xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	if (msecs) {
126 		blk_mq_requeue_request(rq, false);
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 	} else
129 		blk_mq_requeue_request(rq, true);
130 }
131 
132 /**
133  * __scsi_queue_insert - private queue insertion
134  * @cmd: The SCSI command being requeued
135  * @reason:  The reason for the requeue
136  * @unbusy: Whether the queue should be unbusied
137  *
138  * This is a private queue insertion.  The public interface
139  * scsi_queue_insert() always assumes the queue should be unbusied
140  * because it's always called before the completion.  This function is
141  * for a requeue after completion, which should only occur in this
142  * file.
143  */
144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146 	struct scsi_device *device = cmd->device;
147 
148 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 		"Inserting command %p into mlqueue\n", cmd));
150 
151 	scsi_set_blocked(cmd, reason);
152 
153 	/*
154 	 * Decrement the counters, since these commands are no longer
155 	 * active on the host/device.
156 	 */
157 	if (unbusy)
158 		scsi_device_unbusy(device, cmd);
159 
160 	/*
161 	 * Requeue this command.  It will go before all other commands
162 	 * that are already in the queue. Schedule requeue work under
163 	 * lock such that the kblockd_schedule_work() call happens
164 	 * before blk_mq_destroy_queue() finishes.
165 	 */
166 	cmd->result = 0;
167 
168 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170 
171 /**
172  * scsi_queue_insert - Reinsert a command in the queue.
173  * @cmd:    command that we are adding to queue.
174  * @reason: why we are inserting command to queue.
175  *
176  * We do this for one of two cases. Either the host is busy and it cannot accept
177  * any more commands for the time being, or the device returned QUEUE_FULL and
178  * can accept no more commands.
179  *
180  * Context: This could be called either from an interrupt context or a normal
181  * process context.
182  */
183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185 	__scsi_queue_insert(cmd, reason, true);
186 }
187 
188 
189 /**
190  * __scsi_execute - insert request and wait for the result
191  * @sdev:	scsi device
192  * @cmd:	scsi command
193  * @data_direction: data direction
194  * @buffer:	data buffer
195  * @bufflen:	len of buffer
196  * @sense:	optional sense buffer
197  * @sshdr:	optional decoded sense header
198  * @timeout:	request timeout in HZ
199  * @retries:	number of times to retry request
200  * @flags:	flags for ->cmd_flags
201  * @rq_flags:	flags for ->rq_flags
202  * @resid:	optional residual length
203  *
204  * Returns the scsi_cmnd result field if a command was executed, or a negative
205  * Linux error code if we didn't get that far.
206  */
207 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208 		 int data_direction, void *buffer, unsigned bufflen,
209 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
210 		 int timeout, int retries, blk_opf_t flags,
211 		 req_flags_t rq_flags, int *resid)
212 {
213 	struct request *req;
214 	struct scsi_cmnd *scmd;
215 	int ret;
216 
217 	req = scsi_alloc_request(sdev->request_queue,
218 			data_direction == DMA_TO_DEVICE ?
219 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
220 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
221 	if (IS_ERR(req))
222 		return PTR_ERR(req);
223 
224 	if (bufflen) {
225 		ret = blk_rq_map_kern(sdev->request_queue, req,
226 				      buffer, bufflen, GFP_NOIO);
227 		if (ret)
228 			goto out;
229 	}
230 	scmd = blk_mq_rq_to_pdu(req);
231 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
232 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
233 	scmd->allowed = retries;
234 	req->timeout = timeout;
235 	req->cmd_flags |= flags;
236 	req->rq_flags |= rq_flags | RQF_QUIET;
237 
238 	/*
239 	 * head injection *required* here otherwise quiesce won't work
240 	 */
241 	blk_execute_rq(req, true);
242 
243 	/*
244 	 * Some devices (USB mass-storage in particular) may transfer
245 	 * garbage data together with a residue indicating that the data
246 	 * is invalid.  Prevent the garbage from being misinterpreted
247 	 * and prevent security leaks by zeroing out the excess data.
248 	 */
249 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
250 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
251 
252 	if (resid)
253 		*resid = scmd->resid_len;
254 	if (sense && scmd->sense_len)
255 		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
256 	if (sshdr)
257 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
258 				     sshdr);
259 	ret = scmd->result;
260  out:
261 	blk_mq_free_request(req);
262 
263 	return ret;
264 }
265 EXPORT_SYMBOL(__scsi_execute);
266 
267 /*
268  * Wake up the error handler if necessary. Avoid as follows that the error
269  * handler is not woken up if host in-flight requests number ==
270  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
271  * with an RCU read lock in this function to ensure that this function in
272  * its entirety either finishes before scsi_eh_scmd_add() increases the
273  * host_failed counter or that it notices the shost state change made by
274  * scsi_eh_scmd_add().
275  */
276 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
277 {
278 	unsigned long flags;
279 
280 	rcu_read_lock();
281 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
282 	if (unlikely(scsi_host_in_recovery(shost))) {
283 		spin_lock_irqsave(shost->host_lock, flags);
284 		if (shost->host_failed || shost->host_eh_scheduled)
285 			scsi_eh_wakeup(shost);
286 		spin_unlock_irqrestore(shost->host_lock, flags);
287 	}
288 	rcu_read_unlock();
289 }
290 
291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292 {
293 	struct Scsi_Host *shost = sdev->host;
294 	struct scsi_target *starget = scsi_target(sdev);
295 
296 	scsi_dec_host_busy(shost, cmd);
297 
298 	if (starget->can_queue > 0)
299 		atomic_dec(&starget->target_busy);
300 
301 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
302 	cmd->budget_token = -1;
303 }
304 
305 static void scsi_kick_queue(struct request_queue *q)
306 {
307 	blk_mq_run_hw_queues(q, false);
308 }
309 
310 /*
311  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
312  * interrupts disabled.
313  */
314 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
315 {
316 	struct scsi_device *current_sdev = data;
317 
318 	if (sdev != current_sdev)
319 		blk_mq_run_hw_queues(sdev->request_queue, true);
320 }
321 
322 /*
323  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
324  * and call blk_run_queue for all the scsi_devices on the target -
325  * including current_sdev first.
326  *
327  * Called with *no* scsi locks held.
328  */
329 static void scsi_single_lun_run(struct scsi_device *current_sdev)
330 {
331 	struct Scsi_Host *shost = current_sdev->host;
332 	struct scsi_target *starget = scsi_target(current_sdev);
333 	unsigned long flags;
334 
335 	spin_lock_irqsave(shost->host_lock, flags);
336 	starget->starget_sdev_user = NULL;
337 	spin_unlock_irqrestore(shost->host_lock, flags);
338 
339 	/*
340 	 * Call blk_run_queue for all LUNs on the target, starting with
341 	 * current_sdev. We race with others (to set starget_sdev_user),
342 	 * but in most cases, we will be first. Ideally, each LU on the
343 	 * target would get some limited time or requests on the target.
344 	 */
345 	scsi_kick_queue(current_sdev->request_queue);
346 
347 	spin_lock_irqsave(shost->host_lock, flags);
348 	if (!starget->starget_sdev_user)
349 		__starget_for_each_device(starget, current_sdev,
350 					  scsi_kick_sdev_queue);
351 	spin_unlock_irqrestore(shost->host_lock, flags);
352 }
353 
354 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
355 {
356 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
357 		return true;
358 	if (atomic_read(&sdev->device_blocked) > 0)
359 		return true;
360 	return false;
361 }
362 
363 static inline bool scsi_target_is_busy(struct scsi_target *starget)
364 {
365 	if (starget->can_queue > 0) {
366 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
367 			return true;
368 		if (atomic_read(&starget->target_blocked) > 0)
369 			return true;
370 	}
371 	return false;
372 }
373 
374 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
375 {
376 	if (atomic_read(&shost->host_blocked) > 0)
377 		return true;
378 	if (shost->host_self_blocked)
379 		return true;
380 	return false;
381 }
382 
383 static void scsi_starved_list_run(struct Scsi_Host *shost)
384 {
385 	LIST_HEAD(starved_list);
386 	struct scsi_device *sdev;
387 	unsigned long flags;
388 
389 	spin_lock_irqsave(shost->host_lock, flags);
390 	list_splice_init(&shost->starved_list, &starved_list);
391 
392 	while (!list_empty(&starved_list)) {
393 		struct request_queue *slq;
394 
395 		/*
396 		 * As long as shost is accepting commands and we have
397 		 * starved queues, call blk_run_queue. scsi_request_fn
398 		 * drops the queue_lock and can add us back to the
399 		 * starved_list.
400 		 *
401 		 * host_lock protects the starved_list and starved_entry.
402 		 * scsi_request_fn must get the host_lock before checking
403 		 * or modifying starved_list or starved_entry.
404 		 */
405 		if (scsi_host_is_busy(shost))
406 			break;
407 
408 		sdev = list_entry(starved_list.next,
409 				  struct scsi_device, starved_entry);
410 		list_del_init(&sdev->starved_entry);
411 		if (scsi_target_is_busy(scsi_target(sdev))) {
412 			list_move_tail(&sdev->starved_entry,
413 				       &shost->starved_list);
414 			continue;
415 		}
416 
417 		/*
418 		 * Once we drop the host lock, a racing scsi_remove_device()
419 		 * call may remove the sdev from the starved list and destroy
420 		 * it and the queue.  Mitigate by taking a reference to the
421 		 * queue and never touching the sdev again after we drop the
422 		 * host lock.  Note: if __scsi_remove_device() invokes
423 		 * blk_mq_destroy_queue() before the queue is run from this
424 		 * function then blk_run_queue() will return immediately since
425 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
426 		 */
427 		slq = sdev->request_queue;
428 		if (!blk_get_queue(slq))
429 			continue;
430 		spin_unlock_irqrestore(shost->host_lock, flags);
431 
432 		scsi_kick_queue(slq);
433 		blk_put_queue(slq);
434 
435 		spin_lock_irqsave(shost->host_lock, flags);
436 	}
437 	/* put any unprocessed entries back */
438 	list_splice(&starved_list, &shost->starved_list);
439 	spin_unlock_irqrestore(shost->host_lock, flags);
440 }
441 
442 /**
443  * scsi_run_queue - Select a proper request queue to serve next.
444  * @q:  last request's queue
445  *
446  * The previous command was completely finished, start a new one if possible.
447  */
448 static void scsi_run_queue(struct request_queue *q)
449 {
450 	struct scsi_device *sdev = q->queuedata;
451 
452 	if (scsi_target(sdev)->single_lun)
453 		scsi_single_lun_run(sdev);
454 	if (!list_empty(&sdev->host->starved_list))
455 		scsi_starved_list_run(sdev->host);
456 
457 	blk_mq_run_hw_queues(q, false);
458 }
459 
460 void scsi_requeue_run_queue(struct work_struct *work)
461 {
462 	struct scsi_device *sdev;
463 	struct request_queue *q;
464 
465 	sdev = container_of(work, struct scsi_device, requeue_work);
466 	q = sdev->request_queue;
467 	scsi_run_queue(q);
468 }
469 
470 void scsi_run_host_queues(struct Scsi_Host *shost)
471 {
472 	struct scsi_device *sdev;
473 
474 	shost_for_each_device(sdev, shost)
475 		scsi_run_queue(sdev->request_queue);
476 }
477 
478 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
479 {
480 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
481 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
482 
483 		if (drv->uninit_command)
484 			drv->uninit_command(cmd);
485 	}
486 }
487 
488 void scsi_free_sgtables(struct scsi_cmnd *cmd)
489 {
490 	if (cmd->sdb.table.nents)
491 		sg_free_table_chained(&cmd->sdb.table,
492 				SCSI_INLINE_SG_CNT);
493 	if (scsi_prot_sg_count(cmd))
494 		sg_free_table_chained(&cmd->prot_sdb->table,
495 				SCSI_INLINE_PROT_SG_CNT);
496 }
497 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
498 
499 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
500 {
501 	scsi_free_sgtables(cmd);
502 	scsi_uninit_cmd(cmd);
503 }
504 
505 static void scsi_run_queue_async(struct scsi_device *sdev)
506 {
507 	if (scsi_target(sdev)->single_lun ||
508 	    !list_empty(&sdev->host->starved_list)) {
509 		kblockd_schedule_work(&sdev->requeue_work);
510 	} else {
511 		/*
512 		 * smp_mb() present in sbitmap_queue_clear() or implied in
513 		 * .end_io is for ordering writing .device_busy in
514 		 * scsi_device_unbusy() and reading sdev->restarts.
