if (!sdev || !get_device(&sdev->sdev_gendev))
1969 		sdev = NULL;
1970 
1971 	return sdev;
1972 }
1973 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1974 
1975 /**
1976  * scsi_block_requests - Utility function used by low-level drivers to prevent
1977  * further commands from being queued to the device.
1978  * @shost:  host in question
1979  *
1980  * There is no timer nor any other means by which the requests get unblocked
1981  * other than the low-level driver calling scsi_unblock_requests().
1982  */
1983 void scsi_block_requests(struct Scsi_Host *shost)
1984 {
1985 	shost->host_self_blocked = 1;
1986 }
1987 EXPORT_SYMBOL(scsi_block_requests);
1988 
1989 /**
1990  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1991  * further commands to be queued to the device.
1992  * @shost:  host in question
1993  *
1994  * There is no timer nor any other means by which the requests get unblocked
1995  * other than the low-level driver calling scsi_unblock_requests(). This is done
1996  * as an API function so that changes to the internals of the scsi mid-layer
1997  * won't require wholesale changes to drivers that use this feature.
1998  */
1999 void scsi_unblock_requests(struct Scsi_Host *shost)
2000 {
2001 	shost->host_self_blocked = 0;
2002 	scsi_run_host_queues(shost);
2003 }
2004 EXPORT_SYMBOL(scsi_unblock_requests);
2005 
2006 void scsi_exit_queue(void)
2007 {
2008 	kmem_cache_destroy(scsi_sense_cache);
2009 	kmem_cache_destroy(scsi_sense_isadma_cache);
2010 }
2011 
2012 /**
2013  *	scsi_mode_select - issue a mode select
2014  *	@sdev:	SCSI device to be queried
2015  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2016  *	@sp:	Save page bit (0 == don't save, 1 == save)
2017  *	@modepage: mode page being requested
2018  *	@buffer: request buffer (may not be smaller than eight bytes)
2019  *	@len:	length of request buffer.
2020  *	@timeout: command timeout
2021  *	@retries: number of retries before failing
2022  *	@data: returns a structure abstracting the mode header data
2023  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2024  *		must be SCSI_SENSE_BUFFERSIZE big.
2025  *
2026  *	Returns zero if successful; negative error number or scsi
2027  *	status on error
2028  *
2029  */
2030 int
2031 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2032 		 unsigned char *buffer, int len, int timeout, int retries,
2033 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2034 {
2035 	unsigned char cmd[10];
2036 	unsigned char *real_buffer;
2037 	int ret;
2038 
2039 	memset(cmd, 0, sizeof(cmd));
2040 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2041 
2042 	if (sdev->use_10_for_ms) {
2043 		if (len > 65535)
2044 			return -EINVAL;
2045 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2046 		if (!real_buffer)
2047 			return -ENOMEM;
2048 		memcpy(real_buffer + 8, buffer, len);
2049 		len += 8;
2050 		real_buffer[0] = 0;
2051 		real_buffer[1] = 0;
2052 		real_buffer[2] = data->medium_type;
2053 		real_buffer[3] = data->device_specific;
2054 		real_buffer[4] = data->longlba ? 0x01 : 0;
2055 		real_buffer[5] = 0;
2056 		real_buffer[6] = data->block_descriptor_length >> 8;
2057 		real_buffer[7] = data->block_descriptor_length;
2058 
2059 		cmd[0] = MODE_SELECT_10;
2060 		cmd[7] = len >> 8;
2061 		cmd[8] = len;
2062 	} else {
2063 		if (len > 255 || data->block_descriptor_length > 255 ||
2064 		    data->longlba)
2065 			return -EINVAL;
2066 
2067 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2068 		if (!real_buffer)
2069 			return -ENOMEM;
2070 		memcpy(real_buffer + 4, buffer, len);
2071 		len += 4;
2072 		real_buffer[0] = 0;
2073 		real_buffer[1] = data->medium_type;
2074 		real_buffer[2] = data->device_specific;
2075 		real_buffer[3] = data->block_descriptor_length;
2076 
2077 		cmd[0] = MODE_SELECT;
2078 		cmd[4] = len;
2079 	}
2080 
2081 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2082 			       sshdr, timeout, retries, NULL);
2083 	kfree(real_buffer);
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL_GPL(scsi_mode_select);
2087 
2088 /**
2089  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2090  *	@sdev:	SCSI device to be queried
2091  *	@dbd:	set if mode sense will allow block descriptors to be returned
2092  *	@modepage: mode page being requested
2093  *	@buffer: request buffer (may not be smaller than eight bytes)
2094  *	@len:	length of request buffer.
2095  *	@timeout: command timeout
2096  *	@retries: number of retries before failing
2097  *	@data: returns a structure abstracting the mode header data
2098  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2099  *		must be SCSI_SENSE_BUFFERSIZE big.
