xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 565d76cb)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30 
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33 
34 
35 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE		2
37 
38 struct scsi_host_sg_pool {
39 	size_t		size;
40 	char		*name;
41 	struct kmem_cache	*slab;
42 	mempool_t	*pool;
43 };
44 
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 	SP(8),
51 	SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 	SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 	SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 	SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 	SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67 
68 struct kmem_cache *scsi_sdb_cache;
69 
70 static void scsi_run_queue(struct request_queue *q);
71 
72 /*
73  * Function:	scsi_unprep_request()
74  *
75  * Purpose:	Remove all preparation done for a request, including its
76  *		associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:	req	- request to unprepare
79  *
80  * Lock status:	Assumed that no locks are held upon entry.
81  *
82  * Returns:	Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86 	struct scsi_cmnd *cmd = req->special;
87 
88 	blk_unprep_request(req);
89 	req->special = NULL;
90 
91 	scsi_put_command(cmd);
92 }
93 
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 	struct Scsi_Host *host = cmd->device->host;
109 	struct scsi_device *device = cmd->device;
110 	struct scsi_target *starget = scsi_target(device);
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1,
115 		 printk("Inserting command %p into mlqueue\n", cmd));
116 
117 	/*
118 	 * Set the appropriate busy bit for the device/host.
119 	 *
120 	 * If the host/device isn't busy, assume that something actually
121 	 * completed, and that we should be able to queue a command now.
122 	 *
123 	 * Note that the prior mid-layer assumption that any host could
124 	 * always queue at least one command is now broken.  The mid-layer
125 	 * will implement a user specifiable stall (see
126 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 	 * if a command is requeued with no other commands outstanding
128 	 * either for the device or for the host.
129 	 */
130 	switch (reason) {
131 	case SCSI_MLQUEUE_HOST_BUSY:
132 		host->host_blocked = host->max_host_blocked;
133 		break;
134 	case SCSI_MLQUEUE_DEVICE_BUSY:
135 		device->device_blocked = device->max_device_blocked;
136 		break;
137 	case SCSI_MLQUEUE_TARGET_BUSY:
138 		starget->target_blocked = starget->max_target_blocked;
139 		break;
140 	}
141 
142 	/*
143 	 * Decrement the counters, since these commands are no longer
144 	 * active on the host/device.
145 	 */
146 	if (unbusy)
147 		scsi_device_unbusy(device);
148 
149 	/*
150 	 * Requeue this command.  It will go before all other commands
151 	 * that are already in the queue.
152 	 *
153 	 * NOTE: there is magic here about the way the queue is plugged if
154 	 * we have no outstanding commands.
155 	 *
156 	 * Although we *don't* plug the queue, we call the request
157 	 * function.  The SCSI request function detects the blocked condition
158 	 * and plugs the queue appropriately.
159          */
160 	spin_lock_irqsave(q->queue_lock, flags);
161 	blk_requeue_request(q, cmd->request);
162 	spin_unlock_irqrestore(q->queue_lock, flags);
163 
164 	scsi_run_queue(q);
165 
166 	return 0;
167 }
168 
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 	return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:	scsi device
195  * @cmd:	scsi command
196  * @data_direction: data direction
197  * @buffer:	data buffer
198  * @bufflen:	len of buffer
199  * @sense:	optional sense buffer
200  * @timeout:	request timeout in seconds
201  * @retries:	number of times to retry request
202  * @flags:	or into request flags;
203  * @resid:	optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, int timeout, int retries, int flags,
211 		 int *resid)
212 {
213 	struct request *req;
214 	int write = (data_direction == DMA_TO_DEVICE);
215 	int ret = DRIVER_ERROR << 24;
216 
217 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 
219 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
220 					buffer, bufflen, __GFP_WAIT))
221 		goto out;
222 
223 	req->cmd_len = COMMAND_SIZE(cmd[0]);
224 	memcpy(req->cmd, cmd, req->cmd_len);
225 	req->sense = sense;
226 	req->sense_len = 0;
227 	req->retries = retries;
228 	req->timeout = timeout;
229 	req->cmd_type = REQ_TYPE_BLOCK_PC;
230 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231 
232 	/*
233 	 * head injection *required* here otherwise quiesce won't work
234 	 */
235 	blk_execute_rq(req->q, NULL, req, 1);
236 
237 	/*
238 	 * Some devices (USB mass-storage in particular) may transfer
239 	 * garbage data together with a residue indicating that the data
240 	 * is invalid.  Prevent the garbage from being misinterpreted
241 	 * and prevent security leaks by zeroing out the excess data.
242 	 */
243 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245 
246 	if (resid)
247 		*resid = req->resid_len;
248 	ret = req->errors;
249  out:
250 	blk_put_request(req);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255 
256 
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 		     int data_direction, void *buffer, unsigned bufflen,
259 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 		     int *resid)
261 {
262 	char *sense = NULL;
263 	int result;
264 
265 	if (sshdr) {
266 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 		if (!sense)
268 			return DRIVER_ERROR << 24;
269 	}
270 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 			      sense, timeout, retries, 0, resid);
272 	if (sshdr)
273 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274 
275 	kfree(sense);
276 	return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279 
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd	- command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 	cmd->serial_number = 0;
294 	scsi_set_resid(cmd, 0);
295 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 	if (cmd->cmd_len == 0)
297 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299 
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 	struct Scsi_Host *shost = sdev->host;
303 	struct scsi_target *starget = scsi_target(sdev);
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(shost->host_lock, flags);
307 	shost->host_busy--;
308 	starget->target_busy--;
309 	if (unlikely(scsi_host_in_recovery(shost) &&
310 		     (shost->host_failed || shost->host_eh_scheduled)))
311 		scsi_eh_wakeup(shost);
312 	spin_unlock(shost->host_lock);
313 	spin_lock(sdev->request_queue->queue_lock);
314 	sdev->device_busy--;
315 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317 
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 	struct Scsi_Host *shost = current_sdev->host;
328 	struct scsi_device *sdev, *tmp;
329 	struct scsi_target *starget = scsi_target(current_sdev);
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(shost->host_lock, flags);
333 	starget->starget_sdev_user = NULL;
334 	spin_unlock_irqrestore(shost->host_lock, flags);
335 
336 	/*
337 	 * Call blk_run_queue for all LUNs on the target, starting with
338 	 * current_sdev. We race with others (to set starget_sdev_user),
339 	 * but in most cases, we will be first. Ideally, each LU on the
340 	 * target would get some limited time or requests on the target.