515 		 */
516 		int old = atomic_read(&sdev->restarts);
517 
518 		/*
519 		 * ->restarts has to be kept as non-zero if new budget
520 		 *  contention occurs.
521 		 *
522 		 *  No need to run queue when either another re-run
523 		 *  queue wins in updating ->restarts or a new budget
524 		 *  contention occurs.
525 		 */
526 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
527 			blk_mq_run_hw_queues(sdev->request_queue, true);
528 	}
529 }
530 
531 /* Returns false when no more bytes to process, true if there are more */
532 static bool scsi_end_request(struct request *req, blk_status_t error,
533 		unsigned int bytes)
534 {
535 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
536 	struct scsi_device *sdev = cmd->device;
537 	struct request_queue *q = sdev->request_queue;
538 
539 	if (blk_update_request(req, error, bytes))
540 		return true;
541 
542 	// XXX:
543 	if (blk_queue_add_random(q))
544 		add_disk_randomness(req->q->disk);
545 
546 	if (!blk_rq_is_passthrough(req)) {
547 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
548 		cmd->flags &= ~SCMD_INITIALIZED;
549 	}
550 
551 	/*
552 	 * Calling rcu_barrier() is not necessary here because the
553 	 * SCSI error handler guarantees that the function called by
554 	 * call_rcu() has been called before scsi_end_request() is
555 	 * called.
556 	 */
557 	destroy_rcu_head(&cmd->rcu);
558 
559 	/*
560 	 * In the MQ case the command gets freed by __blk_mq_end_request,
561 	 * so we have to do all cleanup that depends on it earlier.
562 	 *
563 	 * We also can't kick the queues from irq context, so we
564 	 * will have to defer it to a workqueue.
565 	 */
566 	scsi_mq_uninit_cmd(cmd);
567 
568 	/*
569 	 * queue is still alive, so grab the ref for preventing it
570 	 * from being cleaned up during running queue.
571 	 */
572 	percpu_ref_get(&q->q_usage_counter);
573 
574 	__blk_mq_end_request(req, error);
575 
576 	scsi_run_queue_async(sdev);
577 
578 	percpu_ref_put(&q->q_usage_counter);
579 	return false;
580 }
581 
582 static inline u8 get_scsi_ml_byte(int result)
583 {
584 	return (result >> 8) & 0xff;
585 }
586 
587 /**
588  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
589  * @result:	scsi error code
590  *
591  * Translate a SCSI result code into a blk_status_t value.
592  */
593 static blk_status_t scsi_result_to_blk_status(int result)
594 {
595 	/*
596 	 * Check the scsi-ml byte first in case we converted a host or status
597 	 * byte.
598 	 */
599 	switch (get_scsi_ml_byte(result)) {
600 	case SCSIML_STAT_OK:
601 		break;
602 	case SCSIML_STAT_RESV_CONFLICT:
603 		return BLK_STS_NEXUS;
604 	case SCSIML_STAT_NOSPC:
605 		return BLK_STS_NOSPC;
606 	case SCSIML_STAT_MED_ERROR:
607 		return BLK_STS_MEDIUM;
608 	case SCSIML_STAT_TGT_FAILURE:
609 		return BLK_STS_TARGET;
610 	}
611 
612 	switch (host_byte(result)) {
613 	case DID_OK:
614 		if (scsi_status_is_good(result))
615 			return BLK_STS_OK;
616 		return BLK_STS_IOERR;
617 	case DID_TRANSPORT_FAILFAST:
618 	case DID_TRANSPORT_MARGINAL:
619 		return BLK_STS_TRANSPORT;
620 	default:
621 		return BLK_STS_IOERR;
622 	}
623 }
624 
625 /**
626  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
627  * @rq: request to examine
628  *
629  * Description:
630  *     A request could be merge of IOs which require different failure
631  *     handling.  This function determines the number of bytes which
632  *     can be failed from the beginning of the request without
633  *     crossing into area which need to be retried further.
634  *
635  * Return:
636  *     The number of bytes to fail.
637  */
638 static unsigned int scsi_rq_err_bytes(const struct request *rq)
639 {
640 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
641 	unsigned int bytes = 0;
642 	struct bio *bio;
643 
644 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
645 		return blk_rq_bytes(rq);
646 
647 	/*
648 	 * Currently the only 'mixing' which can happen is between
649 	 * different fastfail types.  We can safely fail portions
650 	 * which have all the failfast bits that the first one has -
651 	 * the ones which are at least as eager to fail as the first
652 	 * one.
653 	 */
654 	for (bio = rq->bio; bio; bio = bio->bi_next) {
655 		if ((bio->bi_opf & ff) != ff)
656 			break;
657 		bytes += bio->bi_iter.bi_size;
658 	}
659 
660 	/* this could lead to infinite loop */
661 	BUG_ON(blk_rq_bytes(rq) && !bytes);
662 	return bytes;
663 }
664 
665 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
666 {
667 	struct request *req = scsi_cmd_to_rq(cmd);
668 	unsigned long wait_for;
669 
670 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
671 		return false;
672 
673 	wait_for = (cmd->allowed + 1) * req->timeout;
674 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
675 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
676 			    wait_for/HZ);
677 		return true;
678 	}
679 	return false;
680 }
681 
682 /*
683  * When ALUA transition state is returned, reprep the cmd to
684  * use the ALUA handler's transition timeout. Delay the reprep
685  * 1 sec to avoid aggressive retries of the target in that
686  * state.
687  */
688 #define ALUA_TRANSITION_REPREP_DELAY	1000
689 
690 /* Helper for scsi_io_completion() when special action required. */
691 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
692 {
693 	struct request *req = scsi_cmd_to_rq(cmd);
694 	int level = 0;
695 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
696 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
697 	struct scsi_sense_hdr sshdr;
698 	bool sense_valid;
699 	bool sense_current = true;      /* false implies "deferred sense" */
700 	blk_status_t blk_stat;
701 
702 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
703 	if (sense_valid)
704 		sense_current = !scsi_sense_is_deferred(&sshdr);
705 
706 	blk_stat = scsi_result_to_blk_status(result);
707 
708 	if (host_byte(result) == DID_RESET) {
709 		/* Third party bus reset or reset for error recovery
710 		 * reasons.  Just retry the command and see what
711 		 * happens.
712 		 */
713 		action = ACTION_RETRY;
714 	} else if (sense_valid && sense_current) {
715 		switch (sshdr.sense_key) {
716 		case UNIT_ATTENTION:
717 			if (cmd->device->removable) {
718 				/* Detected disc change.  Set a bit
719 				 * and quietly refuse further access.
720 				 */
721 				cmd->device->changed = 1;
722 				action = ACTION_FAIL;
723 			} else {
724 				/* Must have been a power glitch, or a
725 				 * bus reset.  Could not have been a
726 				 * media change, so we just retry the
727 				 * command and see what happens.
728 				 */
729 				action = ACTION_RETRY;
730 			}
731 			break;
732 		case ILLEGAL_REQUEST:
733 			/* If we had an ILLEGAL REQUEST returned, then
734 			 * we may have performed an unsupported
735 			 * command.  The only thing this should be
736 			 * would be a ten byte read where only a six
737 			 * byte read was supported.  Also, on a system
738 			 * where READ CAPACITY failed, we may have
739 			 * read past the end of the disk.
740 			 */
741 			if ((cmd->device->use_10_for_rw &&
742 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
743 			    (cmd->cmnd[0] == READ_10 ||
744 			     cmd->cmnd[0] == WRITE_10)) {
745 				/* This will issue a new 6-byte command. */
746 				cmd->device->use_10_for_rw = 0;
747 				action = ACTION_REPREP;
748 			} else if (sshdr.asc == 0x10) /* DIX */ {
749 				action = ACTION_FAIL;
750 				blk_stat = BLK_STS_PROTECTION;
751 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
752 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
753 				action = ACTION_FAIL;
754 				blk_stat = BLK_STS_TARGET;
755 			} else
756 				action = ACTION_FAIL;
757 			break;
758 		case ABORTED_COMMAND:
759 			action = ACTION_FAIL;
760 			if (sshdr.asc == 0x10) /* DIF */
761 				blk_stat = BLK_STS_PROTECTION;
762 			break;
763 		case NOT_READY:
764 			/* If the device is in the process of becoming
765 			 * ready, or has a temporary blockage, retry.
766 			 */
767 			if (sshdr.asc == 0x04) {
768 				switch (sshdr.ascq) {
769 				case 0x01: /* becoming ready */
770 				case 0x04: /* format in progress */
771 				case 0x05: /* rebuild in progress */
772 				case 0x06: /* recalculation in progress */
773 				case 0x07: /* operation in progress */
774 				case 0x08: /* Long write in progress */
775 				case 0x09: /* self test in progress */
776 				case 0x11: /* notify (enable spinup) required */
777 				case 0x14: /* space allocation in progress */
778 				case 0x1a: /* start stop unit in progress */
779 				case 0x1b: /* sanitize in progress */
780 				case 0x1d: /* configuration in progress */
781 				case 0x24: /* depopulation in progress */
782 					action = ACTION_DELAYED_RETRY;
783 					break;
784 				case 0x0a: /* ALUA state transition */
785 					action = ACTION_DELAYED_REPREP;
786 					break;
787 				default:
788 					action = ACTION_FAIL;
789 					break;
790 				}
791 			} else
792 				action = ACTION_FAIL;
793 			break;
794 		case VOLUME_OVERFLOW:
795 			/* See SSC3rXX or current. */
796 			action = ACTION_FAIL;
797 			break;
798 		case DATA_PROTECT:
799 			action = ACTION_FAIL;
800 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
801 			    (sshdr.asc == 0x55 &&
802 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
803 				/* Insufficient zone resources */
804 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
805 			}
806 			break;
807 		default:
808 			action = ACTION_FAIL;
809 			break;
810 		}
811 	} else
812 		action = ACTION_FAIL;
813 
814 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
815 		action = ACTION_FAIL;
816 
817 	switch (action) {
818 	case ACTION_FAIL:
819 		/* Give up and fail the remainder of the request */
820 		if (!(req->rq_flags & RQF_QUIET)) {
821 			static DEFINE_RATELIMIT_STATE(_rs,
822 					DEFAULT_RATELIMIT_INTERVAL,
823 					DEFAULT_RATELIMIT_BURST);
824 
825 			if (unlikely(scsi_logging_level))
826 				level =
827 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
828 						    SCSI_LOG_MLCOMPLETE_BITS);
829 
830 			/*
831 			 * if logging is enabled the failure will be printed
832 			 * in scsi_log_completion(), so avoid duplicate messages
833 			 */
834 			if (!level && __ratelimit(&_rs)) {
835 				scsi_print_result(cmd, NULL, FAILED);
836 				if (sense_valid)
837 					scsi_print_sense(cmd);
838 				scsi_print_command(cmd);
839 			}
840 		}
841 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
842 			return;
843 		fallthrough;
844 	case ACTION_REPREP:
845 		scsi_mq_requeue_cmd(cmd, 0);
846 		break;
847 	case ACTION_DELAYED_REPREP:
848 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
849 		break;
850 	case ACTION_RETRY:
851 		/* Retry the same command immediately */
852 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
853 		break;
854 	case ACTION_DELAYED_RETRY:
855 		/* Retry the same command after a delay */
856 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
857 		break;
858 	}
859 }
860 
861 /*
862  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
863  * new result that may suppress further error checking. Also modifies
864  * *blk_statp in some cases.
865  */
866 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
867 					blk_status_t *blk_statp)
868 {
869 	bool sense_valid;
870 	bool sense_current = true;	/* false implies "deferred sense" */
871 	struct request *req = scsi_cmd_to_rq(cmd);
872 	struct scsi_sense_hdr sshdr;
873 
874 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
875 	if (sense_valid)
876 		sense_current = !scsi_sense_is_deferred(&sshdr);
877 
878 	if (blk_rq_is_passthrough(req)) {
879 		if (sense_valid) {
880 			/*
881 			 * SG_IO wants current and deferred errors
882 			 */
883 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
884 					     SCSI_SENSE_BUFFERSIZE);
885 		}
886 		if (sense_current)
887 			*blk_statp = scsi_result_to_blk_status(result);
888 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
889 		/*
890 		 * Flush commands do not transfers any data, and thus cannot use
891 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
892 		 * This sets *blk_statp explicitly for the problem case.
