1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sense_cache; 56 static struct kmem_cache *scsi_sense_isadma_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 static inline struct kmem_cache * 62 scsi_select_sense_cache(bool unchecked_isa_dma) 63 { 64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 65 } 66 67 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 68 unsigned char *sense_buffer) 69 { 70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 71 sense_buffer); 72 } 73 74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 75 gfp_t gfp_mask, int numa_node) 76 { 77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 78 gfp_mask, numa_node); 79 } 80 81 int scsi_init_sense_cache(struct Scsi_Host *shost) 82 { 83 struct kmem_cache *cache; 84 int ret = 0; 85 86 mutex_lock(&scsi_sense_cache_mutex); 87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 88 if (cache) 89 goto exit; 90 91 if (shost->unchecked_isa_dma) { 92 scsi_sense_isadma_cache = 93 kmem_cache_create("scsi_sense_cache(DMA)", 94 SCSI_SENSE_BUFFERSIZE, 0, 95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 96 if (!scsi_sense_isadma_cache) 97 ret = -ENOMEM; 98 } else { 99 scsi_sense_cache = 100 kmem_cache_create_usercopy("scsi_sense_cache", 101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 102 0, SCSI_SENSE_BUFFERSIZE, NULL); 103 if (!scsi_sense_cache) 104 ret = -ENOMEM; 105 } 106 exit: 107 mutex_unlock(&scsi_sense_cache_mutex); 108 return ret; 109 } 110 111 /* 112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 113 * not change behaviour from the previous unplug mechanism, experimentation 114 * may prove this needs changing. 115 */ 116 #define SCSI_QUEUE_DELAY 3 117 118 static void 119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 120 { 121 struct Scsi_Host *host = cmd->device->host; 122 struct scsi_device *device = cmd->device; 123 struct scsi_target *starget = scsi_target(device); 124 125 /* 126 * Set the appropriate busy bit for the device/host. 127 * 128 * If the host/device isn't busy, assume that something actually 129 * completed, and that we should be able to queue a command now. 130 * 131 * Note that the prior mid-layer assumption that any host could 132 * always queue at least one command is now broken. The mid-layer 133 * will implement a user specifiable stall (see 134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 135 * if a command is requeued with no other commands outstanding 136 * either for the device or for the host. 137 */ 138 switch (reason) { 139 case SCSI_MLQUEUE_HOST_BUSY: 140 atomic_set(&host->host_blocked, host->max_host_blocked); 141 break; 142 case SCSI_MLQUEUE_DEVICE_BUSY: 143 case SCSI_MLQUEUE_EH_RETRY: 144 atomic_set(&device->device_blocked, 145 device->max_device_blocked); 146 break; 147 case SCSI_MLQUEUE_TARGET_BUSY: 148 atomic_set(&starget->target_blocked, 149 starget->max_target_blocked); 150 break; 151 } 152 } 153 154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 155 { 156 if (cmd->request->rq_flags & RQF_DONTPREP) { 157 cmd->request->rq_flags &= ~RQF_DONTPREP; 158 scsi_mq_uninit_cmd(cmd); 159 } else { 160 WARN_ON_ONCE(true); 161 } 162 blk_mq_requeue_request(cmd->request, true); 163 } 164 165 /** 166 * __scsi_queue_insert - private queue insertion 167 * @cmd: The SCSI command being requeued 168 * @reason: The reason for the requeue 169 * @unbusy: Whether the queue should be unbusied 170 * 171 * This is a private queue insertion. The public interface 172 * scsi_queue_insert() always assumes the queue should be unbusied 173 * because it's always called before the completion. This function is 174 * for a requeue after completion, which should only occur in this 175 * file. 176 */ 177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 178 { 179 struct scsi_device *device = cmd->device; 180 181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 182 "Inserting command %p into mlqueue\n", cmd)); 183 184 scsi_set_blocked(cmd, reason); 185 186 /* 187 * Decrement the counters, since these commands are no longer 188 * active on the host/device. 189 */ 190 if (unbusy) 191 scsi_device_unbusy(device, cmd); 192 193 /* 194 * Requeue this command. It will go before all other commands 195 * that are already in the queue. Schedule requeue work under 196 * lock such that the kblockd_schedule_work() call happens 197 * before blk_cleanup_queue() finishes. 198 */ 199 cmd->result = 0; 200 201 blk_mq_requeue_request(cmd->request, true); 202 } 203 204 /** 205 * scsi_queue_insert - Reinsert a command in the queue. 206 * @cmd: command that we are adding to queue. 207 * @reason: why we are inserting command to queue. 208 * 209 * We do this for one of two cases. Either the host is busy and it cannot accept 210 * any more commands for the time being, or the device returned QUEUE_FULL and 211 * can accept no more commands. 212 * 213 * Context: This could be called either from an interrupt context or a normal 214 * process context. 215 */ 216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 217 { 218 __scsi_queue_insert(cmd, reason, true); 219 } 220 221 222 /** 223 * __scsi_execute - insert request and wait for the result 224 * @sdev: scsi device 225 * @cmd: scsi command 226 * @data_direction: data direction 227 * @buffer: data buffer 228 * @bufflen: len of buffer 229 * @sense: optional sense buffer 230 * @sshdr: optional decoded sense header 231 * @timeout: request timeout in seconds 232 * @retries: number of times to retry request 233 * @flags: flags for ->cmd_flags 234 * @rq_flags: flags for ->rq_flags 235 * @resid: optional residual length 236 * 237 * Returns the scsi_cmnd result field if a command was executed, or a negative 238 * Linux error code if we didn't get that far. 239 */ 240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 241 int data_direction, void *buffer, unsigned bufflen, 242 unsigned char *sense, struct scsi_sense_hdr *sshdr, 243 int timeout, int retries, u64 flags, req_flags_t rq_flags, 244 int *resid) 245 { 246 struct request *req; 247 struct scsi_request *rq; 248 int ret = DRIVER_ERROR << 24; 249 250 req = blk_get_request(sdev->request_queue, 251 data_direction == DMA_TO_DEVICE ? 252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 253 if (IS_ERR(req)) 254 return ret; 255 rq = scsi_req(req); 256 257 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 258 buffer, bufflen, GFP_NOIO)) 259 goto out; 260 261 rq->cmd_len = COMMAND_SIZE(cmd[0]); 262 memcpy(rq->cmd, cmd, rq->cmd_len); 263 rq->retries = retries; 264 req->timeout = timeout; 265 req->cmd_flags |= flags; 266 req->rq_flags |= rq_flags | RQF_QUIET; 267 268 /* 269 * head injection *required* here otherwise quiesce won't work 270 */ 271 blk_execute_rq(req->q, NULL, req, 1); 272 273 /* 274 * Some devices (USB mass-storage in particular) may transfer 275 * garbage data together with a residue indicating that the data 276 * is invalid. Prevent the garbage from being misinterpreted 277 * and prevent security leaks by zeroing out the excess data. 278 */ 279 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 280 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 281 282 if (resid) 283 *resid = rq->resid_len; 284 if (sense && rq->sense_len) 285 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 286 if (sshdr) 287 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 288 ret = rq->result; 289 out: 290 blk_put_request(req); 291 292 return ret; 293 } 294 EXPORT_SYMBOL(__scsi_execute); 295 296 /** 297 * scsi_init_cmd_errh - Initialize cmd fields related to error handling. 298 * @cmd: command that is ready to be queued. 299 * 300 * This function has the job of initializing a number of fields related to error 301 * handling. Typically this will be called once for each command, as required. 302 */ 303 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 304 { 305 scsi_set_resid(cmd, 0); 306 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 307 if (cmd->cmd_len == 0) 308 cmd->cmd_len = scsi_command_size(cmd->cmnd); 309 } 310 311 /* 312 * Wake up the error handler if necessary. Avoid as follows that the error 313 * handler is not woken up if host in-flight requests number == 314 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 315 * with an RCU read lock in this function to ensure that this function in 316 * its entirety either finishes before scsi_eh_scmd_add() increases the 317 * host_failed counter or that it notices the shost state change made by 318 * scsi_eh_scmd_add(). 319 */ 320 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 321 { 322 unsigned long flags; 323 324 rcu_read_lock(); 325 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 326 if (unlikely(scsi_host_in_recovery(shost))) { 327 spin_lock_irqsave(shost->host_lock, flags); 328 if (shost->host_failed || shost->host_eh_scheduled) 329 scsi_eh_wakeup(shost); 330 spin_unlock_irqrestore(shost->host_lock, flags); 331 } 332 rcu_read_unlock(); 333 } 334 335 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 336 { 337 struct Scsi_Host *shost = sdev->host; 338 struct scsi_target *starget = scsi_target(sdev); 339 340 scsi_dec_host_busy(shost, cmd); 341 342 if (starget->can_queue > 0) 343 atomic_dec(&starget->target_busy); 344 345 atomic_dec(&sdev->device_busy); 346 } 347 348 static void scsi_kick_queue(struct request_queue *q) 349 { 350 blk_mq_run_hw_queues(q, false); 351 } 352 353 /* 354 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 355 * and call blk_run_queue for all the scsi_devices on the target - 356 * including current_sdev first. 357 * 358 * Called with *no* scsi locks held. 359 */ 360 static void scsi_single_lun_run(struct scsi_device *current_sdev) 361 { 362 struct Scsi_Host *shost = current_sdev->host; 363 struct scsi_device *sdev, *tmp; 364 struct scsi_target *starget = scsi_target(current_sdev); 365 unsigned long flags; 366 367 spin_lock_irqsave(shost->host_lock, flags); 368 starget->starget_sdev_user = NULL; 369 spin_unlock_irqrestore(shost->host_lock, flags); 370 371 /* 372 * Call blk_run_queue for all LUNs on the target, starting with 373 * current_sdev. We race with others (to set starget_sdev_user), 374 * but in most cases, we will be first. Ideally, each LU on the 375 * target would get some limited time or requests on the target. 376 */ 377 scsi_kick_queue(current_sdev->request_queue); 378 379 spin_lock_irqsave(shost->host_lock, flags); 380 if (starget->starget_sdev_user) 381 goto out; 382 list_for_each_entry_safe(sdev, tmp, &starget->devices, 383 same_target_siblings) { 384 if (sdev == current_sdev) 385 continue; 386 if (scsi_device_get(sdev)) 387 continue; 388 389 spin_unlock_irqrestore(shost->host_lock, flags); 390 scsi_kick_queue(sdev->request_queue); 391 spin_lock_irqsave(shost->host_lock, flags); 392 393 scsi_device_put(sdev); 394 } 395 out: 396 spin_unlock_irqrestore(shost->host_lock, flags); 397 } 398 399 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 400 { 401 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 402 return true; 403 if (atomic_read(&sdev->device_blocked) > 0) 404 return true; 405 return false; 406 } 407 408 static inline bool scsi_target_is_busy(struct scsi_target *starget) 409 { 410 if (starget->can_queue > 0) { 411 if (atomic_read(&starget->target_busy) >= starget->can_queue) 412 return true; 413 if (atomic_read(&starget->target_blocked) > 0) 414 return true; 415 } 416 return false; 417 } 418 419 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 420 { 421 if (atomic_read(&shost->host_blocked) > 0) 422 return true; 423 if (shost->host_self_blocked) 424 return true; 425 return false; 426 } 427 428 static void scsi_starved_list_run(struct Scsi_Host *shost) 429 { 430 LIST_HEAD(starved_list); 431 struct scsi_device *sdev; 432 unsigned long flags; 433 434 spin_lock_irqsave(shost->host_lock, flags); 435 list_splice_init(&shost->starved_list, &starved_list); 436 437 while (!list_empty(&starved_list)) { 438 struct request_queue *slq; 439 440 /* 441 * As long as shost is accepting commands and we have 442 * starved queues, call blk_run_queue. scsi_request_fn 443 * drops the queue_lock and can add us back to the 444 * starved_list. 445 * 446 * host_lock protects the starved_list and starved_entry. 