xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 66a28915)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66 
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 				   unsigned char *sense_buffer)
69 {
70 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 			sense_buffer);
72 }
73 
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 	gfp_t gfp_mask, int numa_node)
76 {
77 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 				     gfp_mask, numa_node);
79 }
80 
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 	struct kmem_cache *cache;
84 	int ret = 0;
85 
86 	mutex_lock(&scsi_sense_cache_mutex);
87 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 	if (cache)
89 		goto exit;
90 
91 	if (shost->unchecked_isa_dma) {
92 		scsi_sense_isadma_cache =
93 			kmem_cache_create("scsi_sense_cache(DMA)",
94 				SCSI_SENSE_BUFFERSIZE, 0,
95 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 		if (!scsi_sense_isadma_cache)
97 			ret = -ENOMEM;
98 	} else {
99 		scsi_sense_cache =
100 			kmem_cache_create_usercopy("scsi_sense_cache",
101 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 				0, SCSI_SENSE_BUFFERSIZE, NULL);
103 		if (!scsi_sense_cache)
104 			ret = -ENOMEM;
105 	}
106  exit:
107 	mutex_unlock(&scsi_sense_cache_mutex);
108 	return ret;
109 }
110 
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY	3
117 
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 	struct Scsi_Host *host = cmd->device->host;
122 	struct scsi_device *device = cmd->device;
123 	struct scsi_target *starget = scsi_target(device);
124 
125 	/*
126 	 * Set the appropriate busy bit for the device/host.
127 	 *
128 	 * If the host/device isn't busy, assume that something actually
129 	 * completed, and that we should be able to queue a command now.
130 	 *
131 	 * Note that the prior mid-layer assumption that any host could
132 	 * always queue at least one command is now broken.  The mid-layer
133 	 * will implement a user specifiable stall (see
134 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 	 * if a command is requeued with no other commands outstanding
136 	 * either for the device or for the host.
137 	 */
138 	switch (reason) {
139 	case SCSI_MLQUEUE_HOST_BUSY:
140 		atomic_set(&host->host_blocked, host->max_host_blocked);
141 		break;
142 	case SCSI_MLQUEUE_DEVICE_BUSY:
143 	case SCSI_MLQUEUE_EH_RETRY:
144 		atomic_set(&device->device_blocked,
145 			   device->max_device_blocked);
146 		break;
147 	case SCSI_MLQUEUE_TARGET_BUSY:
148 		atomic_set(&starget->target_blocked,
149 			   starget->max_target_blocked);
150 		break;
151 	}
152 }
153 
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 	if (cmd->request->rq_flags & RQF_DONTPREP) {
157 		cmd->request->rq_flags &= ~RQF_DONTPREP;
158 		scsi_mq_uninit_cmd(cmd);
159 	} else {
160 		WARN_ON_ONCE(true);
161 	}
162 	blk_mq_requeue_request(cmd->request, true);
163 }
164 
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 	struct scsi_device *device = cmd->device;
180 
181 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 		"Inserting command %p into mlqueue\n", cmd));
183 
184 	scsi_set_blocked(cmd, reason);
185 
186 	/*
187 	 * Decrement the counters, since these commands are no longer
188 	 * active on the host/device.
189 	 */
190 	if (unbusy)
191 		scsi_device_unbusy(device, cmd);
192 
193 	/*
194 	 * Requeue this command.  It will go before all other commands
195 	 * that are already in the queue. Schedule requeue work under
196 	 * lock such that the kblockd_schedule_work() call happens
197 	 * before blk_cleanup_queue() finishes.
198 	 */
199 	cmd->result = 0;
200 
201 	blk_mq_requeue_request(cmd->request, true);
202 }
203 
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 	__scsi_queue_insert(cmd, reason, true);
219 }
220 
221 
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:	scsi device
225  * @cmd:	scsi command
226  * @data_direction: data direction
227  * @buffer:	data buffer
228  * @bufflen:	len of buffer
229  * @sense:	optional sense buffer
230  * @sshdr:	optional decoded sense header
231  * @timeout:	request timeout in seconds
232  * @retries:	number of times to retry request
233  * @flags:	flags for ->cmd_flags
234  * @rq_flags:	flags for ->rq_flags
235  * @resid:	optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 		 int data_direction, void *buffer, unsigned bufflen,
242 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 		 int *resid)
245 {
246 	struct request *req;
247 	struct scsi_request *rq;
248 	int ret = DRIVER_ERROR << 24;
249 
250 	req = blk_get_request(sdev->request_queue,
251 			data_direction == DMA_TO_DEVICE ?
252 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 	if (IS_ERR(req))
254 		return ret;
255 	rq = scsi_req(req);
256 
257 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
258 					buffer, bufflen, GFP_NOIO))
259 		goto out;
260 
261 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 	memcpy(rq->cmd, cmd, rq->cmd_len);
263 	rq->retries = retries;
264 	req->timeout = timeout;
265 	req->cmd_flags |= flags;
266 	req->rq_flags |= rq_flags | RQF_QUIET;
267 
268 	/*
269 	 * head injection *required* here otherwise quiesce won't work
270 	 */
271 	blk_execute_rq(req->q, NULL, req, 1);
272 
273 	/*
274 	 * Some devices (USB mass-storage in particular) may transfer
275 	 * garbage data together with a residue indicating that the data
276 	 * is invalid.  Prevent the garbage from being misinterpreted
277 	 * and prevent security leaks by zeroing out the excess data.
278 	 */
279 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281 
282 	if (resid)
283 		*resid = rq->resid_len;
284 	if (sense && rq->sense_len)
285 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 	if (sshdr)
287 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 	ret = rq->result;
289  out:
290 	blk_put_request(req);
291 
292 	return ret;
293 }
294 EXPORT_SYMBOL(__scsi_execute);
295 
296 /*
297  * Wake up the error handler if necessary. Avoid as follows that the error
298  * handler is not woken up if host in-flight requests number ==
299  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
300  * with an RCU read lock in this function to ensure that this function in
301  * its entirety either finishes before scsi_eh_scmd_add() increases the
302  * host_failed counter or that it notices the shost state change made by
303  * scsi_eh_scmd_add().
304  */
305 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
306 {
307 	unsigned long flags;
308 
309 	rcu_read_lock();
310 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
311 	if (unlikely(scsi_host_in_recovery(shost))) {
312 		spin_lock_irqsave(shost->host_lock, flags);
313 		if (shost->host_failed || shost->host_eh_scheduled)
314 			scsi_eh_wakeup(shost);
315 		spin_unlock_irqrestore(shost->host_lock, flags);
316 	}
317 	rcu_read_unlock();
318 }
319 
320 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
321 {
322 	struct Scsi_Host *shost = sdev->host;
323 	struct scsi_target *starget = scsi_target(sdev);
324 
325 	scsi_dec_host_busy(shost, cmd);
326 
327 	if (starget->can_queue > 0)
328 		atomic_dec(&starget->target_busy);
329 
330 	atomic_dec(&sdev->device_busy);
331 }
332 
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 	blk_mq_run_hw_queues(q, false);
336 }
337 
338 /*
339  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
340  * and call blk_run_queue for all the scsi_devices on the target -
341  * including current_sdev first.
342  *
343  * Called with *no* scsi locks held.
344  */
345 static void scsi_single_lun_run(struct scsi_device *current_sdev)
346 {
347 	struct Scsi_Host *shost = current_sdev->host;
348 	struct scsi_device *sdev, *tmp;
349 	struct scsi_target *starget = scsi_target(current_sdev);
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(shost->host_lock, flags);
353 	starget->starget_sdev_user = NULL;
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 
356 	/*
357 	 * Call blk_run_queue for all LUNs on the target, starting with
358 	 * current_sdev. We race with others (to set starget_sdev_user),
359 	 * but in most cases, we will be first. Ideally, each LU on the
360 	 * target would get some limited time or requests on the target.
361 	 */
362 	scsi_kick_queue(current_sdev->request_queue);
363 
364 	spin_lock_irqsave(shost->host_lock, flags);
365 	if (starget->starget_sdev_user)
366 		goto out;
367 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
368 			same_target_siblings) {
369 		if (sdev == current_sdev)
370 			continue;
371 		if (scsi_device_get(sdev))
372 			continue;
373 
374 		spin_unlock_irqrestore(shost->host_lock, flags);
375 		scsi_kick_queue(sdev->request_queue);
376 		spin_lock_irqsave(shost->host_lock, flags);
377 
378 		scsi_device_put(sdev);
379 	}
380  out:
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 }
383 
384 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
385 {
386 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
387 		return true;
388 	if (atomic_read(&sdev->device_blocked) > 0)
389 		return true;
390 	return false;
391 }
392 
393 static inline bool scsi_target_is_busy(struct scsi_target *starget)
394 {
395 	if (starget->can_queue > 0) {
396 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
397 			return true;
398 		if (atomic_read(&starget->target_blocked) > 0)
399 			return true;
400 	}
401 	return false;
402 }
403 
404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
405 {
406 	if (atomic_read(&shost->host_blocked) > 0)
407 		return true;
408 	if (shost->host_self_blocked)
409 		return true;
410 	return false;
411 }
412 
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 	LIST_HEAD(starved_list);
416 	struct scsi_device *sdev;
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(shost->host_lock, flags);
420 	list_splice_init(&shost->starved_list, &starved_list);
421 
422 	while (!list_empty(&starved_list)) {
423 		struct request_queue *slq;
424 
425 		/*
426 		 * As long as shost is accepting commands and we have
427 		 * starved queues, call blk_run_queue. scsi_request_fn
428 		 * drops the queue_lock and can add us back to the
429 		 * starved_list.
430 		 *
431 		 * host_lock protects the starved_list and starved_entry.
432 		 * scsi_request_fn must get the host_lock before checking
433 		 * or modifying starved_list or starved_entry.
434 		 */
435 		if (scsi_host_is_busy(shost))
436 			break;
437 
438 		sdev = list_entry(starved_list.next,
439 				  struct scsi_device, starved_entry);
440 		list_del_init(&sdev->starved_entry);
441 		if (scsi_target_is_busy(scsi_target(sdev))) {
442 			list_move_tail(&sdev->starved_entry,
443 				       &shost->starved_list);
444 			continue;
445 		}
446 
447 		/*
448 		 * Once we drop the host lock, a racing scsi_remove_device()
449 		 * call may remove the sdev from the starved list and destroy
450 		 * it and the queue.  Mitigate by taking a reference to the
451 		 * queue and never touching the sdev again after we drop the
452 		 * host lock.  Note: if __scsi_remove_device() invokes
453 		 * blk_cleanup_queue() before the queue is run from this
454 		 * function then blk_run_queue() will return immediately since
455 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 		 */
457 		slq = sdev->request_queue;
458 		if (!blk_get_queue(slq))
459 			continue;
460 		spin_unlock_irqrestore(shost->host_lock, flags);
461 
462 		scsi_kick_queue(slq);
463 		blk_put_queue(slq);
464 
465 		spin_lock_irqsave(shost->host_lock, flags);
466 	}
467 	/* put any unprocessed entries back */
468 	list_splice(&starved_list, &shost->starved_list);
469 	spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471 
472 /**
473  * scsi_run_queue - Select a proper request queue to serve next.
474  * @q:  last request's queue
475  *
476  * The previous command was completely finished, start a new one if possible.
