1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/blk-integrity.h> 25 #include <linux/ratelimit.h> 26 #include <asm/unaligned.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_dbg.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_driver.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 36 #include <scsi/scsi_dh.h> 37 38 #include <trace/events/scsi.h> 39 40 #include "scsi_debugfs.h" 41 #include "scsi_priv.h" 42 #include "scsi_logging.h" 43 44 /* 45 * Size of integrity metadata is usually small, 1 inline sg should 46 * cover normal cases. 47 */ 48 #ifdef CONFIG_ARCH_NO_SG_CHAIN 49 #define SCSI_INLINE_PROT_SG_CNT 0 50 #define SCSI_INLINE_SG_CNT 0 51 #else 52 #define SCSI_INLINE_PROT_SG_CNT 1 53 #define SCSI_INLINE_SG_CNT 2 54 #endif 55 56 static struct kmem_cache *scsi_sense_cache; 57 static DEFINE_MUTEX(scsi_sense_cache_mutex); 58 59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 60 61 int scsi_init_sense_cache(struct Scsi_Host *shost) 62 { 63 int ret = 0; 64 65 mutex_lock(&scsi_sense_cache_mutex); 66 if (!scsi_sense_cache) { 67 scsi_sense_cache = 68 kmem_cache_create_usercopy("scsi_sense_cache", 69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 70 0, SCSI_SENSE_BUFFERSIZE, NULL); 71 if (!scsi_sense_cache) 72 ret = -ENOMEM; 73 } 74 mutex_unlock(&scsi_sense_cache_mutex); 75 return ret; 76 } 77 78 static void 79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 80 { 81 struct Scsi_Host *host = cmd->device->host; 82 struct scsi_device *device = cmd->device; 83 struct scsi_target *starget = scsi_target(device); 84 85 /* 86 * Set the appropriate busy bit for the device/host. 87 * 88 * If the host/device isn't busy, assume that something actually 89 * completed, and that we should be able to queue a command now. 90 * 91 * Note that the prior mid-layer assumption that any host could 92 * always queue at least one command is now broken. The mid-layer 93 * will implement a user specifiable stall (see 94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 95 * if a command is requeued with no other commands outstanding 96 * either for the device or for the host. 97 */ 98 switch (reason) { 99 case SCSI_MLQUEUE_HOST_BUSY: 100 atomic_set(&host->host_blocked, host->max_host_blocked); 101 break; 102 case SCSI_MLQUEUE_DEVICE_BUSY: 103 case SCSI_MLQUEUE_EH_RETRY: 104 atomic_set(&device->device_blocked, 105 device->max_device_blocked); 106 break; 107 case SCSI_MLQUEUE_TARGET_BUSY: 108 atomic_set(&starget->target_blocked, 109 starget->max_target_blocked); 110 break; 111 } 112 } 113 114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs) 115 { 116 struct request *rq = scsi_cmd_to_rq(cmd); 117 118 if (rq->rq_flags & RQF_DONTPREP) { 119 rq->rq_flags &= ~RQF_DONTPREP; 120 scsi_mq_uninit_cmd(cmd); 121 } else { 122 WARN_ON_ONCE(true); 123 } 124 125 if (msecs) { 126 blk_mq_requeue_request(rq, false); 127 blk_mq_delay_kick_requeue_list(rq->q, msecs); 128 } else 129 blk_mq_requeue_request(rq, true); 130 } 131 132 /** 133 * __scsi_queue_insert - private queue insertion 134 * @cmd: The SCSI command being requeued 135 * @reason: The reason for the requeue 136 * @unbusy: Whether the queue should be unbusied 137 * 138 * This is a private queue insertion. The public interface 139 * scsi_queue_insert() always assumes the queue should be unbusied 140 * because it's always called before the completion. This function is 141 * for a requeue after completion, which should only occur in this 142 * file. 143 */ 144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 145 { 146 struct scsi_device *device = cmd->device; 147 148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 149 "Inserting command %p into mlqueue\n", cmd)); 150 151 scsi_set_blocked(cmd, reason); 152 153 /* 154 * Decrement the counters, since these commands are no longer 155 * active on the host/device. 156 */ 157 if (unbusy) 158 scsi_device_unbusy(device, cmd); 159 160 /* 161 * Requeue this command. It will go before all other commands 162 * that are already in the queue. Schedule requeue work under 163 * lock such that the kblockd_schedule_work() call happens 164 * before blk_mq_destroy_queue() finishes. 165 */ 166 cmd->result = 0; 167 168 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true); 169 } 170 171 /** 172 * scsi_queue_insert - Reinsert a command in the queue. 173 * @cmd: command that we are adding to queue. 174 * @reason: why we are inserting command to queue. 175 * 176 * We do this for one of two cases. Either the host is busy and it cannot accept 177 * any more commands for the time being, or the device returned QUEUE_FULL and 178 * can accept no more commands. 179 * 180 * Context: This could be called either from an interrupt context or a normal 181 * process context. 182 */ 183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 184 { 185 __scsi_queue_insert(cmd, reason, true); 186 } 187 188 /** 189 * scsi_execute_cmd - insert request and wait for the result 190 * @sdev: scsi_device 191 * @cmd: scsi command 192 * @opf: block layer request cmd_flags 193 * @buffer: data buffer 194 * @bufflen: len of buffer 195 * @timeout: request timeout in HZ 196 * @retries: number of times to retry request 197 * @args: Optional args. See struct definition for field descriptions 198 * 199 * Returns the scsi_cmnd result field if a command was executed, or a negative 200 * Linux error code if we didn't get that far. 201 */ 202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd, 203 blk_opf_t opf, void *buffer, unsigned int bufflen, 204 int timeout, int retries, 205 const struct scsi_exec_args *args) 206 { 207 static const struct scsi_exec_args default_args; 208 struct request *req; 209 struct scsi_cmnd *scmd; 210 int ret; 211 212 if (!args) 213 args = &default_args; 214 else if (WARN_ON_ONCE(args->sense && 215 args->sense_len != SCSI_SENSE_BUFFERSIZE)) 216 return -EINVAL; 217 218 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags); 219 if (IS_ERR(req)) 220 return PTR_ERR(req); 221 222 if (bufflen) { 223 ret = blk_rq_map_kern(sdev->request_queue, req, 224 buffer, bufflen, GFP_NOIO); 225 if (ret) 226 goto out; 227 } 228 scmd = blk_mq_rq_to_pdu(req); 229 scmd->cmd_len = COMMAND_SIZE(cmd[0]); 230 memcpy(scmd->cmnd, cmd, scmd->cmd_len); 231 scmd->allowed = retries; 232 req->timeout = timeout; 233 req->rq_flags |= RQF_QUIET; 234 235 /* 236 * head injection *required* here otherwise quiesce won't work 237 */ 238 blk_execute_rq(req, true); 239 240 /* 241 * Some devices (USB mass-storage in particular) may transfer 242 * garbage data together with a residue indicating that the data 243 * is invalid. Prevent the garbage from being misinterpreted 244 * and prevent security leaks by zeroing out the excess data. 245 */ 246 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen)) 247 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len); 248 249 if (args->resid) 250 *args->resid = scmd->resid_len; 251 if (args->sense) 252 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE); 253 if (args->sshdr) 254 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len, 255 args->sshdr); 256 257 ret = scmd->result; 258 out: 259 blk_mq_free_request(req); 260 261 return ret; 262 } 263 EXPORT_SYMBOL(scsi_execute_cmd); 264 265 /* 266 * Wake up the error handler if necessary. Avoid as follows that the error 267 * handler is not woken up if host in-flight requests number == 268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 269 * with an RCU read lock in this function to ensure that this function in 270 * its entirety either finishes before scsi_eh_scmd_add() increases the 271 * host_failed counter or that it notices the shost state change made by 272 * scsi_eh_scmd_add(). 273 */ 274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 275 { 276 unsigned long flags; 277 278 rcu_read_lock(); 279 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 280 if (unlikely(scsi_host_in_recovery(shost))) { 281 spin_lock_irqsave(shost->host_lock, flags); 282 if (shost->host_failed || shost->host_eh_scheduled) 283 scsi_eh_wakeup(shost); 284 spin_unlock_irqrestore(shost->host_lock, flags); 285 } 286 rcu_read_unlock(); 287 } 288 289 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 290 { 291 struct Scsi_Host *shost = sdev->host; 292 struct scsi_target *starget = scsi_target(sdev); 293 294 scsi_dec_host_busy(shost, cmd); 295 296 if (starget->can_queue > 0) 297 atomic_dec(&starget->target_busy); 298 299 sbitmap_put(&sdev->budget_map, cmd->budget_token); 300 cmd->budget_token = -1; 301 } 302 303 static void scsi_kick_queue(struct request_queue *q) 304 { 305 blk_mq_run_hw_queues(q, false); 306 } 307 308 /* 309 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with 310 * interrupts disabled. 311 */ 312 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data) 313 { 314 struct scsi_device *current_sdev = data; 315 316 if (sdev != current_sdev) 317 blk_mq_run_hw_queues(sdev->request_queue, true); 318 } 319 320 /* 321 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 322 * and call blk_run_queue for all the scsi_devices on the target - 323 * including current_sdev first. 324 * 325 * Called with *no* scsi locks held. 326 */ 327 static void scsi_single_lun_run(struct scsi_device *current_sdev) 328 { 329 struct Scsi_Host *shost = current_sdev->host; 330 struct scsi_target *starget = scsi_target(current_sdev); 331 unsigned long flags; 332 333 spin_lock_irqsave(shost->host_lock, flags); 334 starget->starget_sdev_user = NULL; 335 spin_unlock_irqrestore(shost->host_lock, flags); 336 337 /* 338 * Call blk_run_queue for all LUNs on the target, starting with 339 * current_sdev. We race with others (to set starget_sdev_user), 340 * but in most cases, we will be first. Ideally, each LU on the 341 * target would get some limited time or requests on the target. 342 */ 343 scsi_kick_queue(current_sdev->request_queue); 344 345 spin_lock_irqsave(shost->host_lock, flags); 346 if (!starget->starget_sdev_user) 347 __starget_for_each_device(starget, current_sdev, 348 scsi_kick_sdev_queue); 349 spin_unlock_irqrestore(shost->host_lock, flags); 350 } 351 352 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 353 { 354 if (scsi_device_busy(sdev) >= sdev->queue_depth) 355 return true; 356 if (atomic_read(&sdev->device_blocked) > 0) 357 return true; 358 return false; 359 } 360 361 static inline bool scsi_target_is_busy(struct scsi_target *starget) 362 { 363 if (starget->can_queue > 0) { 364 if (atomic_read(&starget->target_busy) >= starget->can_queue) 365 return true; 366 if (atomic_read(&starget->target_blocked) > 0) 367 return true; 368 } 369 return false; 370 } 371 372 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 373 { 374 if (atomic_read(&shost->host_blocked) > 0) 375 return true; 376 if (shost->host_self_blocked) 377 return true; 378 return false; 379 } 380 381 static void scsi_starved_list_run(struct Scsi_Host *shost) 382 { 383 LIST_HEAD(starved_list); 384 struct scsi_device *sdev; 385 unsigned long flags; 386 387 spin_lock_irqsave(shost->host_lock, flags); 388 list_splice_init(&shost->starved_list, &starved_list); 389 390 while (!list_empty(&starved_list)) { 391 struct request_queue *slq; 392 393 /* 394 * As long as shost is accepting commands and we have 395 * starved queues, call blk_run_queue. scsi_request_fn 396 * drops the queue_lock and can add us back to the 397 * starved_list. 398 * 399 * host_lock protects the starved_list and starved_entry. 400 * scsi_request_fn must get the host_lock before checking 401 * or modifying starved_list or starved_entry. 