447 * scsi_request_fn must get the host_lock before checking 448 * or modifying starved_list or starved_entry. 449 */ 450 if (scsi_host_is_busy(shost)) 451 break; 452 453 sdev = list_entry(starved_list.next, 454 struct scsi_device, starved_entry); 455 list_del_init(&sdev->starved_entry); 456 if (scsi_target_is_busy(scsi_target(sdev))) { 457 list_move_tail(&sdev->starved_entry, 458 &shost->starved_list); 459 continue; 460 } 461 462 /* 463 * Once we drop the host lock, a racing scsi_remove_device() 464 * call may remove the sdev from the starved list and destroy 465 * it and the queue. Mitigate by taking a reference to the 466 * queue and never touching the sdev again after we drop the 467 * host lock. Note: if __scsi_remove_device() invokes 468 * blk_cleanup_queue() before the queue is run from this 469 * function then blk_run_queue() will return immediately since 470 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 471 */ 472 slq = sdev->request_queue; 473 if (!blk_get_queue(slq)) 474 continue; 475 spin_unlock_irqrestore(shost->host_lock, flags); 476 477 scsi_kick_queue(slq); 478 blk_put_queue(slq); 479 480 spin_lock_irqsave(shost->host_lock, flags); 481 } 482 /* put any unprocessed entries back */ 483 list_splice(&starved_list, &shost->starved_list); 484 spin_unlock_irqrestore(shost->host_lock, flags); 485 } 486 487 /** 488 * scsi_run_queue - Select a proper request queue to serve next. 489 * @q: last request's queue 490 * 491 * The previous command was completely finished, start a new one if possible. 492 */ 493 static void scsi_run_queue(struct request_queue *q) 494 { 495 struct scsi_device *sdev = q->queuedata; 496 497 if (scsi_target(sdev)->single_lun) 498 scsi_single_lun_run(sdev); 499 if (!list_empty(&sdev->host->starved_list)) 500 scsi_starved_list_run(sdev->host); 501 502 blk_mq_run_hw_queues(q, false); 503 } 504 505 void scsi_requeue_run_queue(struct work_struct *work) 506 { 507 struct scsi_device *sdev; 508 struct request_queue *q; 509 510 sdev = container_of(work, struct scsi_device, requeue_work); 511 q = sdev->request_queue; 512 scsi_run_queue(q); 513 } 514 515 void scsi_run_host_queues(struct Scsi_Host *shost) 516 { 517 struct scsi_device *sdev; 518 519 shost_for_each_device(sdev, shost) 520 scsi_run_queue(sdev->request_queue); 521 } 522 523 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 524 { 525 if (!blk_rq_is_passthrough(cmd->request)) { 526 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 527 528 if (drv->uninit_command) 529 drv->uninit_command(cmd); 530 } 531 } 532 533 static void scsi_free_sgtables(struct scsi_cmnd *cmd) 534 { 535 if (cmd->sdb.table.nents) 536 sg_free_table_chained(&cmd->sdb.table, 537 SCSI_INLINE_SG_CNT); 538 if (scsi_prot_sg_count(cmd)) 539 sg_free_table_chained(&cmd->prot_sdb->table, 540 SCSI_INLINE_PROT_SG_CNT); 541 } 542 543 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 544 { 545 scsi_free_sgtables(cmd); 546 scsi_uninit_cmd(cmd); 547 } 548 549 static void scsi_run_queue_async(struct scsi_device *sdev) 550 { 551 if (scsi_target(sdev)->single_lun || 552 !list_empty(&sdev->host->starved_list)) { 553 kblockd_schedule_work(&sdev->requeue_work); 554 } else { 555 /* 556 * smp_mb() present in sbitmap_queue_clear() or implied in 557 * .end_io is for ordering writing .device_busy in 558 * scsi_device_unbusy() and reading sdev->restarts. 559 */ 560 int old = atomic_read(&sdev->restarts); 561 562 /* 563 * ->restarts has to be kept as non-zero if new budget 564 * contention occurs. 565 * 566 * No need to run queue when either another re-run 567 * queue wins in updating ->restarts or a new budget 568 * contention occurs. 569 */ 570 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 571 blk_mq_run_hw_queues(sdev->request_queue, true); 572 } 573 } 574 575 /* Returns false when no more bytes to process, true if there are more */ 576 static bool scsi_end_request(struct request *req, blk_status_t error, 577 unsigned int bytes) 578 { 579 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 580 struct scsi_device *sdev = cmd->device; 581 struct request_queue *q = sdev->request_queue; 582 583 if (blk_update_request(req, error, bytes)) 584 return true; 585 586 if (blk_queue_add_random(q)) 587 add_disk_randomness(req->rq_disk); 588 589 if (!blk_rq_is_scsi(req)) { 590 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 591 cmd->flags &= ~SCMD_INITIALIZED; 592 } 593 594 /* 595 * Calling rcu_barrier() is not necessary here because the 596 * SCSI error handler guarantees that the function called by 597 * call_rcu() has been called before scsi_end_request() is 598 * called. 599 */ 600 destroy_rcu_head(&cmd->rcu); 601 602 /* 603 * In the MQ case the command gets freed by __blk_mq_end_request, 604 * so we have to do all cleanup that depends on it earlier. 605 * 606 * We also can't kick the queues from irq context, so we 607 * will have to defer it to a workqueue. 608 */ 609 scsi_mq_uninit_cmd(cmd); 610 611 /* 612 * queue is still alive, so grab the ref for preventing it 613 * from being cleaned up during running queue. 614 */ 615 percpu_ref_get(&q->q_usage_counter); 616 617 __blk_mq_end_request(req, error); 618 619 scsi_run_queue_async(sdev); 620 621 percpu_ref_put(&q->q_usage_counter); 622 return false; 623 } 624 625 /** 626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 627 * @cmd: SCSI command 628 * @result: scsi error code 629 * 630 * Translate a SCSI result code into a blk_status_t value. May reset the host 631 * byte of @cmd->result. 632 */ 633 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 634 { 635 switch (host_byte(result)) { 636 case DID_OK: 637 /* 638 * Also check the other bytes than the status byte in result 639 * to handle the case when a SCSI LLD sets result to 640 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 641 */ 642 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 643 return BLK_STS_OK; 644 return BLK_STS_IOERR; 645 case DID_TRANSPORT_FAILFAST: 646 return BLK_STS_TRANSPORT; 647 case DID_TARGET_FAILURE: 648 set_host_byte(cmd, DID_OK); 649 return BLK_STS_TARGET; 650 case DID_NEXUS_FAILURE: 651 set_host_byte(cmd, DID_OK); 652 return BLK_STS_NEXUS; 653 case DID_ALLOC_FAILURE: 654 set_host_byte(cmd, DID_OK); 655 return BLK_STS_NOSPC; 656 case DID_MEDIUM_ERROR: 657 set_host_byte(cmd, DID_OK); 658 return BLK_STS_MEDIUM; 659 default: 660 return BLK_STS_IOERR; 661 } 662 } 663 664 /* Helper for scsi_io_completion() when "reprep" action required. */ 665 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 666 struct request_queue *q) 667 { 668 /* A new command will be prepared and issued. */ 669 scsi_mq_requeue_cmd(cmd); 670 } 671 672 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 673 { 674 struct request *req = cmd->request; 675 unsigned long wait_for; 676 677 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 678 return false; 679 680 wait_for = (cmd->allowed + 1) * req->timeout; 681 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 682 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 683 wait_for/HZ); 684 return true; 685 } 686 return false; 687 } 688 689 /* Helper for scsi_io_completion() when special action required. */ 690 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 691 { 692 struct request_queue *q = cmd->device->request_queue; 693 struct request *req = cmd->request; 694 int level = 0; 695 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 696 ACTION_DELAYED_RETRY} action; 697 struct scsi_sense_hdr sshdr; 698 bool sense_valid; 699 bool sense_current = true; /* false implies "deferred sense" */ 700 blk_status_t blk_stat; 701 702 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 703 if (sense_valid) 704 sense_current = !scsi_sense_is_deferred(&sshdr); 705 706 blk_stat = scsi_result_to_blk_status(cmd, result); 707 708 if (host_byte(result) == DID_RESET) { 709 /* Third party bus reset or reset for error recovery 710 * reasons. Just retry the command and see what 711 * happens. 712 */ 713 action = ACTION_RETRY; 714 } else if (sense_valid && sense_current) { 715 switch (sshdr.sense_key) { 716 case UNIT_ATTENTION: 717 if (cmd->device->removable) { 718 /* Detected disc change. Set a bit 719 * and quietly refuse further access. 720 */ 721 cmd->device->changed = 1; 722 action = ACTION_FAIL; 723 } else { 724 /* Must have been a power glitch, or a 725 * bus reset. Could not have been a 726 * media change, so we just retry the 727 * command and see what happens. 728 */ 729 action = ACTION_RETRY; 730 } 731 break; 732 case ILLEGAL_REQUEST: 733 /* If we had an ILLEGAL REQUEST returned, then 734 * we may have performed an unsupported 735 * command. The only thing this should be 736 * would be a ten byte read where only a six 737 * byte read was supported. Also, on a system 738 * where READ CAPACITY failed, we may have 739 * read past the end of the disk. 740 */ 741 if ((cmd->device->use_10_for_rw && 742 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 743 (cmd->cmnd[0] == READ_10 || 744 cmd->cmnd[0] == WRITE_10)) { 745 /* This will issue a new 6-byte command. */ 746 cmd->device->use_10_for_rw = 0; 747 action = ACTION_REPREP; 748 } else if (sshdr.asc == 0x10) /* DIX */ { 749 action = ACTION_FAIL; 750 blk_stat = BLK_STS_PROTECTION; 751 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 752 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 753 action = ACTION_FAIL; 754 blk_stat = BLK_STS_TARGET; 755 } else 756 action = ACTION_FAIL; 757 break; 758 case ABORTED_COMMAND: 759 action = ACTION_FAIL; 760 if (sshdr.asc == 0x10) /* DIF */ 761 blk_stat = BLK_STS_PROTECTION; 762 break; 763 case NOT_READY: 764 /* If the device is in the process of becoming 765 * ready, or has a temporary blockage, retry. 766 */ 767 if (sshdr.asc == 0x04) { 768 switch (sshdr.ascq) { 769 case 0x01: /* becoming ready */ 770 case 0x04: /* format in progress */ 771 case 0x05: /* rebuild in progress */ 772 case 0x06: /* recalculation in progress */ 773 case 0x07: /* operation in progress */ 774 case 0x08: /* Long write in progress */ 775 case 0x09: /* self test in progress */ 776 case 0x14: /* space allocation in progress */ 777 case 0x1a: /* start stop unit in progress */ 778 case 0x1b: /* sanitize in progress */ 779 case 0x1d: /* configuration in progress */ 780 case 0x24: /* depopulation in progress */ 781 action = ACTION_DELAYED_RETRY; 782 break; 783 default: 784 action = ACTION_FAIL; 785 break; 786 } 787 } else 788 action = ACTION_FAIL; 789 break; 790 case VOLUME_OVERFLOW: 791 /* See SSC3rXX or current. */ 792 action = ACTION_FAIL; 793 break; 794 default: 795 action = ACTION_FAIL; 796 break; 797 } 798 } else 799 action = ACTION_FAIL; 800 801 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 802 action = ACTION_FAIL; 803 804 switch (action) { 805 case ACTION_FAIL: 806 /* Give up and fail the remainder of the request */ 807 if (!