477  */
478 static void scsi_run_queue(struct request_queue *q)
479 {
480 	struct scsi_device *sdev = q->queuedata;
481 
482 	if (scsi_target(sdev)->single_lun)
483 		scsi_single_lun_run(sdev);
484 	if (!list_empty(&sdev->host->starved_list))
485 		scsi_starved_list_run(sdev->host);
486 
487 	blk_mq_run_hw_queues(q, false);
488 }
489 
490 void scsi_requeue_run_queue(struct work_struct *work)
491 {
492 	struct scsi_device *sdev;
493 	struct request_queue *q;
494 
495 	sdev = container_of(work, struct scsi_device, requeue_work);
496 	q = sdev->request_queue;
497 	scsi_run_queue(q);
498 }
499 
500 void scsi_run_host_queues(struct Scsi_Host *shost)
501 {
502 	struct scsi_device *sdev;
503 
504 	shost_for_each_device(sdev, shost)
505 		scsi_run_queue(sdev->request_queue);
506 }
507 
508 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
509 {
510 	if (!blk_rq_is_passthrough(cmd->request)) {
511 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
512 
513 		if (drv->uninit_command)
514 			drv->uninit_command(cmd);
515 	}
516 }
517 
518 void scsi_free_sgtables(struct scsi_cmnd *cmd)
519 {
520 	if (cmd->sdb.table.nents)
521 		sg_free_table_chained(&cmd->sdb.table,
522 				SCSI_INLINE_SG_CNT);
523 	if (scsi_prot_sg_count(cmd))
524 		sg_free_table_chained(&cmd->prot_sdb->table,
525 				SCSI_INLINE_PROT_SG_CNT);
526 }
527 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
528 
529 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
530 {
531 	scsi_free_sgtables(cmd);
532 	scsi_uninit_cmd(cmd);
533 }
534 
535 static void scsi_run_queue_async(struct scsi_device *sdev)
536 {
537 	if (scsi_target(sdev)->single_lun ||
538 	    !list_empty(&sdev->host->starved_list)) {
539 		kblockd_schedule_work(&sdev->requeue_work);
540 	} else {
541 		/*
542 		 * smp_mb() present in sbitmap_queue_clear() or implied in
543 		 * .end_io is for ordering writing .device_busy in
544 		 * scsi_device_unbusy() and reading sdev->restarts.
545 		 */
546 		int old = atomic_read(&sdev->restarts);
547 
548 		/*
549 		 * ->restarts has to be kept as non-zero if new budget
550 		 *  contention occurs.
551 		 *
552 		 *  No need to run queue when either another re-run
553 		 *  queue wins in updating ->restarts or a new budget
554 		 *  contention occurs.
555 		 */
556 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
557 			blk_mq_run_hw_queues(sdev->request_queue, true);
558 	}
559 }
560 
561 /* Returns false when no more bytes to process, true if there are more */
562 static bool scsi_end_request(struct request *req, blk_status_t error,
563 		unsigned int bytes)
564 {
565 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
566 	struct scsi_device *sdev = cmd->device;
567 	struct request_queue *q = sdev->request_queue;
568 
569 	if (blk_update_request(req, error, bytes))
570 		return true;
571 
572 	if (blk_queue_add_random(q))
573 		add_disk_randomness(req->rq_disk);
574 
575 	if (!blk_rq_is_scsi(req)) {
576 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
577 		cmd->flags &= ~SCMD_INITIALIZED;
578 	}
579 
580 	/*
581 	 * Calling rcu_barrier() is not necessary here because the
582 	 * SCSI error handler guarantees that the function called by
583 	 * call_rcu() has been called before scsi_end_request() is
584 	 * called.
585 	 */
586 	destroy_rcu_head(&cmd->rcu);
587 
588 	/*
589 	 * In the MQ case the command gets freed by __blk_mq_end_request,
590 	 * so we have to do all cleanup that depends on it earlier.
591 	 *
592 	 * We also can't kick the queues from irq context, so we
593 	 * will have to defer it to a workqueue.
594 	 */
595 	scsi_mq_uninit_cmd(cmd);
596 
597 	/*
598 	 * queue is still alive, so grab the ref for preventing it
599 	 * from being cleaned up during running queue.
600 	 */
601 	percpu_ref_get(&q->q_usage_counter);
602 
603 	__blk_mq_end_request(req, error);
604 
605 	scsi_run_queue_async(sdev);
606 
607 	percpu_ref_put(&q->q_usage_counter);
608 	return false;
609 }
610 
611 /**
612  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
613  * @cmd:	SCSI command
614  * @result:	scsi error code
615  *
616  * Translate a SCSI result code into a blk_status_t value. May reset the host
617  * byte of @cmd->result.
618  */
619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
620 {
621 	switch (host_byte(result)) {
622 	case DID_OK:
623 		/*
624 		 * Also check the other bytes than the status byte in result
625 		 * to handle the case when a SCSI LLD sets result to
626 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
627 		 */
628 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
629 			return BLK_STS_OK;
630 		return BLK_STS_IOERR;
631 	case DID_TRANSPORT_FAILFAST:
632 		return BLK_STS_TRANSPORT;
633 	case DID_TARGET_FAILURE:
634 		set_host_byte(cmd, DID_OK);
635 		return BLK_STS_TARGET;
636 	case DID_NEXUS_FAILURE:
637 		set_host_byte(cmd, DID_OK);
638 		return BLK_STS_NEXUS;
639 	case DID_ALLOC_FAILURE:
640 		set_host_byte(cmd, DID_OK);
641 		return BLK_STS_NOSPC;
642 	case DID_MEDIUM_ERROR:
643 		set_host_byte(cmd, DID_OK);
644 		return BLK_STS_MEDIUM;
645 	default:
646 		return BLK_STS_IOERR;
647 	}
648 }
649 
650 /* Helper for scsi_io_completion() when "reprep" action required. */
651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
652 				      struct request_queue *q)
653 {
654 	/* A new command will be prepared and issued. */
655 	scsi_mq_requeue_cmd(cmd);
656 }
657 
658 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
659 {
660 	struct request *req = cmd->request;
661 	unsigned long wait_for;
662 
663 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
664 		return false;
665 
666 	wait_for = (cmd->allowed + 1) * req->timeout;
667 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
668 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
669 			    wait_for/HZ);
670 		return true;
671 	}
672 	return false;
673 }
674 
675 /* Helper for scsi_io_completion() when special action required. */
676 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
677 {
678 	struct request_queue *q = cmd->device->request_queue;
679 	struct request *req = cmd->request;
680 	int level = 0;
681 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
682 	      ACTION_DELAYED_RETRY} action;
683 	struct scsi_sense_hdr sshdr;
684 	bool sense_valid;
685 	bool sense_current = true;      /* false implies "deferred sense" */
686 	blk_status_t blk_stat;
687 
688 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
689 	if (sense_valid)
690 		sense_current = !scsi_sense_is_deferred(&sshdr);
691 
692 	blk_stat = scsi_result_to_blk_status(cmd, result);
693 
694 	if (host_byte(result) == DID_RESET) {
695 		/* Third party bus reset or reset for error recovery
696 		 * reasons.  Just retry the command and see what
697 		 * happens.
698 		 */
699 		action = ACTION_RETRY;
700 	} else if (sense_valid && sense_current) {
701 		switch (sshdr.sense_key) {
702 		case UNIT_ATTENTION:
703 			if (cmd->device->removable) {
704 				/* Detected disc change.  Set a bit
705 				 * and quietly refuse further access.
706 				 */
707 				cmd->device->changed = 1;
708 				action = ACTION_FAIL;
709 			} else {
710 				/* Must have been a power glitch, or a
711 				 * bus reset.  Could not have been a
712 				 * media change, so we just retry the
713 				 * command and see what happens.
714 				 */
715 				action = ACTION_RETRY;
716 			}
717 			break;
718 		case ILLEGAL_REQUEST:
719 			/* If we had an ILLEGAL REQUEST returned, then
720 			 * we may have performed an unsupported
721 			 * command.  The only thing this should be
722 			 * would be a ten byte read where only a six
723 			 * byte read was supported.  Also, on a system
724 			 * where READ CAPACITY failed, we may have
725 			 * read past the end of the disk.
726 			 */
727 			if ((cmd->device->use_10_for_rw &&
728 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
729 			    (cmd->cmnd[0] == READ_10 ||
730 			     cmd->cmnd[0] == WRITE_10)) {
731 				/* This will issue a new 6-byte command. */
732 				cmd->device->use_10_for_rw = 0;
733 				action = ACTION_REPREP;
734 			} else if (sshdr.asc == 0x10) /* DIX */ {
735 				action = ACTION_FAIL;
736 				blk_stat = BLK_STS_PROTECTION;
737 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
738 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
739 				action = ACTION_FAIL;
740 				blk_stat = BLK_STS_TARGET;
741 			} else
742 				action = ACTION_FAIL;
743 			break;
744 		case ABORTED_COMMAND:
745 			action = ACTION_FAIL;
746 			if (sshdr.asc == 0x10) /* DIF */
747 				blk_stat = BLK_STS_PROTECTION;
748 			break;
749 		case NOT_READY:
750 			/* If the device is in the process of becoming
751 			 * ready, or has a temporary blockage, retry.
752 			 */
753 			if (sshdr.asc == 0x04) {
754 				switch (sshdr.ascq) {
755 				case 0x01: /* becoming ready */
756 				case 0x04: /* format in progress */
757 				case 0x05: /* rebuild in progress */
758 				case 0x06: /* recalculation in progress */
759 				case 0x07: /* operation in progress */
760 				case 0x08: /* Long write in progress */
761 				case 0x09: /* self test in progress */
762 				case 0x14: /* space allocation in progress */
763 				case 0x1a: /* start stop unit in progress */
764 				case 0x1b: /* sanitize in progress */
765 				case 0x1d: /* configuration in progress */
766 				case 0x24: /* depopulation in progress */
767 					action = ACTION_DELAYED_RETRY;
768 					break;
769 				case 0x0a: /* ALUA state transition */
770 					blk_stat = BLK_STS_AGAIN;
771 					fallthrough;
772 				default:
773 					action = ACTION_FAIL;
774 					break;
775 				}
776 			} else
777 				action = ACTION_FAIL;
778 			break;
779 		case VOLUME_OVERFLOW:
780 			/* See SSC3rXX or current. */
781 			action = ACTION_FAIL;
782 			break;
783 		case DATA_PROTECT:
784 			action = ACTION_FAIL;
785 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
786 			    (sshdr.asc == 0x55 &&
787 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
788 				/* Insufficient zone resources */
789 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
790 			}
791 			break;
792 		default:
793 			action = ACTION_FAIL;
794 			break;
795 		}
796 	} else
797 		action = ACTION_FAIL;
798 
799 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
800 		action = ACTION_FAIL;
801 
802 	switch (action) {
803 	case ACTION_FAIL:
804 		/* Give up and fail the remainder of the request */
805 		if (!(req->rq_flags & RQF_QUIET)) {
806 			static DEFINE_RATELIMIT_STATE(_rs,
807 					DEFAULT_RATELIMIT_INTERVAL,
808 					DEFAULT_RATELIMIT_BURST);
809 
810 			if (unlikely(scsi_logging_level))
811 				level =
812 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
813 						    SCSI_LOG_MLCOMPLETE_BITS);
814 
815 			/*
816 			 * if logging is enabled the failure will be printed
817 			 * in scsi_log_completion(), so avoid duplicate messages
818 			 */
819 			if (!level && __ratelimit(&_rs)) {
820 				scsi_print_result(cmd, NULL, FAILED);
821 				if (driver_byte(result) == DRIVER_SENSE)
822 					scsi_print_sense(cmd);
823 				scsi_print_command(cmd);
824 			}
825 		}
826 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
827 			return;
828 		fallthrough;
829 	case ACTION_REPREP:
830 		scsi_io_completion_reprep(cmd, q);
831 		break;
832 	case ACTION_RETRY:
833 		/* Retry the same command immediately */
834 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
835 		break;
836 	case ACTION_DELAYED_RETRY:
837 		/* Retry the same command after a delay */
838 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
839 		break;
840 	}
841 }
842 
843 /*
844  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
845  * new result that may suppress further error checking. Also modifies
846  * *blk_statp in some cases.
847  */
848 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
849 					blk_status_t *blk_statp)
850 {
851 	bool sense_valid;
852 	bool sense_current = true;	/* false implies "deferred sense" */
853 	struct request *req = cmd->request;
854 	struct scsi_sense_hdr sshdr;
855 
856 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
857 	if (sense_valid)
858 		sense_current = !scsi_sense_is_deferred(&sshdr);
859 
860 	if (blk_rq_is_passthrough(req)) {
861 		if (sense_valid) {
862 			/*
863 			 * SG_IO wants current and deferred errors
864 			 */
865 			scsi_req(req)->sense_len =
866 				min(8 + cmd->sense_buffer[7],
867 				    SCSI_SENSE_BUFFERSIZE);
868 		}
869 		if (sense_current)
870 			*blk_statp = scsi_result_to_blk_status(cmd, result);
871 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
872 		/*
873 		 * Flush commands do not transfers any data, and thus cannot use
874 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
875 		 * This sets *blk_statp explicitly for the problem case.
