1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sdb_cache; 56 static struct kmem_cache *scsi_sense_cache; 57 static struct kmem_cache *scsi_sense_isadma_cache; 58 static DEFINE_MUTEX(scsi_sense_cache_mutex); 59 60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 61 62 static inline struct kmem_cache * 63 scsi_select_sense_cache(bool unchecked_isa_dma) 64 { 65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 66 } 67 68 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 69 unsigned char *sense_buffer) 70 { 71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 72 sense_buffer); 73 } 74 75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 76 gfp_t gfp_mask, int numa_node) 77 { 78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 79 gfp_mask, numa_node); 80 } 81 82 int scsi_init_sense_cache(struct Scsi_Host *shost) 83 { 84 struct kmem_cache *cache; 85 int ret = 0; 86 87 mutex_lock(&scsi_sense_cache_mutex); 88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 89 if (cache) 90 goto exit; 91 92 if (shost->unchecked_isa_dma) { 93 scsi_sense_isadma_cache = 94 kmem_cache_create("scsi_sense_cache(DMA)", 95 SCSI_SENSE_BUFFERSIZE, 0, 96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 97 if (!scsi_sense_isadma_cache) 98 ret = -ENOMEM; 99 } else { 100 scsi_sense_cache = 101 kmem_cache_create_usercopy("scsi_sense_cache", 102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 103 0, SCSI_SENSE_BUFFERSIZE, NULL); 104 if (!scsi_sense_cache) 105 ret = -ENOMEM; 106 } 107 exit: 108 mutex_unlock(&scsi_sense_cache_mutex); 109 return ret; 110 } 111 112 /* 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 114 * not change behaviour from the previous unplug mechanism, experimentation 115 * may prove this needs changing. 116 */ 117 #define SCSI_QUEUE_DELAY 3 118 119 static void 120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 121 { 122 struct Scsi_Host *host = cmd->device->host; 123 struct scsi_device *device = cmd->device; 124 struct scsi_target *starget = scsi_target(device); 125 126 /* 127 * Set the appropriate busy bit for the device/host. 128 * 129 * If the host/device isn't busy, assume that something actually 130 * completed, and that we should be able to queue a command now. 131 * 132 * Note that the prior mid-layer assumption that any host could 133 * always queue at least one command is now broken. The mid-layer 134 * will implement a user specifiable stall (see 135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 136 * if a command is requeued with no other commands outstanding 137 * either for the device or for the host. 138 */ 139 switch (reason) { 140 case SCSI_MLQUEUE_HOST_BUSY: 141 atomic_set(&host->host_blocked, host->max_host_blocked); 142 break; 143 case SCSI_MLQUEUE_DEVICE_BUSY: 144 case SCSI_MLQUEUE_EH_RETRY: 145 atomic_set(&device->device_blocked, 146 device->max_device_blocked); 147 break; 148 case SCSI_MLQUEUE_TARGET_BUSY: 149 atomic_set(&starget->target_blocked, 150 starget->max_target_blocked); 151 break; 152 } 153 } 154 155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 156 { 157 if (cmd->request->rq_flags & RQF_DONTPREP) { 158 cmd->request->rq_flags &= ~RQF_DONTPREP; 159 scsi_mq_uninit_cmd(cmd); 160 } else { 161 WARN_ON_ONCE(true); 162 } 163 blk_mq_requeue_request(cmd->request, true); 164 } 165 166 /** 167 * __scsi_queue_insert - private queue insertion 168 * @cmd: The SCSI command being requeued 169 * @reason: The reason for the requeue 170 * @unbusy: Whether the queue should be unbusied 171 * 172 * This is a private queue insertion. The public interface 173 * scsi_queue_insert() always assumes the queue should be unbusied 174 * because it's always called before the completion. This function is 175 * for a requeue after completion, which should only occur in this 176 * file. 177 */ 178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 179 { 180 struct scsi_device *device = cmd->device; 181 182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 183 "Inserting command %p into mlqueue\n", cmd)); 184 185 scsi_set_blocked(cmd, reason); 186 187 /* 188 * Decrement the counters, since these commands are no longer 189 * active on the host/device. 190 */ 191 if (unbusy) 192 scsi_device_unbusy(device, cmd); 193 194 /* 195 * Requeue this command. It will go before all other commands 196 * that are already in the queue. Schedule requeue work under 197 * lock such that the kblockd_schedule_work() call happens 198 * before blk_cleanup_queue() finishes. 199 */ 200 cmd->result = 0; 201 202 blk_mq_requeue_request(cmd->request, true); 203 } 204 205 /** 206 * scsi_queue_insert - Reinsert a command in the queue. 207 * @cmd: command that we are adding to queue. 208 * @reason: why we are inserting command to queue. 209 * 210 * We do this for one of two cases. Either the host is busy and it cannot accept 211 * any more commands for the time being, or the device returned QUEUE_FULL and 212 * can accept no more commands. 213 * 214 * Context: This could be called either from an interrupt context or a normal 215 * process context. 216 */ 217 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 218 { 219 __scsi_queue_insert(cmd, reason, true); 220 } 221 222 223 /** 224 * __scsi_execute - insert request and wait for the result 225 * @sdev: scsi device 226 * @cmd: scsi command 227 * @data_direction: data direction 228 * @buffer: data buffer 229 * @bufflen: len of buffer 230 * @sense: optional sense buffer 231 * @sshdr: optional decoded sense header 232 * @timeout: request timeout in seconds 233 * @retries: number of times to retry request 234 * @flags: flags for ->cmd_flags 235 * @rq_flags: flags for ->rq_flags 236 * @resid: optional residual length 237 * 238 * Returns the scsi_cmnd result field if a command was executed, or a negative 239 * Linux error code if we didn't get that far. 240 */ 241 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 242 int data_direction, void *buffer, unsigned bufflen, 243 unsigned char *sense, struct scsi_sense_hdr *sshdr, 244 int timeout, int retries, u64 flags, req_flags_t rq_flags, 245 int *resid) 246 { 247 struct request *req; 248 struct scsi_request *rq; 249 int ret = DRIVER_ERROR << 24; 250 251 req = blk_get_request(sdev->request_queue, 252 data_direction == DMA_TO_DEVICE ? 253 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 254 if (IS_ERR(req)) 255 return ret; 256 rq = scsi_req(req); 257 258 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 259 buffer, bufflen, GFP_NOIO)) 260 goto out; 261 262 rq->cmd_len = COMMAND_SIZE(cmd[0]); 263 memcpy(rq->cmd, cmd, rq->cmd_len); 264 rq->retries = retries; 265 req->timeout = timeout; 266 req->cmd_flags |= flags; 267 req->rq_flags |= rq_flags | RQF_QUIET; 268 269 /* 270 * head injection *required* here otherwise quiesce won't work 271 */ 272 blk_execute_rq(req->q, NULL, req, 1); 273 274 /* 275 * Some devices (USB mass-storage in particular) may transfer 276 * garbage data together with a residue indicating that the data 277 * is invalid. Prevent the garbage from being misinterpreted 278 * and prevent security leaks by zeroing out the excess data. 279 */ 280 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 281 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 282 283 if (resid) 284 *resid = rq->resid_len; 285 if (sense && rq->sense_len) 286 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 287 if (sshdr) 288 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 289 ret = rq->result; 290 out: 291 blk_put_request(req); 292 293 return ret; 294 } 295 EXPORT_SYMBOL(__scsi_execute); 296 297 /** 298 * scsi_init_cmd_errh - Initialize cmd fields related to error handling. 299 * @cmd: command that is ready to be queued. 300 * 301 * This function has the job of initializing a number of fields related to error 302 * handling. Typically this will be called once for each command, as required. 303 */ 304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 305 { 306 scsi_set_resid(cmd, 0); 307 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 308 if (cmd->cmd_len == 0) 309 cmd->cmd_len = scsi_command_size(cmd->cmnd); 310 } 311 312 /* 313 * Wake up the error handler if necessary. Avoid as follows that the error 314 * handler is not woken up if host in-flight requests number == 315 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 316 * with an RCU read lock in this function to ensure that this function in 317 * its entirety either finishes before scsi_eh_scmd_add() increases the 318 * host_failed counter or that it notices the shost state change made by 319 * scsi_eh_scmd_add(). 320 */ 321 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 322 { 323 unsigned long flags; 324 325 rcu_read_lock(); 326 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 327 if (unlikely(scsi_host_in_recovery(shost))) { 328 spin_lock_irqsave(shost->host_lock, flags); 329 if (shost->host_failed || shost->host_eh_scheduled) 330 scsi_eh_wakeup(shost); 331 spin_unlock_irqrestore(shost->host_lock, flags); 332 } 333 rcu_read_unlock(); 334 } 335 336 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 337 { 338 struct Scsi_Host *shost = sdev->host; 339 struct scsi_target *starget = scsi_target(sdev); 340 341 scsi_dec_host_busy(shost, cmd); 342 343 if (starget->can_queue > 0) 344 atomic_dec(&starget->target_busy); 345 346 atomic_dec(&sdev->device_busy); 347 } 348 349 static void scsi_kick_queue(struct request_queue *q) 350 { 351 blk_mq_run_hw_queues(q, false); 352 } 353 354 /* 355 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 356 * and call blk_run_queue for all the scsi_devices on the target - 357 * including current_sdev first. 358 * 359 * Called with *no* scsi locks held. 360 */ 361 static void scsi_single_lun_run(struct scsi_device *current_sdev) 362 { 363 struct Scsi_Host *shost = current_sdev->host; 364 struct scsi_device *sdev, *tmp; 365 struct scsi_target *starget = scsi_target(current_sdev); 366 unsigned long flags; 367 368 spin_lock_irqsave(shost->host_lock, flags); 369 starget->starget_sdev_user = NULL; 370 spin_unlock_irqrestore(shost->host_lock, flags); 371 372 /* 373 * Call blk_run_queue for all LUNs on the target, starting with 374 * current_sdev. We race with others (to set starget_sdev_user), 375 * but in most cases, we will be first. Ideally, each LU on the 376 * target would get some limited time or requests on the target. 377 */ 378 scsi_kick_queue(current_sdev->request_queue); 379 380 spin_lock_irqsave(shost->host_lock, flags); 381 if (starget->starget_sdev_user) 382 goto out; 383 list_for_each_entry_safe(sdev, tmp, &starget->devices, 384 same_target_siblings) { 385 if (sdev == current_sdev) 386 continue; 387 if (scsi_device_get(sdev)) 388 continue; 389 390 spin_unlock_irqrestore(shost->host_lock, flags); 391 scsi_kick_queue(sdev->request_queue); 392 spin_lock_irqsave(shost->host_lock, flags); 393 394 scsi_device_put(sdev); 395 } 396 out: 397 spin_unlock_irqrestore(shost->host_lock, flags); 398 } 399 400 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 401 { 402 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 403 return true; 404 if (atomic_read(&sdev->device_blocked) > 0) 405 return true; 406 return false; 407 } 408 409 static inline bool scsi_target_is_busy(struct scsi_target *starget) 410 { 411 if (starget->can_queue > 0) { 412 if (atomic_read(&starget->target_busy) >= starget->can_queue) 413 return true; 414 if (atomic_read(&starget->target_blocked) > 0) 415 return true; 416 } 417 return false; 418 } 419 420 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 421 { 422 if (atomic_read(&shost->host_blocked) > 0) 423 return true; 424 if (shost->host_self_blocked) 425 return true; 426 return false; 427 } 428 429 static void scsi_starved_list_run(struct Scsi_Host *shost) 430 { 431 LIST_HEAD(starved_list); 432 struct scsi_device *sdev; 433 unsigned long flags; 434 435 spin_lock_irqsave(shost->host_lock, flags); 436 list_splice_init(&shost->starved_list, &starved_list); 437 438 while (!list_empty(&starved_list)) { 439 struct request_queue *slq; 440 441 /* 442 * As long as shost is accepting commands and we have 443 * starved queues, call blk_run_queue. scsi_request_fn 444 * drops the queue_lock and can add us back to the 445 * starved_list. 446 * 447 * host_lock protects the starved_list and starved_entry. 