402 */ 403 if (scsi_host_is_busy(shost)) 404 break; 405 406 sdev = list_entry(starved_list.next, 407 struct scsi_device, starved_entry); 408 list_del_init(&sdev->starved_entry); 409 if (scsi_target_is_busy(scsi_target(sdev))) { 410 list_move_tail(&sdev->starved_entry, 411 &shost->starved_list); 412 continue; 413 } 414 415 /* 416 * Once we drop the host lock, a racing scsi_remove_device() 417 * call may remove the sdev from the starved list and destroy 418 * it and the queue. Mitigate by taking a reference to the 419 * queue and never touching the sdev again after we drop the 420 * host lock. Note: if __scsi_remove_device() invokes 421 * blk_mq_destroy_queue() before the queue is run from this 422 * function then blk_run_queue() will return immediately since 423 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING. 424 */ 425 slq = sdev->request_queue; 426 if (!blk_get_queue(slq)) 427 continue; 428 spin_unlock_irqrestore(shost->host_lock, flags); 429 430 scsi_kick_queue(slq); 431 blk_put_queue(slq); 432 433 spin_lock_irqsave(shost->host_lock, flags); 434 } 435 /* put any unprocessed entries back */ 436 list_splice(&starved_list, &shost->starved_list); 437 spin_unlock_irqrestore(shost->host_lock, flags); 438 } 439 440 /** 441 * scsi_run_queue - Select a proper request queue to serve next. 442 * @q: last request's queue 443 * 444 * The previous command was completely finished, start a new one if possible. 445 */ 446 static void scsi_run_queue(struct request_queue *q) 447 { 448 struct scsi_device *sdev = q->queuedata; 449 450 if (scsi_target(sdev)->single_lun) 451 scsi_single_lun_run(sdev); 452 if (!list_empty(&sdev->host->starved_list)) 453 scsi_starved_list_run(sdev->host); 454 455 blk_mq_run_hw_queues(q, false); 456 } 457 458 void scsi_requeue_run_queue(struct work_struct *work) 459 { 460 struct scsi_device *sdev; 461 struct request_queue *q; 462 463 sdev = container_of(work, struct scsi_device, requeue_work); 464 q = sdev->request_queue; 465 scsi_run_queue(q); 466 } 467 468 void scsi_run_host_queues(struct Scsi_Host *shost) 469 { 470 struct scsi_device *sdev; 471 472 shost_for_each_device(sdev, shost) 473 scsi_run_queue(sdev->request_queue); 474 } 475 476 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 477 { 478 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) { 479 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 480 481 if (drv->uninit_command) 482 drv->uninit_command(cmd); 483 } 484 } 485 486 void scsi_free_sgtables(struct scsi_cmnd *cmd) 487 { 488 if (cmd->sdb.table.nents) 489 sg_free_table_chained(&cmd->sdb.table, 490 SCSI_INLINE_SG_CNT); 491 if (scsi_prot_sg_count(cmd)) 492 sg_free_table_chained(&cmd->prot_sdb->table, 493 SCSI_INLINE_PROT_SG_CNT); 494 } 495 EXPORT_SYMBOL_GPL(scsi_free_sgtables); 496 497 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 498 { 499 scsi_free_sgtables(cmd); 500 scsi_uninit_cmd(cmd); 501 } 502 503 static void scsi_run_queue_async(struct scsi_device *sdev) 504 { 505 if (scsi_target(sdev)->single_lun || 506 !list_empty(&sdev->host->starved_list)) { 507 kblockd_schedule_work(&sdev->requeue_work); 508 } else { 509 /* 510 * smp_mb() present in sbitmap_queue_clear() or implied in 511 * .end_io is for ordering writing .device_busy in 512 * scsi_device_unbusy() and reading sdev->restarts. 513 */ 514 int old = atomic_read(&sdev->restarts); 515 516 /* 517 * ->restarts has to be kept as non-zero if new budget 518 * contention occurs. 519 * 520 * No need to run queue when either another re-run 521 * queue wins in updating ->restarts or a new budget 522 * contention occurs. 523 */ 524 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old) 525 blk_mq_run_hw_queues(sdev->request_queue, true); 526 } 527 } 528 529 /* Returns false when no more bytes to process, true if there are more */ 530 static bool scsi_end_request(struct request *req, blk_status_t error, 531 unsigned int bytes) 532 { 533 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 534 struct scsi_device *sdev = cmd->device; 535 struct request_queue *q = sdev->request_queue; 536 537 if (blk_update_request(req, error, bytes)) 538 return true; 539 540 // XXX: 541 if (blk_queue_add_random(q)) 542 add_disk_randomness(req->q->disk); 543 544 if (!blk_rq_is_passthrough(req)) { 545 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 546 cmd->flags &= ~SCMD_INITIALIZED; 547 } 548 549 /* 550 * Calling rcu_barrier() is not necessary here because the 551 * SCSI error handler guarantees that the function called by 552 * call_rcu() has been called before scsi_end_request() is 553 * called. 554 */ 555 destroy_rcu_head(&cmd->rcu); 556 557 /* 558 * In the MQ case the command gets freed by __blk_mq_end_request, 559 * so we have to do all cleanup that depends on it earlier. 560 * 561 * We also can't kick the queues from irq context, so we 562 * will have to defer it to a workqueue. 563 */ 564 scsi_mq_uninit_cmd(cmd); 565 566 /* 567 * queue is still alive, so grab the ref for preventing it 568 * from being cleaned up during running queue. 569 */ 570 percpu_ref_get(&q->q_usage_counter); 571 572 __blk_mq_end_request(req, error); 573 574 scsi_run_queue_async(sdev); 575 576 percpu_ref_put(&q->q_usage_counter); 577 return false; 578 } 579 580 static inline u8 get_scsi_ml_byte(int result) 581 { 582 return (result >> 8) & 0xff; 583 } 584 585 /** 586 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 587 * @result: scsi error code 588 * 589 * Translate a SCSI result code into a blk_status_t value. 590 */ 591 static blk_status_t scsi_result_to_blk_status(int result) 592 { 593 /* 594 * Check the scsi-ml byte first in case we converted a host or status 595 * byte. 596 */ 597 switch (get_scsi_ml_byte(result)) { 598 case SCSIML_STAT_OK: 599 break; 600 case SCSIML_STAT_RESV_CONFLICT: 601 return BLK_STS_NEXUS; 602 case SCSIML_STAT_NOSPC: 603 return BLK_STS_NOSPC; 604 case SCSIML_STAT_MED_ERROR: 605 return BLK_STS_MEDIUM; 606 case SCSIML_STAT_TGT_FAILURE: 607 return BLK_STS_TARGET; 608 } 609 610 switch (host_byte(result)) { 611 case DID_OK: 612 if (scsi_status_is_good(result)) 613 return BLK_STS_OK; 614 return BLK_STS_IOERR; 615 case DID_TRANSPORT_FAILFAST: 616 case DID_TRANSPORT_MARGINAL: 617 return BLK_STS_TRANSPORT; 618 default: 619 return BLK_STS_IOERR; 620 } 621 } 622 623 /** 624 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary 625 * @rq: request to examine 626 * 627 * Description: 628 * A request could be merge of IOs which require different failure 629 * handling. This function determines the number of bytes which 630 * can be failed from the beginning of the request without 631 * crossing into area which need to be retried further. 632 * 633 * Return: 634 * The number of bytes to fail. 635 */ 636 static unsigned int scsi_rq_err_bytes(const struct request *rq) 637 { 638 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 639 unsigned int bytes = 0; 640 struct bio *bio; 641 642 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 643 return blk_rq_bytes(rq); 644 645 /* 646 * Currently the only 'mixing' which can happen is between 647 * different fastfail types. We can safely fail portions 648 * which have all the failfast bits that the first one has - 649 * the ones which are at least as eager to fail as the first 650 * one. 651 */ 652 for (bio = rq->bio; bio; bio = bio->bi_next) { 653 if ((bio->bi_opf & ff) != ff) 654 break; 655 bytes += bio->bi_iter.bi_size; 656 } 657 658 /* this could lead to infinite loop */ 659 BUG_ON(blk_rq_bytes(rq) && !bytes); 660 return bytes; 661 } 662 663 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd) 664 { 665 struct request *req = scsi_cmd_to_rq(cmd); 666 unsigned long wait_for; 667 668 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT) 669 return false; 670 671 wait_for = (cmd->allowed + 1) * req->timeout; 672 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 673 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n", 674 wait_for/HZ); 675 return true; 676 } 677 return false; 678 } 679 680 /* 681 * When ALUA transition state is returned, reprep the cmd to 682 * use the ALUA handler's transition timeout. Delay the reprep 683 * 1 sec to avoid aggressive retries of the target in that 684 * state. 685 */ 686 #define ALUA_TRANSITION_REPREP_DELAY 1000 687 688 /* Helper for scsi_io_completion() when special action required. */ 689 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 690 { 691 struct request *req = scsi_cmd_to_rq(cmd); 692 int level = 0; 693 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP, 694 ACTION_RETRY, ACTION_DELAYED_RETRY} action; 695 struct scsi_sense_hdr sshdr; 696 bool sense_valid; 697 bool sense_current = true; /* false implies "deferred sense" */ 698 blk_status_t blk_stat; 699 700 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 701 if (sense_valid) 702 sense_current = !scsi_sense_is_deferred(&sshdr); 703 704 blk_stat = scsi_result_to_blk_status(result); 705 706 if (host_byte(result) == DID_RESET) { 707 /* Third party bus reset or reset for error recovery 708 * reasons. Just retry the command and see what 709 * happens. 710 */ 711 action = ACTION_RETRY; 712 } else if (sense_valid && sense_current) { 713 switch (sshdr.sense_key) { 714 case UNIT_ATTENTION: 715 if (cmd->device->removable) { 716 /* Detected disc change. Set a bit 717 * and quietly refuse further access. 718 */ 719 cmd->device->changed = 1; 720 action = ACTION_FAIL; 721 } else { 722 /* Must have been a power glitch, or a 723 * bus reset. Could not have been a 724 * media change, so we just retry the 725 * command and see what happens. 726 */ 727 action = ACTION_RETRY; 728 } 729 break; 730 case ILLEGAL_REQUEST: 731 /* If we had an ILLEGAL REQUEST returned, then 732 * we may have performed an unsupported 733 * command. The only thing this should be 734 * would be a ten byte read where only a six 735 * byte read was supported. Also, on a system 736 * where READ CAPACITY failed, we may have 737 * read past the end of the disk. 738 */ 739 if ((cmd->device->use_10_for_rw && 740 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 741 (cmd->cmnd[0] == READ_10 || 742 cmd->cmnd[0] == WRITE_10)) { 743 /* This will issue a new 6-byte command. */ 744 cmd->device->use_10_for_rw = 0; 745 action = ACTION_REPREP; 746 } else if (sshdr.asc == 0x10) /* DIX */ { 747 action = ACTION_FAIL; 748 blk_stat = BLK_STS_PROTECTION; 749 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 750 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 751 action = ACTION_FAIL; 752 blk_stat = BLK_STS_TARGET; 753 } else 754 action = ACTION_FAIL; 755 break; 756 case ABORTED_COMMAND: 757 action = ACTION_FAIL; 758 if (sshdr.asc == 0x10) /* DIF */ 759 blk_stat = BLK_STS_PROTECTION; 760 break; 761 case NOT_READY: 762 /* If the device is in the process of becoming 763 * ready, or has a temporary blockage, retry. 764 */ 765 if (sshdr.asc == 0x04) { 766 switch (sshdr.ascq) { 767 case 0x01: /* becoming ready */ 768 case 0x04: /* format in progress */ 769 case 0x05: /* rebuild in progress */ 770 case 0x06: /* recalculation in progress */ 771 case 0x07: /* operation in progress */ 772 case 0x08: /* Long write in progress */ 773 case 0x09: /* self test in progress */ 774 case 0x11: /* notify (enable spinup) required */ 775 case 0x14: /* space allocation in progress */ 776 case 0x1a: /* start stop unit in progress */ 777 case 0x1b: /* sanitize in progress */ 778 case 0x1d: /* configuration in progress */ 779 case 0x24: /* depopulation in progress */ 780 action = ACTION_DELAYED_RETRY; 781 break; 782 case 0x0a: /* ALUA state transition */ 783 action = ACTION_DELAYED_REPREP; 784 break; 785 default: 786 action = ACTION_FAIL; 787 break; 788 } 789 } else 790 action = ACTION_FAIL; 791 break; 792 case VOLUME_OVERFLOW: 793 /* See SSC3rXX or current. */ 794 action = ACTION_FAIL; 795 break; 796 case DATA_PROTECT: 797 action = ACTION_FAIL; 798 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) || 799 (sshdr.asc == 0x55 && 800 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) { 801 /* Insufficient zone resources */ 802 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE; 803 } 804 break; 805 default: 806 action = ACTION_FAIL; 807 break; 808 } 809 } else 810 action = ACTION_FAIL; 811 812 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd)) 813 action = ACTION_FAIL; 814 815 switch (action) { 816 case ACTION_FAIL: 817 /* Give up and fail the remainder of the request */ 818 if (!