xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 643d1f7f)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 static struct kmem_cache *scsi_bidi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	req->cmd_flags &= ~REQ_DONTPREP;
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 	struct Scsi_Host *host = cmd->device->host;
116 	struct scsi_device *device = cmd->device;
117 	struct request_queue *q = device->request_queue;
118 	unsigned long flags;
119 
120 	SCSI_LOG_MLQUEUE(1,
121 		 printk("Inserting command %p into mlqueue\n", cmd));
122 
123 	/*
124 	 * Set the appropriate busy bit for the device/host.
125 	 *
126 	 * If the host/device isn't busy, assume that something actually
127 	 * completed, and that we should be able to queue a command now.
128 	 *
129 	 * Note that the prior mid-layer assumption that any host could
130 	 * always queue at least one command is now broken.  The mid-layer
131 	 * will implement a user specifiable stall (see
132 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 	 * if a command is requeued with no other commands outstanding
134 	 * either for the device or for the host.
135 	 */
136 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 		host->host_blocked = host->max_host_blocked;
138 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 		device->device_blocked = device->max_device_blocked;
140 
141 	/*
142 	 * Decrement the counters, since these commands are no longer
143 	 * active on the host/device.
144 	 */
145 	scsi_device_unbusy(device);
146 
147 	/*
148 	 * Requeue this command.  It will go before all other commands
149 	 * that are already in the queue.
150 	 *
151 	 * NOTE: there is magic here about the way the queue is plugged if
152 	 * we have no outstanding commands.
153 	 *
154 	 * Although we *don't* plug the queue, we call the request
155 	 * function.  The SCSI request function detects the blocked condition
156 	 * and plugs the queue appropriately.
157          */
158 	spin_lock_irqsave(q->queue_lock, flags);
159 	blk_requeue_request(q, cmd->request);
160 	spin_unlock_irqrestore(q->queue_lock, flags);
161 
162 	scsi_run_queue(q);
163 
164 	return 0;
165 }
166 
167 /**
168  * scsi_execute - insert request and wait for the result
169  * @sdev:	scsi device
170  * @cmd:	scsi command
171  * @data_direction: data direction
172  * @buffer:	data buffer
173  * @bufflen:	len of buffer
174  * @sense:	optional sense buffer
175  * @timeout:	request timeout in seconds
176  * @retries:	number of times to retry request
177  * @flags:	or into request flags;
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 		 int data_direction, void *buffer, unsigned bufflen,
184 		 unsigned char *sense, int timeout, int retries, int flags)
185 {
186 	struct request *req;
187 	int write = (data_direction == DMA_TO_DEVICE);
188 	int ret = DRIVER_ERROR << 24;
189 
190 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191 
192 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
193 					buffer, bufflen, __GFP_WAIT))
194 		goto out;
195 
196 	req->cmd_len = COMMAND_SIZE(cmd[0]);
197 	memcpy(req->cmd, cmd, req->cmd_len);
198 	req->sense = sense;
199 	req->sense_len = 0;
200 	req->retries = retries;
201 	req->timeout = timeout;
202 	req->cmd_type = REQ_TYPE_BLOCK_PC;
203 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204 
205 	/*
206 	 * head injection *required* here otherwise quiesce won't work
207 	 */
208 	blk_execute_rq(req->q, NULL, req, 1);
209 
210 	ret = req->errors;
211  out:
212 	blk_put_request(req);
213 
214 	return ret;
215 }
216 EXPORT_SYMBOL(scsi_execute);
217 
218 
219 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220 		     int data_direction, void *buffer, unsigned bufflen,
221 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
222 {
223 	char *sense = NULL;
224 	int result;
225 
226 	if (sshdr) {
227 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228 		if (!sense)
229 			return DRIVER_ERROR << 24;
230 	}
231 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232 			      sense, timeout, retries, 0);
233 	if (sshdr)
234 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235 
236 	kfree(sense);
237 	return result;
238 }
239 EXPORT_SYMBOL(scsi_execute_req);
240 
241 struct scsi_io_context {
242 	void *data;
243 	void (*done)(void *data, char *sense, int result, int resid);
244 	char sense[SCSI_SENSE_BUFFERSIZE];
245 };
246 
247 static struct kmem_cache *scsi_io_context_cache;
248 
249 static void scsi_end_async(struct request *req, int uptodate)
250 {
251 	struct scsi_io_context *sioc = req->end_io_data;
252 
253 	if (sioc->done)
254 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255 
256 	kmem_cache_free(scsi_io_context_cache, sioc);
257 	__blk_put_request(req->q, req);
258 }
259 
260 static int scsi_merge_bio(struct request *rq, struct bio *bio)
261 {
262 	struct request_queue *q = rq->q;
263 
264 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265 	if (rq_data_dir(rq) == WRITE)
266 		bio->bi_rw |= (1 << BIO_RW);
267 	blk_queue_bounce(q, &bio);
268 
269 	return blk_rq_append_bio(q, rq, bio);
270 }
271 
272 static void scsi_bi_endio(struct bio *bio, int error)
273 {
274 	bio_put(bio);
275 }
276 
277 /**
278  * scsi_req_map_sg - map a scatterlist into a request
279  * @rq:		request to fill
280  * @sgl:	scatterlist
281  * @nsegs:	number of elements
282  * @bufflen:	len of buffer
283  * @gfp:	memory allocation flags
284  *
285  * scsi_req_map_sg maps a scatterlist into a request so that the
286  * request can be sent to the block layer. We do not trust the scatterlist
287  * sent to use, as some ULDs use that struct to only organize the pages.
288  */
289 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290 			   int nsegs, unsigned bufflen, gfp_t gfp)
291 {
292 	struct request_queue *q = rq->q;
293 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294 	unsigned int data_len = bufflen, len, bytes, off;
295 	struct scatterlist *sg;
296 	struct page *page;
297 	struct bio *bio = NULL;
298 	int i, err, nr_vecs = 0;
299 
300 	for_each_sg(sgl, sg, nsegs, i) {
301 		page = sg_page(sg);
302 		off = sg->offset;
303 		len = sg->length;
304  		data_len += len;
305 
306 		while (len > 0 && data_len > 0) {
307 			/*
308 			 * sg sends a scatterlist that is larger than
309 			 * the data_len it wants transferred for certain
310 			 * IO sizes
311 			 */
312 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
313 			bytes = min(bytes, data_len);
314 
315 			if (!bio) {
316 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
317 				nr_pages -= nr_vecs;
318 
319 				bio = bio_alloc(gfp, nr_vecs);
320 				if (!bio) {
321 					err = -ENOMEM;
322 					goto free_bios;
323 				}
324 				bio->bi_end_io = scsi_bi_endio;
325 			}
326 
327 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
328 			    bytes) {
329 				bio_put(bio);
330 				err = -EINVAL;
331 				goto free_bios;
332 			}
333 
334 			if (bio->bi_vcnt >= nr_vecs) {
335 				err = scsi_merge_bio(rq, bio);
336 				if (err) {
337 					bio_endio(bio, 0);
338 					goto free_bios;
339 				}
340 				bio = NULL;
341 			}
342 
343 			page++;
344 			len -= bytes;
345 			data_len -=bytes;
346 			off = 0;
347 		}
348 	}
349 
350 	rq->buffer = rq->data = NULL;
351 	rq->data_len = bufflen;
352 	return 0;
353 
354 free_bios:
355 	while ((bio = rq->bio) != NULL) {
356 		rq->bio = bio->bi_next;
357 		/*
358 		 * call endio instead of bio_put incase it was bounced
359 		 */
360 		bio_endio(bio, 0);
361 	}
362 
363 	return err;
364 }
365 
366 /**
367  * scsi_execute_async - insert request
368  * @sdev:	scsi device
369  * @cmd:	scsi command
370  * @cmd_len:	length of scsi cdb
371  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
372  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
373  * @bufflen:	len of buffer
374  * @use_sg:	if buffer is a scatterlist this is the number of elements
375  * @timeout:	request timeout in seconds
376  * @retries:	number of times to retry request
377  * @privdata:	data passed to done()
378  * @done:	callback function when done
379  * @gfp:	memory allocation flags
380  */
381 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
382 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
383 		       int use_sg, int timeout, int retries, void *privdata,
384 		       void (*done)(void *, char *, int, int), gfp_t gfp)
385 {
386 	struct request *req;
387 	struct scsi_io_context *sioc;
388 	int err = 0;
389 	int write = (data_direction == DMA_TO_DEVICE);
390 
391 	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
392 	if (!sioc)
393 		return DRIVER_ERROR << 24;
394 
395 	req = blk_get_request(sdev->request_queue, write, gfp);
396 	if (!req)
397 		goto free_sense;
398 	req->cmd_type = REQ_TYPE_BLOCK_PC;
399 	req->cmd_flags |= REQ_QUIET;
400 
401 	if (use_sg)
402 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
403 	else if (bufflen)
404 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
405 
406 	if (err)
407 		goto free_req;
408 
409 	req->cmd_len = cmd_len;
410 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
411 	memcpy(req->cmd, cmd, req->cmd_len);
412 	req->sense = sioc->sense;
413 	req->sense_len = 0;
414 	req->timeout = timeout;
415 	req->retries = retries;
416 	req->end_io_data = sioc;
417 
418 	sioc->data = privdata;
419 	sioc->done = done;
420 
421 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422 	return 0;
423 
424 free_req:
425 	blk_put_request(req);
426 free_sense:
427 	kmem_cache_free(scsi_io_context_cache, sioc);
428 	return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431 
432 /*
433  * Function:    scsi_init_cmd_errh()
434  *
435  * Purpose:     Initialize cmd fields related to error handling.