2100  *
2101  *	Returns zero if unsuccessful, or the header offset (either 4
2102  *	or 8 depending on whether a six or ten byte command was
2103  *	issued) if successful.
2104  */
2105 int
2106 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2107 		  unsigned char *buffer, int len, int timeout, int retries,
2108 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2109 {
2110 	unsigned char cmd[12];
2111 	int use_10_for_ms;
2112 	int header_length;
2113 	int result, retry_count = retries;
2114 	struct scsi_sense_hdr my_sshdr;
2115 
2116 	memset(data, 0, sizeof(*data));
2117 	memset(&cmd[0], 0, 12);
2118 
2119 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2120 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2121 	cmd[2] = modepage;
2122 
2123 	/* caller might not be interested in sense, but we need it */
2124 	if (!sshdr)
2125 		sshdr = &my_sshdr;
2126 
2127  retry:
2128 	use_10_for_ms = sdev->use_10_for_ms;
2129 
2130 	if (use_10_for_ms) {
2131 		if (len < 8)
2132 			len = 8;
2133 
2134 		cmd[0] = MODE_SENSE_10;
2135 		cmd[8] = len;
2136 		header_length = 8;
2137 	} else {
2138 		if (len < 4)
2139 			len = 4;
2140 
2141 		cmd[0] = MODE_SENSE;
2142 		cmd[4] = len;
2143 		header_length = 4;
2144 	}
2145 
2146 	memset(buffer, 0, len);
2147 
2148 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2149 				  sshdr, timeout, retries, NULL);
2150 
2151 	/* This code looks awful: what it's doing is making sure an
2152 	 * ILLEGAL REQUEST sense return identifies the actual command
2153 	 * byte as the problem.  MODE_SENSE commands can return
2154 	 * ILLEGAL REQUEST if the code page isn't supported */
2155 
2156 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2157 	    driver_byte(result) == DRIVER_SENSE) {
2158 		if (scsi_sense_valid(sshdr)) {
2159 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2160 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2161 				/*
2162 				 * Invalid command operation code
2163 				 */
2164 				sdev->use_10_for_ms = 0;
2165 				goto retry;
2166 			}
2167 		}
2168 	}
2169 
2170 	if (scsi_status_is_good(result)) {
2171 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2172 			     (modepage == 6 || modepage == 8))) {
2173 			/* Initio breakage? */
2174 			header_length = 0;
2175 			data->length = 13;
2176 			data->medium_type = 0;
2177 			data->device_specific = 0;
2178 			data->longlba = 0;
2179 			data->block_descriptor_length = 0;
2180 		} else if (use_10_for_ms) {
2181 			data->length = buffer[0]*256 + buffer[1] + 2;
2182 			data->medium_type = buffer[2];
2183 			data->device_specific = buffer[3];
2184 			data->longlba = buffer[4] & 0x01;
2185 			data->block_descriptor_length = buffer[6]*256
2186 				+ buffer[7];
2187 		} else {
2188 			data->length = buffer[0] + 1;
2189 			data->medium_type = buffer[1];
2190 			data->device_specific = buffer[2];
2191 			data->block_descriptor_length = buffer[3];
2192 		}
2193 		data->header_length = header_length;
2194 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2195 		   scsi_sense_valid(sshdr) &&
2196 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2197 		retry_count--;
2198 		goto retry;
2199 	}
2200 
2201 	return result;
2202 }
2203 EXPORT_SYMBOL(scsi_mode_sense);
2204 
2205 /**
2206  *	scsi_test_unit_ready - test if unit is ready
2207  *	@sdev:	scsi device to change the state of.
2208  *	@timeout: command timeout
2209  *	@retries: number of retries before failing
2210  *	@sshdr: outpout pointer for decoded sense information.
2211  *
2212  *	Returns zero if unsuccessful or an error if TUR failed.  For
2213  *	removable media, UNIT_ATTENTION sets ->changed flag.
2214  **/
2215 int
2216 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2217 		     struct scsi_sense_hdr *sshdr)
2218 {
2219 	char cmd[] = {
2220 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2221 	};
2222 	int result;
2223 
2224 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2225 	do {
2226 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2227 					  timeout, 1, NULL);
2228 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2229 		    sshdr->sense_key == UNIT_ATTENTION)
2230 			sdev->changed = 1;
2231 	} while (scsi_sense_valid(sshdr) &&
2232 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2233 
2234 	return result;
2235 }
2236 EXPORT_SYMBOL(scsi_test_unit_ready);
2237 
2238 /**
2239  *	scsi_device_set_state - Take the given device through the device state model.
2240  *	@sdev:	scsi device to change the state of.
2241  *	@state:	state to change to.
2242  *
2243  *	Returns zero if successful or an error if the requested
2244  *	transition is illegal.