448 * scsi_request_fn must get the host_lock before checking 449 * or modifying starved_list or starved_entry. 450 */ 451 if (scsi_host_is_busy(shost)) 452 break; 453 454 sdev = list_entry(starved_list.next, 455 struct scsi_device, starved_entry); 456 list_del_init(&sdev->starved_entry); 457 if (scsi_target_is_busy(scsi_target(sdev))) { 458 list_move_tail(&sdev->starved_entry, 459 &shost->starved_list); 460 continue; 461 } 462 463 /* 464 * Once we drop the host lock, a racing scsi_remove_device() 465 * call may remove the sdev from the starved list and destroy 466 * it and the queue. Mitigate by taking a reference to the 467 * queue and never touching the sdev again after we drop the 468 * host lock. Note: if __scsi_remove_device() invokes 469 * blk_cleanup_queue() before the queue is run from this 470 * function then blk_run_queue() will return immediately since 471 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 472 */ 473 slq = sdev->request_queue; 474 if (!blk_get_queue(slq)) 475 continue; 476 spin_unlock_irqrestore(shost->host_lock, flags); 477 478 scsi_kick_queue(slq); 479 blk_put_queue(slq); 480 481 spin_lock_irqsave(shost->host_lock, flags); 482 } 483 /* put any unprocessed entries back */ 484 list_splice(&starved_list, &shost->starved_list); 485 spin_unlock_irqrestore(shost->host_lock, flags); 486 } 487 488 /** 489 * scsi_run_queue - Select a proper request queue to serve next. 490 * @q: last request's queue 491 * 492 * The previous command was completely finished, start a new one if possible. 493 */ 494 static void scsi_run_queue(struct request_queue *q) 495 { 496 struct scsi_device *sdev = q->queuedata; 497 498 if (scsi_target(sdev)->single_lun) 499 scsi_single_lun_run(sdev); 500 if (!list_empty(&sdev->host->starved_list)) 501 scsi_starved_list_run(sdev->host); 502 503 blk_mq_run_hw_queues(q, false); 504 } 505 506 void scsi_requeue_run_queue(struct work_struct *work) 507 { 508 struct scsi_device *sdev; 509 struct request_queue *q; 510 511 sdev = container_of(work, struct scsi_device, requeue_work); 512 q = sdev->request_queue; 513 scsi_run_queue(q); 514 } 515 516 void scsi_run_host_queues(struct Scsi_Host *shost) 517 { 518 struct scsi_device *sdev; 519 520 shost_for_each_device(sdev, shost) 521 scsi_run_queue(sdev->request_queue); 522 } 523 524 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 525 { 526 if (!blk_rq_is_passthrough(cmd->request)) { 527 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 528 529 if (drv->uninit_command) 530 drv->uninit_command(cmd); 531 } 532 } 533 534 static void scsi_free_sgtables(struct scsi_cmnd *cmd) 535 { 536 if (cmd->sdb.table.nents) 537 sg_free_table_chained(&cmd->sdb.table, 538 SCSI_INLINE_SG_CNT); 539 if (scsi_prot_sg_count(cmd)) 540 sg_free_table_chained(&cmd->prot_sdb->table, 541 SCSI_INLINE_PROT_SG_CNT); 542 } 543 544 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 545 { 546 scsi_free_sgtables(cmd); 547 scsi_uninit_cmd(cmd); 548 } 549 550 /* Returns false when no more bytes to process, true if there are more */ 551 static bool scsi_end_request(struct request *req, blk_status_t error, 552 unsigned int bytes) 553 { 554 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 555 struct scsi_device *sdev = cmd->device; 556 struct request_queue *q = sdev->request_queue; 557 558 if (blk_update_request(req, error, bytes)) 559 return true; 560 561 if (blk_queue_add_random(q)) 562 add_disk_randomness(req->rq_disk); 563 564 if (!blk_rq_is_scsi(req)) { 565 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 566 cmd->flags &= ~SCMD_INITIALIZED; 567 } 568 569 /* 570 * Calling rcu_barrier() is not necessary here because the 571 * SCSI error handler guarantees that the function called by 572 * call_rcu() has been called before scsi_end_request() is 573 * called. 574 */ 575 destroy_rcu_head(&cmd->rcu); 576 577 /* 578 * In the MQ case the command gets freed by __blk_mq_end_request, 579 * so we have to do all cleanup that depends on it earlier. 580 * 581 * We also can't kick the queues from irq context, so we 582 * will have to defer it to a workqueue. 583 */ 584 scsi_mq_uninit_cmd(cmd); 585 586 /* 587 * queue is still alive, so grab the ref for preventing it 588 * from being cleaned up during running queue. 589 */ 590 percpu_ref_get(&q->q_usage_counter); 591 592 __blk_mq_end_request(req, error); 593 594 if (scsi_target(sdev)->single_lun || 595 !list_empty(&sdev->host->starved_list)) 596 kblockd_schedule_work(&sdev->requeue_work); 597 else 598 blk_mq_run_hw_queues(q, true); 599 600 percpu_ref_put(&q->q_usage_counter); 601 return false; 602 } 603 604 /** 605 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 606 * @cmd: SCSI command 607 * @result: scsi error code 608 * 609 * Translate a SCSI result code into a blk_status_t value. May reset the host 610 * byte of @cmd->result. 611 */ 612 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 613 { 614 switch (host_byte(result)) { 615 case DID_OK: 616 /* 617 * Also check the other bytes than the status byte in result 618 * to handle the case when a SCSI LLD sets result to 619 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 620 */ 621 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 622 return BLK_STS_OK; 623 return BLK_STS_IOERR; 624 case DID_TRANSPORT_FAILFAST: 625 return BLK_STS_TRANSPORT; 626 case DID_TARGET_FAILURE: 627 set_host_byte(cmd, DID_OK); 628 return BLK_STS_TARGET; 629 case DID_NEXUS_FAILURE: 630 set_host_byte(cmd, DID_OK); 631 return BLK_STS_NEXUS; 632 case DID_ALLOC_FAILURE: 633 set_host_byte(cmd, DID_OK); 634 return BLK_STS_NOSPC; 635 case DID_MEDIUM_ERROR: 636 set_host_byte(cmd, DID_OK); 637 return BLK_STS_MEDIUM; 638 default: 639 return BLK_STS_IOERR; 640 } 641 } 642 643 /* Helper for scsi_io_completion() when "reprep" action required. */ 644 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 645 struct request_queue *q) 646 { 647 /* A new command will be prepared and issued. */ 648 scsi_mq_requeue_cmd(cmd); 649 } 650 651 /* Helper for scsi_io_completion() when special action required. */ 652 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 653 { 654 struct request_queue *q = cmd->device->request_queue; 655 struct request *req = cmd->request; 656 int level = 0; 657 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 658 ACTION_DELAYED_RETRY} action; 659 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 660 struct scsi_sense_hdr sshdr; 661 bool sense_valid; 662 bool sense_current = true; /* false implies "deferred sense" */ 663 blk_status_t blk_stat; 664 665 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 666 if (sense_valid) 667 sense_current = !scsi_sense_is_deferred(&sshdr); 668 669 blk_stat = scsi_result_to_blk_status(cmd, result); 670 671 if (host_byte(result) == DID_RESET) { 672 /* Third party bus reset or reset for error recovery 673 * reasons. Just retry the command and see what 674 * happens. 675 */ 676 action = ACTION_RETRY; 677 } else if (sense_valid && sense_current) { 678 switch (sshdr.sense_key) { 679 case UNIT_ATTENTION: 680 if (cmd->device->removable) { 681 /* Detected disc change. Set a bit 682 * and quietly refuse further access. 683 */ 684 cmd->device->changed = 1; 685 action = ACTION_FAIL; 686 } else { 687 /* Must have been a power glitch, or a 688 * bus reset. Could not have been a 689 * media change, so we just retry the 690 * command and see what happens. 691 */ 692 action = ACTION_RETRY; 693 } 694 break; 695 case ILLEGAL_REQUEST: 696 /* If we had an ILLEGAL REQUEST returned, then 697 * we may have performed an unsupported 698 * command. The only thing this should be 699 * would be a ten byte read where only a six 700 * byte read was supported. Also, on a system 701 * where READ CAPACITY failed, we may have 702 * read past the end of the disk. 703 */ 704 if ((cmd->device->use_10_for_rw && 705 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 706 (cmd->cmnd[0] == READ_10 || 707 cmd->cmnd[0] == WRITE_10)) { 708 /* This will issue a new 6-byte command. */ 709 cmd->device->use_10_for_rw = 0; 710 action = ACTION_REPREP; 711 } else if (sshdr.asc == 0x10) /* DIX */ { 712 action = ACTION_FAIL; 713 blk_stat = BLK_STS_PROTECTION; 714 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 715 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 716 action = ACTION_FAIL; 717 blk_stat = BLK_STS_TARGET; 718 } else 719 action = ACTION_FAIL; 720 break; 721 case ABORTED_COMMAND: 722 action = ACTION_FAIL; 723 if (sshdr.asc == 0x10) /* DIF */ 724 blk_stat = BLK_STS_PROTECTION; 725 break; 726 case NOT_READY: 727 /* If the device is in the process of becoming 728 * ready, or has a temporary blockage, retry. 729 */ 730 if (sshdr.asc == 0x04) { 731 switch (sshdr.ascq) { 732 case 0x01: /* becoming ready */ 733 case 0x04: /* format in progress */ 734 case 0x05: /* rebuild in progress */ 735 case 0x06: /* recalculation in progress */ 736 case 0x07: /* operation in progress */ 737 case 0x08: /* Long write in progress */ 738 case 0x09: /* self test in progress */ 739 case 0x14: /* space allocation in progress */ 740 case 0x1a: /* start stop unit in progress */ 741 case 0x1b: /* sanitize in progress */ 742 case 0x1d: /* configuration in progress */ 743 case 0x24: /* depopulation in progress */ 744 action = ACTION_DELAYED_RETRY; 745 break; 746 default: 747 action = ACTION_FAIL; 748 break; 749 } 750 } else 751 action = ACTION_FAIL; 752 break; 753 case VOLUME_OVERFLOW: 754 /* See SSC3rXX or current. */ 755 action = ACTION_FAIL; 756 break; 757 default: 758 action = ACTION_FAIL; 759 break; 760 } 761 } else 762 action = ACTION_FAIL; 763 764 if (action != ACTION_FAIL && 765 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 766 action = ACTION_FAIL; 767 768 switch (action) { 769 case ACTION_FAIL: 770 /* Give up and fail the remainder of the request */ 771 if (!(req->rq_flags & RQF_QUIET)) { 772 static DEFINE_RATELIMIT_STATE(_rs, 773 DEFAULT_RATELIMIT_INTERVAL, 774 DEFAULT_RATELIMIT_BURST); 775 776 if (unlikely(scsi_logging_level)) 777 level = 778 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 779 SCSI_LOG_MLCOMPLETE_BITS); 780 781 /* 782 * if logging is enabled the failure will be printed 783 * in scsi_log_completion(), so avoid duplicate messages 784 */ 785 if (!level && __ratelimit(&_rs)) { 786 scsi_print_result(cmd, NULL, FAILED); 787 if (driver_byte(result) == DRIVER_SENSE) 788 scsi_print_sense(cmd); 789 scsi_print_command(cmd); 790 } 791 } 792 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 793 return; 794 /*FALLTHRU*/ 795 case ACTION_REPREP: 796 scsi_io_completion_reprep(cmd, q); 797 break; 798 case ACTION_RETRY: 799 /* Retry the same command immediately */ 800 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 801 break; 802 case ACTION_DELAYED_RETRY: 803 /* Retry the same command after a delay */ 804 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 805 break; 806 } 807 } 808 809 /* 810 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 811 * new result that may suppress further error checking. Also modifies 812 * *blk_statp in some cases. 