436  *
437  * Arguments:   cmd	- command that is ready to be queued.
438  *
439  * Notes:       This function has the job of initializing a number of
440  *              fields related to error handling.   Typically this will
441  *              be called once for each command, as required.
442  */
443 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444 {
445 	cmd->serial_number = 0;
446 	scsi_set_resid(cmd, 0);
447 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
448 	if (cmd->cmd_len == 0)
449 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
450 }
451 
452 void scsi_device_unbusy(struct scsi_device *sdev)
453 {
454 	struct Scsi_Host *shost = sdev->host;
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(shost->host_lock, flags);
458 	shost->host_busy--;
459 	if (unlikely(scsi_host_in_recovery(shost) &&
460 		     (shost->host_failed || shost->host_eh_scheduled)))
461 		scsi_eh_wakeup(shost);
462 	spin_unlock(shost->host_lock);
463 	spin_lock(sdev->request_queue->queue_lock);
464 	sdev->device_busy--;
465 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
466 }
467 
468 /*
469  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
470  * and call blk_run_queue for all the scsi_devices on the target -
471  * including current_sdev first.
472  *
473  * Called with *no* scsi locks held.
474  */
475 static void scsi_single_lun_run(struct scsi_device *current_sdev)
476 {
477 	struct Scsi_Host *shost = current_sdev->host;
478 	struct scsi_device *sdev, *tmp;
479 	struct scsi_target *starget = scsi_target(current_sdev);
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(shost->host_lock, flags);
483 	starget->starget_sdev_user = NULL;
484 	spin_unlock_irqrestore(shost->host_lock, flags);
485 
486 	/*
487 	 * Call blk_run_queue for all LUNs on the target, starting with
488 	 * current_sdev. We race with others (to set starget_sdev_user),
489 	 * but in most cases, we will be first. Ideally, each LU on the
490 	 * target would get some limited time or requests on the target.
491 	 */
492 	blk_run_queue(current_sdev->request_queue);
493 
494 	spin_lock_irqsave(shost->host_lock, flags);
495 	if (starget->starget_sdev_user)
496 		goto out;
497 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
498 			same_target_siblings) {
499 		if (sdev == current_sdev)
500 			continue;
501 		if (scsi_device_get(sdev))
502 			continue;
503 
504 		spin_unlock_irqrestore(shost->host_lock, flags);
505 		blk_run_queue(sdev->request_queue);
506 		spin_lock_irqsave(shost->host_lock, flags);
507 
508 		scsi_device_put(sdev);
509 	}
510  out:
511 	spin_unlock_irqrestore(shost->host_lock, flags);
512 }
513 
514 /*
515  * Function:	scsi_run_queue()
516  *
517  * Purpose:	Select a proper request queue to serve next
518  *
519  * Arguments:	q	- last request's queue
520  *
521  * Returns:     Nothing
522  *
523  * Notes:	The previous command was completely finished, start
524  *		a new one if possible.
525  */
526 static void scsi_run_queue(struct request_queue *q)
527 {
528 	struct scsi_device *sdev = q->queuedata;
529 	struct Scsi_Host *shost = sdev->host;
530 	unsigned long flags;
531 
532 	if (scsi_target(sdev)->single_lun)
533 		scsi_single_lun_run(sdev);
534 
535 	spin_lock_irqsave(shost->host_lock, flags);
536 	while (!list_empty(&shost->starved_list) &&
537 	       !shost->host_blocked && !shost->host_self_blocked &&
538 		!((shost->can_queue > 0) &&
539 		  (shost->host_busy >= shost->can_queue))) {
540 		/*
541 		 * As long as shost is accepting commands and we have
542 		 * starved queues, call blk_run_queue. scsi_request_fn
543 		 * drops the queue_lock and can add us back to the
544 		 * starved_list.
545 		 *
546 		 * host_lock protects the starved_list and starved_entry.
547 		 * scsi_request_fn must get the host_lock before checking
548 		 * or modifying starved_list or starved_entry.
549 		 */
550 		sdev = list_entry(shost->starved_list.next,
551 					  struct scsi_device, starved_entry);
552 		list_del_init(&sdev->starved_entry);
553 		spin_unlock_irqrestore(shost->host_lock, flags);
554 
555 
556 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
557 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
558 				      &sdev->request_queue->queue_flags)) {
559 			blk_run_queue(sdev->request_queue);
560 			clear_bit(QUEUE_FLAG_REENTER,
561 				  &sdev->request_queue->queue_flags);
562 		} else
563 			blk_run_queue(sdev->request_queue);
564 
565 		spin_lock_irqsave(shost->host_lock, flags);
566 		if (unlikely(!list_empty(&sdev->starved_entry)))
567 			/*
568 			 * sdev lost a race, and was put back on the
569 			 * starved list. This is unlikely but without this
570 			 * in theory we could loop forever.
571 			 */
572 			break;
573 	}
574 	spin_unlock_irqrestore(shost->host_lock, flags);
575 
576 	blk_run_queue(q);
577 }
578 
579 /*
580  * Function:	scsi_requeue_command()
581  *
582  * Purpose:	Handle post-processing of completed commands.
583  *
584  * Arguments:	q	- queue to operate on
585  *		cmd	- command that may need to be requeued.
586  *
587  * Returns:	Nothing
588  *
589  * Notes:	After command completion, there may be blocks left
590  *		over which weren't finished by the previous command
591  *		this can be for a number of reasons - the main one is
592  *		I/O errors in the middle of the request, in which case
593  *		we need to request the blocks that come after the bad
594  *		sector.
595  * Notes:	Upon return, cmd is a stale pointer.
596  */
597 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
598 {
599 	struct request *req = cmd->request;
600 	unsigned long flags;
601 
602 	scsi_unprep_request(req);
603 	spin_lock_irqsave(q->queue_lock, flags);
604 	blk_requeue_request(q, req);
605 	spin_unlock_irqrestore(q->queue_lock, flags);
606 
607 	scsi_run_queue(q);
608 }
609 
610 void scsi_next_command(struct scsi_cmnd *cmd)
611 {
612 	struct scsi_device *sdev = cmd->device;
613 	struct request_queue *q = sdev->request_queue;
614 
615 	/* need to hold a reference on the device before we let go of the cmd */
616 	get_device(&sdev->sdev_gendev);
617 
618 	scsi_put_command(cmd);
619 	scsi_run_queue(q);
620 
621 	/* ok to remove device now */
622 	put_device(&sdev->sdev_gendev);
623 }
624 
625 void scsi_run_host_queues(struct Scsi_Host *shost)
626 {
627 	struct scsi_device *sdev;
628 
629 	shost_for_each_device(sdev, shost)
630 		scsi_run_queue(sdev->request_queue);
631 }
632 
633 /*
634  * Function:    scsi_end_request()
635  *
636  * Purpose:     Post-processing of completed commands (usually invoked at end
637  *		of upper level post-processing and scsi_io_completion).
638  *
639  * Arguments:   cmd	 - command that is complete.
640  *              error    - 0 if I/O indicates success, < 0 for I/O error.
641  *              bytes    - number of bytes of completed I/O
642  *		requeue  - indicates whether we should requeue leftovers.
643  *
644  * Lock status: Assumed that lock is not held upon entry.
645  *
646  * Returns:     cmd if requeue required, NULL otherwise.
647  *
648  * Notes:       This is called for block device requests in order to
649  *              mark some number of sectors as complete.
650  *
651  *		We are guaranteeing that the request queue will be goosed
652  *		at some point during this call.
653  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
654  */
655 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
656 					  int bytes, int requeue)
657 {
658 	struct request_queue *q = cmd->device->request_queue;
659 	struct request *req = cmd->request;
660 
661 	/*
662 	 * If there are blocks left over at the end, set up the command
663 	 * to queue the remainder of them.
664 	 */
665 	if (blk_end_request(req, error, bytes)) {
666 		int leftover = (req->hard_nr_sectors << 9);
667 
668 		if (blk_pc_request(req))
669 			leftover = req->data_len;
670 
671 		/* kill remainder if no retrys */
672 		if (error && blk_noretry_request(req))
673 			blk_end_request(req, error, leftover);
674 		else {
675 			if (requeue) {
676 				/*
677 				 * Bleah.  Leftovers again.  Stick the
678 				 * leftovers in the front of the
679 				 * queue, and goose the queue again.
680 				 */
681 				scsi_requeue_command(q, cmd);
682 				cmd = NULL;
683 			}
684 			return cmd;
685 		}
686 	}
687 
688 	/*
689 	 * This will goose the queue request function at the end, so we don't
690 	 * need to worry about launching another command.
691 	 */
692 	scsi_next_command(cmd);
693 	return NULL;
694 }
695 
696 static inline unsigned int scsi_sgtable_index(unsigned short nents)
697 {
698 	unsigned int index;
699 
700 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
701 
702 	if (nents <= 8)
703 		index = 0;
704 	else
705 		index = get_count_order(nents) - 3;
706 
707 	return index;
708 }
709 
710 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
711 {
712 	struct scsi_host_sg_pool *sgp;
713 
714 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
715 	mempool_free(sgl, sgp->pool);
716 }
717 
718 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
719 {
720 	struct scsi_host_sg_pool *sgp;
721 
722 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
723 	return mempool_alloc(sgp->pool, gfp_mask);
724 }
725 
726 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
727 			      gfp_t gfp_mask)
728 {
729 	int ret;
730 
731 	BUG_ON(!nents);
732 
733 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
734 			       gfp_mask, scsi_sg_alloc);
735 	if (unlikely(ret))
736 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
737 				scsi_sg_free);
738 
739 	return ret;
740 }
741 
742 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
743 {
744 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
745 }
746 
747 /*
748  * Function:    scsi_release_buffers()
749  *
750  * Purpose:     Completion processing for block device I/O requests.