876 		 */
877 		*blk_statp = scsi_result_to_blk_status(cmd, result);
878 	}
879 	/*
880 	 * Recovered errors need reporting, but they're always treated as
881 	 * success, so fiddle the result code here.  For passthrough requests
882 	 * we already took a copy of the original into sreq->result which
883 	 * is what gets returned to the user
884 	 */
885 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
886 		bool do_print = true;
887 		/*
888 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
889 		 * skip print since caller wants ATA registers. Only occurs
890 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
891 		 */
892 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
893 			do_print = false;
894 		else if (req->rq_flags & RQF_QUIET)
895 			do_print = false;
896 		if (do_print)
897 			scsi_print_sense(cmd);
898 		result = 0;
899 		/* for passthrough, *blk_statp may be set */
900 		*blk_statp = BLK_STS_OK;
901 	}
902 	/*
903 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
904 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
905 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
906 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
907 	 * intermediate statuses (both obsolete in SAM-4) as good.
908 	 */
909 	if (status_byte(result) && scsi_status_is_good(result)) {
910 		result = 0;
911 		*blk_statp = BLK_STS_OK;
912 	}
913 	return result;
914 }
915 
916 /**
917  * scsi_io_completion - Completion processing for SCSI commands.
918  * @cmd:	command that is finished.
919  * @good_bytes:	number of processed bytes.
920  *
921  * We will finish off the specified number of sectors. If we are done, the
922  * command block will be released and the queue function will be goosed. If we
923  * are not done then we have to figure out what to do next:
924  *
925  *   a) We can call scsi_io_completion_reprep().  The request will be
926  *	unprepared and put back on the queue.  Then a new command will
927  *	be created for it.  This should be used if we made forward
928  *	progress, or if we want to switch from READ(10) to READ(6) for
929  *	example.
930  *
931  *   b) We can call scsi_io_completion_action().  The request will be
932  *	put back on the queue and retried using the same command as
933  *	before, possibly after a delay.
934  *
935  *   c) We can call scsi_end_request() with blk_stat other than
936  *	BLK_STS_OK, to fail the remainder of the request.
937  */
938 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
939 {
940 	int result = cmd->result;
941 	struct request_queue *q = cmd->device->request_queue;
942 	struct request *req = cmd->request;
943 	blk_status_t blk_stat = BLK_STS_OK;
944 
945 	if (unlikely(result))	/* a nz result may or may not be an error */
946 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
947 
948 	if (unlikely(blk_rq_is_passthrough(req))) {
949 		/*
950 		 * scsi_result_to_blk_status may have reset the host_byte
951 		 */
952 		scsi_req(req)->result = cmd->result;
953 	}
954 
955 	/*
956 	 * Next deal with any sectors which we were able to correctly
957 	 * handle.
958 	 */
959 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
960 		"%u sectors total, %d bytes done.\n",
961 		blk_rq_sectors(req), good_bytes));
962 
963 	/*
964 	 * Failed, zero length commands always need to drop down
965 	 * to retry code. Fast path should return in this block.
966 	 */
967 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
968 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
969 			return; /* no bytes remaining */
970 	}
971 
972 	/* Kill remainder if no retries. */
973 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
974 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
975 			WARN_ONCE(true,
976 			    "Bytes remaining after failed, no-retry command");
977 		return;
978 	}
979 
980 	/*
981 	 * If there had been no error, but we have leftover bytes in the
982 	 * requeues just queue the command up again.
983 	 */
984 	if (likely(result == 0))
985 		scsi_io_completion_reprep(cmd, q);
986 	else
987 		scsi_io_completion_action(cmd, result);
988 }
989 
990 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
991 		struct request *rq)
992 {
993 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
994 	       !op_is_write(req_op(rq)) &&
995 	       sdev->host->hostt->dma_need_drain(rq);
996 }
997 
998 /**
999  * scsi_alloc_sgtables - allocate S/G tables for a command
1000  * @cmd:  command descriptor we wish to initialize
1001  *
1002  * Returns:
1003  * * BLK_STS_OK       - on success
1004  * * BLK_STS_RESOURCE - if the failure is retryable
1005  * * BLK_STS_IOERR    - if the failure is fatal
1006  */
1007 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1008 {
1009 	struct scsi_device *sdev = cmd->device;
1010 	struct request *rq = cmd->request;
1011 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1012 	struct scatterlist *last_sg = NULL;
1013 	blk_status_t ret;
1014 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1015 	int count;
1016 
1017 	if (WARN_ON_ONCE(!nr_segs))
1018 		return BLK_STS_IOERR;
1019 
1020 	/*
1021 	 * Make sure there is space for the drain.  The driver must adjust
1022 	 * max_hw_segments to be prepared for this.
1023 	 */
1024 	if (need_drain)
1025 		nr_segs++;
1026 
1027 	/*
1028 	 * If sg table allocation fails, requeue request later.
1029 	 */
1030 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1031 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1032 		return BLK_STS_RESOURCE;
1033 
1034 	/*
1035 	 * Next, walk the list, and fill in the addresses and sizes of
1036 	 * each segment.
1037 	 */
1038 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1039 
1040 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1041 		unsigned int pad_len =
1042 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1043 
1044 		last_sg->length += pad_len;
1045 		cmd->extra_len += pad_len;
1046 	}
1047 
1048 	if (need_drain) {
1049 		sg_unmark_end(last_sg);
1050 		last_sg = sg_next(last_sg);
1051 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1052 		sg_mark_end(last_sg);
1053 
1054 		cmd->extra_len += sdev->dma_drain_len;
1055 		count++;
1056 	}
1057 
1058 	BUG_ON(count > cmd->sdb.table.nents);
1059 	cmd->sdb.table.nents = count;
1060 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1061 
1062 	if (blk_integrity_rq(rq)) {
1063 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1064 		int ivecs;
1065 
1066 		if (WARN_ON_ONCE(!prot_sdb)) {
1067 			/*
1068 			 * This can happen if someone (e.g. multipath)
1069 			 * queues a command to a device on an adapter
1070 			 * that does not support DIX.
1071 			 */
1072 			ret = BLK_STS_IOERR;
1073 			goto out_free_sgtables;
1074 		}
1075 
1076 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1077 
1078 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1079 				prot_sdb->table.sgl,
1080 				SCSI_INLINE_PROT_SG_CNT)) {
1081 			ret = BLK_STS_RESOURCE;
1082 			goto out_free_sgtables;
1083 		}
1084 
1085 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1086 						prot_sdb->table.sgl);
1087 		BUG_ON(count > ivecs);
1088 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1089 
1090 		cmd->prot_sdb = prot_sdb;
1091 		cmd->prot_sdb->table.nents = count;
1092 	}
1093 
1094 	return BLK_STS_OK;
1095 out_free_sgtables:
1096 	scsi_free_sgtables(cmd);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(scsi_alloc_sgtables);
1100 
1101 /**
1102  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1103  * @rq: Request associated with the SCSI command to be initialized.
1104  *
1105  * This function initializes the members of struct scsi_cmnd that must be
1106  * initialized before request processing starts and that won't be
1107  * reinitialized if a SCSI command is requeued.
1108  *
1109  * Called from inside blk_get_request() for pass-through requests and from
1110  * inside scsi_init_command() for filesystem requests.
1111  */
1112 static void scsi_initialize_rq(struct request *rq)
1113 {
1114 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1115 
1116 	scsi_req_init(&cmd->req);
1117 	init_rcu_head(&cmd->rcu);
1118 	cmd->jiffies_at_alloc = jiffies;
1119 	cmd->retries = 0;
1120 }
1121 
1122 /*
1123  * Only called when the request isn't completed by SCSI, and not freed by
1124  * SCSI
1125  */
1126 static void scsi_cleanup_rq(struct request *rq)
1127 {
1128 	if (rq->rq_flags & RQF_DONTPREP) {
1129 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1130 		rq->rq_flags &= ~RQF_DONTPREP;
1131 	}
1132 }
1133 
1134 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1135 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1136 {
1137 	void *buf = cmd->sense_buffer;
1138 	void *prot = cmd->prot_sdb;
1139 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1140 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1141 	unsigned long jiffies_at_alloc;
1142 	int retries, to_clear;
1143 	bool in_flight;
1144 
1145 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1146 		flags |= SCMD_INITIALIZED;
1147 		scsi_initialize_rq(rq);
1148 	}
1149 
1150 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1151 	retries = cmd->retries;
1152 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1153 	/*
1154 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1155 	 * the driver-private command data if the LLD does not supply a
1156 	 * function to initialize that data.
1157 	 */
1158 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1159 	if (!dev->host->hostt->init_cmd_priv)
1160 		to_clear += dev->host->hostt->cmd_size;
1161 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1162 
1163 	cmd->device = dev;
1164 	cmd->sense_buffer = buf;
1165 	cmd->prot_sdb = prot;
1166 	cmd->flags = flags;
1167 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1169 	cmd->retries = retries;
1170 	if (in_flight)
1171 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1172 
1173 }
1174 
1175 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1176 		struct request *req)
1177 {
1178 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1179 
1180 	/*
1181 	 * Passthrough requests may transfer data, in which case they must
1182 	 * a bio attached to them.  Or they might contain a SCSI command
1183 	 * that does not transfer data, in which case they may optionally
1184 	 * submit a request without an attached bio.
1185 	 */
1186 	if (req->bio) {
1187 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1188 		if (unlikely(ret != BLK_STS_OK))
1189 			return ret;
1190 	} else {
1191 		BUG_ON(blk_rq_bytes(req));
1192 
1193 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194 	}
1195 
1196 	cmd->cmd_len = scsi_req(req)->cmd_len;
1197 	if (cmd->cmd_len == 0)
1198 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1199 	cmd->cmnd = scsi_req(req)->cmd;
1200 	cmd->transfersize = blk_rq_bytes(req);
1201 	cmd->allowed = scsi_req(req)->retries;
1202 	return BLK_STS_OK;
1203 }
1204 
1205 static blk_status_t
1206 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1207 {
1208 	switch (sdev->sdev_state) {
1209 	case SDEV_OFFLINE:
1210 	case SDEV_TRANSPORT_OFFLINE:
1211 		/*
1212 		 * If the device is offline we refuse to process any
1213 		 * commands.  The device must be brought online
1214 		 * before trying any recovery commands.
1215 		 */
1216 		if (!sdev->offline_already) {
1217 			sdev->offline_already = true;
1218 			sdev_printk(KERN_ERR, sdev,
1219 				    "rejecting I/O to offline device\n");
1220 		}
1221 		return BLK_STS_IOERR;
1222 	case SDEV_DEL:
1223 		/*
1224 		 * If the device is fully deleted, we refuse to
1225 		 * process any commands as well.
1226 		 */
1227 		sdev_printk(KERN_ERR, sdev,
1228 			    "rejecting I/O to dead device\n");
1229 		return BLK_STS_IOERR;
1230 	case SDEV_BLOCK:
1231 	case SDEV_CREATED_BLOCK:
1232 		return BLK_STS_RESOURCE;
1233 	case SDEV_QUIESCE:
1234 		/*
1235 		 * If the devices is blocked we defer normal commands.
1236 		 */
1237 		if (req && !(req->rq_flags & RQF_PREEMPT))
1238 			return BLK_STS_RESOURCE;
1239 		return BLK_STS_OK;
1240 	default:
1241 		/*
1242 		 * For any other not fully online state we only allow
1243 		 * special commands.  In particular any user initiated
1244 		 * command is not allowed.
1245 		 */
1246 		if (req && !(req->rq_flags & RQF_PREEMPT))
1247 			return BLK_STS_IOERR;
1248 		return BLK_STS_OK;
1249 	}
1250 }
1251 
1252 /*
1253  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1254  * return 0.
1255  *
1256  * Called with the queue_lock held.