813 */ 814 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 815 blk_status_t *blk_statp) 816 { 817 bool sense_valid; 818 bool sense_current = true; /* false implies "deferred sense" */ 819 struct request *req = cmd->request; 820 struct scsi_sense_hdr sshdr; 821 822 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 823 if (sense_valid) 824 sense_current = !scsi_sense_is_deferred(&sshdr); 825 826 if (blk_rq_is_passthrough(req)) { 827 if (sense_valid) { 828 /* 829 * SG_IO wants current and deferred errors 830 */ 831 scsi_req(req)->sense_len = 832 min(8 + cmd->sense_buffer[7], 833 SCSI_SENSE_BUFFERSIZE); 834 } 835 if (sense_current) 836 *blk_statp = scsi_result_to_blk_status(cmd, result); 837 } else if (blk_rq_bytes(req) == 0 && sense_current) { 838 /* 839 * Flush commands do not transfers any data, and thus cannot use 840 * good_bytes != blk_rq_bytes(req) as the signal for an error. 841 * This sets *blk_statp explicitly for the problem case. 842 */ 843 *blk_statp = scsi_result_to_blk_status(cmd, result); 844 } 845 /* 846 * Recovered errors need reporting, but they're always treated as 847 * success, so fiddle the result code here. For passthrough requests 848 * we already took a copy of the original into sreq->result which 849 * is what gets returned to the user 850 */ 851 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 852 bool do_print = true; 853 /* 854 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 855 * skip print since caller wants ATA registers. Only occurs 856 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 857 */ 858 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 859 do_print = false; 860 else if (req->rq_flags & RQF_QUIET) 861 do_print = false; 862 if (do_print) 863 scsi_print_sense(cmd); 864 result = 0; 865 /* for passthrough, *blk_statp may be set */ 866 *blk_statp = BLK_STS_OK; 867 } 868 /* 869 * Another corner case: the SCSI status byte is non-zero but 'good'. 870 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 871 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 872 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 873 * intermediate statuses (both obsolete in SAM-4) as good. 874 */ 875 if (status_byte(result) && scsi_status_is_good(result)) { 876 result = 0; 877 *blk_statp = BLK_STS_OK; 878 } 879 return result; 880 } 881 882 /** 883 * scsi_io_completion - Completion processing for SCSI commands. 884 * @cmd: command that is finished. 885 * @good_bytes: number of processed bytes. 886 * 887 * We will finish off the specified number of sectors. If we are done, the 888 * command block will be released and the queue function will be goosed. If we 889 * are not done then we have to figure out what to do next: 890 * 891 * a) We can call scsi_io_completion_reprep(). The request will be 892 * unprepared and put back on the queue. Then a new command will 893 * be created for it. This should be used if we made forward 894 * progress, or if we want to switch from READ(10) to READ(6) for 895 * example. 896 * 897 * b) We can call scsi_io_completion_action(). The request will be 898 * put back on the queue and retried using the same command as 899 * before, possibly after a delay. 900 * 901 * c) We can call scsi_end_request() with blk_stat other than 902 * BLK_STS_OK, to fail the remainder of the request. 903 */ 904 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 905 { 906 int result = cmd->result; 907 struct request_queue *q = cmd->device->request_queue; 908 struct request *req = cmd->request; 909 blk_status_t blk_stat = BLK_STS_OK; 910 911 if (unlikely(result)) /* a nz result may or may not be an error */ 912 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 913 914 if (unlikely(blk_rq_is_passthrough(req))) { 915 /* 916 * scsi_result_to_blk_status may have reset the host_byte 917 */ 918 scsi_req(req)->result = cmd->result; 919 } 920 921 /* 922 * Next deal with any sectors which we were able to correctly 923 * handle. 924 */ 925 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 926 "%u sectors total, %d bytes done.\n", 927 blk_rq_sectors(req), good_bytes)); 928 929 /* 930 * Failed, zero length commands always need to drop down 931 * to retry code. Fast path should return in this block. 932 */ 933 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 934 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 935 return; /* no bytes remaining */ 936 } 937 938 /* Kill remainder if no retries. */ 939 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 940 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 941 WARN_ONCE(true, 942 "Bytes remaining after failed, no-retry command"); 943 return; 944 } 945 946 /* 947 * If there had been no error, but we have leftover bytes in the 948 * requeues just queue the command up again. 949 */ 950 if (likely(result == 0)) 951 scsi_io_completion_reprep(cmd, q); 952 else 953 scsi_io_completion_action(cmd, result); 954 } 955 956 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 957 struct request *rq) 958 { 959 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 960 !op_is_write(req_op(rq)) && 961 sdev->host->hostt->dma_need_drain(rq); 962 } 963 964 /** 965 * scsi_init_io - SCSI I/O initialization function. 966 * @cmd: command descriptor we wish to initialize 967 * 968 * Returns: 969 * * BLK_STS_OK - on success 970 * * BLK_STS_RESOURCE - if the failure is retryable 971 * * BLK_STS_IOERR - if the failure is fatal 972 */ 973 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 974 { 975 struct scsi_device *sdev = cmd->device; 976 struct request *rq = cmd->request; 977 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 978 struct scatterlist *last_sg = NULL; 979 blk_status_t ret; 980 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 981 int count; 982 983 if (WARN_ON_ONCE(!nr_segs)) 984 return BLK_STS_IOERR; 985 986 /* 987 * Make sure there is space for the drain. The driver must adjust 988 * max_hw_segments to be prepared for this. 989 */ 990 if (need_drain) 991 nr_segs++; 992 993 /* 994 * If sg table allocation fails, requeue request later. 995 */ 996 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 997 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 998 return BLK_STS_RESOURCE; 999 1000 /* 1001 * Next, walk the list, and fill in the addresses and sizes of 1002 * each segment. 1003 */ 1004 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1005 1006 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1007 unsigned int pad_len = 1008 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1009 1010 last_sg->length += pad_len; 1011 cmd->extra_len += pad_len; 1012 } 1013 1014 if (need_drain) { 1015 sg_unmark_end(last_sg); 1016 last_sg = sg_next(last_sg); 1017 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1018 sg_mark_end(last_sg); 1019 1020 cmd->extra_len += sdev->dma_drain_len; 1021 count++; 1022 } 1023 1024 BUG_ON(count > cmd->sdb.table.nents); 1025 cmd->sdb.table.nents = count; 1026 cmd->sdb.length = blk_rq_payload_bytes(rq); 1027 1028 if (blk_integrity_rq(rq)) { 1029 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1030 int ivecs; 1031 1032 if (WARN_ON_ONCE(!prot_sdb)) { 1033 /* 1034 * This can happen if someone (e.g. multipath) 1035 * queues a command to a device on an adapter 1036 * that does not support DIX. 1037 */ 1038 ret = BLK_STS_IOERR; 1039 goto out_free_sgtables; 1040 } 1041 1042 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1043 1044 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1045 prot_sdb->table.sgl, 1046 SCSI_INLINE_PROT_SG_CNT)) { 1047 ret = BLK_STS_RESOURCE; 1048 goto out_free_sgtables; 1049 } 1050 1051 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1052 prot_sdb->table.sgl); 1053 BUG_ON(count > ivecs); 1054 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1055 1056 cmd->prot_sdb = prot_sdb; 1057 cmd->prot_sdb->table.nents = count; 1058 } 1059 1060 return BLK_STS_OK; 1061 out_free_sgtables: 1062 scsi_free_sgtables(cmd); 1063 return ret; 1064 } 1065 EXPORT_SYMBOL(scsi_init_io); 1066 1067 /** 1068 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1069 * @rq: Request associated with the SCSI command to be initialized. 1070 * 1071 * This function initializes the members of struct scsi_cmnd that must be 1072 * initialized before request processing starts and that won't be 1073 * reinitialized if a SCSI command is requeued. 1074 * 1075 * Called from inside blk_get_request() for pass-through requests and from 1076 * inside scsi_init_command() for filesystem requests. 1077 */ 1078 static void scsi_initialize_rq(struct request *rq) 1079 { 1080 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1081 1082 scsi_req_init(&cmd->req); 1083 init_rcu_head(&cmd->rcu); 1084 cmd->jiffies_at_alloc = jiffies; 1085 cmd->retries = 0; 1086 } 1087 1088 /* 1089 * Only called when the request isn't completed by SCSI, and not freed by 1090 * SCSI 1091 */ 1092 static void scsi_cleanup_rq(struct request *rq) 1093 { 1094 if (rq->rq_flags & RQF_DONTPREP) { 1095 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1096 rq->rq_flags &= ~RQF_DONTPREP; 1097 } 1098 } 1099 1100 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1101 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1102 { 1103 void *buf = cmd->sense_buffer; 1104 void *prot = cmd->prot_sdb; 1105 struct request *rq = blk_mq_rq_from_pdu(cmd); 1106 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1107 unsigned long jiffies_at_alloc; 1108 int retries, to_clear; 1109 bool in_flight; 1110 1111 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1112 flags |= SCMD_INITIALIZED; 1113 scsi_initialize_rq(rq); 1114 } 1115 1116 jiffies_at_alloc = cmd->jiffies_at_alloc; 1117 retries = cmd->retries; 1118 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1119 /* 1120 * Zero out the cmd, except for the embedded scsi_request. Only clear 1121 * the driver-private command data if the LLD does not supply a 1122 * function to initialize that data. 1123 */ 1124 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1125 if (!dev->host->hostt->init_cmd_priv) 1126 to_clear += dev->host->hostt->cmd_size; 1127 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1128 1129 cmd->device = dev; 1130 cmd->sense_buffer = buf; 1131 cmd->prot_sdb = prot; 1132 cmd->flags = flags; 1133 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1134 cmd->jiffies_at_alloc = jiffies_at_alloc; 1135 cmd->retries = retries; 1136 if (in_flight) 1137 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1138 1139 } 1140 1141 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1142 struct request *req) 1143 { 1144 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1145 1146 /* 1147 * Passthrough requests may transfer data, in which case they must 1148 * a bio attached to them. Or they might contain a SCSI command 1149 * that does not transfer data, in which case they may optionally 1150 * submit a request without an attached bio. 1151 */ 1152 if (req->bio) { 1153 blk_status_t ret = scsi_init_io(cmd); 1154 if (unlikely(ret != BLK_STS_OK)) 1155 return ret; 1156 } else { 1157 BUG_ON(blk_rq_bytes(req)); 1158 1159 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1160 } 1161 1162 cmd->cmd_len = scsi_req(req)->cmd_len; 1163 cmd->cmnd = scsi_req(req)->cmd; 1164 cmd->transfersize = blk_rq_bytes(req); 1165 cmd->allowed = scsi_req(req)->retries; 1166 return BLK_STS_OK; 1167 } 1168 1169 /* 1170 * Setup a normal block command. These are simple request from filesystems 1171 * that still need to be translated to SCSI CDBs from the ULD. 1172 */ 1173 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1174 struct request *req) 1175 { 1176 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1177 1178 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1179 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1180 if (ret != BLK_STS_OK) 1181 return ret; 1182 } 1183 1184 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1185 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1186 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1187 } 1188 1189 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1190 struct request *req) 1191 { 1192 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1193 blk_status_t ret; 1194 1195 if (!blk_rq_bytes(req)) 1196 cmd->sc_data_direction = DMA_NONE; 1197 else if (rq_data_dir(req) == WRITE) 1198 cmd->sc_data_direction = DMA_TO_DEVICE; 1199 else 1200 cmd->sc_data_direction = DMA_FROM_DEVICE; 1201 1202 if (blk_rq_is_scsi(req)) 1203 ret = scsi_setup_scsi_cmnd(sdev, req); 1204 else 1205 ret = scsi_setup_fs_cmnd(sdev, req); 1206 1207 if (ret != BLK_STS_OK) 1208 scsi_free_sgtables(cmd); 1209 1210 return ret; 1211 } 1212 1213 static blk_status_t 1214 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1215 { 1216 switch (sdev->sdev_state) { 1217 case SDEV_OFFLINE: 1218 case SDEV_TRANSPORT_OFFLINE: 1219 /* 1220 * If the device is offline we refuse to process any 1221 * commands. The device must be brought online 1222 * before trying any recovery commands. 1223 */ 1224 if (!sdev->offline_already) { 1225 sdev->offline_already = true; 1226 sdev_printk(KERN_ERR, sdev, 1227 "rejecting I/O to offline device\n"); 1228 } 1229 return BLK_STS_IOERR; 1230 case SDEV_DEL: 1231 /* 1232 * If the device is fully deleted, we refuse to 1233 * process any commands as well. 1234 */ 1235 sdev_printk(KERN_ERR, sdev, 1236 "rejecting I/O to dead device\n"); 1237 return BLK_STS_IOERR; 1238 case SDEV_BLOCK: 1239 case SDEV_CREATED_BLOCK: 1240 return BLK_STS_RESOURCE; 1241 case SDEV_QUIESCE: 1242 /* 1243 * If the devices is blocked we defer normal commands. 1244 */ 1245 if (req && !(req->rq_flags & RQF_PREEMPT)) 1246 return BLK_STS_RESOURCE; 1247 return BLK_STS_OK; 1248 default: 1249 /* 1250 * For any other not fully online state we only allow 1251 * special commands. In particular any user initiated 1252 * command is not allowed. 1253 */ 1254 if (req && !(req->rq_flags & RQF_PREEMPT)) 1255 return BLK_STS_IOERR; 1256 return BLK_STS_OK; 1257 } 1258 } 1259 1260 /* 1261 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1262 * return 0. 1263 * 1264 * Called with the queue_lock held. 1265 */ 1266 static inline int scsi_dev_queue_ready(struct request_queue *q, 1267 struct scsi_device *sdev) 1268 { 1269 unsigned int busy; 1270 1271 busy = atomic_inc_return(&sdev->device_busy) - 1; 1272 if (atomic_read(&sdev->device_blocked)) { 1273 if (busy) 1274 goto out_dec; 1275 1276 /* 1277 * unblock after device_blocked iterates to zero 1278 */ 1279 if (atomic_dec_return(&sdev->device_blocked) > 0) 1280 goto out_dec; 1281 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1282 "unblocking device at zero depth\n")); 1283 } 1284 1285 if (busy >= sdev->queue_depth) 1286 goto out_dec; 1287 1288 return 1; 1289 out_dec: 1290 atomic_dec(&sdev->device_busy); 1291 return 0; 1292 } 1293 1294 /* 1295 * scsi_target_queue_ready: checks if there we can send commands to target 1296 * @sdev: scsi device on starget to check. 1297 */ 1298 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1299 struct scsi_device *sdev) 1300 { 1301 struct scsi_target *starget = scsi_target(sdev); 1302 unsigned int busy; 1303 1304 if (starget->single_lun) { 1305 spin_lock_irq(shost->host_lock); 1306 if (starget->starget_sdev_user && 1307 starget->starget_sdev_user != sdev) { 1308 spin_unlock_irq(shost->host_lock); 1309 return 0; 1310 } 1311 starget->starget_sdev_user = sdev; 1312 spin_unlock_irq(shost->host_lock); 1313 } 1314 1315 if (starget->can_queue <= 0) 1316 return 1; 1317 1318 busy = atomic_inc_return(&starget->target_busy) - 1; 1319 if (atomic_read(&starget->target_blocked) > 0) { 1320 if (busy) 1321 goto starved; 1322 1323 /* 1324 * unblock after target_blocked iterates to zero 1325 */ 1326 if (atomic_dec_return(&starget->target_blocked) > 0) 1327 goto out_dec; 1328 1329 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1330 "unblocking target at zero depth\n")); 1331 } 1332 1333 if (busy >= starget->can_queue) 1334 goto starved; 1335 1336 return 1; 1337 1338 starved: 1339 spin_lock_irq(shost->host_lock); 1340 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1341 spin_unlock_irq(shost->host_lock); 1342 out_dec: 1343 if (starget->can_queue > 0) 1344 atomic_dec(&starget->target_busy); 1345 return 0; 1346 } 1347 1348 /* 1349 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1350 * return 0. We must end up running the queue again whenever 0 is 1351 * returned, else IO can hang. 1352 */ 1353 static inline int scsi_host_queue_ready(struct request_queue *q, 1354 struct Scsi_Host *shost, 1355 struct scsi_device *sdev, 1356 struct scsi_cmnd *cmd) 1357 { 1358 if (scsi_host_in_recovery(shost)) 1359 return 0; 1360 1361 if (atomic_read(&shost->host_blocked) > 0) { 1362 if (scsi_host_busy(shost) > 0) 1363 goto starved; 1364 1365 /* 1366 * unblock after host_blocked iterates to zero 1367 */ 1368 if (atomic_dec_return(&shost->host_blocked) > 0) 1369 goto out_dec; 1370 1371 SCSI_LOG_MLQUEUE(3, 1372 shost_printk(KERN_INFO, shost, 1373 "unblocking host at zero depth\n")); 1374 } 1375 1376 if (shost->host_self_blocked) 1377 goto starved; 1378 1379 /* We're OK to process the command, so we can't be starved */ 1380 if (!list_empty(&sdev->starved_entry)) { 1381 spin_lock_irq(shost->host_lock); 1382 if (!list_empty(&sdev->starved_entry)) 1383 list_del_init(&sdev->starved_entry); 1384 spin_unlock_irq(shost->host_lock); 1385 } 1386 1387 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1388 1389 return 1; 1390 1391 starved: 1392 spin_lock_irq(shost->host_lock); 1393 if (list_empty(&sdev->starved_entry)) 1394 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1395 spin_unlock_irq(shost->host_lock); 1396 out_dec: 1397 scsi_dec_host_busy(shost, cmd); 1398 return 0; 1399 } 1400 1401 /* 1402 * Busy state exporting function for request stacking drivers. 1403 * 1404 * For efficiency, no lock is taken to check the busy state of 1405 * shost/starget/sdev, since the returned value is not guaranteed and 1406 * may be changed after request stacking drivers call the function, 1407 * regardless of taking lock or not. 1408 * 1409 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1410 * needs to return 'not busy'. Otherwise, request stacking drivers 1411 * may hold requests forever. 1412 */ 1413 static bool scsi_mq_lld_busy(struct request_queue *q) 1414 { 1415 struct scsi_device *sdev = q->queuedata; 1416 struct Scsi_Host *shost; 1417 1418 if (blk_queue_dying(q)) 1419 return false; 1420 1421 shost = sdev->host; 1422 1423 /* 1424 * Ignore host/starget busy state. 1425 * Since block layer does not have a concept of fairness across 1426 * multiple queues, congestion of host/starget needs to be handled 1427 * in SCSI layer. 1428 */ 1429 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1430 return true; 1431 1432 return false; 1433 } 1434 1435 static void scsi_softirq_done(struct request *rq) 1436 { 1437 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1438 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1439 int disposition; 1440 1441 INIT_LIST_HEAD(&cmd->eh_entry); 1442 1443 atomic_inc(&cmd->device->iodone_cnt); 1444 if (cmd->result) 1445 atomic_inc(&cmd->device->ioerr_cnt); 1446 1447 disposition = scsi_decide_disposition(cmd); 1448 if (disposition != SUCCESS && 1449 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1450 scmd_printk(KERN_ERR, cmd, 1451 "timing out command, waited %lus\n", 1452 wait_for/HZ); 1453 disposition = SUCCESS; 1454 } 1455 1456 scsi_log_completion(cmd, disposition); 1457 1458 switch (disposition) { 1459 case SUCCESS: 1460 scsi_finish_command(cmd); 1461 break; 1462 case NEEDS_RETRY: 1463 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1464 break; 1465 case ADD_TO_MLQUEUE: 1466 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1467 break; 1468 default: 1469 scsi_eh_scmd_add(cmd); 1470 break; 1471 } 1472 } 1473 1474 /** 1475 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1476 * @cmd: command block we are dispatching. 1477 * 1478 * Return: nonzero return request was rejected and device's queue needs to be 1479 * plugged. 1480 */ 1481 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1482 { 1483 struct Scsi_Host *host = cmd->device->host; 1484 int rtn = 0; 1485 1486 atomic_inc(&cmd->device->iorequest_cnt); 1487 1488 /* check if the device is still usable */ 1489 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1490 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1491 * returns an immediate error upwards, and signals 1492 * that the device is no longer present */ 1493 cmd->result = DID_NO_CONNECT << 16; 1494 goto done; 1495 } 1496 1497 /* Check to see if the scsi lld made this device blocked. */ 1498 if (unlikely(scsi_device_blocked(cmd->device))) { 1499 /* 1500 * in blocked state, the command is just put back on 1501 * the device queue. The suspend state has already 1502 * blocked the queue so future requests should not 1503 * occur until the device transitions out of the 1504 * suspend state. 1505 */ 1506 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1507 "queuecommand : device blocked\n")); 1508 return SCSI_MLQUEUE_DEVICE_BUSY; 1509 } 1510 1511 /* Store the LUN value in cmnd, if needed. */ 1512 if (cmd->device->lun_in_cdb) 1513 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1514 (cmd->device->lun << 5 & 0xe0); 1515 1516 scsi_log_send(cmd); 1517 1518 /* 1519 * Before we queue this command, check if the command 1520 * length exceeds what the host adapter can handle. 1521 */ 1522 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1523 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1524 "queuecommand : command too long. " 1525 "cdb_size=%d host->max_cmd_len=%d\n", 1526 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1527 cmd->result = (DID_ABORT << 16); 1528 goto done; 1529 } 1530 1531 if (unlikely(host->shost_state == SHOST_DEL)) { 1532 cmd->result = (DID_NO_CONNECT << 16); 1533 goto done; 1534 1535 } 1536 1537 trace_scsi_dispatch_cmd_start(cmd); 1538 rtn = host->hostt->queuecommand(host, cmd); 1539 if (rtn) { 1540 trace_scsi_dispatch_cmd_error(cmd, rtn); 1541 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1542 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1543 rtn = SCSI_MLQUEUE_HOST_BUSY; 1544 1545 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1546 "queuecommand : request rejected\n")); 1547 } 1548 1549 return rtn; 1550 done: 1551 cmd->scsi_done(cmd); 1552 return 0; 1553 } 1554 1555 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1556 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1557 { 1558 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1559 sizeof(struct scatterlist); 1560 } 1561 1562 static blk_status_t scsi_mq_prep_fn(struct request *req) 1563 { 1564 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1565 struct scsi_device *sdev = req->q->queuedata; 1566 struct Scsi_Host *shost = sdev->host; 1567 struct scatterlist *sg; 1568 1569 scsi_init_command(sdev, cmd); 1570 1571 cmd->request = req; 1572 cmd->tag = req->tag; 1573 cmd->prot_op = SCSI_PROT_NORMAL; 1574 1575 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1576 cmd->sdb.table.sgl = sg; 1577 1578 if (scsi_host_get_prot(shost)) { 1579 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1580 1581 cmd->prot_sdb->table.sgl = 1582 (struct scatterlist *)(cmd->prot_sdb + 1); 1583 } 1584 1585 blk_mq_start_request(req); 1586 1587 return scsi_setup_cmnd(sdev, req); 1588 } 1589 1590 static void scsi_mq_done(struct scsi_cmnd *cmd) 1591 { 1592 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1593 return; 1594 trace_scsi_dispatch_cmd_done(cmd); 1595 1596 /* 1597 * If the block layer didn't complete the request due to a timeout 1598 * injection, scsi must clear its internal completed state so that the 1599 * timeout handler will see it needs to escalate its own error 1600 * recovery. 