(req->rq_flags & RQF_QUIET)) { 819 static DEFINE_RATELIMIT_STATE(_rs, 820 DEFAULT_RATELIMIT_INTERVAL, 821 DEFAULT_RATELIMIT_BURST); 822 823 if (unlikely(scsi_logging_level)) 824 level = 825 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 826 SCSI_LOG_MLCOMPLETE_BITS); 827 828 /* 829 * if logging is enabled the failure will be printed 830 * in scsi_log_completion(), so avoid duplicate messages 831 */ 832 if (!level && __ratelimit(&_rs)) { 833 scsi_print_result(cmd, NULL, FAILED); 834 if (sense_valid) 835 scsi_print_sense(cmd); 836 scsi_print_command(cmd); 837 } 838 } 839 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req))) 840 return; 841 fallthrough; 842 case ACTION_REPREP: 843 scsi_mq_requeue_cmd(cmd, 0); 844 break; 845 case ACTION_DELAYED_REPREP: 846 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY); 847 break; 848 case ACTION_RETRY: 849 /* Retry the same command immediately */ 850 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 851 break; 852 case ACTION_DELAYED_RETRY: 853 /* Retry the same command after a delay */ 854 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 855 break; 856 } 857 } 858 859 /* 860 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 861 * new result that may suppress further error checking. Also modifies 862 * *blk_statp in some cases. 863 */ 864 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 865 blk_status_t *blk_statp) 866 { 867 bool sense_valid; 868 bool sense_current = true; /* false implies "deferred sense" */ 869 struct request *req = scsi_cmd_to_rq(cmd); 870 struct scsi_sense_hdr sshdr; 871 872 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 873 if (sense_valid) 874 sense_current = !scsi_sense_is_deferred(&sshdr); 875 876 if (blk_rq_is_passthrough(req)) { 877 if (sense_valid) { 878 /* 879 * SG_IO wants current and deferred errors 880 */ 881 cmd->sense_len = min(8 + cmd->sense_buffer[7], 882 SCSI_SENSE_BUFFERSIZE); 883 } 884 if (sense_current) 885 *blk_statp = scsi_result_to_blk_status(result); 886 } else if (blk_rq_bytes(req) == 0 && sense_current) { 887 /* 888 * Flush commands do not transfers any data, and thus cannot use 889 * good_bytes != blk_rq_bytes(req) as the signal for an error. 890 * This sets *blk_statp explicitly for the problem case. 891 */ 892 *blk_statp = scsi_result_to_blk_status(result); 893 } 894 /* 895 * Recovered errors need reporting, but they're always treated as 896 * success, so fiddle the result code here. For passthrough requests 897 * we already took a copy of the original into sreq->result which 898 * is what gets returned to the user 899 */ 900 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 901 bool do_print = true; 902 /* 903 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 904 * skip print since caller wants ATA registers. Only occurs 905 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 906 */ 907 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 908 do_print = false; 909 else if (req->rq_flags & RQF_QUIET) 910 do_print = false; 911 if (do_print) 912 scsi_print_sense(cmd); 913 result = 0; 914 /* for passthrough, *blk_statp may be set */ 915 *blk_statp = BLK_STS_OK; 916 } 917 /* 918 * Another corner case: the SCSI status byte is non-zero but 'good'. 919 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 920 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 921 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 922 * intermediate statuses (both obsolete in SAM-4) as good. 923 */ 924 if ((result & 0xff) && scsi_status_is_good(result)) { 925 result = 0; 926 *blk_statp = BLK_STS_OK; 927 } 928 return result; 929 } 930 931 /** 932 * scsi_io_completion - Completion processing for SCSI commands. 933 * @cmd: command that is finished. 934 * @good_bytes: number of processed bytes. 935 * 936 * We will finish off the specified number of sectors. If we are done, the 937 * command block will be released and the queue function will be goosed. If we 938 * are not done then we have to figure out what to do next: 939 * 940 * a) We can call scsi_mq_requeue_cmd(). The request will be 941 * unprepared and put back on the queue. Then a new command will 942 * be created for it. This should be used if we made forward 943 * progress, or if we want to switch from READ(10) to READ(6) for 944 * example. 945 * 946 * b) We can call scsi_io_completion_action(). The request will be 947 * put back on the queue and retried using the same command as 948 * before, possibly after a delay. 949 * 950 * c) We can call scsi_end_request() with blk_stat other than 951 * BLK_STS_OK, to fail the remainder of the request. 952 */ 953 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 954 { 955 int result = cmd->result; 956 struct request *req = scsi_cmd_to_rq(cmd); 957 blk_status_t blk_stat = BLK_STS_OK; 958 959 if (unlikely(result)) /* a nz result may or may not be an error */ 960 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 961 962 /* 963 * Next deal with any sectors which we were able to correctly 964 * handle. 965 */ 966 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 967 "%u sectors total, %d bytes done.\n", 968 blk_rq_sectors(req), good_bytes)); 969 970 /* 971 * Failed, zero length commands always need to drop down 972 * to retry code. Fast path should return in this block. 973 */ 974 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 975 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 976 return; /* no bytes remaining */ 977 } 978 979 /* Kill remainder if no retries. */ 980 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 981 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 982 WARN_ONCE(true, 983 "Bytes remaining after failed, no-retry command"); 984 return; 985 } 986 987 /* 988 * If there had been no error, but we have leftover bytes in the 989 * request just queue the command up again. 990 */ 991 if (likely(result == 0)) 992 scsi_mq_requeue_cmd(cmd, 0); 993 else 994 scsi_io_completion_action(cmd, result); 995 } 996 997 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 998 struct request *rq) 999 { 1000 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 1001 !op_is_write(req_op(rq)) && 1002 sdev->host->hostt->dma_need_drain(rq); 1003 } 1004 1005 /** 1006 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists 1007 * @cmd: SCSI command data structure to initialize. 1008 * 1009 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled 1010 * for @cmd. 1011 * 1012 * Returns: 1013 * * BLK_STS_OK - on success 1014 * * BLK_STS_RESOURCE - if the failure is retryable 1015 * * BLK_STS_IOERR - if the failure is fatal 1016 */ 1017 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd) 1018 { 1019 struct scsi_device *sdev = cmd->device; 1020 struct request *rq = scsi_cmd_to_rq(cmd); 1021 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1022 struct scatterlist *last_sg = NULL; 1023 blk_status_t ret; 1024 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1025 int count; 1026 1027 if (WARN_ON_ONCE(!nr_segs)) 1028 return BLK_STS_IOERR; 1029 1030 /* 1031 * Make sure there is space for the drain. The driver must adjust 1032 * max_hw_segments to be prepared for this. 1033 */ 1034 if (need_drain) 1035 nr_segs++; 1036 1037 /* 1038 * If sg table allocation fails, requeue request later. 1039 */ 1040 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1041 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1042 return BLK_STS_RESOURCE; 1043 1044 /* 1045 * Next, walk the list, and fill in the addresses and sizes of 1046 * each segment. 1047 */ 1048 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1049 1050 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1051 unsigned int pad_len = 1052 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1053 1054 last_sg->length += pad_len; 1055 cmd->extra_len += pad_len; 1056 } 1057 1058 if (need_drain) { 1059 sg_unmark_end(last_sg); 1060 last_sg = sg_next(last_sg); 1061 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1062 sg_mark_end(last_sg); 1063 1064 cmd->extra_len += sdev->dma_drain_len; 1065 count++; 1066 } 1067 1068 BUG_ON(count > cmd->sdb.table.nents); 1069 cmd->sdb.table.nents = count; 1070 cmd->sdb.length = blk_rq_payload_bytes(rq); 1071 1072 if (blk_integrity_rq(rq)) { 1073 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1074 int ivecs; 1075 1076 if (WARN_ON_ONCE(!prot_sdb)) { 1077 /* 1078 * This can happen if someone (e.g. multipath) 1079 * queues a command to a device on an adapter 1080 * that does not support DIX. 1081 */ 1082 ret = BLK_STS_IOERR; 1083 goto out_free_sgtables; 1084 } 1085 1086 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1087 1088 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1089 prot_sdb->table.sgl, 1090 SCSI_INLINE_PROT_SG_CNT)) { 1091 ret = BLK_STS_RESOURCE; 1092 goto out_free_sgtables; 1093 } 1094 1095 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1096 prot_sdb->table.sgl); 1097 BUG_ON(count > ivecs); 1098 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1099 1100 cmd->prot_sdb = prot_sdb; 1101 cmd->prot_sdb->table.nents = count; 1102 } 1103 1104 return BLK_STS_OK; 1105 out_free_sgtables: 1106 scsi_free_sgtables(cmd); 1107 return ret; 1108 } 1109 EXPORT_SYMBOL(scsi_alloc_sgtables); 1110 1111 /** 1112 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1113 * @rq: Request associated with the SCSI command to be initialized. 1114 * 1115 * This function initializes the members of struct scsi_cmnd that must be 1116 * initialized before request processing starts and that won't be 1117 * reinitialized if a SCSI command is requeued. 1118 */ 1119 static void scsi_initialize_rq(struct request *rq) 1120 { 1121 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1122 1123 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1124 cmd->cmd_len = MAX_COMMAND_SIZE; 1125 cmd->sense_len = 0; 1126 init_rcu_head(&cmd->rcu); 1127 cmd->jiffies_at_alloc = jiffies; 1128 cmd->retries = 0; 1129 } 1130 1131 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf, 1132 blk_mq_req_flags_t flags) 1133 { 1134 struct request *rq; 1135 1136 rq = blk_mq_alloc_request(q, opf, flags); 1137 if (!IS_ERR(rq)) 1138 scsi_initialize_rq(rq); 1139 return rq; 1140 } 1141 EXPORT_SYMBOL_GPL(scsi_alloc_request); 1142 1143 /* 1144 * Only called when the request isn't completed by SCSI, and not freed by 1145 * SCSI 1146 */ 1147 static void scsi_cleanup_rq(struct request *rq) 1148 { 1149 if (rq->rq_flags & RQF_DONTPREP) { 1150 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1151 rq->rq_flags &= ~RQF_DONTPREP; 1152 } 1153 } 1154 1155 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1156 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1157 { 1158 struct request *rq = scsi_cmd_to_rq(cmd); 1159 1160 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) { 1161 cmd->flags |= SCMD_INITIALIZED; 1162 scsi_initialize_rq(rq); 1163 } 1164 1165 cmd->device = dev; 1166 INIT_LIST_HEAD(&cmd->eh_entry); 1167 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1168 } 1169 1170 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1171 struct request *req) 1172 { 1173 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1174 1175 /* 1176 * Passthrough requests may transfer data, in which case they must 1177 * a bio attached to them. Or they might contain a SCSI command 1178 * that does not transfer data, in which case they may optionally 1179 * submit a request without an attached bio. 1180 */ 1181 if (req->bio) { 1182 blk_status_t ret = scsi_alloc_sgtables(cmd); 1183 if (unlikely(ret != BLK_STS_OK)) 1184 return ret; 1185 } else { 1186 BUG_ON(blk_rq_bytes(req)); 1187 1188 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1189 } 1190 1191 cmd->transfersize = blk_rq_bytes(req); 1192 return BLK_STS_OK; 1193 } 1194 1195 static blk_status_t 1196 scsi_device_state_check(struct scsi_device *sdev, struct request *req) 1197 { 1198 switch (sdev->sdev_state) { 1199 case SDEV_CREATED: 1200 return BLK_STS_OK; 1201 case SDEV_OFFLINE: 1202 case SDEV_TRANSPORT_OFFLINE: 1203 /* 1204 * If the device is offline we refuse to process any 1205 * commands. The device must be brought online 1206 * before trying any recovery commands. 1207 */ 1208 if (!sdev->offline_already) { 1209 sdev->offline_already = true; 1210 sdev_printk(KERN_ERR, sdev, 1211 "rejecting I/O to offline device\n"); 1212 } 1213 return BLK_STS_IOERR; 1214 case SDEV_DEL: 1215 /* 1216 * If the device is fully deleted, we refuse to 1217 * process any commands as well. 1218 */ 1219 sdev_printk(KERN_ERR, sdev, 1220 "rejecting I/O to dead device\n"); 1221 return BLK_STS_IOERR; 1222 case SDEV_BLOCK: 1223 case SDEV_CREATED_BLOCK: 1224 return BLK_STS_RESOURCE; 1225 case SDEV_QUIESCE: 1226 /* 1227 * If the device is blocked we only accept power management 1228 * commands. 