2245  */
2246 int
2247 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2248 {
2249 	enum scsi_device_state oldstate = sdev->sdev_state;
2250 
2251 	if (state == oldstate)
2252 		return 0;
2253 
2254 	switch (state) {
2255 	case SDEV_CREATED:
2256 		switch (oldstate) {
2257 		case SDEV_CREATED_BLOCK:
2258 			break;
2259 		default:
2260 			goto illegal;
2261 		}
2262 		break;
2263 
2264 	case SDEV_RUNNING:
2265 		switch (oldstate) {
2266 		case SDEV_CREATED:
2267 		case SDEV_OFFLINE:
2268 		case SDEV_TRANSPORT_OFFLINE:
2269 		case SDEV_QUIESCE:
2270 		case SDEV_BLOCK:
2271 			break;
2272 		default:
2273 			goto illegal;
2274 		}
2275 		break;
2276 
2277 	case SDEV_QUIESCE:
2278 		switch (oldstate) {
2279 		case SDEV_RUNNING:
2280 		case SDEV_OFFLINE:
2281 		case SDEV_TRANSPORT_OFFLINE:
2282 			break;
2283 		default:
2284 			goto illegal;
2285 		}
2286 		break;
2287 
2288 	case SDEV_OFFLINE:
2289 	case SDEV_TRANSPORT_OFFLINE:
2290 		switch (oldstate) {
2291 		case SDEV_CREATED:
2292 		case SDEV_RUNNING:
2293 		case SDEV_QUIESCE:
2294 		case SDEV_BLOCK:
2295 			break;
2296 		default:
2297 			goto illegal;
2298 		}
2299 		break;
2300 
2301 	case SDEV_BLOCK:
2302 		switch (oldstate) {
2303 		case SDEV_RUNNING:
2304 		case SDEV_CREATED_BLOCK:
2305 		case SDEV_QUIESCE:
2306 		case SDEV_OFFLINE:
2307 			break;
2308 		default:
2309 			goto illegal;
2310 		}
2311 		break;
2312 
2313 	case SDEV_CREATED_BLOCK:
2314 		switch (oldstate) {
2315 		case SDEV_CREATED:
2316 			break;
2317 		default:
2318 			goto illegal;
2319 		}
2320 		break;
2321 
2322 	case SDEV_CANCEL:
2323 		switch (oldstate) {
2324 		case SDEV_CREATED:
2325 		case SDEV_RUNNING:
2326 		case SDEV_QUIESCE:
2327 		case SDEV_OFFLINE:
2328 		case SDEV_TRANSPORT_OFFLINE:
2329 			break;
2330 		default:
2331 			goto illegal;
2332 		}
2333 		break;
2334 
2335 	case SDEV_DEL:
2336 		switch (oldstate) {
2337 		case SDEV_CREATED:
2338 		case SDEV_RUNNING:
2339 		case SDEV_OFFLINE:
2340 		case SDEV_TRANSPORT_OFFLINE:
2341 		case SDEV_CANCEL:
2342 		case SDEV_BLOCK:
2343 		case SDEV_CREATED_BLOCK:
2344 			break;
2345 		default:
2346 			goto illegal;
2347 		}
2348 		break;
2349 
2350 	}
2351 	sdev->offline_already = false;
2352 	sdev->sdev_state = state;
2353 	return 0;
2354 
2355  illegal:
2356 	SCSI_LOG_ERROR_RECOVERY(1,
2357 				sdev_printk(KERN_ERR, sdev,
2358 					    "Illegal state transition %s->%s",
2359 					    scsi_device_state_name(oldstate),
2360 					    scsi_device_state_name(state))
2361 				);
2362 	return -EINVAL;
2363 }
2364 EXPORT_SYMBOL(scsi_device_set_state);
2365 
2366 /**
2367  * 	sdev_evt_emit - emit a single SCSI device uevent
2368  *	@sdev: associated SCSI device
2369  *	@evt: event to emit
2370  *
2371  *	Send a single uevent (scsi_event) to the associated scsi_device.
2372  */
2373 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2374 {
2375 	int idx = 0;
2376 	char *envp[3];
2377 
2378 	switch (evt->evt_type) {
2379 	case SDEV_EVT_MEDIA_CHANGE:
2380 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2381 		break;
2382 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2383 		scsi_rescan_device(&sdev->sdev_gendev);
2384 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2385 		break;
2386 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2387 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2388 		break;
2389 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2390 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2391 		break;
2392 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2393 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2394 		break;
2395 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2396 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2397 		break;
2398 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2399 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2400 		break;
2401 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2402 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2403 		break;
2404 	default:
2405 		/* do nothing */
2406 		break;
2407 	}
2408 
2409 	envp[idx++] = NULL;
2410 
2411 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2412 }
2413 
2414 /**
2415  * 	sdev_evt_thread - send a uevent for each scsi event
2416  *	@work: work struct for scsi_device
2417  *
2418  *	Dispatch queued events to their associated scsi_device kobjects
2419  *	as uevents.