751  *
752  * Arguments:   cmd	- command that we are bailing.
753  *
754  * Lock status: Assumed that no lock is held upon entry.
755  *
756  * Returns:     Nothing
757  *
758  * Notes:       In the event that an upper level driver rejects a
759  *		command, we must release resources allocated during
760  *		the __init_io() function.  Primarily this would involve
761  *		the scatter-gather table, and potentially any bounce
762  *		buffers.
763  */
764 void scsi_release_buffers(struct scsi_cmnd *cmd)
765 {
766 	if (cmd->sdb.table.nents)
767 		scsi_free_sgtable(&cmd->sdb);
768 
769 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
770 
771 	if (scsi_bidi_cmnd(cmd)) {
772 		struct scsi_data_buffer *bidi_sdb =
773 			cmd->request->next_rq->special;
774 		scsi_free_sgtable(bidi_sdb);
775 		kmem_cache_free(scsi_bidi_sdb_cache, bidi_sdb);
776 		cmd->request->next_rq->special = NULL;
777 	}
778 }
779 EXPORT_SYMBOL(scsi_release_buffers);
780 
781 /*
782  * Bidi commands Must be complete as a whole, both sides at once.
783  * If part of the bytes were written and lld returned
784  * scsi_in()->resid and/or scsi_out()->resid this information will be left
785  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
786  * decide what to do with this information.
787  */
788 void scsi_end_bidi_request(struct scsi_cmnd *cmd)
789 {
790 	struct request *req = cmd->request;
791 	unsigned int dlen = req->data_len;
792 	unsigned int next_dlen = req->next_rq->data_len;
793 
794 	req->data_len = scsi_out(cmd)->resid;
795 	req->next_rq->data_len = scsi_in(cmd)->resid;
796 
797 	/* The req and req->next_rq have not been completed */
798 	BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
799 
800 	scsi_release_buffers(cmd);
801 
802 	/*
803 	 * This will goose the queue request function at the end, so we don't
804 	 * need to worry about launching another command.
805 	 */
806 	scsi_next_command(cmd);
807 }
808 
809 /*
810  * Function:    scsi_io_completion()
811  *
812  * Purpose:     Completion processing for block device I/O requests.
813  *
814  * Arguments:   cmd   - command that is finished.
815  *
816  * Lock status: Assumed that no lock is held upon entry.
817  *
818  * Returns:     Nothing
819  *
820  * Notes:       This function is matched in terms of capabilities to
821  *              the function that created the scatter-gather list.
822  *              In other words, if there are no bounce buffers
823  *              (the normal case for most drivers), we don't need
824  *              the logic to deal with cleaning up afterwards.
825  *
826  *		We must do one of several things here:
827  *
828  *		a) Call scsi_end_request.  This will finish off the
829  *		   specified number of sectors.  If we are done, the
830  *		   command block will be released, and the queue
831  *		   function will be goosed.  If we are not done, then
832  *		   scsi_end_request will directly goose the queue.
833  *
834  *		b) We can just use scsi_requeue_command() here.  This would
835  *		   be used if we just wanted to retry, for example.
836  */
837 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
838 {
839 	int result = cmd->result;
840 	int this_count = scsi_bufflen(cmd);
841 	struct request_queue *q = cmd->device->request_queue;
842 	struct request *req = cmd->request;
843 	int clear_errors = 1;
844 	struct scsi_sense_hdr sshdr;
845 	int sense_valid = 0;
846 	int sense_deferred = 0;
847 
848 	if (result) {
849 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
850 		if (sense_valid)
851 			sense_deferred = scsi_sense_is_deferred(&sshdr);
852 	}
853 
854 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
855 		req->errors = result;
856 		if (result) {
857 			clear_errors = 0;
858 			if (sense_valid && req->sense) {
859 				/*
860 				 * SG_IO wants current and deferred errors
861 				 */
862 				int len = 8 + cmd->sense_buffer[7];
863 
864 				if (len > SCSI_SENSE_BUFFERSIZE)
865 					len = SCSI_SENSE_BUFFERSIZE;
866 				memcpy(req->sense, cmd->sense_buffer,  len);
867 				req->sense_len = len;
868 			}
869 		}
870 		if (scsi_bidi_cmnd(cmd)) {
871 			/* will also release_buffers */
872 			scsi_end_bidi_request(cmd);
873 			return;
874 		}
875 		req->data_len = scsi_get_resid(cmd);
876 	}
877 
878 	BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
879 	scsi_release_buffers(cmd);
880 
881 	/*
882 	 * Next deal with any sectors which we were able to correctly
883 	 * handle.
884 	 */
885 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
886 				      "%d bytes done.\n",
887 				      req->nr_sectors, good_bytes));
888 
889 	if (clear_errors)
890 		req->errors = 0;
891 
892 	/* A number of bytes were successfully read.  If there
893 	 * are leftovers and there is some kind of error
894 	 * (result != 0), retry the rest.
895 	 */
896 	if (scsi_end_request(cmd, 0, good_bytes, result == 0) == NULL)
897 		return;
898 
899 	/* good_bytes = 0, or (inclusive) there were leftovers and
900 	 * result = 0, so scsi_end_request couldn't retry.
901 	 */
902 	if (sense_valid && !sense_deferred) {
903 		switch (sshdr.sense_key) {
904 		case UNIT_ATTENTION:
905 			if (cmd->device->removable) {
906 				/* Detected disc change.  Set a bit
907 				 * and quietly refuse further access.
908 				 */
909 				cmd->device->changed = 1;
910 				scsi_end_request(cmd, -EIO, this_count, 1);
911 				return;
912 			} else {
913 				/* Must have been a power glitch, or a
914 				 * bus reset.  Could not have been a
915 				 * media change, so we just retry the
916 				 * request and see what happens.
917 				 */
918 				scsi_requeue_command(q, cmd);
919 				return;
920 			}
921 			break;
922 		case ILLEGAL_REQUEST:
923 			/* If we had an ILLEGAL REQUEST returned, then
924 			 * we may have performed an unsupported
925 			 * command.  The only thing this should be
926 			 * would be a ten byte read where only a six
927 			 * byte read was supported.  Also, on a system
928 			 * where READ CAPACITY failed, we may have
929 			 * read past the end of the disk.
930 			 */
931 			if ((cmd->device->use_10_for_rw &&
932 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
933 			    (cmd->cmnd[0] == READ_10 ||
934 			     cmd->cmnd[0] == WRITE_10)) {
935 				cmd->device->use_10_for_rw = 0;
936 				/* This will cause a retry with a
937 				 * 6-byte command.
938 				 */
939 				scsi_requeue_command(q, cmd);
940 				return;
941 			} else {
942 				scsi_end_request(cmd, -EIO, this_count, 1);
943 				return;
944 			}
945 			break;
946 		case NOT_READY:
947 			/* If the device is in the process of becoming
948 			 * ready, or has a temporary blockage, retry.
949 			 */
950 			if (sshdr.asc == 0x04) {
951 				switch (sshdr.ascq) {
952 				case 0x01: /* becoming ready */
953 				case 0x04: /* format in progress */
954 				case 0x05: /* rebuild in progress */
955 				case 0x06: /* recalculation in progress */
956 				case 0x07: /* operation in progress */
957 				case 0x08: /* Long write in progress */
958 				case 0x09: /* self test in progress */
959 					scsi_requeue_command(q, cmd);
960 					return;
961 				default:
962 					break;
963 				}
964 			}
965 			if (!(req->cmd_flags & REQ_QUIET))
966 				scsi_cmd_print_sense_hdr(cmd,
967 							 "Device not ready",
968 							 &sshdr);
969 
970 			scsi_end_request(cmd, -EIO, this_count, 1);
971 			return;
972 		case VOLUME_OVERFLOW:
973 			if (!(req->cmd_flags & REQ_QUIET)) {
974 				scmd_printk(KERN_INFO, cmd,
975 					    "Volume overflow, CDB: ");
976 				__scsi_print_command(cmd->cmnd);
977 				scsi_print_sense("", cmd);
978 			}
979 			/* See SSC3rXX or current. */
980 			scsi_end_request(cmd, -EIO, this_count, 1);
981 			return;
982 		default:
983 			break;
984 		}
985 	}
986 	if (host_byte(result) == DID_RESET) {
987 		/* Third party bus reset or reset for error recovery
988 		 * reasons.  Just retry the request and see what
989 		 * happens.
990 		 */
991 		scsi_requeue_command(q, cmd);
992 		return;
993 	}
994 	if (result) {
995 		if (!(req->cmd_flags & REQ_QUIET)) {
996 			scsi_print_result(cmd);
997 			if (driver_byte(result) & DRIVER_SENSE)
998 				scsi_print_sense("", cmd);
999 		}
1000 	}
1001 	scsi_end_request(cmd, -EIO, this_count, !result);
1002 }
1003 
1004 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1005 			     gfp_t gfp_mask)
1006 {
1007 	int count;
1008 
1009 	/*
1010 	 * If sg table allocation fails, requeue request later.