341 	 */
342 	blk_run_queue(current_sdev->request_queue);
343 
344 	spin_lock_irqsave(shost->host_lock, flags);
345 	if (starget->starget_sdev_user)
346 		goto out;
347 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 			same_target_siblings) {
349 		if (sdev == current_sdev)
350 			continue;
351 		if (scsi_device_get(sdev))
352 			continue;
353 
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 		blk_run_queue(sdev->request_queue);
356 		spin_lock_irqsave(shost->host_lock, flags);
357 
358 		scsi_device_put(sdev);
359 	}
360  out:
361 	spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363 
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 	return ((starget->can_queue > 0 &&
375 		 starget->target_busy >= starget->can_queue) ||
376 		 starget->target_blocked);
377 }
378 
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 	    shost->host_blocked || shost->host_self_blocked)
383 		return 1;
384 
385 	return 0;
386 }
387 
388 /*
389  * Function:	scsi_run_queue()
390  *
391  * Purpose:	Select a proper request queue to serve next
392  *
393  * Arguments:	q	- last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:	The previous command was completely finished, start
398  *		a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 	struct scsi_device *sdev = q->queuedata;
403 	struct Scsi_Host *shost = sdev->host;
404 	LIST_HEAD(starved_list);
405 	unsigned long flags;
406 
407 	if (scsi_target(sdev)->single_lun)
408 		scsi_single_lun_run(sdev);
409 
410 	spin_lock_irqsave(shost->host_lock, flags);
411 	list_splice_init(&shost->starved_list, &starved_list);
412 
413 	while (!list_empty(&starved_list)) {
414 		int flagset;
415 
416 		/*
417 		 * As long as shost is accepting commands and we have
418 		 * starved queues, call blk_run_queue. scsi_request_fn
419 		 * drops the queue_lock and can add us back to the
420 		 * starved_list.
421 		 *
422 		 * host_lock protects the starved_list and starved_entry.
423 		 * scsi_request_fn must get the host_lock before checking
424 		 * or modifying starved_list or starved_entry.
425 		 */
426 		if (scsi_host_is_busy(shost))
427 			break;
428 
429 		sdev = list_entry(starved_list.next,
430 				  struct scsi_device, starved_entry);
431 		list_del_init(&sdev->starved_entry);
432 		if (scsi_target_is_busy(scsi_target(sdev))) {
433 			list_move_tail(&sdev->starved_entry,
434 				       &shost->starved_list);
435 			continue;
436 		}
437 
438 		spin_unlock(shost->host_lock);
439 
440 		spin_lock(sdev->request_queue->queue_lock);
441 		flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 				!test_bit(QUEUE_FLAG_REENTER,
443 					&sdev->request_queue->queue_flags);
444 		if (flagset)
445 			queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 		__blk_run_queue(sdev->request_queue, false);
447 		if (flagset)
448 			queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 		spin_unlock(sdev->request_queue->queue_lock);
450 
451 		spin_lock(shost->host_lock);
452 	}
453 	/* put any unprocessed entries back */
454 	list_splice(&starved_list, &shost->starved_list);
455 	spin_unlock_irqrestore(shost->host_lock, flags);
456 
457 	blk_run_queue(q);
458 }
459 
460 /*
461  * Function:	scsi_requeue_command()
462  *
463  * Purpose:	Handle post-processing of completed commands.
464  *
465  * Arguments:	q	- queue to operate on
466  *		cmd	- command that may need to be requeued.
467  *
468  * Returns:	Nothing
469  *
470  * Notes:	After command completion, there may be blocks left
471  *		over which weren't finished by the previous command
472  *		this can be for a number of reasons - the main one is
473  *		I/O errors in the middle of the request, in which case
474  *		we need to request the blocks that come after the bad
475  *		sector.
476  * Notes:	Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 	struct request *req = cmd->request;
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(q->queue_lock, flags);
484 	scsi_unprep_request(req);
485 	blk_requeue_request(q, req);
486 	spin_unlock_irqrestore(q->queue_lock, flags);
487 
488 	scsi_run_queue(q);
489 }
490 
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 	struct scsi_device *sdev = cmd->device;
494 	struct request_queue *q = sdev->request_queue;
495 
496 	/* need to hold a reference on the device before we let go of the cmd */
497 	get_device(&sdev->sdev_gendev);
498 
499 	scsi_put_command(cmd);
500 	scsi_run_queue(q);
501 
502 	/* ok to remove device now */
503 	put_device(&sdev->sdev_gendev);
504 }
505 
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 	struct scsi_device *sdev;
509 
510 	shost_for_each_device(sdev, shost)
511 		scsi_run_queue(sdev->request_queue);
512 }
513 
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515 
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *		of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd	 - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *		requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  *
534  *		We are guaranteeing that the request queue will be goosed
535  *		at some point during this call.
536  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 					  int bytes, int requeue)
540 {
541 	struct request_queue *q = cmd->device->request_queue;
542 	struct request *req = cmd->request;
543 
544 	/*
545 	 * If there are blocks left over at the end, set up the command
546 	 * to queue the remainder of them.
547 	 */
548 	if (blk_end_request(req, error, bytes)) {
549 		/* kill remainder if no retrys */
550 		if (error && scsi_noretry_cmd(cmd))
551 			blk_end_request_all(req, error);
552 		else {
553 			if (requeue) {
554 				/*
555 				 * Bleah.  Leftovers again.  Stick the
556 				 * leftovers in the front of the
557 				 * queue, and goose the queue again.
558 				 */
559 				scsi_release_buffers(cmd);
560 				scsi_requeue_command(q, cmd);
561 				cmd = NULL;
562 			}
563 			return cmd;
564 		}
565 	}
566 
567 	/*
568 	 * This will goose the queue request function at the end, so we don't
569 	 * need to worry about launching another command.