2420  */
2421 void scsi_evt_thread(struct work_struct *work)
2422 {
2423 	struct scsi_device *sdev;
2424 	enum scsi_device_event evt_type;
2425 	LIST_HEAD(event_list);
2426 
2427 	sdev = container_of(work, struct scsi_device, event_work);
2428 
2429 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2430 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2431 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2432 
2433 	while (1) {
2434 		struct scsi_event *evt;
2435 		struct list_head *this, *tmp;
2436 		unsigned long flags;
2437 
2438 		spin_lock_irqsave(&sdev->list_lock, flags);
2439 		list_splice_init(&sdev->event_list, &event_list);
2440 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2441 
2442 		if (list_empty(&event_list))
2443 			break;
2444 
2445 		list_for_each_safe(this, tmp, &event_list) {
2446 			evt = list_entry(this, struct scsi_event, node);
2447 			list_del(&evt->node);
2448 			scsi_evt_emit(sdev, evt);
2449 			kfree(evt);
2450 		}
2451 	}
2452 }
2453 
2454 /**
2455  * 	sdev_evt_send - send asserted event to uevent thread
2456  *	@sdev: scsi_device event occurred on
2457  *	@evt: event to send
2458  *
2459  *	Assert scsi device event asynchronously.
2460  */
2461 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2462 {
2463 	unsigned long flags;
2464 
2465 #if 0
2466 	/* FIXME: currently this check eliminates all media change events
2467 	 * for polled devices.  Need to update to discriminate between AN
2468 	 * and polled events */
2469 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2470 		kfree(evt);
2471 		return;
2472 	}
2473 #endif
2474 
2475 	spin_lock_irqsave(&sdev->list_lock, flags);
2476 	list_add_tail(&evt->node, &sdev->event_list);
2477 	schedule_work(&sdev->event_work);
2478 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2479 }
2480 EXPORT_SYMBOL_GPL(sdev_evt_send);
2481 
2482 /**
2483  * 	sdev_evt_alloc - allocate a new scsi event
2484  *	@evt_type: type of event to allocate
2485  *	@gfpflags: GFP flags for allocation
2486  *
2487  *	Allocates and returns a new scsi_event.
2488  */
2489 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2490 				  gfp_t gfpflags)
2491 {
2492 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2493 	if (!evt)
2494 		return NULL;
2495 
2496 	evt->evt_type = evt_type;
2497 	INIT_LIST_HEAD(&evt->node);
2498 
2499 	/* evt_type-specific initialization, if any */
2500 	switch (evt_type) {
2501 	case SDEV_EVT_MEDIA_CHANGE:
2502 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2503 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2504 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2505 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2506 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2507 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2508 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2509 	default:
2510 		/* do nothing */
2511 		break;
2512 	}
2513 
2514 	return evt;
2515 }
2516 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2517 
2518 /**
2519  * 	sdev_evt_send_simple - send asserted event to uevent thread
2520  *	@sdev: scsi_device event occurred on
2521  *	@evt_type: type of event to send
2522  *	@gfpflags: GFP flags for allocation
2523  *
2524  *	Assert scsi device event asynchronously, given an event type.
2525  */
2526 void sdev_evt_send_simple(struct scsi_device *sdev,
2527 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2528 {
2529 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2530 	if (!evt) {
2531 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2532 			    evt_type);
2533 		return;
2534 	}
2535 
2536 	sdev_evt_send(sdev, evt);
2537 }
2538 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2539 
2540 /**
2541  *	scsi_device_quiesce - Block user issued commands.
2542  *	@sdev:	scsi device to quiesce.
2543  *
2544  *	This works by trying to transition to the SDEV_QUIESCE state
2545  *	(which must be a legal transition).  When the device is in this
2546  *	state, only special requests will be accepted, all others will
2547  *	be deferred.  Since special requests may also be requeued requests,
2548  *	a successful return doesn't guarantee the device will be
2549  *	totally quiescent.
2550  *
2551  *	Must be called with user context, may sleep.
2552  *
2553  *	Returns zero if unsuccessful or an error if not.
2554  */
2555 int
2556 scsi_device_quiesce(struct scsi_device *sdev)
2557 {
2558 	struct request_queue *q = sdev->request_queue;
2559 	int err;
2560 
2561 	/*
2562 	 * It is allowed to call scsi_device_quiesce() multiple times from
2563 	 * the same context but concurrent scsi_device_quiesce() calls are
2564 	 * not allowed.
2565 	 */
2566 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2567 
2568 	if (sdev->quiesced_by == current)
2569 		return 0;
2570 
2571 	blk_set_pm_only(q);
2572 
2573 	blk_mq_freeze_queue(q);
2574 	/*
2575 	 * Ensure that the effect of blk_set_pm_only() will be visible
2576 	 * for percpu_ref_tryget() callers that occur after the queue
2577 	 * unfreeze even if the queue was already frozen before this function
2578 	 * was called. See also https://lwn.net/Articles/573497/.