1011 	 */
1012 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1013 					gfp_mask))) {
1014 		return BLKPREP_DEFER;
1015 	}
1016 
1017 	req->buffer = NULL;
1018 	if (blk_pc_request(req))
1019 		sdb->length = req->data_len;
1020 	else
1021 		sdb->length = req->nr_sectors << 9;
1022 
1023 	/*
1024 	 * Next, walk the list, and fill in the addresses and sizes of
1025 	 * each segment.
1026 	 */
1027 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028 	BUG_ON(count > sdb->table.nents);
1029 	sdb->table.nents = count;
1030 	return BLKPREP_OK;
1031 }
1032 
1033 /*
1034  * Function:    scsi_init_io()
1035  *
1036  * Purpose:     SCSI I/O initialize function.
1037  *
1038  * Arguments:   cmd   - Command descriptor we wish to initialize
1039  *
1040  * Returns:     0 on success
1041  *		BLKPREP_DEFER if the failure is retryable
1042  *		BLKPREP_KILL if the failure is fatal
1043  */
1044 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1045 {
1046 	int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1047 	if (error)
1048 		goto err_exit;
1049 
1050 	if (blk_bidi_rq(cmd->request)) {
1051 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1052 			scsi_bidi_sdb_cache, GFP_ATOMIC);
1053 		if (!bidi_sdb) {
1054 			error = BLKPREP_DEFER;
1055 			goto err_exit;
1056 		}
1057 
1058 		cmd->request->next_rq->special = bidi_sdb;
1059 		error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1060 								    GFP_ATOMIC);
1061 		if (error)
1062 			goto err_exit;
1063 	}
1064 
1065 	return BLKPREP_OK ;
1066 
1067 err_exit:
1068 	scsi_release_buffers(cmd);
1069 	if (error == BLKPREP_KILL)
1070 		scsi_put_command(cmd);
1071 	else /* BLKPREP_DEFER */
1072 		scsi_unprep_request(cmd->request);
1073 
1074 	return error;
1075 }
1076 EXPORT_SYMBOL(scsi_init_io);
1077 
1078 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1079 		struct request *req)
1080 {
1081 	struct scsi_cmnd *cmd;
1082 
1083 	if (!req->special) {
1084 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1085 		if (unlikely(!cmd))
1086 			return NULL;
1087 		req->special = cmd;
1088 	} else {
1089 		cmd = req->special;
1090 	}
1091 
1092 	/* pull a tag out of the request if we have one */
1093 	cmd->tag = req->tag;
1094 	cmd->request = req;
1095 
1096 	return cmd;
1097 }
1098 
1099 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1100 {
1101 	struct scsi_cmnd *cmd;
1102 	int ret = scsi_prep_state_check(sdev, req);
1103 
1104 	if (ret != BLKPREP_OK)
1105 		return ret;
1106 
1107 	cmd = scsi_get_cmd_from_req(sdev, req);
1108 	if (unlikely(!cmd))
1109 		return BLKPREP_DEFER;
1110 
1111 	/*
1112 	 * BLOCK_PC requests may transfer data, in which case they must
1113 	 * a bio attached to them.  Or they might contain a SCSI command
1114 	 * that does not transfer data, in which case they may optionally
1115 	 * submit a request without an attached bio.
1116 	 */
1117 	if (req->bio) {
1118 		int ret;
1119 
1120 		BUG_ON(!req->nr_phys_segments);
1121 
1122 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1123 		if (unlikely(ret))
1124 			return ret;
1125 	} else {
1126 		BUG_ON(req->data_len);
1127 		BUG_ON(req->data);
1128 
1129 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1130 		req->buffer = NULL;
1131 	}
1132 
1133 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1134 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1135 	cmd->cmd_len = req->cmd_len;
1136 	if (!req->data_len)
1137 		cmd->sc_data_direction = DMA_NONE;
1138 	else if (rq_data_dir(req) == WRITE)
1139 		cmd->sc_data_direction = DMA_TO_DEVICE;
1140 	else
1141 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1142 
1143 	cmd->transfersize = req->data_len;
1144 	cmd->allowed = req->retries;
1145 	cmd->timeout_per_command = req->timeout;
1146 	return BLKPREP_OK;
1147 }
1148 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1149 
1150 /*
1151  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1152  * from filesystems that still need to be translated to SCSI CDBs from
1153  * the ULD.
1154  */
1155 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1156 {
1157 	struct scsi_cmnd *cmd;
1158 	int ret = scsi_prep_state_check(sdev, req);
1159 
1160 	if (ret != BLKPREP_OK)
1161 		return ret;
1162 	/*
1163 	 * Filesystem requests must transfer data.
1164 	 */
1165 	BUG_ON(!req->nr_phys_segments);
1166 
1167 	cmd = scsi_get_cmd_from_req(sdev, req);
1168 	if (unlikely(!cmd))
1169 		return BLKPREP_DEFER;
1170 
1171 	return scsi_init_io(cmd, GFP_ATOMIC);
1172 }
1173 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1174 
1175 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1176 {
1177 	int ret = BLKPREP_OK;
1178 
1179 	/*
1180 	 * If the device is not in running state we will reject some
1181 	 * or all commands.
1182 	 */
1183 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1184 		switch (sdev->sdev_state) {
1185 		case SDEV_OFFLINE:
1186 			/*
1187 			 * If the device is offline we refuse to process any
1188 			 * commands.  The device must be brought online
1189 			 * before trying any recovery commands.
1190 			 */
1191 			sdev_printk(KERN_ERR, sdev,
1192 				    "rejecting I/O to offline device\n");
1193 			ret = BLKPREP_KILL;
1194 			break;
1195 		case SDEV_DEL:
1196 			/*
1197 			 * If the device is fully deleted, we refuse to
1198 			 * process any commands as well.
1199 			 */
1200 			sdev_printk(KERN_ERR, sdev,
1201 				    "rejecting I/O to dead device\n");
1202 			ret = BLKPREP_KILL;
1203 			break;
1204 		case SDEV_QUIESCE:
1205 		case SDEV_BLOCK:
1206 			/*
1207 			 * If the devices is blocked we defer normal commands.
1208 			 */
1209 			if (!(req->cmd_flags & REQ_PREEMPT))
1210 				ret = BLKPREP_DEFER;
1211 			break;
1212 		default:
1213 			/*
1214 			 * For any other not fully online state we only allow
1215 			 * special commands.  In particular any user initiated
1216 			 * command is not allowed.
1217 			 */
1218 			if (!(req->cmd_flags & REQ_PREEMPT))
1219 				ret = BLKPREP_KILL;
1220 			break;
1221 		}
1222 	}
1223 	return ret;
1224 }
1225 EXPORT_SYMBOL(scsi_prep_state_check);
1226 
1227 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1228 {
1229 	struct scsi_device *sdev = q->queuedata;
1230 
1231 	switch (ret) {
1232 	case BLKPREP_KILL:
1233 		req->errors = DID_NO_CONNECT << 16;
1234 		/* release the command and kill it */
1235 		if (req->special) {
1236 			struct scsi_cmnd *cmd = req->special;
1237 			scsi_release_buffers(cmd);
1238 			scsi_put_command(cmd);
1239 			req->special = NULL;
1240 		}
1241 		break;
1242 	case BLKPREP_DEFER:
1243 		/*
1244 		 * If we defer, the elv_next_request() returns NULL, but the
1245 		 * queue must be restarted, so we plug here if no returning
1246 		 * command will automatically do that.
1247 		 */
1248 		if (sdev->device_busy == 0)
1249 			blk_plug_device(q);
1250 		break;
1251 	default:
1252 		req->cmd_flags |= REQ_DONTPREP;
1253 	}
1254 
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL(scsi_prep_return);
1258 
1259 int scsi_prep_fn(struct request_queue *q, struct request *req)
1260 {
1261 	struct scsi_device *sdev = q->queuedata;
1262 	int ret = BLKPREP_KILL;
1263 
1264 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1265 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1266 	return scsi_prep_return(q, req, ret);
1267 }
1268 
1269 /*
1270  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1271  * return 0.
1272  *
1273  * Called with the queue_lock held.
1274  */
1275 static inline int scsi_dev_queue_ready(struct request_queue *q,
1276 				  struct scsi_device *sdev)
1277 {
1278 	if (sdev->device_busy >= sdev->queue_depth)
1279 		return 0;
1280 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1281 		/*
1282 		 * unblock after device_blocked iterates to zero
1283 		 */
1284 		if (--sdev->device_blocked == 0) {
1285 			SCSI_LOG_MLQUEUE(3,
1286 				   sdev_printk(KERN_INFO, sdev,
1287 				   "unblocking device at zero depth\n"));
1288 		} else {
1289 			blk_plug_device(q);
1290 			return 0;
1291 		}
1292 	}
1293 	if (sdev->device_blocked)
1294 		return 0;
1295 
1296 	return 1;
1297 }
1298 
1299 /*
1300  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1301  * return 0. We must end up running the queue again whenever 0 is
1302  * returned, else IO can hang.
1303  *
1304  * Called with host_lock held.