(req->rq_flags & RQF_QUIET)) { 808 static DEFINE_RATELIMIT_STATE(_rs, 809 DEFAULT_RATELIMIT_INTERVAL, 810 DEFAULT_RATELIMIT_BURST); 811 812 if (unlikely(scsi_logging_level)) 813 level = 814 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 815 SCSI_LOG_MLCOMPLETE_BITS); 816 817 /* 818 * if logging is enabled the failure will be printed 819 * in scsi_log_completion(), so avoid duplicate messages 820 */ 821 if (!level && __ratelimit(&_rs)) { 822 scsi_print_result(cmd, NULL, FAILED); 823 if (driver_byte(result) == DRIVER_SENSE) 824 scsi_print_sense(cmd); 825 scsi_print_command(cmd); 826 } 827 } 828 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 829 return; 830 fallthrough; 831 case ACTION_REPREP: 832 scsi_io_completion_reprep(cmd, q); 833 break; 834 case ACTION_RETRY: 835 /* Retry the same command immediately */ 836 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 837 break; 838 case ACTION_DELAYED_RETRY: 839 /* Retry the same command after a delay */ 840 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 841 break; 842 } 843 } 844 845 /* 846 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 847 * new result that may suppress further error checking. Also modifies 848 * *blk_statp in some cases. 849 */ 850 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 851 blk_status_t *blk_statp) 852 { 853 bool sense_valid; 854 bool sense_current = true; /* false implies "deferred sense" */ 855 struct request *req = cmd->request; 856 struct scsi_sense_hdr sshdr; 857 858 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 859 if (sense_valid) 860 sense_current = !scsi_sense_is_deferred(&sshdr); 861 862 if (blk_rq_is_passthrough(req)) { 863 if (sense_valid) { 864 /* 865 * SG_IO wants current and deferred errors 866 */ 867 scsi_req(req)->sense_len = 868 min(8 + cmd->sense_buffer[7], 869 SCSI_SENSE_BUFFERSIZE); 870 } 871 if (sense_current) 872 *blk_statp = scsi_result_to_blk_status(cmd, result); 873 } else if (blk_rq_bytes(req) == 0 && sense_current) { 874 /* 875 * Flush commands do not transfers any data, and thus cannot use 876 * good_bytes != blk_rq_bytes(req) as the signal for an error. 877 * This sets *blk_statp explicitly for the problem case. 878 */ 879 *blk_statp = scsi_result_to_blk_status(cmd, result); 880 } 881 /* 882 * Recovered errors need reporting, but they're always treated as 883 * success, so fiddle the result code here. For passthrough requests 884 * we already took a copy of the original into sreq->result which 885 * is what gets returned to the user 886 */ 887 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 888 bool do_print = true; 889 /* 890 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 891 * skip print since caller wants ATA registers. Only occurs 892 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 893 */ 894 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 895 do_print = false; 896 else if (req->rq_flags & RQF_QUIET) 897 do_print = false; 898 if (do_print) 899 scsi_print_sense(cmd); 900 result = 0; 901 /* for passthrough, *blk_statp may be set */ 902 *blk_statp = BLK_STS_OK; 903 } 904 /* 905 * Another corner case: the SCSI status byte is non-zero but 'good'. 906 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 907 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 908 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 909 * intermediate statuses (both obsolete in SAM-4) as good. 910 */ 911 if (status_byte(result) && scsi_status_is_good(result)) { 912 result = 0; 913 *blk_statp = BLK_STS_OK; 914 } 915 return result; 916 } 917 918 /** 919 * scsi_io_completion - Completion processing for SCSI commands. 920 * @cmd: command that is finished. 921 * @good_bytes: number of processed bytes. 922 * 923 * We will finish off the specified number of sectors. If we are done, the 924 * command block will be released and the queue function will be goosed. If we 925 * are not done then we have to figure out what to do next: 926 * 927 * a) We can call scsi_io_completion_reprep(). The request will be 928 * unprepared and put back on the queue. Then a new command will 929 * be created for it. This should be used if we made forward 930 * progress, or if we want to switch from READ(10) to READ(6) for 931 * example. 932 * 933 * b) We can call scsi_io_completion_action(). The request will be 934 * put back on the queue and retried using the same command as 935 * before, possibly after a delay. 936 * 937 * c) We can call scsi_end_request() with blk_stat other than 938 * BLK_STS_OK, to fail the remainder of the request. 939 */ 940 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 941 { 942 int result = cmd->result; 943 struct request_queue *q = cmd->device->request_queue; 944 struct request *req = cmd->request; 945 blk_status_t blk_stat = BLK_STS_OK; 946 947 if (unlikely(result)) /* a nz result may or may not be an error */ 948 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 949 950 if (unlikely(blk_rq_is_passthrough(req))) { 951 /* 952 * scsi_result_to_blk_status may have reset the host_byte 953 */ 954 scsi_req(req)->result = cmd->result; 955 } 956 957 /* 958 * Next deal with any sectors which we were able to correctly 959 * handle. 960 */ 961 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 962 "%u sectors total, %d bytes done.\n", 963 blk_rq_sectors(req), good_bytes)); 964 965 /* 966 * Failed, zero length commands always need to drop down 967 * to retry code. Fast path should return in this block. 968 */ 969 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 970 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 971 return; /* no bytes remaining */ 972 } 973 974 /* Kill remainder if no retries. */ 975 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 976 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 977 WARN_ONCE(true, 978 "Bytes remaining after failed, no-retry command"); 979 return; 980 } 981 982 /* 983 * If there had been no error, but we have leftover bytes in the 984 * requeues just queue the command up again. 985 */ 986 if (likely(result == 0)) 987 scsi_io_completion_reprep(cmd, q); 988 else 989 scsi_io_completion_action(cmd, result); 990 } 991 992 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 993 struct request *rq) 994 { 995 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 996 !op_is_write(req_op(rq)) && 997 sdev->host->hostt->dma_need_drain(rq); 998 } 999 1000 /** 1001 * scsi_init_io - SCSI I/O initialization function. 1002 * @cmd: command descriptor we wish to initialize 1003 * 1004 * Returns: 1005 * * BLK_STS_OK - on success 1006 * * BLK_STS_RESOURCE - if the failure is retryable 1007 * * BLK_STS_IOERR - if the failure is fatal 1008 */ 1009 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1010 { 1011 struct scsi_device *sdev = cmd->device; 1012 struct request *rq = cmd->request; 1013 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1014 struct scatterlist *last_sg = NULL; 1015 blk_status_t ret; 1016 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1017 int count; 1018 1019 if (WARN_ON_ONCE(!nr_segs)) 1020 return BLK_STS_IOERR; 1021 1022 /* 1023 * Make sure there is space for the drain. The driver must adjust 1024 * max_hw_segments to be prepared for this. 1025 */ 1026 if (need_drain) 1027 nr_segs++; 1028 1029 /* 1030 * If sg table allocation fails, requeue request later. 1031 */ 1032 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1033 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1034 return BLK_STS_RESOURCE; 1035 1036 /* 1037 * Next, walk the list, and fill in the addresses and sizes of 1038 * each segment. 1039 */ 1040 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1041 1042 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1043 unsigned int pad_len = 1044 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1045 1046 last_sg->length += pad_len; 1047 cmd->extra_len += pad_len; 1048 } 1049 1050 if (need_drain) { 1051 sg_unmark_end(last_sg); 1052 last_sg = sg_next(last_sg); 1053 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1054 sg_mark_end(last_sg); 1055 1056 cmd->extra_len += sdev->dma_drain_len; 1057 count++; 1058 } 1059 1060 BUG_ON(count > cmd->sdb.table.nents); 1061 cmd->sdb.table.nents = count; 1062 cmd->sdb.length = blk_rq_payload_bytes(rq); 1063 1064 if (blk_integrity_rq(rq)) { 1065 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1066 int ivecs; 1067 1068 if (WARN_ON_ONCE(!prot_sdb)) { 1069 /* 1070 * This can happen if someone (e.g. multipath) 1071 * queues a command to a device on an adapter 1072 * that does not support DIX. 1073 */ 1074 ret = BLK_STS_IOERR; 1075 goto out_free_sgtables; 1076 } 1077 1078 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1079 1080 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1081 prot_sdb->table.sgl, 1082 SCSI_INLINE_PROT_SG_CNT)) { 1083 ret = BLK_STS_RESOURCE; 1084 goto out_free_sgtables; 1085 } 1086 1087 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1088 prot_sdb->table.sgl); 1089 BUG_ON(count > ivecs); 1090 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1091 1092 cmd->prot_sdb = prot_sdb; 1093 cmd->prot_sdb->table.nents = count; 1094 } 1095 1096 return BLK_STS_OK; 1097 out_free_sgtables: 1098 scsi_free_sgtables(cmd); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL(scsi_init_io); 1102 1103 /** 1104 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1105 * @rq: Request associated with the SCSI command to be initialized. 1106 * 1107 * This function initializes the members of struct scsi_cmnd that must be 1108 * initialized before request processing starts and that won't be 1109 * reinitialized if a SCSI command is requeued. 1110 * 1111 * Called from inside blk_get_request() for pass-through requests and from 1112 * inside scsi_init_command() for filesystem requests. 1113 */ 1114 static void scsi_initialize_rq(struct request *rq) 1115 { 1116 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1117 1118 scsi_req_init(&cmd->req); 1119 init_rcu_head(&cmd->rcu); 1120 cmd->jiffies_at_alloc = jiffies; 1121 cmd->retries = 0; 1122 } 1123 1124 /* 1125 * Only called when the request isn't completed by SCSI, and not freed by 1126 * SCSI 1127 */ 1128 static void scsi_cleanup_rq(struct request *rq) 1129 { 1130 if (rq->rq_flags & RQF_DONTPREP) { 1131 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1132 rq->rq_flags &= ~RQF_DONTPREP; 1133 } 1134 } 1135 1136 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1138 { 1139 void *buf = cmd->sense_buffer; 1140 void *prot = cmd->prot_sdb; 1141 struct request *rq = blk_mq_rq_from_pdu(cmd); 1142 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1143 unsigned long jiffies_at_alloc; 1144 int retries, to_clear; 1145 bool in_flight; 1146 1147 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1148 flags |= SCMD_INITIALIZED; 1149 scsi_initialize_rq(rq); 1150 } 1151 1152 jiffies_at_alloc = cmd->jiffies_at_alloc; 1153 retries = cmd->retries; 1154 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1155 /* 1156 * Zero out the cmd, except for the embedded scsi_request. Only clear 1157 * the driver-private command data if the LLD does not supply a 1158 * function to initialize that data. 1159 */ 1160 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1161 if (!dev->host->hostt->init_cmd_priv) 1162 to_clear += dev->host->hostt->cmd_size; 1163 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1164 1165 cmd->device = dev; 1166 cmd->sense_buffer = buf; 1167 cmd->prot_sdb = prot; 1168 cmd->flags = flags; 1169 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1170 cmd->jiffies_at_alloc = jiffies_at_alloc; 1171 cmd->retries = retries; 1172 if (in_flight) 1173 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1174 1175 } 1176 1177 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1178 struct request *req) 1179 { 1180 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1181 1182 /* 1183 * Passthrough