xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 6b66a6f2)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34 
35 #include <trace/events/scsi.h>
36 
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39 
40 
41 struct kmem_cache *scsi_sdb_cache;
42 
43 /*
44  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45  * not change behaviour from the previous unplug mechanism, experimentation
46  * may prove this needs changing.
47  */
48 #define SCSI_QUEUE_DELAY	3
49 
50 static void
51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53 	struct Scsi_Host *host = cmd->device->host;
54 	struct scsi_device *device = cmd->device;
55 	struct scsi_target *starget = scsi_target(device);
56 
57 	/*
58 	 * Set the appropriate busy bit for the device/host.
59 	 *
60 	 * If the host/device isn't busy, assume that something actually
61 	 * completed, and that we should be able to queue a command now.
62 	 *
63 	 * Note that the prior mid-layer assumption that any host could
64 	 * always queue at least one command is now broken.  The mid-layer
65 	 * will implement a user specifiable stall (see
66 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67 	 * if a command is requeued with no other commands outstanding
68 	 * either for the device or for the host.
69 	 */
70 	switch (reason) {
71 	case SCSI_MLQUEUE_HOST_BUSY:
72 		atomic_set(&host->host_blocked, host->max_host_blocked);
73 		break;
74 	case SCSI_MLQUEUE_DEVICE_BUSY:
75 	case SCSI_MLQUEUE_EH_RETRY:
76 		atomic_set(&device->device_blocked,
77 			   device->max_device_blocked);
78 		break;
79 	case SCSI_MLQUEUE_TARGET_BUSY:
80 		atomic_set(&starget->target_blocked,
81 			   starget->max_target_blocked);
82 		break;
83 	}
84 }
85 
86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88 	struct scsi_device *sdev = cmd->device;
89 
90 	blk_mq_requeue_request(cmd->request, true);
91 	put_device(&sdev->sdev_gendev);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct scsi_device *device = cmd->device;
109 	struct request_queue *q = device->request_queue;
110 	unsigned long flags;
111 
112 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
113 		"Inserting command %p into mlqueue\n", cmd));
114 
115 	scsi_set_blocked(cmd, reason);
116 
117 	/*
118 	 * Decrement the counters, since these commands are no longer
119 	 * active on the host/device.
120 	 */
121 	if (unbusy)
122 		scsi_device_unbusy(device);
123 
124 	/*
125 	 * Requeue this command.  It will go before all other commands
126 	 * that are already in the queue. Schedule requeue work under
127 	 * lock such that the kblockd_schedule_work() call happens
128 	 * before blk_cleanup_queue() finishes.
129 	 */
130 	cmd->result = 0;
131 	if (q->mq_ops) {
132 		scsi_mq_requeue_cmd(cmd);
133 		return;
134 	}
135 	spin_lock_irqsave(q->queue_lock, flags);
136 	blk_requeue_request(q, cmd->request);
137 	kblockd_schedule_work(&device->requeue_work);
138 	spin_unlock_irqrestore(q->queue_lock, flags);
139 }
140 
141 /*
142  * Function:    scsi_queue_insert()
143  *
144  * Purpose:     Insert a command in the midlevel queue.
145  *
146  * Arguments:   cmd    - command that we are adding to queue.
147  *              reason - why we are inserting command to queue.
148  *
149  * Lock status: Assumed that lock is not held upon entry.
150  *
151  * Returns:     Nothing.
152  *
153  * Notes:       We do this for one of two cases.  Either the host is busy
154  *              and it cannot accept any more commands for the time being,
155  *              or the device returned QUEUE_FULL and can accept no more
156  *              commands.
157  * Notes:       This could be called either from an interrupt context or a
158  *              normal process context.
159  */
160 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
161 {
162 	__scsi_queue_insert(cmd, reason, 1);
163 }
164 
165 static int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
166 		 int data_direction, void *buffer, unsigned bufflen,
167 		 unsigned char *sense, int timeout, int retries, u64 flags,
168 		 req_flags_t rq_flags, int *resid)
169 {
170 	struct request *req;
171 	int write = (data_direction == DMA_TO_DEVICE);
172 	int ret = DRIVER_ERROR << 24;
173 
174 	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
175 	if (IS_ERR(req))
176 		return ret;
177 	blk_rq_set_block_pc(req);
178 
179 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
180 					buffer, bufflen, __GFP_RECLAIM))
181 		goto out;
182 
183 	req->cmd_len = COMMAND_SIZE(cmd[0]);
184 	memcpy(req->cmd, cmd, req->cmd_len);
185 	req->sense = sense;
186 	req->sense_len = 0;
187 	req->retries = retries;
188 	req->timeout = timeout;
189 	req->cmd_flags |= flags;
190 	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
191 
192 	/*
193 	 * head injection *required* here otherwise quiesce won't work
194 	 */
195 	blk_execute_rq(req->q, NULL, req, 1);
196 
197 	/*
198 	 * Some devices (USB mass-storage in particular) may transfer
199 	 * garbage data together with a residue indicating that the data
200 	 * is invalid.  Prevent the garbage from being misinterpreted
201 	 * and prevent security leaks by zeroing out the excess data.
202 	 */
203 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
204 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
205 
206 	if (resid)
207 		*resid = req->resid_len;
208 	ret = req->errors;
209  out:
210 	blk_put_request(req);
211 
212 	return ret;
213 }
214 
215 /**
216  * scsi_execute - insert request and wait for the result
217  * @sdev:	scsi device
218  * @cmd:	scsi command
219  * @data_direction: data direction
220  * @buffer:	data buffer
221  * @bufflen:	len of buffer
222  * @sense:	optional sense buffer
223  * @timeout:	request timeout in seconds
224  * @retries:	number of times to retry request
225  * @flags:	or into request flags;
226  * @resid:	optional residual length
227  *
228  * returns the req->errors value which is the scsi_cmnd result
229  * field.
230  */
231 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
232 		 int data_direction, void *buffer, unsigned bufflen,
233 		 unsigned char *sense, int timeout, int retries, u64 flags,
234 		 int *resid)
235 {
236 	return __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense,
237 			timeout, retries, flags, 0, resid);
238 }
239 EXPORT_SYMBOL(scsi_execute);
240 
241 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
242 		     int data_direction, void *buffer, unsigned bufflen,
243 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
244 		     int *resid, u64 flags, req_flags_t rq_flags)
245 {
246 	char *sense = NULL;
247 	int result;
248 
249 	if (sshdr) {
250 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
251 		if (!sense)
252 			return DRIVER_ERROR << 24;
253 	}
254 	result = __scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
255 			      sense, timeout, retries, flags, rq_flags, resid);
256 	if (sshdr)
257 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
258 
259 	kfree(sense);
260 	return result;
261 }
262 EXPORT_SYMBOL(scsi_execute_req_flags);
263 
264 /*
265  * Function:    scsi_init_cmd_errh()
266  *
267  * Purpose:     Initialize cmd fields related to error handling.
268  *
269  * Arguments:   cmd	- command that is ready to be queued.
270  *
271  * Notes:       This function has the job of initializing a number of
272  *              fields related to error handling.   Typically this will
273  *              be called once for each command, as required.
274  */
275 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
276 {
277 	cmd->serial_number = 0;
278 	scsi_set_resid(cmd, 0);
279 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
280 	if (cmd->cmd_len == 0)
281 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
282 }
283 
284 void scsi_device_unbusy(struct scsi_device *sdev)
285 {
286 	struct Scsi_Host *shost = sdev->host;
287 	struct scsi_target *starget = scsi_target(sdev);
288 	unsigned long flags;
289 
290 	atomic_dec(&shost->host_busy);
291 	if (starget->can_queue > 0)
292 		atomic_dec(&starget->target_busy);
293 
294 	if (unlikely(scsi_host_in_recovery(shost) &&
295 		     (shost->host_failed || shost->host_eh_scheduled))) {
296 		spin_lock_irqsave(shost->host_lock, flags);
297 		scsi_eh_wakeup(shost);
298 		spin_unlock_irqrestore(shost->host_lock, flags);
299 	}
300 
301 	atomic_dec(&sdev->device_busy);
302 }
303 
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306 	if (q->mq_ops)
307 		blk_mq_start_hw_queues(q);
308 	else
309 		blk_run_queue(q);
310 }
311 
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321 	struct Scsi_Host *shost = current_sdev->host;
322 	struct scsi_device *sdev, *tmp;
323 	struct scsi_target *starget = scsi_target(current_sdev);
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(shost->host_lock, flags);
327 	starget->starget_sdev_user = NULL;
328 	spin_unlock_irqrestore(shost->host_lock, flags);
329 
330 	/*
331 	 * Call blk_run_queue for all LUNs on the target, starting with
332 	 * current_sdev. We race with others (to set starget_sdev_user),
333 	 * but in most cases, we will be first. Ideally, each LU on the
334 	 * target would get some limited time or requests on the target.
335 	 */
336 	scsi_kick_queue(current_sdev->request_queue);
337 
338 	spin_lock_irqsave(shost->host_lock, flags);
339 	if (starget->starget_sdev_user)
340 		goto out;
341 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
342 			same_target_siblings) {
343 		if (sdev == current_sdev)
344 			continue;
345 		if (scsi_device_get(sdev))
346 			continue;
347 
348 		spin_unlock_irqrestore(shost->host_lock, flags);
349 		scsi_kick_queue(sdev->request_queue);
350 		spin_lock_irqsave(shost->host_lock, flags);
351 
352 		scsi_device_put(sdev);
353 	}
354  out:
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357 
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
361 		return true;
362 	if (atomic_read(&sdev->device_blocked) > 0)
363 		return true;
364 	return false;
365 }
366 
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369 	if (starget->can_queue > 0) {
370 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
371 			return true;
372 		if (atomic_read(&starget->target_blocked) > 0)
373 			return true;
374 	}
375 	return false;
376 }
377 
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380 	if (shost->can_queue > 0 &&
381 	    atomic_read(&shost->host_busy) >= shost->can_queue)
382 		return true;
383 	if (atomic_read(&shost->host_blocked) > 0)
384 		return true;
385 	if (shost->host_self_blocked)
386 		return true;
387 	return false;
388 }
389 
390 static void scsi_starved_list_run(struct Scsi_Host *shost)
391 {
392 	LIST_HEAD(starved_list);
393 	struct scsi_device *sdev;
394 	unsigned long flags;
395 
396 	spin_lock_irqsave(shost->host_lock, flags);
397 	list_splice_init(&shost->starved_list, &starved_list);
398 
399 	while (!list_empty(&starved_list)) {
400 		struct request_queue *slq;
401 
402 		/*
403 		 * As long as shost is accepting commands and we have
404 		 * starved queues, call blk_run_queue. scsi_request_fn
405 		 * drops the queue_lock and can add us back to the
406 		 * starved_list.
407 		 *
408 		 * host_lock protects the starved_list and starved_entry.
409 		 * scsi_request_fn must get the host_lock before checking
410 		 * or modifying starved_list or starved_entry.
411 		 */
412 		if (scsi_host_is_busy(shost))
413 			break;
414 
415 		sdev = list_entry(starved_list.next,
416 				  struct scsi_device, starved_entry);
417 		list_del_init(&sdev->starved_entry);
418 		if (scsi_target_is_busy(scsi_target(sdev))) {
419 			list_move_tail(&sdev->starved_entry,
420 				       &shost->starved_list);
421 			continue;
422 		}
423 
424 		/*
425 		 * Once we drop the host lock, a racing scsi_remove_device()
426 		 * call may remove the sdev from the starved list and destroy
427 		 * it and the queue.  Mitigate by taking a reference to the
428 		 * queue and never touching the sdev again after we drop the
429 		 * host lock.  Note: if __scsi_remove_device() invokes
430 		 * blk_cleanup_queue() before the queue is run from this
431 		 * function then blk_run_queue() will return immediately since
432 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
433 		 */
434 		slq = sdev->request_queue;
435 		if (!blk_get_queue(slq))
436 			continue;
437 		spin_unlock_irqrestore(shost->host_lock, flags);
438 
439 		scsi_kick_queue(slq);
440 		blk_put_queue(slq);
441 
442 		spin_lock_irqsave(shost->host_lock, flags);
443 	}
444 	/* put any unprocessed entries back */
445 	list_splice(&starved_list, &shost->starved_list);
446 	spin_unlock_irqrestore(shost->host_lock, flags);
447 }
448 
449 /*
450  * Function:   scsi_run_queue()
451  *
452  * Purpose:    Select a proper request queue to serve next
453  *
454  * Arguments:  q       - last request's queue
455  *
456  * Returns:     Nothing
457  *
458  * Notes:      The previous command was completely finished, start
459  *             a new one if possible.