1601 */ 1602 if (unlikely(!blk_mq_complete_request(cmd->request))) 1603 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1604 } 1605 1606 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1607 { 1608 struct request_queue *q = hctx->queue; 1609 struct scsi_device *sdev = q->queuedata; 1610 1611 atomic_dec(&sdev->device_busy); 1612 } 1613 1614 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1615 { 1616 struct request_queue *q = hctx->queue; 1617 struct scsi_device *sdev = q->queuedata; 1618 1619 return scsi_dev_queue_ready(q, sdev); 1620 } 1621 1622 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1623 const struct blk_mq_queue_data *bd) 1624 { 1625 struct request *req = bd->rq; 1626 struct request_queue *q = req->q; 1627 struct scsi_device *sdev = q->queuedata; 1628 struct Scsi_Host *shost = sdev->host; 1629 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1630 blk_status_t ret; 1631 int reason; 1632 1633 /* 1634 * If the device is not in running state we will reject some or all 1635 * commands. 1636 */ 1637 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1638 ret = scsi_prep_state_check(sdev, req); 1639 if (ret != BLK_STS_OK) 1640 goto out_put_budget; 1641 } 1642 1643 ret = BLK_STS_RESOURCE; 1644 if (!scsi_target_queue_ready(shost, sdev)) 1645 goto out_put_budget; 1646 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1647 goto out_dec_target_busy; 1648 1649 if (!(req->rq_flags & RQF_DONTPREP)) { 1650 ret = scsi_mq_prep_fn(req); 1651 if (ret != BLK_STS_OK) 1652 goto out_dec_host_busy; 1653 req->rq_flags |= RQF_DONTPREP; 1654 } else { 1655 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1656 blk_mq_start_request(req); 1657 } 1658 1659 cmd->flags &= SCMD_PRESERVED_FLAGS; 1660 if (sdev->simple_tags) 1661 cmd->flags |= SCMD_TAGGED; 1662 if (bd->last) 1663 cmd->flags |= SCMD_LAST; 1664 1665 scsi_init_cmd_errh(cmd); 1666 cmd->scsi_done = scsi_mq_done; 1667 1668 reason = scsi_dispatch_cmd(cmd); 1669 if (reason) { 1670 scsi_set_blocked(cmd, reason); 1671 ret = BLK_STS_RESOURCE; 1672 goto out_dec_host_busy; 1673 } 1674 1675 return BLK_STS_OK; 1676 1677 out_dec_host_busy: 1678 scsi_dec_host_busy(shost, cmd); 1679 out_dec_target_busy: 1680 if (scsi_target(sdev)->can_queue > 0) 1681 atomic_dec(&scsi_target(sdev)->target_busy); 1682 out_put_budget: 1683 scsi_mq_put_budget(hctx); 1684 switch (ret) { 1685 case BLK_STS_OK: 1686 break; 1687 case BLK_STS_RESOURCE: 1688 case BLK_STS_ZONE_RESOURCE: 1689 if (atomic_read(&sdev->device_busy) || 1690 scsi_device_blocked(sdev)) 1691 ret = BLK_STS_DEV_RESOURCE; 1692 break; 1693 default: 1694 if (unlikely(!scsi_device_online(sdev))) 1695 scsi_req(req)->result = DID_NO_CONNECT << 16; 1696 else 1697 scsi_req(req)->result = DID_ERROR << 16; 1698 /* 1699 * Make sure to release all allocated resources when 1700 * we hit an error, as we will never see this command 1701 * again. 1702 */ 1703 if (req->rq_flags & RQF_DONTPREP) 1704 scsi_mq_uninit_cmd(cmd); 1705 break; 1706 } 1707 return ret; 1708 } 1709 1710 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1711 bool reserved) 1712 { 1713 if (reserved) 1714 return BLK_EH_RESET_TIMER; 1715 return scsi_times_out(req); 1716 } 1717 1718 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1719 unsigned int hctx_idx, unsigned int numa_node) 1720 { 1721 struct Scsi_Host *shost = set->driver_data; 1722 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1723 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1724 struct scatterlist *sg; 1725 int ret = 0; 1726 1727 if (unchecked_isa_dma) 1728 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1729 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1730 GFP_KERNEL, numa_node); 1731 if (!cmd->sense_buffer) 1732 return -ENOMEM; 1733 cmd->req.sense = cmd->sense_buffer; 1734 1735 if (scsi_host_get_prot(shost)) { 1736 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1737 shost->hostt->cmd_size; 1738 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1739 } 1740 1741 if (shost->hostt->init_cmd_priv) { 1742 ret = shost->hostt->init_cmd_priv(shost, cmd); 1743 if (ret < 0) 1744 scsi_free_sense_buffer(unchecked_isa_dma, 1745 cmd->sense_buffer); 1746 } 1747 1748 return ret; 1749 } 1750 1751 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1752 unsigned int hctx_idx) 1753 { 1754 struct Scsi_Host *shost = set->driver_data; 1755 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1756 1757 if (shost->hostt->exit_cmd_priv) 1758 shost->hostt->exit_cmd_priv(shost, cmd); 1759 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1760 cmd->sense_buffer); 1761 } 1762 1763 static int scsi_map_queues(struct blk_mq_tag_set *set) 1764 { 1765 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1766 1767 if (shost->hostt->map_queues) 1768 return shost->hostt->map_queues(shost); 1769 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1770 } 1771 1772 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1773 { 1774 struct device *dev = shost->dma_dev; 1775 1776 /* 1777 * this limit is imposed by hardware restrictions 1778 */ 1779 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1780 SG_MAX_SEGMENTS)); 1781 1782 if (scsi_host_prot_dma(shost)) { 1783 shost->sg_prot_tablesize = 1784 min_not_zero(shost->sg_prot_tablesize, 1785 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1786 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1787 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1788 } 1789 1790 if (dev->dma_mask) { 1791 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1792 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1793 } 1794 blk_queue_max_hw_sectors(q, shost->max_sectors); 1795 if (shost->unchecked_isa_dma) 1796 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1797 blk_queue_segment_boundary(q, shost->dma_boundary); 1798 dma_set_seg_boundary(dev, shost->dma_boundary); 1799 1800 blk_queue_max_segment_size(q, shost->max_segment_size); 1801 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1802 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1803 1804 /* 1805 * Set a reasonable default alignment: The larger of 32-byte (dword), 1806 * which is a common minimum for HBAs, and the minimum DMA alignment, 1807 * which is set by the platform. 1808 * 1809 * Devices that require a bigger alignment can increase it later. 1810 */ 1811 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1812 } 1813 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1814 1815 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1816 .get_budget = scsi_mq_get_budget, 1817 .put_budget = scsi_mq_put_budget, 1818 .queue_rq = scsi_queue_rq, 1819 .complete = scsi_softirq_done, 1820 .timeout = scsi_timeout, 1821 #ifdef CONFIG_BLK_DEBUG_FS 1822 .show_rq = scsi_show_rq, 1823 #endif 1824 .init_request = scsi_mq_init_request, 1825 .exit_request = scsi_mq_exit_request, 1826 .initialize_rq_fn = scsi_initialize_rq, 1827 .cleanup_rq = scsi_cleanup_rq, 1828 .busy = scsi_mq_lld_busy, 1829 .map_queues = scsi_map_queues, 1830 }; 1831 1832 1833 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1834 { 1835 struct request_queue *q = hctx->queue; 1836 struct scsi_device *sdev = q->queuedata; 1837 struct Scsi_Host *shost = sdev->host; 1838 1839 shost->hostt->commit_rqs(shost, hctx->queue_num); 1840 } 1841 1842 static const struct blk_mq_ops scsi_mq_ops = { 1843 .get_budget = scsi_mq_get_budget, 1844 .put_budget = scsi_mq_put_budget, 1845 .queue_rq = scsi_queue_rq, 1846 .commit_rqs = scsi_commit_rqs, 1847 .complete = scsi_softirq_done, 1848 .timeout = scsi_timeout, 1849 #ifdef CONFIG_BLK_DEBUG_FS 1850 .show_rq = scsi_show_rq, 1851 #endif 1852 .init_request = scsi_mq_init_request, 1853 .exit_request = scsi_mq_exit_request, 1854 .initialize_rq_fn = scsi_initialize_rq, 1855 .cleanup_rq = scsi_cleanup_rq, 1856 .busy = scsi_mq_lld_busy, 1857 .map_queues = scsi_map_queues, 1858 }; 1859 1860 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1861 { 1862 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1863 if (IS_ERR(sdev->request_queue)) 1864 return NULL; 1865 1866 sdev->request_queue->queuedata = sdev; 1867 __scsi_init_queue(sdev->host, sdev->request_queue); 1868 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1869 return sdev->request_queue; 1870 } 1871 1872 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1873 { 1874 unsigned int cmd_size, sgl_size; 1875 struct blk_mq_tag_set *tag_set = &shost->tag_set; 1876 1877 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1878 scsi_mq_inline_sgl_size(shost)); 1879 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1880 if (scsi_host_get_prot(shost)) 1881 cmd_size += sizeof(struct scsi_data_buffer) + 1882 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1883 1884 memset(tag_set, 0, sizeof(*tag_set)); 1885 if (shost->hostt->commit_rqs) 1886 tag_set->ops = &scsi_mq_ops; 1887 else 1888 tag_set->ops = &scsi_mq_ops_no_commit; 1889 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1; 1890 tag_set->queue_depth = shost->can_queue; 1891 tag_set->cmd_size = cmd_size; 1892 tag_set->numa_node = NUMA_NO_NODE; 1893 tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1894 tag_set->flags |= 1895 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1896 tag_set->driver_data = shost; 1897 1898 return blk_mq_alloc_tag_set(tag_set); 1899 } 1900 1901 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1902 { 1903 blk_mq_free_tag_set(&shost->tag_set); 1904 } 1905 1906 /** 1907 * scsi_device_from_queue - return sdev associated with a request_queue 1908 * @q: The request queue to return the sdev from 1909 * 1910 * Return the sdev associated with a request queue or NULL if the 1911 * request_queue does not reference a SCSI device. 1912 */ 1913 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1914 { 1915 struct scsi_device *sdev = NULL; 1916 1917 if (q->mq_ops == &scsi_mq_ops_no_commit || 1918 q->mq_ops == &scsi_mq_ops) 1919 sdev = q->queuedata; 1920 if (!sdev || !get_device(&sdev->sdev_gendev)) 1921 sdev = NULL; 1922 1923 return sdev; 1924 } 1925 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1926 1927 /** 1928 * scsi_block_requests - Utility function used by low-level drivers to prevent 1929 * further commands from being queued to the device. 1930 * @shost: host in question 1931 * 1932 * There is no timer nor any other means by which the requests get unblocked 1933 * other than the low-level driver calling scsi_unblock_requests(). 