1305  */
1306 static inline int scsi_host_queue_ready(struct request_queue *q,
1307 				   struct Scsi_Host *shost,
1308 				   struct scsi_device *sdev)
1309 {
1310 	if (scsi_host_in_recovery(shost))
1311 		return 0;
1312 	if (shost->host_busy == 0 && shost->host_blocked) {
1313 		/*
1314 		 * unblock after host_blocked iterates to zero
1315 		 */
1316 		if (--shost->host_blocked == 0) {
1317 			SCSI_LOG_MLQUEUE(3,
1318 				printk("scsi%d unblocking host at zero depth\n",
1319 					shost->host_no));
1320 		} else {
1321 			blk_plug_device(q);
1322 			return 0;
1323 		}
1324 	}
1325 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1326 	    shost->host_blocked || shost->host_self_blocked) {
1327 		if (list_empty(&sdev->starved_entry))
1328 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1329 		return 0;
1330 	}
1331 
1332 	/* We're OK to process the command, so we can't be starved */
1333 	if (!list_empty(&sdev->starved_entry))
1334 		list_del_init(&sdev->starved_entry);
1335 
1336 	return 1;
1337 }
1338 
1339 /*
1340  * Kill a request for a dead device
1341  */
1342 static void scsi_kill_request(struct request *req, struct request_queue *q)
1343 {
1344 	struct scsi_cmnd *cmd = req->special;
1345 	struct scsi_device *sdev = cmd->device;
1346 	struct Scsi_Host *shost = sdev->host;
1347 
1348 	blkdev_dequeue_request(req);
1349 
1350 	if (unlikely(cmd == NULL)) {
1351 		printk(KERN_CRIT "impossible request in %s.\n",
1352 				 __FUNCTION__);
1353 		BUG();
1354 	}
1355 
1356 	scsi_init_cmd_errh(cmd);
1357 	cmd->result = DID_NO_CONNECT << 16;
1358 	atomic_inc(&cmd->device->iorequest_cnt);
1359 
1360 	/*
1361 	 * SCSI request completion path will do scsi_device_unbusy(),
1362 	 * bump busy counts.  To bump the counters, we need to dance
1363 	 * with the locks as normal issue path does.
1364 	 */
1365 	sdev->device_busy++;
1366 	spin_unlock(sdev->request_queue->queue_lock);
1367 	spin_lock(shost->host_lock);
1368 	shost->host_busy++;
1369 	spin_unlock(shost->host_lock);
1370 	spin_lock(sdev->request_queue->queue_lock);
1371 
1372 	__scsi_done(cmd);
1373 }
1374 
1375 static void scsi_softirq_done(struct request *rq)
1376 {
1377 	struct scsi_cmnd *cmd = rq->completion_data;
1378 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1379 	int disposition;
1380 
1381 	INIT_LIST_HEAD(&cmd->eh_entry);
1382 
1383 	disposition = scsi_decide_disposition(cmd);
1384 	if (disposition != SUCCESS &&
1385 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1386 		sdev_printk(KERN_ERR, cmd->device,
1387 			    "timing out command, waited %lus\n",
1388 			    wait_for/HZ);
1389 		disposition = SUCCESS;
1390 	}
1391 
1392 	scsi_log_completion(cmd, disposition);
1393 
1394 	switch (disposition) {
1395 		case SUCCESS:
1396 			scsi_finish_command(cmd);
1397 			break;
1398 		case NEEDS_RETRY:
1399 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1400 			break;
1401 		case ADD_TO_MLQUEUE:
1402 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1403 			break;
1404 		default:
1405 			if (!scsi_eh_scmd_add(cmd, 0))
1406 				scsi_finish_command(cmd);
1407 	}
1408 }
1409 
1410 /*
1411  * Function:    scsi_request_fn()
1412  *
1413  * Purpose:     Main strategy routine for SCSI.
1414  *
1415  * Arguments:   q       - Pointer to actual queue.
1416  *
1417  * Returns:     Nothing
1418  *
1419  * Lock status: IO request lock assumed to be held when called.
1420  */
1421 static void scsi_request_fn(struct request_queue *q)
1422 {
1423 	struct scsi_device *sdev = q->queuedata;
1424 	struct Scsi_Host *shost;
1425 	struct scsi_cmnd *cmd;
1426 	struct request *req;
1427 
1428 	if (!sdev) {
1429 		printk("scsi: killing requests for dead queue\n");
1430 		while ((req = elv_next_request(q)) != NULL)
1431 			scsi_kill_request(req, q);
1432 		return;
1433 	}
1434 
1435 	if(!get_device(&sdev->sdev_gendev))
1436 		/* We must be tearing the block queue down already */
1437 		return;
1438 
1439 	/*
1440 	 * To start with, we keep looping until the queue is empty, or until
1441 	 * the host is no longer able to accept any more requests.
1442 	 */
1443 	shost = sdev->host;
1444 	while (!blk_queue_plugged(q)) {
1445 		int rtn;
1446 		/*
1447 		 * get next queueable request.  We do this early to make sure
1448 		 * that the request is fully prepared even if we cannot
1449 		 * accept it.
1450 		 */
1451 		req = elv_next_request(q);
1452 		if (!req || !scsi_dev_queue_ready(q, sdev))
1453 			break;
1454 
1455 		if (unlikely(!scsi_device_online(sdev))) {
1456 			sdev_printk(KERN_ERR, sdev,
1457 				    "rejecting I/O to offline device\n");
1458 			scsi_kill_request(req, q);
1459 			continue;
1460 		}
1461 
1462 
1463 		/*
1464 		 * Remove the request from the request list.
1465 		 */
1466 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1467 			blkdev_dequeue_request(req);
1468 		sdev->device_busy++;
1469 
1470 		spin_unlock(q->queue_lock);
1471 		cmd = req->special;
1472 		if (unlikely(cmd == NULL)) {
1473 			printk(KERN_CRIT "impossible request in %s.\n"
1474 					 "please mail a stack trace to "
1475 					 "linux-scsi@vger.kernel.org\n",
1476 					 __FUNCTION__);
1477 			blk_dump_rq_flags(req, "foo");
1478 			BUG();
1479 		}
1480 		spin_lock(shost->host_lock);
1481 
1482 		if (!scsi_host_queue_ready(q, shost, sdev))
1483 			goto not_ready;
1484 		if (scsi_target(sdev)->single_lun) {
1485 			if (scsi_target(sdev)->starget_sdev_user &&
1486 			    scsi_target(sdev)->starget_sdev_user != sdev)
1487 				goto not_ready;
1488 			scsi_target(sdev)->starget_sdev_user = sdev;
1489 		}
1490 		shost->host_busy++;
1491 
1492 		/*
1493 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1494 		 *		take the lock again.
1495 		 */
1496 		spin_unlock_irq(shost->host_lock);
1497 
1498 		/*
1499 		 * Finally, initialize any error handling parameters, and set up
1500 		 * the timers for timeouts.
1501 		 */
1502 		scsi_init_cmd_errh(cmd);
1503 
1504 		/*
1505 		 * Dispatch the command to the low-level driver.
1506 		 */
1507 		rtn = scsi_dispatch_cmd(cmd);
1508 		spin_lock_irq(q->queue_lock);
1509 		if(rtn) {
1510 			/* we're refusing the command; because of
1511 			 * the way locks get dropped, we need to
1512 			 * check here if plugging is required */
1513 			if(sdev->device_busy == 0)
1514 				blk_plug_device(q);
1515 
1516 			break;
1517 		}
1518 	}
1519 
1520 	goto out;
1521 
1522  not_ready:
1523 	spin_unlock_irq(shost->host_lock);
1524 
1525 	/*
1526 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1527 	 * must return with queue_lock held.
1528 	 *
1529 	 * Decrementing device_busy without checking it is OK, as all such
1530 	 * cases (host limits or settings) should run the queue at some
1531 	 * later time.
1532 	 */
1533 	spin_lock_irq(q->queue_lock);
1534 	blk_requeue_request(q, req);
1535 	sdev->device_busy--;
1536 	if(sdev->device_busy == 0)
1537 		blk_plug_device(q);
1538  out:
1539 	/* must be careful here...if we trigger the ->remove() function
1540 	 * we cannot be holding the q lock */
1541 	spin_unlock_irq(q->queue_lock);
1542 	put_device(&sdev->sdev_gendev);
1543 	spin_lock_irq(q->queue_lock);
1544 }
1545 
1546 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1547 {
1548 	struct device *host_dev;
1549 	u64 bounce_limit = 0xffffffff;
1550 
1551 	if (shost->unchecked_isa_dma)
1552 		return BLK_BOUNCE_ISA;
1553 	/*
1554 	 * Platforms with virtual-DMA translation
1555 	 * hardware have no practical limit.
1556 	 */
1557 	if (!PCI_DMA_BUS_IS_PHYS)
1558 		return BLK_BOUNCE_ANY;
1559 
1560 	host_dev = scsi_get_device(shost);
1561 	if (host_dev && host_dev->dma_mask)
1562 		bounce_limit = *host_dev->dma_mask;
1563 
1564 	return bounce_limit;
1565 }
1566 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1567 
1568 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1569 					 request_fn_proc *request_fn)
1570 {
1571 	struct request_queue *q;
1572 
1573 	q = blk_init_queue(request_fn, NULL);
1574 	if (!q)
1575 		return NULL;
1576 
1577 	/*
1578 	 * this limit is imposed by hardware restrictions
1579 	 */
1580 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1581 	blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1582 
1583 	blk_queue_max_sectors(q, shost->max_sectors);
1584 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1585 	blk_queue_segment_boundary(q, shost->dma_boundary);
1586 
1587 	if (!shost->use_clustering)
1588 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1589 
1590 	/*
1591 	 * set a reasonable default alignment on word boundaries: the
1592 	 * host and device may alter it using
1593 	 * blk_queue_update_dma_alignment() later.