460  */
461 static void scsi_run_queue(struct request_queue *q)
462 {
463 	struct scsi_device *sdev = q->queuedata;
464 
465 	if (scsi_target(sdev)->single_lun)
466 		scsi_single_lun_run(sdev);
467 	if (!list_empty(&sdev->host->starved_list))
468 		scsi_starved_list_run(sdev->host);
469 
470 	if (q->mq_ops)
471 		blk_mq_start_stopped_hw_queues(q, false);
472 	else
473 		blk_run_queue(q);
474 }
475 
476 void scsi_requeue_run_queue(struct work_struct *work)
477 {
478 	struct scsi_device *sdev;
479 	struct request_queue *q;
480 
481 	sdev = container_of(work, struct scsi_device, requeue_work);
482 	q = sdev->request_queue;
483 	scsi_run_queue(q);
484 }
485 
486 /*
487  * Function:	scsi_requeue_command()
488  *
489  * Purpose:	Handle post-processing of completed commands.
490  *
491  * Arguments:	q	- queue to operate on
492  *		cmd	- command that may need to be requeued.
493  *
494  * Returns:	Nothing
495  *
496  * Notes:	After command completion, there may be blocks left
497  *		over which weren't finished by the previous command
498  *		this can be for a number of reasons - the main one is
499  *		I/O errors in the middle of the request, in which case
500  *		we need to request the blocks that come after the bad
501  *		sector.
502  * Notes:	Upon return, cmd is a stale pointer.
503  */
504 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
505 {
506 	struct scsi_device *sdev = cmd->device;
507 	struct request *req = cmd->request;
508 	unsigned long flags;
509 
510 	spin_lock_irqsave(q->queue_lock, flags);
511 	blk_unprep_request(req);
512 	req->special = NULL;
513 	scsi_put_command(cmd);
514 	blk_requeue_request(q, req);
515 	spin_unlock_irqrestore(q->queue_lock, flags);
516 
517 	scsi_run_queue(q);
518 
519 	put_device(&sdev->sdev_gendev);
520 }
521 
522 void scsi_run_host_queues(struct Scsi_Host *shost)
523 {
524 	struct scsi_device *sdev;
525 
526 	shost_for_each_device(sdev, shost)
527 		scsi_run_queue(sdev->request_queue);
528 }
529 
530 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
533 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
534 
535 		if (drv->uninit_command)
536 			drv->uninit_command(cmd);
537 	}
538 }
539 
540 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
541 {
542 	struct scsi_data_buffer *sdb;
543 
544 	if (cmd->sdb.table.nents)
545 		sg_free_table_chained(&cmd->sdb.table, true);
546 	if (cmd->request->next_rq) {
547 		sdb = cmd->request->next_rq->special;
548 		if (sdb)
549 			sg_free_table_chained(&sdb->table, true);
550 	}
551 	if (scsi_prot_sg_count(cmd))
552 		sg_free_table_chained(&cmd->prot_sdb->table, true);
553 }
554 
555 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
556 {
557 	struct scsi_device *sdev = cmd->device;
558 	struct Scsi_Host *shost = sdev->host;
559 	unsigned long flags;
560 
561 	scsi_mq_free_sgtables(cmd);
562 	scsi_uninit_cmd(cmd);
563 
564 	if (shost->use_cmd_list) {
565 		BUG_ON(list_empty(&cmd->list));
566 		spin_lock_irqsave(&sdev->list_lock, flags);
567 		list_del_init(&cmd->list);
568 		spin_unlock_irqrestore(&sdev->list_lock, flags);
569 	}
570 }
571 
572 /*
573  * Function:    scsi_release_buffers()
574  *
575  * Purpose:     Free resources allocate for a scsi_command.
576  *
577  * Arguments:   cmd	- command that we are bailing.
578  *
579  * Lock status: Assumed that no lock is held upon entry.
580  *
581  * Returns:     Nothing
582  *
583  * Notes:       In the event that an upper level driver rejects a
584  *		command, we must release resources allocated during
585  *		the __init_io() function.  Primarily this would involve
586  *		the scatter-gather table.
587  */
588 static void scsi_release_buffers(struct scsi_cmnd *cmd)
589 {
590 	if (cmd->sdb.table.nents)
591 		sg_free_table_chained(&cmd->sdb.table, false);
592 
593 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
594 
595 	if (scsi_prot_sg_count(cmd))
596 		sg_free_table_chained(&cmd->prot_sdb->table, false);
597 }
598 
599 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
600 {
601 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
602 
603 	sg_free_table_chained(&bidi_sdb->table, false);
604 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
605 	cmd->request->next_rq->special = NULL;
606 }
607 
608 static bool scsi_end_request(struct request *req, int error,
609 		unsigned int bytes, unsigned int bidi_bytes)
610 {
611 	struct scsi_cmnd *cmd = req->special;
612 	struct scsi_device *sdev = cmd->device;
613 	struct request_queue *q = sdev->request_queue;
614 
615 	if (blk_update_request(req, error, bytes))
616 		return true;
617 
618 	/* Bidi request must be completed as a whole */
619 	if (unlikely(bidi_bytes) &&
620 	    blk_update_request(req->next_rq, error, bidi_bytes))
621 		return true;
622 
623 	if (blk_queue_add_random(q))
624 		add_disk_randomness(req->rq_disk);
625 
626 	if (req->mq_ctx) {
627 		/*
628 		 * In the MQ case the command gets freed by __blk_mq_end_request,
629 		 * so we have to do all cleanup that depends on it earlier.
630 		 *
631 		 * We also can't kick the queues from irq context, so we
632 		 * will have to defer it to a workqueue.
633 		 */
634 		scsi_mq_uninit_cmd(cmd);
635 
636 		__blk_mq_end_request(req, error);
637 
638 		if (scsi_target(sdev)->single_lun ||
639 		    !list_empty(&sdev->host->starved_list))
640 			kblockd_schedule_work(&sdev->requeue_work);
641 		else
642 			blk_mq_start_stopped_hw_queues(q, true);
643 	} else {
644 		unsigned long flags;
645 
646 		if (bidi_bytes)
647 			scsi_release_bidi_buffers(cmd);
648 
649 		spin_lock_irqsave(q->queue_lock, flags);
650 		blk_finish_request(req, error);
651 		spin_unlock_irqrestore(q->queue_lock, flags);
652 
653 		scsi_release_buffers(cmd);
654 
655 		scsi_put_command(cmd);
656 		scsi_run_queue(q);
657 	}
658 
659 	put_device(&sdev->sdev_gendev);
660 	return false;
661 }
662 
663 /**
664  * __scsi_error_from_host_byte - translate SCSI error code into errno
665  * @cmd:	SCSI command (unused)
666  * @result:	scsi error code
667  *
668  * Translate SCSI error code into standard UNIX errno.
669  * Return values:
670  * -ENOLINK	temporary transport failure
671  * -EREMOTEIO	permanent target failure, do not retry
672  * -EBADE	permanent nexus failure, retry on other path
673  * -ENOSPC	No write space available
674  * -ENODATA	Medium error
675  * -EIO		unspecified I/O error
676  */
677 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
678 {
679 	int error = 0;
680 
681 	switch(host_byte(result)) {
682 	case DID_TRANSPORT_FAILFAST:
683 		error = -ENOLINK;
684 		break;
685 	case DID_TARGET_FAILURE:
686 		set_host_byte(cmd, DID_OK);
687 		error = -EREMOTEIO;
688 		break;
689 	case DID_NEXUS_FAILURE:
690 		set_host_byte(cmd, DID_OK);
691 		error = -EBADE;
692 		break;
693 	case DID_ALLOC_FAILURE:
694 		set_host_byte(cmd, DID_OK);
695 		error = -ENOSPC;
696 		break;
697 	case DID_MEDIUM_ERROR:
698 		set_host_byte(cmd, DID_OK);
699 		error = -ENODATA;
700 		break;
701 	default:
702 		error = -EIO;
703 		break;
704 	}
705 
706 	return error;
707 }
708 
709 /*
710  * Function:    scsi_io_completion()
711  *
712  * Purpose:     Completion processing for block device I/O requests.
713  *
714  * Arguments:   cmd   - command that is finished.
715  *
716  * Lock status: Assumed that no lock is held upon entry.
717  *
718  * Returns:     Nothing
719  *
720  * Notes:       We will finish off the specified number of sectors.  If we
721  *		are done, the command block will be released and the queue
722  *		function will be goosed.  If we are not done then we have to
723  *		figure out what to do next:
724  *
725  *		a) We can call scsi_requeue_command().  The request
726  *		   will be unprepared and put back on the queue.  Then
727  *		   a new command will be created for it.  This should
728  *		   be used if we made forward progress, or if we want
729  *		   to switch from READ(10) to READ(6) for example.
730  *
731  *		b) We can call __scsi_queue_insert().  The request will
732  *		   be put back on the queue and retried using the same
733  *		   command as before, possibly after a delay.
734  *
735  *		c) We can call scsi_end_request() with -EIO to fail
736  *		   the remainder of the request.
737  */
738 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
739 {
740 	int result = cmd->result;
741 	struct request_queue *q = cmd->device->request_queue;
742 	struct request *req = cmd->request;
743 	int error = 0;
744 	struct scsi_sense_hdr sshdr;
745 	bool sense_valid = false;
746 	int sense_deferred = 0, level = 0;
747 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
748 	      ACTION_DELAYED_RETRY} action;
749 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
750 
751 	if (result) {
752 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
753 		if (sense_valid)
754 			sense_deferred = scsi_sense_is_deferred(&sshdr);
755 	}
756 
757 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
758 		if (result) {
759 			if (sense_valid && req->sense) {
760 				/*
761 				 * SG_IO wants current and deferred errors
762 				 */
763 				int len = 8 + cmd->sense_buffer[7];
764 
765 				if (len > SCSI_SENSE_BUFFERSIZE)
766 					len = SCSI_SENSE_BUFFERSIZE;
767 				memcpy(req->sense, cmd->sense_buffer,  len);
768 				req->sense_len = len;
769 			}
770 			if (!sense_deferred)
771 				error = __scsi_error_from_host_byte(cmd, result);
772 		}
773 		/*
774 		 * __scsi_error_from_host_byte may have reset the host_byte
775 		 */
776 		req->errors = cmd->result;
777 
778 		req->resid_len = scsi_get_resid(cmd);
779 
780 		if (scsi_bidi_cmnd(cmd)) {
781 			/*
782 			 * Bidi commands Must be complete as a whole,
783 			 * both sides at once.
784 			 */
785 			req->next_rq->resid_len = scsi_in(cmd)->resid;
786 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
787 					blk_rq_bytes(req->next_rq)))
788 				BUG();
789 			return;
790 		}
791 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
792 		/*
793 		 * Certain non BLOCK_PC requests are commands that don't
794 		 * actually transfer anything (FLUSH), so cannot use
795 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
796 		 * This sets the error explicitly for the problem case.
797 		 */
798 		error = __scsi_error_from_host_byte(cmd, result);
799 	}
800 
801 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
802 	BUG_ON(blk_bidi_rq(req));
803 
804 	/*
805 	 * Next deal with any sectors which we were able to correctly
806 	 * handle.
807 	 */
808 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
809 		"%u sectors total, %d bytes done.\n",
810 		blk_rq_sectors(req), good_bytes));
811 
812 	/*
813 	 * Recovered errors need reporting, but they're always treated
814 	 * as success, so fiddle the result code here.  For BLOCK_PC
815 	 * we already took a copy of the original into rq->errors which
816 	 * is what gets returned to the user
817 	 */
818 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
819 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
820 		 * print since caller wants ATA registers. Only occurs on
821 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
822 		 */
823 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
824 			;
825 		else if (!(req->rq_flags & RQF_QUIET))
826 			scsi_print_sense(cmd);
827 		result = 0;
828 		/* BLOCK_PC may have set error */
829 		error = 0;
830 	}
831 
832 	/*
833 	 * special case: failed zero length commands always need to
834 	 * drop down into the retry code. Otherwise, if we finished
835 	 * all bytes in the request we are done now.
836 	 */
837 	if (!(blk_rq_bytes(req) == 0 && error) &&
838 	    !scsi_end_request(req, error, good_bytes, 0))
839 		return;
840 
841 	/*
842 	 * Kill remainder if no retrys.
843 	 */
844 	if (error && scsi_noretry_cmd(cmd)) {
845 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
846 			BUG();
847 		return;
848 	}
849 
850 	/*
851 	 * If there had been no error, but we have leftover bytes in the
852 	 * requeues just queue the command up again.
853 	 */
854 	if (result == 0)
855 		goto requeue;
856 
857 	error = __scsi_error_from_host_byte(cmd, result);
858 
859 	if (host_byte(result) == DID_RESET) {
860 		/* Third party bus reset or reset for error recovery
861 		 * reasons.  Just retry the command and see what
862 		 * happens.