1257  */
1258 static inline int scsi_dev_queue_ready(struct request_queue *q,
1259 				  struct scsi_device *sdev)
1260 {
1261 	unsigned int busy;
1262 
1263 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1264 	if (atomic_read(&sdev->device_blocked)) {
1265 		if (busy)
1266 			goto out_dec;
1267 
1268 		/*
1269 		 * unblock after device_blocked iterates to zero
1270 		 */
1271 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1272 			goto out_dec;
1273 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1274 				   "unblocking device at zero depth\n"));
1275 	}
1276 
1277 	if (busy >= sdev->queue_depth)
1278 		goto out_dec;
1279 
1280 	return 1;
1281 out_dec:
1282 	atomic_dec(&sdev->device_busy);
1283 	return 0;
1284 }
1285 
1286 /*
1287  * scsi_target_queue_ready: checks if there we can send commands to target
1288  * @sdev: scsi device on starget to check.
1289  */
1290 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1291 					   struct scsi_device *sdev)
1292 {
1293 	struct scsi_target *starget = scsi_target(sdev);
1294 	unsigned int busy;
1295 
1296 	if (starget->single_lun) {
1297 		spin_lock_irq(shost->host_lock);
1298 		if (starget->starget_sdev_user &&
1299 		    starget->starget_sdev_user != sdev) {
1300 			spin_unlock_irq(shost->host_lock);
1301 			return 0;
1302 		}
1303 		starget->starget_sdev_user = sdev;
1304 		spin_unlock_irq(shost->host_lock);
1305 	}
1306 
1307 	if (starget->can_queue <= 0)
1308 		return 1;
1309 
1310 	busy = atomic_inc_return(&starget->target_busy) - 1;
1311 	if (atomic_read(&starget->target_blocked) > 0) {
1312 		if (busy)
1313 			goto starved;
1314 
1315 		/*
1316 		 * unblock after target_blocked iterates to zero
1317 		 */
1318 		if (atomic_dec_return(&starget->target_blocked) > 0)
1319 			goto out_dec;
1320 
1321 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1322 				 "unblocking target at zero depth\n"));
1323 	}
1324 
1325 	if (busy >= starget->can_queue)
1326 		goto starved;
1327 
1328 	return 1;
1329 
1330 starved:
1331 	spin_lock_irq(shost->host_lock);
1332 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1333 	spin_unlock_irq(shost->host_lock);
1334 out_dec:
1335 	if (starget->can_queue > 0)
1336 		atomic_dec(&starget->target_busy);
1337 	return 0;
1338 }
1339 
1340 /*
1341  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1342  * return 0. We must end up running the queue again whenever 0 is
1343  * returned, else IO can hang.
1344  */
1345 static inline int scsi_host_queue_ready(struct request_queue *q,
1346 				   struct Scsi_Host *shost,
1347 				   struct scsi_device *sdev,
1348 				   struct scsi_cmnd *cmd)
1349 {
1350 	if (scsi_host_in_recovery(shost))
1351 		return 0;
1352 
1353 	if (atomic_read(&shost->host_blocked) > 0) {
1354 		if (scsi_host_busy(shost) > 0)
1355 			goto starved;
1356 
1357 		/*
1358 		 * unblock after host_blocked iterates to zero
1359 		 */
1360 		if (atomic_dec_return(&shost->host_blocked) > 0)
1361 			goto out_dec;
1362 
1363 		SCSI_LOG_MLQUEUE(3,
1364 			shost_printk(KERN_INFO, shost,
1365 				     "unblocking host at zero depth\n"));
1366 	}
1367 
1368 	if (shost->host_self_blocked)
1369 		goto starved;
1370 
1371 	/* We're OK to process the command, so we can't be starved */
1372 	if (!list_empty(&sdev->starved_entry)) {
1373 		spin_lock_irq(shost->host_lock);
1374 		if (!list_empty(&sdev->starved_entry))
1375 			list_del_init(&sdev->starved_entry);
1376 		spin_unlock_irq(shost->host_lock);
1377 	}
1378 
1379 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1380 
1381 	return 1;
1382 
1383 starved:
1384 	spin_lock_irq(shost->host_lock);
1385 	if (list_empty(&sdev->starved_entry))
1386 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1387 	spin_unlock_irq(shost->host_lock);
1388 out_dec:
1389 	scsi_dec_host_busy(shost, cmd);
1390 	return 0;
1391 }
1392 
1393 /*
1394  * Busy state exporting function for request stacking drivers.
1395  *
1396  * For efficiency, no lock is taken to check the busy state of
1397  * shost/starget/sdev, since the returned value is not guaranteed and
1398  * may be changed after request stacking drivers call the function,
1399  * regardless of taking lock or not.
1400  *
1401  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1402  * needs to return 'not busy'. Otherwise, request stacking drivers
1403  * may hold requests forever.
1404  */
1405 static bool scsi_mq_lld_busy(struct request_queue *q)
1406 {
1407 	struct scsi_device *sdev = q->queuedata;
1408 	struct Scsi_Host *shost;
1409 
1410 	if (blk_queue_dying(q))
1411 		return false;
1412 
1413 	shost = sdev->host;
1414 
1415 	/*
1416 	 * Ignore host/starget busy state.
1417 	 * Since block layer does not have a concept of fairness across
1418 	 * multiple queues, congestion of host/starget needs to be handled
1419 	 * in SCSI layer.
1420 	 */
1421 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1422 		return true;
1423 
1424 	return false;
1425 }
1426 
1427 static void scsi_softirq_done(struct request *rq)
1428 {
1429 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1430 	int disposition;
1431 
1432 	INIT_LIST_HEAD(&cmd->eh_entry);
1433 
1434 	atomic_inc(&cmd->device->iodone_cnt);
1435 	if (cmd->result)
1436 		atomic_inc(&cmd->device->ioerr_cnt);
1437 
1438 	disposition = scsi_decide_disposition(cmd);
1439 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1440 		disposition = SUCCESS;
1441 
1442 	scsi_log_completion(cmd, disposition);
1443 
1444 	switch (disposition) {
1445 	case SUCCESS:
1446 		scsi_finish_command(cmd);
1447 		break;
1448 	case NEEDS_RETRY:
1449 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1450 		break;
1451 	case ADD_TO_MLQUEUE:
1452 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1453 		break;
1454 	default:
1455 		scsi_eh_scmd_add(cmd);
1456 		break;
1457 	}
1458 }
1459 
1460 /**
1461  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1462  * @cmd: command block we are dispatching.
1463  *
1464  * Return: nonzero return request was rejected and device's queue needs to be
1465  * plugged.
1466  */
1467 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1468 {
1469 	struct Scsi_Host *host = cmd->device->host;
1470 	int rtn = 0;
1471 
1472 	atomic_inc(&cmd->device->iorequest_cnt);
1473 
1474 	/* check if the device is still usable */
1475 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1476 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1477 		 * returns an immediate error upwards, and signals
1478 		 * that the device is no longer present */
1479 		cmd->result = DID_NO_CONNECT << 16;
1480 		goto done;
1481 	}
1482 
1483 	/* Check to see if the scsi lld made this device blocked. */
1484 	if (unlikely(scsi_device_blocked(cmd->device))) {
1485 		/*
1486 		 * in blocked state, the command is just put back on
1487 		 * the device queue.  The suspend state has already
1488 		 * blocked the queue so future requests should not
1489 		 * occur until the device transitions out of the
1490 		 * suspend state.
1491 		 */
1492 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1493 			"queuecommand : device blocked\n"));
1494 		return SCSI_MLQUEUE_DEVICE_BUSY;
1495 	}
1496 
1497 	/* Store the LUN value in cmnd, if needed. */
1498 	if (cmd->device->lun_in_cdb)
1499 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1500 			       (cmd->device->lun << 5 & 0xe0);
1501 
1502 	scsi_log_send(cmd);
1503 
1504 	/*
1505 	 * Before we queue this command, check if the command
1506 	 * length exceeds what the host adapter can handle.
1507 	 */
1508 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1509 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1510 			       "queuecommand : command too long. "
1511 			       "cdb_size=%d host->max_cmd_len=%d\n",
1512 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1513 		cmd->result = (DID_ABORT << 16);
1514 		goto done;
1515 	}
1516 
1517 	if (unlikely(host->shost_state == SHOST_DEL)) {
1518 		cmd->result = (DID_NO_CONNECT << 16);
1519 		goto done;
1520 
1521 	}
1522 
1523 	trace_scsi_dispatch_cmd_start(cmd);
1524 	rtn = host->hostt->queuecommand(host, cmd);
1525 	if (rtn) {
1526 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1527 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1528 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1529 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1530 
1531 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1532 			"queuecommand : request rejected\n"));
1533 	}
1534 
1535 	return rtn;
1536  done:
1537 	cmd->scsi_done(cmd);
1538 	return 0;
1539 }
1540 
1541 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1542 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1543 {
1544 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1545 		sizeof(struct scatterlist);
1546 }
1547 
1548 static blk_status_t scsi_prepare_cmd(struct request *req)
1549 {
1550 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1551 	struct scsi_device *sdev = req->q->queuedata;
1552 	struct Scsi_Host *shost = sdev->host;
1553 	struct scatterlist *sg;
1554 
1555 	scsi_init_command(sdev, cmd);
1556 
1557 	cmd->request = req;
1558 	cmd->tag = req->tag;
1559 	cmd->prot_op = SCSI_PROT_NORMAL;
1560 	if (blk_rq_bytes(req))
1561 		cmd->sc_data_direction = rq_dma_dir(req);
1562 	else
1563 		cmd->sc_data_direction = DMA_NONE;
1564 
1565 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1566 	cmd->sdb.table.sgl = sg;
1567 
1568 	if (scsi_host_get_prot(shost)) {
1569 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1570 
1571 		cmd->prot_sdb->table.sgl =
1572 			(struct scatterlist *)(cmd->prot_sdb + 1);
1573 	}
1574 
1575 	/*
1576 	 * Special handling for passthrough commands, which don't go to the ULP
1577 	 * at all:
1578 	 */
1579 	if (blk_rq_is_scsi(req))
1580 		return scsi_setup_scsi_cmnd(sdev, req);
1581 
1582 	if (sdev->handler && sdev->handler->prep_fn) {
1583 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1584 
1585 		if (ret != BLK_STS_OK)
1586 			return ret;
1587 	}
1588 
1589 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1590 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1591 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1592 }
1593 
1594 static void scsi_mq_done(struct scsi_cmnd *cmd)
1595 {
1596 	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1597 		return;
1598 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1599 		return;
1600 	trace_scsi_dispatch_cmd_done(cmd);
1601 	blk_mq_complete_request(cmd->request);
1602 }
1603 
1604 static void scsi_mq_put_budget(struct request_queue *q)
1605 {
1606 	struct scsi_device *sdev = q->queuedata;
1607 
1608 	atomic_dec(&sdev->device_busy);
1609 }
1610 
1611 static bool scsi_mq_get_budget(struct request_queue *q)
1612 {
1613 	struct scsi_device *sdev = q->queuedata;
1614 
1615 	if (scsi_dev_queue_ready(q, sdev))
1616 		return true;
1617 
1618 	atomic_inc(&sdev->restarts);
1619 
1620 	/*
1621 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1622 	 * .restarts must be incremented before .device_busy is read because the
1623 	 * code in scsi_run_queue_async() depends on the order of these operations.
1624 	 */
1625 	smp_mb__after_atomic();
1626 
1627 	/*
1628 	 * If all in-flight requests originated from this LUN are completed
1629 	 * before reading .device_busy, sdev->device_busy will be observed as
1630 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1631 	 * soon. Otherwise, completion of one of these requests will observe
1632 	 * the .restarts flag, and the request queue will be run for handling
1633 	 * this request, see scsi_end_request().
1634 	 */
1635 	if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1636 				!scsi_device_blocked(sdev)))
1637 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1638 	return false;
1639 }
1640 
1641 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1642 			 const struct blk_mq_queue_data *bd)
1643 {
1644 	struct request *req = bd->rq;
1645 	struct request_queue *q = req->q;
1646 	struct scsi_device *sdev = q->queuedata;
1647 	struct Scsi_Host *shost = sdev->host;
1648 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1649 	blk_status_t ret;
1650 	int reason;
1651 
1652 	/*
1653 	 * If the device is not in running state we will reject some or all
1654 	 * commands.