requests may transfer data, in which case they must 1184 * a bio attached to them. Or they might contain a SCSI command 1185 * that does not transfer data, in which case they may optionally 1186 * submit a request without an attached bio. 1187 */ 1188 if (req->bio) { 1189 blk_status_t ret = scsi_init_io(cmd); 1190 if (unlikely(ret != BLK_STS_OK)) 1191 return ret; 1192 } else { 1193 BUG_ON(blk_rq_bytes(req)); 1194 1195 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1196 } 1197 1198 cmd->cmd_len = scsi_req(req)->cmd_len; 1199 cmd->cmnd = scsi_req(req)->cmd; 1200 cmd->transfersize = blk_rq_bytes(req); 1201 cmd->allowed = scsi_req(req)->retries; 1202 return BLK_STS_OK; 1203 } 1204 1205 /* 1206 * Setup a normal block command. These are simple request from filesystems 1207 * that still need to be translated to SCSI CDBs from the ULD. 1208 */ 1209 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1210 struct request *req) 1211 { 1212 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1213 1214 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1215 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1216 if (ret != BLK_STS_OK) 1217 return ret; 1218 } 1219 1220 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1221 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1222 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1223 } 1224 1225 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1226 struct request *req) 1227 { 1228 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1229 blk_status_t ret; 1230 1231 if (!blk_rq_bytes(req)) 1232 cmd->sc_data_direction = DMA_NONE; 1233 else if (rq_data_dir(req) == WRITE) 1234 cmd->sc_data_direction = DMA_TO_DEVICE; 1235 else 1236 cmd->sc_data_direction = DMA_FROM_DEVICE; 1237 1238 if (blk_rq_is_scsi(req)) 1239 ret = scsi_setup_scsi_cmnd(sdev, req); 1240 else 1241 ret = scsi_setup_fs_cmnd(sdev, req); 1242 1243 if (ret != BLK_STS_OK) 1244 scsi_free_sgtables(cmd); 1245 1246 return ret; 1247 } 1248 1249 static blk_status_t 1250 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1251 { 1252 switch (sdev->sdev_state) { 1253 case SDEV_OFFLINE: 1254 case SDEV_TRANSPORT_OFFLINE: 1255 /* 1256 * If the device is offline we refuse to process any 1257 * commands. The device must be brought online 1258 * before trying any recovery commands. 1259 */ 1260 if (!sdev->offline_already) { 1261 sdev->offline_already = true; 1262 sdev_printk(KERN_ERR, sdev, 1263 "rejecting I/O to offline device\n"); 1264 } 1265 return BLK_STS_IOERR; 1266 case SDEV_DEL: 1267 /* 1268 * If the device is fully deleted, we refuse to 1269 * process any commands as well. 1270 */ 1271 sdev_printk(KERN_ERR, sdev, 1272 "rejecting I/O to dead device\n"); 1273 return BLK_STS_IOERR; 1274 case SDEV_BLOCK: 1275 case SDEV_CREATED_BLOCK: 1276 return BLK_STS_RESOURCE; 1277 case SDEV_QUIESCE: 1278 /* 1279 * If the devices is blocked we defer normal commands. 1280 */ 1281 if (req && !(req->rq_flags & RQF_PREEMPT)) 1282 return BLK_STS_RESOURCE; 1283 return BLK_STS_OK; 1284 default: 1285 /* 1286 * For any other not fully online state we only allow 1287 * special commands. In particular any user initiated 1288 * command is not allowed. 1289 */ 1290 if (req && !(req->rq_flags & RQF_PREEMPT)) 1291 return BLK_STS_IOERR; 1292 return BLK_STS_OK; 1293 } 1294 } 1295 1296 /* 1297 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1298 * return 0. 1299 * 1300 * Called with the queue_lock held. 1301 */ 1302 static inline int scsi_dev_queue_ready(struct request_queue *q, 1303 struct scsi_device *sdev) 1304 { 1305 unsigned int busy; 1306 1307 busy = atomic_inc_return(&sdev->device_busy) - 1; 1308 if (atomic_read(&sdev->device_blocked)) { 1309 if (busy) 1310 goto out_dec; 1311 1312 /* 1313 * unblock after device_blocked iterates to zero 1314 */ 1315 if (atomic_dec_return(&sdev->device_blocked) > 0) 1316 goto out_dec; 1317 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1318 "unblocking device at zero depth\n")); 1319 } 1320 1321 if (busy >= sdev->queue_depth) 1322 goto out_dec; 1323 1324 return 1; 1325 out_dec: 1326 atomic_dec(&sdev->device_busy); 1327 return 0; 1328 } 1329 1330 /* 1331 * scsi_target_queue_ready: checks if there we can send commands to target 1332 * @sdev: scsi device on starget to check. 1333 */ 1334 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1335 struct scsi_device *sdev) 1336 { 1337 struct scsi_target *starget = scsi_target(sdev); 1338 unsigned int busy; 1339 1340 if (starget->single_lun) { 1341 spin_lock_irq(shost->host_lock); 1342 if (starget->starget_sdev_user && 1343 starget->starget_sdev_user != sdev) { 1344 spin_unlock_irq(shost->host_lock); 1345 return 0; 1346 } 1347 starget->starget_sdev_user = sdev; 1348 spin_unlock_irq(shost->host_lock); 1349 } 1350 1351 if (starget->can_queue <= 0) 1352 return 1; 1353 1354 busy = atomic_inc_return(&starget->target_busy) - 1; 1355 if (atomic_read(&starget->target_blocked) > 0) { 1356 if (busy) 1357 goto starved; 1358 1359 /* 1360 * unblock after target_blocked iterates to zero 1361 */ 1362 if (atomic_dec_return(&starget->target_blocked) > 0) 1363 goto out_dec; 1364 1365 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1366 "unblocking target at zero depth\n")); 1367 } 1368 1369 if (busy >= starget->can_queue) 1370 goto starved; 1371 1372 return 1; 1373 1374 starved: 1375 spin_lock_irq(shost->host_lock); 1376 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1377 spin_unlock_irq(shost->host_lock); 1378 out_dec: 1379 if (starget->can_queue > 0) 1380 atomic_dec(&starget->target_busy); 1381 return 0; 1382 } 1383 1384 /* 1385 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1386 * return 0. We must end up running the queue again whenever 0 is 1387 * returned, else IO can hang. 1388 */ 1389 static inline int scsi_host_queue_ready(struct request_queue *q, 1390 struct Scsi_Host *shost, 1391 struct scsi_device *sdev, 1392 struct scsi_cmnd *cmd) 1393 { 1394 if (scsi_host_in_recovery(shost)) 1395 return 0; 1396 1397 if (atomic_read(&shost->host_blocked) > 0) { 1398 if (scsi_host_busy(shost) > 0) 1399 goto starved; 1400 1401 /* 1402 * unblock after host_blocked iterates to zero 1403 */ 1404 if (atomic_dec_return(&shost->host_blocked) > 0) 1405 goto out_dec; 1406 1407 SCSI_LOG_MLQUEUE(3, 1408 shost_printk(KERN_INFO, shost, 1409 "unblocking host at zero depth\n")); 1410 } 1411 1412 if (shost->host_self_blocked) 1413 goto starved; 1414 1415 /* We're OK to process the command, so we can't be starved */ 1416 if (!list_empty(&sdev->starved_entry)) { 1417 spin_lock_irq(shost->host_lock); 1418 if (!list_empty(&sdev->starved_entry)) 1419 list_del_init(&sdev->starved_entry); 1420 spin_unlock_irq(shost->host_lock); 1421 } 1422 1423 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1424 1425 return 1; 1426 1427 starved: 1428 spin_lock_irq(shost->host_lock); 1429 if (list_empty(&sdev->starved_entry)) 1430 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1431 spin_unlock_irq(shost->host_lock); 1432 out_dec: 1433 scsi_dec_host_busy(shost, cmd); 1434 return 0; 1435 } 1436 1437 /* 1438 * Busy state exporting function for request stacking drivers. 1439 * 1440 * For efficiency, no lock is taken to check the busy state of 1441 * shost/starget/sdev, since the returned value is not guaranteed and 1442 * may be changed after request stacking drivers call the function, 1443 * regardless of taking lock or not. 1444 * 1445 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1446 * needs to return 'not busy'. Otherwise, request stacking drivers 1447 * may hold requests forever. 1448 */ 1449 static bool scsi_mq_lld_busy(struct request_queue *q) 1450 { 1451 struct scsi_device *sdev = q->queuedata; 1452 struct Scsi_Host *shost; 1453 1454 if (blk_queue_dying(q)) 1455 return false; 1456 1457 shost = sdev->host; 1458 1459 /* 1460 * Ignore host/starget busy state. 1461 * Since block layer does not have a concept of fairness across 1462 * multiple queues, congestion of host/starget needs to be handled 1463 * in SCSI layer. 1464 */ 1465 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1466 return true; 1467 1468 return false; 1469 } 1470 1471 static void scsi_softirq_done(struct request *rq) 1472 { 1473 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1474 int disposition; 1475 1476 INIT_LIST_HEAD(&cmd->eh_entry); 1477 1478 atomic_inc(&cmd->device->iodone_cnt); 1479 if (cmd->result) 1480 atomic_inc(&cmd->device->ioerr_cnt); 1481 1482 disposition = scsi_decide_disposition(cmd); 1483 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1484 disposition = SUCCESS; 1485 1486 scsi_log_completion(cmd, disposition); 1487 1488 switch (disposition) { 1489 case SUCCESS: 1490 scsi_finish_command(cmd); 1491 break; 1492 case NEEDS_RETRY: 1493 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1494 break; 1495 case ADD_TO_MLQUEUE: 1496 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1497 break; 1498 default: 1499 scsi_eh_scmd_add(cmd); 1500 break; 1501 } 1502 } 1503 1504 /** 1505 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1506 * @cmd: command block we are dispatching. 1507 * 1508 * Return: nonzero return request was rejected and device's queue needs to be 1509 * plugged. 1510 */ 1511 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1512 { 1513 struct Scsi_Host *host = cmd->device->host; 1514 int rtn = 0; 1515 1516 atomic_inc(&cmd->device->iorequest_cnt); 1517 1518 /* check if the device is still usable */ 1519 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1520 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1521 * returns an immediate error upwards, and signals 1522 * that the device is no longer present */ 1523 cmd->result = DID_NO_CONNECT << 16; 1524 goto done; 1525 } 1526 1527 /* Check to see if the scsi lld made this device blocked. */ 1528 if (unlikely(scsi_device_blocked(cmd->device))) { 1529 /* 1530 * in blocked state, the command is just put back on 1531 * the device queue. The suspend state has already 1532 * blocked the queue so future requests should not 1533 * occur until the device transitions out of the 1534 * suspend state. 1535 */ 1536 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1537 "queuecommand : device blocked\n")); 1538 return SCSI_MLQUEUE_DEVICE_BUSY; 1539 } 1540 1541 /* Store the LUN value in cmnd, if needed. */ 1542 if (cmd->device->lun_in_cdb) 1543 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1544 (cmd->device->lun << 5 & 0xe0); 1545 1546 scsi_log_send(cmd); 1547 1548 /* 1549 * Before we queue this command, check if the command 1550 * length exceeds what the host adapter can handle. 