1229 */ 1230 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM))) 1231 return BLK_STS_RESOURCE; 1232 return BLK_STS_OK; 1233 default: 1234 /* 1235 * For any other not fully online state we only allow 1236 * power management commands. 1237 */ 1238 if (req && !(req->rq_flags & RQF_PM)) 1239 return BLK_STS_OFFLINE; 1240 return BLK_STS_OK; 1241 } 1242 } 1243 1244 /* 1245 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token 1246 * and return the token else return -1. 1247 */ 1248 static inline int scsi_dev_queue_ready(struct request_queue *q, 1249 struct scsi_device *sdev) 1250 { 1251 int token; 1252 1253 token = sbitmap_get(&sdev->budget_map); 1254 if (atomic_read(&sdev->device_blocked)) { 1255 if (token < 0) 1256 goto out; 1257 1258 if (scsi_device_busy(sdev) > 1) 1259 goto out_dec; 1260 1261 /* 1262 * unblock after device_blocked iterates to zero 1263 */ 1264 if (atomic_dec_return(&sdev->device_blocked) > 0) 1265 goto out_dec; 1266 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1267 "unblocking device at zero depth\n")); 1268 } 1269 1270 return token; 1271 out_dec: 1272 if (token >= 0) 1273 sbitmap_put(&sdev->budget_map, token); 1274 out: 1275 return -1; 1276 } 1277 1278 /* 1279 * scsi_target_queue_ready: checks if there we can send commands to target 1280 * @sdev: scsi device on starget to check. 1281 */ 1282 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1283 struct scsi_device *sdev) 1284 { 1285 struct scsi_target *starget = scsi_target(sdev); 1286 unsigned int busy; 1287 1288 if (starget->single_lun) { 1289 spin_lock_irq(shost->host_lock); 1290 if (starget->starget_sdev_user && 1291 starget->starget_sdev_user != sdev) { 1292 spin_unlock_irq(shost->host_lock); 1293 return 0; 1294 } 1295 starget->starget_sdev_user = sdev; 1296 spin_unlock_irq(shost->host_lock); 1297 } 1298 1299 if (starget->can_queue <= 0) 1300 return 1; 1301 1302 busy = atomic_inc_return(&starget->target_busy) - 1; 1303 if (atomic_read(&starget->target_blocked) > 0) { 1304 if (busy) 1305 goto starved; 1306 1307 /* 1308 * unblock after target_blocked iterates to zero 1309 */ 1310 if (atomic_dec_return(&starget->target_blocked) > 0) 1311 goto out_dec; 1312 1313 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1314 "unblocking target at zero depth\n")); 1315 } 1316 1317 if (busy >= starget->can_queue) 1318 goto starved; 1319 1320 return 1; 1321 1322 starved: 1323 spin_lock_irq(shost->host_lock); 1324 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1325 spin_unlock_irq(shost->host_lock); 1326 out_dec: 1327 if (starget->can_queue > 0) 1328 atomic_dec(&starget->target_busy); 1329 return 0; 1330 } 1331 1332 /* 1333 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1334 * return 0. We must end up running the queue again whenever 0 is 1335 * returned, else IO can hang. 1336 */ 1337 static inline int scsi_host_queue_ready(struct request_queue *q, 1338 struct Scsi_Host *shost, 1339 struct scsi_device *sdev, 1340 struct scsi_cmnd *cmd) 1341 { 1342 if (atomic_read(&shost->host_blocked) > 0) { 1343 if (scsi_host_busy(shost) > 0) 1344 goto starved; 1345 1346 /* 1347 * unblock after host_blocked iterates to zero 1348 */ 1349 if (atomic_dec_return(&shost->host_blocked) > 0) 1350 goto out_dec; 1351 1352 SCSI_LOG_MLQUEUE(3, 1353 shost_printk(KERN_INFO, shost, 1354 "unblocking host at zero depth\n")); 1355 } 1356 1357 if (shost->host_self_blocked) 1358 goto starved; 1359 1360 /* We're OK to process the command, so we can't be starved */ 1361 if (!list_empty(&sdev->starved_entry)) { 1362 spin_lock_irq(shost->host_lock); 1363 if (!list_empty(&sdev->starved_entry)) 1364 list_del_init(&sdev->starved_entry); 1365 spin_unlock_irq(shost->host_lock); 1366 } 1367 1368 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1369 1370 return 1; 1371 1372 starved: 1373 spin_lock_irq(shost->host_lock); 1374 if (list_empty(&sdev->starved_entry)) 1375 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1376 spin_unlock_irq(shost->host_lock); 1377 out_dec: 1378 scsi_dec_host_busy(shost, cmd); 1379 return 0; 1380 } 1381 1382 /* 1383 * Busy state exporting function for request stacking drivers. 1384 * 1385 * For efficiency, no lock is taken to check the busy state of 1386 * shost/starget/sdev, since the returned value is not guaranteed and 1387 * may be changed after request stacking drivers call the function, 1388 * regardless of taking lock or not. 1389 * 1390 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1391 * needs to return 'not busy'. Otherwise, request stacking drivers 1392 * may hold requests forever. 1393 */ 1394 static bool scsi_mq_lld_busy(struct request_queue *q) 1395 { 1396 struct scsi_device *sdev = q->queuedata; 1397 struct Scsi_Host *shost; 1398 1399 if (blk_queue_dying(q)) 1400 return false; 1401 1402 shost = sdev->host; 1403 1404 /* 1405 * Ignore host/starget busy state. 1406 * Since block layer does not have a concept of fairness across 1407 * multiple queues, congestion of host/starget needs to be handled 1408 * in SCSI layer. 1409 */ 1410 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1411 return true; 1412 1413 return false; 1414 } 1415 1416 /* 1417 * Block layer request completion callback. May be called from interrupt 1418 * context. 1419 */ 1420 static void scsi_complete(struct request *rq) 1421 { 1422 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1423 enum scsi_disposition disposition; 1424 1425 INIT_LIST_HEAD(&cmd->eh_entry); 1426 1427 atomic_inc(&cmd->device->iodone_cnt); 1428 if (cmd->result) 1429 atomic_inc(&cmd->device->ioerr_cnt); 1430 1431 disposition = scsi_decide_disposition(cmd); 1432 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd)) 1433 disposition = SUCCESS; 1434 1435 scsi_log_completion(cmd, disposition); 1436 1437 switch (disposition) { 1438 case SUCCESS: 1439 scsi_finish_command(cmd); 1440 break; 1441 case NEEDS_RETRY: 1442 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1443 break; 1444 case ADD_TO_MLQUEUE: 1445 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1446 break; 1447 default: 1448 scsi_eh_scmd_add(cmd); 1449 break; 1450 } 1451 } 1452 1453 /** 1454 * scsi_dispatch_cmd - Dispatch a command to the low-level driver. 1455 * @cmd: command block we are dispatching. 1456 * 1457 * Return: nonzero return request was rejected and device's queue needs to be 1458 * plugged. 1459 */ 1460 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1461 { 1462 struct Scsi_Host *host = cmd->device->host; 1463 int rtn = 0; 1464 1465 /* check if the device is still usable */ 1466 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1467 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1468 * returns an immediate error upwards, and signals 1469 * that the device is no longer present */ 1470 cmd->result = DID_NO_CONNECT << 16; 1471 goto done; 1472 } 1473 1474 /* Check to see if the scsi lld made this device blocked. */ 1475 if (unlikely(scsi_device_blocked(cmd->device))) { 1476 /* 1477 * in blocked state, the command is just put back on 1478 * the device queue. The suspend state has already 1479 * blocked the queue so future requests should not 1480 * occur until the device transitions out of the 1481 * suspend state. 1482 */ 1483 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1484 "queuecommand : device blocked\n")); 1485 return SCSI_MLQUEUE_DEVICE_BUSY; 1486 } 1487 1488 /* Store the LUN value in cmnd, if needed. */ 1489 if (cmd->device->lun_in_cdb) 1490 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1491 (cmd->device->lun << 5 & 0xe0); 1492 1493 scsi_log_send(cmd); 1494 1495 /* 1496 * Before we queue this command, check if the command 1497 * length exceeds what the host adapter can handle. 1498 */ 1499 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1500 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1501 "queuecommand : command too long. " 1502 "cdb_size=%d host->max_cmd_len=%d\n", 1503 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1504 cmd->result = (DID_ABORT << 16); 1505 goto done; 1506 } 1507 1508 if (unlikely(host->shost_state == SHOST_DEL)) { 1509 cmd->result = (DID_NO_CONNECT << 16); 1510 goto done; 1511 1512 } 1513 1514 trace_scsi_dispatch_cmd_start(cmd); 1515 rtn = host->hostt->queuecommand(host, cmd); 1516 if (rtn) { 1517 trace_scsi_dispatch_cmd_error(cmd, rtn); 1518 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1519 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1520 rtn = SCSI_MLQUEUE_HOST_BUSY; 1521 1522 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1523 "queuecommand : request rejected\n")); 1524 } 1525 1526 return rtn; 1527 done: 1528 scsi_done(cmd); 1529 return 0; 1530 } 1531 1532 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1533 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1534 { 1535 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1536 sizeof(struct scatterlist); 1537 } 1538 1539 static blk_status_t scsi_prepare_cmd(struct request *req) 1540 { 1541 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1542 struct scsi_device *sdev = req->q->queuedata; 1543 struct Scsi_Host *shost = sdev->host; 1544 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1545 struct scatterlist *sg; 1546 1547 scsi_init_command(sdev, cmd); 1548 1549 cmd->eh_eflags = 0; 1550 cmd->prot_type = 0; 1551 cmd->prot_flags = 0; 1552 cmd->submitter = 0; 1553 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1554 cmd->underflow = 0; 1555 cmd->transfersize = 0; 1556 cmd->host_scribble = NULL; 1557 cmd->result = 0; 1558 cmd->extra_len = 0; 1559 cmd->state = 0; 1560 if (in_flight) 1561 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1562 1563 /* 1564 * Only clear the driver-private command data if the LLD does not supply 1565 * a function to initialize that data. 1566 */ 1567 if (!shost->hostt->init_cmd_priv) 1568 memset(cmd + 1, 0, shost->hostt->cmd_size); 1569 1570 cmd->prot_op = SCSI_PROT_NORMAL; 1571 if (blk_rq_bytes(req)) 1572 cmd->sc_data_direction = rq_dma_dir(req); 1573 else 1574 cmd->sc_data_direction = DMA_NONE; 1575 1576 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1577 cmd->sdb.table.sgl = sg; 1578 1579 if (scsi_host_get_prot(shost)) { 1580 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1581 1582 cmd->prot_sdb->table.sgl = 1583 (struct scatterlist *)(cmd->prot_sdb + 1); 1584 } 1585 1586 /* 1587 * Special handling for passthrough commands, which don't go to the ULP 1588 * at all: 1589 */ 1590 if (blk_rq_is_passthrough(req)) 1591 return scsi_setup_scsi_cmnd(sdev, req); 1592 1593 if (sdev->handler && sdev->handler->prep_fn) { 1594 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1595 1596 if (ret != BLK_STS_OK) 1597 return ret; 1598 } 1599 1600 /* Usually overridden by the ULP */ 1601 cmd->allowed = 0; 1602 memset(cmd->cmnd, 0, sizeof(cmd->cmnd)); 1603 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1604 } 1605 1606 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly) 1607 { 1608 struct request *req = scsi_cmd_to_rq(cmd); 1609 1610 switch (cmd->submitter) { 1611 case SUBMITTED_BY_BLOCK_LAYER: 1612 break; 1613 case SUBMITTED_BY_SCSI_ERROR_HANDLER: 1614 return scsi_eh_done(cmd); 1615 case SUBMITTED_BY_SCSI_RESET_IOCTL: 1616 return; 1617 } 1618 1619 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q))) 1620 return; 1621 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1622 return; 1623 trace_scsi_dispatch_cmd_done(cmd); 1624 1625 if (complete_directly) 1626 blk_mq_complete_request_direct(req, scsi_complete); 1627 else 1628 blk_mq_complete_request(req); 1629 } 1630 1631 void scsi_done(struct scsi_cmnd *cmd) 1632 { 1633 scsi_done_internal(cmd, false); 1634 } 1635 EXPORT_SYMBOL(scsi_done); 1636 1637 void scsi_done_direct(struct scsi_cmnd *cmd) 1638 { 1639 scsi_done_internal(cmd, true); 1640 } 1641 EXPORT_SYMBOL(scsi_done_direct); 1642 1643 static void scsi_mq_put_budget(struct request_queue *q, int budget_token) 1644 { 1645 struct scsi_device *sdev = q->queuedata; 1646 1647 sbitmap_put(&sdev->budget_map, budget_token); 1648 } 1649 1650 /* 1651 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 1652 * not change behaviour from the previous unplug mechanism, experimentation 1653 * may prove this needs changing. 