863 		 */
864 		action = ACTION_RETRY;
865 	} else if (sense_valid && !sense_deferred) {
866 		switch (sshdr.sense_key) {
867 		case UNIT_ATTENTION:
868 			if (cmd->device->removable) {
869 				/* Detected disc change.  Set a bit
870 				 * and quietly refuse further access.
871 				 */
872 				cmd->device->changed = 1;
873 				action = ACTION_FAIL;
874 			} else {
875 				/* Must have been a power glitch, or a
876 				 * bus reset.  Could not have been a
877 				 * media change, so we just retry the
878 				 * command and see what happens.
879 				 */
880 				action = ACTION_RETRY;
881 			}
882 			break;
883 		case ILLEGAL_REQUEST:
884 			/* If we had an ILLEGAL REQUEST returned, then
885 			 * we may have performed an unsupported
886 			 * command.  The only thing this should be
887 			 * would be a ten byte read where only a six
888 			 * byte read was supported.  Also, on a system
889 			 * where READ CAPACITY failed, we may have
890 			 * read past the end of the disk.
891 			 */
892 			if ((cmd->device->use_10_for_rw &&
893 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
894 			    (cmd->cmnd[0] == READ_10 ||
895 			     cmd->cmnd[0] == WRITE_10)) {
896 				/* This will issue a new 6-byte command. */
897 				cmd->device->use_10_for_rw = 0;
898 				action = ACTION_REPREP;
899 			} else if (sshdr.asc == 0x10) /* DIX */ {
900 				action = ACTION_FAIL;
901 				error = -EILSEQ;
902 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
904 				action = ACTION_FAIL;
905 				error = -EREMOTEIO;
906 			} else
907 				action = ACTION_FAIL;
908 			break;
909 		case ABORTED_COMMAND:
910 			action = ACTION_FAIL;
911 			if (sshdr.asc == 0x10) /* DIF */
912 				error = -EILSEQ;
913 			break;
914 		case NOT_READY:
915 			/* If the device is in the process of becoming
916 			 * ready, or has a temporary blockage, retry.
917 			 */
918 			if (sshdr.asc == 0x04) {
919 				switch (sshdr.ascq) {
920 				case 0x01: /* becoming ready */
921 				case 0x04: /* format in progress */
922 				case 0x05: /* rebuild in progress */
923 				case 0x06: /* recalculation in progress */
924 				case 0x07: /* operation in progress */
925 				case 0x08: /* Long write in progress */
926 				case 0x09: /* self test in progress */
927 				case 0x14: /* space allocation in progress */
928 					action = ACTION_DELAYED_RETRY;
929 					break;
930 				default:
931 					action = ACTION_FAIL;
932 					break;
933 				}
934 			} else
935 				action = ACTION_FAIL;
936 			break;
937 		case VOLUME_OVERFLOW:
938 			/* See SSC3rXX or current. */
939 			action = ACTION_FAIL;
940 			break;
941 		default:
942 			action = ACTION_FAIL;
943 			break;
944 		}
945 	} else
946 		action = ACTION_FAIL;
947 
948 	if (action != ACTION_FAIL &&
949 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
950 		action = ACTION_FAIL;
951 
952 	switch (action) {
953 	case ACTION_FAIL:
954 		/* Give up and fail the remainder of the request */
955 		if (!(req->rq_flags & RQF_QUIET)) {
956 			static DEFINE_RATELIMIT_STATE(_rs,
957 					DEFAULT_RATELIMIT_INTERVAL,
958 					DEFAULT_RATELIMIT_BURST);
959 
960 			if (unlikely(scsi_logging_level))
961 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
962 						       SCSI_LOG_MLCOMPLETE_BITS);
963 
964 			/*
965 			 * if logging is enabled the failure will be printed
966 			 * in scsi_log_completion(), so avoid duplicate messages
967 			 */
968 			if (!level && __ratelimit(&_rs)) {
969 				scsi_print_result(cmd, NULL, FAILED);
970 				if (driver_byte(result) & DRIVER_SENSE)
971 					scsi_print_sense(cmd);
972 				scsi_print_command(cmd);
973 			}
974 		}
975 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
976 			return;
977 		/*FALLTHRU*/
978 	case ACTION_REPREP:
979 	requeue:
980 		/* Unprep the request and put it back at the head of the queue.
981 		 * A new command will be prepared and issued.
982 		 */
983 		if (q->mq_ops) {
984 			cmd->request->rq_flags &= ~RQF_DONTPREP;
985 			scsi_mq_uninit_cmd(cmd);
986 			scsi_mq_requeue_cmd(cmd);
987 		} else {
988 			scsi_release_buffers(cmd);
989 			scsi_requeue_command(q, cmd);
990 		}
991 		break;
992 	case ACTION_RETRY:
993 		/* Retry the same command immediately */
994 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
995 		break;
996 	case ACTION_DELAYED_RETRY:
997 		/* Retry the same command after a delay */
998 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
999 		break;
1000 	}
1001 }
1002 
1003 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1004 {
1005 	int count;
1006 
1007 	/*
1008 	 * If sg table allocation fails, requeue request later.
1009 	 */
1010 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1011 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1012 		return BLKPREP_DEFER;
1013 
1014 	/*
1015 	 * Next, walk the list, and fill in the addresses and sizes of
1016 	 * each segment.
1017 	 */
1018 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1019 	BUG_ON(count > sdb->table.nents);
1020 	sdb->table.nents = count;
1021 	sdb->length = blk_rq_payload_bytes(req);
1022 	return BLKPREP_OK;
1023 }
1024 
1025 /*
1026  * Function:    scsi_init_io()
1027  *
1028  * Purpose:     SCSI I/O initialize function.
1029  *
1030  * Arguments:   cmd   - Command descriptor we wish to initialize
1031  *
1032  * Returns:     0 on success
1033  *		BLKPREP_DEFER if the failure is retryable
1034  *		BLKPREP_KILL if the failure is fatal
1035  */
1036 int scsi_init_io(struct scsi_cmnd *cmd)
1037 {
1038 	struct scsi_device *sdev = cmd->device;
1039 	struct request *rq = cmd->request;
1040 	bool is_mq = (rq->mq_ctx != NULL);
1041 	int error;
1042 
1043 	BUG_ON(!blk_rq_nr_phys_segments(rq));
1044 
1045 	error = scsi_init_sgtable(rq, &cmd->sdb);
1046 	if (error)
1047 		goto err_exit;
1048 
1049 	if (blk_bidi_rq(rq)) {
1050 		if (!rq->q->mq_ops) {
1051 			struct scsi_data_buffer *bidi_sdb =
1052 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1053 			if (!bidi_sdb) {
1054 				error = BLKPREP_DEFER;
1055 				goto err_exit;
1056 			}
1057 
1058 			rq->next_rq->special = bidi_sdb;
1059 		}
1060 
1061 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1062 		if (error)
1063 			goto err_exit;
1064 	}
1065 
1066 	if (blk_integrity_rq(rq)) {
1067 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1068 		int ivecs, count;
1069 
1070 		if (prot_sdb == NULL) {
1071 			/*
1072 			 * This can happen if someone (e.g. multipath)
1073 			 * queues a command to a device on an adapter
1074 			 * that does not support DIX.
1075 			 */
1076 			WARN_ON_ONCE(1);
1077 			error = BLKPREP_KILL;
1078 			goto err_exit;
1079 		}
1080 
1081 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1082 
1083 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1084 				prot_sdb->table.sgl)) {
1085 			error = BLKPREP_DEFER;
1086 			goto err_exit;
1087 		}
1088 
1089 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1090 						prot_sdb->table.sgl);
1091 		BUG_ON(unlikely(count > ivecs));
1092 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1093 
1094 		cmd->prot_sdb = prot_sdb;
1095 		cmd->prot_sdb->table.nents = count;
1096 	}
1097 
1098 	return BLKPREP_OK;
1099 err_exit:
1100 	if (is_mq) {
1101 		scsi_mq_free_sgtables(cmd);
1102 	} else {
1103 		scsi_release_buffers(cmd);
1104 		cmd->request->special = NULL;
1105 		scsi_put_command(cmd);
1106 		put_device(&sdev->sdev_gendev);
1107 	}
1108 	return error;
1109 }
1110 EXPORT_SYMBOL(scsi_init_io);
1111 
1112 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1113 		struct request *req)
1114 {
1115 	struct scsi_cmnd *cmd;
1116 
1117 	if (!req->special) {
1118 		/* Bail if we can't get a reference to the device */
1119 		if (!get_device(&sdev->sdev_gendev))
1120 			return NULL;
1121 
1122 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1123 		if (unlikely(!cmd)) {
1124 			put_device(&sdev->sdev_gendev);
1125 			return NULL;
1126 		}
1127 		req->special = cmd;
1128 	} else {
1129 		cmd = req->special;
1130 	}
1131 
1132 	/* pull a tag out of the request if we have one */
1133 	cmd->tag = req->tag;
1134 	cmd->request = req;
1135 
1136 	cmd->cmnd = req->cmd;
1137 	cmd->prot_op = SCSI_PROT_NORMAL;
1138 
1139 	return cmd;
1140 }
1141 
1142 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144 	struct scsi_cmnd *cmd = req->special;
1145 
1146 	/*
1147 	 * BLOCK_PC requests may transfer data, in which case they must
1148 	 * a bio attached to them.  Or they might contain a SCSI command
1149 	 * that does not transfer data, in which case they may optionally
1150 	 * submit a request without an attached bio.
1151 	 */
1152 	if (req->bio) {
1153 		int ret = scsi_init_io(cmd);
1154 		if (unlikely(ret))
1155 			return ret;
1156 	} else {
1157 		BUG_ON(blk_rq_bytes(req));
1158 
1159 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1160 	}
1161 
1162 	cmd->cmd_len = req->cmd_len;
1163 	cmd->transfersize = blk_rq_bytes(req);
1164 	cmd->allowed = req->retries;
1165 	return BLKPREP_OK;
1166 }
1167 
1168 /*
1169  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1170  * that still need to be translated to SCSI CDBs from the ULD.
1171  */
1172 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1173 {
1174 	struct scsi_cmnd *cmd = req->special;
1175 
1176 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1177 		int ret = sdev->handler->prep_fn(sdev, req);
1178 		if (ret != BLKPREP_OK)
1179 			return ret;
1180 	}
1181 
1182 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1183 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1184 }
1185 
1186 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1187 {
1188 	struct scsi_cmnd *cmd = req->special;
1189 
1190 	if (!blk_rq_bytes(req))
1191 		cmd->sc_data_direction = DMA_NONE;
1192 	else if (rq_data_dir(req) == WRITE)
1193 		cmd->sc_data_direction = DMA_TO_DEVICE;
1194 	else
1195 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1196 
1197 	switch (req->cmd_type) {
1198 	case REQ_TYPE_FS:
1199 		return scsi_setup_fs_cmnd(sdev, req);
1200 	case REQ_TYPE_BLOCK_PC:
1201 		return scsi_setup_blk_pc_cmnd(sdev, req);
1202 	default:
1203 		return BLKPREP_KILL;
1204 	}
1205 }
1206 
1207 static int
1208 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210 	int ret = BLKPREP_OK;
1211 
1212 	/*
1213 	 * If the device is not in running state we will reject some
1214 	 * or all commands.
1215 	 */
1216 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1217 		switch (sdev->sdev_state) {
1218 		case SDEV_OFFLINE:
1219 		case SDEV_TRANSPORT_OFFLINE:
1220 			/*
1221 			 * If the device is offline we refuse to process any
1222 			 * commands.  The device must be brought online
1223 			 * before trying any recovery commands.
1224 			 */
1225 			sdev_printk(KERN_ERR, sdev,
1226 				    "rejecting I/O to offline device\n");
1227 			ret = BLKPREP_KILL;
1228 			break;
1229 		case SDEV_DEL:
1230 			/*
1231 			 * If the device is fully deleted, we refuse to
1232 			 * process any commands as well.
1233 			 */
1234 			sdev_printk(KERN_ERR, sdev,
1235 				    "rejecting I/O to dead device\n");
1236 			ret = BLKPREP_KILL;
1237 			break;
1238 		case SDEV_BLOCK:
1239 		case SDEV_CREATED_BLOCK:
1240 			ret = BLKPREP_DEFER;
1241 			break;
1242 		case SDEV_QUIESCE:
1243 			/*
1244 			 * If the devices is blocked we defer normal commands.
1245 			 */
1246 			if (!(req->rq_flags & RQF_PREEMPT))
1247 				ret = BLKPREP_DEFER;
1248 			break;
1249 		default:
1250 			/*
1251 			 * For any other not fully online state we only allow
1252 			 * special commands.  In particular any user initiated
1253 			 * command is not allowed.