893 		 */
894 		*blk_statp = scsi_result_to_blk_status(result);
895 	}
896 	/*
897 	 * Recovered errors need reporting, but they're always treated as
898 	 * success, so fiddle the result code here.  For passthrough requests
899 	 * we already took a copy of the original into sreq->result which
900 	 * is what gets returned to the user
901 	 */
902 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
903 		bool do_print = true;
904 		/*
905 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
906 		 * skip print since caller wants ATA registers. Only occurs
907 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
908 		 */
909 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
910 			do_print = false;
911 		else if (req->rq_flags & RQF_QUIET)
912 			do_print = false;
913 		if (do_print)
914 			scsi_print_sense(cmd);
915 		result = 0;
916 		/* for passthrough, *blk_statp may be set */
917 		*blk_statp = BLK_STS_OK;
918 	}
919 	/*
920 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
921 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
922 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
923 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
924 	 * intermediate statuses (both obsolete in SAM-4) as good.
925 	 */
926 	if ((result & 0xff) && scsi_status_is_good(result)) {
927 		result = 0;
928 		*blk_statp = BLK_STS_OK;
929 	}
930 	return result;
931 }
932 
933 /**
934  * scsi_io_completion - Completion processing for SCSI commands.
935  * @cmd:	command that is finished.
936  * @good_bytes:	number of processed bytes.
937  *
938  * We will finish off the specified number of sectors. If we are done, the
939  * command block will be released and the queue function will be goosed. If we
940  * are not done then we have to figure out what to do next:
941  *
942  *   a) We can call scsi_mq_requeue_cmd().  The request will be
943  *	unprepared and put back on the queue.  Then a new command will
944  *	be created for it.  This should be used if we made forward
945  *	progress, or if we want to switch from READ(10) to READ(6) for
946  *	example.
947  *
948  *   b) We can call scsi_io_completion_action().  The request will be
949  *	put back on the queue and retried using the same command as
950  *	before, possibly after a delay.
951  *
952  *   c) We can call scsi_end_request() with blk_stat other than
953  *	BLK_STS_OK, to fail the remainder of the request.
954  */
955 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
956 {
957 	int result = cmd->result;
958 	struct request *req = scsi_cmd_to_rq(cmd);
959 	blk_status_t blk_stat = BLK_STS_OK;
960 
961 	if (unlikely(result))	/* a nz result may or may not be an error */
962 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
963 
964 	/*
965 	 * Next deal with any sectors which we were able to correctly
966 	 * handle.
967 	 */
968 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
969 		"%u sectors total, %d bytes done.\n",
970 		blk_rq_sectors(req), good_bytes));
971 
972 	/*
973 	 * Failed, zero length commands always need to drop down
974 	 * to retry code. Fast path should return in this block.
975 	 */
976 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
977 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
978 			return; /* no bytes remaining */
979 	}
980 
981 	/* Kill remainder if no retries. */
982 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
983 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
984 			WARN_ONCE(true,
985 			    "Bytes remaining after failed, no-retry command");
986 		return;
987 	}
988 
989 	/*
990 	 * If there had been no error, but we have leftover bytes in the
991 	 * request just queue the command up again.
992 	 */
993 	if (likely(result == 0))
994 		scsi_mq_requeue_cmd(cmd, 0);
995 	else
996 		scsi_io_completion_action(cmd, result);
997 }
998 
999 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1000 		struct request *rq)
1001 {
1002 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1003 	       !op_is_write(req_op(rq)) &&
1004 	       sdev->host->hostt->dma_need_drain(rq);
1005 }
1006 
1007 /**
1008  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1009  * @cmd: SCSI command data structure to initialize.
1010  *
1011  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1012  * for @cmd.
1013  *
1014  * Returns:
1015  * * BLK_STS_OK       - on success
1016  * * BLK_STS_RESOURCE - if the failure is retryable
1017  * * BLK_STS_IOERR    - if the failure is fatal
1018  */
1019 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1020 {
1021 	struct scsi_device *sdev = cmd->device;
1022 	struct request *rq = scsi_cmd_to_rq(cmd);
1023 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1024 	struct scatterlist *last_sg = NULL;
1025 	blk_status_t ret;
1026 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1027 	int count;
1028 
1029 	if (WARN_ON_ONCE(!nr_segs))
1030 		return BLK_STS_IOERR;
1031 
1032 	/*
1033 	 * Make sure there is space for the drain.  The driver must adjust
1034 	 * max_hw_segments to be prepared for this.
1035 	 */
1036 	if (need_drain)
1037 		nr_segs++;
1038 
1039 	/*
1040 	 * If sg table allocation fails, requeue request later.
1041 	 */
1042 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1043 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1044 		return BLK_STS_RESOURCE;
1045 
1046 	/*
1047 	 * Next, walk the list, and fill in the addresses and sizes of
1048 	 * each segment.
1049 	 */
1050 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1051 
1052 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1053 		unsigned int pad_len =
1054 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1055 
1056 		last_sg->length += pad_len;
1057 		cmd->extra_len += pad_len;
1058 	}
1059 
1060 	if (need_drain) {
1061 		sg_unmark_end(last_sg);
1062 		last_sg = sg_next(last_sg);
1063 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1064 		sg_mark_end(last_sg);
1065 
1066 		cmd->extra_len += sdev->dma_drain_len;
1067 		count++;
1068 	}
1069 
1070 	BUG_ON(count > cmd->sdb.table.nents);
1071 	cmd->sdb.table.nents = count;
1072 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1073 
1074 	if (blk_integrity_rq(rq)) {
1075 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076 		int ivecs;
1077 
1078 		if (WARN_ON_ONCE(!prot_sdb)) {
1079 			/*
1080 			 * This can happen if someone (e.g. multipath)
1081 			 * queues a command to a device on an adapter
1082 			 * that does not support DIX.
1083 			 */
1084 			ret = BLK_STS_IOERR;
1085 			goto out_free_sgtables;
1086 		}
1087 
1088 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1089 
1090 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1091 				prot_sdb->table.sgl,
1092 				SCSI_INLINE_PROT_SG_CNT)) {
1093 			ret = BLK_STS_RESOURCE;
1094 			goto out_free_sgtables;
1095 		}
1096 
1097 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098 						prot_sdb->table.sgl);
1099 		BUG_ON(count > ivecs);
1100 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1101 
1102 		cmd->prot_sdb = prot_sdb;
1103 		cmd->prot_sdb->table.nents = count;
1104 	}
1105 
1106 	return BLK_STS_OK;
1107 out_free_sgtables:
1108 	scsi_free_sgtables(cmd);
1109 	return ret;
1110 }
1111 EXPORT_SYMBOL(scsi_alloc_sgtables);
1112 
1113 /**
1114  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1115  * @rq: Request associated with the SCSI command to be initialized.
1116  *
1117  * This function initializes the members of struct scsi_cmnd that must be
1118  * initialized before request processing starts and that won't be
1119  * reinitialized if a SCSI command is requeued.
1120  */
1121 static void scsi_initialize_rq(struct request *rq)
1122 {
1123 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1124 
1125 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1126 	cmd->cmd_len = MAX_COMMAND_SIZE;
1127 	cmd->sense_len = 0;
1128 	init_rcu_head(&cmd->rcu);
1129 	cmd->jiffies_at_alloc = jiffies;
1130 	cmd->retries = 0;
1131 }
1132 
1133 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1134 				   blk_mq_req_flags_t flags)
1135 {
1136 	struct request *rq;
1137 
1138 	rq = blk_mq_alloc_request(q, opf, flags);
1139 	if (!IS_ERR(rq))
1140 		scsi_initialize_rq(rq);
1141 	return rq;
1142 }
1143 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1144 
1145 /*
1146  * Only called when the request isn't completed by SCSI, and not freed by
1147  * SCSI
1148  */
1149 static void scsi_cleanup_rq(struct request *rq)
1150 {
1151 	if (rq->rq_flags & RQF_DONTPREP) {
1152 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1153 		rq->rq_flags &= ~RQF_DONTPREP;
1154 	}
1155 }
1156 
1157 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1158 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1159 {
1160 	struct request *rq = scsi_cmd_to_rq(cmd);
1161 
1162 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1163 		cmd->flags |= SCMD_INITIALIZED;
1164 		scsi_initialize_rq(rq);
1165 	}
1166 
1167 	cmd->device = dev;
1168 	INIT_LIST_HEAD(&cmd->eh_entry);
1169 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170 }
1171 
1172 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173 		struct request *req)
1174 {
1175 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176 
1177 	/*
1178 	 * Passthrough requests may transfer data, in which case they must
1179 	 * a bio attached to them.  Or they might contain a SCSI command
1180 	 * that does not transfer data, in which case they may optionally
1181 	 * submit a request without an attached bio.
1182 	 */
1183 	if (req->bio) {
1184 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1185 		if (unlikely(ret != BLK_STS_OK))
1186 			return ret;
1187 	} else {
1188 		BUG_ON(blk_rq_bytes(req));
1189 
1190 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191 	}
1192 
1193 	cmd->transfersize = blk_rq_bytes(req);
1194 	return BLK_STS_OK;
1195 }
1196 
1197 static blk_status_t
1198 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1199 {
1200 	switch (sdev->sdev_state) {
1201 	case SDEV_CREATED:
1202 		return BLK_STS_OK;
1203 	case SDEV_OFFLINE:
1204 	case SDEV_TRANSPORT_OFFLINE:
1205 		/*
1206 		 * If the device is offline we refuse to process any
1207 		 * commands.  The device must be brought online
1208 		 * before trying any recovery commands.
1209 		 */
1210 		if (!sdev->offline_already) {
1211 			sdev->offline_already = true;
1212 			sdev_printk(KERN_ERR, sdev,
1213 				    "rejecting I/O to offline device\n");
1214 		}
1215 		return BLK_STS_IOERR;
1216 	case SDEV_DEL:
1217 		/*
1218 		 * If the device is fully deleted, we refuse to
1219 		 * process any commands as well.
1220 		 */
1221 		sdev_printk(KERN_ERR, sdev,
1222 			    "rejecting I/O to dead device\n");
1223 		return BLK_STS_IOERR;
1224 	case SDEV_BLOCK:
1225 	case SDEV_CREATED_BLOCK:
1226 		return BLK_STS_RESOURCE;
1227 	case SDEV_QUIESCE:
1228 		/*
1229 		 * If the device is blocked we only accept power management
1230 		 * commands.
1231 		 */
1232 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1233 			return BLK_STS_RESOURCE;
1234 		return BLK_STS_OK;
1235 	default:
1236 		/*
1237 		 * For any other not fully online state we only allow
1238 		 * power management commands.
1239 		 */
1240 		if (req && !(req->rq_flags & RQF_PM))
1241 			return BLK_STS_OFFLINE;
1242 		return BLK_STS_OK;
1243 	}
1244 }
1245 
1246 /*
1247  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1248  * and return the token else return -1.
1249  */
1250 static inline int scsi_dev_queue_ready(struct request_queue *q,
1251 				  struct scsi_device *sdev)
1252 {
1253 	int token;
1254 
1255 	token = sbitmap_get(&sdev->budget_map);
1256 	if (atomic_read(&sdev->device_blocked)) {
1257 		if (token < 0)
1258 			goto out;
1259 
1260 		if (scsi_device_busy(sdev) > 1)
1261 			goto out_dec;
1262 
1263 		/*
1264 		 * unblock after device_blocked iterates to zero
1265 		 */
1266 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1267 			goto out_dec;
1268 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1269 				   "unblocking device at zero depth\n"));
1270 	}
1271 
1272 	return token;
1273 out_dec:
1274 	if (token >= 0)
1275 		sbitmap_put(&sdev->budget_map, token);
1276 out:
1277 	return -1;
1278 }
1279 
1280 /*
1281  * scsi_target_queue_ready: checks if there we can send commands to target
1282  * @sdev: scsi device on starget to check.