1654 */ 1655 #define SCSI_QUEUE_DELAY 3 1656 1657 static int scsi_mq_get_budget(struct request_queue *q) 1658 { 1659 struct scsi_device *sdev = q->queuedata; 1660 int token = scsi_dev_queue_ready(q, sdev); 1661 1662 if (token >= 0) 1663 return token; 1664 1665 atomic_inc(&sdev->restarts); 1666 1667 /* 1668 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy). 1669 * .restarts must be incremented before .device_busy is read because the 1670 * code in scsi_run_queue_async() depends on the order of these operations. 1671 */ 1672 smp_mb__after_atomic(); 1673 1674 /* 1675 * If all in-flight requests originated from this LUN are completed 1676 * before reading .device_busy, sdev->device_busy will be observed as 1677 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request 1678 * soon. Otherwise, completion of one of these requests will observe 1679 * the .restarts flag, and the request queue will be run for handling 1680 * this request, see scsi_end_request(). 1681 */ 1682 if (unlikely(scsi_device_busy(sdev) == 0 && 1683 !scsi_device_blocked(sdev))) 1684 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY); 1685 return -1; 1686 } 1687 1688 static void scsi_mq_set_rq_budget_token(struct request *req, int token) 1689 { 1690 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1691 1692 cmd->budget_token = token; 1693 } 1694 1695 static int scsi_mq_get_rq_budget_token(struct request *req) 1696 { 1697 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1698 1699 return cmd->budget_token; 1700 } 1701 1702 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1703 const struct blk_mq_queue_data *bd) 1704 { 1705 struct request *req = bd->rq; 1706 struct request_queue *q = req->q; 1707 struct scsi_device *sdev = q->queuedata; 1708 struct Scsi_Host *shost = sdev->host; 1709 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1710 blk_status_t ret; 1711 int reason; 1712 1713 WARN_ON_ONCE(cmd->budget_token < 0); 1714 1715 /* 1716 * If the device is not in running state we will reject some or all 1717 * commands. 1718 */ 1719 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1720 ret = scsi_device_state_check(sdev, req); 1721 if (ret != BLK_STS_OK) 1722 goto out_put_budget; 1723 } 1724 1725 ret = BLK_STS_RESOURCE; 1726 if (!scsi_target_queue_ready(shost, sdev)) 1727 goto out_put_budget; 1728 if (unlikely(scsi_host_in_recovery(shost))) { 1729 if (cmd->flags & SCMD_FAIL_IF_RECOVERING) 1730 ret = BLK_STS_OFFLINE; 1731 goto out_dec_target_busy; 1732 } 1733 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1734 goto out_dec_target_busy; 1735 1736 if (!(req->rq_flags & RQF_DONTPREP)) { 1737 ret = scsi_prepare_cmd(req); 1738 if (ret != BLK_STS_OK) 1739 goto out_dec_host_busy; 1740 req->rq_flags |= RQF_DONTPREP; 1741 } else { 1742 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1743 } 1744 1745 cmd->flags &= SCMD_PRESERVED_FLAGS; 1746 if (sdev->simple_tags) 1747 cmd->flags |= SCMD_TAGGED; 1748 if (bd->last) 1749 cmd->flags |= SCMD_LAST; 1750 1751 scsi_set_resid(cmd, 0); 1752 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1753 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER; 1754 1755 blk_mq_start_request(req); 1756 reason = scsi_dispatch_cmd(cmd); 1757 if (reason) { 1758 scsi_set_blocked(cmd, reason); 1759 ret = BLK_STS_RESOURCE; 1760 goto out_dec_host_busy; 1761 } 1762 1763 atomic_inc(&cmd->device->iorequest_cnt); 1764 return BLK_STS_OK; 1765 1766 out_dec_host_busy: 1767 scsi_dec_host_busy(shost, cmd); 1768 out_dec_target_busy: 1769 if (scsi_target(sdev)->can_queue > 0) 1770 atomic_dec(&scsi_target(sdev)->target_busy); 1771 out_put_budget: 1772 scsi_mq_put_budget(q, cmd->budget_token); 1773 cmd->budget_token = -1; 1774 switch (ret) { 1775 case BLK_STS_OK: 1776 break; 1777 case BLK_STS_RESOURCE: 1778 case BLK_STS_ZONE_RESOURCE: 1779 if (scsi_device_blocked(sdev)) 1780 ret = BLK_STS_DEV_RESOURCE; 1781 break; 1782 case BLK_STS_AGAIN: 1783 cmd->result = DID_BUS_BUSY << 16; 1784 if (req->rq_flags & RQF_DONTPREP) 1785 scsi_mq_uninit_cmd(cmd); 1786 break; 1787 default: 1788 if (unlikely(!scsi_device_online(sdev))) 1789 cmd->result = DID_NO_CONNECT << 16; 1790 else 1791 cmd->result = DID_ERROR << 16; 1792 /* 1793 * Make sure to release all allocated resources when 1794 * we hit an error, as we will never see this command 1795 * again. 1796 */ 1797 if (req->rq_flags & RQF_DONTPREP) 1798 scsi_mq_uninit_cmd(cmd); 1799 scsi_run_queue_async(sdev); 1800 break; 1801 } 1802 return ret; 1803 } 1804 1805 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1806 unsigned int hctx_idx, unsigned int numa_node) 1807 { 1808 struct Scsi_Host *shost = set->driver_data; 1809 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1810 struct scatterlist *sg; 1811 int ret = 0; 1812 1813 cmd->sense_buffer = 1814 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node); 1815 if (!cmd->sense_buffer) 1816 return -ENOMEM; 1817 1818 if (scsi_host_get_prot(shost)) { 1819 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1820 shost->hostt->cmd_size; 1821 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1822 } 1823 1824 if (shost->hostt->init_cmd_priv) { 1825 ret = shost->hostt->init_cmd_priv(shost, cmd); 1826 if (ret < 0) 1827 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1828 } 1829 1830 return ret; 1831 } 1832 1833 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1834 unsigned int hctx_idx) 1835 { 1836 struct Scsi_Host *shost = set->driver_data; 1837 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1838 1839 if (shost->hostt->exit_cmd_priv) 1840 shost->hostt->exit_cmd_priv(shost, cmd); 1841 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer); 1842 } 1843 1844 1845 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1846 { 1847 struct Scsi_Host *shost = hctx->driver_data; 1848 1849 if (shost->hostt->mq_poll) 1850 return shost->hostt->mq_poll(shost, hctx->queue_num); 1851 1852 return 0; 1853 } 1854 1855 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1856 unsigned int hctx_idx) 1857 { 1858 struct Scsi_Host *shost = data; 1859 1860 hctx->driver_data = shost; 1861 return 0; 1862 } 1863 1864 static void scsi_map_queues(struct blk_mq_tag_set *set) 1865 { 1866 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1867 1868 if (shost->hostt->map_queues) 1869 return shost->hostt->map_queues(shost); 1870 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1871 } 1872 1873 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1874 { 1875 struct device *dev = shost->dma_dev; 1876 1877 /* 1878 * this limit is imposed by hardware restrictions 1879 */ 1880 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1881 SG_MAX_SEGMENTS)); 1882 1883 if (scsi_host_prot_dma(shost)) { 1884 shost->sg_prot_tablesize = 1885 min_not_zero(shost->sg_prot_tablesize, 1886 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1887 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1888 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1889 } 1890 1891 blk_queue_max_hw_sectors(q, shost->max_sectors); 1892 blk_queue_segment_boundary(q, shost->dma_boundary); 1893 dma_set_seg_boundary(dev, shost->dma_boundary); 1894 1895 blk_queue_max_segment_size(q, shost->max_segment_size); 1896 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1897 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1898 1899 /* 1900 * Set a reasonable default alignment: The larger of 32-byte (dword), 1901 * which is a common minimum for HBAs, and the minimum DMA alignment, 1902 * which is set by the platform. 1903 * 1904 * Devices that require a bigger alignment can increase it later. 1905 */ 1906 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1907 } 1908 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1909 1910 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1911 .get_budget = scsi_mq_get_budget, 1912 .put_budget = scsi_mq_put_budget, 1913 .queue_rq = scsi_queue_rq, 1914 .complete = scsi_complete, 1915 .timeout = scsi_timeout, 1916 #ifdef CONFIG_BLK_DEBUG_FS 1917 .show_rq = scsi_show_rq, 1918 #endif 1919 .init_request = scsi_mq_init_request, 1920 .exit_request = scsi_mq_exit_request, 1921 .cleanup_rq = scsi_cleanup_rq, 1922 .busy = scsi_mq_lld_busy, 1923 .map_queues = scsi_map_queues, 1924 .init_hctx = scsi_init_hctx, 1925 .poll = scsi_mq_poll, 1926 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1927 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1928 }; 1929 1930 1931 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1932 { 1933 struct Scsi_Host *shost = hctx->driver_data; 1934 1935 shost->hostt->commit_rqs(shost, hctx->queue_num); 1936 } 1937 1938 static const struct blk_mq_ops scsi_mq_ops = { 1939 .get_budget = scsi_mq_get_budget, 1940 .put_budget = scsi_mq_put_budget, 1941 .queue_rq = scsi_queue_rq, 1942 .commit_rqs = scsi_commit_rqs, 1943 .complete = scsi_complete, 1944 .timeout = scsi_timeout, 1945 #ifdef CONFIG_BLK_DEBUG_FS 1946 .show_rq = scsi_show_rq, 1947 #endif 1948 .init_request = scsi_mq_init_request, 1949 .exit_request = scsi_mq_exit_request, 1950 .cleanup_rq = scsi_cleanup_rq, 1951 .busy = scsi_mq_lld_busy, 1952 .map_queues = scsi_map_queues, 1953 .init_hctx = scsi_init_hctx, 1954 .poll = scsi_mq_poll, 1955 .set_rq_budget_token = scsi_mq_set_rq_budget_token, 1956 .get_rq_budget_token = scsi_mq_get_rq_budget_token, 1957 }; 1958 1959 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1960 { 1961 unsigned int cmd_size, sgl_size; 1962 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1963 1964 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1965 scsi_mq_inline_sgl_size(shost)); 1966 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1967 if (scsi_host_get_prot(shost)) 1968 cmd_size += sizeof(struct scsi_data_buffer) + 1969 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1970 1971 memset(tag_set, 0, sizeof(*tag_set)); 1972 if (shost->hostt->commit_rqs) 1973 tag_set->ops = &scsi_mq_ops; 1974 else 1975 tag_set->ops = &scsi_mq_ops_no_commit; 1976 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1977 tag_set->nr_maps = shost->nr_maps ? : 1; 1978 tag_set->queue_depth = shost->can_queue; 1979 tag_set->cmd_size = cmd_size; 1980 tag_set->numa_node = dev_to_node(shost->dma_dev); 1981 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1982 tag_set->flags |= 1983 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1984 tag_set->driver_data = shost; 1985 if (shost->host_tagset) 1986 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1987 1988 return blk_mq_alloc_tag_set(tag_set); 1989 } 1990 1991 void scsi_mq_free_tags(struct kref *kref) 1992 { 1993 struct Scsi_Host *shost = container_of(kref, typeof(*shost), 1994 tagset_refcnt); 1995 1996 blk_mq_free_tag_set(&shost->tag_set); 1997 complete(&shost->tagset_freed); 1998 } 1999 2000 /** 2001 * scsi_device_from_queue - return sdev associated with a request_queue 2002 * @q: The request queue to return the sdev from 2003 * 2004 * Return the sdev associated with a request queue or NULL if the 2005 * request_queue does not reference a SCSI device. 2006 */ 2007 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2008 { 2009 struct scsi_device *sdev = NULL; 2010 2011 if (q->mq_ops == &scsi_mq_ops_no_commit || 2012 q->mq_ops == &scsi_mq_ops) 2013 sdev = q->queuedata; 2014 if (!sdev || !get_device(&sdev->sdev_gendev)) 2015 sdev = NULL; 2016 2017 return sdev; 2018 } 2019 /* 2020 * pktcdvd should have been integrated into the SCSI layers, but for historical 2021 * reasons like the old IDE driver it isn't. This export allows it to safely 2022 * probe if a given device is a SCSI one and only attach to that. 2023 */ 2024 #ifdef CONFIG_CDROM_PKTCDVD_MODULE 2025 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2026 #endif 2027 2028 /** 2029 * scsi_block_requests - Utility function used by low-level drivers to prevent 2030 * further commands from being queued to the device. 