1934 */ 1935 void scsi_block_requests(struct Scsi_Host *shost) 1936 { 1937 shost->host_self_blocked = 1; 1938 } 1939 EXPORT_SYMBOL(scsi_block_requests); 1940 1941 /** 1942 * scsi_unblock_requests - Utility function used by low-level drivers to allow 1943 * further commands to be queued to the device. 1944 * @shost: host in question 1945 * 1946 * There is no timer nor any other means by which the requests get unblocked 1947 * other than the low-level driver calling scsi_unblock_requests(). This is done 1948 * as an API function so that changes to the internals of the scsi mid-layer 1949 * won't require wholesale changes to drivers that use this feature. 1950 */ 1951 void scsi_unblock_requests(struct Scsi_Host *shost) 1952 { 1953 shost->host_self_blocked = 0; 1954 scsi_run_host_queues(shost); 1955 } 1956 EXPORT_SYMBOL(scsi_unblock_requests); 1957 1958 int __init scsi_init_queue(void) 1959 { 1960 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1961 sizeof(struct scsi_data_buffer), 1962 0, 0, NULL); 1963 if (!scsi_sdb_cache) { 1964 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1965 return -ENOMEM; 1966 } 1967 1968 return 0; 1969 } 1970 1971 void scsi_exit_queue(void) 1972 { 1973 kmem_cache_destroy(scsi_sense_cache); 1974 kmem_cache_destroy(scsi_sense_isadma_cache); 1975 kmem_cache_destroy(scsi_sdb_cache); 1976 } 1977 1978 /** 1979 * scsi_mode_select - issue a mode select 1980 * @sdev: SCSI device to be queried 1981 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1982 * @sp: Save page bit (0 == don't save, 1 == save) 1983 * @modepage: mode page being requested 1984 * @buffer: request buffer (may not be smaller than eight bytes) 1985 * @len: length of request buffer. 1986 * @timeout: command timeout 1987 * @retries: number of retries before failing 1988 * @data: returns a structure abstracting the mode header data 1989 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1990 * must be SCSI_SENSE_BUFFERSIZE big. 1991 * 1992 * Returns zero if successful; negative error number or scsi 1993 * status on error 1994 * 1995 */ 1996 int 1997 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1998 unsigned char *buffer, int len, int timeout, int retries, 1999 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2000 { 2001 unsigned char cmd[10]; 2002 unsigned char *real_buffer; 2003 int ret; 2004 2005 memset(cmd, 0, sizeof(cmd)); 2006 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2007 2008 if (sdev->use_10_for_ms) { 2009 if (len > 65535) 2010 return -EINVAL; 2011 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2012 if (!real_buffer) 2013 return -ENOMEM; 2014 memcpy(real_buffer + 8, buffer, len); 2015 len += 8; 2016 real_buffer[0] = 0; 2017 real_buffer[1] = 0; 2018 real_buffer[2] = data->medium_type; 2019 real_buffer[3] = data->device_specific; 2020 real_buffer[4] = data->longlba ? 0x01 : 0; 2021 real_buffer[5] = 0; 2022 real_buffer[6] = data->block_descriptor_length >> 8; 2023 real_buffer[7] = data->block_descriptor_length; 2024 2025 cmd[0] = MODE_SELECT_10; 2026 cmd[7] = len >> 8; 2027 cmd[8] = len; 2028 } else { 2029 if (len > 255 || data->block_descriptor_length > 255 || 2030 data->longlba) 2031 return -EINVAL; 2032 2033 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2034 if (!real_buffer) 2035 return -ENOMEM; 2036 memcpy(real_buffer + 4, buffer, len); 2037 len += 4; 2038 real_buffer[0] = 0; 2039 real_buffer[1] = data->medium_type; 2040 real_buffer[2] = data->device_specific; 2041 real_buffer[3] = data->block_descriptor_length; 2042 2043 2044 cmd[0] = MODE_SELECT; 2045 cmd[4] = len; 2046 } 2047 2048 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2049 sshdr, timeout, retries, NULL); 2050 kfree(real_buffer); 2051 return ret; 2052 } 2053 EXPORT_SYMBOL_GPL(scsi_mode_select); 2054 2055 /** 2056 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2057 * @sdev: SCSI device to be queried 2058 * @dbd: set if mode sense will allow block descriptors to be returned 2059 * @modepage: mode page being requested 2060 * @buffer: request buffer (may not be smaller than eight bytes) 2061 * @len: length of request buffer. 2062 * @timeout: command timeout 2063 * @retries: number of retries before failing 2064 * @data: returns a structure abstracting the mode header data 2065 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2066 * must be SCSI_SENSE_BUFFERSIZE big. 2067 * 2068 * Returns zero if unsuccessful, or the header offset (either 4 2069 * or 8 depending on whether a six or ten byte command was 2070 * issued) if successful. 2071 */ 2072 int 2073 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2074 unsigned char *buffer, int len, int timeout, int retries, 2075 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2076 { 2077 unsigned char cmd[12]; 2078 int use_10_for_ms; 2079 int header_length; 2080 int result, retry_count = retries; 2081 struct scsi_sense_hdr my_sshdr; 2082 2083 memset(data, 0, sizeof(*data)); 2084 memset(&cmd[0], 0, 12); 2085 2086 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2087 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2088 cmd[2] = modepage; 2089 2090 /* caller might not be interested in sense, but we need it */ 2091 if (!sshdr) 2092 sshdr = &my_sshdr; 2093 2094 retry: 2095 use_10_for_ms = sdev->use_10_for_ms; 2096 2097 if (use_10_for_ms) { 2098 if (len < 8) 2099 len = 8; 2100 2101 cmd[0] = MODE_SENSE_10; 2102 cmd[8] = len; 2103 header_length = 8; 2104 } else { 2105 if (len < 4) 2106 len = 4; 2107 2108 cmd[0] = MODE_SENSE; 2109 cmd[4] = len; 2110 header_length = 4; 2111 } 2112 2113 memset(buffer, 0, len); 2114 2115 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2116 sshdr, timeout, retries, NULL); 2117 2118 /* This code looks awful: what it's doing is making sure an 2119 * ILLEGAL REQUEST sense return identifies the actual command 2120 * byte as the problem. MODE_SENSE commands can return 2121 * ILLEGAL REQUEST if the code page isn't supported */ 2122 2123 if (use_10_for_ms && !scsi_status_is_good(result) && 2124 driver_byte(result) == DRIVER_SENSE) { 2125 if (scsi_sense_valid(sshdr)) { 2126 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2127 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2128 /* 2129 * Invalid command operation code 2130 */ 2131 sdev->use_10_for_ms = 0; 2132 goto retry; 2133 } 2134 } 2135 } 2136 2137 if(scsi_status_is_good(result)) { 2138 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2139 (modepage == 6 || modepage == 8))) { 2140 /* Initio breakage? */ 2141 header_length = 0; 2142 data->length = 13; 2143 data->medium_type = 0; 2144 data->device_specific = 0; 2145 data->longlba = 0; 2146 data->block_descriptor_length = 0; 2147 } else if(use_10_for_ms) { 2148 data->length = buffer[0]*256 + buffer[1] + 2; 2149 data->medium_type = buffer[2]; 2150 data->device_specific = buffer[3]; 2151 data->longlba = buffer[4] & 0x01; 2152 data->block_descriptor_length = buffer[6]*256 2153 + buffer[7]; 2154 } else { 2155 data->length = buffer[0] + 1; 2156 data->medium_type = buffer[1]; 2157 data->device_specific = buffer[2]; 2158 data->block_descriptor_length = buffer[3]; 2159 } 2160 data->header_length = header_length; 2161 } else if ((status_byte(result) == CHECK_CONDITION) && 2162 scsi_sense_valid(sshdr) && 2163 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2164 retry_count--; 2165 goto retry; 2166 } 2167 2168 return result; 2169 } 2170 EXPORT_SYMBOL(scsi_mode_sense); 2171 2172 /** 2173 * scsi_test_unit_ready - test if unit is ready 2174 * @sdev: scsi device to change the state of. 2175 * @timeout: command timeout 2176 * @retries: number of retries before failing 2177 * @sshdr: outpout pointer for decoded sense information. 2178 * 2179 * Returns zero if unsuccessful or an error if TUR failed. For 2180 * removable media, UNIT_ATTENTION sets ->changed flag. 2181 **/ 2182 int 2183 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2184 struct scsi_sense_hdr *sshdr) 2185 { 2186 char cmd[] = { 2187 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2188 }; 2189 int result; 2190 2191 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2192 do { 2193 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2194 timeout, 1, NULL); 2195 if (sdev->removable && scsi_sense_valid(sshdr) && 2196 sshdr->sense_key == UNIT_ATTENTION) 2197 sdev->changed = 1; 2198 } while (scsi_sense_valid(sshdr) && 2199 sshdr->sense_key == UNIT_ATTENTION && --retries); 2200 2201 return result; 2202 } 2203 EXPORT_SYMBOL(scsi_test_unit_ready); 2204 2205 /** 2206 * scsi_device_set_state - Take the given device through the device state model. 2207 * @sdev: scsi device to change the state of. 2208 * @state: state to change to. 2209 * 2210 * Returns zero if successful or an error if the requested 2211 * transition is illegal. 2212 */ 2213 int 2214 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2215 { 2216 enum scsi_device_state oldstate = sdev->sdev_state; 2217 2218 if (state == oldstate) 2219 return 0; 2220 2221 switch (state) { 2222 case SDEV_CREATED: 2223 switch (oldstate) { 2224 case SDEV_CREATED_BLOCK: 2225 break; 2226 default: 2227 goto illegal; 2228 } 2229 break; 2230 2231 case SDEV_RUNNING: 2232 switch (oldstate) { 2233 case SDEV_CREATED: 2234 case SDEV_OFFLINE: 2235 case SDEV_TRANSPORT_OFFLINE: 2236 case SDEV_QUIESCE: 2237 case SDEV_BLOCK: 2238 break; 2239 default: 2240 goto illegal; 2241 } 2242 break; 2243 2244 case SDEV_QUIESCE: 2245 switch (oldstate) { 2246 case SDEV_RUNNING: 2247 case SDEV_OFFLINE: 2248 case SDEV_TRANSPORT_OFFLINE: 2249 break; 2250 default: 2251 goto illegal; 2252 } 2253 break; 2254 2255 case SDEV_OFFLINE: 2256 case SDEV_TRANSPORT_OFFLINE: 2257 switch (oldstate) { 2258 case SDEV_CREATED: 2259 case SDEV_RUNNING: 2260 case SDEV_QUIESCE: 2261 case SDEV_BLOCK: 2262 break; 2263 default: 2264 goto illegal; 2265 } 2266 break; 2267 2268 case SDEV_BLOCK: 2269 switch (oldstate) { 2270 case SDEV_RUNNING: 2271 case SDEV_CREATED_BLOCK: 2272 case SDEV_QUIESCE: 2273 case SDEV_OFFLINE: 2274 break; 2275 default: 2276 goto illegal; 2277 } 2278 break; 2279 2280 case SDEV_CREATED_BLOCK: 2281 switch (oldstate) { 2282 case SDEV_CREATED: 2283 break; 2284 default: 2285 goto illegal; 2286 } 2287 break; 2288 2289 case SDEV_CANCEL: 2290 switch (oldstate) { 2291 case SDEV_CREATED: 2292 case SDEV_RUNNING: 2293 case SDEV_QUIESCE: 2294 case SDEV_OFFLINE: 2295 case SDEV_TRANSPORT_OFFLINE: 2296 break; 2297 default: 2298 goto illegal; 2299 } 2300 break; 2301 2302 case SDEV_DEL: 2303 switch (oldstate) { 2304 case SDEV_CREATED: 2305 case SDEV_RUNNING: 2306 case SDEV_OFFLINE: 2307 case SDEV_TRANSPORT_OFFLINE: 2308 case SDEV_CANCEL: 2309 case SDEV_BLOCK: 2310 case SDEV_CREATED_BLOCK: 2311 break; 2312 default: 2313 goto illegal; 2314 } 2315 break; 2316 2317 } 2318 sdev->offline_already = false; 2319 sdev->sdev_state = state; 2320 return 0; 2321 2322 illegal: 2323 SCSI_LOG_ERROR_RECOVERY(1, 2324 sdev_printk(KERN_ERR, sdev, 2325 "Illegal state transition %s->%s", 2326 scsi_device_state_name(oldstate), 2327 scsi_device_state_name(state)) 2328 ); 2329 return -EINVAL; 2330 } 2331 EXPORT_SYMBOL(scsi_device_set_state); 2332 2333 /** 2334 * sdev_evt_emit - emit a single SCSI device uevent 2335 * @sdev: associated SCSI device 2336 * @evt: event to emit 2337 * 2338 * Send a single uevent (scsi_event) to the associated scsi_device. 