570 	 */
571 	__scsi_release_buffers(cmd, 0);
572 	scsi_next_command(cmd);
573 	return NULL;
574 }
575 
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 	unsigned int index;
579 
580 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581 
582 	if (nents <= 8)
583 		index = 0;
584 	else
585 		index = get_count_order(nents) - 3;
586 
587 	return index;
588 }
589 
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 	struct scsi_host_sg_pool *sgp;
593 
594 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 	mempool_free(sgl, sgp->pool);
596 }
597 
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 	struct scsi_host_sg_pool *sgp;
601 
602 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 	return mempool_alloc(sgp->pool, gfp_mask);
604 }
605 
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 			      gfp_t gfp_mask)
608 {
609 	int ret;
610 
611 	BUG_ON(!nents);
612 
613 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 			       gfp_mask, scsi_sg_alloc);
615 	if (unlikely(ret))
616 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 				scsi_sg_free);
618 
619 	return ret;
620 }
621 
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626 
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629 
630 	if (cmd->sdb.table.nents)
631 		scsi_free_sgtable(&cmd->sdb);
632 
633 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634 
635 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 		struct scsi_data_buffer *bidi_sdb =
637 			cmd->request->next_rq->special;
638 		scsi_free_sgtable(bidi_sdb);
639 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 		cmd->request->next_rq->special = NULL;
641 	}
642 
643 	if (scsi_prot_sg_count(cmd))
644 		scsi_free_sgtable(cmd->prot_sdb);
645 }
646 
647 /*
648  * Function:    scsi_release_buffers()
649  *
650  * Purpose:     Completion processing for block device I/O requests.
651  *
652  * Arguments:   cmd	- command that we are bailing.
653  *
654  * Lock status: Assumed that no lock is held upon entry.
655  *
656  * Returns:     Nothing
657  *
658  * Notes:       In the event that an upper level driver rejects a
659  *		command, we must release resources allocated during
660  *		the __init_io() function.  Primarily this would involve
661  *		the scatter-gather table, and potentially any bounce
662  *		buffers.
663  */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 	__scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669 
670 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
671 {
672 	int error = 0;
673 
674 	switch(host_byte(result)) {
675 	case DID_TRANSPORT_FAILFAST:
676 		error = -ENOLINK;
677 		break;
678 	case DID_TARGET_FAILURE:
679 		cmd->result |= (DID_OK << 16);
680 		error = -EREMOTEIO;
681 		break;
682 	case DID_NEXUS_FAILURE:
683 		cmd->result |= (DID_OK << 16);
684 		error = -EBADE;
685 		break;
686 	default:
687 		error = -EIO;
688 		break;
689 	}
690 
691 	return error;
692 }
693 
694 /*
695  * Function:    scsi_io_completion()
696  *
697  * Purpose:     Completion processing for block device I/O requests.
698  *
699  * Arguments:   cmd   - command that is finished.
700  *
701  * Lock status: Assumed that no lock is held upon entry.
702  *
703  * Returns:     Nothing
704  *
705  * Notes:       This function is matched in terms of capabilities to
706  *              the function that created the scatter-gather list.
707  *              In other words, if there are no bounce buffers
708  *              (the normal case for most drivers), we don't need
709  *              the logic to deal with cleaning up afterwards.
710  *
711  *		We must call scsi_end_request().  This will finish off
712  *		the specified number of sectors.  If we are done, the
713  *		command block will be released and the queue function
714  *		will be goosed.  If we are not done then we have to
715  *		figure out what to do next:
716  *
717  *		a) We can call scsi_requeue_command().  The request
718  *		   will be unprepared and put back on the queue.  Then
719  *		   a new command will be created for it.  This should
720  *		   be used if we made forward progress, or if we want
721  *		   to switch from READ(10) to READ(6) for example.
722  *
723  *		b) We can call scsi_queue_insert().  The request will
724  *		   be put back on the queue and retried using the same
725  *		   command as before, possibly after a delay.
726  *
727  *		c) We can call blk_end_request() with -EIO to fail
728  *		   the remainder of the request.
729  */
730 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
731 {
732 	int result = cmd->result;
733 	struct request_queue *q = cmd->device->request_queue;
734 	struct request *req = cmd->request;
735 	int error = 0;
736 	struct scsi_sense_hdr sshdr;
737 	int sense_valid = 0;
738 	int sense_deferred = 0;
739 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
740 	      ACTION_DELAYED_RETRY} action;
741 	char *description = NULL;
742 
743 	if (result) {
744 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
745 		if (sense_valid)
746 			sense_deferred = scsi_sense_is_deferred(&sshdr);
747 	}
748 
749 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
750 		req->errors = result;
751 		if (result) {
752 			if (sense_valid && req->sense) {
753 				/*
754 				 * SG_IO wants current and deferred errors
755 				 */
756 				int len = 8 + cmd->sense_buffer[7];
757 
758 				if (len > SCSI_SENSE_BUFFERSIZE)
759 					len = SCSI_SENSE_BUFFERSIZE;
760 				memcpy(req->sense, cmd->sense_buffer,  len);
761 				req->sense_len = len;
762 			}
763 			if (!sense_deferred)
764 				error = __scsi_error_from_host_byte(cmd, result);
765 		}
766 
767 		req->resid_len = scsi_get_resid(cmd);
768 
769 		if (scsi_bidi_cmnd(cmd)) {
770 			/*
771 			 * Bidi commands Must be complete as a whole,
772 			 * both sides at once.
773 			 */
774 			req->next_rq->resid_len = scsi_in(cmd)->resid;
775 
776 			scsi_release_buffers(cmd);
777 			blk_end_request_all(req, 0);
778 
779 			scsi_next_command(cmd);
780 			return;
781 		}
782 	}
783 
784 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
785 	BUG_ON(blk_bidi_rq(req));
786 
787 	/*
788 	 * Next deal with any sectors which we were able to correctly
789 	 * handle.