1283  */
1284 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1285 					   struct scsi_device *sdev)
1286 {
1287 	struct scsi_target *starget = scsi_target(sdev);
1288 	unsigned int busy;
1289 
1290 	if (starget->single_lun) {
1291 		spin_lock_irq(shost->host_lock);
1292 		if (starget->starget_sdev_user &&
1293 		    starget->starget_sdev_user != sdev) {
1294 			spin_unlock_irq(shost->host_lock);
1295 			return 0;
1296 		}
1297 		starget->starget_sdev_user = sdev;
1298 		spin_unlock_irq(shost->host_lock);
1299 	}
1300 
1301 	if (starget->can_queue <= 0)
1302 		return 1;
1303 
1304 	busy = atomic_inc_return(&starget->target_busy) - 1;
1305 	if (atomic_read(&starget->target_blocked) > 0) {
1306 		if (busy)
1307 			goto starved;
1308 
1309 		/*
1310 		 * unblock after target_blocked iterates to zero
1311 		 */
1312 		if (atomic_dec_return(&starget->target_blocked) > 0)
1313 			goto out_dec;
1314 
1315 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1316 				 "unblocking target at zero depth\n"));
1317 	}
1318 
1319 	if (busy >= starget->can_queue)
1320 		goto starved;
1321 
1322 	return 1;
1323 
1324 starved:
1325 	spin_lock_irq(shost->host_lock);
1326 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1327 	spin_unlock_irq(shost->host_lock);
1328 out_dec:
1329 	if (starget->can_queue > 0)
1330 		atomic_dec(&starget->target_busy);
1331 	return 0;
1332 }
1333 
1334 /*
1335  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1336  * return 0. We must end up running the queue again whenever 0 is
1337  * returned, else IO can hang.
1338  */
1339 static inline int scsi_host_queue_ready(struct request_queue *q,
1340 				   struct Scsi_Host *shost,
1341 				   struct scsi_device *sdev,
1342 				   struct scsi_cmnd *cmd)
1343 {
1344 	if (atomic_read(&shost->host_blocked) > 0) {
1345 		if (scsi_host_busy(shost) > 0)
1346 			goto starved;
1347 
1348 		/*
1349 		 * unblock after host_blocked iterates to zero
1350 		 */
1351 		if (atomic_dec_return(&shost->host_blocked) > 0)
1352 			goto out_dec;
1353 
1354 		SCSI_LOG_MLQUEUE(3,
1355 			shost_printk(KERN_INFO, shost,
1356 				     "unblocking host at zero depth\n"));
1357 	}
1358 
1359 	if (shost->host_self_blocked)
1360 		goto starved;
1361 
1362 	/* We're OK to process the command, so we can't be starved */
1363 	if (!list_empty(&sdev->starved_entry)) {
1364 		spin_lock_irq(shost->host_lock);
1365 		if (!list_empty(&sdev->starved_entry))
1366 			list_del_init(&sdev->starved_entry);
1367 		spin_unlock_irq(shost->host_lock);
1368 	}
1369 
1370 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1371 
1372 	return 1;
1373 
1374 starved:
1375 	spin_lock_irq(shost->host_lock);
1376 	if (list_empty(&sdev->starved_entry))
1377 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1378 	spin_unlock_irq(shost->host_lock);
1379 out_dec:
1380 	scsi_dec_host_busy(shost, cmd);
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Busy state exporting function for request stacking drivers.
1386  *
1387  * For efficiency, no lock is taken to check the busy state of
1388  * shost/starget/sdev, since the returned value is not guaranteed and
1389  * may be changed after request stacking drivers call the function,
1390  * regardless of taking lock or not.
1391  *
1392  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1393  * needs to return 'not busy'. Otherwise, request stacking drivers
1394  * may hold requests forever.
1395  */
1396 static bool scsi_mq_lld_busy(struct request_queue *q)
1397 {
1398 	struct scsi_device *sdev = q->queuedata;
1399 	struct Scsi_Host *shost;
1400 
1401 	if (blk_queue_dying(q))
1402 		return false;
1403 
1404 	shost = sdev->host;
1405 
1406 	/*
1407 	 * Ignore host/starget busy state.
1408 	 * Since block layer does not have a concept of fairness across
1409 	 * multiple queues, congestion of host/starget needs to be handled
1410 	 * in SCSI layer.
1411 	 */
1412 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1413 		return true;
1414 
1415 	return false;
1416 }
1417 
1418 /*
1419  * Block layer request completion callback. May be called from interrupt
1420  * context.
1421  */
1422 static void scsi_complete(struct request *rq)
1423 {
1424 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1425 	enum scsi_disposition disposition;
1426 
1427 	INIT_LIST_HEAD(&cmd->eh_entry);
1428 
1429 	atomic_inc(&cmd->device->iodone_cnt);
1430 	if (cmd->result)
1431 		atomic_inc(&cmd->device->ioerr_cnt);
1432 
1433 	disposition = scsi_decide_disposition(cmd);
1434 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1435 		disposition = SUCCESS;
1436 
1437 	scsi_log_completion(cmd, disposition);
1438 
1439 	switch (disposition) {
1440 	case SUCCESS:
1441 		scsi_finish_command(cmd);
1442 		break;
1443 	case NEEDS_RETRY:
1444 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1445 		break;
1446 	case ADD_TO_MLQUEUE:
1447 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1448 		break;
1449 	default:
1450 		scsi_eh_scmd_add(cmd);
1451 		break;
1452 	}
1453 }
1454 
1455 /**
1456  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1457  * @cmd: command block we are dispatching.
1458  *
1459  * Return: nonzero return request was rejected and device's queue needs to be
1460  * plugged.
1461  */
1462 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1463 {
1464 	struct Scsi_Host *host = cmd->device->host;
1465 	int rtn = 0;
1466 
1467 	/* check if the device is still usable */
1468 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470 		 * returns an immediate error upwards, and signals
1471 		 * that the device is no longer present */
1472 		cmd->result = DID_NO_CONNECT << 16;
1473 		goto done;
1474 	}
1475 
1476 	/* Check to see if the scsi lld made this device blocked. */
1477 	if (unlikely(scsi_device_blocked(cmd->device))) {
1478 		/*
1479 		 * in blocked state, the command is just put back on
1480 		 * the device queue.  The suspend state has already
1481 		 * blocked the queue so future requests should not
1482 		 * occur until the device transitions out of the
1483 		 * suspend state.
1484 		 */
1485 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486 			"queuecommand : device blocked\n"));
1487 		return SCSI_MLQUEUE_DEVICE_BUSY;
1488 	}
1489 
1490 	/* Store the LUN value in cmnd, if needed. */
1491 	if (cmd->device->lun_in_cdb)
1492 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493 			       (cmd->device->lun << 5 & 0xe0);
1494 
1495 	scsi_log_send(cmd);
1496 
1497 	/*
1498 	 * Before we queue this command, check if the command
1499 	 * length exceeds what the host adapter can handle.
1500 	 */
1501 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503 			       "queuecommand : command too long. "
1504 			       "cdb_size=%d host->max_cmd_len=%d\n",
1505 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1506 		cmd->result = (DID_ABORT << 16);
1507 		goto done;
1508 	}
1509 
1510 	if (unlikely(host->shost_state == SHOST_DEL)) {
1511 		cmd->result = (DID_NO_CONNECT << 16);
1512 		goto done;
1513 
1514 	}
1515 
1516 	trace_scsi_dispatch_cmd_start(cmd);
1517 	rtn = host->hostt->queuecommand(host, cmd);
1518 	if (rtn) {
1519 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1520 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1523 
1524 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525 			"queuecommand : request rejected\n"));
1526 	}
1527 
1528 	return rtn;
1529  done:
1530 	scsi_done(cmd);
1531 	return 0;
1532 }
1533 
1534 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536 {
1537 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538 		sizeof(struct scatterlist);
1539 }
1540 
1541 static blk_status_t scsi_prepare_cmd(struct request *req)
1542 {
1543 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544 	struct scsi_device *sdev = req->q->queuedata;
1545 	struct Scsi_Host *shost = sdev->host;
1546 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547 	struct scatterlist *sg;
1548 
1549 	scsi_init_command(sdev, cmd);
1550 
1551 	cmd->eh_eflags = 0;
1552 	cmd->prot_type = 0;
1553 	cmd->prot_flags = 0;
1554 	cmd->submitter = 0;
1555 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1556 	cmd->underflow = 0;
1557 	cmd->transfersize = 0;
1558 	cmd->host_scribble = NULL;
1559 	cmd->result = 0;
1560 	cmd->extra_len = 0;
1561 	cmd->state = 0;
1562 	if (in_flight)
1563 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1564 
1565 	/*
1566 	 * Only clear the driver-private command data if the LLD does not supply
1567 	 * a function to initialize that data.
1568 	 */
1569 	if (!shost->hostt->init_cmd_priv)
1570 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1571 
1572 	cmd->prot_op = SCSI_PROT_NORMAL;
1573 	if (blk_rq_bytes(req))
1574 		cmd->sc_data_direction = rq_dma_dir(req);
1575 	else
1576 		cmd->sc_data_direction = DMA_NONE;
1577 
1578 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1579 	cmd->sdb.table.sgl = sg;
1580 
1581 	if (scsi_host_get_prot(shost)) {
1582 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1583 
1584 		cmd->prot_sdb->table.sgl =
1585 			(struct scatterlist *)(cmd->prot_sdb + 1);
1586 	}
1587 
1588 	/*
1589 	 * Special handling for passthrough commands, which don't go to the ULP
1590 	 * at all:
1591 	 */
1592 	if (blk_rq_is_passthrough(req))
1593 		return scsi_setup_scsi_cmnd(sdev, req);
1594 
1595 	if (sdev->handler && sdev->handler->prep_fn) {
1596 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1597 
1598 		if (ret != BLK_STS_OK)
1599 			return ret;
1600 	}
1601 
1602 	/* Usually overridden by the ULP */
1603 	cmd->allowed = 0;
1604 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1605 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1606 }
1607 
1608 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1609 {
1610 	struct request *req = scsi_cmd_to_rq(cmd);
1611 
1612 	switch (cmd->submitter) {
1613 	case SUBMITTED_BY_BLOCK_LAYER:
1614 		break;
1615 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1616 		return scsi_eh_done(cmd);
1617 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1618 		return;
1619 	}
1620 
1621 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1622 		return;
1623 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1624 		return;
1625 	trace_scsi_dispatch_cmd_done(cmd);
1626 
1627 	if (complete_directly)
1628 		blk_mq_complete_request_direct(req, scsi_complete);
1629 	else
1630 		blk_mq_complete_request(req);
1631 }
1632 
1633 void scsi_done(struct scsi_cmnd *cmd)
1634 {
1635 	scsi_done_internal(cmd, false);
1636 }
1637 EXPORT_SYMBOL(scsi_done);
1638 
1639 void scsi_done_direct(struct scsi_cmnd *cmd)
1640 {
1641 	scsi_done_internal(cmd, true);
1642 }
1643 EXPORT_SYMBOL(scsi_done_direct);
1644 
1645 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1646 {
1647 	struct scsi_device *sdev = q->queuedata;
1648 
1649 	sbitmap_put(&sdev->budget_map, budget_token);
1650 }
1651 
1652 /*
1653  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1654  * not change behaviour from the previous unplug mechanism, experimentation
1655  * may prove this needs changing.
1656  */
1657 #define SCSI_QUEUE_DELAY 3
1658 
1659 static int scsi_mq_get_budget(struct request_queue *q)
1660 {
1661 	struct scsi_device *sdev = q->queuedata;
1662 	int token = scsi_dev_queue_ready(q, sdev);
1663 
1664 	if (token >= 0)
1665 		return token;
1666 
1667 	atomic_inc(&sdev->restarts);
1668 
1669 	/*
1670 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1671 	 * .restarts must be incremented before .device_busy is read because the
1672 	 * code in scsi_run_queue_async() depends on the order of these operations.
1673 	 */
1674 	smp_mb__after_atomic();
1675 
1676 	/*
1677 	 * If all in-flight requests originated from this LUN are completed
1678 	 * before reading .device_busy, sdev->device_busy will be observed as
1679 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1680 	 * soon. Otherwise, completion of one of these requests will observe
1681 	 * the .restarts flag, and the request queue will be run for handling
1682 	 * this request, see scsi_end_request().
1683 	 */
1684 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1685 				!scsi_device_blocked(sdev)))
1686 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1687 	return -1;
1688 }
1689 
1690 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1691 {
1692 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1693 
1694 	cmd->budget_token = token;
1695 }
1696 
1697 static int scsi_mq_get_rq_budget_token(struct request *req)
1698 {
1699 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1700 
1701 	return cmd->budget_token;
1702 }
1703 
1704 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1705 			 const struct blk_mq_queue_data *bd)
1706 {
1707 	struct request *req = bd->rq;
1708 	struct request_queue *q = req->q;
1709 	struct scsi_device *sdev = q->queuedata;
1710 	struct Scsi_Host *shost = sdev->host;
1711 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1712 	blk_status_t ret;
1713 	int reason;
1714 
1715 	WARN_ON_ONCE(cmd->budget_token < 0);
1716 
1717 	/*
1718 	 * If the device is not in running state we will reject some or all
1719 	 * commands.