2579 	 */
2580 	synchronize_rcu();
2581 	blk_mq_unfreeze_queue(q);
2582 
2583 	mutex_lock(&sdev->state_mutex);
2584 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2585 	if (err == 0)
2586 		sdev->quiesced_by = current;
2587 	else
2588 		blk_clear_pm_only(q);
2589 	mutex_unlock(&sdev->state_mutex);
2590 
2591 	return err;
2592 }
2593 EXPORT_SYMBOL(scsi_device_quiesce);
2594 
2595 /**
2596  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2597  *	@sdev:	scsi device to resume.
2598  *
2599  *	Moves the device from quiesced back to running and restarts the
2600  *	queues.
2601  *
2602  *	Must be called with user context, may sleep.
2603  */
2604 void scsi_device_resume(struct scsi_device *sdev)
2605 {
2606 	/* check if the device state was mutated prior to resume, and if
2607 	 * so assume the state is being managed elsewhere (for example
2608 	 * device deleted during suspend)
2609 	 */
2610 	mutex_lock(&sdev->state_mutex);
2611 	if (sdev->quiesced_by) {
2612 		sdev->quiesced_by = NULL;
2613 		blk_clear_pm_only(sdev->request_queue);
2614 	}
2615 	if (sdev->sdev_state == SDEV_QUIESCE)
2616 		scsi_device_set_state(sdev, SDEV_RUNNING);
2617 	mutex_unlock(&sdev->state_mutex);
2618 }
2619 EXPORT_SYMBOL(scsi_device_resume);
2620 
2621 static void
2622 device_quiesce_fn(struct scsi_device *sdev, void *data)
2623 {
2624 	scsi_device_quiesce(sdev);
2625 }
2626 
2627 void
2628 scsi_target_quiesce(struct scsi_target *starget)
2629 {
2630 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2631 }
2632 EXPORT_SYMBOL(scsi_target_quiesce);
2633 
2634 static void
2635 device_resume_fn(struct scsi_device *sdev, void *data)
2636 {
2637 	scsi_device_resume(sdev);
2638 }
2639 
2640 void
2641 scsi_target_resume(struct scsi_target *starget)
2642 {
2643 	starget_for_each_device(starget, NULL, device_resume_fn);
2644 }
2645 EXPORT_SYMBOL(scsi_target_resume);
2646 
2647 /**
2648  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2649  * @sdev: device to block
2650  *
2651  * Pause SCSI command processing on the specified device. Does not sleep.
2652  *
2653  * Returns zero if successful or a negative error code upon failure.
2654  *
2655  * Notes:
2656  * This routine transitions the device to the SDEV_BLOCK state (which must be
2657  * a legal transition). When the device is in this state, command processing
2658  * is paused until the device leaves the SDEV_BLOCK state. See also
2659  * scsi_internal_device_unblock_nowait().
2660  */
2661 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2662 {
2663 	struct request_queue *q = sdev->request_queue;
2664 	int err = 0;
2665 
2666 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2667 	if (err) {
2668 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2669 
2670 		if (err)
2671 			return err;
2672 	}
2673 
2674 	/*
2675 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2676 	 * block layer from calling the midlayer with this device's
2677 	 * request queue.
2678 	 */
2679 	blk_mq_quiesce_queue_nowait(q);
2680 	return 0;
2681 }
2682 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2683 
2684 /**
2685  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2686  * @sdev: device to block
2687  *
2688  * Pause SCSI command processing on the specified device and wait until all
2689  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2690  *
2691  * Returns zero if successful or a negative error code upon failure.
2692  *
2693  * Note:
2694  * This routine transitions the device to the SDEV_BLOCK state (which must be
2695  * a legal transition). When the device is in this state, command processing
2696  * is paused until the device leaves the SDEV_BLOCK state. See also
2697  * scsi_internal_device_unblock().
2698  */
2699 static int scsi_internal_device_block(struct scsi_device *sdev)
2700 {
2701 	struct request_queue *q = sdev->request_queue;
2702 	int err;
2703 
2704 	mutex_lock(&sdev->state_mutex);
2705 	err = scsi_internal_device_block_nowait(sdev);
2706 	if (err == 0)
2707 		blk_mq_quiesce_queue(q);
2708 	mutex_unlock(&sdev->state_mutex);
2709 
2710 	return err;
2711 }
2712 
2713 void scsi_start_queue(struct scsi_device *sdev)
2714 {
2715 	struct request_queue *q = sdev->request_queue;
2716 
2717 	blk_mq_unquiesce_queue(q);
2718 }
2719 
2720 /**
2721  * scsi_internal_device_unblock_nowait - resume a device after a block request
2722  * @sdev:	device to resume
2723  * @new_state:	state to set the device to after unblocking
2724  *
2725  * Restart the device queue for a previously suspended SCSI device. Does not
2726  * sleep.
2727  *
2728  * Returns zero if successful or a negative error code upon failure.