790 	 */
791 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
792 				      "%d bytes done.\n",
793 				      blk_rq_sectors(req), good_bytes));
794 
795 	/*
796 	 * Recovered errors need reporting, but they're always treated
797 	 * as success, so fiddle the result code here.  For BLOCK_PC
798 	 * we already took a copy of the original into rq->errors which
799 	 * is what gets returned to the user
800 	 */
801 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
802 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
803 		 * print since caller wants ATA registers. Only occurs on
804 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
805 		 */
806 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
807 			;
808 		else if (!(req->cmd_flags & REQ_QUIET))
809 			scsi_print_sense("", cmd);
810 		result = 0;
811 		/* BLOCK_PC may have set error */
812 		error = 0;
813 	}
814 
815 	/*
816 	 * A number of bytes were successfully read.  If there
817 	 * are leftovers and there is some kind of error
818 	 * (result != 0), retry the rest.
819 	 */
820 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
821 		return;
822 
823 	error = __scsi_error_from_host_byte(cmd, result);
824 
825 	if (host_byte(result) == DID_RESET) {
826 		/* Third party bus reset or reset for error recovery
827 		 * reasons.  Just retry the command and see what
828 		 * happens.
829 		 */
830 		action = ACTION_RETRY;
831 	} else if (sense_valid && !sense_deferred) {
832 		switch (sshdr.sense_key) {
833 		case UNIT_ATTENTION:
834 			if (cmd->device->removable) {
835 				/* Detected disc change.  Set a bit
836 				 * and quietly refuse further access.
837 				 */
838 				cmd->device->changed = 1;
839 				description = "Media Changed";
840 				action = ACTION_FAIL;
841 			} else {
842 				/* Must have been a power glitch, or a
843 				 * bus reset.  Could not have been a
844 				 * media change, so we just retry the
845 				 * command and see what happens.
846 				 */
847 				action = ACTION_RETRY;
848 			}
849 			break;
850 		case ILLEGAL_REQUEST:
851 			/* If we had an ILLEGAL REQUEST returned, then
852 			 * we may have performed an unsupported
853 			 * command.  The only thing this should be
854 			 * would be a ten byte read where only a six
855 			 * byte read was supported.  Also, on a system
856 			 * where READ CAPACITY failed, we may have
857 			 * read past the end of the disk.
858 			 */
859 			if ((cmd->device->use_10_for_rw &&
860 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
861 			    (cmd->cmnd[0] == READ_10 ||
862 			     cmd->cmnd[0] == WRITE_10)) {
863 				/* This will issue a new 6-byte command. */
864 				cmd->device->use_10_for_rw = 0;
865 				action = ACTION_REPREP;
866 			} else if (sshdr.asc == 0x10) /* DIX */ {
867 				description = "Host Data Integrity Failure";
868 				action = ACTION_FAIL;
869 				error = -EILSEQ;
870 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
871 			} else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
872 				   (cmd->cmnd[0] == UNMAP ||
873 				    cmd->cmnd[0] == WRITE_SAME_16 ||
874 				    cmd->cmnd[0] == WRITE_SAME)) {
875 				description = "Discard failure";
876 				action = ACTION_FAIL;
877 			} else
878 				action = ACTION_FAIL;
879 			break;
880 		case ABORTED_COMMAND:
881 			action = ACTION_FAIL;
882 			if (sshdr.asc == 0x10) { /* DIF */
883 				description = "Target Data Integrity Failure";
884 				error = -EILSEQ;
885 			}
886 			break;
887 		case NOT_READY:
888 			/* If the device is in the process of becoming
889 			 * ready, or has a temporary blockage, retry.
890 			 */
891 			if (sshdr.asc == 0x04) {
892 				switch (sshdr.ascq) {
893 				case 0x01: /* becoming ready */
894 				case 0x04: /* format in progress */
895 				case 0x05: /* rebuild in progress */
896 				case 0x06: /* recalculation in progress */
897 				case 0x07: /* operation in progress */
898 				case 0x08: /* Long write in progress */
899 				case 0x09: /* self test in progress */
900 				case 0x14: /* space allocation in progress */
901 					action = ACTION_DELAYED_RETRY;
902 					break;
903 				default:
904 					description = "Device not ready";
905 					action = ACTION_FAIL;
906 					break;
907 				}
908 			} else {
909 				description = "Device not ready";
910 				action = ACTION_FAIL;
911 			}
912 			break;
913 		case VOLUME_OVERFLOW:
914 			/* See SSC3rXX or current. */
915 			action = ACTION_FAIL;
916 			break;
917 		default:
918 			description = "Unhandled sense code";
919 			action = ACTION_FAIL;
920 			break;
921 		}
922 	} else {
923 		description = "Unhandled error code";
924 		action = ACTION_FAIL;
925 	}
926 
927 	switch (action) {
928 	case ACTION_FAIL:
929 		/* Give up and fail the remainder of the request */
930 		scsi_release_buffers(cmd);
931 		if (!(req->cmd_flags & REQ_QUIET)) {
932 			if (description)
933 				scmd_printk(KERN_INFO, cmd, "%s\n",
934 					    description);
935 			scsi_print_result(cmd);
936 			if (driver_byte(result) & DRIVER_SENSE)
937 				scsi_print_sense("", cmd);
938 			scsi_print_command(cmd);
939 		}
940 		if (blk_end_request_err(req, error))
941 			scsi_requeue_command(q, cmd);
942 		else
943 			scsi_next_command(cmd);
944 		break;
945 	case ACTION_REPREP:
946 		/* Unprep the request and put it back at the head of the queue.
947 		 * A new command will be prepared and issued.
948 		 */
949 		scsi_release_buffers(cmd);
950 		scsi_requeue_command(q, cmd);
951 		break;
952 	case ACTION_RETRY:
953 		/* Retry the same command immediately */
954 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
955 		break;
956 	case ACTION_DELAYED_RETRY:
957 		/* Retry the same command after a delay */
958 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
959 		break;
960 	}
961 }
962 
963 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
964 			     gfp_t gfp_mask)
965 {
966 	int count;
967 
968 	/*
969 	 * If sg table allocation fails, requeue request later.