1720 	 */
1721 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1722 		ret = scsi_device_state_check(sdev, req);
1723 		if (ret != BLK_STS_OK)
1724 			goto out_put_budget;
1725 	}
1726 
1727 	ret = BLK_STS_RESOURCE;
1728 	if (!scsi_target_queue_ready(shost, sdev))
1729 		goto out_put_budget;
1730 	if (unlikely(scsi_host_in_recovery(shost))) {
1731 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1732 			ret = BLK_STS_OFFLINE;
1733 		goto out_dec_target_busy;
1734 	}
1735 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1736 		goto out_dec_target_busy;
1737 
1738 	if (!(req->rq_flags & RQF_DONTPREP)) {
1739 		ret = scsi_prepare_cmd(req);
1740 		if (ret != BLK_STS_OK)
1741 			goto out_dec_host_busy;
1742 		req->rq_flags |= RQF_DONTPREP;
1743 	} else {
1744 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1745 	}
1746 
1747 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1748 	if (sdev->simple_tags)
1749 		cmd->flags |= SCMD_TAGGED;
1750 	if (bd->last)
1751 		cmd->flags |= SCMD_LAST;
1752 
1753 	scsi_set_resid(cmd, 0);
1754 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1755 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1756 
1757 	blk_mq_start_request(req);
1758 	reason = scsi_dispatch_cmd(cmd);
1759 	if (reason) {
1760 		scsi_set_blocked(cmd, reason);
1761 		ret = BLK_STS_RESOURCE;
1762 		goto out_dec_host_busy;
1763 	}
1764 
1765 	atomic_inc(&cmd->device->iorequest_cnt);
1766 	return BLK_STS_OK;
1767 
1768 out_dec_host_busy:
1769 	scsi_dec_host_busy(shost, cmd);
1770 out_dec_target_busy:
1771 	if (scsi_target(sdev)->can_queue > 0)
1772 		atomic_dec(&scsi_target(sdev)->target_busy);
1773 out_put_budget:
1774 	scsi_mq_put_budget(q, cmd->budget_token);
1775 	cmd->budget_token = -1;
1776 	switch (ret) {
1777 	case BLK_STS_OK:
1778 		break;
1779 	case BLK_STS_RESOURCE:
1780 	case BLK_STS_ZONE_RESOURCE:
1781 		if (scsi_device_blocked(sdev))
1782 			ret = BLK_STS_DEV_RESOURCE;
1783 		break;
1784 	case BLK_STS_AGAIN:
1785 		cmd->result = DID_BUS_BUSY << 16;
1786 		if (req->rq_flags & RQF_DONTPREP)
1787 			scsi_mq_uninit_cmd(cmd);
1788 		break;
1789 	default:
1790 		if (unlikely(!scsi_device_online(sdev)))
1791 			cmd->result = DID_NO_CONNECT << 16;
1792 		else
1793 			cmd->result = DID_ERROR << 16;
1794 		/*
1795 		 * Make sure to release all allocated resources when
1796 		 * we hit an error, as we will never see this command
1797 		 * again.
1798 		 */
1799 		if (req->rq_flags & RQF_DONTPREP)
1800 			scsi_mq_uninit_cmd(cmd);
1801 		scsi_run_queue_async(sdev);
1802 		break;
1803 	}
1804 	return ret;
1805 }
1806 
1807 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1808 				unsigned int hctx_idx, unsigned int numa_node)
1809 {
1810 	struct Scsi_Host *shost = set->driver_data;
1811 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1812 	struct scatterlist *sg;
1813 	int ret = 0;
1814 
1815 	cmd->sense_buffer =
1816 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1817 	if (!cmd->sense_buffer)
1818 		return -ENOMEM;
1819 
1820 	if (scsi_host_get_prot(shost)) {
1821 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1822 			shost->hostt->cmd_size;
1823 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1824 	}
1825 
1826 	if (shost->hostt->init_cmd_priv) {
1827 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1828 		if (ret < 0)
1829 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830 	}
1831 
1832 	return ret;
1833 }
1834 
1835 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1836 				 unsigned int hctx_idx)
1837 {
1838 	struct Scsi_Host *shost = set->driver_data;
1839 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1840 
1841 	if (shost->hostt->exit_cmd_priv)
1842 		shost->hostt->exit_cmd_priv(shost, cmd);
1843 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1844 }
1845 
1846 
1847 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1848 {
1849 	struct Scsi_Host *shost = hctx->driver_data;
1850 
1851 	if (shost->hostt->mq_poll)
1852 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1853 
1854 	return 0;
1855 }
1856 
1857 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858 			  unsigned int hctx_idx)
1859 {
1860 	struct Scsi_Host *shost = data;
1861 
1862 	hctx->driver_data = shost;
1863 	return 0;
1864 }
1865 
1866 static void scsi_map_queues(struct blk_mq_tag_set *set)
1867 {
1868 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1869 
1870 	if (shost->hostt->map_queues)
1871 		return shost->hostt->map_queues(shost);
1872 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1873 }
1874 
1875 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1876 {
1877 	struct device *dev = shost->dma_dev;
1878 
1879 	/*
1880 	 * this limit is imposed by hardware restrictions
1881 	 */
1882 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1883 					SG_MAX_SEGMENTS));
1884 
1885 	if (scsi_host_prot_dma(shost)) {
1886 		shost->sg_prot_tablesize =
1887 			min_not_zero(shost->sg_prot_tablesize,
1888 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1889 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1890 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1891 	}
1892 
1893 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1894 	blk_queue_segment_boundary(q, shost->dma_boundary);
1895 	dma_set_seg_boundary(dev, shost->dma_boundary);
1896 
1897 	blk_queue_max_segment_size(q, shost->max_segment_size);
1898 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1899 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1900 
1901 	/*
1902 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1903 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1904 	 * which is set by the platform.
1905 	 *
1906 	 * Devices that require a bigger alignment can increase it later.
1907 	 */
1908 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1909 }
1910 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1911 
1912 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1913 	.get_budget	= scsi_mq_get_budget,
1914 	.put_budget	= scsi_mq_put_budget,
1915 	.queue_rq	= scsi_queue_rq,
1916 	.complete	= scsi_complete,
1917 	.timeout	= scsi_timeout,
1918 #ifdef CONFIG_BLK_DEBUG_FS
1919 	.show_rq	= scsi_show_rq,
1920 #endif
1921 	.init_request	= scsi_mq_init_request,
1922 	.exit_request	= scsi_mq_exit_request,
1923 	.cleanup_rq	= scsi_cleanup_rq,
1924 	.busy		= scsi_mq_lld_busy,
1925 	.map_queues	= scsi_map_queues,
1926 	.init_hctx	= scsi_init_hctx,
1927 	.poll		= scsi_mq_poll,
1928 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1929 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1930 };
1931 
1932 
1933 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1934 {
1935 	struct Scsi_Host *shost = hctx->driver_data;
1936 
1937 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1938 }
1939 
1940 static const struct blk_mq_ops scsi_mq_ops = {
1941 	.get_budget	= scsi_mq_get_budget,
1942 	.put_budget	= scsi_mq_put_budget,
1943 	.queue_rq	= scsi_queue_rq,
1944 	.commit_rqs	= scsi_commit_rqs,
1945 	.complete	= scsi_complete,
1946 	.timeout	= scsi_timeout,
1947 #ifdef CONFIG_BLK_DEBUG_FS
1948 	.show_rq	= scsi_show_rq,
1949 #endif
1950 	.init_request	= scsi_mq_init_request,
1951 	.exit_request	= scsi_mq_exit_request,
1952 	.cleanup_rq	= scsi_cleanup_rq,
1953 	.busy		= scsi_mq_lld_busy,
1954 	.map_queues	= scsi_map_queues,
1955 	.init_hctx	= scsi_init_hctx,
1956 	.poll		= scsi_mq_poll,
1957 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1958 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1959 };
1960 
1961 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1962 {
1963 	unsigned int cmd_size, sgl_size;
1964 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1965 
1966 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1967 				scsi_mq_inline_sgl_size(shost));
1968 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1969 	if (scsi_host_get_prot(shost))
1970 		cmd_size += sizeof(struct scsi_data_buffer) +
1971 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1972 
1973 	memset(tag_set, 0, sizeof(*tag_set));
1974 	if (shost->hostt->commit_rqs)
1975 		tag_set->ops = &scsi_mq_ops;
1976 	else
1977 		tag_set->ops = &scsi_mq_ops_no_commit;
1978 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1979 	tag_set->nr_maps = shost->nr_maps ? : 1;
1980 	tag_set->queue_depth = shost->can_queue;
1981 	tag_set->cmd_size = cmd_size;
1982 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1983 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1984 	tag_set->flags |=
1985 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1986 	tag_set->driver_data = shost;
1987 	if (shost->host_tagset)
1988 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1989 
1990 	return blk_mq_alloc_tag_set(tag_set);
1991 }
1992 
1993 void scsi_mq_free_tags(struct kref *kref)
1994 {
1995 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1996 					       tagset_refcnt);
1997 
1998 	blk_mq_free_tag_set(&shost->tag_set);
1999 	complete(&shost->tagset_freed);
2000 }
2001 
2002 /**
2003  * scsi_device_from_queue - return sdev associated with a request_queue
2004  * @q: The request queue to return the sdev from
2005  *
2006  * Return the sdev associated with a request queue or NULL if the
2007  * request_queue does not reference a SCSI device.
2008  */
2009 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2010 {
2011 	struct scsi_device *sdev = NULL;
2012 
2013 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2014 	    q->mq_ops == &scsi_mq_ops)
2015 		sdev = q->queuedata;
2016 	if (!sdev || !get_device(&sdev->sdev_gendev))
2017 		sdev = NULL;
2018 
2019 	return sdev;
2020 }
2021 /*
2022  * pktcdvd should have been integrated into the SCSI layers, but for historical
2023  * reasons like the old IDE driver it isn't.  This export allows it to safely
2024  * probe if a given device is a SCSI one and only attach to that.
2025  */
2026 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2027 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2028 #endif
2029 
2030 /**
2031  * scsi_block_requests - Utility function used by low-level drivers to prevent
2032  * further commands from being queued to the device.
2033  * @shost:  host in question
2034  *
2035  * There is no timer nor any other means by which the requests get unblocked
2036  * other than the low-level driver calling scsi_unblock_requests().
2037  */
2038 void scsi_block_requests(struct Scsi_Host *shost)
2039 {
2040 	shost->host_self_blocked = 1;
2041 }
2042 EXPORT_SYMBOL(scsi_block_requests);
2043 
2044 /**
2045  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2046  * further commands to be queued to the device.
2047  * @shost:  host in question
2048  *
2049  * There is no timer nor any other means by which the requests get unblocked
2050  * other than the low-level driver calling scsi_unblock_requests(). This is done
2051  * as an API function so that changes to the internals of the scsi mid-layer
2052  * won't require wholesale changes to drivers that use this feature.
2053  */
2054 void scsi_unblock_requests(struct Scsi_Host *shost)
2055 {
2056 	shost->host_self_blocked = 0;
2057 	scsi_run_host_queues(shost);
2058 }
2059 EXPORT_SYMBOL(scsi_unblock_requests);
2060 
2061 void scsi_exit_queue(void)
2062 {
2063 	kmem_cache_destroy(scsi_sense_cache);
2064 }
2065 
2066 /**
2067  *	scsi_mode_select - issue a mode select
2068  *	@sdev:	SCSI device to be queried
2069  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2070  *	@sp:	Save page bit (0 == don't save, 1 == save)
2071  *	@buffer: request buffer (may not be smaller than eight bytes)
2072  *	@len:	length of request buffer.
2073  *	@timeout: command timeout
2074  *	@retries: number of retries before failing
2075  *	@data: returns a structure abstracting the mode header data
2076  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2077  *		must be SCSI_SENSE_BUFFERSIZE big.
2078  *
2079  *	Returns zero if successful; negative error number or scsi
2080  *	status on error
2081  *
2082  */
2083 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2084 		     unsigned char *buffer, int len, int timeout, int retries,
2085 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2086 {
2087 	unsigned char cmd[10];
2088 	unsigned char *real_buffer;
2089 	int ret;
2090 
2091 	memset(cmd, 0, sizeof(cmd));
2092 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2093 
2094 	/*
2095 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2096 	 * and the mode select header cannot fit within the maximumm 255 bytes
2097 	 * of the MODE SELECT(6) command.