1254 			 */
1255 			if (!(req->rq_flags & RQF_PREEMPT))
1256 				ret = BLKPREP_KILL;
1257 			break;
1258 		}
1259 	}
1260 	return ret;
1261 }
1262 
1263 static int
1264 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1265 {
1266 	struct scsi_device *sdev = q->queuedata;
1267 
1268 	switch (ret) {
1269 	case BLKPREP_KILL:
1270 	case BLKPREP_INVALID:
1271 		req->errors = DID_NO_CONNECT << 16;
1272 		/* release the command and kill it */
1273 		if (req->special) {
1274 			struct scsi_cmnd *cmd = req->special;
1275 			scsi_release_buffers(cmd);
1276 			scsi_put_command(cmd);
1277 			put_device(&sdev->sdev_gendev);
1278 			req->special = NULL;
1279 		}
1280 		break;
1281 	case BLKPREP_DEFER:
1282 		/*
1283 		 * If we defer, the blk_peek_request() returns NULL, but the
1284 		 * queue must be restarted, so we schedule a callback to happen
1285 		 * shortly.
1286 		 */
1287 		if (atomic_read(&sdev->device_busy) == 0)
1288 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1289 		break;
1290 	default:
1291 		req->rq_flags |= RQF_DONTPREP;
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1298 {
1299 	struct scsi_device *sdev = q->queuedata;
1300 	struct scsi_cmnd *cmd;
1301 	int ret;
1302 
1303 	ret = scsi_prep_state_check(sdev, req);
1304 	if (ret != BLKPREP_OK)
1305 		goto out;
1306 
1307 	cmd = scsi_get_cmd_from_req(sdev, req);
1308 	if (unlikely(!cmd)) {
1309 		ret = BLKPREP_DEFER;
1310 		goto out;
1311 	}
1312 
1313 	ret = scsi_setup_cmnd(sdev, req);
1314 out:
1315 	return scsi_prep_return(q, req, ret);
1316 }
1317 
1318 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1319 {
1320 	scsi_uninit_cmd(req->special);
1321 }
1322 
1323 /*
1324  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1325  * return 0.
1326  *
1327  * Called with the queue_lock held.
1328  */
1329 static inline int scsi_dev_queue_ready(struct request_queue *q,
1330 				  struct scsi_device *sdev)
1331 {
1332 	unsigned int busy;
1333 
1334 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1335 	if (atomic_read(&sdev->device_blocked)) {
1336 		if (busy)
1337 			goto out_dec;
1338 
1339 		/*
1340 		 * unblock after device_blocked iterates to zero
1341 		 */
1342 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1343 			/*
1344 			 * For the MQ case we take care of this in the caller.
1345 			 */
1346 			if (!q->mq_ops)
1347 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1348 			goto out_dec;
1349 		}
1350 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1351 				   "unblocking device at zero depth\n"));
1352 	}
1353 
1354 	if (busy >= sdev->queue_depth)
1355 		goto out_dec;
1356 
1357 	return 1;
1358 out_dec:
1359 	atomic_dec(&sdev->device_busy);
1360 	return 0;
1361 }
1362 
1363 /*
1364  * scsi_target_queue_ready: checks if there we can send commands to target
1365  * @sdev: scsi device on starget to check.
1366  */
1367 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1368 					   struct scsi_device *sdev)
1369 {
1370 	struct scsi_target *starget = scsi_target(sdev);
1371 	unsigned int busy;
1372 
1373 	if (starget->single_lun) {
1374 		spin_lock_irq(shost->host_lock);
1375 		if (starget->starget_sdev_user &&
1376 		    starget->starget_sdev_user != sdev) {
1377 			spin_unlock_irq(shost->host_lock);
1378 			return 0;
1379 		}
1380 		starget->starget_sdev_user = sdev;
1381 		spin_unlock_irq(shost->host_lock);
1382 	}
1383 
1384 	if (starget->can_queue <= 0)
1385 		return 1;
1386 
1387 	busy = atomic_inc_return(&starget->target_busy) - 1;
1388 	if (atomic_read(&starget->target_blocked) > 0) {
1389 		if (busy)
1390 			goto starved;
1391 
1392 		/*
1393 		 * unblock after target_blocked iterates to zero
1394 		 */
1395 		if (atomic_dec_return(&starget->target_blocked) > 0)
1396 			goto out_dec;
1397 
1398 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1399 				 "unblocking target at zero depth\n"));
1400 	}
1401 
1402 	if (busy >= starget->can_queue)
1403 		goto starved;
1404 
1405 	return 1;
1406 
1407 starved:
1408 	spin_lock_irq(shost->host_lock);
1409 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1410 	spin_unlock_irq(shost->host_lock);
1411 out_dec:
1412 	if (starget->can_queue > 0)
1413 		atomic_dec(&starget->target_busy);
1414 	return 0;
1415 }
1416 
1417 /*
1418  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1419  * return 0. We must end up running the queue again whenever 0 is
1420  * returned, else IO can hang.
1421  */
1422 static inline int scsi_host_queue_ready(struct request_queue *q,
1423 				   struct Scsi_Host *shost,
1424 				   struct scsi_device *sdev)
1425 {
1426 	unsigned int busy;
1427 
1428 	if (scsi_host_in_recovery(shost))
1429 		return 0;
1430 
1431 	busy = atomic_inc_return(&shost->host_busy) - 1;
1432 	if (atomic_read(&shost->host_blocked) > 0) {
1433 		if (busy)
1434 			goto starved;
1435 
1436 		/*
1437 		 * unblock after host_blocked iterates to zero
1438 		 */
1439 		if (atomic_dec_return(&shost->host_blocked) > 0)
1440 			goto out_dec;
1441 
1442 		SCSI_LOG_MLQUEUE(3,
1443 			shost_printk(KERN_INFO, shost,
1444 				     "unblocking host at zero depth\n"));
1445 	}
1446 
1447 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1448 		goto starved;
1449 	if (shost->host_self_blocked)
1450 		goto starved;
1451 
1452 	/* We're OK to process the command, so we can't be starved */
1453 	if (!list_empty(&sdev->starved_entry)) {
1454 		spin_lock_irq(shost->host_lock);
1455 		if (!list_empty(&sdev->starved_entry))
1456 			list_del_init(&sdev->starved_entry);
1457 		spin_unlock_irq(shost->host_lock);
1458 	}
1459 
1460 	return 1;
1461 
1462 starved:
1463 	spin_lock_irq(shost->host_lock);
1464 	if (list_empty(&sdev->starved_entry))
1465 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1466 	spin_unlock_irq(shost->host_lock);
1467 out_dec:
1468 	atomic_dec(&shost->host_busy);
1469 	return 0;
1470 }
1471 
1472 /*
1473  * Busy state exporting function for request stacking drivers.
1474  *
1475  * For efficiency, no lock is taken to check the busy state of
1476  * shost/starget/sdev, since the returned value is not guaranteed and
1477  * may be changed after request stacking drivers call the function,
1478  * regardless of taking lock or not.
1479  *
1480  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1481  * needs to return 'not busy'. Otherwise, request stacking drivers
1482  * may hold requests forever.
1483  */
1484 static int scsi_lld_busy(struct request_queue *q)
1485 {
1486 	struct scsi_device *sdev = q->queuedata;
1487 	struct Scsi_Host *shost;
1488 
1489 	if (blk_queue_dying(q))
1490 		return 0;
1491 
1492 	shost = sdev->host;
1493 
1494 	/*
1495 	 * Ignore host/starget busy state.
1496 	 * Since block layer does not have a concept of fairness across
1497 	 * multiple queues, congestion of host/starget needs to be handled
1498 	 * in SCSI layer.
1499 	 */
1500 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1501 		return 1;
1502 
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Kill a request for a dead device
1508  */
1509 static void scsi_kill_request(struct request *req, struct request_queue *q)
1510 {
1511 	struct scsi_cmnd *cmd = req->special;
1512 	struct scsi_device *sdev;
1513 	struct scsi_target *starget;
1514 	struct Scsi_Host *shost;
1515 
1516 	blk_start_request(req);
1517 
1518 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1519 
1520 	sdev = cmd->device;
1521 	starget = scsi_target(sdev);
1522 	shost = sdev->host;
1523 	scsi_init_cmd_errh(cmd);
1524 	cmd->result = DID_NO_CONNECT << 16;
1525 	atomic_inc(&cmd->device->iorequest_cnt);
1526 
1527 	/*
1528 	 * SCSI request completion path will do scsi_device_unbusy(),
1529 	 * bump busy counts.  To bump the counters, we need to dance
1530 	 * with the locks as normal issue path does.
1531 	 */
1532 	atomic_inc(&sdev->device_busy);
1533 	atomic_inc(&shost->host_busy);
1534 	if (starget->can_queue > 0)
1535 		atomic_inc(&starget->target_busy);
1536 
1537 	blk_complete_request(req);
1538 }
1539 
1540 static void scsi_softirq_done(struct request *rq)
1541 {
1542 	struct scsi_cmnd *cmd = rq->special;
1543 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1544 	int disposition;
1545 
1546 	INIT_LIST_HEAD(&cmd->eh_entry);
1547 
1548 	atomic_inc(&cmd->device->iodone_cnt);
1549 	if (cmd->result)
1550 		atomic_inc(&cmd->device->ioerr_cnt);
1551 
1552 	disposition = scsi_decide_disposition(cmd);
1553 	if (disposition != SUCCESS &&
1554 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1555 		sdev_printk(KERN_ERR, cmd->device,
1556 			    "timing out command, waited %lus\n",
1557 			    wait_for/HZ);
1558 		disposition = SUCCESS;
1559 	}
1560 
1561 	scsi_log_completion(cmd, disposition);
1562 
1563 	switch (disposition) {
1564 		case SUCCESS:
1565 			scsi_finish_command(cmd);
1566 			break;
1567 		case NEEDS_RETRY:
1568 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1569 			break;
1570 		case ADD_TO_MLQUEUE:
1571 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1572 			break;
1573 		default:
1574 			if (!scsi_eh_scmd_add(cmd, 0))
1575 				scsi_finish_command(cmd);
1576 	}
1577 }
1578 
1579 /**
1580  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1581  * @cmd: command block we are dispatching.
1582  *
1583  * Return: nonzero return request was rejected and device's queue needs to be
1584  * plugged.
1585  */
1586 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1587 {
1588 	struct Scsi_Host *host = cmd->device->host;
1589 	int rtn = 0;
1590 
1591 	atomic_inc(&cmd->device->iorequest_cnt);
1592 
1593 	/* check if the device is still usable */
1594 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1595 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1596 		 * returns an immediate error upwards, and signals
1597 		 * that the device is no longer present */
1598 		cmd->result = DID_NO_CONNECT << 16;
1599 		goto done;
1600 	}
1601 
1602 	/* Check to see if the scsi lld made this device blocked. */
1603 	if (unlikely(scsi_device_blocked(cmd->device))) {
1604 		/*
1605 		 * in blocked state, the command is just put back on
1606 		 * the device queue.  The suspend state has already
1607 		 * blocked the queue so future requests should not
1608 		 * occur until the device transitions out of the
1609 		 * suspend state.
1610 		 */
1611 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1612 			"queuecommand : device blocked\n"));
1613 		return SCSI_MLQUEUE_DEVICE_BUSY;
1614 	}
1615 
1616 	/* Store the LUN value in cmnd, if needed. */
1617 	if (cmd->device->lun_in_cdb)
1618 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1619 			       (cmd->device->lun << 5 & 0xe0);
1620 
1621 	scsi_log_send(cmd);
1622 
1623 	/*
1624 	 * Before we queue this command, check if the command
1625 	 * length exceeds what the host adapter can handle.
1626 	 */
1627 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1628 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1629 			       "queuecommand : command too long. "
1630 			       "cdb_size=%d host->max_cmd_len=%d\n",
1631 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1632 		cmd->result = (DID_ABORT << 16);
1633 		goto done;
1634 	}
1635 
1636 	if (unlikely(host->shost_state == SHOST_DEL)) {
1637 		cmd->result = (DID_NO_CONNECT << 16);
1638 		goto done;
1639 
1640 	}
1641 
1642 	trace_scsi_dispatch_cmd_start(cmd);
1643 	rtn = host->hostt->queuecommand(host, cmd);
1644 	if (rtn) {
1645 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1646 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1647 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1648 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1649 
1650 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1651 			"queuecommand : request rejected\n"));
1652 	}
1653 
1654 	return rtn;
1655  done:
1656 	cmd->scsi_done(cmd);
1657 	return 0;
1658 }
1659 
1660 /**
1661  * scsi_done - Invoke completion on finished SCSI command.
1662  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1663  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1664  *
1665  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1666  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1667  * calls blk_complete_request() for further processing.
1668  *
1669  * This function is interrupt context safe.
1670  */
1671 static void scsi_done(struct scsi_cmnd *cmd)
1672 {
1673 	trace_scsi_dispatch_cmd_done(cmd);
1674 	blk_complete_request(cmd->request);
1675 }
1676 
1677 /*
1678  * Function:    scsi_request_fn()
1679  *
1680  * Purpose:     Main strategy routine for SCSI.