2031 * @shost: host in question 2032 * 2033 * There is no timer nor any other means by which the requests get unblocked 2034 * other than the low-level driver calling scsi_unblock_requests(). 2035 */ 2036 void scsi_block_requests(struct Scsi_Host *shost) 2037 { 2038 shost->host_self_blocked = 1; 2039 } 2040 EXPORT_SYMBOL(scsi_block_requests); 2041 2042 /** 2043 * scsi_unblock_requests - Utility function used by low-level drivers to allow 2044 * further commands to be queued to the device. 2045 * @shost: host in question 2046 * 2047 * There is no timer nor any other means by which the requests get unblocked 2048 * other than the low-level driver calling scsi_unblock_requests(). This is done 2049 * as an API function so that changes to the internals of the scsi mid-layer 2050 * won't require wholesale changes to drivers that use this feature. 2051 */ 2052 void scsi_unblock_requests(struct Scsi_Host *shost) 2053 { 2054 shost->host_self_blocked = 0; 2055 scsi_run_host_queues(shost); 2056 } 2057 EXPORT_SYMBOL(scsi_unblock_requests); 2058 2059 void scsi_exit_queue(void) 2060 { 2061 kmem_cache_destroy(scsi_sense_cache); 2062 } 2063 2064 /** 2065 * scsi_mode_select - issue a mode select 2066 * @sdev: SCSI device to be queried 2067 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2068 * @sp: Save page bit (0 == don't save, 1 == save) 2069 * @buffer: request buffer (may not be smaller than eight bytes) 2070 * @len: length of request buffer. 2071 * @timeout: command timeout 2072 * @retries: number of retries before failing 2073 * @data: returns a structure abstracting the mode header data 2074 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2075 * must be SCSI_SENSE_BUFFERSIZE big. 2076 * 2077 * Returns zero if successful; negative error number or scsi 2078 * status on error 2079 * 2080 */ 2081 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp, 2082 unsigned char *buffer, int len, int timeout, int retries, 2083 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2084 { 2085 unsigned char cmd[10]; 2086 unsigned char *real_buffer; 2087 const struct scsi_exec_args exec_args = { 2088 .sshdr = sshdr, 2089 }; 2090 int ret; 2091 2092 memset(cmd, 0, sizeof(cmd)); 2093 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2094 2095 /* 2096 * Use MODE SELECT(10) if the device asked for it or if the mode page 2097 * and the mode select header cannot fit within the maximumm 255 bytes 2098 * of the MODE SELECT(6) command. 2099 */ 2100 if (sdev->use_10_for_ms || 2101 len + 4 > 255 || 2102 data->block_descriptor_length > 255) { 2103 if (len > 65535 - 8) 2104 return -EINVAL; 2105 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2106 if (!real_buffer) 2107 return -ENOMEM; 2108 memcpy(real_buffer + 8, buffer, len); 2109 len += 8; 2110 real_buffer[0] = 0; 2111 real_buffer[1] = 0; 2112 real_buffer[2] = data->medium_type; 2113 real_buffer[3] = data->device_specific; 2114 real_buffer[4] = data->longlba ? 0x01 : 0; 2115 real_buffer[5] = 0; 2116 put_unaligned_be16(data->block_descriptor_length, 2117 &real_buffer[6]); 2118 2119 cmd[0] = MODE_SELECT_10; 2120 put_unaligned_be16(len, &cmd[7]); 2121 } else { 2122 if (data->longlba) 2123 return -EINVAL; 2124 2125 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2126 if (!real_buffer) 2127 return -ENOMEM; 2128 memcpy(real_buffer + 4, buffer, len); 2129 len += 4; 2130 real_buffer[0] = 0; 2131 real_buffer[1] = data->medium_type; 2132 real_buffer[2] = data->device_specific; 2133 real_buffer[3] = data->block_descriptor_length; 2134 2135 cmd[0] = MODE_SELECT; 2136 cmd[4] = len; 2137 } 2138 2139 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len, 2140 timeout, retries, &exec_args); 2141 kfree(real_buffer); 2142 return ret; 2143 } 2144 EXPORT_SYMBOL_GPL(scsi_mode_select); 2145 2146 /** 2147 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2148 * @sdev: SCSI device to be queried 2149 * @dbd: set to prevent mode sense from returning block descriptors 2150 * @modepage: mode page being requested 2151 * @buffer: request buffer (may not be smaller than eight bytes) 2152 * @len: length of request buffer. 2153 * @timeout: command timeout 2154 * @retries: number of retries before failing 2155 * @data: returns a structure abstracting the mode header data 2156 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2157 * must be SCSI_SENSE_BUFFERSIZE big. 2158 * 2159 * Returns zero if successful, or a negative error number on failure 2160 */ 2161 int 2162 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2163 unsigned char *buffer, int len, int timeout, int retries, 2164 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2165 { 2166 unsigned char cmd[12]; 2167 int use_10_for_ms; 2168 int header_length; 2169 int result, retry_count = retries; 2170 struct scsi_sense_hdr my_sshdr; 2171 const struct scsi_exec_args exec_args = { 2172 /* caller might not be interested in sense, but we need it */ 2173 .sshdr = sshdr ? : &my_sshdr, 2174 }; 2175 2176 memset(data, 0, sizeof(*data)); 2177 memset(&cmd[0], 0, 12); 2178 2179 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2180 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2181 cmd[2] = modepage; 2182 2183 sshdr = exec_args.sshdr; 2184 2185 retry: 2186 use_10_for_ms = sdev->use_10_for_ms || len > 255; 2187 2188 if (use_10_for_ms) { 2189 if (len < 8 || len > 65535) 2190 return -EINVAL; 2191 2192 cmd[0] = MODE_SENSE_10; 2193 put_unaligned_be16(len, &cmd[7]); 2194 header_length = 8; 2195 } else { 2196 if (len < 4) 2197 return -EINVAL; 2198 2199 cmd[0] = MODE_SENSE; 2200 cmd[4] = len; 2201 header_length = 4; 2202 } 2203 2204 memset(buffer, 0, len); 2205 2206 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len, 2207 timeout, retries, &exec_args); 2208 if (result < 0) 2209 return result; 2210 2211 /* This code looks awful: what it's doing is making sure an 2212 * ILLEGAL REQUEST sense return identifies the actual command 2213 * byte as the problem. MODE_SENSE commands can return 2214 * ILLEGAL REQUEST if the code page isn't supported */ 2215 2216 if (!scsi_status_is_good(result)) { 2217 if (scsi_sense_valid(sshdr)) { 2218 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2219 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2220 /* 2221 * Invalid command operation code: retry using 2222 * MODE SENSE(6) if this was a MODE SENSE(10) 2223 * request, except if the request mode page is 2224 * too large for MODE SENSE single byte 2225 * allocation length field. 2226 */ 2227 if (use_10_for_ms) { 2228 if (len > 255) 2229 return -EIO; 2230 sdev->use_10_for_ms = 0; 2231 goto retry; 2232 } 2233 } 2234 if (scsi_status_is_check_condition(result) && 2235 sshdr->sense_key == UNIT_ATTENTION && 2236 retry_count) { 2237 retry_count--; 2238 goto retry; 2239 } 2240 } 2241 return -EIO; 2242 } 2243 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2244 (modepage == 6 || modepage == 8))) { 2245 /* Initio breakage? */ 2246 header_length = 0; 2247 data->length = 13; 2248 data->medium_type = 0; 2249 data->device_specific = 0; 2250 data->longlba = 0; 2251 data->block_descriptor_length = 0; 2252 } else if (use_10_for_ms) { 2253 data->length = get_unaligned_be16(&buffer[0]) + 2; 2254 data->medium_type = buffer[2]; 2255 data->device_specific = buffer[3]; 2256 data->longlba = buffer[4] & 0x01; 2257 data->block_descriptor_length = get_unaligned_be16(&buffer[6]); 2258 } else { 2259 data->length = buffer[0] + 1; 2260 data->medium_type = buffer[1]; 2261 data->device_specific = buffer[2]; 2262 data->block_descriptor_length = buffer[3]; 2263 } 2264 data->header_length = header_length; 2265 2266 return 0; 2267 } 2268 EXPORT_SYMBOL(scsi_mode_sense); 2269 2270 /** 2271 * scsi_test_unit_ready - test if unit is ready 2272 * @sdev: scsi device to change the state of. 2273 * @timeout: command timeout 2274 * @retries: number of retries before failing 2275 * @sshdr: outpout pointer for decoded sense information. 2276 * 2277 * Returns zero if unsuccessful or an error if TUR failed. For 2278 * removable media, UNIT_ATTENTION sets ->changed flag. 2279 **/ 2280 int 2281 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2282 struct scsi_sense_hdr *sshdr) 2283 { 2284 char cmd[] = { 2285 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2286 }; 2287 const struct scsi_exec_args exec_args = { 2288 .sshdr = sshdr, 2289 }; 2290 int result; 2291 2292 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2293 do { 2294 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0, 2295 timeout, 1, &exec_args); 2296 if (sdev->removable && scsi_sense_valid(sshdr) && 2297 sshdr->sense_key == UNIT_ATTENTION) 2298 sdev->changed = 1; 2299 } while (scsi_sense_valid(sshdr) && 2300 sshdr->sense_key == UNIT_ATTENTION && --retries); 2301 2302 return result; 2303 } 2304 EXPORT_SYMBOL(scsi_test_unit_ready); 2305 2306 /** 2307 * scsi_device_set_state - Take the given device through the device state model. 2308 * @sdev: scsi device to change the state of. 2309 * @state: state to change to. 2310 * 2311 * Returns zero if successful or an error if the requested 2312 * transition is illegal. 2313 */ 2314 int 2315 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2316 { 2317 enum scsi_device_state oldstate = sdev->sdev_state; 2318 2319 if (state == oldstate) 2320 return 0; 2321 2322 switch (state) { 2323 case SDEV_CREATED: 2324 switch (oldstate) { 2325 case SDEV_CREATED_BLOCK: 2326 break; 2327 default: 2328 goto illegal; 2329 } 2330 break; 2331 2332 case SDEV_RUNNING: 2333 switch (oldstate) { 2334 case SDEV_CREATED: 2335 case SDEV_OFFLINE: 2336 case SDEV_TRANSPORT_OFFLINE: 2337 case SDEV_QUIESCE: 2338 case SDEV_BLOCK: 2339 break; 2340 default: 2341 goto illegal; 2342 } 2343 break; 2344 2345 case SDEV_QUIESCE: 2346 switch (oldstate) { 2347 case SDEV_RUNNING: 2348 case SDEV_OFFLINE: 2349 case SDEV_TRANSPORT_OFFLINE: 2350 break; 2351 default: 2352 goto illegal; 2353 } 2354 break; 2355 2356 case SDEV_OFFLINE: 2357 case SDEV_TRANSPORT_OFFLINE: 2358 switch (oldstate) { 2359 case SDEV_CREATED: 2360 case SDEV_RUNNING: 2361 case SDEV_QUIESCE: 2362 case SDEV_BLOCK: 2363 break; 2364 default: 2365 goto illegal; 2366 } 2367 break; 2368 2369 case SDEV_BLOCK: 2370 switch (oldstate) { 2371 case SDEV_RUNNING: 2372 case SDEV_CREATED_BLOCK: 2373 case SDEV_QUIESCE: 2374 case SDEV_OFFLINE: 2375 break; 2376 default: 2377 goto illegal; 2378 } 2379 break; 2380 2381 case SDEV_CREATED_BLOCK: 2382 switch (oldstate) { 2383 case SDEV_CREATED: 2384 break; 2385 default: 2386 goto illegal; 2387 } 2388 break; 2389 2390 case SDEV_CANCEL: 2391 switch (oldstate) { 2392 case SDEV_CREATED: 2393 case SDEV_RUNNING: 2394 case SDEV_QUIESCE: 2395 case SDEV_OFFLINE: 2396 case SDEV_TRANSPORT_OFFLINE: 2397 break; 2398 default: 2399 goto illegal; 2400 } 2401 break; 2402 2403 case SDEV_DEL: 2404 switch (oldstate) { 2405 case SDEV_CREATED: 2406 case SDEV_RUNNING: 2407 case SDEV_OFFLINE: 2408 case SDEV_TRANSPORT_OFFLINE: 2409 case SDEV_CANCEL: 2410 case SDEV_BLOCK: 2411 case SDEV_CREATED_BLOCK: 2412 break; 2413 default: 2414 goto illegal; 2415 } 2416 break; 2417 2418 } 2419 sdev->offline_already = false; 2420 sdev->sdev_state = state; 2421 return 0; 2422 2423 illegal: 2424 SCSI_LOG_ERROR_RECOVERY(1, 2425 sdev_printk(KERN_ERR, sdev, 2426 "Illegal state transition %s->%s", 2427 scsi_device_state_name(oldstate), 2428 scsi_device_state_name(state)) 2429 ); 2430 return -EINVAL; 2431 } 2432 EXPORT_SYMBOL(scsi_device_set_state); 2433 2434 /** 2435 * scsi_evt_emit - emit a single SCSI device uevent 2436 * @sdev: associated SCSI device 2437 * @evt: event to emit 2438 * 2439 * Send a single uevent (scsi_event) to the associated scsi_device. 