2339 */ 2340 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2341 { 2342 int idx = 0; 2343 char *envp[3]; 2344 2345 switch (evt->evt_type) { 2346 case SDEV_EVT_MEDIA_CHANGE: 2347 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2348 break; 2349 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2350 scsi_rescan_device(&sdev->sdev_gendev); 2351 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2352 break; 2353 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2354 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2355 break; 2356 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2357 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2358 break; 2359 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2360 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2361 break; 2362 case SDEV_EVT_LUN_CHANGE_REPORTED: 2363 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2364 break; 2365 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2366 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2367 break; 2368 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2369 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2370 break; 2371 default: 2372 /* do nothing */ 2373 break; 2374 } 2375 2376 envp[idx++] = NULL; 2377 2378 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2379 } 2380 2381 /** 2382 * sdev_evt_thread - send a uevent for each scsi event 2383 * @work: work struct for scsi_device 2384 * 2385 * Dispatch queued events to their associated scsi_device kobjects 2386 * as uevents. 2387 */ 2388 void scsi_evt_thread(struct work_struct *work) 2389 { 2390 struct scsi_device *sdev; 2391 enum scsi_device_event evt_type; 2392 LIST_HEAD(event_list); 2393 2394 sdev = container_of(work, struct scsi_device, event_work); 2395 2396 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2397 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2398 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2399 2400 while (1) { 2401 struct scsi_event *evt; 2402 struct list_head *this, *tmp; 2403 unsigned long flags; 2404 2405 spin_lock_irqsave(&sdev->list_lock, flags); 2406 list_splice_init(&sdev->event_list, &event_list); 2407 spin_unlock_irqrestore(&sdev->list_lock, flags); 2408 2409 if (list_empty(&event_list)) 2410 break; 2411 2412 list_for_each_safe(this, tmp, &event_list) { 2413 evt = list_entry(this, struct scsi_event, node); 2414 list_del(&evt->node); 2415 scsi_evt_emit(sdev, evt); 2416 kfree(evt); 2417 } 2418 } 2419 } 2420 2421 /** 2422 * sdev_evt_send - send asserted event to uevent thread 2423 * @sdev: scsi_device event occurred on 2424 * @evt: event to send 2425 * 2426 * Assert scsi device event asynchronously. 2427 */ 2428 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2429 { 2430 unsigned long flags; 2431 2432 #if 0 2433 /* FIXME: currently this check eliminates all media change events 2434 * for polled devices. Need to update to discriminate between AN 2435 * and polled events */ 2436 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2437 kfree(evt); 2438 return; 2439 } 2440 #endif 2441 2442 spin_lock_irqsave(&sdev->list_lock, flags); 2443 list_add_tail(&evt->node, &sdev->event_list); 2444 schedule_work(&sdev->event_work); 2445 spin_unlock_irqrestore(&sdev->list_lock, flags); 2446 } 2447 EXPORT_SYMBOL_GPL(sdev_evt_send); 2448 2449 /** 2450 * sdev_evt_alloc - allocate a new scsi event 2451 * @evt_type: type of event to allocate 2452 * @gfpflags: GFP flags for allocation 2453 * 2454 * Allocates and returns a new scsi_event. 2455 */ 2456 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2457 gfp_t gfpflags) 2458 { 2459 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2460 if (!evt) 2461 return NULL; 2462 2463 evt->evt_type = evt_type; 2464 INIT_LIST_HEAD(&evt->node); 2465 2466 /* evt_type-specific initialization, if any */ 2467 switch (evt_type) { 2468 case SDEV_EVT_MEDIA_CHANGE: 2469 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2470 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2471 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2472 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2473 case SDEV_EVT_LUN_CHANGE_REPORTED: 2474 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2475 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2476 default: 2477 /* do nothing */ 2478 break; 2479 } 2480 2481 return evt; 2482 } 2483 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2484 2485 /** 2486 * sdev_evt_send_simple - send asserted event to uevent thread 2487 * @sdev: scsi_device event occurred on 2488 * @evt_type: type of event to send 2489 * @gfpflags: GFP flags for allocation 2490 * 2491 * Assert scsi device event asynchronously, given an event type. 2492 */ 2493 void sdev_evt_send_simple(struct scsi_device *sdev, 2494 enum scsi_device_event evt_type, gfp_t gfpflags) 2495 { 2496 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2497 if (!evt) { 2498 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2499 evt_type); 2500 return; 2501 } 2502 2503 sdev_evt_send(sdev, evt); 2504 } 2505 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2506 2507 /** 2508 * scsi_device_quiesce - Block user issued commands. 2509 * @sdev: scsi device to quiesce. 2510 * 2511 * This works by trying to transition to the SDEV_QUIESCE state 2512 * (which must be a legal transition). When the device is in this 2513 * state, only special requests will be accepted, all others will 2514 * be deferred. Since special requests may also be requeued requests, 2515 * a successful return doesn't guarantee the device will be 2516 * totally quiescent. 2517 * 2518 * Must be called with user context, may sleep. 2519 * 2520 * Returns zero if unsuccessful or an error if not. 2521 */ 2522 int 2523 scsi_device_quiesce(struct scsi_device *sdev) 2524 { 2525 struct request_queue *q = sdev->request_queue; 2526 int err; 2527 2528 /* 2529 * It is allowed to call scsi_device_quiesce() multiple times from 2530 * the same context but concurrent scsi_device_quiesce() calls are 2531 * not allowed. 2532 */ 2533 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2534 2535 if (sdev->quiesced_by == current) 2536 return 0; 2537 2538 blk_set_pm_only(q); 2539 2540 blk_mq_freeze_queue(q); 2541 /* 2542 * Ensure that the effect of blk_set_pm_only() will be visible 2543 * for percpu_ref_tryget() callers that occur after the queue 2544 * unfreeze even if the queue was already frozen before this function 2545 * was called. See also https://lwn.net/Articles/573497/. 2546 */ 2547 synchronize_rcu(); 2548 blk_mq_unfreeze_queue(q); 2549 2550 mutex_lock(&sdev->state_mutex); 2551 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2552 if (err == 0) 2553 sdev->quiesced_by = current; 2554 else 2555 blk_clear_pm_only(q); 2556 mutex_unlock(&sdev->state_mutex); 2557 2558 return err; 2559 } 2560 EXPORT_SYMBOL(scsi_device_quiesce); 2561 2562 /** 2563 * scsi_device_resume - Restart user issued commands to a quiesced device. 2564 * @sdev: scsi device to resume. 2565 * 2566 * Moves the device from quiesced back to running and restarts the 2567 * queues. 2568 * 2569 * Must be called with user context, may sleep. 2570 */ 2571 void scsi_device_resume(struct scsi_device *sdev) 2572 { 2573 /* check if the device state was mutated prior to resume, and if 2574 * so assume the state is being managed elsewhere (for example 2575 * device deleted during suspend) 2576 */ 2577 mutex_lock(&sdev->state_mutex); 2578 if (sdev->quiesced_by) { 2579 sdev->quiesced_by = NULL; 2580 blk_clear_pm_only(sdev->request_queue); 2581 } 2582 if (sdev->sdev_state == SDEV_QUIESCE) 2583 scsi_device_set_state(sdev, SDEV_RUNNING); 2584 mutex_unlock(&sdev->state_mutex); 2585 } 2586 EXPORT_SYMBOL(scsi_device_resume); 2587 2588 static void 2589 device_quiesce_fn(struct scsi_device *sdev, void *data) 2590 { 2591 scsi_device_quiesce(sdev); 2592 } 2593 2594 void 2595 scsi_target_quiesce(struct scsi_target *starget) 2596 { 2597 starget_for_each_device(starget, NULL, device_quiesce_fn); 2598 } 2599 EXPORT_SYMBOL(scsi_target_quiesce); 2600 2601 static void 2602 device_resume_fn(struct scsi_device *sdev, void *data) 2603 { 2604 scsi_device_resume(sdev); 2605 } 2606 2607 void 2608 scsi_target_resume(struct scsi_target *starget) 2609 { 2610 starget_for_each_device(starget, NULL, device_resume_fn); 2611 } 2612 EXPORT_SYMBOL(scsi_target_resume); 2613 2614 /** 2615 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2616 * @sdev: device to block 2617 * 2618 * Pause SCSI command processing on the specified device. Does not sleep. 2619 * 2620 * Returns zero if successful or a negative error code upon failure. 2621 * 2622 * Notes: 2623 * This routine transitions the device to the SDEV_BLOCK state (which must be 2624 * a legal transition). When the device is in this state, command processing 2625 * is paused until the device leaves the SDEV_BLOCK state. See also 2626 * scsi_internal_device_unblock_nowait(). 2627 */ 2628 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2629 { 2630 struct request_queue *q = sdev->request_queue; 2631 int err = 0; 2632 2633 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2634 if (err) { 2635 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2636 2637 if (err) 2638 return err; 2639 } 2640 2641 /* 2642 * The device has transitioned to SDEV_BLOCK. Stop the 2643 * block layer from calling the midlayer with this device's 2644 * request queue. 2645 */ 2646 blk_mq_quiesce_queue_nowait(q); 2647 return 0; 2648 } 2649 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2650 2651 /** 2652 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2653 * @sdev: device to block 2654 * 2655 * Pause SCSI command processing on the specified device and wait until all 2656 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2657 * 2658 * Returns zero if successful or a negative error code upon failure. 2659 * 2660 * Note: 2661 * This routine transitions the device to the SDEV_BLOCK state (which must be 2662 * a legal transition). When the device is in this state, command processing 2663 * is paused until the device leaves the SDEV_BLOCK state. See also 2664 * scsi_internal_device_unblock(). 2665 */ 2666 static int scsi_internal_device_block(struct scsi_device *sdev) 2667 { 2668 struct request_queue *q = sdev->request_queue; 2669 int err; 2670 2671 mutex_lock(&sdev->state_mutex); 2672 err = scsi_internal_device_block_nowait(sdev); 2673 if (err == 0) 2674 blk_mq_quiesce_queue(q); 2675 mutex_unlock(&sdev->state_mutex); 2676 2677 return err; 2678 } 2679 2680 void scsi_start_queue(struct scsi_device *sdev) 2681 { 2682 struct request_queue *q = sdev->request_queue; 2683 2684 blk_mq_unquiesce_queue(q); 2685 } 2686 2687 /** 2688 * scsi_internal_device_unblock_nowait - resume a device after a block request 2689 * @sdev: device to resume 2690 * @new_state: state to set the device to after unblocking 2691 * 2692 * Restart the device queue for a previously suspended SCSI device. Does not 2693 * sleep. 2694 * 2695 * Returns zero if successful or a negative error code upon failure. 2696 * 2697 * Notes: 2698 * This routine transitions the device to the SDEV_RUNNING state or to one of 2699 * the offline states (which must be a legal transition) allowing the midlayer 2700 * to goose the queue for this device. 2701 */ 2702 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2703 enum scsi_device_state new_state) 2704 { 2705 switch (new_state) { 2706 case SDEV_RUNNING: 2707 case SDEV_TRANSPORT_OFFLINE: 2708 break; 2709 default: 2710 return -EINVAL; 2711 } 2712 2713 /* 2714 * Try to transition the scsi device to SDEV_RUNNING or one of the 2715 * offlined states and goose the device queue if successful. 