1681  *
1682  * Arguments:   q       - Pointer to actual queue.
1683  *
1684  * Returns:     Nothing
1685  *
1686  * Lock status: IO request lock assumed to be held when called.
1687  */
1688 static void scsi_request_fn(struct request_queue *q)
1689 	__releases(q->queue_lock)
1690 	__acquires(q->queue_lock)
1691 {
1692 	struct scsi_device *sdev = q->queuedata;
1693 	struct Scsi_Host *shost;
1694 	struct scsi_cmnd *cmd;
1695 	struct request *req;
1696 
1697 	/*
1698 	 * To start with, we keep looping until the queue is empty, or until
1699 	 * the host is no longer able to accept any more requests.
1700 	 */
1701 	shost = sdev->host;
1702 	for (;;) {
1703 		int rtn;
1704 		/*
1705 		 * get next queueable request.  We do this early to make sure
1706 		 * that the request is fully prepared even if we cannot
1707 		 * accept it.
1708 		 */
1709 		req = blk_peek_request(q);
1710 		if (!req)
1711 			break;
1712 
1713 		if (unlikely(!scsi_device_online(sdev))) {
1714 			sdev_printk(KERN_ERR, sdev,
1715 				    "rejecting I/O to offline device\n");
1716 			scsi_kill_request(req, q);
1717 			continue;
1718 		}
1719 
1720 		if (!scsi_dev_queue_ready(q, sdev))
1721 			break;
1722 
1723 		/*
1724 		 * Remove the request from the request list.
1725 		 */
1726 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1727 			blk_start_request(req);
1728 
1729 		spin_unlock_irq(q->queue_lock);
1730 		cmd = req->special;
1731 		if (unlikely(cmd == NULL)) {
1732 			printk(KERN_CRIT "impossible request in %s.\n"
1733 					 "please mail a stack trace to "
1734 					 "linux-scsi@vger.kernel.org\n",
1735 					 __func__);
1736 			blk_dump_rq_flags(req, "foo");
1737 			BUG();
1738 		}
1739 
1740 		/*
1741 		 * We hit this when the driver is using a host wide
1742 		 * tag map. For device level tag maps the queue_depth check
1743 		 * in the device ready fn would prevent us from trying
1744 		 * to allocate a tag. Since the map is a shared host resource
1745 		 * we add the dev to the starved list so it eventually gets
1746 		 * a run when a tag is freed.
1747 		 */
1748 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1749 			spin_lock_irq(shost->host_lock);
1750 			if (list_empty(&sdev->starved_entry))
1751 				list_add_tail(&sdev->starved_entry,
1752 					      &shost->starved_list);
1753 			spin_unlock_irq(shost->host_lock);
1754 			goto not_ready;
1755 		}
1756 
1757 		if (!scsi_target_queue_ready(shost, sdev))
1758 			goto not_ready;
1759 
1760 		if (!scsi_host_queue_ready(q, shost, sdev))
1761 			goto host_not_ready;
1762 
1763 		if (sdev->simple_tags)
1764 			cmd->flags |= SCMD_TAGGED;
1765 		else
1766 			cmd->flags &= ~SCMD_TAGGED;
1767 
1768 		/*
1769 		 * Finally, initialize any error handling parameters, and set up
1770 		 * the timers for timeouts.
1771 		 */
1772 		scsi_init_cmd_errh(cmd);
1773 
1774 		/*
1775 		 * Dispatch the command to the low-level driver.
1776 		 */
1777 		cmd->scsi_done = scsi_done;
1778 		rtn = scsi_dispatch_cmd(cmd);
1779 		if (rtn) {
1780 			scsi_queue_insert(cmd, rtn);
1781 			spin_lock_irq(q->queue_lock);
1782 			goto out_delay;
1783 		}
1784 		spin_lock_irq(q->queue_lock);
1785 	}
1786 
1787 	return;
1788 
1789  host_not_ready:
1790 	if (scsi_target(sdev)->can_queue > 0)
1791 		atomic_dec(&scsi_target(sdev)->target_busy);
1792  not_ready:
1793 	/*
1794 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1795 	 * must return with queue_lock held.
1796 	 *
1797 	 * Decrementing device_busy without checking it is OK, as all such
1798 	 * cases (host limits or settings) should run the queue at some
1799 	 * later time.
1800 	 */
1801 	spin_lock_irq(q->queue_lock);
1802 	blk_requeue_request(q, req);
1803 	atomic_dec(&sdev->device_busy);
1804 out_delay:
1805 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1806 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1807 }
1808 
1809 static inline int prep_to_mq(int ret)
1810 {
1811 	switch (ret) {
1812 	case BLKPREP_OK:
1813 		return BLK_MQ_RQ_QUEUE_OK;
1814 	case BLKPREP_DEFER:
1815 		return BLK_MQ_RQ_QUEUE_BUSY;
1816 	default:
1817 		return BLK_MQ_RQ_QUEUE_ERROR;
1818 	}
1819 }
1820 
1821 static int scsi_mq_prep_fn(struct request *req)
1822 {
1823 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1824 	struct scsi_device *sdev = req->q->queuedata;
1825 	struct Scsi_Host *shost = sdev->host;
1826 	unsigned char *sense_buf = cmd->sense_buffer;
1827 	struct scatterlist *sg;
1828 
1829 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1830 
1831 	req->special = cmd;
1832 
1833 	cmd->request = req;
1834 	cmd->device = sdev;
1835 	cmd->sense_buffer = sense_buf;
1836 
1837 	cmd->tag = req->tag;
1838 
1839 	cmd->cmnd = req->cmd;
1840 	cmd->prot_op = SCSI_PROT_NORMAL;
1841 
1842 	INIT_LIST_HEAD(&cmd->list);
1843 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1844 	cmd->jiffies_at_alloc = jiffies;
1845 
1846 	if (shost->use_cmd_list) {
1847 		spin_lock_irq(&sdev->list_lock);
1848 		list_add_tail(&cmd->list, &sdev->cmd_list);
1849 		spin_unlock_irq(&sdev->list_lock);
1850 	}
1851 
1852 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1853 	cmd->sdb.table.sgl = sg;
1854 
1855 	if (scsi_host_get_prot(shost)) {
1856 		cmd->prot_sdb = (void *)sg +
1857 			min_t(unsigned int,
1858 			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1859 			sizeof(struct scatterlist);
1860 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1861 
1862 		cmd->prot_sdb->table.sgl =
1863 			(struct scatterlist *)(cmd->prot_sdb + 1);
1864 	}
1865 
1866 	if (blk_bidi_rq(req)) {
1867 		struct request *next_rq = req->next_rq;
1868 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1869 
1870 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1871 		bidi_sdb->table.sgl =
1872 			(struct scatterlist *)(bidi_sdb + 1);
1873 
1874 		next_rq->special = bidi_sdb;
1875 	}
1876 
1877 	blk_mq_start_request(req);
1878 
1879 	return scsi_setup_cmnd(sdev, req);
1880 }
1881 
1882 static void scsi_mq_done(struct scsi_cmnd *cmd)
1883 {
1884 	trace_scsi_dispatch_cmd_done(cmd);
1885 	blk_mq_complete_request(cmd->request, cmd->request->errors);
1886 }
1887 
1888 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1889 			 const struct blk_mq_queue_data *bd)
1890 {
1891 	struct request *req = bd->rq;
1892 	struct request_queue *q = req->q;
1893 	struct scsi_device *sdev = q->queuedata;
1894 	struct Scsi_Host *shost = sdev->host;
1895 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1896 	int ret;
1897 	int reason;
1898 
1899 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1900 	if (ret != BLK_MQ_RQ_QUEUE_OK)
1901 		goto out;
1902 
1903 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1904 	if (!get_device(&sdev->sdev_gendev))
1905 		goto out;
1906 
1907 	if (!scsi_dev_queue_ready(q, sdev))
1908 		goto out_put_device;
1909 	if (!scsi_target_queue_ready(shost, sdev))
1910 		goto out_dec_device_busy;
1911 	if (!scsi_host_queue_ready(q, shost, sdev))
1912 		goto out_dec_target_busy;
1913 
1914 
1915 	if (!(req->rq_flags & RQF_DONTPREP)) {
1916 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1917 		if (ret != BLK_MQ_RQ_QUEUE_OK)
1918 			goto out_dec_host_busy;
1919 		req->rq_flags |= RQF_DONTPREP;
1920 	} else {
1921 		blk_mq_start_request(req);
1922 	}
1923 
1924 	if (sdev->simple_tags)
1925 		cmd->flags |= SCMD_TAGGED;
1926 	else
1927 		cmd->flags &= ~SCMD_TAGGED;
1928 
1929 	scsi_init_cmd_errh(cmd);
1930 	cmd->scsi_done = scsi_mq_done;
1931 
1932 	reason = scsi_dispatch_cmd(cmd);
1933 	if (reason) {
1934 		scsi_set_blocked(cmd, reason);
1935 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1936 		goto out_dec_host_busy;
1937 	}
1938 
1939 	return BLK_MQ_RQ_QUEUE_OK;
1940 
1941 out_dec_host_busy:
1942 	atomic_dec(&shost->host_busy);
1943 out_dec_target_busy:
1944 	if (scsi_target(sdev)->can_queue > 0)
1945 		atomic_dec(&scsi_target(sdev)->target_busy);
1946 out_dec_device_busy:
1947 	atomic_dec(&sdev->device_busy);
1948 out_put_device:
1949 	put_device(&sdev->sdev_gendev);
1950 out:
1951 	switch (ret) {
1952 	case BLK_MQ_RQ_QUEUE_BUSY:
1953 		if (atomic_read(&sdev->device_busy) == 0 &&
1954 		    !scsi_device_blocked(sdev))
1955 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1956 		break;
1957 	case BLK_MQ_RQ_QUEUE_ERROR:
1958 		/*
1959 		 * Make sure to release all allocated ressources when
1960 		 * we hit an error, as we will never see this command
1961 		 * again.
1962 		 */
1963 		if (req->rq_flags & RQF_DONTPREP)
1964 			scsi_mq_uninit_cmd(cmd);
1965 		break;
1966 	default:
1967 		break;
1968 	}
1969 	return ret;
1970 }
1971 
1972 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1973 		bool reserved)
1974 {
1975 	if (reserved)
1976 		return BLK_EH_RESET_TIMER;
1977 	return scsi_times_out(req);
1978 }
1979 
1980 static int scsi_init_request(void *data, struct request *rq,
1981 		unsigned int hctx_idx, unsigned int request_idx,
1982 		unsigned int numa_node)
1983 {
1984 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1985 
1986 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1987 			numa_node);
1988 	if (!cmd->sense_buffer)
1989 		return -ENOMEM;
1990 	return 0;
1991 }
1992 
1993 static void scsi_exit_request(void *data, struct request *rq,
1994 		unsigned int hctx_idx, unsigned int request_idx)
1995 {
1996 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1997 
1998 	kfree(cmd->sense_buffer);
1999 }
2000 
2001 static int scsi_map_queues(struct blk_mq_tag_set *set)
2002 {
2003 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2004 
2005 	if (shost->hostt->map_queues)
2006 		return shost->hostt->map_queues(shost);
2007 	return blk_mq_map_queues(set);
2008 }
2009 
2010 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2011 {
2012 	struct device *host_dev;
2013 	u64 bounce_limit = 0xffffffff;
2014 
2015 	if (shost->unchecked_isa_dma)
2016 		return BLK_BOUNCE_ISA;
2017 	/*
2018 	 * Platforms with virtual-DMA translation
2019 	 * hardware have no practical limit.
2020 	 */
2021 	if (!PCI_DMA_BUS_IS_PHYS)
2022 		return BLK_BOUNCE_ANY;
2023 
2024 	host_dev = scsi_get_device(shost);
2025 	if (host_dev && host_dev->dma_mask)
2026 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2027 
2028 	return bounce_limit;
2029 }
2030 
2031 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2032 {
2033 	struct device *dev = shost->dma_dev;
2034 
2035 	/*
2036 	 * this limit is imposed by hardware restrictions
2037 	 */
2038 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2039 					SG_MAX_SEGMENTS));
2040 
2041 	if (scsi_host_prot_dma(shost)) {
2042 		shost->sg_prot_tablesize =
2043 			min_not_zero(shost->sg_prot_tablesize,
2044 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2045 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2046 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2047 	}
2048 
2049 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2050 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2051 	blk_queue_segment_boundary(q, shost->dma_boundary);
2052 	dma_set_seg_boundary(dev, shost->dma_boundary);
2053 
2054 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2055 
2056 	if (!shost->use_clustering)
2057 		q->limits.cluster = 0;
2058 
2059 	/*
2060 	 * set a reasonable default alignment on word boundaries: the
2061 	 * host and device may alter it using
2062 	 * blk_queue_update_dma_alignment() later.