1551 */ 1552 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1553 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1554 "queuecommand : command too long. " 1555 "cdb_size=%d host->max_cmd_len=%d\n", 1556 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1557 cmd->result = (DID_ABORT << 16); 1558 goto done; 1559 } 1560 1561 if (unlikely(host->shost_state == SHOST_DEL)) { 1562 cmd->result = (DID_NO_CONNECT << 16); 1563 goto done; 1564 1565 } 1566 1567 trace_scsi_dispatch_cmd_start(cmd); 1568 rtn = host->hostt->queuecommand(host, cmd); 1569 if (rtn) { 1570 trace_scsi_dispatch_cmd_error(cmd, rtn); 1571 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1572 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1573 rtn = SCSI_MLQUEUE_HOST_BUSY; 1574 1575 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1576 "queuecommand : request rejected\n")); 1577 } 1578 1579 return rtn; 1580 done: 1581 cmd->scsi_done(cmd); 1582 return 0; 1583 } 1584 1585 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1586 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1587 { 1588 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1589 sizeof(struct scatterlist); 1590 } 1591 1592 static blk_status_t scsi_mq_prep_fn(struct request *req) 1593 { 1594 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1595 struct scsi_device *sdev = req->q->queuedata; 1596 struct Scsi_Host *shost = sdev->host; 1597 struct scatterlist *sg; 1598 1599 scsi_init_command(sdev, cmd); 1600 1601 cmd->request = req; 1602 cmd->tag = req->tag; 1603 cmd->prot_op = SCSI_PROT_NORMAL; 1604 1605 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1606 cmd->sdb.table.sgl = sg; 1607 1608 if (scsi_host_get_prot(shost)) { 1609 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1610 1611 cmd->prot_sdb->table.sgl = 1612 (struct scatterlist *)(cmd->prot_sdb + 1); 1613 } 1614 1615 blk_mq_start_request(req); 1616 1617 return scsi_setup_cmnd(sdev, req); 1618 } 1619 1620 static void scsi_mq_done(struct scsi_cmnd *cmd) 1621 { 1622 if (unlikely(blk_should_fake_timeout(cmd->request->q))) 1623 return; 1624 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1625 return; 1626 trace_scsi_dispatch_cmd_done(cmd); 1627 blk_mq_complete_request(cmd->request); 1628 } 1629 1630 static void scsi_mq_put_budget(struct request_queue *q) 1631 { 1632 struct scsi_device *sdev = q->queuedata; 1633 1634 atomic_dec(&sdev->device_busy); 1635 } 1636 1637 static bool scsi_mq_get_budget(struct request_queue *q) 1638 { 1639 struct scsi_device *sdev = q->queuedata; 1640 1641 if (scsi_dev_queue_ready(q, sdev)) 1642 return true; 1643 1644 atomic_inc(&sdev->restarts); 1645 1646 /* 1647 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1648 * .restarts must be incremented before .device_busy is read because the 1649 * code in scsi_run_queue_async() depends on the order of these operations. 1650 */ 1651 smp_mb__after_atomic(); 1652 1653 /* 1654 * If all in-flight requests originated from this LUN are completed 1655 * before reading .device_busy, sdev->device_busy will be observed as 1656 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1657 * soon. Otherwise, completion of one of these requests will observe 1658 * the .restarts flag, and the request queue will be run for handling 1659 * this request, see scsi_end_request(). 1660 */ 1661 if (unlikely(atomic_read(&sdev->device_busy) == 0 && 1662 !scsi_device_blocked(sdev))) 1663 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1664 return false; 1665 } 1666 1667 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1668 const struct blk_mq_queue_data *bd) 1669 { 1670 struct request *req = bd->rq; 1671 struct request_queue *q = req->q; 1672 struct scsi_device *sdev = q->queuedata; 1673 struct Scsi_Host *shost = sdev->host; 1674 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1675 blk_status_t ret; 1676 int reason; 1677 1678 /* 1679 * If the device is not in running state we will reject some or all 1680 * commands. 1681 */ 1682 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1683 ret = scsi_prep_state_check(sdev, req); 1684 if (ret != BLK_STS_OK) 1685 goto out_put_budget; 1686 } 1687 1688 ret = BLK_STS_RESOURCE; 1689 if (!scsi_target_queue_ready(shost, sdev)) 1690 goto out_put_budget; 1691 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1692 goto out_dec_target_busy; 1693 1694 if (!(req->rq_flags & RQF_DONTPREP)) { 1695 ret = scsi_mq_prep_fn(req); 1696 if (ret != BLK_STS_OK) 1697 goto out_dec_host_busy; 1698 req->rq_flags |= RQF_DONTPREP; 1699 } else { 1700 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1701 blk_mq_start_request(req); 1702 } 1703 1704 cmd->flags &= SCMD_PRESERVED_FLAGS; 1705 if (sdev->simple_tags) 1706 cmd->flags |= SCMD_TAGGED; 1707 if (bd->last) 1708 cmd->flags |= SCMD_LAST; 1709 1710 scsi_init_cmd_errh(cmd); 1711 cmd->scsi_done = scsi_mq_done; 1712 1713 reason = scsi_dispatch_cmd(cmd); 1714 if (reason) { 1715 scsi_set_blocked(cmd, reason); 1716 ret = BLK_STS_RESOURCE; 1717 goto out_dec_host_busy; 1718 } 1719 1720 return BLK_STS_OK; 1721 1722 out_dec_host_busy: 1723 scsi_dec_host_busy(shost, cmd); 1724 out_dec_target_busy: 1725 if (scsi_target(sdev)->can_queue > 0) 1726 atomic_dec(&scsi_target(sdev)->target_busy); 1727 out_put_budget: 1728 scsi_mq_put_budget(q); 1729 switch (ret) { 1730 case BLK_STS_OK: 1731 break; 1732 case BLK_STS_RESOURCE: 1733 case BLK_STS_ZONE_RESOURCE: 1734 if (atomic_read(&sdev->device_busy) || 1735 scsi_device_blocked(sdev)) 1736 ret = BLK_STS_DEV_RESOURCE; 1737 break; 1738 default: 1739 if (unlikely(!scsi_device_online(sdev))) 1740 scsi_req(req)->result = DID_NO_CONNECT << 16; 1741 else 1742 scsi_req(req)->result = DID_ERROR << 16; 1743 /* 1744 * Make sure to release all allocated resources when 1745 * we hit an error, as we will never see this command 1746 * again. 1747 */ 1748 if (req->rq_flags & RQF_DONTPREP) 1749 scsi_mq_uninit_cmd(cmd); 1750 scsi_run_queue_async(sdev); 1751 break; 1752 } 1753 return ret; 1754 } 1755 1756 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1757 bool reserved) 1758 { 1759 if (reserved) 1760 return BLK_EH_RESET_TIMER; 1761 return scsi_times_out(req); 1762 } 1763 1764 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1765 unsigned int hctx_idx, unsigned int numa_node) 1766 { 1767 struct Scsi_Host *shost = set->driver_data; 1768 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1769 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1770 struct scatterlist *sg; 1771 int ret = 0; 1772 1773 if (unchecked_isa_dma) 1774 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1775 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1776 GFP_KERNEL, numa_node); 1777 if (!cmd->sense_buffer) 1778 return -ENOMEM; 1779 cmd->req.sense = cmd->sense_buffer; 1780 1781 if (scsi_host_get_prot(shost)) { 1782 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1783 shost->hostt->cmd_size; 1784 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1785 } 1786 1787 if (shost->hostt->init_cmd_priv) { 1788 ret = shost->hostt->init_cmd_priv(shost, cmd); 1789 if (ret < 0) 1790 scsi_free_sense_buffer(unchecked_isa_dma, 1791 cmd->sense_buffer); 1792 } 1793 1794 return ret; 1795 } 1796 1797 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1798 unsigned int hctx_idx) 1799 { 1800 struct Scsi_Host *shost = set->driver_data; 1801 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1802 1803 if (shost->hostt->exit_cmd_priv) 1804 shost->hostt->exit_cmd_priv(shost, cmd); 1805 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1806 cmd->sense_buffer); 1807 } 1808 1809 static int scsi_map_queues(struct blk_mq_tag_set *set) 1810 { 1811 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1812 1813 if (shost->hostt->map_queues) 1814 return shost->hostt->map_queues(shost); 1815 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1816 } 1817 1818 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1819 { 1820 struct device *dev = shost->dma_dev; 1821 1822 /* 1823 * this limit is imposed by hardware restrictions 1824 */ 1825 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1826 SG_MAX_SEGMENTS)); 1827 1828 if (scsi_host_prot_dma(shost)) { 1829 shost->sg_prot_tablesize = 1830 min_not_zero(shost->sg_prot_tablesize, 1831 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1832 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1833 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1834 } 1835 1836 if (dev->dma_mask) { 1837 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1838 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1839 } 1840 blk_queue_max_hw_sectors(q, shost->max_sectors); 1841 if (shost->unchecked_isa_dma) 1842 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1843 blk_queue_segment_boundary(q, shost->dma_boundary); 1844 dma_set_seg_boundary(dev, shost->dma_boundary); 1845 1846 blk_queue_max_segment_size(q, shost->max_segment_size); 1847 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1848 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1849 1850 /* 1851 * Set a reasonable default alignment: The larger of 32-byte (dword), 1852 * which is a common minimum for HBAs, and the minimum DMA alignment, 1853 * which is set by the platform. 1854 * 1855 * Devices that require a bigger alignment can increase it later. 1856 */ 1857 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1858 } 1859 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1860 1861 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1862 .get_budget = scsi_mq_get_budget, 1863 .put_budget = scsi_mq_put_budget, 1864 .queue_rq = scsi_queue_rq, 1865 .complete = scsi_softirq_done, 1866 .timeout = scsi_timeout, 1867 #ifdef CONFIG_BLK_DEBUG_FS 1868 .show_rq = scsi_show_rq, 1869 #endif 1870 .init_request = scsi_mq_init_request, 1871 .exit_request = scsi_mq_exit_request, 1872 .initialize_rq_fn = scsi_initialize_rq, 1873 .cleanup_rq = scsi_cleanup_rq, 1874 .busy = scsi_mq_lld_busy, 1875 .map_queues = scsi_map_queues, 1876 }; 1877 1878 1879 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1880 { 1881 struct request_queue *q = hctx->queue; 1882 struct scsi_device *sdev = q->queuedata; 1883 struct Scsi_Host *shost = sdev->host; 1884 1885 shost->hostt->commit_rqs(shost, hctx->queue_num); 1886 } 1887 1888 static const struct blk_mq_ops scsi_mq_ops = { 1889 .get_budget = scsi_mq_get_budget, 1890 .put_budget = scsi_mq_put_budget, 1891 .queue_rq = scsi_queue_rq, 1892 .commit_rqs = scsi_commit_rqs, 1893 .complete = scsi_softirq_done, 1894 .timeout = scsi_timeout, 1895 #ifdef CONFIG_BLK_DEBUG_FS 1896 .show_rq = scsi_show_rq, 1897 #endif 1898 .init_request = scsi_mq_init_request, 1899 .exit_request = scsi_mq_exit_request, 1900 .initialize_rq_fn = scsi_initialize_rq, 1901 .cleanup_rq = scsi_cleanup_rq, 1902 .busy = scsi_mq_lld_busy, 1903 .map_queues = scsi_map_queues, 1904 }; 1905 1906 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1907 { 1908 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1909 if (IS_ERR(sdev->request_queue)) 1910 return NULL; 1911 1912 sdev->request_queue->queuedata = sdev; 1913 __scsi_init_queue(sdev->host, sdev->request_queue); 1914 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1915 return sdev->request_queue; 1916 } 1917 1918 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1919 { 1920 unsigned int cmd_size, sgl_size; 1921 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1922 1923 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1924 scsi_mq_inline_sgl_size(shost)); 1925 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1926 if (scsi_host_get_prot(shost)) 1927 cmd_size += sizeof(struct scsi_data_buffer) + 1928 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1929 1930 memset(tag_set, 0, sizeof(*tag_set)); 1931 if (shost->hostt->commit_rqs) 1932 tag_set->ops = &scsi_mq_ops; 1933 else 1934 tag_set->ops = &scsi_mq_ops_no_commit; 1935 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1936 tag_set->queue_depth = shost->can_queue; 1937 tag_set->cmd_size = cmd_size; 1938 tag_set->numa_node = NUMA_NO_NODE; 1939 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1940 tag_set->flags |= 1941 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1942 tag_set->driver_data = shost; 1943 if (shost->host_tagset) 1944 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1945 1946 return blk_mq_alloc_tag_set(tag_set); 1947 } 1948 1949 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1950 { 1951 blk_mq_free_tag_set(&shost->tag_set); 1952 } 1953 1954 /** 1955 * scsi_device_from_queue - return sdev associated with a request_queue 1956 * @q: The request queue to return the sdev from 1957 * 1958 * Return the sdev associated with a request queue or NULL if the 1959 * request_queue does not reference a SCSI device. 