970 	 */
971 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
972 					gfp_mask))) {
973 		return BLKPREP_DEFER;
974 	}
975 
976 	req->buffer = NULL;
977 
978 	/*
979 	 * Next, walk the list, and fill in the addresses and sizes of
980 	 * each segment.
981 	 */
982 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
983 	BUG_ON(count > sdb->table.nents);
984 	sdb->table.nents = count;
985 	sdb->length = blk_rq_bytes(req);
986 	return BLKPREP_OK;
987 }
988 
989 /*
990  * Function:    scsi_init_io()
991  *
992  * Purpose:     SCSI I/O initialize function.
993  *
994  * Arguments:   cmd   - Command descriptor we wish to initialize
995  *
996  * Returns:     0 on success
997  *		BLKPREP_DEFER if the failure is retryable
998  *		BLKPREP_KILL if the failure is fatal
999  */
1000 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1001 {
1002 	struct request *rq = cmd->request;
1003 
1004 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1005 	if (error)
1006 		goto err_exit;
1007 
1008 	if (blk_bidi_rq(rq)) {
1009 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1010 			scsi_sdb_cache, GFP_ATOMIC);
1011 		if (!bidi_sdb) {
1012 			error = BLKPREP_DEFER;
1013 			goto err_exit;
1014 		}
1015 
1016 		rq->next_rq->special = bidi_sdb;
1017 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1018 		if (error)
1019 			goto err_exit;
1020 	}
1021 
1022 	if (blk_integrity_rq(rq)) {
1023 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1024 		int ivecs, count;
1025 
1026 		BUG_ON(prot_sdb == NULL);
1027 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1028 
1029 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1030 			error = BLKPREP_DEFER;
1031 			goto err_exit;
1032 		}
1033 
1034 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1035 						prot_sdb->table.sgl);
1036 		BUG_ON(unlikely(count > ivecs));
1037 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1038 
1039 		cmd->prot_sdb = prot_sdb;
1040 		cmd->prot_sdb->table.nents = count;
1041 	}
1042 
1043 	return BLKPREP_OK ;
1044 
1045 err_exit:
1046 	scsi_release_buffers(cmd);
1047 	cmd->request->special = NULL;
1048 	scsi_put_command(cmd);
1049 	return error;
1050 }
1051 EXPORT_SYMBOL(scsi_init_io);
1052 
1053 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1054 		struct request *req)
1055 {
1056 	struct scsi_cmnd *cmd;
1057 
1058 	if (!req->special) {
1059 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1060 		if (unlikely(!cmd))
1061 			return NULL;
1062 		req->special = cmd;
1063 	} else {
1064 		cmd = req->special;
1065 	}
1066 
1067 	/* pull a tag out of the request if we have one */
1068 	cmd->tag = req->tag;
1069 	cmd->request = req;
1070 
1071 	cmd->cmnd = req->cmd;
1072 	cmd->prot_op = SCSI_PROT_NORMAL;
1073 
1074 	return cmd;
1075 }
1076 
1077 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1078 {
1079 	struct scsi_cmnd *cmd;
1080 	int ret = scsi_prep_state_check(sdev, req);
1081 
1082 	if (ret != BLKPREP_OK)
1083 		return ret;
1084 
1085 	cmd = scsi_get_cmd_from_req(sdev, req);
1086 	if (unlikely(!cmd))
1087 		return BLKPREP_DEFER;
1088 
1089 	/*
1090 	 * BLOCK_PC requests may transfer data, in which case they must
1091 	 * a bio attached to them.  Or they might contain a SCSI command
1092 	 * that does not transfer data, in which case they may optionally
1093 	 * submit a request without an attached bio.
1094 	 */
1095 	if (req->bio) {
1096 		int ret;
1097 
1098 		BUG_ON(!req->nr_phys_segments);
1099 
1100 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1101 		if (unlikely(ret))
1102 			return ret;
1103 	} else {
1104 		BUG_ON(blk_rq_bytes(req));
1105 
1106 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1107 		req->buffer = NULL;
1108 	}
1109 
1110 	cmd->cmd_len = req->cmd_len;
1111 	if (!blk_rq_bytes(req))
1112 		cmd->sc_data_direction = DMA_NONE;
1113 	else if (rq_data_dir(req) == WRITE)
1114 		cmd->sc_data_direction = DMA_TO_DEVICE;
1115 	else
1116 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1117 
1118 	cmd->transfersize = blk_rq_bytes(req);
1119 	cmd->allowed = req->retries;
1120 	return BLKPREP_OK;
1121 }
1122 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1123 
1124 /*
1125  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1126  * from filesystems that still need to be translated to SCSI CDBs from
1127  * the ULD.
1128  */
1129 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1130 {
1131 	struct scsi_cmnd *cmd;
1132 	int ret = scsi_prep_state_check(sdev, req);
1133 
1134 	if (ret != BLKPREP_OK)
1135 		return ret;
1136 
1137 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1138 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1139 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1140 		if (ret != BLKPREP_OK)
1141 			return ret;
1142 	}
1143 
1144 	/*
1145 	 * Filesystem requests must transfer data.
1146 	 */
1147 	BUG_ON(!req->nr_phys_segments);
1148 
1149 	cmd = scsi_get_cmd_from_req(sdev, req);
1150 	if (unlikely(!cmd))
1151 		return BLKPREP_DEFER;
1152 
1153 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1154 	return scsi_init_io(cmd, GFP_ATOMIC);
1155 }
1156 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1157 
1158 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1159 {
1160 	int ret = BLKPREP_OK;
1161 
1162 	/*
1163 	 * If the device is not in running state we will reject some
1164 	 * or all commands.
1165 	 */
1166 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1167 		switch (sdev->sdev_state) {
1168 		case SDEV_OFFLINE:
1169 			/*
1170 			 * If the device is offline we refuse to process any
1171 			 * commands.  The device must be brought online
1172 			 * before trying any recovery commands.
1173 			 */
1174 			sdev_printk(KERN_ERR, sdev,
1175 				    "rejecting I/O to offline device\n");
1176 			ret = BLKPREP_KILL;
1177 			break;
1178 		case SDEV_DEL:
1179 			/*
1180 			 * If the device is fully deleted, we refuse to
1181 			 * process any commands as well.