1594 	 */
1595 	blk_queue_dma_alignment(q, 0x03);
1596 
1597 	return q;
1598 }
1599 EXPORT_SYMBOL(__scsi_alloc_queue);
1600 
1601 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1602 {
1603 	struct request_queue *q;
1604 
1605 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1606 	if (!q)
1607 		return NULL;
1608 
1609 	blk_queue_prep_rq(q, scsi_prep_fn);
1610 	blk_queue_softirq_done(q, scsi_softirq_done);
1611 	return q;
1612 }
1613 
1614 void scsi_free_queue(struct request_queue *q)
1615 {
1616 	blk_cleanup_queue(q);
1617 }
1618 
1619 /*
1620  * Function:    scsi_block_requests()
1621  *
1622  * Purpose:     Utility function used by low-level drivers to prevent further
1623  *		commands from being queued to the device.
1624  *
1625  * Arguments:   shost       - Host in question
1626  *
1627  * Returns:     Nothing
1628  *
1629  * Lock status: No locks are assumed held.
1630  *
1631  * Notes:       There is no timer nor any other means by which the requests
1632  *		get unblocked other than the low-level driver calling
1633  *		scsi_unblock_requests().
1634  */
1635 void scsi_block_requests(struct Scsi_Host *shost)
1636 {
1637 	shost->host_self_blocked = 1;
1638 }
1639 EXPORT_SYMBOL(scsi_block_requests);
1640 
1641 /*
1642  * Function:    scsi_unblock_requests()
1643  *
1644  * Purpose:     Utility function used by low-level drivers to allow further
1645  *		commands from being queued to the device.
1646  *
1647  * Arguments:   shost       - Host in question
1648  *
1649  * Returns:     Nothing
1650  *
1651  * Lock status: No locks are assumed held.
1652  *
1653  * Notes:       There is no timer nor any other means by which the requests
1654  *		get unblocked other than the low-level driver calling
1655  *		scsi_unblock_requests().
1656  *
1657  *		This is done as an API function so that changes to the
1658  *		internals of the scsi mid-layer won't require wholesale
1659  *		changes to drivers that use this feature.
1660  */
1661 void scsi_unblock_requests(struct Scsi_Host *shost)
1662 {
1663 	shost->host_self_blocked = 0;
1664 	scsi_run_host_queues(shost);
1665 }
1666 EXPORT_SYMBOL(scsi_unblock_requests);
1667 
1668 int __init scsi_init_queue(void)
1669 {
1670 	int i;
1671 
1672 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1673 					sizeof(struct scsi_io_context),
1674 					0, 0, NULL);
1675 	if (!scsi_io_context_cache) {
1676 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1677 		return -ENOMEM;
1678 	}
1679 
1680 	scsi_bidi_sdb_cache = kmem_cache_create("scsi_bidi_sdb",
1681 					sizeof(struct scsi_data_buffer),
1682 					0, 0, NULL);
1683 	if (!scsi_bidi_sdb_cache) {
1684 		printk(KERN_ERR "SCSI: can't init scsi bidi sdb cache\n");
1685 		goto cleanup_io_context;
1686 	}
1687 
1688 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1689 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1690 		int size = sgp->size * sizeof(struct scatterlist);
1691 
1692 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1693 				SLAB_HWCACHE_ALIGN, NULL);
1694 		if (!sgp->slab) {
1695 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1696 					sgp->name);
1697 			goto cleanup_bidi_sdb;
1698 		}
1699 
1700 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1701 						     sgp->slab);
1702 		if (!sgp->pool) {
1703 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1704 					sgp->name);
1705 			goto cleanup_bidi_sdb;
1706 		}
1707 	}
1708 
1709 	return 0;
1710 
1711 cleanup_bidi_sdb:
1712 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1713 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1714 		if (sgp->pool)
1715 			mempool_destroy(sgp->pool);
1716 		if (sgp->slab)
1717 			kmem_cache_destroy(sgp->slab);
1718 	}
1719 	kmem_cache_destroy(scsi_bidi_sdb_cache);
1720 cleanup_io_context:
1721 	kmem_cache_destroy(scsi_io_context_cache);
1722 
1723 	return -ENOMEM;
1724 }
1725 
1726 void scsi_exit_queue(void)
1727 {
1728 	int i;
1729 
1730 	kmem_cache_destroy(scsi_io_context_cache);
1731 	kmem_cache_destroy(scsi_bidi_sdb_cache);
1732 
1733 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1734 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1735 		mempool_destroy(sgp->pool);
1736 		kmem_cache_destroy(sgp->slab);
1737 	}
1738 }
1739 
1740 /**
1741  *	scsi_mode_select - issue a mode select
1742  *	@sdev:	SCSI device to be queried
1743  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1744  *	@sp:	Save page bit (0 == don't save, 1 == save)
1745  *	@modepage: mode page being requested
1746  *	@buffer: request buffer (may not be smaller than eight bytes)
1747  *	@len:	length of request buffer.
1748  *	@timeout: command timeout
1749  *	@retries: number of retries before failing
1750  *	@data: returns a structure abstracting the mode header data
1751  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1752  *		must be SCSI_SENSE_BUFFERSIZE big.
1753  *
1754  *	Returns zero if successful; negative error number or scsi
1755  *	status on error
1756  *
1757  */
1758 int
1759 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1760 		 unsigned char *buffer, int len, int timeout, int retries,
1761 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1762 {
1763 	unsigned char cmd[10];
1764 	unsigned char *real_buffer;
1765 	int ret;
1766 
1767 	memset(cmd, 0, sizeof(cmd));
1768 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1769 
1770 	if (sdev->use_10_for_ms) {
1771 		if (len > 65535)
1772 			return -EINVAL;
1773 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1774 		if (!real_buffer)
1775 			return -ENOMEM;
1776 		memcpy(real_buffer + 8, buffer, len);
1777 		len += 8;
1778 		real_buffer[0] = 0;
1779 		real_buffer[1] = 0;
1780 		real_buffer[2] = data->medium_type;
1781 		real_buffer[3] = data->device_specific;
1782 		real_buffer[4] = data->longlba ? 0x01 : 0;
1783 		real_buffer[5] = 0;
1784 		real_buffer[6] = data->block_descriptor_length >> 8;
1785 		real_buffer[7] = data->block_descriptor_length;
1786 
1787 		cmd[0] = MODE_SELECT_10;
1788 		cmd[7] = len >> 8;
1789 		cmd[8] = len;
1790 	} else {
1791 		if (len > 255 || data->block_descriptor_length > 255 ||
1792 		    data->longlba)
1793 			return -EINVAL;
1794 
1795 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1796 		if (!real_buffer)
1797 			return -ENOMEM;
1798 		memcpy(real_buffer + 4, buffer, len);
1799 		len += 4;
1800 		real_buffer[0] = 0;
1801 		real_buffer[1] = data->medium_type;
1802 		real_buffer[2] = data->device_specific;
1803 		real_buffer[3] = data->block_descriptor_length;
1804 
1805 
1806 		cmd[0] = MODE_SELECT;
1807 		cmd[4] = len;
1808 	}
1809 
1810 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1811 			       sshdr, timeout, retries);
1812 	kfree(real_buffer);
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(scsi_mode_select);
1816 
1817 /**
1818  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1819  *	@sdev:	SCSI device to be queried
1820  *	@dbd:	set if mode sense will allow block descriptors to be returned
1821  *	@modepage: mode page being requested
1822  *	@buffer: request buffer (may not be smaller than eight bytes)
1823  *	@len:	length of request buffer.
1824  *	@timeout: command timeout
1825  *	@retries: number of retries before failing
1826  *	@data: returns a structure abstracting the mode header data
1827  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1828  *		must be SCSI_SENSE_BUFFERSIZE big.
1829  *
1830  *	Returns zero if unsuccessful, or the header offset (either 4
1831  *	or 8 depending on whether a six or ten byte command was
1832  *	issued) if successful.