1960 */ 1961 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1962 { 1963 struct scsi_device *sdev = NULL; 1964 1965 if (q->mq_ops == &scsi_mq_ops_no_commit || 1966 q->mq_ops == &scsi_mq_ops) 1967 sdev = q->queuedata; 1968 if (!sdev || !get_device(&sdev->sdev_gendev)) 1969 sdev = NULL; 1970 1971 return sdev; 1972 } 1973 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1974 1975 /** 1976 * scsi_block_requests - Utility function used by low-level drivers to prevent 1977 * further commands from being queued to the device. 1978 * @shost: host in question 1979 * 1980 * There is no timer nor any other means by which the requests get unblocked 1981 * other than the low-level driver calling scsi_unblock_requests(). 1982 */ 1983 void scsi_block_requests(struct Scsi_Host *shost) 1984 { 1985 shost->host_self_blocked = 1; 1986 } 1987 EXPORT_SYMBOL(scsi_block_requests); 1988 1989 /** 1990 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1991 * further commands to be queued to the device. 1992 * @shost: host in question 1993 * 1994 * There is no timer nor any other means by which the requests get unblocked 1995 * other than the low-level driver calling scsi_unblock_requests(). This is done 1996 * as an API function so that changes to the internals of the scsi mid-layer 1997 * won't require wholesale changes to drivers that use this feature. 1998 */ 1999 void scsi_unblock_requests(struct Scsi_Host *shost) 2000 { 2001 shost->host_self_blocked = 0; 2002 scsi_run_host_queues(shost); 2003 } 2004 EXPORT_SYMBOL(scsi_unblock_requests); 2005 2006 void scsi_exit_queue(void) 2007 { 2008 kmem_cache_destroy(scsi_sense_cache); 2009 kmem_cache_destroy(scsi_sense_isadma_cache); 2010 } 2011 2012 /** 2013 * scsi_mode_select - issue a mode select 2014 * @sdev: SCSI device to be queried 2015 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2016 * @sp: Save page bit (0 == don't save, 1 == save) 2017 * @modepage: mode page being requested 2018 * @buffer: request buffer (may not be smaller than eight bytes) 2019 * @len: length of request buffer. 2020 * @timeout: command timeout 2021 * @retries: number of retries before failing 2022 * @data: returns a structure abstracting the mode header data 2023 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2024 * must be SCSI_SENSE_BUFFERSIZE big. 2025 * 2026 * Returns zero if successful; negative error number or scsi 2027 * status on error 2028 * 2029 */ 2030 int 2031 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2032 unsigned char *buffer, int len, int timeout, int retries, 2033 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2034 { 2035 unsigned char cmd[10]; 2036 unsigned char *real_buffer; 2037 int ret; 2038 2039 memset(cmd, 0, sizeof(cmd)); 2040 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2041 2042 if (sdev->use_10_for_ms) { 2043 if (len > 65535) 2044 return -EINVAL; 2045 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2046 if (!real_buffer) 2047 return -ENOMEM; 2048 memcpy(real_buffer + 8, buffer, len); 2049 len += 8; 2050 real_buffer[0] = 0; 2051 real_buffer[1] = 0; 2052 real_buffer[2] = data->medium_type; 2053 real_buffer[3] = data->device_specific; 2054 real_buffer[4] = data->longlba ? 0x01 : 0; 2055 real_buffer[5] = 0; 2056 real_buffer[6] = data->block_descriptor_length >> 8; 2057 real_buffer[7] = data->block_descriptor_length; 2058 2059 cmd[0] = MODE_SELECT_10; 2060 cmd[7] = len >> 8; 2061 cmd[8] = len; 2062 } else { 2063 if (len > 255 || data->block_descriptor_length > 255 || 2064 data->longlba) 2065 return -EINVAL; 2066 2067 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2068 if (!real_buffer) 2069 return -ENOMEM; 2070 memcpy(real_buffer + 4, buffer, len); 2071 len += 4; 2072 real_buffer[0] = 0; 2073 real_buffer[1] = data->medium_type; 2074 real_buffer[2] = data->device_specific; 2075 real_buffer[3] = data->block_descriptor_length; 2076 2077 cmd[0] = MODE_SELECT; 2078 cmd[4] = len; 2079 } 2080 2081 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2082 sshdr, timeout, retries, NULL); 2083 kfree(real_buffer); 2084 return ret; 2085 } 2086 EXPORT_SYMBOL_GPL(scsi_mode_select); 2087 2088 /** 2089 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2090 * @sdev: SCSI device to be queried 2091 * @dbd: set if mode sense will allow block descriptors to be returned 2092 * @modepage: mode page being requested 2093 * @buffer: request buffer (may not be smaller than eight bytes) 2094 * @len: length of request buffer. 2095 * @timeout: command timeout 2096 * @retries: number of retries before failing 2097 * @data: returns a structure abstracting the mode header data 2098 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2099 * must be SCSI_SENSE_BUFFERSIZE big. 2100 * 2101 * Returns zero if unsuccessful, or the header offset (either 4 2102 * or 8 depending on whether a six or ten byte command was 2103 * issued) if successful. 2104 */ 2105 int 2106 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2107 unsigned char *buffer, int len, int timeout, int retries, 2108 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2109 { 2110 unsigned char cmd[12]; 2111 int use_10_for_ms; 2112 int header_length; 2113 int result, retry_count = retries; 2114 struct scsi_sense_hdr my_sshdr; 2115 2116 memset(data, 0, sizeof(*data)); 2117 memset(&cmd[0], 0, 12); 2118 2119 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2120 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2121 cmd[2] = modepage; 2122 2123 /* caller might not be interested in sense, but we need it */ 2124 if (!sshdr) 2125 sshdr = &my_sshdr; 2126 2127 retry: 2128 use_10_for_ms = sdev->use_10_for_ms; 2129 2130 if (use_10_for_ms) { 2131 if (len < 8) 2132 len = 8; 2133 2134 cmd[0] = MODE_SENSE_10; 2135 cmd[8] = len; 2136 header_length = 8; 2137 } else { 2138 if (len < 4) 2139 len = 4; 2140 2141 cmd[0] = MODE_SENSE; 2142 cmd[4] = len; 2143 header_length = 4; 2144 } 2145 2146 memset(buffer, 0, len); 2147 2148 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2149 sshdr, timeout, retries, NULL); 2150 2151 /* This code looks awful: what it's doing is making sure an 2152 * ILLEGAL REQUEST sense return identifies the actual command 2153 * byte as the problem. MODE_SENSE commands can return 2154 * ILLEGAL REQUEST if the code page isn't supported */ 2155 2156 if (use_10_for_ms && !scsi_status_is_good(result) && 2157 driver_byte(result) == DRIVER_SENSE) { 2158 if (scsi_sense_valid(sshdr)) { 2159 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2160 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2161 /* 2162 * Invalid command operation code 2163 */ 2164 sdev->use_10_for_ms = 0; 2165 goto retry; 2166 } 2167 } 2168 } 2169 2170 if (scsi_status_is_good(result)) { 2171 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2172 (modepage == 6 || modepage == 8))) { 2173 /* Initio breakage? */ 2174 header_length = 0; 2175 data->length = 13; 2176 data->medium_type = 0; 2177 data->device_specific = 0; 2178 data->longlba = 0; 2179 data->block_descriptor_length = 0; 2180 } else if (use_10_for_ms) { 2181 data->length = buffer[0]*256 + buffer[1] + 2; 2182 data->medium_type = buffer[2]; 2183 data->device_specific = buffer[3]; 2184 data->longlba = buffer[4] & 0x01; 2185 data->block_descriptor_length = buffer[6]*256 2186 + buffer[7]; 2187 } else { 2188 data->length = buffer[0] + 1; 2189 data->medium_type = buffer[1]; 2190 data->device_specific = buffer[2]; 2191 data->block_descriptor_length = buffer[3]; 2192 } 2193 data->header_length = header_length; 2194 } else if ((status_byte(result) == CHECK_CONDITION) && 2195 scsi_sense_valid(sshdr) && 2196 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2197 retry_count--; 2198 goto retry; 2199 } 2200 2201 return result; 2202 } 2203 EXPORT_SYMBOL(scsi_mode_sense); 2204 2205 /** 2206 * scsi_test_unit_ready - test if unit is ready 2207 * @sdev: scsi device to change the state of. 2208 * @timeout: command timeout 2209 * @retries: number of retries before failing 2210 * @sshdr: outpout pointer for decoded sense information. 2211 * 2212 * Returns zero if unsuccessful or an error if TUR failed. For 2213 * removable media, UNIT_ATTENTION sets ->changed flag. 2214 **/ 2215 int 2216 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2217 struct scsi_sense_hdr *sshdr) 2218 { 2219 char cmd[] = { 2220 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2221 }; 2222 int result; 2223 2224 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2225 do { 2226 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2227 timeout, 1, NULL); 2228 if (sdev->removable && scsi_sense_valid(sshdr) && 2229 sshdr->sense_key == UNIT_ATTENTION) 2230 sdev->changed = 1; 2231 } while (scsi_sense_valid(sshdr) && 2232 sshdr->sense_key == UNIT_ATTENTION && --retries); 2233 2234 return result; 2235 } 2236 EXPORT_SYMBOL(scsi_test_unit_ready); 2237 2238 /** 2239 * scsi_device_set_state - Take the given device through the device state model. 2240 * @sdev: scsi device to change the state of. 2241 * @state: state to change to. 2242 * 2243 * Returns zero if successful or an error if the requested 2244 * transition is illegal. 2245 */ 2246 int 2247 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2248 { 2249 enum scsi_device_state oldstate = sdev->sdev_state; 2250 2251 if (state == oldstate) 2252 return 0; 2253 2254 switch (state) { 2255 case SDEV_CREATED: 2256 switch (oldstate) { 2257 case SDEV_CREATED_BLOCK: 2258 break; 2259 default: 2260 goto illegal; 2261 } 2262 break; 2263 2264 case SDEV_RUNNING: 2265 switch (oldstate) { 2266 case SDEV_CREATED: 2267 case SDEV_OFFLINE: 2268 case SDEV_TRANSPORT_OFFLINE: 2269 case SDEV_QUIESCE: 2270 case SDEV_BLOCK: 2271 break; 2272 default: 2273 goto illegal; 2274 } 2275 break; 2276 2277 case SDEV_QUIESCE: 2278 switch (oldstate) { 2279 case SDEV_RUNNING: 2280 case SDEV_OFFLINE: 2281 case SDEV_TRANSPORT_OFFLINE: 2282 break; 2283 default: 2284 goto illegal; 2285 } 2286 break; 2287 2288 case SDEV_OFFLINE: 2289 case SDEV_TRANSPORT_OFFLINE: 2290 switch (oldstate) { 2291 case SDEV_CREATED: 2292 case SDEV_RUNNING: 2293 case SDEV_QUIESCE: 2294 case SDEV_BLOCK: 2295 break; 2296 default: 2297 goto illegal; 2298 } 2299 break; 2300 2301 case SDEV_BLOCK: 2302 switch (oldstate) { 2303 case SDEV_RUNNING: 2304 case SDEV_CREATED_BLOCK: 2305 case SDEV_QUIESCE: 2306 case SDEV_OFFLINE: 2307 break; 2308 default: 2309 goto illegal; 2310 } 2311 break; 2312 2313 case SDEV_CREATED_BLOCK: 2314 switch (oldstate) { 2315 case SDEV_CREATED: 2316 break; 2317 default: 2318 goto illegal; 2319 } 2320 break; 2321 2322 case SDEV_CANCEL: 2323 switch (oldstate) { 2324 case SDEV_CREATED: 2325 case SDEV_RUNNING: 2326 case SDEV_QUIESCE: 2327 case SDEV_OFFLINE: 2328 case SDEV_TRANSPORT_OFFLINE: 2329 break; 2330 default: 2331 goto illegal; 2332 } 2333 break; 2334 2335 case SDEV_DEL: 2336 switch (oldstate) { 2337 case SDEV_CREATED: 2338 case SDEV_RUNNING: 2339 case SDEV_OFFLINE: 2340 case SDEV_TRANSPORT_OFFLINE: 2341 case SDEV_CANCEL: 2342 case SDEV_BLOCK: 2343 case SDEV_CREATED_BLOCK: 2344 break; 2345 default: 2346 goto illegal; 2347 } 2348 break; 2349 2350 } 2351 sdev->offline_already = false; 2352 sdev->sdev_state = state; 2353 return 0; 2354 2355 illegal: 2356 SCSI_LOG_ERROR_RECOVERY(1, 2357 sdev_printk(KERN_ERR, sdev, 2358 "Illegal state transition %s->%s", 2359 scsi_device_state_name(oldstate), 2360 scsi_device_state_name(state)) 2361 ); 2362 return -EINVAL; 2363 } 2364 EXPORT_SYMBOL(scsi_device_set_state); 2365 2366 /** 2367 * sdev_evt_emit - emit a single SCSI device uevent 2368 * @sdev: associated SCSI device 2369 * @evt: event to emit 2370 * 2371 * Send a single uevent (scsi_event) to the associated scsi_device. 