1182 			 */
1183 			sdev_printk(KERN_ERR, sdev,
1184 				    "rejecting I/O to dead device\n");
1185 			ret = BLKPREP_KILL;
1186 			break;
1187 		case SDEV_QUIESCE:
1188 		case SDEV_BLOCK:
1189 		case SDEV_CREATED_BLOCK:
1190 			/*
1191 			 * If the devices is blocked we defer normal commands.
1192 			 */
1193 			if (!(req->cmd_flags & REQ_PREEMPT))
1194 				ret = BLKPREP_DEFER;
1195 			break;
1196 		default:
1197 			/*
1198 			 * For any other not fully online state we only allow
1199 			 * special commands.  In particular any user initiated
1200 			 * command is not allowed.
1201 			 */
1202 			if (!(req->cmd_flags & REQ_PREEMPT))
1203 				ret = BLKPREP_KILL;
1204 			break;
1205 		}
1206 	}
1207 	return ret;
1208 }
1209 EXPORT_SYMBOL(scsi_prep_state_check);
1210 
1211 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1212 {
1213 	struct scsi_device *sdev = q->queuedata;
1214 
1215 	switch (ret) {
1216 	case BLKPREP_KILL:
1217 		req->errors = DID_NO_CONNECT << 16;
1218 		/* release the command and kill it */
1219 		if (req->special) {
1220 			struct scsi_cmnd *cmd = req->special;
1221 			scsi_release_buffers(cmd);
1222 			scsi_put_command(cmd);
1223 			req->special = NULL;
1224 		}
1225 		break;
1226 	case BLKPREP_DEFER:
1227 		/*
1228 		 * If we defer, the blk_peek_request() returns NULL, but the
1229 		 * queue must be restarted, so we plug here if no returning
1230 		 * command will automatically do that.
1231 		 */
1232 		if (sdev->device_busy == 0)
1233 			blk_plug_device(q);
1234 		break;
1235 	default:
1236 		req->cmd_flags |= REQ_DONTPREP;
1237 	}
1238 
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL(scsi_prep_return);
1242 
1243 int scsi_prep_fn(struct request_queue *q, struct request *req)
1244 {
1245 	struct scsi_device *sdev = q->queuedata;
1246 	int ret = BLKPREP_KILL;
1247 
1248 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1249 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1250 	return scsi_prep_return(q, req, ret);
1251 }
1252 EXPORT_SYMBOL(scsi_prep_fn);
1253 
1254 /*
1255  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1256  * return 0.
1257  *
1258  * Called with the queue_lock held.
1259  */
1260 static inline int scsi_dev_queue_ready(struct request_queue *q,
1261 				  struct scsi_device *sdev)
1262 {
1263 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1264 		/*
1265 		 * unblock after device_blocked iterates to zero
1266 		 */
1267 		if (--sdev->device_blocked == 0) {
1268 			SCSI_LOG_MLQUEUE(3,
1269 				   sdev_printk(KERN_INFO, sdev,
1270 				   "unblocking device at zero depth\n"));
1271 		} else {
1272 			blk_plug_device(q);
1273 			return 0;
1274 		}
1275 	}
1276 	if (scsi_device_is_busy(sdev))
1277 		return 0;
1278 
1279 	return 1;
1280 }
1281 
1282 
1283 /*
1284  * scsi_target_queue_ready: checks if there we can send commands to target
1285  * @sdev: scsi device on starget to check.
1286  *
1287  * Called with the host lock held.
1288  */
1289 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1290 					   struct scsi_device *sdev)
1291 {
1292 	struct scsi_target *starget = scsi_target(sdev);
1293 
1294 	if (starget->single_lun) {
1295 		if (starget->starget_sdev_user &&
1296 		    starget->starget_sdev_user != sdev)
1297 			return 0;
1298 		starget->starget_sdev_user = sdev;
1299 	}
1300 
1301 	if (starget->target_busy == 0 && starget->target_blocked) {
1302 		/*
1303 		 * unblock after target_blocked iterates to zero
1304 		 */
1305 		if (--starget->target_blocked == 0) {
1306 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1307 					 "unblocking target at zero depth\n"));
1308 		} else
1309 			return 0;
1310 	}
1311 
1312 	if (scsi_target_is_busy(starget)) {
1313 		if (list_empty(&sdev->starved_entry))
1314 			list_add_tail(&sdev->starved_entry,
1315 				      &shost->starved_list);
1316 		return 0;
1317 	}
1318 
1319 	/* We're OK to process the command, so we can't be starved */
1320 	if (!list_empty(&sdev->starved_entry))
1321 		list_del_init(&sdev->starved_entry);
1322 	return 1;
1323 }
1324 
1325 /*
1326  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1327  * return 0. We must end up running the queue again whenever 0 is
1328  * returned, else IO can hang.
1329  *
1330  * Called with host_lock held.
1331  */
1332 static inline int scsi_host_queue_ready(struct request_queue *q,
1333 				   struct Scsi_Host *shost,
1334 				   struct scsi_device *sdev)
1335 {
1336 	if (scsi_host_in_recovery(shost))
1337 		return 0;
1338 	if (shost->host_busy == 0 && shost->host_blocked) {
1339 		/*
1340 		 * unblock after host_blocked iterates to zero
1341 		 */
1342 		if (--shost->host_blocked == 0) {
1343 			SCSI_LOG_MLQUEUE(3,
1344 				printk("scsi%d unblocking host at zero depth\n",
1345 					shost->host_no));
1346 		} else {
1347 			return 0;
1348 		}
1349 	}
1350 	if (scsi_host_is_busy(shost)) {
1351 		if (list_empty(&sdev->starved_entry))
1352 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1353 		return 0;
1354 	}
1355 
1356 	/* We're OK to process the command, so we can't be starved */
1357 	if (!list_empty(&sdev->starved_entry))
1358 		list_del_init(&sdev->starved_entry);
1359 
1360 	return 1;
1361 }
1362 
1363 /*
1364  * Busy state exporting function for request stacking drivers.