2729  *
2730  * Notes:
2731  * This routine transitions the device to the SDEV_RUNNING state or to one of
2732  * the offline states (which must be a legal transition) allowing the midlayer
2733  * to goose the queue for this device.
2734  */
2735 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2736 					enum scsi_device_state new_state)
2737 {
2738 	switch (new_state) {
2739 	case SDEV_RUNNING:
2740 	case SDEV_TRANSPORT_OFFLINE:
2741 		break;
2742 	default:
2743 		return -EINVAL;
2744 	}
2745 
2746 	/*
2747 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2748 	 * offlined states and goose the device queue if successful.
2749 	 */
2750 	switch (sdev->sdev_state) {
2751 	case SDEV_BLOCK:
2752 	case SDEV_TRANSPORT_OFFLINE:
2753 		sdev->sdev_state = new_state;
2754 		break;
2755 	case SDEV_CREATED_BLOCK:
2756 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2757 		    new_state == SDEV_OFFLINE)
2758 			sdev->sdev_state = new_state;
2759 		else
2760 			sdev->sdev_state = SDEV_CREATED;
2761 		break;
2762 	case SDEV_CANCEL:
2763 	case SDEV_OFFLINE:
2764 		break;
2765 	default:
2766 		return -EINVAL;
2767 	}
2768 	scsi_start_queue(sdev);
2769 
2770 	return 0;
2771 }
2772 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2773 
2774 /**
2775  * scsi_internal_device_unblock - resume a device after a block request
2776  * @sdev:	device to resume
2777  * @new_state:	state to set the device to after unblocking
2778  *
2779  * Restart the device queue for a previously suspended SCSI device. May sleep.
2780  *
2781  * Returns zero if successful or a negative error code upon failure.
2782  *
2783  * Notes:
2784  * This routine transitions the device to the SDEV_RUNNING state or to one of
2785  * the offline states (which must be a legal transition) allowing the midlayer
2786  * to goose the queue for this device.
2787  */
2788 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2789 					enum scsi_device_state new_state)
2790 {
2791 	int ret;
2792 
2793 	mutex_lock(&sdev->state_mutex);
2794 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2795 	mutex_unlock(&sdev->state_mutex);
2796 
2797 	return ret;
2798 }
2799 
2800 static void
2801 device_block(struct scsi_device *sdev, void *data)
2802 {
2803 	int ret;
2804 
2805 	ret = scsi_internal_device_block(sdev);
2806 
2807 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2808 		  dev_name(&sdev->sdev_gendev), ret);
2809 }
2810 
2811 static int
2812 target_block(struct device *dev, void *data)
2813 {
2814 	if (scsi_is_target_device(dev))
2815 		starget_for_each_device(to_scsi_target(dev), NULL,
2816 					device_block);
2817 	return 0;
2818 }
2819 
2820 void
2821 scsi_target_block(struct device *dev)
2822 {
2823 	if (scsi_is_target_device(dev))
2824 		starget_for_each_device(to_scsi_target(dev), NULL,
2825 					device_block);
2826 	else
2827 		device_for_each_child(dev, NULL, target_block);
2828 }
2829 EXPORT_SYMBOL_GPL(scsi_target_block);
2830 
2831 static void
2832 device_unblock(struct scsi_device *sdev, void *data)
2833 {
2834 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2835 }
2836 
2837 static int
2838 target_unblock(struct device *dev, void *data)
2839 {
2840 	if (scsi_is_target_device(dev))
2841 		starget_for_each_device(to_scsi_target(dev), data,
2842 					device_unblock);
2843 	return 0;
2844 }
2845 
2846 void
2847 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2848 {
2849 	if (scsi_is_target_device(dev))
2850 		starget_for_each_device(to_scsi_target(dev), &new_state,
2851 					device_unblock);
2852 	else
2853 		device_for_each_child(dev, &new_state, target_unblock);
2854 }
2855 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2856 
2857 int
2858 scsi_host_block(struct Scsi_Host *shost)
2859 {
2860 	struct scsi_device *sdev;
2861 	int ret = 0;
2862 
2863 	/*
2864 	 * Call scsi_internal_device_block_nowait so we can avoid
2865 	 * calling synchronize_rcu() for each LUN.
2866 	 */
2867 	shost_for_each_device(sdev, shost) {
2868 		mutex_lock(&sdev->state_mutex);
2869 		ret = scsi_internal_device_block_nowait(sdev);
2870 		mutex_unlock(&sdev->state_mutex);
2871 		if (ret) {
2872 			scsi_device_put(sdev);
2873 			break;
2874 		}
2875 	}
2876 
2877 	/*
2878 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2879 	 * calling synchronize_rcu() once is enough.