1655 	 */
1656 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1657 		ret = scsi_device_state_check(sdev, req);
1658 		if (ret != BLK_STS_OK)
1659 			goto out_put_budget;
1660 	}
1661 
1662 	ret = BLK_STS_RESOURCE;
1663 	if (!scsi_target_queue_ready(shost, sdev))
1664 		goto out_put_budget;
1665 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1666 		goto out_dec_target_busy;
1667 
1668 	if (!(req->rq_flags & RQF_DONTPREP)) {
1669 		ret = scsi_prepare_cmd(req);
1670 		if (ret != BLK_STS_OK)
1671 			goto out_dec_host_busy;
1672 		req->rq_flags |= RQF_DONTPREP;
1673 	} else {
1674 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1675 	}
1676 
1677 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1678 	if (sdev->simple_tags)
1679 		cmd->flags |= SCMD_TAGGED;
1680 	if (bd->last)
1681 		cmd->flags |= SCMD_LAST;
1682 
1683 	scsi_set_resid(cmd, 0);
1684 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1685 	cmd->scsi_done = scsi_mq_done;
1686 
1687 	blk_mq_start_request(req);
1688 	reason = scsi_dispatch_cmd(cmd);
1689 	if (reason) {
1690 		scsi_set_blocked(cmd, reason);
1691 		ret = BLK_STS_RESOURCE;
1692 		goto out_dec_host_busy;
1693 	}
1694 
1695 	return BLK_STS_OK;
1696 
1697 out_dec_host_busy:
1698 	scsi_dec_host_busy(shost, cmd);
1699 out_dec_target_busy:
1700 	if (scsi_target(sdev)->can_queue > 0)
1701 		atomic_dec(&scsi_target(sdev)->target_busy);
1702 out_put_budget:
1703 	scsi_mq_put_budget(q);
1704 	switch (ret) {
1705 	case BLK_STS_OK:
1706 		break;
1707 	case BLK_STS_RESOURCE:
1708 	case BLK_STS_ZONE_RESOURCE:
1709 		if (scsi_device_blocked(sdev))
1710 			ret = BLK_STS_DEV_RESOURCE;
1711 		break;
1712 	case BLK_STS_AGAIN:
1713 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1714 		if (req->rq_flags & RQF_DONTPREP)
1715 			scsi_mq_uninit_cmd(cmd);
1716 		break;
1717 	default:
1718 		if (unlikely(!scsi_device_online(sdev)))
1719 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1720 		else
1721 			scsi_req(req)->result = DID_ERROR << 16;
1722 		/*
1723 		 * Make sure to release all allocated resources when
1724 		 * we hit an error, as we will never see this command
1725 		 * again.
1726 		 */
1727 		if (req->rq_flags & RQF_DONTPREP)
1728 			scsi_mq_uninit_cmd(cmd);
1729 		scsi_run_queue_async(sdev);
1730 		break;
1731 	}
1732 	return ret;
1733 }
1734 
1735 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1736 		bool reserved)
1737 {
1738 	if (reserved)
1739 		return BLK_EH_RESET_TIMER;
1740 	return scsi_times_out(req);
1741 }
1742 
1743 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1744 				unsigned int hctx_idx, unsigned int numa_node)
1745 {
1746 	struct Scsi_Host *shost = set->driver_data;
1747 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1748 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1749 	struct scatterlist *sg;
1750 	int ret = 0;
1751 
1752 	if (unchecked_isa_dma)
1753 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1754 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1755 						    GFP_KERNEL, numa_node);
1756 	if (!cmd->sense_buffer)
1757 		return -ENOMEM;
1758 	cmd->req.sense = cmd->sense_buffer;
1759 
1760 	if (scsi_host_get_prot(shost)) {
1761 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1762 			shost->hostt->cmd_size;
1763 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1764 	}
1765 
1766 	if (shost->hostt->init_cmd_priv) {
1767 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1768 		if (ret < 0)
1769 			scsi_free_sense_buffer(unchecked_isa_dma,
1770 					       cmd->sense_buffer);
1771 	}
1772 
1773 	return ret;
1774 }
1775 
1776 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1777 				 unsigned int hctx_idx)
1778 {
1779 	struct Scsi_Host *shost = set->driver_data;
1780 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1781 
1782 	if (shost->hostt->exit_cmd_priv)
1783 		shost->hostt->exit_cmd_priv(shost, cmd);
1784 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1785 			       cmd->sense_buffer);
1786 }
1787 
1788 static int scsi_map_queues(struct blk_mq_tag_set *set)
1789 {
1790 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1791 
1792 	if (shost->hostt->map_queues)
1793 		return shost->hostt->map_queues(shost);
1794 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1795 }
1796 
1797 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1798 {
1799 	struct device *dev = shost->dma_dev;
1800 
1801 	/*
1802 	 * this limit is imposed by hardware restrictions
1803 	 */
1804 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1805 					SG_MAX_SEGMENTS));
1806 
1807 	if (scsi_host_prot_dma(shost)) {
1808 		shost->sg_prot_tablesize =
1809 			min_not_zero(shost->sg_prot_tablesize,
1810 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1811 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1812 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1813 	}
1814 
1815 	if (dev->dma_mask) {
1816 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1817 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1818 	}
1819 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1820 	if (shost->unchecked_isa_dma)
1821 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1822 	blk_queue_segment_boundary(q, shost->dma_boundary);
1823 	dma_set_seg_boundary(dev, shost->dma_boundary);
1824 
1825 	blk_queue_max_segment_size(q, shost->max_segment_size);
1826 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1827 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1828 
1829 	/*
1830 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1831 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1832 	 * which is set by the platform.
1833 	 *
1834 	 * Devices that require a bigger alignment can increase it later.
1835 	 */
1836 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1837 }
1838 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1839 
1840 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1841 	.get_budget	= scsi_mq_get_budget,
1842 	.put_budget	= scsi_mq_put_budget,
1843 	.queue_rq	= scsi_queue_rq,
1844 	.complete	= scsi_softirq_done,
1845 	.timeout	= scsi_timeout,
1846 #ifdef CONFIG_BLK_DEBUG_FS
1847 	.show_rq	= scsi_show_rq,
1848 #endif
1849 	.init_request	= scsi_mq_init_request,
1850 	.exit_request	= scsi_mq_exit_request,
1851 	.initialize_rq_fn = scsi_initialize_rq,
1852 	.cleanup_rq	= scsi_cleanup_rq,
1853 	.busy		= scsi_mq_lld_busy,
1854 	.map_queues	= scsi_map_queues,
1855 };
1856 
1857 
1858 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1859 {
1860 	struct request_queue *q = hctx->queue;
1861 	struct scsi_device *sdev = q->queuedata;
1862 	struct Scsi_Host *shost = sdev->host;
1863 
1864 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1865 }
1866 
1867 static const struct blk_mq_ops scsi_mq_ops = {
1868 	.get_budget	= scsi_mq_get_budget,
1869 	.put_budget	= scsi_mq_put_budget,
1870 	.queue_rq	= scsi_queue_rq,
1871 	.commit_rqs	= scsi_commit_rqs,
1872 	.complete	= scsi_softirq_done,
1873 	.timeout	= scsi_timeout,
1874 #ifdef CONFIG_BLK_DEBUG_FS
1875 	.show_rq	= scsi_show_rq,
1876 #endif
1877 	.init_request	= scsi_mq_init_request,
1878 	.exit_request	= scsi_mq_exit_request,
1879 	.initialize_rq_fn = scsi_initialize_rq,
1880 	.cleanup_rq	= scsi_cleanup_rq,
1881 	.busy		= scsi_mq_lld_busy,
1882 	.map_queues	= scsi_map_queues,
1883 };
1884 
1885 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1886 {
1887 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1888 	if (IS_ERR(sdev->request_queue))
1889 		return NULL;
1890 
1891 	sdev->request_queue->queuedata = sdev;
1892 	__scsi_init_queue(sdev->host, sdev->request_queue);
1893 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1894 	return sdev->request_queue;
1895 }
1896 
1897 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1898 {
1899 	unsigned int cmd_size, sgl_size;
1900 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1901 
1902 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1903 				scsi_mq_inline_sgl_size(shost));
1904 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1905 	if (scsi_host_get_prot(shost))
1906 		cmd_size += sizeof(struct scsi_data_buffer) +
1907 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1908 
1909 	memset(tag_set, 0, sizeof(*tag_set));
1910 	if (shost->hostt->commit_rqs)
1911 		tag_set->ops = &scsi_mq_ops;
1912 	else
1913 		tag_set->ops = &scsi_mq_ops_no_commit;
1914 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1915 	tag_set->queue_depth = shost->can_queue;
1916 	tag_set->cmd_size = cmd_size;
1917 	tag_set->numa_node = NUMA_NO_NODE;
1918 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1919 	tag_set->flags |=
1920 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1921 	tag_set->driver_data = shost;
1922 	if (shost->host_tagset)
1923 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1924 
1925 	return blk_mq_alloc_tag_set(tag_set);
1926 }
1927 
1928 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1929 {
1930 	blk_mq_free_tag_set(&shost->tag_set);
1931 }
1932 
1933 /**
1934  * scsi_device_from_queue - return sdev associated with a request_queue
1935  * @q: The request queue to return the sdev from
1936  *
1937  * Return the sdev associated with a request queue or NULL if the
1938  * request_queue does not reference a SCSI device.
1939  */
1940 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1941 {
1942 	struct scsi_device *sdev = NULL;
1943 
1944 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1945 	    q->mq_ops == &scsi_mq_ops)
1946 		sdev = q->queuedata;
1947 	if (!sdev || !get_device(&sdev->sdev_gendev))
1948 		sdev = NULL;
1949 
1950 	return sdev;
1951 }
1952 
1953 /**
1954  * scsi_block_requests - Utility function used by low-level drivers to prevent
1955  * further commands from being queued to the device.
1956  * @shost:  host in question
1957  *
1958  * There is no timer nor any other means by which the requests get unblocked
1959  * other than the low-level driver calling scsi_unblock_requests().
1960  */
1961 void scsi_block_requests(struct Scsi_Host *shost)
1962 {
1963 	shost->host_self_blocked = 1;
1964 }
1965 EXPORT_SYMBOL(scsi_block_requests);
1966 
1967 /**
1968  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1969  * further commands to be queued to the device.
1970  * @shost:  host in question
1971  *
1972  * There is no timer nor any other means by which the requests get unblocked
1973  * other than the low-level driver calling scsi_unblock_requests(). This is done
1974  * as an API function so that changes to the internals of the scsi mid-layer
1975  * won't require wholesale changes to drivers that use this feature.
1976  */
1977 void scsi_unblock_requests(struct Scsi_Host *shost)
1978 {
1979 	shost->host_self_blocked = 0;
1980 	scsi_run_host_queues(shost);
1981 }
1982 EXPORT_SYMBOL(scsi_unblock_requests);
1983 
1984 void scsi_exit_queue(void)
1985 {
1986 	kmem_cache_destroy(scsi_sense_cache);
1987 	kmem_cache_destroy(scsi_sense_isadma_cache);
1988 }
1989 
1990 /**
1991  *	scsi_mode_select - issue a mode select
1992  *	@sdev:	SCSI device to be queried
1993  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1994  *	@sp:	Save page bit (0 == don't save, 1 == save)
1995  *	@modepage: mode page being requested
1996  *	@buffer: request buffer (may not be smaller than eight bytes)
1997  *	@len:	length of request buffer.
1998  *	@timeout: command timeout
1999  *	@retries: number of retries before failing
2000  *	@data: returns a structure abstracting the mode header data
2001  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2002  *		must be SCSI_SENSE_BUFFERSIZE big.