1365  *
1366  * For efficiency, no lock is taken to check the busy state of
1367  * shost/starget/sdev, since the returned value is not guaranteed and
1368  * may be changed after request stacking drivers call the function,
1369  * regardless of taking lock or not.
1370  *
1371  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1372  * (e.g. !sdev), scsi needs to return 'not busy'.
1373  * Otherwise, request stacking drivers may hold requests forever.
1374  */
1375 static int scsi_lld_busy(struct request_queue *q)
1376 {
1377 	struct scsi_device *sdev = q->queuedata;
1378 	struct Scsi_Host *shost;
1379 	struct scsi_target *starget;
1380 
1381 	if (!sdev)
1382 		return 0;
1383 
1384 	shost = sdev->host;
1385 	starget = scsi_target(sdev);
1386 
1387 	if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1388 	    scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1389 		return 1;
1390 
1391 	return 0;
1392 }
1393 
1394 /*
1395  * Kill a request for a dead device
1396  */
1397 static void scsi_kill_request(struct request *req, struct request_queue *q)
1398 {
1399 	struct scsi_cmnd *cmd = req->special;
1400 	struct scsi_device *sdev;
1401 	struct scsi_target *starget;
1402 	struct Scsi_Host *shost;
1403 
1404 	blk_start_request(req);
1405 
1406 	sdev = cmd->device;
1407 	starget = scsi_target(sdev);
1408 	shost = sdev->host;
1409 	scsi_init_cmd_errh(cmd);
1410 	cmd->result = DID_NO_CONNECT << 16;
1411 	atomic_inc(&cmd->device->iorequest_cnt);
1412 
1413 	/*
1414 	 * SCSI request completion path will do scsi_device_unbusy(),
1415 	 * bump busy counts.  To bump the counters, we need to dance
1416 	 * with the locks as normal issue path does.
1417 	 */
1418 	sdev->device_busy++;
1419 	spin_unlock(sdev->request_queue->queue_lock);
1420 	spin_lock(shost->host_lock);
1421 	shost->host_busy++;
1422 	starget->target_busy++;
1423 	spin_unlock(shost->host_lock);
1424 	spin_lock(sdev->request_queue->queue_lock);
1425 
1426 	blk_complete_request(req);
1427 }
1428 
1429 static void scsi_softirq_done(struct request *rq)
1430 {
1431 	struct scsi_cmnd *cmd = rq->special;
1432 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1433 	int disposition;
1434 
1435 	INIT_LIST_HEAD(&cmd->eh_entry);
1436 
1437 	atomic_inc(&cmd->device->iodone_cnt);
1438 	if (cmd->result)
1439 		atomic_inc(&cmd->device->ioerr_cnt);
1440 
1441 	disposition = scsi_decide_disposition(cmd);
1442 	if (disposition != SUCCESS &&
1443 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1444 		sdev_printk(KERN_ERR, cmd->device,
1445 			    "timing out command, waited %lus\n",
1446 			    wait_for/HZ);
1447 		disposition = SUCCESS;
1448 	}
1449 
1450 	scsi_log_completion(cmd, disposition);
1451 
1452 	switch (disposition) {
1453 		case SUCCESS:
1454 			scsi_finish_command(cmd);
1455 			break;
1456 		case NEEDS_RETRY:
1457 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1458 			break;
1459 		case ADD_TO_MLQUEUE:
1460 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1461 			break;
1462 		default:
1463 			if (!scsi_eh_scmd_add(cmd, 0))
1464 				scsi_finish_command(cmd);
1465 	}
1466 }
1467 
1468 /*
1469  * Function:    scsi_request_fn()
1470  *
1471  * Purpose:     Main strategy routine for SCSI.
1472  *
1473  * Arguments:   q       - Pointer to actual queue.
1474  *
1475  * Returns:     Nothing
1476  *
1477  * Lock status: IO request lock assumed to be held when called.
1478  */
1479 static void scsi_request_fn(struct request_queue *q)
1480 {
1481 	struct scsi_device *sdev = q->queuedata;
1482 	struct Scsi_Host *shost;
1483 	struct scsi_cmnd *cmd;
1484 	struct request *req;
1485 
1486 	if (!sdev) {
1487 		printk("scsi: killing requests for dead queue\n");
1488 		while ((req = blk_peek_request(q)) != NULL)
1489 			scsi_kill_request(req, q);
1490 		return;
1491 	}
1492 
1493 	if(!get_device(&sdev->sdev_gendev))
1494 		/* We must be tearing the block queue down already */
1495 		return;
1496 
1497 	/*
1498 	 * To start with, we keep looping until the queue is empty, or until
1499 	 * the host is no longer able to accept any more requests.
1500 	 */
1501 	shost = sdev->host;
1502 	while (!blk_queue_plugged(q)) {
1503 		int rtn;
1504 		/*
1505 		 * get next queueable request.  We do this early to make sure
1506 		 * that the request is fully prepared even if we cannot
1507 		 * accept it.
1508 		 */
1509 		req = blk_peek_request(q);
1510 		if (!req || !scsi_dev_queue_ready(q, sdev))
1511 			break;
1512 
1513 		if (unlikely(!scsi_device_online(sdev))) {
1514 			sdev_printk(KERN_ERR, sdev,
1515 				    "rejecting I/O to offline device\n");
1516 			scsi_kill_request(req, q);
1517 			continue;
1518 		}
1519 
1520 
1521 		/*
1522 		 * Remove the request from the request list.
1523 		 */
1524 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1525 			blk_start_request(req);
1526 		sdev->device_busy++;
1527 
1528 		spin_unlock(q->queue_lock);
1529 		cmd = req->special;
1530 		if (unlikely(cmd == NULL)) {
1531 			printk(KERN_CRIT "impossible request in %s.\n"
1532 					 "please mail a stack trace to "
1533 					 "linux-scsi@vger.kernel.org\n",
1534 					 __func__);
1535 			blk_dump_rq_flags(req, "foo");
1536 			BUG();
1537 		}
1538 		spin_lock(shost->host_lock);
1539 
1540 		/*
1541 		 * We hit this when the driver is using a host wide
1542 		 * tag map. For device level tag maps the queue_depth check
1543 		 * in the device ready fn would prevent us from trying
1544 		 * to allocate a tag. Since the map is a shared host resource
1545 		 * we add the dev to the starved list so it eventually gets
1546 		 * a run when a tag is freed.