1833  */
1834 int
1835 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1836 		  unsigned char *buffer, int len, int timeout, int retries,
1837 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1838 {
1839 	unsigned char cmd[12];
1840 	int use_10_for_ms;
1841 	int header_length;
1842 	int result;
1843 	struct scsi_sense_hdr my_sshdr;
1844 
1845 	memset(data, 0, sizeof(*data));
1846 	memset(&cmd[0], 0, 12);
1847 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1848 	cmd[2] = modepage;
1849 
1850 	/* caller might not be interested in sense, but we need it */
1851 	if (!sshdr)
1852 		sshdr = &my_sshdr;
1853 
1854  retry:
1855 	use_10_for_ms = sdev->use_10_for_ms;
1856 
1857 	if (use_10_for_ms) {
1858 		if (len < 8)
1859 			len = 8;
1860 
1861 		cmd[0] = MODE_SENSE_10;
1862 		cmd[8] = len;
1863 		header_length = 8;
1864 	} else {
1865 		if (len < 4)
1866 			len = 4;
1867 
1868 		cmd[0] = MODE_SENSE;
1869 		cmd[4] = len;
1870 		header_length = 4;
1871 	}
1872 
1873 	memset(buffer, 0, len);
1874 
1875 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1876 				  sshdr, timeout, retries);
1877 
1878 	/* This code looks awful: what it's doing is making sure an
1879 	 * ILLEGAL REQUEST sense return identifies the actual command
1880 	 * byte as the problem.  MODE_SENSE commands can return
1881 	 * ILLEGAL REQUEST if the code page isn't supported */
1882 
1883 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1884 	    (driver_byte(result) & DRIVER_SENSE)) {
1885 		if (scsi_sense_valid(sshdr)) {
1886 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1887 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1888 				/*
1889 				 * Invalid command operation code
1890 				 */
1891 				sdev->use_10_for_ms = 0;
1892 				goto retry;
1893 			}
1894 		}
1895 	}
1896 
1897 	if(scsi_status_is_good(result)) {
1898 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1899 			     (modepage == 6 || modepage == 8))) {
1900 			/* Initio breakage? */
1901 			header_length = 0;
1902 			data->length = 13;
1903 			data->medium_type = 0;
1904 			data->device_specific = 0;
1905 			data->longlba = 0;
1906 			data->block_descriptor_length = 0;
1907 		} else if(use_10_for_ms) {
1908 			data->length = buffer[0]*256 + buffer[1] + 2;
1909 			data->medium_type = buffer[2];
1910 			data->device_specific = buffer[3];
1911 			data->longlba = buffer[4] & 0x01;
1912 			data->block_descriptor_length = buffer[6]*256
1913 				+ buffer[7];
1914 		} else {
1915 			data->length = buffer[0] + 1;
1916 			data->medium_type = buffer[1];
1917 			data->device_specific = buffer[2];
1918 			data->block_descriptor_length = buffer[3];
1919 		}
1920 		data->header_length = header_length;
1921 	}
1922 
1923 	return result;
1924 }
1925 EXPORT_SYMBOL(scsi_mode_sense);
1926 
1927 /**
1928  *	scsi_test_unit_ready - test if unit is ready
1929  *	@sdev:	scsi device to change the state of.
1930  *	@timeout: command timeout
1931  *	@retries: number of retries before failing
1932  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
1933  *		returning sense. Make sure that this is cleared before passing
1934  *		in.
1935  *
1936  *	Returns zero if unsuccessful or an error if TUR failed.  For
1937  *	removable media, a return of NOT_READY or UNIT_ATTENTION is
1938  *	translated to success, with the ->changed flag updated.
1939  **/
1940 int
1941 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1942 		     struct scsi_sense_hdr *sshdr_external)
1943 {
1944 	char cmd[] = {
1945 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1946 	};
1947 	struct scsi_sense_hdr *sshdr;
1948 	int result;
1949 
1950 	if (!sshdr_external)
1951 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1952 	else
1953 		sshdr = sshdr_external;
1954 
1955 	/* try to eat the UNIT_ATTENTION if there are enough retries */
1956 	do {
1957 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1958 					  timeout, retries);
1959 	} while ((driver_byte(result) & DRIVER_SENSE) &&
1960 		 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1961 		 --retries);
1962 
1963 	if (!sshdr)
1964 		/* could not allocate sense buffer, so can't process it */
1965 		return result;
1966 
1967 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1968 
1969 		if ((scsi_sense_valid(sshdr)) &&
1970 		    ((sshdr->sense_key == UNIT_ATTENTION) ||
1971 		     (sshdr->sense_key == NOT_READY))) {
1972 			sdev->changed = 1;
1973 			result = 0;
1974 		}
1975 	}
1976 	if (!sshdr_external)
1977 		kfree(sshdr);
1978 	return result;
1979 }
1980 EXPORT_SYMBOL(scsi_test_unit_ready);
1981 
1982 /**
1983  *	scsi_device_set_state - Take the given device through the device state model.
1984  *	@sdev:	scsi device to change the state of.
1985  *	@state:	state to change to.
1986  *
1987  *	Returns zero if unsuccessful or an error if the requested
1988  *	transition is illegal.
1989  */
1990 int
1991 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1992 {
1993 	enum scsi_device_state oldstate = sdev->sdev_state;
1994 
1995 	if (state == oldstate)
1996 		return 0;
1997 
1998 	switch (state) {
1999 	case SDEV_CREATED:
2000 		/* There are no legal states that come back to
2001 		 * created.  This is the manually initialised start
2002 		 * state */
2003 		goto illegal;
2004 
2005 	case SDEV_RUNNING:
2006 		switch (oldstate) {
2007 		case SDEV_CREATED:
2008 		case SDEV_OFFLINE:
2009 		case SDEV_QUIESCE:
2010 		case SDEV_BLOCK:
2011 			break;
2012 		default:
2013 			goto illegal;
2014 		}
2015 		break;
2016 
2017 	case SDEV_QUIESCE:
2018 		switch (oldstate) {
2019 		case SDEV_RUNNING:
2020 		case SDEV_OFFLINE:
2021 			break;
2022 		default:
2023 			goto illegal;
2024 		}
2025 		break;
2026 
2027 	case SDEV_OFFLINE:
2028 		switch (oldstate) {
2029 		case SDEV_CREATED:
2030 		case SDEV_RUNNING:
2031 		case SDEV_QUIESCE:
2032 		case SDEV_BLOCK:
2033 			break;
2034 		default:
2035 			goto illegal;
2036 		}
2037 		break;
2038 
2039 	case SDEV_BLOCK:
2040 		switch (oldstate) {
2041 		case SDEV_CREATED:
2042 		case SDEV_RUNNING:
2043 			break;
2044 		default:
2045 			goto illegal;
2046 		}
2047 		break;
2048 
2049 	case SDEV_CANCEL:
2050 		switch (oldstate) {
2051 		case SDEV_CREATED:
2052 		case SDEV_RUNNING:
2053 		case SDEV_QUIESCE:
2054 		case SDEV_OFFLINE:
2055 		case SDEV_BLOCK:
2056 			break;
2057 		default:
2058 			goto illegal;
2059 		}
2060 		break;
2061 
2062 	case SDEV_DEL:
2063 		switch (oldstate) {
2064 		case SDEV_CREATED:
2065 		case SDEV_RUNNING:
2066 		case SDEV_OFFLINE:
2067 		case SDEV_CANCEL:
2068 			break;
2069 		default:
2070 			goto illegal;
2071 		}
2072 		break;
2073 
2074 	}
2075 	sdev->sdev_state = state;
2076 	return 0;
2077 
2078  illegal:
2079 	SCSI_LOG_ERROR_RECOVERY(1,
2080 				sdev_printk(KERN_ERR, sdev,
2081 					    "Illegal state transition %s->%s\n",
2082 					    scsi_device_state_name(oldstate),
2083 					    scsi_device_state_name(state))
2084 				);
2085 	return -EINVAL;
2086 }
2087 EXPORT_SYMBOL(scsi_device_set_state);
2088 
2089 /**
2090  * 	sdev_evt_emit - emit a single SCSI device uevent
2091  *	@sdev: associated SCSI device
2092  *	@evt: event to emit
2093  *
2094  *	Send a single uevent (scsi_event) to the associated scsi_device.
2095  */
2096 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2097 {
2098 	int idx = 0;
2099 	char *envp[3];
2100 
2101 	switch (evt->evt_type) {
2102 	case SDEV_EVT_MEDIA_CHANGE:
2103 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2104 		break;
2105 
2106 	default:
2107 		/* do nothing */
2108 		break;
2109 	}
2110 
2111 	envp[idx++] = NULL;
2112 
2113 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2114 }
2115 
2116 /**
2117  * 	sdev_evt_thread - send a uevent for each scsi event
2118  *	@work: work struct for scsi_device
2119  *
2120  *	Dispatch queued events to their associated scsi_device kobjects
2121  *	as uevents.
2122  */
2123 void scsi_evt_thread(struct work_struct *work)
2124 {
2125 	struct scsi_device *sdev;
2126 	LIST_HEAD(event_list);
2127 
2128 	sdev = container_of(work, struct scsi_device, event_work);
2129 
2130 	while (1) {
2131 		struct scsi_event *evt;
2132 		struct list_head *this, *tmp;
2133 		unsigned long flags;
2134 
2135 		spin_lock_irqsave(&sdev->list_lock, flags);
2136 		list_splice_init(&sdev->event_list, &event_list);
2137 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2138 
2139 		if (list_empty(&event_list))
2140 			break;
2141 
2142 		list_for_each_safe(this, tmp, &event_list) {
2143 			evt = list_entry(this, struct scsi_event, node);
2144 			list_del(&evt->node);
2145 			scsi_evt_emit(sdev, evt);
2146 			kfree(evt);
2147 		}
2148 	}
2149 }
2150 
2151 /**
2152  * 	sdev_evt_send - send asserted event to uevent thread
2153  *	@sdev: scsi_device event occurred on
2154  *	@evt: event to send
2155  *
2156  *	Assert scsi device event asynchronously.
2157  */
2158 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2159 {
2160 	unsigned long flags;
2161 
2162 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2163 		kfree(evt);
2164 		return;
2165 	}
2166 
2167 	spin_lock_irqsave(&sdev->list_lock, flags);
2168 	list_add_tail(&evt->node, &sdev->event_list);
2169 	schedule_work(&sdev->event_work);
2170 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2171 }
2172 EXPORT_SYMBOL_GPL(sdev_evt_send);
2173 
2174 /**
2175  * 	sdev_evt_alloc - allocate a new scsi event
2176  *	@evt_type: type of event to allocate
2177  *	@gfpflags: GFP flags for allocation
2178  *
2179  *	Allocates and returns a new scsi_event.