2003  *
2004  *	Returns zero if successful; negative error number or scsi
2005  *	status on error
2006  *
2007  */
2008 int
2009 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2010 		 unsigned char *buffer, int len, int timeout, int retries,
2011 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2012 {
2013 	unsigned char cmd[10];
2014 	unsigned char *real_buffer;
2015 	int ret;
2016 
2017 	memset(cmd, 0, sizeof(cmd));
2018 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2019 
2020 	if (sdev->use_10_for_ms) {
2021 		if (len > 65535)
2022 			return -EINVAL;
2023 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2024 		if (!real_buffer)
2025 			return -ENOMEM;
2026 		memcpy(real_buffer + 8, buffer, len);
2027 		len += 8;
2028 		real_buffer[0] = 0;
2029 		real_buffer[1] = 0;
2030 		real_buffer[2] = data->medium_type;
2031 		real_buffer[3] = data->device_specific;
2032 		real_buffer[4] = data->longlba ? 0x01 : 0;
2033 		real_buffer[5] = 0;
2034 		real_buffer[6] = data->block_descriptor_length >> 8;
2035 		real_buffer[7] = data->block_descriptor_length;
2036 
2037 		cmd[0] = MODE_SELECT_10;
2038 		cmd[7] = len >> 8;
2039 		cmd[8] = len;
2040 	} else {
2041 		if (len > 255 || data->block_descriptor_length > 255 ||
2042 		    data->longlba)
2043 			return -EINVAL;
2044 
2045 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2046 		if (!real_buffer)
2047 			return -ENOMEM;
2048 		memcpy(real_buffer + 4, buffer, len);
2049 		len += 4;
2050 		real_buffer[0] = 0;
2051 		real_buffer[1] = data->medium_type;
2052 		real_buffer[2] = data->device_specific;
2053 		real_buffer[3] = data->block_descriptor_length;
2054 
2055 		cmd[0] = MODE_SELECT;
2056 		cmd[4] = len;
2057 	}
2058 
2059 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2060 			       sshdr, timeout, retries, NULL);
2061 	kfree(real_buffer);
2062 	return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(scsi_mode_select);
2065 
2066 /**
2067  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2068  *	@sdev:	SCSI device to be queried
2069  *	@dbd:	set if mode sense will allow block descriptors to be returned
2070  *	@modepage: mode page being requested
2071  *	@buffer: request buffer (may not be smaller than eight bytes)
2072  *	@len:	length of request buffer.
2073  *	@timeout: command timeout
2074  *	@retries: number of retries before failing
2075  *	@data: returns a structure abstracting the mode header data
2076  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2077  *		must be SCSI_SENSE_BUFFERSIZE big.
2078  *
2079  *	Returns zero if unsuccessful, or the header offset (either 4
2080  *	or 8 depending on whether a six or ten byte command was
2081  *	issued) if successful.
2082  */
2083 int
2084 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2085 		  unsigned char *buffer, int len, int timeout, int retries,
2086 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2087 {
2088 	unsigned char cmd[12];
2089 	int use_10_for_ms;
2090 	int header_length;
2091 	int result, retry_count = retries;
2092 	struct scsi_sense_hdr my_sshdr;
2093 
2094 	memset(data, 0, sizeof(*data));
2095 	memset(&cmd[0], 0, 12);
2096 
2097 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2098 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2099 	cmd[2] = modepage;
2100 
2101 	/* caller might not be interested in sense, but we need it */
2102 	if (!sshdr)
2103 		sshdr = &my_sshdr;
2104 
2105  retry:
2106 	use_10_for_ms = sdev->use_10_for_ms;
2107 
2108 	if (use_10_for_ms) {
2109 		if (len < 8)
2110 			len = 8;
2111 
2112 		cmd[0] = MODE_SENSE_10;
2113 		cmd[8] = len;
2114 		header_length = 8;
2115 	} else {
2116 		if (len < 4)
2117 			len = 4;
2118 
2119 		cmd[0] = MODE_SENSE;
2120 		cmd[4] = len;
2121 		header_length = 4;
2122 	}
2123 
2124 	memset(buffer, 0, len);
2125 
2126 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2127 				  sshdr, timeout, retries, NULL);
2128 
2129 	/* This code looks awful: what it's doing is making sure an
2130 	 * ILLEGAL REQUEST sense return identifies the actual command
2131 	 * byte as the problem.  MODE_SENSE commands can return
2132 	 * ILLEGAL REQUEST if the code page isn't supported */
2133 
2134 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2135 	    driver_byte(result) == DRIVER_SENSE) {
2136 		if (scsi_sense_valid(sshdr)) {
2137 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2138 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2139 				/*
2140 				 * Invalid command operation code
2141 				 */
2142 				sdev->use_10_for_ms = 0;
2143 				goto retry;
2144 			}
2145 		}
2146 	}
2147 
2148 	if (scsi_status_is_good(result)) {
2149 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2150 			     (modepage == 6 || modepage == 8))) {
2151 			/* Initio breakage? */
2152 			header_length = 0;
2153 			data->length = 13;
2154 			data->medium_type = 0;
2155 			data->device_specific = 0;
2156 			data->longlba = 0;
2157 			data->block_descriptor_length = 0;
2158 		} else if (use_10_for_ms) {
2159 			data->length = buffer[0]*256 + buffer[1] + 2;
2160 			data->medium_type = buffer[2];
2161 			data->device_specific = buffer[3];
2162 			data->longlba = buffer[4] & 0x01;
2163 			data->block_descriptor_length = buffer[6]*256
2164 				+ buffer[7];
2165 		} else {
2166 			data->length = buffer[0] + 1;
2167 			data->medium_type = buffer[1];
2168 			data->device_specific = buffer[2];
2169 			data->block_descriptor_length = buffer[3];
2170 		}
2171 		data->header_length = header_length;
2172 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2173 		   scsi_sense_valid(sshdr) &&
2174 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2175 		retry_count--;
2176 		goto retry;
2177 	}
2178 
2179 	return result;
2180 }
2181 EXPORT_SYMBOL(scsi_mode_sense);
2182 
2183 /**
2184  *	scsi_test_unit_ready - test if unit is ready
2185  *	@sdev:	scsi device to change the state of.
2186  *	@timeout: command timeout
2187  *	@retries: number of retries before failing
2188  *	@sshdr: outpout pointer for decoded sense information.
2189  *
2190  *	Returns zero if unsuccessful or an error if TUR failed.  For
2191  *	removable media, UNIT_ATTENTION sets ->changed flag.
2192  **/
2193 int
2194 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2195 		     struct scsi_sense_hdr *sshdr)
2196 {
2197 	char cmd[] = {
2198 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2199 	};
2200 	int result;
2201 
2202 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2203 	do {
2204 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2205 					  timeout, 1, NULL);
2206 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2207 		    sshdr->sense_key == UNIT_ATTENTION)
2208 			sdev->changed = 1;
2209 	} while (scsi_sense_valid(sshdr) &&
2210 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2211 
2212 	return result;
2213 }
2214 EXPORT_SYMBOL(scsi_test_unit_ready);
2215 
2216 /**
2217  *	scsi_device_set_state - Take the given device through the device state model.
2218  *	@sdev:	scsi device to change the state of.
2219  *	@state:	state to change to.
2220  *
2221  *	Returns zero if successful or an error if the requested
2222  *	transition is illegal.
2223  */
2224 int
2225 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2226 {
2227 	enum scsi_device_state oldstate = sdev->sdev_state;
2228 
2229 	if (state == oldstate)
2230 		return 0;
2231 
2232 	switch (state) {
2233 	case SDEV_CREATED:
2234 		switch (oldstate) {
2235 		case SDEV_CREATED_BLOCK:
2236 			break;
2237 		default:
2238 			goto illegal;
2239 		}
2240 		break;
2241 
2242 	case SDEV_RUNNING:
2243 		switch (oldstate) {
2244 		case SDEV_CREATED:
2245 		case SDEV_OFFLINE:
2246 		case SDEV_TRANSPORT_OFFLINE:
2247 		case SDEV_QUIESCE:
2248 		case SDEV_BLOCK:
2249 			break;
2250 		default:
2251 			goto illegal;
2252 		}
2253 		break;
2254 
2255 	case SDEV_QUIESCE:
2256 		switch (oldstate) {
2257 		case SDEV_RUNNING:
2258 		case SDEV_OFFLINE:
2259 		case SDEV_TRANSPORT_OFFLINE:
2260 			break;
2261 		default:
2262 			goto illegal;
2263 		}
2264 		break;
2265 
2266 	case SDEV_OFFLINE:
2267 	case SDEV_TRANSPORT_OFFLINE:
2268 		switch (oldstate) {
2269 		case SDEV_CREATED:
2270 		case SDEV_RUNNING:
2271 		case SDEV_QUIESCE:
2272 		case SDEV_BLOCK:
2273 			break;
2274 		default:
2275 			goto illegal;
2276 		}
2277 		break;
2278 
2279 	case SDEV_BLOCK:
2280 		switch (oldstate) {
2281 		case SDEV_RUNNING:
2282 		case SDEV_CREATED_BLOCK:
2283 		case SDEV_QUIESCE:
2284 		case SDEV_OFFLINE:
2285 			break;
2286 		default:
2287 			goto illegal;
2288 		}
2289 		break;
2290 
2291 	case SDEV_CREATED_BLOCK:
2292 		switch (oldstate) {
2293 		case SDEV_CREATED:
2294 			break;
2295 		default:
2296 			goto illegal;
2297 		}
2298 		break;
2299 
2300 	case SDEV_CANCEL:
2301 		switch (oldstate) {
2302 		case SDEV_CREATED:
2303 		case SDEV_RUNNING:
2304 		case SDEV_QUIESCE:
2305 		case SDEV_OFFLINE:
2306 		case SDEV_TRANSPORT_OFFLINE:
2307 			break;
2308 		default:
2309 			goto illegal;
2310 		}
2311 		break;
2312 
2313 	case SDEV_DEL:
2314 		switch (oldstate) {
2315 		case SDEV_CREATED:
2316 		case SDEV_RUNNING:
2317 		case SDEV_OFFLINE:
2318 		case SDEV_TRANSPORT_OFFLINE:
2319 		case SDEV_CANCEL:
2320 		case SDEV_BLOCK:
2321 		case SDEV_CREATED_BLOCK:
2322 			break;
2323 		default:
2324 			goto illegal;
2325 		}
2326 		break;
2327 
2328 	}
2329 	sdev->offline_already = false;
2330 	sdev->sdev_state = state;
2331 	return 0;
2332 
2333  illegal:
2334 	SCSI_LOG_ERROR_RECOVERY(1,
2335 				sdev_printk(KERN_ERR, sdev,
2336 					    "Illegal state transition %s->%s",
2337 					    scsi_device_state_name(oldstate),
2338 					    scsi_device_state_name(state))
2339 				);
2340 	return -EINVAL;
2341 }
2342 EXPORT_SYMBOL(scsi_device_set_state);
2343 
2344 /**
2345  *	scsi_evt_emit - emit a single SCSI device uevent
2346  *	@sdev: associated SCSI device
2347  *	@evt: event to emit
2348  *
2349  *	Send a single uevent (scsi_event) to the associated scsi_device.
2350  */
2351 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2352 {
2353 	int idx = 0;
2354 	char *envp[3];
2355 
2356 	switch (evt->evt_type) {
2357 	case SDEV_EVT_MEDIA_CHANGE:
2358 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2359 		break;
2360 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2361 		scsi_rescan_device(&sdev->sdev_gendev);
2362 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2363 		break;
2364 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2365 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2366 		break;
2367 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2368 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2369 		break;
2370 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2371 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2372 		break;
2373 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2374 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2375 		break;
2376 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2377 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2378 		break;
2379 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2380 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2381 		break;
2382 	default:
2383 		/* do nothing */
2384 		break;
2385 	}
2386 
2387 	envp[idx++] = NULL;
2388 
2389 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2390 }
2391 
2392 /**
2393  *	scsi_evt_thread - send a uevent for each scsi event
2394  *	@work: work struct for scsi_device
2395  *
2396  *	Dispatch queued events to their associated scsi_device kobjects
2397  *	as uevents.
2398  */
2399 void scsi_evt_thread(struct work_struct *work)
2400 {
2401 	struct scsi_device *sdev;
2402 	enum scsi_device_event evt_type;
2403 	LIST_HEAD(event_list);
2404 
2405 	sdev = container_of(work, struct scsi_device, event_work);
2406 
2407 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2408 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2409 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2410 
2411 	while (1) {
2412 		struct scsi_event *evt;
2413 		struct list_head *this, *tmp;
2414 		unsigned long flags;
2415 
2416 		spin_lock_irqsave(&sdev->list_lock, flags);
2417 		list_splice_init(&sdev->event_list, &event_list);
2418 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2419 
2420 		if (list_empty(&event_list))
2421 			break;
2422 
2423 		list_for_each_safe(this, tmp, &event_list) {
2424 			evt = list_entry(this, struct scsi_event, node);
2425 			list_del(&evt->node);
2426 			scsi_evt_emit(sdev, evt);
2427 			kfree(evt);
2428 		}
2429 	}
2430 }
2431 
2432 /**
2433  * 	sdev_evt_send - send asserted event to uevent thread
2434  *	@sdev: scsi_device event occurred on
2435  *	@evt: event to send
2436  *
2437  *	Assert scsi device event asynchronously.