2098 	 */
2099 	if (sdev->use_10_for_ms ||
2100 	    len + 4 > 255 ||
2101 	    data->block_descriptor_length > 255) {
2102 		if (len > 65535 - 8)
2103 			return -EINVAL;
2104 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2105 		if (!real_buffer)
2106 			return -ENOMEM;
2107 		memcpy(real_buffer + 8, buffer, len);
2108 		len += 8;
2109 		real_buffer[0] = 0;
2110 		real_buffer[1] = 0;
2111 		real_buffer[2] = data->medium_type;
2112 		real_buffer[3] = data->device_specific;
2113 		real_buffer[4] = data->longlba ? 0x01 : 0;
2114 		real_buffer[5] = 0;
2115 		put_unaligned_be16(data->block_descriptor_length,
2116 				   &real_buffer[6]);
2117 
2118 		cmd[0] = MODE_SELECT_10;
2119 		put_unaligned_be16(len, &cmd[7]);
2120 	} else {
2121 		if (data->longlba)
2122 			return -EINVAL;
2123 
2124 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2125 		if (!real_buffer)
2126 			return -ENOMEM;
2127 		memcpy(real_buffer + 4, buffer, len);
2128 		len += 4;
2129 		real_buffer[0] = 0;
2130 		real_buffer[1] = data->medium_type;
2131 		real_buffer[2] = data->device_specific;
2132 		real_buffer[3] = data->block_descriptor_length;
2133 
2134 		cmd[0] = MODE_SELECT;
2135 		cmd[4] = len;
2136 	}
2137 
2138 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2139 			       sshdr, timeout, retries, NULL);
2140 	kfree(real_buffer);
2141 	return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(scsi_mode_select);
2144 
2145 /**
2146  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2147  *	@sdev:	SCSI device to be queried
2148  *	@dbd:	set to prevent mode sense from returning block descriptors
2149  *	@modepage: mode page being requested
2150  *	@buffer: request buffer (may not be smaller than eight bytes)
2151  *	@len:	length of request buffer.
2152  *	@timeout: command timeout
2153  *	@retries: number of retries before failing
2154  *	@data: returns a structure abstracting the mode header data
2155  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2156  *		must be SCSI_SENSE_BUFFERSIZE big.
2157  *
2158  *	Returns zero if successful, or a negative error number on failure
2159  */
2160 int
2161 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2162 		  unsigned char *buffer, int len, int timeout, int retries,
2163 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2164 {
2165 	unsigned char cmd[12];
2166 	int use_10_for_ms;
2167 	int header_length;
2168 	int result, retry_count = retries;
2169 	struct scsi_sense_hdr my_sshdr;
2170 
2171 	memset(data, 0, sizeof(*data));
2172 	memset(&cmd[0], 0, 12);
2173 
2174 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2175 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2176 	cmd[2] = modepage;
2177 
2178 	/* caller might not be interested in sense, but we need it */
2179 	if (!sshdr)
2180 		sshdr = &my_sshdr;
2181 
2182  retry:
2183 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2184 
2185 	if (use_10_for_ms) {
2186 		if (len < 8 || len > 65535)
2187 			return -EINVAL;
2188 
2189 		cmd[0] = MODE_SENSE_10;
2190 		put_unaligned_be16(len, &cmd[7]);
2191 		header_length = 8;
2192 	} else {
2193 		if (len < 4)
2194 			return -EINVAL;
2195 
2196 		cmd[0] = MODE_SENSE;
2197 		cmd[4] = len;
2198 		header_length = 4;
2199 	}
2200 
2201 	memset(buffer, 0, len);
2202 
2203 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2204 				  sshdr, timeout, retries, NULL);
2205 	if (result < 0)
2206 		return result;
2207 
2208 	/* This code looks awful: what it's doing is making sure an
2209 	 * ILLEGAL REQUEST sense return identifies the actual command
2210 	 * byte as the problem.  MODE_SENSE commands can return
2211 	 * ILLEGAL REQUEST if the code page isn't supported */
2212 
2213 	if (!scsi_status_is_good(result)) {
2214 		if (scsi_sense_valid(sshdr)) {
2215 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2216 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2217 				/*
2218 				 * Invalid command operation code: retry using
2219 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2220 				 * request, except if the request mode page is
2221 				 * too large for MODE SENSE single byte
2222 				 * allocation length field.
2223 				 */
2224 				if (use_10_for_ms) {
2225 					if (len > 255)
2226 						return -EIO;
2227 					sdev->use_10_for_ms = 0;
2228 					goto retry;
2229 				}
2230 			}
2231 			if (scsi_status_is_check_condition(result) &&
2232 			    sshdr->sense_key == UNIT_ATTENTION &&
2233 			    retry_count) {
2234 				retry_count--;
2235 				goto retry;
2236 			}
2237 		}
2238 		return -EIO;
2239 	}
2240 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2241 		     (modepage == 6 || modepage == 8))) {
2242 		/* Initio breakage? */
2243 		header_length = 0;
2244 		data->length = 13;
2245 		data->medium_type = 0;
2246 		data->device_specific = 0;
2247 		data->longlba = 0;
2248 		data->block_descriptor_length = 0;
2249 	} else if (use_10_for_ms) {
2250 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2251 		data->medium_type = buffer[2];
2252 		data->device_specific = buffer[3];
2253 		data->longlba = buffer[4] & 0x01;
2254 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2255 	} else {
2256 		data->length = buffer[0] + 1;
2257 		data->medium_type = buffer[1];
2258 		data->device_specific = buffer[2];
2259 		data->block_descriptor_length = buffer[3];
2260 	}
2261 	data->header_length = header_length;
2262 
2263 	return 0;
2264 }
2265 EXPORT_SYMBOL(scsi_mode_sense);
2266 
2267 /**
2268  *	scsi_test_unit_ready - test if unit is ready
2269  *	@sdev:	scsi device to change the state of.
2270  *	@timeout: command timeout
2271  *	@retries: number of retries before failing
2272  *	@sshdr: outpout pointer for decoded sense information.
2273  *
2274  *	Returns zero if unsuccessful or an error if TUR failed.  For
2275  *	removable media, UNIT_ATTENTION sets ->changed flag.
2276  **/
2277 int
2278 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2279 		     struct scsi_sense_hdr *sshdr)
2280 {
2281 	char cmd[] = {
2282 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2283 	};
2284 	int result;
2285 
2286 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2287 	do {
2288 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2289 					  timeout, 1, NULL);
2290 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2291 		    sshdr->sense_key == UNIT_ATTENTION)
2292 			sdev->changed = 1;
2293 	} while (scsi_sense_valid(sshdr) &&
2294 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2295 
2296 	return result;
2297 }
2298 EXPORT_SYMBOL(scsi_test_unit_ready);
2299 
2300 /**
2301  *	scsi_device_set_state - Take the given device through the device state model.
2302  *	@sdev:	scsi device to change the state of.
2303  *	@state:	state to change to.
2304  *
2305  *	Returns zero if successful or an error if the requested
2306  *	transition is illegal.
2307  */
2308 int
2309 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2310 {
2311 	enum scsi_device_state oldstate = sdev->sdev_state;
2312 
2313 	if (state == oldstate)
2314 		return 0;
2315 
2316 	switch (state) {
2317 	case SDEV_CREATED:
2318 		switch (oldstate) {
2319 		case SDEV_CREATED_BLOCK:
2320 			break;
2321 		default:
2322 			goto illegal;
2323 		}
2324 		break;
2325 
2326 	case SDEV_RUNNING:
2327 		switch (oldstate) {
2328 		case SDEV_CREATED:
2329 		case SDEV_OFFLINE:
2330 		case SDEV_TRANSPORT_OFFLINE:
2331 		case SDEV_QUIESCE:
2332 		case SDEV_BLOCK:
2333 			break;
2334 		default:
2335 			goto illegal;
2336 		}
2337 		break;
2338 
2339 	case SDEV_QUIESCE:
2340 		switch (oldstate) {
2341 		case SDEV_RUNNING:
2342 		case SDEV_OFFLINE:
2343 		case SDEV_TRANSPORT_OFFLINE:
2344 			break;
2345 		default:
2346 			goto illegal;
2347 		}
2348 		break;
2349 
2350 	case SDEV_OFFLINE:
2351 	case SDEV_TRANSPORT_OFFLINE:
2352 		switch (oldstate) {
2353 		case SDEV_CREATED:
2354 		case SDEV_RUNNING:
2355 		case SDEV_QUIESCE:
2356 		case SDEV_BLOCK:
2357 			break;
2358 		default:
2359 			goto illegal;
2360 		}
2361 		break;
2362 
2363 	case SDEV_BLOCK:
2364 		switch (oldstate) {
2365 		case SDEV_RUNNING:
2366 		case SDEV_CREATED_BLOCK:
2367 		case SDEV_QUIESCE:
2368 		case SDEV_OFFLINE:
2369 			break;
2370 		default:
2371 			goto illegal;
2372 		}
2373 		break;
2374 
2375 	case SDEV_CREATED_BLOCK:
2376 		switch (oldstate) {
2377 		case SDEV_CREATED:
2378 			break;
2379 		default:
2380 			goto illegal;
2381 		}
2382 		break;
2383 
2384 	case SDEV_CANCEL:
2385 		switch (oldstate) {
2386 		case SDEV_CREATED:
2387 		case SDEV_RUNNING:
2388 		case SDEV_QUIESCE:
2389 		case SDEV_OFFLINE:
2390 		case SDEV_TRANSPORT_OFFLINE:
2391 			break;
2392 		default:
2393 			goto illegal;
2394 		}
2395 		break;
2396 
2397 	case SDEV_DEL:
2398 		switch (oldstate) {
2399 		case SDEV_CREATED:
2400 		case SDEV_RUNNING:
2401 		case SDEV_OFFLINE:
2402 		case SDEV_TRANSPORT_OFFLINE:
2403 		case SDEV_CANCEL:
2404 		case SDEV_BLOCK:
2405 		case SDEV_CREATED_BLOCK:
2406 			break;
2407 		default:
2408 			goto illegal;
2409 		}
2410 		break;
2411 
2412 	}
2413 	sdev->offline_already = false;
2414 	sdev->sdev_state = state;
2415 	return 0;
2416 
2417  illegal:
2418 	SCSI_LOG_ERROR_RECOVERY(1,
2419 				sdev_printk(KERN_ERR, sdev,
2420 					    "Illegal state transition %s->%s",
2421 					    scsi_device_state_name(oldstate),
2422 					    scsi_device_state_name(state))
2423 				);
2424 	return -EINVAL;
2425 }
2426 EXPORT_SYMBOL(scsi_device_set_state);
2427 
2428 /**
2429  *	scsi_evt_emit - emit a single SCSI device uevent
2430  *	@sdev: associated SCSI device
2431  *	@evt: event to emit
2432  *
2433  *	Send a single uevent (scsi_event) to the associated scsi_device.
2434  */
2435 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2436 {
2437 	int idx = 0;
2438 	char *envp[3];
2439 
2440 	switch (evt->evt_type) {
2441 	case SDEV_EVT_MEDIA_CHANGE:
2442 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2443 		break;
2444 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2445 		scsi_rescan_device(&sdev->sdev_gendev);
2446 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2447 		break;
2448 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2449 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2450 		break;
2451 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2452 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2453 		break;
2454 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2456 		break;
2457 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2458 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2459 		break;
2460 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2461 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2462 		break;
2463 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2464 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2465 		break;
2466 	default:
2467 		/* do nothing */
2468 		break;
2469 	}
2470 
2471 	envp[idx++] = NULL;
2472 
2473 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2474 }
2475 
2476 /**
2477  *	scsi_evt_thread - send a uevent for each scsi event
2478  *	@work: work struct for scsi_device
2479  *
2480  *	Dispatch queued events to their associated scsi_device kobjects
2481  *	as uevents.
2482  */
2483 void scsi_evt_thread(struct work_struct *work)
2484 {
2485 	struct scsi_device *sdev;
2486 	enum scsi_device_event evt_type;
2487 	LIST_HEAD(event_list);
2488 
2489 	sdev = container_of(work, struct scsi_device, event_work);
2490 
2491 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2492 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2493 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2494 
2495 	while (1) {
2496 		struct scsi_event *evt;
2497 		struct list_head *this, *tmp;
2498 		unsigned long flags;
2499 
2500 		spin_lock_irqsave(&sdev->list_lock, flags);
2501 		list_splice_init(&sdev->event_list, &event_list);
2502 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2503 
2504 		if (list_empty(&event_list))
2505 			break;
2506 
2507 		list_for_each_safe(this, tmp, &event_list) {
2508 			evt = list_entry(this, struct scsi_event, node);
2509 			list_del(&evt->node);
2510 			scsi_evt_emit(sdev, evt);
2511 			kfree(evt);
2512 		}
2513 	}
2514 }
2515 
2516 /**
2517  * 	sdev_evt_send - send asserted event to uevent thread
2518  *	@sdev: scsi_device event occurred on
2519  *	@evt: event to send
2520  *
2521  *	Assert scsi device event asynchronously.