2372 */ 2373 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2374 { 2375 int idx = 0; 2376 char *envp[3]; 2377 2378 switch (evt->evt_type) { 2379 case SDEV_EVT_MEDIA_CHANGE: 2380 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2381 break; 2382 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2383 scsi_rescan_device(&sdev->sdev_gendev); 2384 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2385 break; 2386 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2387 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2388 break; 2389 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2390 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2391 break; 2392 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2393 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2394 break; 2395 case SDEV_EVT_LUN_CHANGE_REPORTED: 2396 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2397 break; 2398 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2399 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2400 break; 2401 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2402 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2403 break; 2404 default: 2405 /* do nothing */ 2406 break; 2407 } 2408 2409 envp[idx++] = NULL; 2410 2411 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2412 } 2413 2414 /** 2415 * sdev_evt_thread - send a uevent for each scsi event 2416 * @work: work struct for scsi_device 2417 * 2418 * Dispatch queued events to their associated scsi_device kobjects 2419 * as uevents. 2420 */ 2421 void scsi_evt_thread(struct work_struct *work) 2422 { 2423 struct scsi_device *sdev; 2424 enum scsi_device_event evt_type; 2425 LIST_HEAD(event_list); 2426 2427 sdev = container_of(work, struct scsi_device, event_work); 2428 2429 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2430 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2431 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2432 2433 while (1) { 2434 struct scsi_event *evt; 2435 struct list_head *this, *tmp; 2436 unsigned long flags; 2437 2438 spin_lock_irqsave(&sdev->list_lock, flags); 2439 list_splice_init(&sdev->event_list, &event_list); 2440 spin_unlock_irqrestore(&sdev->list_lock, flags); 2441 2442 if (list_empty(&event_list)) 2443 break; 2444 2445 list_for_each_safe(this, tmp, &event_list) { 2446 evt = list_entry(this, struct scsi_event, node); 2447 list_del(&evt->node); 2448 scsi_evt_emit(sdev, evt); 2449 kfree(evt); 2450 } 2451 } 2452 } 2453 2454 /** 2455 * sdev_evt_send - send asserted event to uevent thread 2456 * @sdev: scsi_device event occurred on 2457 * @evt: event to send 2458 * 2459 * Assert scsi device event asynchronously. 2460 */ 2461 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2462 { 2463 unsigned long flags; 2464 2465 #if 0 2466 /* FIXME: currently this check eliminates all media change events 2467 * for polled devices. Need to update to discriminate between AN 2468 * and polled events */ 2469 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2470 kfree(evt); 2471 return; 2472 } 2473 #endif 2474 2475 spin_lock_irqsave(&sdev->list_lock, flags); 2476 list_add_tail(&evt->node, &sdev->event_list); 2477 schedule_work(&sdev->event_work); 2478 spin_unlock_irqrestore(&sdev->list_lock, flags); 2479 } 2480 EXPORT_SYMBOL_GPL(sdev_evt_send); 2481 2482 /** 2483 * sdev_evt_alloc - allocate a new scsi event 2484 * @evt_type: type of event to allocate 2485 * @gfpflags: GFP flags for allocation 2486 * 2487 * Allocates and returns a new scsi_event. 2488 */ 2489 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2490 gfp_t gfpflags) 2491 { 2492 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2493 if (!evt) 2494 return NULL; 2495 2496 evt->evt_type = evt_type; 2497 INIT_LIST_HEAD(&evt->node); 2498 2499 /* evt_type-specific initialization, if any */ 2500 switch (evt_type) { 2501 case SDEV_EVT_MEDIA_CHANGE: 2502 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2503 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2504 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2505 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2506 case SDEV_EVT_LUN_CHANGE_REPORTED: 2507 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2508 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2509 default: 2510 /* do nothing */ 2511 break; 2512 } 2513 2514 return evt; 2515 } 2516 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2517 2518 /** 2519 * sdev_evt_send_simple - send asserted event to uevent thread 2520 * @sdev: scsi_device event occurred on 2521 * @evt_type: type of event to send 2522 * @gfpflags: GFP flags for allocation 2523 * 2524 * Assert scsi device event asynchronously, given an event type. 2525 */ 2526 void sdev_evt_send_simple(struct scsi_device *sdev, 2527 enum scsi_device_event evt_type, gfp_t gfpflags) 2528 { 2529 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2530 if (!evt) { 2531 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2532 evt_type); 2533 return; 2534 } 2535 2536 sdev_evt_send(sdev, evt); 2537 } 2538 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2539 2540 /** 2541 * scsi_device_quiesce - Block user issued commands. 2542 * @sdev: scsi device to quiesce. 2543 * 2544 * This works by trying to transition to the SDEV_QUIESCE state 2545 * (which must be a legal transition). When the device is in this 2546 * state, only special requests will be accepted, all others will 2547 * be deferred. Since special requests may also be requeued requests, 2548 * a successful return doesn't guarantee the device will be 2549 * totally quiescent. 2550 * 2551 * Must be called with user context, may sleep. 2552 * 2553 * Returns zero if unsuccessful or an error if not. 2554 */ 2555 int 2556 scsi_device_quiesce(struct scsi_device *sdev) 2557 { 2558 struct request_queue *q = sdev->request_queue; 2559 int err; 2560 2561 /* 2562 * It is allowed to call scsi_device_quiesce() multiple times from 2563 * the same context but concurrent scsi_device_quiesce() calls are 2564 * not allowed. 2565 */ 2566 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2567 2568 if (sdev->quiesced_by == current) 2569 return 0; 2570 2571 blk_set_pm_only(q); 2572 2573 blk_mq_freeze_queue(q); 2574 /* 2575 * Ensure that the effect of blk_set_pm_only() will be visible 2576 * for percpu_ref_tryget() callers that occur after the queue 2577 * unfreeze even if the queue was already frozen before this function 2578 * was called. See also https://lwn.net/Articles/573497/. 2579 */ 2580 synchronize_rcu(); 2581 blk_mq_unfreeze_queue(q); 2582 2583 mutex_lock(&sdev->state_mutex); 2584 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2585 if (err == 0) 2586 sdev->quiesced_by = current; 2587 else 2588 blk_clear_pm_only(q); 2589 mutex_unlock(&sdev->state_mutex); 2590 2591 return err; 2592 } 2593 EXPORT_SYMBOL(scsi_device_quiesce); 2594 2595 /** 2596 * scsi_device_resume - Restart user issued commands to a quiesced device. 2597 * @sdev: scsi device to resume. 2598 * 2599 * Moves the device from quiesced back to running and restarts the 2600 * queues. 2601 * 2602 * Must be called with user context, may sleep. 2603 */ 2604 void scsi_device_resume(struct scsi_device *sdev) 2605 { 2606 /* check if the device state was mutated prior to resume, and if 2607 * so assume the state is being managed elsewhere (for example 2608 * device deleted during suspend) 2609 */ 2610 mutex_lock(&sdev->state_mutex); 2611 if (sdev->quiesced_by) { 2612 sdev->quiesced_by = NULL; 2613 blk_clear_pm_only(sdev->request_queue); 2614 } 2615 if (sdev->sdev_state == SDEV_QUIESCE) 2616 scsi_device_set_state(sdev, SDEV_RUNNING); 2617 mutex_unlock(&sdev->state_mutex); 2618 } 2619 EXPORT_SYMBOL(scsi_device_resume); 2620 2621 static void 2622 device_quiesce_fn(struct scsi_device *sdev, void *data) 2623 { 2624 scsi_device_quiesce(sdev); 2625 } 2626 2627 void 2628 scsi_target_quiesce(struct scsi_target *starget) 2629 { 2630 starget_for_each_device(starget, NULL, device_quiesce_fn); 2631 } 2632 EXPORT_SYMBOL(scsi_target_quiesce); 2633 2634 static void 2635 device_resume_fn(struct scsi_device *sdev, void *data) 2636 { 2637 scsi_device_resume(sdev); 2638 } 2639 2640 void 2641 scsi_target_resume(struct scsi_target *starget) 2642 { 2643 starget_for_each_device(starget, NULL, device_resume_fn); 2644 } 2645 EXPORT_SYMBOL(scsi_target_resume); 2646 2647 /** 2648 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2649 * @sdev: device to block 2650 * 2651 * Pause SCSI command processing on the specified device. Does not sleep. 2652 * 2653 * Returns zero if successful or a negative error code upon failure. 2654 * 2655 * Notes: 2656 * This routine transitions the device to the SDEV_BLOCK state (which must be 2657 * a legal transition). When the device is in this state, command processing 2658 * is paused until the device leaves the SDEV_BLOCK state. See also 2659 * scsi_internal_device_unblock_nowait(). 2660 */ 2661 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2662 { 2663 struct request_queue *q = sdev->request_queue; 2664 int err = 0; 2665 2666 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2667 if (err) { 2668 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2669 2670 if (err) 2671 return err; 2672 } 2673 2674 /* 2675 * The device has transitioned to SDEV_BLOCK. Stop the 2676 * block layer from calling the midlayer with this device's 2677 * request queue. 2678 */ 2679 blk_mq_quiesce_queue_nowait(q); 2680 return 0; 2681 } 2682 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2683 2684 /** 2685 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2686 * @sdev: device to block 2687 * 2688 * Pause SCSI command processing on the specified device and wait until all 2689 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2690 * 2691 * Returns zero if successful or a negative error code upon failure. 2692 * 2693 * Note: 2694 * This routine transitions the device to the SDEV_BLOCK state (which must be 2695 * a legal transition). When the device is in this state, command processing 2696 * is paused until the device leaves the SDEV_BLOCK state. See also 2697 * scsi_internal_device_unblock(). 2698 */ 2699 static int scsi_internal_device_block(struct scsi_device *sdev) 2700 { 2701 struct request_queue *q = sdev->request_queue; 2702 int err; 2703 2704 mutex_lock(&sdev->state_mutex); 2705 err = scsi_internal_device_block_nowait(sdev); 2706 if (err == 0) 2707 blk_mq_quiesce_queue(q); 2708 mutex_unlock(&sdev->state_mutex); 2709 2710 return err; 2711 } 2712 2713 void scsi_start_queue(struct scsi_device *sdev) 2714 { 2715 struct request_queue *q = sdev->request_queue; 2716 2717 blk_mq_unquiesce_queue(q); 2718 } 2719 2720 /** 2721 * scsi_internal_device_unblock_nowait - resume a device after a block request 2722 * @sdev: device to resume 2723 * @new_state: state to set the device to after unblocking 2724 * 2725 * Restart the device queue for a previously suspended SCSI device. Does not 2726 * sleep. 2727 * 2728 * Returns zero if successful or a negative error code upon failure. 2729 * 2730 * Notes: 2731 * This routine transitions the device to the SDEV_RUNNING state or to one of 2732 * the offline states (which must be a legal transition) allowing the midlayer 2733 * to goose the queue for this device. 2734 */ 2735 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2736 enum scsi_device_state new_state) 2737 { 2738 switch (new_state) { 2739 case SDEV_RUNNING: 2740 case SDEV_TRANSPORT_OFFLINE: 2741 break; 2742 default: 2743 return -EINVAL; 2744 } 2745 2746 /* 2747 * Try to transition the scsi device to SDEV_RUNNING or one of the 2748 * offlined states and goose the device queue if successful. 