2438  */
2439 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2440 {
2441 	unsigned long flags;
2442 
2443 #if 0
2444 	/* FIXME: currently this check eliminates all media change events
2445 	 * for polled devices.  Need to update to discriminate between AN
2446 	 * and polled events */
2447 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2448 		kfree(evt);
2449 		return;
2450 	}
2451 #endif
2452 
2453 	spin_lock_irqsave(&sdev->list_lock, flags);
2454 	list_add_tail(&evt->node, &sdev->event_list);
2455 	schedule_work(&sdev->event_work);
2456 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2457 }
2458 EXPORT_SYMBOL_GPL(sdev_evt_send);
2459 
2460 /**
2461  * 	sdev_evt_alloc - allocate a new scsi event
2462  *	@evt_type: type of event to allocate
2463  *	@gfpflags: GFP flags for allocation
2464  *
2465  *	Allocates and returns a new scsi_event.
2466  */
2467 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2468 				  gfp_t gfpflags)
2469 {
2470 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2471 	if (!evt)
2472 		return NULL;
2473 
2474 	evt->evt_type = evt_type;
2475 	INIT_LIST_HEAD(&evt->node);
2476 
2477 	/* evt_type-specific initialization, if any */
2478 	switch (evt_type) {
2479 	case SDEV_EVT_MEDIA_CHANGE:
2480 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2481 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2482 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2483 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2484 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2485 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2486 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2487 	default:
2488 		/* do nothing */
2489 		break;
2490 	}
2491 
2492 	return evt;
2493 }
2494 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2495 
2496 /**
2497  * 	sdev_evt_send_simple - send asserted event to uevent thread
2498  *	@sdev: scsi_device event occurred on
2499  *	@evt_type: type of event to send
2500  *	@gfpflags: GFP flags for allocation
2501  *
2502  *	Assert scsi device event asynchronously, given an event type.
2503  */
2504 void sdev_evt_send_simple(struct scsi_device *sdev,
2505 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2506 {
2507 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2508 	if (!evt) {
2509 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2510 			    evt_type);
2511 		return;
2512 	}
2513 
2514 	sdev_evt_send(sdev, evt);
2515 }
2516 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2517 
2518 /**
2519  *	scsi_device_quiesce - Block user issued commands.
2520  *	@sdev:	scsi device to quiesce.
2521  *
2522  *	This works by trying to transition to the SDEV_QUIESCE state
2523  *	(which must be a legal transition).  When the device is in this
2524  *	state, only special requests will be accepted, all others will
2525  *	be deferred.  Since special requests may also be requeued requests,
2526  *	a successful return doesn't guarantee the device will be
2527  *	totally quiescent.
2528  *
2529  *	Must be called with user context, may sleep.
2530  *
2531  *	Returns zero if unsuccessful or an error if not.
2532  */
2533 int
2534 scsi_device_quiesce(struct scsi_device *sdev)
2535 {
2536 	struct request_queue *q = sdev->request_queue;
2537 	int err;
2538 
2539 	/*
2540 	 * It is allowed to call scsi_device_quiesce() multiple times from
2541 	 * the same context but concurrent scsi_device_quiesce() calls are
2542 	 * not allowed.
2543 	 */
2544 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2545 
2546 	if (sdev->quiesced_by == current)
2547 		return 0;
2548 
2549 	blk_set_pm_only(q);
2550 
2551 	blk_mq_freeze_queue(q);
2552 	/*
2553 	 * Ensure that the effect of blk_set_pm_only() will be visible
2554 	 * for percpu_ref_tryget() callers that occur after the queue
2555 	 * unfreeze even if the queue was already frozen before this function
2556 	 * was called. See also https://lwn.net/Articles/573497/.
2557 	 */
2558 	synchronize_rcu();
2559 	blk_mq_unfreeze_queue(q);
2560 
2561 	mutex_lock(&sdev->state_mutex);
2562 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2563 	if (err == 0)
2564 		sdev->quiesced_by = current;
2565 	else
2566 		blk_clear_pm_only(q);
2567 	mutex_unlock(&sdev->state_mutex);
2568 
2569 	return err;
2570 }
2571 EXPORT_SYMBOL(scsi_device_quiesce);
2572 
2573 /**
2574  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2575  *	@sdev:	scsi device to resume.
2576  *
2577  *	Moves the device from quiesced back to running and restarts the
2578  *	queues.
2579  *
2580  *	Must be called with user context, may sleep.
2581  */
2582 void scsi_device_resume(struct scsi_device *sdev)
2583 {
2584 	/* check if the device state was mutated prior to resume, and if
2585 	 * so assume the state is being managed elsewhere (for example
2586 	 * device deleted during suspend)
2587 	 */
2588 	mutex_lock(&sdev->state_mutex);
2589 	if (sdev->quiesced_by) {
2590 		sdev->quiesced_by = NULL;
2591 		blk_clear_pm_only(sdev->request_queue);
2592 	}
2593 	if (sdev->sdev_state == SDEV_QUIESCE)
2594 		scsi_device_set_state(sdev, SDEV_RUNNING);
2595 	mutex_unlock(&sdev->state_mutex);
2596 }
2597 EXPORT_SYMBOL(scsi_device_resume);
2598 
2599 static void
2600 device_quiesce_fn(struct scsi_device *sdev, void *data)
2601 {
2602 	scsi_device_quiesce(sdev);
2603 }
2604 
2605 void
2606 scsi_target_quiesce(struct scsi_target *starget)
2607 {
2608 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2609 }
2610 EXPORT_SYMBOL(scsi_target_quiesce);
2611 
2612 static void
2613 device_resume_fn(struct scsi_device *sdev, void *data)
2614 {
2615 	scsi_device_resume(sdev);
2616 }
2617 
2618 void
2619 scsi_target_resume(struct scsi_target *starget)
2620 {
2621 	starget_for_each_device(starget, NULL, device_resume_fn);
2622 }
2623 EXPORT_SYMBOL(scsi_target_resume);
2624 
2625 /**
2626  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2627  * @sdev: device to block
2628  *
2629  * Pause SCSI command processing on the specified device. Does not sleep.
2630  *
2631  * Returns zero if successful or a negative error code upon failure.
2632  *
2633  * Notes:
2634  * This routine transitions the device to the SDEV_BLOCK state (which must be
2635  * a legal transition). When the device is in this state, command processing
2636  * is paused until the device leaves the SDEV_BLOCK state. See also
2637  * scsi_internal_device_unblock_nowait().
2638  */
2639 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2640 {
2641 	struct request_queue *q = sdev->request_queue;
2642 	int err = 0;
2643 
2644 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2645 	if (err) {
2646 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2647 
2648 		if (err)
2649 			return err;
2650 	}
2651 
2652 	/*
2653 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2654 	 * block layer from calling the midlayer with this device's
2655 	 * request queue.
2656 	 */
2657 	blk_mq_quiesce_queue_nowait(q);
2658 	return 0;
2659 }
2660 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2661 
2662 /**
2663  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2664  * @sdev: device to block
2665  *
2666  * Pause SCSI command processing on the specified device and wait until all
2667  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2668  *
2669  * Returns zero if successful or a negative error code upon failure.
2670  *
2671  * Note:
2672  * This routine transitions the device to the SDEV_BLOCK state (which must be
2673  * a legal transition). When the device is in this state, command processing
2674  * is paused until the device leaves the SDEV_BLOCK state. See also
2675  * scsi_internal_device_unblock().
2676  */
2677 static int scsi_internal_device_block(struct scsi_device *sdev)
2678 {
2679 	struct request_queue *q = sdev->request_queue;
2680 	int err;
2681 
2682 	mutex_lock(&sdev->state_mutex);
2683 	err = scsi_internal_device_block_nowait(sdev);
2684 	if (err == 0)
2685 		blk_mq_quiesce_queue(q);
2686 	mutex_unlock(&sdev->state_mutex);
2687 
2688 	return err;
2689 }
2690 
2691 void scsi_start_queue(struct scsi_device *sdev)
2692 {
2693 	struct request_queue *q = sdev->request_queue;
2694 
2695 	blk_mq_unquiesce_queue(q);
2696 }
2697 
2698 /**
2699  * scsi_internal_device_unblock_nowait - resume a device after a block request
2700  * @sdev:	device to resume
2701  * @new_state:	state to set the device to after unblocking
2702  *
2703  * Restart the device queue for a previously suspended SCSI device. Does not
2704  * sleep.
2705  *
2706  * Returns zero if successful or a negative error code upon failure.
2707  *
2708  * Notes:
2709  * This routine transitions the device to the SDEV_RUNNING state or to one of
2710  * the offline states (which must be a legal transition) allowing the midlayer
2711  * to goose the queue for this device.
2712  */
2713 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2714 					enum scsi_device_state new_state)
2715 {
2716 	switch (new_state) {
2717 	case SDEV_RUNNING:
2718 	case SDEV_TRANSPORT_OFFLINE:
2719 		break;
2720 	default:
2721 		return -EINVAL;
2722 	}
2723 
2724 	/*
2725 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2726 	 * offlined states and goose the device queue if successful.
2727 	 */
2728 	switch (sdev->sdev_state) {
2729 	case SDEV_BLOCK:
2730 	case SDEV_TRANSPORT_OFFLINE:
2731 		sdev->sdev_state = new_state;
2732 		break;
2733 	case SDEV_CREATED_BLOCK:
2734 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2735 		    new_state == SDEV_OFFLINE)
2736 			sdev->sdev_state = new_state;
2737 		else
2738 			sdev->sdev_state = SDEV_CREATED;
2739 		break;
2740 	case SDEV_CANCEL:
2741 	case SDEV_OFFLINE:
2742 		break;
2743 	default:
2744 		return -EINVAL;
2745 	}
2746 	scsi_start_queue(sdev);
2747 
2748 	return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2751 
2752 /**
2753  * scsi_internal_device_unblock - resume a device after a block request
2754  * @sdev:	device to resume
2755  * @new_state:	state to set the device to after unblocking
2756  *
2757  * Restart the device queue for a previously suspended SCSI device. May sleep.
2758  *
2759  * Returns zero if successful or a negative error code upon failure.
2760  *
2761  * Notes:
2762  * This routine transitions the device to the SDEV_RUNNING state or to one of
2763  * the offline states (which must be a legal transition) allowing the midlayer
2764  * to goose the queue for this device.
2765  */
2766 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2767 					enum scsi_device_state new_state)
2768 {
2769 	int ret;
2770 
2771 	mutex_lock(&sdev->state_mutex);
2772 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2773 	mutex_unlock(&sdev->state_mutex);
2774 
2775 	return ret;
2776 }
2777 
2778 static void
2779 device_block(struct scsi_device *sdev, void *data)
2780 {
2781 	int ret;
2782 
2783 	ret = scsi_internal_device_block(sdev);
2784 
2785 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2786 		  dev_name(&sdev->sdev_gendev), ret);
2787 }
2788 
2789 static int
2790 target_block(struct device *dev, void *data)
2791 {
2792 	if (scsi_is_target_device(dev))
2793 		starget_for_each_device(to_scsi_target(dev), NULL,
2794 					device_block);
2795 	return 0;
2796 }
2797 
2798 void
2799 scsi_target_block(struct device *dev)
2800 {
2801 	if (scsi_is_target_device(dev))
2802 		starget_for_each_device(to_scsi_target(dev), NULL,
2803 					device_block);
2804 	else
2805 		device_for_each_child(dev, NULL, target_block);
2806 }
2807 EXPORT_SYMBOL_GPL(scsi_target_block);
2808 
2809 static void
2810 device_unblock(struct scsi_device *sdev, void *data)
2811 {
2812 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2813 }
2814 
2815 static int
2816 target_unblock(struct device *dev, void *data)
2817 {
2818 	if (scsi_is_target_device(dev))
2819 		starget_for_each_device(to_scsi_target(dev), data,
2820 					device_unblock);
2821 	return 0;
2822 }
2823 
2824 void
2825 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2826 {
2827 	if (scsi_is_target_device(dev))
2828 		starget_for_each_device(to_scsi_target(dev), &new_state,
2829 					device_unblock);
2830 	else
2831 		device_for_each_child(dev, &new_state, target_unblock);
2832 }
2833 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2834 
2835 int
2836 scsi_host_block(struct Scsi_Host *shost)
2837 {
2838 	struct scsi_device *sdev;
2839 	int ret = 0;
2840 
2841 	/*
2842 	 * Call scsi_internal_device_block_nowait so we can avoid
2843 	 * calling synchronize_rcu() for each LUN.