2063 	 */
2064 	blk_queue_dma_alignment(q, 0x03);
2065 }
2066 
2067 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2068 					 request_fn_proc *request_fn)
2069 {
2070 	struct request_queue *q;
2071 
2072 	q = blk_init_queue(request_fn, NULL);
2073 	if (!q)
2074 		return NULL;
2075 	__scsi_init_queue(shost, q);
2076 	return q;
2077 }
2078 EXPORT_SYMBOL(__scsi_alloc_queue);
2079 
2080 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2081 {
2082 	struct request_queue *q;
2083 
2084 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2085 	if (!q)
2086 		return NULL;
2087 
2088 	blk_queue_prep_rq(q, scsi_prep_fn);
2089 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2090 	blk_queue_softirq_done(q, scsi_softirq_done);
2091 	blk_queue_rq_timed_out(q, scsi_times_out);
2092 	blk_queue_lld_busy(q, scsi_lld_busy);
2093 	return q;
2094 }
2095 
2096 static struct blk_mq_ops scsi_mq_ops = {
2097 	.queue_rq	= scsi_queue_rq,
2098 	.complete	= scsi_softirq_done,
2099 	.timeout	= scsi_timeout,
2100 	.init_request	= scsi_init_request,
2101 	.exit_request	= scsi_exit_request,
2102 	.map_queues	= scsi_map_queues,
2103 };
2104 
2105 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2106 {
2107 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2108 	if (IS_ERR(sdev->request_queue))
2109 		return NULL;
2110 
2111 	sdev->request_queue->queuedata = sdev;
2112 	__scsi_init_queue(sdev->host, sdev->request_queue);
2113 	return sdev->request_queue;
2114 }
2115 
2116 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2117 {
2118 	unsigned int cmd_size, sgl_size, tbl_size;
2119 
2120 	tbl_size = shost->sg_tablesize;
2121 	if (tbl_size > SG_CHUNK_SIZE)
2122 		tbl_size = SG_CHUNK_SIZE;
2123 	sgl_size = tbl_size * sizeof(struct scatterlist);
2124 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2125 	if (scsi_host_get_prot(shost))
2126 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2127 
2128 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2129 	shost->tag_set.ops = &scsi_mq_ops;
2130 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2131 	shost->tag_set.queue_depth = shost->can_queue;
2132 	shost->tag_set.cmd_size = cmd_size;
2133 	shost->tag_set.numa_node = NUMA_NO_NODE;
2134 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2135 	shost->tag_set.flags |=
2136 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2137 	shost->tag_set.driver_data = shost;
2138 
2139 	return blk_mq_alloc_tag_set(&shost->tag_set);
2140 }
2141 
2142 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2143 {
2144 	blk_mq_free_tag_set(&shost->tag_set);
2145 }
2146 
2147 /*
2148  * Function:    scsi_block_requests()
2149  *
2150  * Purpose:     Utility function used by low-level drivers to prevent further
2151  *		commands from being queued to the device.
2152  *
2153  * Arguments:   shost       - Host in question
2154  *
2155  * Returns:     Nothing
2156  *
2157  * Lock status: No locks are assumed held.
2158  *
2159  * Notes:       There is no timer nor any other means by which the requests
2160  *		get unblocked other than the low-level driver calling
2161  *		scsi_unblock_requests().
2162  */
2163 void scsi_block_requests(struct Scsi_Host *shost)
2164 {
2165 	shost->host_self_blocked = 1;
2166 }
2167 EXPORT_SYMBOL(scsi_block_requests);
2168 
2169 /*
2170  * Function:    scsi_unblock_requests()
2171  *
2172  * Purpose:     Utility function used by low-level drivers to allow further
2173  *		commands from being queued to the device.
2174  *
2175  * Arguments:   shost       - Host in question
2176  *
2177  * Returns:     Nothing
2178  *
2179  * Lock status: No locks are assumed held.
2180  *
2181  * Notes:       There is no timer nor any other means by which the requests
2182  *		get unblocked other than the low-level driver calling
2183  *		scsi_unblock_requests().
2184  *
2185  *		This is done as an API function so that changes to the
2186  *		internals of the scsi mid-layer won't require wholesale
2187  *		changes to drivers that use this feature.
2188  */
2189 void scsi_unblock_requests(struct Scsi_Host *shost)
2190 {
2191 	shost->host_self_blocked = 0;
2192 	scsi_run_host_queues(shost);
2193 }
2194 EXPORT_SYMBOL(scsi_unblock_requests);
2195 
2196 int __init scsi_init_queue(void)
2197 {
2198 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2199 					   sizeof(struct scsi_data_buffer),
2200 					   0, 0, NULL);
2201 	if (!scsi_sdb_cache) {
2202 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2203 		return -ENOMEM;
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 void scsi_exit_queue(void)
2210 {
2211 	kmem_cache_destroy(scsi_sdb_cache);
2212 }
2213 
2214 /**
2215  *	scsi_mode_select - issue a mode select
2216  *	@sdev:	SCSI device to be queried
2217  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2218  *	@sp:	Save page bit (0 == don't save, 1 == save)
2219  *	@modepage: mode page being requested
2220  *	@buffer: request buffer (may not be smaller than eight bytes)
2221  *	@len:	length of request buffer.
2222  *	@timeout: command timeout
2223  *	@retries: number of retries before failing
2224  *	@data: returns a structure abstracting the mode header data
2225  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2226  *		must be SCSI_SENSE_BUFFERSIZE big.
2227  *
2228  *	Returns zero if successful; negative error number or scsi
2229  *	status on error
2230  *
2231  */
2232 int
2233 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2234 		 unsigned char *buffer, int len, int timeout, int retries,
2235 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2236 {
2237 	unsigned char cmd[10];
2238 	unsigned char *real_buffer;
2239 	int ret;
2240 
2241 	memset(cmd, 0, sizeof(cmd));
2242 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2243 
2244 	if (sdev->use_10_for_ms) {
2245 		if (len > 65535)
2246 			return -EINVAL;
2247 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2248 		if (!real_buffer)
2249 			return -ENOMEM;
2250 		memcpy(real_buffer + 8, buffer, len);
2251 		len += 8;
2252 		real_buffer[0] = 0;
2253 		real_buffer[1] = 0;
2254 		real_buffer[2] = data->medium_type;
2255 		real_buffer[3] = data->device_specific;
2256 		real_buffer[4] = data->longlba ? 0x01 : 0;
2257 		real_buffer[5] = 0;
2258 		real_buffer[6] = data->block_descriptor_length >> 8;
2259 		real_buffer[7] = data->block_descriptor_length;
2260 
2261 		cmd[0] = MODE_SELECT_10;
2262 		cmd[7] = len >> 8;
2263 		cmd[8] = len;
2264 	} else {
2265 		if (len > 255 || data->block_descriptor_length > 255 ||
2266 		    data->longlba)
2267 			return -EINVAL;
2268 
2269 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2270 		if (!real_buffer)
2271 			return -ENOMEM;
2272 		memcpy(real_buffer + 4, buffer, len);
2273 		len += 4;
2274 		real_buffer[0] = 0;
2275 		real_buffer[1] = data->medium_type;
2276 		real_buffer[2] = data->device_specific;
2277 		real_buffer[3] = data->block_descriptor_length;
2278 
2279 
2280 		cmd[0] = MODE_SELECT;
2281 		cmd[4] = len;
2282 	}
2283 
2284 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2285 			       sshdr, timeout, retries, NULL);
2286 	kfree(real_buffer);
2287 	return ret;
2288 }
2289 EXPORT_SYMBOL_GPL(scsi_mode_select);
2290 
2291 /**
2292  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2293  *	@sdev:	SCSI device to be queried
2294  *	@dbd:	set if mode sense will allow block descriptors to be returned
2295  *	@modepage: mode page being requested
2296  *	@buffer: request buffer (may not be smaller than eight bytes)
2297  *	@len:	length of request buffer.
2298  *	@timeout: command timeout
2299  *	@retries: number of retries before failing
2300  *	@data: returns a structure abstracting the mode header data
2301  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2302  *		must be SCSI_SENSE_BUFFERSIZE big.
2303  *
2304  *	Returns zero if unsuccessful, or the header offset (either 4
2305  *	or 8 depending on whether a six or ten byte command was
2306  *	issued) if successful.
2307  */
2308 int
2309 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2310 		  unsigned char *buffer, int len, int timeout, int retries,
2311 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2312 {
2313 	unsigned char cmd[12];
2314 	int use_10_for_ms;
2315 	int header_length;
2316 	int result, retry_count = retries;
2317 	struct scsi_sense_hdr my_sshdr;
2318 
2319 	memset(data, 0, sizeof(*data));
2320 	memset(&cmd[0], 0, 12);
2321 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2322 	cmd[2] = modepage;
2323 
2324 	/* caller might not be interested in sense, but we need it */
2325 	if (!sshdr)
2326 		sshdr = &my_sshdr;
2327 
2328  retry:
2329 	use_10_for_ms = sdev->use_10_for_ms;
2330 
2331 	if (use_10_for_ms) {
2332 		if (len < 8)
2333 			len = 8;
2334 
2335 		cmd[0] = MODE_SENSE_10;
2336 		cmd[8] = len;
2337 		header_length = 8;
2338 	} else {
2339 		if (len < 4)
2340 			len = 4;
2341 
2342 		cmd[0] = MODE_SENSE;
2343 		cmd[4] = len;
2344 		header_length = 4;
2345 	}
2346 
2347 	memset(buffer, 0, len);
2348 
2349 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2350 				  sshdr, timeout, retries, NULL);
2351 
2352 	/* This code looks awful: what it's doing is making sure an
2353 	 * ILLEGAL REQUEST sense return identifies the actual command
2354 	 * byte as the problem.  MODE_SENSE commands can return
2355 	 * ILLEGAL REQUEST if the code page isn't supported */
2356 
2357 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2358 	    (driver_byte(result) & DRIVER_SENSE)) {
2359 		if (scsi_sense_valid(sshdr)) {
2360 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2361 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2362 				/*
2363 				 * Invalid command operation code
2364 				 */
2365 				sdev->use_10_for_ms = 0;
2366 				goto retry;
2367 			}
2368 		}
2369 	}
2370 
2371 	if(scsi_status_is_good(result)) {
2372 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2373 			     (modepage == 6 || modepage == 8))) {
2374 			/* Initio breakage? */
2375 			header_length = 0;
2376 			data->length = 13;
2377 			data->medium_type = 0;
2378 			data->device_specific = 0;
2379 			data->longlba = 0;
2380 			data->block_descriptor_length = 0;
2381 		} else if(use_10_for_ms) {
2382 			data->length = buffer[0]*256 + buffer[1] + 2;
2383 			data->medium_type = buffer[2];
2384 			data->device_specific = buffer[3];
2385 			data->longlba = buffer[4] & 0x01;
2386 			data->block_descriptor_length = buffer[6]*256
2387 				+ buffer[7];
2388 		} else {
2389 			data->length = buffer[0] + 1;
2390 			data->medium_type = buffer[1];
2391 			data->device_specific = buffer[2];
2392 			data->block_descriptor_length = buffer[3];
2393 		}
2394 		data->header_length = header_length;
2395 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2396 		   scsi_sense_valid(sshdr) &&
2397 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2398 		retry_count--;
2399 		goto retry;
2400 	}
2401 
2402 	return result;
2403 }
2404 EXPORT_SYMBOL(scsi_mode_sense);
2405 
2406 /**
2407  *	scsi_test_unit_ready - test if unit is ready
2408  *	@sdev:	scsi device to change the state of.
2409  *	@timeout: command timeout
2410  *	@retries: number of retries before failing
2411  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2412  *		returning sense. Make sure that this is cleared before passing
2413  *		in.
2414  *
2415  *	Returns zero if unsuccessful or an error if TUR failed.  For
2416  *	removable media, UNIT_ATTENTION sets ->changed flag.
2417  **/
2418 int
2419 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2420 		     struct scsi_sense_hdr *sshdr_external)
2421 {
2422 	char cmd[] = {
2423 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2424 	};
2425 	struct scsi_sense_hdr *sshdr;
2426 	int result;
2427 
2428 	if (!sshdr_external)
2429 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2430 	else
2431 		sshdr = sshdr_external;
2432 
2433 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2434 	do {
2435 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2436 					  timeout, retries, NULL);
2437 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2438 		    sshdr->sense_key == UNIT_ATTENTION)
2439 			sdev->changed = 1;
2440 	} while (scsi_sense_valid(sshdr) &&
2441 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2442 
2443 	if (!sshdr_external)
2444 		kfree(sshdr);
2445 	return result;
2446 }
2447 EXPORT_SYMBOL(scsi_test_unit_ready);
2448 
2449 /**
2450  *	scsi_device_set_state - Take the given device through the device state model.