2522  */
2523 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2524 {
2525 	unsigned long flags;
2526 
2527 #if 0
2528 	/* FIXME: currently this check eliminates all media change events
2529 	 * for polled devices.  Need to update to discriminate between AN
2530 	 * and polled events */
2531 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2532 		kfree(evt);
2533 		return;
2534 	}
2535 #endif
2536 
2537 	spin_lock_irqsave(&sdev->list_lock, flags);
2538 	list_add_tail(&evt->node, &sdev->event_list);
2539 	schedule_work(&sdev->event_work);
2540 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2541 }
2542 EXPORT_SYMBOL_GPL(sdev_evt_send);
2543 
2544 /**
2545  * 	sdev_evt_alloc - allocate a new scsi event
2546  *	@evt_type: type of event to allocate
2547  *	@gfpflags: GFP flags for allocation
2548  *
2549  *	Allocates and returns a new scsi_event.
2550  */
2551 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2552 				  gfp_t gfpflags)
2553 {
2554 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2555 	if (!evt)
2556 		return NULL;
2557 
2558 	evt->evt_type = evt_type;
2559 	INIT_LIST_HEAD(&evt->node);
2560 
2561 	/* evt_type-specific initialization, if any */
2562 	switch (evt_type) {
2563 	case SDEV_EVT_MEDIA_CHANGE:
2564 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2565 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2566 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2567 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2569 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2570 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2571 	default:
2572 		/* do nothing */
2573 		break;
2574 	}
2575 
2576 	return evt;
2577 }
2578 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2579 
2580 /**
2581  * 	sdev_evt_send_simple - send asserted event to uevent thread
2582  *	@sdev: scsi_device event occurred on
2583  *	@evt_type: type of event to send
2584  *	@gfpflags: GFP flags for allocation
2585  *
2586  *	Assert scsi device event asynchronously, given an event type.
2587  */
2588 void sdev_evt_send_simple(struct scsi_device *sdev,
2589 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2590 {
2591 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2592 	if (!evt) {
2593 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2594 			    evt_type);
2595 		return;
2596 	}
2597 
2598 	sdev_evt_send(sdev, evt);
2599 }
2600 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2601 
2602 /**
2603  *	scsi_device_quiesce - Block all commands except power management.
2604  *	@sdev:	scsi device to quiesce.
2605  *
2606  *	This works by trying to transition to the SDEV_QUIESCE state
2607  *	(which must be a legal transition).  When the device is in this
2608  *	state, only power management requests will be accepted, all others will
2609  *	be deferred.
2610  *
2611  *	Must be called with user context, may sleep.
2612  *
2613  *	Returns zero if unsuccessful or an error if not.
2614  */
2615 int
2616 scsi_device_quiesce(struct scsi_device *sdev)
2617 {
2618 	struct request_queue *q = sdev->request_queue;
2619 	int err;
2620 
2621 	/*
2622 	 * It is allowed to call scsi_device_quiesce() multiple times from
2623 	 * the same context but concurrent scsi_device_quiesce() calls are
2624 	 * not allowed.
2625 	 */
2626 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2627 
2628 	if (sdev->quiesced_by == current)
2629 		return 0;
2630 
2631 	blk_set_pm_only(q);
2632 
2633 	blk_mq_freeze_queue(q);
2634 	/*
2635 	 * Ensure that the effect of blk_set_pm_only() will be visible
2636 	 * for percpu_ref_tryget() callers that occur after the queue
2637 	 * unfreeze even if the queue was already frozen before this function
2638 	 * was called. See also https://lwn.net/Articles/573497/.
2639 	 */
2640 	synchronize_rcu();
2641 	blk_mq_unfreeze_queue(q);
2642 
2643 	mutex_lock(&sdev->state_mutex);
2644 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2645 	if (err == 0)
2646 		sdev->quiesced_by = current;
2647 	else
2648 		blk_clear_pm_only(q);
2649 	mutex_unlock(&sdev->state_mutex);
2650 
2651 	return err;
2652 }
2653 EXPORT_SYMBOL(scsi_device_quiesce);
2654 
2655 /**
2656  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2657  *	@sdev:	scsi device to resume.
2658  *
2659  *	Moves the device from quiesced back to running and restarts the
2660  *	queues.
2661  *
2662  *	Must be called with user context, may sleep.
2663  */
2664 void scsi_device_resume(struct scsi_device *sdev)
2665 {
2666 	/* check if the device state was mutated prior to resume, and if
2667 	 * so assume the state is being managed elsewhere (for example
2668 	 * device deleted during suspend)
2669 	 */
2670 	mutex_lock(&sdev->state_mutex);
2671 	if (sdev->sdev_state == SDEV_QUIESCE)
2672 		scsi_device_set_state(sdev, SDEV_RUNNING);
2673 	if (sdev->quiesced_by) {
2674 		sdev->quiesced_by = NULL;
2675 		blk_clear_pm_only(sdev->request_queue);
2676 	}
2677 	mutex_unlock(&sdev->state_mutex);
2678 }
2679 EXPORT_SYMBOL(scsi_device_resume);
2680 
2681 static void
2682 device_quiesce_fn(struct scsi_device *sdev, void *data)
2683 {
2684 	scsi_device_quiesce(sdev);
2685 }
2686 
2687 void
2688 scsi_target_quiesce(struct scsi_target *starget)
2689 {
2690 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2691 }
2692 EXPORT_SYMBOL(scsi_target_quiesce);
2693 
2694 static void
2695 device_resume_fn(struct scsi_device *sdev, void *data)
2696 {
2697 	scsi_device_resume(sdev);
2698 }
2699 
2700 void
2701 scsi_target_resume(struct scsi_target *starget)
2702 {
2703 	starget_for_each_device(starget, NULL, device_resume_fn);
2704 }
2705 EXPORT_SYMBOL(scsi_target_resume);
2706 
2707 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2708 {
2709 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2710 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2711 
2712 	return 0;
2713 }
2714 
2715 void scsi_start_queue(struct scsi_device *sdev)
2716 {
2717 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2718 		blk_mq_unquiesce_queue(sdev->request_queue);
2719 }
2720 
2721 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2722 {
2723 	/*
2724 	 * The atomic variable of ->queue_stopped covers that
2725 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2726 	 *
2727 	 * However, we still need to wait until quiesce is done
2728 	 * in case that queue has been stopped.
2729 	 */
2730 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2731 		if (nowait)
2732 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2733 		else
2734 			blk_mq_quiesce_queue(sdev->request_queue);
2735 	} else {
2736 		if (!nowait)
2737 			blk_mq_wait_quiesce_done(sdev->request_queue->tag_set);
2738 	}
2739 }
2740 
2741 /**
2742  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2743  * @sdev: device to block
2744  *
2745  * Pause SCSI command processing on the specified device. Does not sleep.
2746  *
2747  * Returns zero if successful or a negative error code upon failure.
2748  *
2749  * Notes:
2750  * This routine transitions the device to the SDEV_BLOCK state (which must be
2751  * a legal transition). When the device is in this state, command processing
2752  * is paused until the device leaves the SDEV_BLOCK state. See also
2753  * scsi_internal_device_unblock_nowait().
2754  */
2755 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2756 {
2757 	int ret = __scsi_internal_device_block_nowait(sdev);
2758 
2759 	/*
2760 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2761 	 * block layer from calling the midlayer with this device's
2762 	 * request queue.
2763 	 */
2764 	if (!ret)
2765 		scsi_stop_queue(sdev, true);
2766 	return ret;
2767 }
2768 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2769 
2770 /**
2771  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2772  * @sdev: device to block
2773  *
2774  * Pause SCSI command processing on the specified device and wait until all
2775  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2776  *
2777  * Returns zero if successful or a negative error code upon failure.
2778  *
2779  * Note:
2780  * This routine transitions the device to the SDEV_BLOCK state (which must be
2781  * a legal transition). When the device is in this state, command processing
2782  * is paused until the device leaves the SDEV_BLOCK state. See also
2783  * scsi_internal_device_unblock().
2784  */
2785 static int scsi_internal_device_block(struct scsi_device *sdev)
2786 {
2787 	int err;
2788 
2789 	mutex_lock(&sdev->state_mutex);
2790 	err = __scsi_internal_device_block_nowait(sdev);
2791 	if (err == 0)
2792 		scsi_stop_queue(sdev, false);
2793 	mutex_unlock(&sdev->state_mutex);
2794 
2795 	return err;
2796 }
2797 
2798 /**
2799  * scsi_internal_device_unblock_nowait - resume a device after a block request
2800  * @sdev:	device to resume
2801  * @new_state:	state to set the device to after unblocking
2802  *
2803  * Restart the device queue for a previously suspended SCSI device. Does not
2804  * sleep.
2805  *
2806  * Returns zero if successful or a negative error code upon failure.
2807  *
2808  * Notes:
2809  * This routine transitions the device to the SDEV_RUNNING state or to one of
2810  * the offline states (which must be a legal transition) allowing the midlayer
2811  * to goose the queue for this device.
2812  */
2813 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2814 					enum scsi_device_state new_state)
2815 {
2816 	switch (new_state) {
2817 	case SDEV_RUNNING:
2818 	case SDEV_TRANSPORT_OFFLINE:
2819 		break;
2820 	default:
2821 		return -EINVAL;
2822 	}
2823 
2824 	/*
2825 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2826 	 * offlined states and goose the device queue if successful.
2827 	 */
2828 	switch (sdev->sdev_state) {
2829 	case SDEV_BLOCK:
2830 	case SDEV_TRANSPORT_OFFLINE:
2831 		sdev->sdev_state = new_state;
2832 		break;
2833 	case SDEV_CREATED_BLOCK:
2834 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2835 		    new_state == SDEV_OFFLINE)
2836 			sdev->sdev_state = new_state;
2837 		else
2838 			sdev->sdev_state = SDEV_CREATED;
2839 		break;
2840 	case SDEV_CANCEL:
2841 	case SDEV_OFFLINE:
2842 		break;
2843 	default:
2844 		return -EINVAL;
2845 	}
2846 	scsi_start_queue(sdev);
2847 
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2851 
2852 /**
2853  * scsi_internal_device_unblock - resume a device after a block request
2854  * @sdev:	device to resume
2855  * @new_state:	state to set the device to after unblocking
2856  *
2857  * Restart the device queue for a previously suspended SCSI device. May sleep.
2858  *
2859  * Returns zero if successful or a negative error code upon failure.
2860  *
2861  * Notes:
2862  * This routine transitions the device to the SDEV_RUNNING state or to one of
2863  * the offline states (which must be a legal transition) allowing the midlayer
2864  * to goose the queue for this device.
2865  */
2866 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2867 					enum scsi_device_state new_state)
2868 {
2869 	int ret;
2870 
2871 	mutex_lock(&sdev->state_mutex);
2872 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2873 	mutex_unlock(&sdev->state_mutex);
2874 
2875 	return ret;
2876 }
2877 
2878 static void
2879 device_block(struct scsi_device *sdev, void *data)
2880 {
2881 	int ret;
2882 
2883 	ret = scsi_internal_device_block(sdev);
2884 
2885 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2886 		  dev_name(&sdev->sdev_gendev), ret);
2887 }
2888 
2889 static int
2890 target_block(struct device *dev, void *data)
2891 {
2892 	if (scsi_is_target_device(dev))
2893 		starget_for_each_device(to_scsi_target(dev), NULL,
2894 					device_block);
2895 	return 0;
2896 }
2897 
2898 void
2899 scsi_target_block(struct device *dev)
2900 {
2901 	if (scsi_is_target_device(dev))
2902 		starget_for_each_device(to_scsi_target(dev), NULL,
2903 					device_block);
2904 	else
2905 		device_for_each_child(dev, NULL, target_block);
2906 }
2907 EXPORT_SYMBOL_GPL(scsi_target_block);
2908 
2909 static void
2910 device_unblock(struct scsi_device *sdev, void *data)
2911 {
2912 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2913 }
2914 
2915 static int
2916 target_unblock(struct device *dev, void *data)
2917 {
2918 	if (scsi_is_target_device(dev))
2919 		starget_for_each_device(to_scsi_target(dev), data,
2920 					device_unblock);
2921 	return 0;
2922 }
2923 
2924 void
2925 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2926 {
2927 	if (scsi_is_target_device(dev))
2928 		starget_for_each_device(to_scsi_target(dev), &new_state,
2929 					device_unblock);
2930 	else
2931 		device_for_each_child(dev, &new_state, target_unblock);
2932 }
2933 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2934 
2935 int
2936 scsi_host_block(struct Scsi_Host *shost)
2937 {
2938 	struct scsi_device *sdev;
2939 	int ret = 0;
2940 
2941 	/*
2942 	 * Call scsi_internal_device_block_nowait so we can avoid
2943 	 * calling synchronize_rcu() for each LUN.