2180  */
2181 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2182 				  gfp_t gfpflags)
2183 {
2184 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2185 	if (!evt)
2186 		return NULL;
2187 
2188 	evt->evt_type = evt_type;
2189 	INIT_LIST_HEAD(&evt->node);
2190 
2191 	/* evt_type-specific initialization, if any */
2192 	switch (evt_type) {
2193 	case SDEV_EVT_MEDIA_CHANGE:
2194 	default:
2195 		/* do nothing */
2196 		break;
2197 	}
2198 
2199 	return evt;
2200 }
2201 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2202 
2203 /**
2204  * 	sdev_evt_send_simple - send asserted event to uevent thread
2205  *	@sdev: scsi_device event occurred on
2206  *	@evt_type: type of event to send
2207  *	@gfpflags: GFP flags for allocation
2208  *
2209  *	Assert scsi device event asynchronously, given an event type.
2210  */
2211 void sdev_evt_send_simple(struct scsi_device *sdev,
2212 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2213 {
2214 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2215 	if (!evt) {
2216 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2217 			    evt_type);
2218 		return;
2219 	}
2220 
2221 	sdev_evt_send(sdev, evt);
2222 }
2223 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2224 
2225 /**
2226  *	scsi_device_quiesce - Block user issued commands.
2227  *	@sdev:	scsi device to quiesce.
2228  *
2229  *	This works by trying to transition to the SDEV_QUIESCE state
2230  *	(which must be a legal transition).  When the device is in this
2231  *	state, only special requests will be accepted, all others will
2232  *	be deferred.  Since special requests may also be requeued requests,
2233  *	a successful return doesn't guarantee the device will be
2234  *	totally quiescent.
2235  *
2236  *	Must be called with user context, may sleep.
2237  *
2238  *	Returns zero if unsuccessful or an error if not.
2239  */
2240 int
2241 scsi_device_quiesce(struct scsi_device *sdev)
2242 {
2243 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2244 	if (err)
2245 		return err;
2246 
2247 	scsi_run_queue(sdev->request_queue);
2248 	while (sdev->device_busy) {
2249 		msleep_interruptible(200);
2250 		scsi_run_queue(sdev->request_queue);
2251 	}
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL(scsi_device_quiesce);
2255 
2256 /**
2257  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2258  *	@sdev:	scsi device to resume.
2259  *
2260  *	Moves the device from quiesced back to running and restarts the
2261  *	queues.
2262  *
2263  *	Must be called with user context, may sleep.
2264  */
2265 void
2266 scsi_device_resume(struct scsi_device *sdev)
2267 {
2268 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2269 		return;
2270 	scsi_run_queue(sdev->request_queue);
2271 }
2272 EXPORT_SYMBOL(scsi_device_resume);
2273 
2274 static void
2275 device_quiesce_fn(struct scsi_device *sdev, void *data)
2276 {
2277 	scsi_device_quiesce(sdev);
2278 }
2279 
2280 void
2281 scsi_target_quiesce(struct scsi_target *starget)
2282 {
2283 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2284 }
2285 EXPORT_SYMBOL(scsi_target_quiesce);
2286 
2287 static void
2288 device_resume_fn(struct scsi_device *sdev, void *data)
2289 {
2290 	scsi_device_resume(sdev);
2291 }
2292 
2293 void
2294 scsi_target_resume(struct scsi_target *starget)
2295 {
2296 	starget_for_each_device(starget, NULL, device_resume_fn);
2297 }
2298 EXPORT_SYMBOL(scsi_target_resume);
2299 
2300 /**
2301  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2302  * @sdev:	device to block
2303  *
2304  * Block request made by scsi lld's to temporarily stop all
2305  * scsi commands on the specified device.  Called from interrupt
2306  * or normal process context.
2307  *
2308  * Returns zero if successful or error if not
2309  *
2310  * Notes:
2311  *	This routine transitions the device to the SDEV_BLOCK state
2312  *	(which must be a legal transition).  When the device is in this
2313  *	state, all commands are deferred until the scsi lld reenables
2314  *	the device with scsi_device_unblock or device_block_tmo fires.
2315  *	This routine assumes the host_lock is held on entry.
2316  */
2317 int
2318 scsi_internal_device_block(struct scsi_device *sdev)
2319 {
2320 	struct request_queue *q = sdev->request_queue;
2321 	unsigned long flags;
2322 	int err = 0;
2323 
2324 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2325 	if (err)
2326 		return err;
2327 
2328 	/*
2329 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2330 	 * block layer from calling the midlayer with this device's
2331 	 * request queue.
2332 	 */
2333 	spin_lock_irqsave(q->queue_lock, flags);
2334 	blk_stop_queue(q);
2335 	spin_unlock_irqrestore(q->queue_lock, flags);
2336 
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2340 
2341 /**
2342  * scsi_internal_device_unblock - resume a device after a block request
2343  * @sdev:	device to resume
2344  *
2345  * Called by scsi lld's or the midlayer to restart the device queue
2346  * for the previously suspended scsi device.  Called from interrupt or
2347  * normal process context.
2348  *
2349  * Returns zero if successful or error if not.
2350  *
2351  * Notes:
2352  *	This routine transitions the device to the SDEV_RUNNING state
2353  *	(which must be a legal transition) allowing the midlayer to
2354  *	goose the queue for this device.  This routine assumes the
2355  *	host_lock is held upon entry.
2356  */
2357 int
2358 scsi_internal_device_unblock(struct scsi_device *sdev)
2359 {
2360 	struct request_queue *q = sdev->request_queue;
2361 	int err;
2362 	unsigned long flags;
2363 
2364 	/*
2365 	 * Try to transition the scsi device to SDEV_RUNNING
2366 	 * and goose the device queue if successful.
2367 	 */
2368 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2369 	if (err)
2370 		return err;
2371 
2372 	spin_lock_irqsave(q->queue_lock, flags);
2373 	blk_start_queue(q);
2374 	spin_unlock_irqrestore(q->queue_lock, flags);
2375 
2376 	return 0;
2377 }
2378 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2379 
2380 static void
2381 device_block(struct scsi_device *sdev, void *data)
2382 {
2383 	scsi_internal_device_block(sdev);
2384 }
2385 
2386 static int
2387 target_block(struct device *dev, void *data)
2388 {
2389 	if (scsi_is_target_device(dev))
2390 		starget_for_each_device(to_scsi_target(dev), NULL,
2391 					device_block);
2392 	return 0;
2393 }
2394 
2395 void
2396 scsi_target_block(struct device *dev)
2397 {
2398 	if (scsi_is_target_device(dev))
2399 		starget_for_each_device(to_scsi_target(dev), NULL,
2400 					device_block);
2401 	else
2402 		device_for_each_child(dev, NULL, target_block);
2403 }
2404 EXPORT_SYMBOL_GPL(scsi_target_block);
2405 
2406 static void
2407 device_unblock(struct scsi_device *sdev, void *data)
2408 {
2409 	scsi_internal_device_unblock(sdev);
2410 }
2411 
2412 static int
2413 target_unblock(struct device *dev, void *data)
2414 {
2415 	if (scsi_is_target_device(dev))
2416 		starget_for_each_device(to_scsi_target(dev), NULL,
2417 					device_unblock);
2418 	return 0;
2419 }
2420 
2421 void
2422 scsi_target_unblock(struct device *dev)
2423 {
2424 	if (scsi_is_target_device(dev))
2425 		starget_for_each_device(to_scsi_target(dev), NULL,
2426 					device_unblock);
2427 	else
2428 		device_for_each_child(dev, NULL, target_unblock);
2429 }
2430 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2431 
2432 /**
2433  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2434  * @sgl:	scatter-gather list
2435  * @sg_count:	number of segments in sg
2436  * @offset:	offset in bytes into sg, on return offset into the mapped area
2437  * @len:	bytes to map, on return number of bytes mapped
2438  *
2439  * Returns virtual address of the start of the mapped page
2440  */
2441 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2442 			  size_t *offset, size_t *len)
2443 {
2444 	int i;
2445 	size_t sg_len = 0, len_complete = 0;
2446 	struct scatterlist *sg;
2447 	struct page *page;
2448 
2449 	WARN_ON(!irqs_disabled());
2450 
2451 	for_each_sg(sgl, sg, sg_count, i) {
2452 		len_complete = sg_len; /* Complete sg-entries */
2453 		sg_len += sg->length;
2454 		if (sg_len > *offset)
2455 			break;
2456 	}
2457 
2458 	if (unlikely(i == sg_count)) {
2459 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2460 			"elements %d\n",
2461 		       __FUNCTION__, sg_len, *offset, sg_count);
2462 		WARN_ON(1);
2463 		return NULL;
2464 	}
2465 
2466 	/* Offset starting from the beginning of first page in this sg-entry */
2467 	*offset = *offset - len_complete + sg->offset;
2468 
2469 	/* Assumption: contiguous pages can be accessed as "page + i" */
2470 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2471 	*offset &= ~PAGE_MASK;
2472 
2473 	/* Bytes in this sg-entry from *offset to the end of the page */
2474 	sg_len = PAGE_SIZE - *offset;
2475 	if (*len > sg_len)
2476 		*len = sg_len;
2477 
2478 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2479 }
2480 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2481 
2482 /**
2483  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2484  * @virt:	virtual address to be unmapped
2485  */
2486 void scsi_kunmap_atomic_sg(void *virt)
2487 {
2488 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2489 }
2490 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2491