2844 	 */
2845 	shost_for_each_device(sdev, shost) {
2846 		mutex_lock(&sdev->state_mutex);
2847 		ret = scsi_internal_device_block_nowait(sdev);
2848 		mutex_unlock(&sdev->state_mutex);
2849 		if (ret) {
2850 			scsi_device_put(sdev);
2851 			break;
2852 		}
2853 	}
2854 
2855 	/*
2856 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2857 	 * calling synchronize_rcu() once is enough.
2858 	 */
2859 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2860 
2861 	if (!ret)
2862 		synchronize_rcu();
2863 
2864 	return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(scsi_host_block);
2867 
2868 int
2869 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2870 {
2871 	struct scsi_device *sdev;
2872 	int ret = 0;
2873 
2874 	shost_for_each_device(sdev, shost) {
2875 		ret = scsi_internal_device_unblock(sdev, new_state);
2876 		if (ret) {
2877 			scsi_device_put(sdev);
2878 			break;
2879 		}
2880 	}
2881 	return ret;
2882 }
2883 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2884 
2885 /**
2886  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2887  * @sgl:	scatter-gather list
2888  * @sg_count:	number of segments in sg
2889  * @offset:	offset in bytes into sg, on return offset into the mapped area
2890  * @len:	bytes to map, on return number of bytes mapped
2891  *
2892  * Returns virtual address of the start of the mapped page
2893  */
2894 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2895 			  size_t *offset, size_t *len)
2896 {
2897 	int i;
2898 	size_t sg_len = 0, len_complete = 0;
2899 	struct scatterlist *sg;
2900 	struct page *page;
2901 
2902 	WARN_ON(!irqs_disabled());
2903 
2904 	for_each_sg(sgl, sg, sg_count, i) {
2905 		len_complete = sg_len; /* Complete sg-entries */
2906 		sg_len += sg->length;
2907 		if (sg_len > *offset)
2908 			break;
2909 	}
2910 
2911 	if (unlikely(i == sg_count)) {
2912 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2913 			"elements %d\n",
2914 		       __func__, sg_len, *offset, sg_count);
2915 		WARN_ON(1);
2916 		return NULL;
2917 	}
2918 
2919 	/* Offset starting from the beginning of first page in this sg-entry */
2920 	*offset = *offset - len_complete + sg->offset;
2921 
2922 	/* Assumption: contiguous pages can be accessed as "page + i" */
2923 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2924 	*offset &= ~PAGE_MASK;
2925 
2926 	/* Bytes in this sg-entry from *offset to the end of the page */
2927 	sg_len = PAGE_SIZE - *offset;
2928 	if (*len > sg_len)
2929 		*len = sg_len;
2930 
2931 	return kmap_atomic(page);
2932 }
2933 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2934 
2935 /**
2936  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2937  * @virt:	virtual address to be unmapped
2938  */
2939 void scsi_kunmap_atomic_sg(void *virt)
2940 {
2941 	kunmap_atomic(virt);
2942 }
2943 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2944 
2945 void sdev_disable_disk_events(struct scsi_device *sdev)
2946 {
2947 	atomic_inc(&sdev->disk_events_disable_depth);
2948 }
2949 EXPORT_SYMBOL(sdev_disable_disk_events);
2950 
2951 void sdev_enable_disk_events(struct scsi_device *sdev)
2952 {
2953 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2954 		return;
2955 	atomic_dec(&sdev->disk_events_disable_depth);
2956 }
2957 EXPORT_SYMBOL(sdev_enable_disk_events);
2958 
2959 static unsigned char designator_prio(const unsigned char *d)
2960 {
2961 	if (d[1] & 0x30)
2962 		/* not associated with LUN */
2963 		return 0;
2964 
2965 	if (d[3] == 0)
2966 		/* invalid length */
2967 		return 0;
2968 
2969 	/*
2970 	 * Order of preference for lun descriptor:
2971 	 * - SCSI name string
2972 	 * - NAA IEEE Registered Extended
2973 	 * - EUI-64 based 16-byte
2974 	 * - EUI-64 based 12-byte
2975 	 * - NAA IEEE Registered
2976 	 * - NAA IEEE Extended
2977 	 * - EUI-64 based 8-byte
2978 	 * - SCSI name string (truncated)
2979 	 * - T10 Vendor ID
2980 	 * as longer descriptors reduce the likelyhood
2981 	 * of identification clashes.
2982 	 */
2983 
2984 	switch (d[1] & 0xf) {
2985 	case 8:
2986 		/* SCSI name string, variable-length UTF-8 */
2987 		return 9;
2988 	case 3:
2989 		switch (d[4] >> 4) {
2990 		case 6:
2991 			/* NAA registered extended */
2992 			return 8;
2993 		case 5:
2994 			/* NAA registered */
2995 			return 5;
2996 		case 4:
2997 			/* NAA extended */
2998 			return 4;
2999 		case 3:
3000 			/* NAA locally assigned */
3001 			return 1;
3002 		default:
3003 			break;
3004 		}
3005 		break;
3006 	case 2:
3007 		switch (d[3]) {
3008 		case 16:
3009 			/* EUI64-based, 16 byte */
3010 			return 7;
3011 		case 12:
3012 			/* EUI64-based, 12 byte */
3013 			return 6;
3014 		case 8:
3015 			/* EUI64-based, 8 byte */
3016 			return 3;
3017 		default:
3018 			break;
3019 		}
3020 		break;
3021 	case 1:
3022 		/* T10 vendor ID */
3023 		return 1;
3024 	default:
3025 		break;
3026 	}
3027 
3028 	return 0;
3029 }
3030 
3031 /**
3032  * scsi_vpd_lun_id - return a unique device identification
3033  * @sdev: SCSI device
3034  * @id:   buffer for the identification
3035  * @id_len:  length of the buffer
3036  *
3037  * Copies a unique device identification into @id based
3038  * on the information in the VPD page 0x83 of the device.
3039  * The string will be formatted as a SCSI name string.
3040  *
3041  * Returns the length of the identification or error on failure.
3042  * If the identifier is longer than the supplied buffer the actual
3043  * identifier length is returned and the buffer is not zero-padded.
3044  */
3045 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3046 {
3047 	u8 cur_id_prio = 0;
3048 	u8 cur_id_size = 0;
3049 	const unsigned char *d, *cur_id_str;
3050 	const struct scsi_vpd *vpd_pg83;
3051 	int id_size = -EINVAL;
3052 
3053 	rcu_read_lock();
3054 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3055 	if (!vpd_pg83) {
3056 		rcu_read_unlock();
3057 		return -ENXIO;
3058 	}
3059 
3060 	/* The id string must be at least 20 bytes + terminating NULL byte */
3061 	if (id_len < 21) {
3062 		rcu_read_unlock();
3063 		return -EINVAL;
3064 	}
3065 
3066 	memset(id, 0, id_len);
3067 	for (d = vpd_pg83->data + 4;
3068 	     d < vpd_pg83->data + vpd_pg83->len;
3069 	     d += d[3] + 4) {
3070 		u8 prio = designator_prio(d);
3071 
3072 		if (prio == 0 || cur_id_prio > prio)
3073 			continue;
3074 
3075 		switch (d[1] & 0xf) {
3076 		case 0x1:
3077 			/* T10 Vendor ID */
3078 			if (cur_id_size > d[3])
3079 				break;
3080 			cur_id_prio = prio;
3081 			cur_id_size = d[3];
3082 			if (cur_id_size + 4 > id_len)
3083 				cur_id_size = id_len - 4;
3084 			cur_id_str = d + 4;
3085 			id_size = snprintf(id, id_len, "t10.%*pE",
3086 					   cur_id_size, cur_id_str);
3087 			break;
3088 		case 0x2:
3089 			/* EUI-64 */
3090 			cur_id_prio = prio;
3091 			cur_id_size = d[3];
3092 			cur_id_str = d + 4;
3093 			switch (cur_id_size) {
3094 			case 8:
3095 				id_size = snprintf(id, id_len,
3096 						   "eui.%8phN",
3097 						   cur_id_str);
3098 				break;
3099 			case 12:
3100 				id_size = snprintf(id, id_len,
3101 						   "eui.%12phN",
3102 						   cur_id_str);
3103 				break;
3104 			case 16:
3105 				id_size = snprintf(id, id_len,
3106 						   "eui.%16phN",
3107 						   cur_id_str);
3108 				break;
3109 			default:
3110 				break;
3111 			}
3112 			break;
3113 		case 0x3:
3114 			/* NAA */
3115 			cur_id_prio = prio;
3116 			cur_id_size = d[3];
3117 			cur_id_str = d + 4;
3118 			switch (cur_id_size) {
3119 			case 8:
3120 				id_size = snprintf(id, id_len,
3121 						   "naa.%8phN",
3122 						   cur_id_str);
3123 				break;
3124 			case 16:
3125 				id_size = snprintf(id, id_len,
3126 						   "naa.%16phN",
3127 						   cur_id_str);
3128 				break;
3129 			default:
3130 				break;
3131 			}
3132 			break;
3133 		case 0x8:
3134 			/* SCSI name string */
3135 			if (cur_id_size > d[3])
3136 				break;
3137 			/* Prefer others for truncated descriptor */
3138 			if (d[3] > id_len) {
3139 				prio = 2;
3140 				if (cur_id_prio > prio)
3141 					break;
3142 			}
3143 			cur_id_prio = prio;
3144 			cur_id_size = id_size = d[3];
3145 			cur_id_str = d + 4;
3146 			if (cur_id_size >= id_len)
3147 				cur_id_size = id_len - 1;
3148 			memcpy(id, cur_id_str, cur_id_size);
3149 			break;
3150 		default:
3151 			break;
3152 		}
3153 	}
3154 	rcu_read_unlock();
3155 
3156 	return id_size;
3157 }
3158 EXPORT_SYMBOL(scsi_vpd_lun_id);
3159 
3160 /*
3161  * scsi_vpd_tpg_id - return a target port group identifier
3162  * @sdev: SCSI device
3163  *
3164  * Returns the Target Port Group identifier from the information
3165  * froom VPD page 0x83 of the device.
3166  *
3167  * Returns the identifier or error on failure.
3168  */
3169 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3170 {
3171 	const unsigned char *d;
3172 	const struct scsi_vpd *vpd_pg83;
3173 	int group_id = -EAGAIN, rel_port = -1;
3174 
3175 	rcu_read_lock();
3176 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3177 	if (!vpd_pg83) {
3178 		rcu_read_unlock();
3179 		return -ENXIO;
3180 	}
3181 
3182 	d = vpd_pg83->data + 4;
3183 	while (d < vpd_pg83->data + vpd_pg83->len) {
3184 		switch (d[1] & 0xf) {
3185 		case 0x4:
3186 			/* Relative target port */
3187 			rel_port = get_unaligned_be16(&d[6]);
3188 			break;
3189 		case 0x5:
3190 			/* Target port group */
3191 			group_id = get_unaligned_be16(&d[6]);
3192 			break;
3193 		default:
3194 			break;
3195 		}
3196 		d += d[3] + 4;
3197 	}
3198 	rcu_read_unlock();
3199 
3200 	if (group_id >= 0 && rel_id && rel_port != -1)
3201 		*rel_id = rel_port;
3202 
3203 	return group_id;
3204 }
3205 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3206