2880 	 */
2881 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2882 
2883 	if (!ret)
2884 		synchronize_rcu();
2885 
2886 	return ret;
2887 }
2888 EXPORT_SYMBOL_GPL(scsi_host_block);
2889 
2890 int
2891 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2892 {
2893 	struct scsi_device *sdev;
2894 	int ret = 0;
2895 
2896 	shost_for_each_device(sdev, shost) {
2897 		ret = scsi_internal_device_unblock(sdev, new_state);
2898 		if (ret) {
2899 			scsi_device_put(sdev);
2900 			break;
2901 		}
2902 	}
2903 	return ret;
2904 }
2905 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2906 
2907 /**
2908  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2909  * @sgl:	scatter-gather list
2910  * @sg_count:	number of segments in sg
2911  * @offset:	offset in bytes into sg, on return offset into the mapped area
2912  * @len:	bytes to map, on return number of bytes mapped
2913  *
2914  * Returns virtual address of the start of the mapped page
2915  */
2916 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2917 			  size_t *offset, size_t *len)
2918 {
2919 	int i;
2920 	size_t sg_len = 0, len_complete = 0;
2921 	struct scatterlist *sg;
2922 	struct page *page;
2923 
2924 	WARN_ON(!irqs_disabled());
2925 
2926 	for_each_sg(sgl, sg, sg_count, i) {
2927 		len_complete = sg_len; /* Complete sg-entries */
2928 		sg_len += sg->length;
2929 		if (sg_len > *offset)
2930 			break;
2931 	}
2932 
2933 	if (unlikely(i == sg_count)) {
2934 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2935 			"elements %d\n",
2936 		       __func__, sg_len, *offset, sg_count);
2937 		WARN_ON(1);
2938 		return NULL;
2939 	}
2940 
2941 	/* Offset starting from the beginning of first page in this sg-entry */
2942 	*offset = *offset - len_complete + sg->offset;
2943 
2944 	/* Assumption: contiguous pages can be accessed as "page + i" */
2945 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2946 	*offset &= ~PAGE_MASK;
2947 
2948 	/* Bytes in this sg-entry from *offset to the end of the page */
2949 	sg_len = PAGE_SIZE - *offset;
2950 	if (*len > sg_len)
2951 		*len = sg_len;
2952 
2953 	return kmap_atomic(page);
2954 }
2955 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2956 
2957 /**
2958  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2959  * @virt:	virtual address to be unmapped
2960  */
2961 void scsi_kunmap_atomic_sg(void *virt)
2962 {
2963 	kunmap_atomic(virt);
2964 }
2965 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2966 
2967 void sdev_disable_disk_events(struct scsi_device *sdev)
2968 {
2969 	atomic_inc(&sdev->disk_events_disable_depth);
2970 }
2971 EXPORT_SYMBOL(sdev_disable_disk_events);
2972 
2973 void sdev_enable_disk_events(struct scsi_device *sdev)
2974 {
2975 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2976 		return;
2977 	atomic_dec(&sdev->disk_events_disable_depth);
2978 }
2979 EXPORT_SYMBOL(sdev_enable_disk_events);
2980 
2981 /**
2982  * scsi_vpd_lun_id - return a unique device identification
2983  * @sdev: SCSI device
2984  * @id:   buffer for the identification
2985  * @id_len:  length of the buffer
2986  *
2987  * Copies a unique device identification into @id based
2988  * on the information in the VPD page 0x83 of the device.
2989  * The string will be formatted as a SCSI name string.
2990  *
2991  * Returns the length of the identification or error on failure.
2992  * If the identifier is longer than the supplied buffer the actual
2993  * identifier length is returned and the buffer is not zero-padded.
2994  */
2995 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2996 {
2997 	u8 cur_id_type = 0xff;
2998 	u8 cur_id_size = 0;
2999 	const unsigned char *d, *cur_id_str;
3000 	const struct scsi_vpd *vpd_pg83;
3001 	int id_size = -EINVAL;
3002 
3003 	rcu_read_lock();
3004 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3005 	if (!vpd_pg83) {
3006 		rcu_read_unlock();
3007 		return -ENXIO;
3008 	}
3009 
3010 	/*
3011 	 * Look for the correct descriptor.
3012 	 * Order of preference for lun descriptor:
3013 	 * - SCSI name string
3014 	 * - NAA IEEE Registered Extended
3015 	 * - EUI-64 based 16-byte
3016 	 * - EUI-64 based 12-byte
3017 	 * - NAA IEEE Registered
3018 	 * - NAA IEEE Extended
3019 	 * - T10 Vendor ID
3020 	 * as longer descriptors reduce the likelyhood
3021 	 * of identification clashes.