2440 */ 2441 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2442 { 2443 int idx = 0; 2444 char *envp[3]; 2445 2446 switch (evt->evt_type) { 2447 case SDEV_EVT_MEDIA_CHANGE: 2448 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2449 break; 2450 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2451 scsi_rescan_device(&sdev->sdev_gendev); 2452 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2453 break; 2454 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2455 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2456 break; 2457 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2458 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2459 break; 2460 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2461 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2462 break; 2463 case SDEV_EVT_LUN_CHANGE_REPORTED: 2464 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2465 break; 2466 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2467 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2468 break; 2469 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2470 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2471 break; 2472 default: 2473 /* do nothing */ 2474 break; 2475 } 2476 2477 envp[idx++] = NULL; 2478 2479 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2480 } 2481 2482 /** 2483 * scsi_evt_thread - send a uevent for each scsi event 2484 * @work: work struct for scsi_device 2485 * 2486 * Dispatch queued events to their associated scsi_device kobjects 2487 * as uevents. 2488 */ 2489 void scsi_evt_thread(struct work_struct *work) 2490 { 2491 struct scsi_device *sdev; 2492 enum scsi_device_event evt_type; 2493 LIST_HEAD(event_list); 2494 2495 sdev = container_of(work, struct scsi_device, event_work); 2496 2497 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2498 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2499 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2500 2501 while (1) { 2502 struct scsi_event *evt; 2503 struct list_head *this, *tmp; 2504 unsigned long flags; 2505 2506 spin_lock_irqsave(&sdev->list_lock, flags); 2507 list_splice_init(&sdev->event_list, &event_list); 2508 spin_unlock_irqrestore(&sdev->list_lock, flags); 2509 2510 if (list_empty(&event_list)) 2511 break; 2512 2513 list_for_each_safe(this, tmp, &event_list) { 2514 evt = list_entry(this, struct scsi_event, node); 2515 list_del(&evt->node); 2516 scsi_evt_emit(sdev, evt); 2517 kfree(evt); 2518 } 2519 } 2520 } 2521 2522 /** 2523 * sdev_evt_send - send asserted event to uevent thread 2524 * @sdev: scsi_device event occurred on 2525 * @evt: event to send 2526 * 2527 * Assert scsi device event asynchronously. 2528 */ 2529 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2530 { 2531 unsigned long flags; 2532 2533 #if 0 2534 /* FIXME: currently this check eliminates all media change events 2535 * for polled devices. Need to update to discriminate between AN 2536 * and polled events */ 2537 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2538 kfree(evt); 2539 return; 2540 } 2541 #endif 2542 2543 spin_lock_irqsave(&sdev->list_lock, flags); 2544 list_add_tail(&evt->node, &sdev->event_list); 2545 schedule_work(&sdev->event_work); 2546 spin_unlock_irqrestore(&sdev->list_lock, flags); 2547 } 2548 EXPORT_SYMBOL_GPL(sdev_evt_send); 2549 2550 /** 2551 * sdev_evt_alloc - allocate a new scsi event 2552 * @evt_type: type of event to allocate 2553 * @gfpflags: GFP flags for allocation 2554 * 2555 * Allocates and returns a new scsi_event. 2556 */ 2557 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2558 gfp_t gfpflags) 2559 { 2560 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2561 if (!evt) 2562 return NULL; 2563 2564 evt->evt_type = evt_type; 2565 INIT_LIST_HEAD(&evt->node); 2566 2567 /* evt_type-specific initialization, if any */ 2568 switch (evt_type) { 2569 case SDEV_EVT_MEDIA_CHANGE: 2570 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2571 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2572 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2573 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2574 case SDEV_EVT_LUN_CHANGE_REPORTED: 2575 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2576 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2577 default: 2578 /* do nothing */ 2579 break; 2580 } 2581 2582 return evt; 2583 } 2584 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2585 2586 /** 2587 * sdev_evt_send_simple - send asserted event to uevent thread 2588 * @sdev: scsi_device event occurred on 2589 * @evt_type: type of event to send 2590 * @gfpflags: GFP flags for allocation 2591 * 2592 * Assert scsi device event asynchronously, given an event type. 2593 */ 2594 void sdev_evt_send_simple(struct scsi_device *sdev, 2595 enum scsi_device_event evt_type, gfp_t gfpflags) 2596 { 2597 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2598 if (!evt) { 2599 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2600 evt_type); 2601 return; 2602 } 2603 2604 sdev_evt_send(sdev, evt); 2605 } 2606 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2607 2608 /** 2609 * scsi_device_quiesce - Block all commands except power management. 2610 * @sdev: scsi device to quiesce. 2611 * 2612 * This works by trying to transition to the SDEV_QUIESCE state 2613 * (which must be a legal transition). When the device is in this 2614 * state, only power management requests will be accepted, all others will 2615 * be deferred. 2616 * 2617 * Must be called with user context, may sleep. 2618 * 2619 * Returns zero if unsuccessful or an error if not. 2620 */ 2621 int 2622 scsi_device_quiesce(struct scsi_device *sdev) 2623 { 2624 struct request_queue *q = sdev->request_queue; 2625 int err; 2626 2627 /* 2628 * It is allowed to call scsi_device_quiesce() multiple times from 2629 * the same context but concurrent scsi_device_quiesce() calls are 2630 * not allowed. 2631 */ 2632 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2633 2634 if (sdev->quiesced_by == current) 2635 return 0; 2636 2637 blk_set_pm_only(q); 2638 2639 blk_mq_freeze_queue(q); 2640 /* 2641 * Ensure that the effect of blk_set_pm_only() will be visible 2642 * for percpu_ref_tryget() callers that occur after the queue 2643 * unfreeze even if the queue was already frozen before this function 2644 * was called. See also https://lwn.net/Articles/573497/. 2645 */ 2646 synchronize_rcu(); 2647 blk_mq_unfreeze_queue(q); 2648 2649 mutex_lock(&sdev->state_mutex); 2650 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2651 if (err == 0) 2652 sdev->quiesced_by = current; 2653 else 2654 blk_clear_pm_only(q); 2655 mutex_unlock(&sdev->state_mutex); 2656 2657 return err; 2658 } 2659 EXPORT_SYMBOL(scsi_device_quiesce); 2660 2661 /** 2662 * scsi_device_resume - Restart user issued commands to a quiesced device. 2663 * @sdev: scsi device to resume. 2664 * 2665 * Moves the device from quiesced back to running and restarts the 2666 * queues. 2667 * 2668 * Must be called with user context, may sleep. 2669 */ 2670 void scsi_device_resume(struct scsi_device *sdev) 2671 { 2672 /* check if the device state was mutated prior to resume, and if 2673 * so assume the state is being managed elsewhere (for example 2674 * device deleted during suspend) 2675 */ 2676 mutex_lock(&sdev->state_mutex); 2677 if (sdev->sdev_state == SDEV_QUIESCE) 2678 scsi_device_set_state(sdev, SDEV_RUNNING); 2679 if (sdev->quiesced_by) { 2680 sdev->quiesced_by = NULL; 2681 blk_clear_pm_only(sdev->request_queue); 2682 } 2683 mutex_unlock(&sdev->state_mutex); 2684 } 2685 EXPORT_SYMBOL(scsi_device_resume); 2686 2687 static void 2688 device_quiesce_fn(struct scsi_device *sdev, void *data) 2689 { 2690 scsi_device_quiesce(sdev); 2691 } 2692 2693 void 2694 scsi_target_quiesce(struct scsi_target *starget) 2695 { 2696 starget_for_each_device(starget, NULL, device_quiesce_fn); 2697 } 2698 EXPORT_SYMBOL(scsi_target_quiesce); 2699 2700 static void 2701 device_resume_fn(struct scsi_device *sdev, void *data) 2702 { 2703 scsi_device_resume(sdev); 2704 } 2705 2706 void 2707 scsi_target_resume(struct scsi_target *starget) 2708 { 2709 starget_for_each_device(starget, NULL, device_resume_fn); 2710 } 2711 EXPORT_SYMBOL(scsi_target_resume); 2712 2713 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev) 2714 { 2715 if (scsi_device_set_state(sdev, SDEV_BLOCK)) 2716 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2717 2718 return 0; 2719 } 2720 2721 void scsi_start_queue(struct scsi_device *sdev) 2722 { 2723 if (cmpxchg(&sdev->queue_stopped, 1, 0)) 2724 blk_mq_unquiesce_queue(sdev->request_queue); 2725 } 2726 2727 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait) 2728 { 2729 /* 2730 * The atomic variable of ->queue_stopped covers that 2731 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue. 2732 * 2733 * However, we still need to wait until quiesce is done 2734 * in case that queue has been stopped. 2735 */ 2736 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) { 2737 if (nowait) 2738 blk_mq_quiesce_queue_nowait(sdev->request_queue); 2739 else 2740 blk_mq_quiesce_queue(sdev->request_queue); 2741 } else { 2742 if (!nowait) 2743 blk_mq_wait_quiesce_done(sdev->request_queue->tag_set); 2744 } 2745 } 2746 2747 /** 2748 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2749 * @sdev: device to block 2750 * 2751 * Pause SCSI command processing on the specified device. Does not sleep. 2752 * 2753 * Returns zero if successful or a negative error code upon failure. 2754 * 2755 * Notes: 2756 * This routine transitions the device to the SDEV_BLOCK state (which must be 2757 * a legal transition). When the device is in this state, command processing 2758 * is paused until the device leaves the SDEV_BLOCK state. See also 2759 * scsi_internal_device_unblock_nowait(). 2760 */ 2761 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2762 { 2763 int ret = __scsi_internal_device_block_nowait(sdev); 2764 2765 /* 2766 * The device has transitioned to SDEV_BLOCK. Stop the 2767 * block layer from calling the midlayer with this device's 2768 * request queue. 2769 */ 2770 if (!ret) 2771 scsi_stop_queue(sdev, true); 2772 return ret; 2773 } 2774 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2775 2776 /** 2777 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2778 * @sdev: device to block 2779 * 2780 * Pause SCSI command processing on the specified device and wait until all 2781 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2782 * 2783 * Returns zero if successful or a negative error code upon failure. 2784 * 2785 * Note: 2786 * This routine transitions the device to the SDEV_BLOCK state (which must be 2787 * a legal transition). When the device is in this state, command processing 2788 * is paused until the device leaves the SDEV_BLOCK state. See also 2789 * scsi_internal_device_unblock(). 2790 */ 2791 static int scsi_internal_device_block(struct scsi_device *sdev) 2792 { 2793 int err; 2794 2795 mutex_lock(&sdev->state_mutex); 2796 err = __scsi_internal_device_block_nowait(sdev); 2797 if (err == 0) 2798 scsi_stop_queue(sdev, false); 2799 mutex_unlock(&sdev->state_mutex); 2800 2801 return err; 2802 } 2803 2804 /** 2805 * scsi_internal_device_unblock_nowait - resume a device after a block request 2806 * @sdev: device to resume 2807 * @new_state: state to set the device to after unblocking 2808 * 2809 * Restart the device queue for a previously suspended SCSI device. Does not 2810 * sleep. 2811 * 2812 * Returns zero if successful or a negative error code upon failure. 2813 * 2814 * Notes: 2815 * This routine transitions the device to the SDEV_RUNNING state or to one of 2816 * the offline states (which must be a legal transition) allowing the midlayer 2817 * to goose the queue for this device. 2818 */ 2819 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2820 enum scsi_device_state new_state) 2821 { 2822 switch (new_state) { 2823 case SDEV_RUNNING: 2824 case SDEV_TRANSPORT_OFFLINE: 2825 break; 2826 default: 2827 return -EINVAL; 2828 } 2829 2830 /* 2831 * Try to transition the scsi device to SDEV_RUNNING or one of the 2832 * offlined states and goose the device queue if successful. 2833 */ 2834 switch (sdev->sdev_state) { 2835 case SDEV_BLOCK: 2836 case SDEV_TRANSPORT_OFFLINE: 2837 sdev->sdev_state = new_state; 2838 break; 2839 case SDEV_CREATED_BLOCK: 2840 if (new_state == SDEV_TRANSPORT_OFFLINE || 2841 new_state == SDEV_OFFLINE) 2842 sdev->sdev_state = new_state; 2843 else 2844 sdev->sdev_state = SDEV_CREATED; 2845 break; 2846 case SDEV_CANCEL: 2847 case SDEV_OFFLINE: 2848 break; 2849 default: 2850 return -EINVAL; 2851 } 2852 scsi_start_queue(sdev); 2853 2854 return 0; 2855 } 2856 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2857 2858 /** 2859 * scsi_internal_device_unblock - resume a device after a block request 2860 * @sdev: device to resume 2861 * @new_state: state to set the device to after unblocking 2862 * 2863 * Restart the device queue for a previously suspended SCSI device. May sleep. 