2944 	 */
2945 	shost_for_each_device(sdev, shost) {
2946 		mutex_lock(&sdev->state_mutex);
2947 		ret = scsi_internal_device_block_nowait(sdev);
2948 		mutex_unlock(&sdev->state_mutex);
2949 		if (ret) {
2950 			scsi_device_put(sdev);
2951 			break;
2952 		}
2953 	}
2954 
2955 	/*
2956 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2957 	 * calling synchronize_rcu() once is enough.
2958 	 */
2959 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2960 
2961 	if (!ret)
2962 		synchronize_rcu();
2963 
2964 	return ret;
2965 }
2966 EXPORT_SYMBOL_GPL(scsi_host_block);
2967 
2968 int
2969 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2970 {
2971 	struct scsi_device *sdev;
2972 	int ret = 0;
2973 
2974 	shost_for_each_device(sdev, shost) {
2975 		ret = scsi_internal_device_unblock(sdev, new_state);
2976 		if (ret) {
2977 			scsi_device_put(sdev);
2978 			break;
2979 		}
2980 	}
2981 	return ret;
2982 }
2983 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2984 
2985 /**
2986  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2987  * @sgl:	scatter-gather list
2988  * @sg_count:	number of segments in sg
2989  * @offset:	offset in bytes into sg, on return offset into the mapped area
2990  * @len:	bytes to map, on return number of bytes mapped
2991  *
2992  * Returns virtual address of the start of the mapped page
2993  */
2994 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2995 			  size_t *offset, size_t *len)
2996 {
2997 	int i;
2998 	size_t sg_len = 0, len_complete = 0;
2999 	struct scatterlist *sg;
3000 	struct page *page;
3001 
3002 	WARN_ON(!irqs_disabled());
3003 
3004 	for_each_sg(sgl, sg, sg_count, i) {
3005 		len_complete = sg_len; /* Complete sg-entries */
3006 		sg_len += sg->length;
3007 		if (sg_len > *offset)
3008 			break;
3009 	}
3010 
3011 	if (unlikely(i == sg_count)) {
3012 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3013 			"elements %d\n",
3014 		       __func__, sg_len, *offset, sg_count);
3015 		WARN_ON(1);
3016 		return NULL;
3017 	}
3018 
3019 	/* Offset starting from the beginning of first page in this sg-entry */
3020 	*offset = *offset - len_complete + sg->offset;
3021 
3022 	/* Assumption: contiguous pages can be accessed as "page + i" */
3023 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3024 	*offset &= ~PAGE_MASK;
3025 
3026 	/* Bytes in this sg-entry from *offset to the end of the page */
3027 	sg_len = PAGE_SIZE - *offset;
3028 	if (*len > sg_len)
3029 		*len = sg_len;
3030 
3031 	return kmap_atomic(page);
3032 }
3033 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3034 
3035 /**
3036  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3037  * @virt:	virtual address to be unmapped
3038  */
3039 void scsi_kunmap_atomic_sg(void *virt)
3040 {
3041 	kunmap_atomic(virt);
3042 }
3043 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3044 
3045 void sdev_disable_disk_events(struct scsi_device *sdev)
3046 {
3047 	atomic_inc(&sdev->disk_events_disable_depth);
3048 }
3049 EXPORT_SYMBOL(sdev_disable_disk_events);
3050 
3051 void sdev_enable_disk_events(struct scsi_device *sdev)
3052 {
3053 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3054 		return;
3055 	atomic_dec(&sdev->disk_events_disable_depth);
3056 }
3057 EXPORT_SYMBOL(sdev_enable_disk_events);
3058 
3059 static unsigned char designator_prio(const unsigned char *d)
3060 {
3061 	if (d[1] & 0x30)
3062 		/* not associated with LUN */
3063 		return 0;
3064 
3065 	if (d[3] == 0)
3066 		/* invalid length */
3067 		return 0;
3068 
3069 	/*
3070 	 * Order of preference for lun descriptor:
3071 	 * - SCSI name string
3072 	 * - NAA IEEE Registered Extended
3073 	 * - EUI-64 based 16-byte
3074 	 * - EUI-64 based 12-byte
3075 	 * - NAA IEEE Registered
3076 	 * - NAA IEEE Extended
3077 	 * - EUI-64 based 8-byte
3078 	 * - SCSI name string (truncated)
3079 	 * - T10 Vendor ID
3080 	 * as longer descriptors reduce the likelyhood
3081 	 * of identification clashes.
3082 	 */
3083 
3084 	switch (d[1] & 0xf) {
3085 	case 8:
3086 		/* SCSI name string, variable-length UTF-8 */
3087 		return 9;
3088 	case 3:
3089 		switch (d[4] >> 4) {
3090 		case 6:
3091 			/* NAA registered extended */
3092 			return 8;
3093 		case 5:
3094 			/* NAA registered */
3095 			return 5;
3096 		case 4:
3097 			/* NAA extended */
3098 			return 4;
3099 		case 3:
3100 			/* NAA locally assigned */
3101 			return 1;
3102 		default:
3103 			break;
3104 		}
3105 		break;
3106 	case 2:
3107 		switch (d[3]) {
3108 		case 16:
3109 			/* EUI64-based, 16 byte */
3110 			return 7;
3111 		case 12:
3112 			/* EUI64-based, 12 byte */
3113 			return 6;
3114 		case 8:
3115 			/* EUI64-based, 8 byte */
3116 			return 3;
3117 		default:
3118 			break;
3119 		}
3120 		break;
3121 	case 1:
3122 		/* T10 vendor ID */
3123 		return 1;
3124 	default:
3125 		break;
3126 	}
3127 
3128 	return 0;
3129 }
3130 
3131 /**
3132  * scsi_vpd_lun_id - return a unique device identification
3133  * @sdev: SCSI device
3134  * @id:   buffer for the identification
3135  * @id_len:  length of the buffer
3136  *
3137  * Copies a unique device identification into @id based
3138  * on the information in the VPD page 0x83 of the device.
3139  * The string will be formatted as a SCSI name string.
3140  *
3141  * Returns the length of the identification or error on failure.
3142  * If the identifier is longer than the supplied buffer the actual
3143  * identifier length is returned and the buffer is not zero-padded.
3144  */
3145 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3146 {
3147 	u8 cur_id_prio = 0;
3148 	u8 cur_id_size = 0;
3149 	const unsigned char *d, *cur_id_str;
3150 	const struct scsi_vpd *vpd_pg83;
3151 	int id_size = -EINVAL;
3152 
3153 	rcu_read_lock();
3154 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3155 	if (!vpd_pg83) {
3156 		rcu_read_unlock();
3157 		return -ENXIO;
3158 	}
3159 
3160 	/* The id string must be at least 20 bytes + terminating NULL byte */
3161 	if (id_len < 21) {
3162 		rcu_read_unlock();
3163 		return -EINVAL;
3164 	}
3165 
3166 	memset(id, 0, id_len);
3167 	for (d = vpd_pg83->data + 4;
3168 	     d < vpd_pg83->data + vpd_pg83->len;
3169 	     d += d[3] + 4) {
3170 		u8 prio = designator_prio(d);
3171 
3172 		if (prio == 0 || cur_id_prio > prio)
3173 			continue;
3174 
3175 		switch (d[1] & 0xf) {
3176 		case 0x1:
3177 			/* T10 Vendor ID */
3178 			if (cur_id_size > d[3])
3179 				break;
3180 			cur_id_prio = prio;
3181 			cur_id_size = d[3];
3182 			if (cur_id_size + 4 > id_len)
3183 				cur_id_size = id_len - 4;
3184 			cur_id_str = d + 4;
3185 			id_size = snprintf(id, id_len, "t10.%*pE",
3186 					   cur_id_size, cur_id_str);
3187 			break;
3188 		case 0x2:
3189 			/* EUI-64 */
3190 			cur_id_prio = prio;
3191 			cur_id_size = d[3];
3192 			cur_id_str = d + 4;
3193 			switch (cur_id_size) {
3194 			case 8:
3195 				id_size = snprintf(id, id_len,
3196 						   "eui.%8phN",
3197 						   cur_id_str);
3198 				break;
3199 			case 12:
3200 				id_size = snprintf(id, id_len,
3201 						   "eui.%12phN",
3202 						   cur_id_str);
3203 				break;
3204 			case 16:
3205 				id_size = snprintf(id, id_len,
3206 						   "eui.%16phN",
3207 						   cur_id_str);
3208 				break;
3209 			default:
3210 				break;
3211 			}
3212 			break;
3213 		case 0x3:
3214 			/* NAA */
3215 			cur_id_prio = prio;
3216 			cur_id_size = d[3];
3217 			cur_id_str = d + 4;
3218 			switch (cur_id_size) {
3219 			case 8:
3220 				id_size = snprintf(id, id_len,
3221 						   "naa.%8phN",
3222 						   cur_id_str);
3223 				break;
3224 			case 16:
3225 				id_size = snprintf(id, id_len,
3226 						   "naa.%16phN",
3227 						   cur_id_str);
3228 				break;
3229 			default:
3230 				break;
3231 			}
3232 			break;
3233 		case 0x8:
3234 			/* SCSI name string */
3235 			if (cur_id_size > d[3])
3236 				break;
3237 			/* Prefer others for truncated descriptor */
3238 			if (d[3] > id_len) {
3239 				prio = 2;
3240 				if (cur_id_prio > prio)
3241 					break;
3242 			}
3243 			cur_id_prio = prio;
3244 			cur_id_size = id_size = d[3];
3245 			cur_id_str = d + 4;
3246 			if (cur_id_size >= id_len)
3247 				cur_id_size = id_len - 1;
3248 			memcpy(id, cur_id_str, cur_id_size);
3249 			break;
3250 		default:
3251 			break;
3252 		}
3253 	}
3254 	rcu_read_unlock();
3255 
3256 	return id_size;
3257 }
3258 EXPORT_SYMBOL(scsi_vpd_lun_id);
3259 
3260 /*
3261  * scsi_vpd_tpg_id - return a target port group identifier
3262  * @sdev: SCSI device
3263  *
3264  * Returns the Target Port Group identifier from the information
3265  * froom VPD page 0x83 of the device.
3266  *
3267  * Returns the identifier or error on failure.
3268  */
3269 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3270 {
3271 	const unsigned char *d;
3272 	const struct scsi_vpd *vpd_pg83;
3273 	int group_id = -EAGAIN, rel_port = -1;
3274 
3275 	rcu_read_lock();
3276 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3277 	if (!vpd_pg83) {
3278 		rcu_read_unlock();
3279 		return -ENXIO;
3280 	}
3281 
3282 	d = vpd_pg83->data + 4;
3283 	while (d < vpd_pg83->data + vpd_pg83->len) {
3284 		switch (d[1] & 0xf) {
3285 		case 0x4:
3286 			/* Relative target port */
3287 			rel_port = get_unaligned_be16(&d[6]);
3288 			break;
3289 		case 0x5:
3290 			/* Target port group */
3291 			group_id = get_unaligned_be16(&d[6]);
3292 			break;
3293 		default:
3294 			break;
3295 		}
3296 		d += d[3] + 4;
3297 	}
3298 	rcu_read_unlock();
3299 
3300 	if (group_id >= 0 && rel_id && rel_port != -1)
3301 		*rel_id = rel_port;
3302 
3303 	return group_id;
3304 }
3305 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3306 
3307 /**
3308  * scsi_build_sense - build sense data for a command
3309  * @scmd:	scsi command for which the sense should be formatted
3310  * @desc:	Sense format (non-zero == descriptor format,
3311  *              0 == fixed format)
3312  * @key:	Sense key
3313  * @asc:	Additional sense code
3314  * @ascq:	Additional sense code qualifier
3315  *
3316  **/
3317 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3318 {
3319 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3320 	scmd->result = SAM_STAT_CHECK_CONDITION;
3321 }
3322 EXPORT_SYMBOL_GPL(scsi_build_sense);
3323