2451  *	@sdev:	scsi device to change the state of.
2452  *	@state:	state to change to.
2453  *
2454  *	Returns zero if unsuccessful or an error if the requested
2455  *	transition is illegal.
2456  */
2457 int
2458 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2459 {
2460 	enum scsi_device_state oldstate = sdev->sdev_state;
2461 
2462 	if (state == oldstate)
2463 		return 0;
2464 
2465 	switch (state) {
2466 	case SDEV_CREATED:
2467 		switch (oldstate) {
2468 		case SDEV_CREATED_BLOCK:
2469 			break;
2470 		default:
2471 			goto illegal;
2472 		}
2473 		break;
2474 
2475 	case SDEV_RUNNING:
2476 		switch (oldstate) {
2477 		case SDEV_CREATED:
2478 		case SDEV_OFFLINE:
2479 		case SDEV_TRANSPORT_OFFLINE:
2480 		case SDEV_QUIESCE:
2481 		case SDEV_BLOCK:
2482 			break;
2483 		default:
2484 			goto illegal;
2485 		}
2486 		break;
2487 
2488 	case SDEV_QUIESCE:
2489 		switch (oldstate) {
2490 		case SDEV_RUNNING:
2491 		case SDEV_OFFLINE:
2492 		case SDEV_TRANSPORT_OFFLINE:
2493 			break;
2494 		default:
2495 			goto illegal;
2496 		}
2497 		break;
2498 
2499 	case SDEV_OFFLINE:
2500 	case SDEV_TRANSPORT_OFFLINE:
2501 		switch (oldstate) {
2502 		case SDEV_CREATED:
2503 		case SDEV_RUNNING:
2504 		case SDEV_QUIESCE:
2505 		case SDEV_BLOCK:
2506 			break;
2507 		default:
2508 			goto illegal;
2509 		}
2510 		break;
2511 
2512 	case SDEV_BLOCK:
2513 		switch (oldstate) {
2514 		case SDEV_RUNNING:
2515 		case SDEV_CREATED_BLOCK:
2516 			break;
2517 		default:
2518 			goto illegal;
2519 		}
2520 		break;
2521 
2522 	case SDEV_CREATED_BLOCK:
2523 		switch (oldstate) {
2524 		case SDEV_CREATED:
2525 			break;
2526 		default:
2527 			goto illegal;
2528 		}
2529 		break;
2530 
2531 	case SDEV_CANCEL:
2532 		switch (oldstate) {
2533 		case SDEV_CREATED:
2534 		case SDEV_RUNNING:
2535 		case SDEV_QUIESCE:
2536 		case SDEV_OFFLINE:
2537 		case SDEV_TRANSPORT_OFFLINE:
2538 		case SDEV_BLOCK:
2539 			break;
2540 		default:
2541 			goto illegal;
2542 		}
2543 		break;
2544 
2545 	case SDEV_DEL:
2546 		switch (oldstate) {
2547 		case SDEV_CREATED:
2548 		case SDEV_RUNNING:
2549 		case SDEV_OFFLINE:
2550 		case SDEV_TRANSPORT_OFFLINE:
2551 		case SDEV_CANCEL:
2552 		case SDEV_CREATED_BLOCK:
2553 			break;
2554 		default:
2555 			goto illegal;
2556 		}
2557 		break;
2558 
2559 	}
2560 	sdev->sdev_state = state;
2561 	return 0;
2562 
2563  illegal:
2564 	SCSI_LOG_ERROR_RECOVERY(1,
2565 				sdev_printk(KERN_ERR, sdev,
2566 					    "Illegal state transition %s->%s",
2567 					    scsi_device_state_name(oldstate),
2568 					    scsi_device_state_name(state))
2569 				);
2570 	return -EINVAL;
2571 }
2572 EXPORT_SYMBOL(scsi_device_set_state);
2573 
2574 /**
2575  * 	sdev_evt_emit - emit a single SCSI device uevent
2576  *	@sdev: associated SCSI device
2577  *	@evt: event to emit
2578  *
2579  *	Send a single uevent (scsi_event) to the associated scsi_device.
2580  */
2581 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2582 {
2583 	int idx = 0;
2584 	char *envp[3];
2585 
2586 	switch (evt->evt_type) {
2587 	case SDEV_EVT_MEDIA_CHANGE:
2588 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2589 		break;
2590 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2591 		scsi_rescan_device(&sdev->sdev_gendev);
2592 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2593 		break;
2594 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2595 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2596 		break;
2597 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2598 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2599 		break;
2600 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2601 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2602 		break;
2603 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2604 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2605 		break;
2606 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2607 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2608 		break;
2609 	default:
2610 		/* do nothing */
2611 		break;
2612 	}
2613 
2614 	envp[idx++] = NULL;
2615 
2616 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2617 }
2618 
2619 /**
2620  * 	sdev_evt_thread - send a uevent for each scsi event
2621  *	@work: work struct for scsi_device
2622  *
2623  *	Dispatch queued events to their associated scsi_device kobjects
2624  *	as uevents.
2625  */
2626 void scsi_evt_thread(struct work_struct *work)
2627 {
2628 	struct scsi_device *sdev;
2629 	enum scsi_device_event evt_type;
2630 	LIST_HEAD(event_list);
2631 
2632 	sdev = container_of(work, struct scsi_device, event_work);
2633 
2634 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2635 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2636 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2637 
2638 	while (1) {
2639 		struct scsi_event *evt;
2640 		struct list_head *this, *tmp;
2641 		unsigned long flags;
2642 
2643 		spin_lock_irqsave(&sdev->list_lock, flags);
2644 		list_splice_init(&sdev->event_list, &event_list);
2645 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2646 
2647 		if (list_empty(&event_list))
2648 			break;
2649 
2650 		list_for_each_safe(this, tmp, &event_list) {
2651 			evt = list_entry(this, struct scsi_event, node);
2652 			list_del(&evt->node);
2653 			scsi_evt_emit(sdev, evt);
2654 			kfree(evt);
2655 		}
2656 	}
2657 }
2658 
2659 /**
2660  * 	sdev_evt_send - send asserted event to uevent thread
2661  *	@sdev: scsi_device event occurred on
2662  *	@evt: event to send
2663  *
2664  *	Assert scsi device event asynchronously.
2665  */
2666 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2667 {
2668 	unsigned long flags;
2669 
2670 #if 0
2671 	/* FIXME: currently this check eliminates all media change events
2672 	 * for polled devices.  Need to update to discriminate between AN
2673 	 * and polled events */
2674 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2675 		kfree(evt);
2676 		return;
2677 	}
2678 #endif
2679 
2680 	spin_lock_irqsave(&sdev->list_lock, flags);
2681 	list_add_tail(&evt->node, &sdev->event_list);
2682 	schedule_work(&sdev->event_work);
2683 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2684 }
2685 EXPORT_SYMBOL_GPL(sdev_evt_send);
2686 
2687 /**
2688  * 	sdev_evt_alloc - allocate a new scsi event
2689  *	@evt_type: type of event to allocate
2690  *	@gfpflags: GFP flags for allocation
2691  *
2692  *	Allocates and returns a new scsi_event.
2693  */
2694 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2695 				  gfp_t gfpflags)
2696 {
2697 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2698 	if (!evt)
2699 		return NULL;
2700 
2701 	evt->evt_type = evt_type;
2702 	INIT_LIST_HEAD(&evt->node);
2703 
2704 	/* evt_type-specific initialization, if any */
2705 	switch (evt_type) {
2706 	case SDEV_EVT_MEDIA_CHANGE:
2707 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2708 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2709 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2710 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2711 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2712 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2713 	default:
2714 		/* do nothing */
2715 		break;
2716 	}
2717 
2718 	return evt;
2719 }
2720 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2721 
2722 /**
2723  * 	sdev_evt_send_simple - send asserted event to uevent thread
2724  *	@sdev: scsi_device event occurred on
2725  *	@evt_type: type of event to send
2726  *	@gfpflags: GFP flags for allocation
2727  *
2728  *	Assert scsi device event asynchronously, given an event type.
2729  */
2730 void sdev_evt_send_simple(struct scsi_device *sdev,
2731 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2732 {
2733 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2734 	if (!evt) {
2735 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2736 			    evt_type);
2737 		return;
2738 	}
2739 
2740 	sdev_evt_send(sdev, evt);
2741 }
2742 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2743 
2744 /**
2745  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2746  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2747  */
2748 static int scsi_request_fn_active(struct scsi_device *sdev)
2749 {
2750 	struct request_queue *q = sdev->request_queue;
2751 	int request_fn_active;
2752 
2753 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2754 
2755 	spin_lock_irq(q->queue_lock);
2756 	request_fn_active = q->request_fn_active;
2757 	spin_unlock_irq(q->queue_lock);
2758 
2759 	return request_fn_active;
2760 }
2761 
2762 /**
2763  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2764  * @sdev: SCSI device pointer.
2765  *
2766  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2767  * invoked from scsi_request_fn() have finished.
2768  */
2769 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2770 {
2771 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2772 
2773 	while (scsi_request_fn_active(sdev))
2774 		msleep(20);
2775 }
2776 
2777 /**
2778  *	scsi_device_quiesce - Block user issued commands.
2779  *	@sdev:	scsi device to quiesce.
2780  *
2781  *	This works by trying to transition to the SDEV_QUIESCE state
2782  *	(which must be a legal transition).  When the device is in this
2783  *	state, only special requests will be accepted, all others will
2784  *	be deferred.  Since special requests may also be requeued requests,
2785  *	a successful return doesn't guarantee the device will be
2786  *	totally quiescent.
2787  *
2788  *	Must be called with user context, may sleep.
2789  *
2790  *	Returns zero if unsuccessful or an error if not.
2791  */
2792 int
2793 scsi_device_quiesce(struct scsi_device *sdev)
2794 {
2795 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2796 	if (err)
2797 		return err;
2798 
2799 	scsi_run_queue(sdev->request_queue);
2800 	while (atomic_read(&sdev->device_busy)) {
2801 		msleep_interruptible(200);
2802 		scsi_run_queue(sdev->request_queue);
2803 	}
2804 	return 0;
2805 }
2806 EXPORT_SYMBOL(scsi_device_quiesce);
2807 
2808 /**
2809  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2810  *	@sdev:	scsi device to resume.
2811  *
2812  *	Moves the device from quiesced back to running and restarts the
2813  *	queues.
2814  *
2815  *	Must be called with user context, may sleep.
2816  */
2817 void scsi_device_resume(struct scsi_device *sdev)
2818 {
2819 	/* check if the device state was mutated prior to resume, and if
2820 	 * so assume the state is being managed elsewhere (for example
2821 	 * device deleted during suspend)
2822 	 */
2823 	if (sdev->sdev_state != SDEV_QUIESCE ||
2824 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2825 		return;
2826 	scsi_run_queue(sdev->request_queue);
2827 }
2828 EXPORT_SYMBOL(scsi_device_resume);
2829 
2830 static void
2831 device_quiesce_fn(struct scsi_device *sdev, void *data)
2832 {
2833 	scsi_device_quiesce(sdev);
2834 }
2835 
2836 void
2837 scsi_target_quiesce(struct scsi_target *starget)
2838 {
2839 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2840 }
2841 EXPORT_SYMBOL(scsi_target_quiesce);
2842 
2843 static void
2844 device_resume_fn(struct scsi_device *sdev, void *data)
2845 {
2846 	scsi_device_resume(sdev);
2847 }
2848 
2849 void
2850 scsi_target_resume(struct scsi_target *starget)
2851 {
2852 	starget_for_each_device(starget, NULL, device_resume_fn);
2853 }
2854 EXPORT_SYMBOL(scsi_target_resume);
2855 
2856 /**
2857  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2858  * @sdev:	device to block
2859  *
2860  * Block request made by scsi lld's to temporarily stop all
2861  * scsi commands on the specified device. May sleep.
2862  *
2863  * Returns zero if successful or error if not
2864  *
2865  * Notes:
2866  *	This routine transitions the device to the SDEV_BLOCK state
2867  *	(which must be a legal transition).  When the device is in this
2868  *	state, all commands are deferred until the scsi lld reenables
2869  *	the device with scsi_device_unblock or device_block_tmo fires.
2870  *
2871  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2872  * scsi_internal_device_block() has blocked a SCSI device and also
2873  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2874  */
2875 int
2876 scsi_internal_device_block(struct scsi_device *sdev)
2877 {
2878 	struct request_queue *q = sdev->request_queue;
2879 	unsigned long flags;
2880 	int err = 0;
2881 
2882 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2883 	if (err) {
2884 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2885 
2886 		if (err)
2887 			return err;
2888 	}
2889 
2890 	/*
2891 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2892 	 * block layer from calling the midlayer with this device's
2893 	 * request queue.