2716 */ 2717 switch (sdev->sdev_state) { 2718 case SDEV_BLOCK: 2719 case SDEV_TRANSPORT_OFFLINE: 2720 sdev->sdev_state = new_state; 2721 break; 2722 case SDEV_CREATED_BLOCK: 2723 if (new_state == SDEV_TRANSPORT_OFFLINE || 2724 new_state == SDEV_OFFLINE) 2725 sdev->sdev_state = new_state; 2726 else 2727 sdev->sdev_state = SDEV_CREATED; 2728 break; 2729 case SDEV_CANCEL: 2730 case SDEV_OFFLINE: 2731 break; 2732 default: 2733 return -EINVAL; 2734 } 2735 scsi_start_queue(sdev); 2736 2737 return 0; 2738 } 2739 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2740 2741 /** 2742 * scsi_internal_device_unblock - resume a device after a block request 2743 * @sdev: device to resume 2744 * @new_state: state to set the device to after unblocking 2745 * 2746 * Restart the device queue for a previously suspended SCSI device. May sleep. 2747 * 2748 * Returns zero if successful or a negative error code upon failure. 2749 * 2750 * Notes: 2751 * This routine transitions the device to the SDEV_RUNNING state or to one of 2752 * the offline states (which must be a legal transition) allowing the midlayer 2753 * to goose the queue for this device. 2754 */ 2755 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2756 enum scsi_device_state new_state) 2757 { 2758 int ret; 2759 2760 mutex_lock(&sdev->state_mutex); 2761 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2762 mutex_unlock(&sdev->state_mutex); 2763 2764 return ret; 2765 } 2766 2767 static void 2768 device_block(struct scsi_device *sdev, void *data) 2769 { 2770 int ret; 2771 2772 ret = scsi_internal_device_block(sdev); 2773 2774 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2775 dev_name(&sdev->sdev_gendev), ret); 2776 } 2777 2778 static int 2779 target_block(struct device *dev, void *data) 2780 { 2781 if (scsi_is_target_device(dev)) 2782 starget_for_each_device(to_scsi_target(dev), NULL, 2783 device_block); 2784 return 0; 2785 } 2786 2787 void 2788 scsi_target_block(struct device *dev) 2789 { 2790 if (scsi_is_target_device(dev)) 2791 starget_for_each_device(to_scsi_target(dev), NULL, 2792 device_block); 2793 else 2794 device_for_each_child(dev, NULL, target_block); 2795 } 2796 EXPORT_SYMBOL_GPL(scsi_target_block); 2797 2798 static void 2799 device_unblock(struct scsi_device *sdev, void *data) 2800 { 2801 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2802 } 2803 2804 static int 2805 target_unblock(struct device *dev, void *data) 2806 { 2807 if (scsi_is_target_device(dev)) 2808 starget_for_each_device(to_scsi_target(dev), data, 2809 device_unblock); 2810 return 0; 2811 } 2812 2813 void 2814 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2815 { 2816 if (scsi_is_target_device(dev)) 2817 starget_for_each_device(to_scsi_target(dev), &new_state, 2818 device_unblock); 2819 else 2820 device_for_each_child(dev, &new_state, target_unblock); 2821 } 2822 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2823 2824 int 2825 scsi_host_block(struct Scsi_Host *shost) 2826 { 2827 struct scsi_device *sdev; 2828 int ret = 0; 2829 2830 /* 2831 * Call scsi_internal_device_block_nowait so we can avoid 2832 * calling synchronize_rcu() for each LUN. 2833 */ 2834 shost_for_each_device(sdev, shost) { 2835 mutex_lock(&sdev->state_mutex); 2836 ret = scsi_internal_device_block_nowait(sdev); 2837 mutex_unlock(&sdev->state_mutex); 2838 if (ret) 2839 break; 2840 } 2841 2842 /* 2843 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so 2844 * calling synchronize_rcu() once is enough. 2845 */ 2846 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING); 2847 2848 if (!ret) 2849 synchronize_rcu(); 2850 2851 return ret; 2852 } 2853 EXPORT_SYMBOL_GPL(scsi_host_block); 2854 2855 int 2856 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2857 { 2858 struct scsi_device *sdev; 2859 int ret = 0; 2860 2861 shost_for_each_device(sdev, shost) { 2862 ret = scsi_internal_device_unblock(sdev, new_state); 2863 if (ret) { 2864 scsi_device_put(sdev); 2865 break; 2866 } 2867 } 2868 return ret; 2869 } 2870 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2871 2872 /** 2873 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2874 * @sgl: scatter-gather list 2875 * @sg_count: number of segments in sg 2876 * @offset: offset in bytes into sg, on return offset into the mapped area 2877 * @len: bytes to map, on return number of bytes mapped 2878 * 2879 * Returns virtual address of the start of the mapped page 2880 */ 2881 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2882 size_t *offset, size_t *len) 2883 { 2884 int i; 2885 size_t sg_len = 0, len_complete = 0; 2886 struct scatterlist *sg; 2887 struct page *page; 2888 2889 WARN_ON(!irqs_disabled()); 2890 2891 for_each_sg(sgl, sg, sg_count, i) { 2892 len_complete = sg_len; /* Complete sg-entries */ 2893 sg_len += sg->length; 2894 if (sg_len > *offset) 2895 break; 2896 } 2897 2898 if (unlikely(i == sg_count)) { 2899 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2900 "elements %d\n", 2901 __func__, sg_len, *offset, sg_count); 2902 WARN_ON(1); 2903 return NULL; 2904 } 2905 2906 /* Offset starting from the beginning of first page in this sg-entry */ 2907 *offset = *offset - len_complete + sg->offset; 2908 2909 /* Assumption: contiguous pages can be accessed as "page + i" */ 2910 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2911 *offset &= ~PAGE_MASK; 2912 2913 /* Bytes in this sg-entry from *offset to the end of the page */ 2914 sg_len = PAGE_SIZE - *offset; 2915 if (*len > sg_len) 2916 *len = sg_len; 2917 2918 return kmap_atomic(page); 2919 } 2920 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2921 2922 /** 2923 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2924 * @virt: virtual address to be unmapped 2925 */ 2926 void scsi_kunmap_atomic_sg(void *virt) 2927 { 2928 kunmap_atomic(virt); 2929 } 2930 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2931 2932 void sdev_disable_disk_events(struct scsi_device *sdev) 2933 { 2934 atomic_inc(&sdev->disk_events_disable_depth); 2935 } 2936 EXPORT_SYMBOL(sdev_disable_disk_events); 2937 2938 void sdev_enable_disk_events(struct scsi_device *sdev) 2939 { 2940 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2941 return; 2942 atomic_dec(&sdev->disk_events_disable_depth); 2943 } 2944 EXPORT_SYMBOL(sdev_enable_disk_events); 2945 2946 /** 2947 * scsi_vpd_lun_id - return a unique device identification 2948 * @sdev: SCSI device 2949 * @id: buffer for the identification 2950 * @id_len: length of the buffer 2951 * 2952 * Copies a unique device identification into @id based 2953 * on the information in the VPD page 0x83 of the device. 2954 * The string will be formatted as a SCSI name string. 2955 * 2956 * Returns the length of the identification or error on failure. 2957 * If the identifier is longer than the supplied buffer the actual 2958 * identifier length is returned and the buffer is not zero-padded. 2959 */ 2960 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2961 { 2962 u8 cur_id_type = 0xff; 2963 u8 cur_id_size = 0; 2964 const unsigned char *d, *cur_id_str; 2965 const struct scsi_vpd *vpd_pg83; 2966 int id_size = -EINVAL; 2967 2968 rcu_read_lock(); 2969 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2970 if (!vpd_pg83) { 2971 rcu_read_unlock(); 2972 return -ENXIO; 2973 } 2974 2975 /* 2976 * Look for the correct descriptor. 2977 * Order of preference for lun descriptor: 2978 * - SCSI name string 2979 * - NAA IEEE Registered Extended 2980 * - EUI-64 based 16-byte 2981 * - EUI-64 based 12-byte 2982 * - NAA IEEE Registered 2983 * - NAA IEEE Extended 2984 * - T10 Vendor ID 2985 * as longer descriptors reduce the likelyhood 2986 * of identification clashes. 2987 */ 2988 2989 /* The id string must be at least 20 bytes + terminating NULL byte */ 2990 if (id_len < 21) { 2991 rcu_read_unlock(); 2992 return -EINVAL; 2993 } 2994 2995 memset(id, 0, id_len); 2996 d = vpd_pg83->data + 4; 2997 while (d < vpd_pg83->data + vpd_pg83->len) { 2998 /* Skip designators not referring to the LUN */ 2999 if ((d[1] & 0x30) != 0x00) 3000 goto next_desig; 3001 3002 switch (d[1] & 0xf) { 3003 case 0x1: 3004 /* T10 Vendor ID */ 3005 if (cur_id_size > d[3]) 3006 break; 3007 /* Prefer anything */ 3008 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3009 break; 3010 cur_id_size = d[3]; 3011 if (cur_id_size + 4 > id_len) 3012 cur_id_size = id_len - 4; 3013 cur_id_str = d + 4; 3014 cur_id_type = d[1] & 0xf; 3015 id_size = snprintf(id, id_len, "t10.%*pE", 3016 cur_id_size, cur_id_str); 3017 break; 3018 case 0x2: 3019 /* EUI-64 */ 3020 if (cur_id_size > d[3]) 3021 break; 3022 /* Prefer NAA IEEE Registered Extended */ 3023 if (cur_id_type == 0x3 && 3024 cur_id_size == d[3]) 3025 break; 3026 cur_id_size = d[3]; 3027 cur_id_str = d + 4; 3028 cur_id_type = d[1] & 0xf; 3029 switch (cur_id_size) { 3030 case 8: 3031 id_size = snprintf(id, id_len, 3032 "eui.%8phN", 3033 cur_id_str); 3034 break; 3035 case 12: 3036 id_size = snprintf(id, id_len, 3037 "eui.%12phN", 3038 cur_id_str); 3039 break; 3040 case 16: 3041 id_size = snprintf(id, id_len, 3042 "eui.%16phN", 3043 cur_id_str); 3044 break; 3045 default: 3046 cur_id_size = 0; 3047 break; 3048 } 3049 break; 3050 case 0x3: 3051 /* NAA */ 3052 if (cur_id_size > d[3]) 3053 break; 3054 cur_id_size = d[3]; 3055 cur_id_str = d + 4; 3056 cur_id_type = d[1] & 0xf; 3057 switch (cur_id_size) { 3058 case 8: 3059 id_size = snprintf(id, id_len, 3060 "naa.%8phN", 3061 cur_id_str); 3062 break; 3063 case 16: 3064 id_size = snprintf(id, id_len, 3065 "naa.%16phN", 3066 cur_id_str); 3067 break; 3068 default: 3069 cur_id_size = 0; 3070 break; 3071 } 3072 break; 3073 case 0x8: 3074 /* SCSI name string */ 3075 if (cur_id_size + 4 > d[3]) 3076 break; 3077 /* Prefer others for truncated descriptor */ 3078 if (cur_id_size && d[3] > id_len) 3079 break; 3080 cur_id_size = id_size = d[3]; 3081 cur_id_str = d + 4; 3082 cur_id_type = d[1] & 0xf; 3083 if (cur_id_size >= id_len) 3084 cur_id_size = id_len - 1; 3085 memcpy(id, cur_id_str, cur_id_size); 3086 /* Decrease priority for truncated descriptor */ 3087 if (cur_id_size != id_size) 3088 cur_id_size = 6; 3089 break; 3090 default: 3091 break; 3092 } 3093 next_desig: 3094 d += d[3] + 4; 3095 } 3096 rcu_read_unlock(); 3097 3098 return id_size; 3099 } 3100 EXPORT_SYMBOL(scsi_vpd_lun_id); 3101 3102 /* 3103 * scsi_vpd_tpg_id - return a target port group identifier 3104 * @sdev: SCSI device 3105 * 3106 * Returns the Target Port Group identifier from the information 3107 * froom VPD page 0x83 of the device. 3108 * 3109 * Returns the identifier or error on failure. 3110 */ 3111 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3112 { 3113 const unsigned char *d; 3114 const struct scsi_vpd *vpd_pg83; 3115 int group_id = -EAGAIN, rel_port = -1; 3116 3117 rcu_read_lock(); 3118 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3119 if (!vpd_pg83) { 3120 rcu_read_unlock(); 3121 return -ENXIO; 3122 } 3123 3124 d = vpd_pg83->data + 4; 3125 while (d < vpd_pg83->data + vpd_pg83->len) { 3126 switch (d[1] & 0xf) { 3127 case 0x4: 3128 /* Relative target port */ 3129 rel_port = get_unaligned_be16(&d[6]); 3130 break; 3131 case 0x5: 3132 /* Target port group */ 3133 group_id = get_unaligned_be16(&d[6]); 3134 break; 3135 default: 3136 break; 3137 } 3138 d += d[3] + 4; 3139 } 3140 rcu_read_unlock(); 3141 3142 if (group_id >= 0 && rel_id && rel_port != -1) 3143 *rel_id = rel_port; 3144 3145 return group_id; 3146 } 3147 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3148