2864 * 2865 * Returns zero if successful or a negative error code upon failure. 2866 * 2867 * Notes: 2868 * This routine transitions the device to the SDEV_RUNNING state or to one of 2869 * the offline states (which must be a legal transition) allowing the midlayer 2870 * to goose the queue for this device. 2871 */ 2872 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2873 enum scsi_device_state new_state) 2874 { 2875 int ret; 2876 2877 mutex_lock(&sdev->state_mutex); 2878 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2879 mutex_unlock(&sdev->state_mutex); 2880 2881 return ret; 2882 } 2883 2884 static void 2885 device_block(struct scsi_device *sdev, void *data) 2886 { 2887 int ret; 2888 2889 ret = scsi_internal_device_block(sdev); 2890 2891 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2892 dev_name(&sdev->sdev_gendev), ret); 2893 } 2894 2895 static int 2896 target_block(struct device *dev, void *data) 2897 { 2898 if (scsi_is_target_device(dev)) 2899 starget_for_each_device(to_scsi_target(dev), NULL, 2900 device_block); 2901 return 0; 2902 } 2903 2904 void 2905 scsi_target_block(struct device *dev) 2906 { 2907 if (scsi_is_target_device(dev)) 2908 starget_for_each_device(to_scsi_target(dev), NULL, 2909 device_block); 2910 else 2911 device_for_each_child(dev, NULL, target_block); 2912 } 2913 EXPORT_SYMBOL_GPL(scsi_target_block); 2914 2915 static void 2916 device_unblock(struct scsi_device *sdev, void *data) 2917 { 2918 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2919 } 2920 2921 static int 2922 target_unblock(struct device *dev, void *data) 2923 { 2924 if (scsi_is_target_device(dev)) 2925 starget_for_each_device(to_scsi_target(dev), data, 2926 device_unblock); 2927 return 0; 2928 } 2929 2930 void 2931 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2932 { 2933 if (scsi_is_target_device(dev)) 2934 starget_for_each_device(to_scsi_target(dev), &new_state, 2935 device_unblock); 2936 else 2937 device_for_each_child(dev, &new_state, target_unblock); 2938 } 2939 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2940 2941 int 2942 scsi_host_block(struct Scsi_Host *shost) 2943 { 2944 struct scsi_device *sdev; 2945 int ret = 0; 2946 2947 /* 2948 * Call scsi_internal_device_block_nowait so we can avoid 2949 * calling synchronize_rcu() for each LUN. 2950 */ 2951 shost_for_each_device(sdev, shost) { 2952 mutex_lock(&sdev->state_mutex); 2953 ret = scsi_internal_device_block_nowait(sdev); 2954 mutex_unlock(&sdev->state_mutex); 2955 if (ret) { 2956 scsi_device_put(sdev); 2957 break; 2958 } 2959 } 2960 2961 /* 2962 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2963 * calling synchronize_rcu() once is enough. 2964 */ 2965 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2966 2967 if (!ret) 2968 synchronize_rcu(); 2969 2970 return ret; 2971 } 2972 EXPORT_SYMBOL_GPL(scsi_host_block); 2973 2974 int 2975 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2976 { 2977 struct scsi_device *sdev; 2978 int ret = 0; 2979 2980 shost_for_each_device(sdev, shost) { 2981 ret = scsi_internal_device_unblock(sdev, new_state); 2982 if (ret) { 2983 scsi_device_put(sdev); 2984 break; 2985 } 2986 } 2987 return ret; 2988 } 2989 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2990 2991 /** 2992 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2993 * @sgl: scatter-gather list 2994 * @sg_count: number of segments in sg 2995 * @offset: offset in bytes into sg, on return offset into the mapped area 2996 * @len: bytes to map, on return number of bytes mapped 2997 * 2998 * Returns virtual address of the start of the mapped page 2999 */ 3000 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3001 size_t *offset, size_t *len) 3002 { 3003 int i; 3004 size_t sg_len = 0, len_complete = 0; 3005 struct scatterlist *sg; 3006 struct page *page; 3007 3008 WARN_ON(!irqs_disabled()); 3009 3010 for_each_sg(sgl, sg, sg_count, i) { 3011 len_complete = sg_len; /* Complete sg-entries */ 3012 sg_len += sg->length; 3013 if (sg_len > *offset) 3014 break; 3015 } 3016 3017 if (unlikely(i == sg_count)) { 3018 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3019 "elements %d\n", 3020 __func__, sg_len, *offset, sg_count); 3021 WARN_ON(1); 3022 return NULL; 3023 } 3024 3025 /* Offset starting from the beginning of first page in this sg-entry */ 3026 *offset = *offset - len_complete + sg->offset; 3027 3028 /* Assumption: contiguous pages can be accessed as "page + i" */ 3029 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3030 *offset &= ~PAGE_MASK; 3031 3032 /* Bytes in this sg-entry from *offset to the end of the page */ 3033 sg_len = PAGE_SIZE - *offset; 3034 if (*len > sg_len) 3035 *len = sg_len; 3036 3037 return kmap_atomic(page); 3038 } 3039 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3040 3041 /** 3042 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3043 * @virt: virtual address to be unmapped 3044 */ 3045 void scsi_kunmap_atomic_sg(void *virt) 3046 { 3047 kunmap_atomic(virt); 3048 } 3049 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3050 3051 void sdev_disable_disk_events(struct scsi_device *sdev) 3052 { 3053 atomic_inc(&sdev->disk_events_disable_depth); 3054 } 3055 EXPORT_SYMBOL(sdev_disable_disk_events); 3056 3057 void sdev_enable_disk_events(struct scsi_device *sdev) 3058 { 3059 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3060 return; 3061 atomic_dec(&sdev->disk_events_disable_depth); 3062 } 3063 EXPORT_SYMBOL(sdev_enable_disk_events); 3064 3065 static unsigned char designator_prio(const unsigned char *d) 3066 { 3067 if (d[1] & 0x30) 3068 /* not associated with LUN */ 3069 return 0; 3070 3071 if (d[3] == 0) 3072 /* invalid length */ 3073 return 0; 3074 3075 /* 3076 * Order of preference for lun descriptor: 3077 * - SCSI name string 3078 * - NAA IEEE Registered Extended 3079 * - EUI-64 based 16-byte 3080 * - EUI-64 based 12-byte 3081 * - NAA IEEE Registered 3082 * - NAA IEEE Extended 3083 * - EUI-64 based 8-byte 3084 * - SCSI name string (truncated) 3085 * - T10 Vendor ID 3086 * as longer descriptors reduce the likelyhood 3087 * of identification clashes. 3088 */ 3089 3090 switch (d[1] & 0xf) { 3091 case 8: 3092 /* SCSI name string, variable-length UTF-8 */ 3093 return 9; 3094 case 3: 3095 switch (d[4] >> 4) { 3096 case 6: 3097 /* NAA registered extended */ 3098 return 8; 3099 case 5: 3100 /* NAA registered */ 3101 return 5; 3102 case 4: 3103 /* NAA extended */ 3104 return 4; 3105 case 3: 3106 /* NAA locally assigned */ 3107 return 1; 3108 default: 3109 break; 3110 } 3111 break; 3112 case 2: 3113 switch (d[3]) { 3114 case 16: 3115 /* EUI64-based, 16 byte */ 3116 return 7; 3117 case 12: 3118 /* EUI64-based, 12 byte */ 3119 return 6; 3120 case 8: 3121 /* EUI64-based, 8 byte */ 3122 return 3; 3123 default: 3124 break; 3125 } 3126 break; 3127 case 1: 3128 /* T10 vendor ID */ 3129 return 1; 3130 default: 3131 break; 3132 } 3133 3134 return 0; 3135 } 3136 3137 /** 3138 * scsi_vpd_lun_id - return a unique device identification 3139 * @sdev: SCSI device 3140 * @id: buffer for the identification 3141 * @id_len: length of the buffer 3142 * 3143 * Copies a unique device identification into @id based 3144 * on the information in the VPD page 0x83 of the device. 3145 * The string will be formatted as a SCSI name string. 3146 * 3147 * Returns the length of the identification or error on failure. 3148 * If the identifier is longer than the supplied buffer the actual 3149 * identifier length is returned and the buffer is not zero-padded. 3150 */ 3151 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3152 { 3153 u8 cur_id_prio = 0; 3154 u8 cur_id_size = 0; 3155 const unsigned char *d, *cur_id_str; 3156 const struct scsi_vpd *vpd_pg83; 3157 int id_size = -EINVAL; 3158 3159 rcu_read_lock(); 3160 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3161 if (!vpd_pg83) { 3162 rcu_read_unlock(); 3163 return -ENXIO; 3164 } 3165 3166 /* The id string must be at least 20 bytes + terminating NULL byte */ 3167 if (id_len < 21) { 3168 rcu_read_unlock(); 3169 return -EINVAL; 3170 } 3171 3172 memset(id, 0, id_len); 3173 for (d = vpd_pg83->data + 4; 3174 d < vpd_pg83->data + vpd_pg83->len; 3175 d += d[3] + 4) { 3176 u8 prio = designator_prio(d); 3177 3178 if (prio == 0 || cur_id_prio > prio) 3179 continue; 3180 3181 switch (d[1] & 0xf) { 3182 case 0x1: 3183 /* T10 Vendor ID */ 3184 if (cur_id_size > d[3]) 3185 break; 3186 cur_id_prio = prio; 3187 cur_id_size = d[3]; 3188 if (cur_id_size + 4 > id_len) 3189 cur_id_size = id_len - 4; 3190 cur_id_str = d + 4; 3191 id_size = snprintf(id, id_len, "t10.%*pE", 3192 cur_id_size, cur_id_str); 3193 break; 3194 case 0x2: 3195 /* EUI-64 */ 3196 cur_id_prio = prio; 3197 cur_id_size = d[3]; 3198 cur_id_str = d + 4; 3199 switch (cur_id_size) { 3200 case 8: 3201 id_size = snprintf(id, id_len, 3202 "eui.%8phN", 3203 cur_id_str); 3204 break; 3205 case 12: 3206 id_size = snprintf(id, id_len, 3207 "eui.%12phN", 3208 cur_id_str); 3209 break; 3210 case 16: 3211 id_size = snprintf(id, id_len, 3212 "eui.%16phN", 3213 cur_id_str); 3214 break; 3215 default: 3216 break; 3217 } 3218 break; 3219 case 0x3: 3220 /* NAA */ 3221 cur_id_prio = prio; 3222 cur_id_size = d[3]; 3223 cur_id_str = d + 4; 3224 switch (cur_id_size) { 3225 case 8: 3226 id_size = snprintf(id, id_len, 3227 "naa.%8phN", 3228 cur_id_str); 3229 break; 3230 case 16: 3231 id_size = snprintf(id, id_len, 3232 "naa.%16phN", 3233 cur_id_str); 3234 break; 3235 default: 3236 break; 3237 } 3238 break; 3239 case 0x8: 3240 /* SCSI name string */ 3241 if (cur_id_size > d[3]) 3242 break; 3243 /* Prefer others for truncated descriptor */ 3244 if (d[3] > id_len) { 3245 prio = 2; 3246 if (cur_id_prio > prio) 3247 break; 3248 } 3249 cur_id_prio = prio; 3250 cur_id_size = id_size = d[3]; 3251 cur_id_str = d + 4; 3252 if (cur_id_size >= id_len) 3253 cur_id_size = id_len - 1; 3254 memcpy(id, cur_id_str, cur_id_size); 3255 break; 3256 default: 3257 break; 3258 } 3259 } 3260 rcu_read_unlock(); 3261 3262 return id_size; 3263 } 3264 EXPORT_SYMBOL(scsi_vpd_lun_id); 3265 3266 /* 3267 * scsi_vpd_tpg_id - return a target port group identifier 3268 * @sdev: SCSI device 3269 * 3270 * Returns the Target Port Group identifier from the information 3271 * froom VPD page 0x83 of the device. 3272 * 3273 * Returns the identifier or error on failure. 3274 */ 3275 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3276 { 3277 const unsigned char *d; 3278 const struct scsi_vpd *vpd_pg83; 3279 int group_id = -EAGAIN, rel_port = -1; 3280 3281 rcu_read_lock(); 3282 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3283 if (!vpd_pg83) { 3284 rcu_read_unlock(); 3285 return -ENXIO; 3286 } 3287 3288 d = vpd_pg83->data + 4; 3289 while (d < vpd_pg83->data + vpd_pg83->len) { 3290 switch (d[1] & 0xf) { 3291 case 0x4: 3292 /* Relative target port */ 3293 rel_port = get_unaligned_be16(&d[6]); 3294 break; 3295 case 0x5: 3296 /* Target port group */ 3297 group_id = get_unaligned_be16(&d[6]); 3298 break; 3299 default: 3300 break; 3301 } 3302 d += d[3] + 4; 3303 } 3304 rcu_read_unlock(); 3305 3306 if (group_id >= 0 && rel_id && rel_port != -1) 3307 *rel_id = rel_port; 3308 3309 return group_id; 3310 } 3311 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3312 3313 /** 3314 * scsi_build_sense - build sense data for a command 3315 * @scmd: scsi command for which the sense should be formatted 3316 * @desc: Sense format (non-zero == descriptor format, 3317 * 0 == fixed format) 3318 * @key: Sense key 3319 * @asc: Additional sense code 3320 * @ascq: Additional sense code qualifier 3321 * 3322 **/ 3323 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq) 3324 { 3325 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq); 3326 scmd->result = SAM_STAT_CHECK_CONDITION; 3327 } 3328 EXPORT_SYMBOL_GPL(scsi_build_sense); 3329