2894 	 */
2895 	if (q->mq_ops) {
2896 		blk_mq_quiesce_queue(q);
2897 	} else {
2898 		spin_lock_irqsave(q->queue_lock, flags);
2899 		blk_stop_queue(q);
2900 		spin_unlock_irqrestore(q->queue_lock, flags);
2901 		scsi_wait_for_queuecommand(sdev);
2902 	}
2903 
2904 	return 0;
2905 }
2906 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2907 
2908 /**
2909  * scsi_internal_device_unblock - resume a device after a block request
2910  * @sdev:	device to resume
2911  * @new_state:	state to set devices to after unblocking
2912  *
2913  * Called by scsi lld's or the midlayer to restart the device queue
2914  * for the previously suspended scsi device.  Called from interrupt or
2915  * normal process context.
2916  *
2917  * Returns zero if successful or error if not.
2918  *
2919  * Notes:
2920  *	This routine transitions the device to the SDEV_RUNNING state
2921  *	or to one of the offline states (which must be a legal transition)
2922  *	allowing the midlayer to goose the queue for this device.
2923  */
2924 int
2925 scsi_internal_device_unblock(struct scsi_device *sdev,
2926 			     enum scsi_device_state new_state)
2927 {
2928 	struct request_queue *q = sdev->request_queue;
2929 	unsigned long flags;
2930 
2931 	/*
2932 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2933 	 * offlined states and goose the device queue if successful.
2934 	 */
2935 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2936 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2937 		sdev->sdev_state = new_state;
2938 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2939 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2940 		    new_state == SDEV_OFFLINE)
2941 			sdev->sdev_state = new_state;
2942 		else
2943 			sdev->sdev_state = SDEV_CREATED;
2944 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2945 		 sdev->sdev_state != SDEV_OFFLINE)
2946 		return -EINVAL;
2947 
2948 	if (q->mq_ops) {
2949 		blk_mq_start_stopped_hw_queues(q, false);
2950 	} else {
2951 		spin_lock_irqsave(q->queue_lock, flags);
2952 		blk_start_queue(q);
2953 		spin_unlock_irqrestore(q->queue_lock, flags);
2954 	}
2955 
2956 	return 0;
2957 }
2958 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2959 
2960 static void
2961 device_block(struct scsi_device *sdev, void *data)
2962 {
2963 	scsi_internal_device_block(sdev);
2964 }
2965 
2966 static int
2967 target_block(struct device *dev, void *data)
2968 {
2969 	if (scsi_is_target_device(dev))
2970 		starget_for_each_device(to_scsi_target(dev), NULL,
2971 					device_block);
2972 	return 0;
2973 }
2974 
2975 void
2976 scsi_target_block(struct device *dev)
2977 {
2978 	if (scsi_is_target_device(dev))
2979 		starget_for_each_device(to_scsi_target(dev), NULL,
2980 					device_block);
2981 	else
2982 		device_for_each_child(dev, NULL, target_block);
2983 }
2984 EXPORT_SYMBOL_GPL(scsi_target_block);
2985 
2986 static void
2987 device_unblock(struct scsi_device *sdev, void *data)
2988 {
2989 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2990 }
2991 
2992 static int
2993 target_unblock(struct device *dev, void *data)
2994 {
2995 	if (scsi_is_target_device(dev))
2996 		starget_for_each_device(to_scsi_target(dev), data,
2997 					device_unblock);
2998 	return 0;
2999 }
3000 
3001 void
3002 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3003 {
3004 	if (scsi_is_target_device(dev))
3005 		starget_for_each_device(to_scsi_target(dev), &new_state,
3006 					device_unblock);
3007 	else
3008 		device_for_each_child(dev, &new_state, target_unblock);
3009 }
3010 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3011 
3012 /**
3013  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3014  * @sgl:	scatter-gather list
3015  * @sg_count:	number of segments in sg
3016  * @offset:	offset in bytes into sg, on return offset into the mapped area
3017  * @len:	bytes to map, on return number of bytes mapped
3018  *
3019  * Returns virtual address of the start of the mapped page
3020  */
3021 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3022 			  size_t *offset, size_t *len)
3023 {
3024 	int i;
3025 	size_t sg_len = 0, len_complete = 0;
3026 	struct scatterlist *sg;
3027 	struct page *page;
3028 
3029 	WARN_ON(!irqs_disabled());
3030 
3031 	for_each_sg(sgl, sg, sg_count, i) {
3032 		len_complete = sg_len; /* Complete sg-entries */
3033 		sg_len += sg->length;
3034 		if (sg_len > *offset)
3035 			break;
3036 	}
3037 
3038 	if (unlikely(i == sg_count)) {
3039 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3040 			"elements %d\n",
3041 		       __func__, sg_len, *offset, sg_count);
3042 		WARN_ON(1);
3043 		return NULL;
3044 	}
3045 
3046 	/* Offset starting from the beginning of first page in this sg-entry */
3047 	*offset = *offset - len_complete + sg->offset;
3048 
3049 	/* Assumption: contiguous pages can be accessed as "page + i" */
3050 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3051 	*offset &= ~PAGE_MASK;
3052 
3053 	/* Bytes in this sg-entry from *offset to the end of the page */
3054 	sg_len = PAGE_SIZE - *offset;
3055 	if (*len > sg_len)
3056 		*len = sg_len;
3057 
3058 	return kmap_atomic(page);
3059 }
3060 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3061 
3062 /**
3063  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3064  * @virt:	virtual address to be unmapped
3065  */
3066 void scsi_kunmap_atomic_sg(void *virt)
3067 {
3068 	kunmap_atomic(virt);
3069 }
3070 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3071 
3072 void sdev_disable_disk_events(struct scsi_device *sdev)
3073 {
3074 	atomic_inc(&sdev->disk_events_disable_depth);
3075 }
3076 EXPORT_SYMBOL(sdev_disable_disk_events);
3077 
3078 void sdev_enable_disk_events(struct scsi_device *sdev)
3079 {
3080 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3081 		return;
3082 	atomic_dec(&sdev->disk_events_disable_depth);
3083 }
3084 EXPORT_SYMBOL(sdev_enable_disk_events);
3085 
3086 /**
3087  * scsi_vpd_lun_id - return a unique device identification
3088  * @sdev: SCSI device
3089  * @id:   buffer for the identification
3090  * @id_len:  length of the buffer
3091  *
3092  * Copies a unique device identification into @id based
3093  * on the information in the VPD page 0x83 of the device.
3094  * The string will be formatted as a SCSI name string.
3095  *
3096  * Returns the length of the identification or error on failure.
3097  * If the identifier is longer than the supplied buffer the actual
3098  * identifier length is returned and the buffer is not zero-padded.
3099  */
3100 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3101 {
3102 	u8 cur_id_type = 0xff;
3103 	u8 cur_id_size = 0;
3104 	unsigned char *d, *cur_id_str;
3105 	unsigned char __rcu *vpd_pg83;
3106 	int id_size = -EINVAL;
3107 
3108 	rcu_read_lock();
3109 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3110 	if (!vpd_pg83) {
3111 		rcu_read_unlock();
3112 		return -ENXIO;
3113 	}
3114 
3115 	/*
3116 	 * Look for the correct descriptor.
3117 	 * Order of preference for lun descriptor:
3118 	 * - SCSI name string
3119 	 * - NAA IEEE Registered Extended
3120 	 * - EUI-64 based 16-byte
3121 	 * - EUI-64 based 12-byte
3122 	 * - NAA IEEE Registered
3123 	 * - NAA IEEE Extended
3124 	 * - T10 Vendor ID
3125 	 * as longer descriptors reduce the likelyhood
3126 	 * of identification clashes.
3127 	 */
3128 
3129 	/* The id string must be at least 20 bytes + terminating NULL byte */
3130 	if (id_len < 21) {
3131 		rcu_read_unlock();
3132 		return -EINVAL;
3133 	}
3134 
3135 	memset(id, 0, id_len);
3136 	d = vpd_pg83 + 4;
3137 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3138 		/* Skip designators not referring to the LUN */
3139 		if ((d[1] & 0x30) != 0x00)
3140 			goto next_desig;
3141 
3142 		switch (d[1] & 0xf) {
3143 		case 0x1:
3144 			/* T10 Vendor ID */
3145 			if (cur_id_size > d[3])
3146 				break;
3147 			/* Prefer anything */
3148 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3149 				break;
3150 			cur_id_size = d[3];
3151 			if (cur_id_size + 4 > id_len)
3152 				cur_id_size = id_len - 4;
3153 			cur_id_str = d + 4;
3154 			cur_id_type = d[1] & 0xf;
3155 			id_size = snprintf(id, id_len, "t10.%*pE",
3156 					   cur_id_size, cur_id_str);
3157 			break;
3158 		case 0x2:
3159 			/* EUI-64 */
3160 			if (cur_id_size > d[3])
3161 				break;
3162 			/* Prefer NAA IEEE Registered Extended */
3163 			if (cur_id_type == 0x3 &&
3164 			    cur_id_size == d[3])
3165 				break;
3166 			cur_id_size = d[3];
3167 			cur_id_str = d + 4;
3168 			cur_id_type = d[1] & 0xf;
3169 			switch (cur_id_size) {
3170 			case 8:
3171 				id_size = snprintf(id, id_len,
3172 						   "eui.%8phN",
3173 						   cur_id_str);
3174 				break;
3175 			case 12:
3176 				id_size = snprintf(id, id_len,
3177 						   "eui.%12phN",
3178 						   cur_id_str);
3179 				break;
3180 			case 16:
3181 				id_size = snprintf(id, id_len,
3182 						   "eui.%16phN",
3183 						   cur_id_str);
3184 				break;
3185 			default:
3186 				cur_id_size = 0;
3187 				break;
3188 			}
3189 			break;
3190 		case 0x3:
3191 			/* NAA */
3192 			if (cur_id_size > d[3])
3193 				break;
3194 			cur_id_size = d[3];
3195 			cur_id_str = d + 4;
3196 			cur_id_type = d[1] & 0xf;
3197 			switch (cur_id_size) {
3198 			case 8:
3199 				id_size = snprintf(id, id_len,
3200 						   "naa.%8phN",
3201 						   cur_id_str);
3202 				break;
3203 			case 16:
3204 				id_size = snprintf(id, id_len,
3205 						   "naa.%16phN",
3206 						   cur_id_str);
3207 				break;
3208 			default:
3209 				cur_id_size = 0;
3210 				break;
3211 			}
3212 			break;
3213 		case 0x8:
3214 			/* SCSI name string */
3215 			if (cur_id_size + 4 > d[3])
3216 				break;
3217 			/* Prefer others for truncated descriptor */
3218 			if (cur_id_size && d[3] > id_len)
3219 				break;
3220 			cur_id_size = id_size = d[3];
3221 			cur_id_str = d + 4;
3222 			cur_id_type = d[1] & 0xf;
3223 			if (cur_id_size >= id_len)
3224 				cur_id_size = id_len - 1;
3225 			memcpy(id, cur_id_str, cur_id_size);
3226 			/* Decrease priority for truncated descriptor */
3227 			if (cur_id_size != id_size)
3228 				cur_id_size = 6;
3229 			break;
3230 		default:
3231 			break;
3232 		}
3233 next_desig:
3234 		d += d[3] + 4;
3235 	}
3236 	rcu_read_unlock();
3237 
3238 	return id_size;
3239 }
3240 EXPORT_SYMBOL(scsi_vpd_lun_id);
3241 
3242 /*
3243  * scsi_vpd_tpg_id - return a target port group identifier
3244  * @sdev: SCSI device
3245  *
3246  * Returns the Target Port Group identifier from the information
3247  * froom VPD page 0x83 of the device.
3248  *
3249  * Returns the identifier or error on failure.
3250  */
3251 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3252 {
3253 	unsigned char *d;
3254 	unsigned char __rcu *vpd_pg83;
3255 	int group_id = -EAGAIN, rel_port = -1;
3256 
3257 	rcu_read_lock();
3258 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3259 	if (!vpd_pg83) {
3260 		rcu_read_unlock();
3261 		return -ENXIO;
3262 	}
3263 
3264 	d = sdev->vpd_pg83 + 4;
3265 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3266 		switch (d[1] & 0xf) {
3267 		case 0x4:
3268 			/* Relative target port */
3269 			rel_port = get_unaligned_be16(&d[6]);
3270 			break;
3271 		case 0x5:
3272 			/* Target port group */
3273 			group_id = get_unaligned_be16(&d[6]);
3274 			break;
3275 		default:
3276 			break;
3277 		}
3278 		d += d[3] + 4;
3279 	}
3280 	rcu_read_unlock();
3281 
3282 	if (group_id >= 0 && rel_id && rel_port != -1)
3283 		*rel_id = rel_port;
3284 
3285 	return group_id;
3286 }
3287 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3288