3022 	 */
3023 
3024 	/* The id string must be at least 20 bytes + terminating NULL byte */
3025 	if (id_len < 21) {
3026 		rcu_read_unlock();
3027 		return -EINVAL;
3028 	}
3029 
3030 	memset(id, 0, id_len);
3031 	d = vpd_pg83->data + 4;
3032 	while (d < vpd_pg83->data + vpd_pg83->len) {
3033 		/* Skip designators not referring to the LUN */
3034 		if ((d[1] & 0x30) != 0x00)
3035 			goto next_desig;
3036 
3037 		switch (d[1] & 0xf) {
3038 		case 0x1:
3039 			/* T10 Vendor ID */
3040 			if (cur_id_size > d[3])
3041 				break;
3042 			/* Prefer anything */
3043 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3044 				break;
3045 			cur_id_size = d[3];
3046 			if (cur_id_size + 4 > id_len)
3047 				cur_id_size = id_len - 4;
3048 			cur_id_str = d + 4;
3049 			cur_id_type = d[1] & 0xf;
3050 			id_size = snprintf(id, id_len, "t10.%*pE",
3051 					   cur_id_size, cur_id_str);
3052 			break;
3053 		case 0x2:
3054 			/* EUI-64 */
3055 			if (cur_id_size > d[3])
3056 				break;
3057 			/* Prefer NAA IEEE Registered Extended */
3058 			if (cur_id_type == 0x3 &&
3059 			    cur_id_size == d[3])
3060 				break;
3061 			cur_id_size = d[3];
3062 			cur_id_str = d + 4;
3063 			cur_id_type = d[1] & 0xf;
3064 			switch (cur_id_size) {
3065 			case 8:
3066 				id_size = snprintf(id, id_len,
3067 						   "eui.%8phN",
3068 						   cur_id_str);
3069 				break;
3070 			case 12:
3071 				id_size = snprintf(id, id_len,
3072 						   "eui.%12phN",
3073 						   cur_id_str);
3074 				break;
3075 			case 16:
3076 				id_size = snprintf(id, id_len,
3077 						   "eui.%16phN",
3078 						   cur_id_str);
3079 				break;
3080 			default:
3081 				cur_id_size = 0;
3082 				break;
3083 			}
3084 			break;
3085 		case 0x3:
3086 			/* NAA */
3087 			if (cur_id_size > d[3])
3088 				break;
3089 			cur_id_size = d[3];
3090 			cur_id_str = d + 4;
3091 			cur_id_type = d[1] & 0xf;
3092 			switch (cur_id_size) {
3093 			case 8:
3094 				id_size = snprintf(id, id_len,
3095 						   "naa.%8phN",
3096 						   cur_id_str);
3097 				break;
3098 			case 16:
3099 				id_size = snprintf(id, id_len,
3100 						   "naa.%16phN",
3101 						   cur_id_str);
3102 				break;
3103 			default:
3104 				cur_id_size = 0;
3105 				break;
3106 			}
3107 			break;
3108 		case 0x8:
3109 			/* SCSI name string */
3110 			if (cur_id_size + 4 > d[3])
3111 				break;
3112 			/* Prefer others for truncated descriptor */
3113 			if (cur_id_size && d[3] > id_len)
3114 				break;
3115 			cur_id_size = id_size = d[3];
3116 			cur_id_str = d + 4;
3117 			cur_id_type = d[1] & 0xf;
3118 			if (cur_id_size >= id_len)
3119 				cur_id_size = id_len - 1;
3120 			memcpy(id, cur_id_str, cur_id_size);
3121 			/* Decrease priority for truncated descriptor */
3122 			if (cur_id_size != id_size)
3123 				cur_id_size = 6;
3124 			break;
3125 		default:
3126 			break;
3127 		}
3128 next_desig:
3129 		d += d[3] + 4;
3130 	}
3131 	rcu_read_unlock();
3132 
3133 	return id_size;
3134 }
3135 EXPORT_SYMBOL(scsi_vpd_lun_id);
3136 
3137 /*
3138  * scsi_vpd_tpg_id - return a target port group identifier
3139  * @sdev: SCSI device
3140  *
3141  * Returns the Target Port Group identifier from the information
3142  * froom VPD page 0x83 of the device.
3143  *
3144  * Returns the identifier or error on failure.
3145  */
3146 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3147 {
3148 	const unsigned char *d;
3149 	const struct scsi_vpd *vpd_pg83;
3150 	int group_id = -EAGAIN, rel_port = -1;
3151 
3152 	rcu_read_lock();
3153 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3154 	if (!vpd_pg83) {
3155 		rcu_read_unlock();
3156 		return -ENXIO;
3157 	}
3158 
3159 	d = vpd_pg83->data + 4;
3160 	while (d < vpd_pg83->data + vpd_pg83->len) {
3161 		switch (d[1] & 0xf) {
3162 		case 0x4:
3163 			/* Relative target port */
3164 			rel_port = get_unaligned_be16(&d[6]);
3165 			break;
3166 		case 0x5:
3167 			/* Target port group */
3168 			group_id = get_unaligned_be16(&d[6]);
3169 			break;
3170 		default:
3171 			break;
3172 		}
3173 		d += d[3] + 4;
3174 	}
3175 	rcu_read_unlock();
3176 
3177 	if (group_id >= 0 && rel_id && rel_port != -1)
3178 		*rel_id = rel_port;
3179 
3180 	return group_id;
3181 }
3182 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3183