2749 */ 2750 switch (sdev->sdev_state) { 2751 case SDEV_BLOCK: 2752 case SDEV_TRANSPORT_OFFLINE: 2753 sdev->sdev_state = new_state; 2754 break; 2755 case SDEV_CREATED_BLOCK: 2756 if (new_state == SDEV_TRANSPORT_OFFLINE || 2757 new_state == SDEV_OFFLINE) 2758 sdev->sdev_state = new_state; 2759 else 2760 sdev->sdev_state = SDEV_CREATED; 2761 break; 2762 case SDEV_CANCEL: 2763 case SDEV_OFFLINE: 2764 break; 2765 default: 2766 return -EINVAL; 2767 } 2768 scsi_start_queue(sdev); 2769 2770 return 0; 2771 } 2772 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2773 2774 /** 2775 * scsi_internal_device_unblock - resume a device after a block request 2776 * @sdev: device to resume 2777 * @new_state: state to set the device to after unblocking 2778 * 2779 * Restart the device queue for a previously suspended SCSI device. May sleep. 2780 * 2781 * Returns zero if successful or a negative error code upon failure. 2782 * 2783 * Notes: 2784 * This routine transitions the device to the SDEV_RUNNING state or to one of 2785 * the offline states (which must be a legal transition) allowing the midlayer 2786 * to goose the queue for this device. 2787 */ 2788 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2789 enum scsi_device_state new_state) 2790 { 2791 int ret; 2792 2793 mutex_lock(&sdev->state_mutex); 2794 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2795 mutex_unlock(&sdev->state_mutex); 2796 2797 return ret; 2798 } 2799 2800 static void 2801 device_block(struct scsi_device *sdev, void *data) 2802 { 2803 int ret; 2804 2805 ret = scsi_internal_device_block(sdev); 2806 2807 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2808 dev_name(&sdev->sdev_gendev), ret); 2809 } 2810 2811 static int 2812 target_block(struct device *dev, void *data) 2813 { 2814 if (scsi_is_target_device(dev)) 2815 starget_for_each_device(to_scsi_target(dev), NULL, 2816 device_block); 2817 return 0; 2818 } 2819 2820 void 2821 scsi_target_block(struct device *dev) 2822 { 2823 if (scsi_is_target_device(dev)) 2824 starget_for_each_device(to_scsi_target(dev), NULL, 2825 device_block); 2826 else 2827 device_for_each_child(dev, NULL, target_block); 2828 } 2829 EXPORT_SYMBOL_GPL(scsi_target_block); 2830 2831 static void 2832 device_unblock(struct scsi_device *sdev, void *data) 2833 { 2834 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2835 } 2836 2837 static int 2838 target_unblock(struct device *dev, void *data) 2839 { 2840 if (scsi_is_target_device(dev)) 2841 starget_for_each_device(to_scsi_target(dev), data, 2842 device_unblock); 2843 return 0; 2844 } 2845 2846 void 2847 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2848 { 2849 if (scsi_is_target_device(dev)) 2850 starget_for_each_device(to_scsi_target(dev), &new_state, 2851 device_unblock); 2852 else 2853 device_for_each_child(dev, &new_state, target_unblock); 2854 } 2855 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2856 2857 int 2858 scsi_host_block(struct Scsi_Host *shost) 2859 { 2860 struct scsi_device *sdev; 2861 int ret = 0; 2862 2863 /* 2864 * Call scsi_internal_device_block_nowait so we can avoid 2865 * calling synchronize_rcu() for each LUN. 2866 */ 2867 shost_for_each_device(sdev, shost) { 2868 mutex_lock(&sdev->state_mutex); 2869 ret = scsi_internal_device_block_nowait(sdev); 2870 mutex_unlock(&sdev->state_mutex); 2871 if (ret) { 2872 scsi_device_put(sdev); 2873 break; 2874 } 2875 } 2876 2877 /* 2878 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2879 * calling synchronize_rcu() once is enough. 2880 */ 2881 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2882 2883 if (!ret) 2884 synchronize_rcu(); 2885 2886 return ret; 2887 } 2888 EXPORT_SYMBOL_GPL(scsi_host_block); 2889 2890 int 2891 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2892 { 2893 struct scsi_device *sdev; 2894 int ret = 0; 2895 2896 shost_for_each_device(sdev, shost) { 2897 ret = scsi_internal_device_unblock(sdev, new_state); 2898 if (ret) { 2899 scsi_device_put(sdev); 2900 break; 2901 } 2902 } 2903 return ret; 2904 } 2905 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2906 2907 /** 2908 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2909 * @sgl: scatter-gather list 2910 * @sg_count: number of segments in sg 2911 * @offset: offset in bytes into sg, on return offset into the mapped area 2912 * @len: bytes to map, on return number of bytes mapped 2913 * 2914 * Returns virtual address of the start of the mapped page 2915 */ 2916 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2917 size_t *offset, size_t *len) 2918 { 2919 int i; 2920 size_t sg_len = 0, len_complete = 0; 2921 struct scatterlist *sg; 2922 struct page *page; 2923 2924 WARN_ON(!irqs_disabled()); 2925 2926 for_each_sg(sgl, sg, sg_count, i) { 2927 len_complete = sg_len; /* Complete sg-entries */ 2928 sg_len += sg->length; 2929 if (sg_len > *offset) 2930 break; 2931 } 2932 2933 if (unlikely(i == sg_count)) { 2934 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2935 "elements %d\n", 2936 __func__, sg_len, *offset, sg_count); 2937 WARN_ON(1); 2938 return NULL; 2939 } 2940 2941 /* Offset starting from the beginning of first page in this sg-entry */ 2942 *offset = *offset - len_complete + sg->offset; 2943 2944 /* Assumption: contiguous pages can be accessed as "page + i" */ 2945 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2946 *offset &= ~PAGE_MASK; 2947 2948 /* Bytes in this sg-entry from *offset to the end of the page */ 2949 sg_len = PAGE_SIZE - *offset; 2950 if (*len > sg_len) 2951 *len = sg_len; 2952 2953 return kmap_atomic(page); 2954 } 2955 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2956 2957 /** 2958 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2959 * @virt: virtual address to be unmapped 2960 */ 2961 void scsi_kunmap_atomic_sg(void *virt) 2962 { 2963 kunmap_atomic(virt); 2964 } 2965 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2966 2967 void sdev_disable_disk_events(struct scsi_device *sdev) 2968 { 2969 atomic_inc(&sdev->disk_events_disable_depth); 2970 } 2971 EXPORT_SYMBOL(sdev_disable_disk_events); 2972 2973 void sdev_enable_disk_events(struct scsi_device *sdev) 2974 { 2975 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2976 return; 2977 atomic_dec(&sdev->disk_events_disable_depth); 2978 } 2979 EXPORT_SYMBOL(sdev_enable_disk_events); 2980 2981 /** 2982 * scsi_vpd_lun_id - return a unique device identification 2983 * @sdev: SCSI device 2984 * @id: buffer for the identification 2985 * @id_len: length of the buffer 2986 * 2987 * Copies a unique device identification into @id based 2988 * on the information in the VPD page 0x83 of the device. 2989 * The string will be formatted as a SCSI name string. 2990 * 2991 * Returns the length of the identification or error on failure. 2992 * If the identifier is longer than the supplied buffer the actual 2993 * identifier length is returned and the buffer is not zero-padded. 2994 */ 2995 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2996 { 2997 u8 cur_id_type = 0xff; 2998 u8 cur_id_size = 0; 2999 const unsigned char *d, *cur_id_str; 3000 const struct scsi_vpd *vpd_pg83; 3001 int id_size = -EINVAL; 3002 3003 rcu_read_lock(); 3004 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3005 if (!vpd_pg83) { 3006 rcu_read_unlock(); 3007 return -ENXIO; 3008 } 3009 3010 /* 3011 * Look for the correct descriptor. 3012 * Order of preference for lun descriptor: 3013 * - SCSI name string 3014 * - NAA IEEE Registered Extended 3015 * - EUI-64 based 16-byte 3016 * - EUI-64 based 12-byte 3017 * - NAA IEEE Registered 3018 * - NAA IEEE Extended 3019 * - T10 Vendor ID 3020 * as longer descriptors reduce the likelyhood 3021 * of identification clashes. 3022 */ 3023 3024 /* The id string must be at least 20 bytes + terminating NULL byte */ 3025 if (id_len < 21) { 3026 rcu_read_unlock(); 3027 return -EINVAL; 3028 } 3029 3030 memset(id, 0, id_len); 3031 d = vpd_pg83->data + 4; 3032 while (d < vpd_pg83->data + vpd_pg83->len) { 3033 /* Skip designators not referring to the LUN */ 3034 if ((d[1] & 0x30) != 0x00) 3035 goto next_desig; 3036 3037 switch (d[1] & 0xf) { 3038 case 0x1: 3039 /* T10 Vendor ID */ 3040 if (cur_id_size > d[3]) 3041 break; 3042 /* Prefer anything */ 3043 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3044 break; 3045 cur_id_size = d[3]; 3046 if (cur_id_size + 4 > id_len) 3047 cur_id_size = id_len - 4; 3048 cur_id_str = d + 4; 3049 cur_id_type = d[1] & 0xf; 3050 id_size = snprintf(id, id_len, "t10.%*pE", 3051 cur_id_size, cur_id_str); 3052 break; 3053 case 0x2: 3054 /* EUI-64 */ 3055 if (cur_id_size > d[3]) 3056 break; 3057 /* Prefer NAA IEEE Registered Extended */ 3058 if (cur_id_type == 0x3 && 3059 cur_id_size == d[3]) 3060 break; 3061 cur_id_size = d[3]; 3062 cur_id_str = d + 4; 3063 cur_id_type = d[1] & 0xf; 3064 switch (cur_id_size) { 3065 case 8: 3066 id_size = snprintf(id, id_len, 3067 "eui.%8phN", 3068 cur_id_str); 3069 break; 3070 case 12: 3071 id_size = snprintf(id, id_len, 3072 "eui.%12phN", 3073 cur_id_str); 3074 break; 3075 case 16: 3076 id_size = snprintf(id, id_len, 3077 "eui.%16phN", 3078 cur_id_str); 3079 break; 3080 default: 3081 cur_id_size = 0; 3082 break; 3083 } 3084 break; 3085 case 0x3: 3086 /* NAA */ 3087 if (cur_id_size > d[3]) 3088 break; 3089 cur_id_size = d[3]; 3090 cur_id_str = d + 4; 3091 cur_id_type = d[1] & 0xf; 3092 switch (cur_id_size) { 3093 case 8: 3094 id_size = snprintf(id, id_len, 3095 "naa.%8phN", 3096 cur_id_str); 3097 break; 3098 case 16: 3099 id_size = snprintf(id, id_len, 3100 "naa.%16phN", 3101 cur_id_str); 3102 break; 3103 default: 3104 cur_id_size = 0; 3105 break; 3106 } 3107 break; 3108 case 0x8: 3109 /* SCSI name string */ 3110 if (cur_id_size + 4 > d[3]) 3111 break; 3112 /* Prefer others for truncated descriptor */ 3113 if (cur_id_size && d[3] > id_len) 3114 break; 3115 cur_id_size = id_size = d[3]; 3116 cur_id_str = d + 4; 3117 cur_id_type = d[1] & 0xf; 3118 if (cur_id_size >= id_len) 3119 cur_id_size = id_len - 1; 3120 memcpy(id, cur_id_str, cur_id_size); 3121 /* Decrease priority for truncated descriptor */ 3122 if (cur_id_size != id_size) 3123 cur_id_size = 6; 3124 break; 3125 default: 3126 break; 3127 } 3128 next_desig: 3129 d += d[3] + 4; 3130 } 3131 rcu_read_unlock(); 3132 3133 return id_size; 3134 } 3135 EXPORT_SYMBOL(scsi_vpd_lun_id); 3136 3137 /* 3138 * scsi_vpd_tpg_id - return a target port group identifier 3139 * @sdev: SCSI device 3140 * 3141 * Returns the Target Port Group identifier from the information 3142 * froom VPD page 0x83 of the device. 3143 * 3144 * Returns the identifier or error on failure. 3145 */ 3146 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3147 { 3148 const unsigned char *d; 3149 const struct scsi_vpd *vpd_pg83; 3150 int group_id = -EAGAIN, rel_port = -1; 3151 3152 rcu_read_lock(); 3153 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3154 if (!vpd_pg83) { 3155 rcu_read_unlock(); 3156 return -ENXIO; 3157 } 3158 3159 d = vpd_pg83->data + 4; 3160 while (d < vpd_pg83->data + vpd_pg83->len) { 3161 switch (d[1] & 0xf) { 3162 case 0x4: 3163 /* Relative target port */ 3164 rel_port = get_unaligned_be16(&d[6]); 3165 break; 3166 case 0x5: 3167 /* Target port group */ 3168 group_id = get_unaligned_be16(&d[6]); 3169 break; 3170 default: 3171 break; 3172 } 3173 d += d[3] + 4; 3174 } 3175 rcu_read_unlock(); 3176 3177 if (group_id >= 0 && rel_id && rel_port != -1) 3178 *rel_id = rel_port; 3179 3180 return group_id; 3181 } 3182 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3183