1547 		 */
1548 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1549 			if (list_empty(&sdev->starved_entry))
1550 				list_add_tail(&sdev->starved_entry,
1551 					      &shost->starved_list);
1552 			goto not_ready;
1553 		}
1554 
1555 		if (!scsi_target_queue_ready(shost, sdev))
1556 			goto not_ready;
1557 
1558 		if (!scsi_host_queue_ready(q, shost, sdev))
1559 			goto not_ready;
1560 
1561 		scsi_target(sdev)->target_busy++;
1562 		shost->host_busy++;
1563 
1564 		/*
1565 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1566 		 *		take the lock again.
1567 		 */
1568 		spin_unlock_irq(shost->host_lock);
1569 
1570 		/*
1571 		 * Finally, initialize any error handling parameters, and set up
1572 		 * the timers for timeouts.
1573 		 */
1574 		scsi_init_cmd_errh(cmd);
1575 
1576 		/*
1577 		 * Dispatch the command to the low-level driver.
1578 		 */
1579 		rtn = scsi_dispatch_cmd(cmd);
1580 		spin_lock_irq(q->queue_lock);
1581 		if(rtn) {
1582 			/* we're refusing the command; because of
1583 			 * the way locks get dropped, we need to
1584 			 * check here if plugging is required */
1585 			if(sdev->device_busy == 0)
1586 				blk_plug_device(q);
1587 
1588 			break;
1589 		}
1590 	}
1591 
1592 	goto out;
1593 
1594  not_ready:
1595 	spin_unlock_irq(shost->host_lock);
1596 
1597 	/*
1598 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1599 	 * must return with queue_lock held.
1600 	 *
1601 	 * Decrementing device_busy without checking it is OK, as all such
1602 	 * cases (host limits or settings) should run the queue at some
1603 	 * later time.
1604 	 */
1605 	spin_lock_irq(q->queue_lock);
1606 	blk_requeue_request(q, req);
1607 	sdev->device_busy--;
1608 	if(sdev->device_busy == 0)
1609 		blk_plug_device(q);
1610  out:
1611 	/* must be careful here...if we trigger the ->remove() function
1612 	 * we cannot be holding the q lock */
1613 	spin_unlock_irq(q->queue_lock);
1614 	put_device(&sdev->sdev_gendev);
1615 	spin_lock_irq(q->queue_lock);
1616 }
1617 
1618 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1619 {
1620 	struct device *host_dev;
1621 	u64 bounce_limit = 0xffffffff;
1622 
1623 	if (shost->unchecked_isa_dma)
1624 		return BLK_BOUNCE_ISA;
1625 	/*
1626 	 * Platforms with virtual-DMA translation
1627 	 * hardware have no practical limit.
1628 	 */
1629 	if (!PCI_DMA_BUS_IS_PHYS)
1630 		return BLK_BOUNCE_ANY;
1631 
1632 	host_dev = scsi_get_device(shost);
1633 	if (host_dev && host_dev->dma_mask)
1634 		bounce_limit = *host_dev->dma_mask;
1635 
1636 	return bounce_limit;
1637 }
1638 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1639 
1640 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1641 					 request_fn_proc *request_fn)
1642 {
1643 	struct request_queue *q;
1644 	struct device *dev = shost->shost_gendev.parent;
1645 
1646 	q = blk_init_queue(request_fn, NULL);
1647 	if (!q)
1648 		return NULL;
1649 
1650 	/*
1651 	 * this limit is imposed by hardware restrictions
1652 	 */
1653 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1654 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1655 
1656 	if (scsi_host_prot_dma(shost)) {
1657 		shost->sg_prot_tablesize =
1658 			min_not_zero(shost->sg_prot_tablesize,
1659 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1660 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1661 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1662 	}
1663 
1664 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1665 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1666 	blk_queue_segment_boundary(q, shost->dma_boundary);
1667 	dma_set_seg_boundary(dev, shost->dma_boundary);
1668 
1669 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1670 
1671 	if (!shost->use_clustering)
1672 		q->limits.cluster = 0;
1673 
1674 	/*
1675 	 * set a reasonable default alignment on word boundaries: the
1676 	 * host and device may alter it using
1677 	 * blk_queue_update_dma_alignment() later.
1678 	 */
1679 	blk_queue_dma_alignment(q, 0x03);
1680 
1681 	return q;
1682 }
1683 EXPORT_SYMBOL(__scsi_alloc_queue);
1684 
1685 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1686 {
1687 	struct request_queue *q;
1688 
1689 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1690 	if (!q)
1691 		return NULL;
1692 
1693 	blk_queue_prep_rq(q, scsi_prep_fn);
1694 	blk_queue_softirq_done(q, scsi_softirq_done);
1695 	blk_queue_rq_timed_out(q, scsi_times_out);
1696 	blk_queue_lld_busy(q, scsi_lld_busy);
1697 	return q;
1698 }
1699 
1700 void scsi_free_queue(struct request_queue *q)
1701 {
1702 	blk_cleanup_queue(q);
1703 }
1704 
1705 /*
1706  * Function:    scsi_block_requests()
1707  *
1708  * Purpose:     Utility function used by low-level drivers to prevent further
1709  *		commands from being queued to the device.
1710  *
1711  * Arguments:   shost       - Host in question
1712  *
1713  * Returns:     Nothing
1714  *
1715  * Lock status: No locks are assumed held.
1716  *
1717  * Notes:       There is no timer nor any other means by which the requests
1718  *		get unblocked other than the low-level driver calling
1719  *		scsi_unblock_requests().
1720  */
1721 void scsi_block_requests(struct Scsi_Host *shost)
1722 {
1723 	shost->host_self_blocked = 1;
1724 }
1725 EXPORT_SYMBOL(scsi_block_requests);
1726 
1727 /*
1728  * Function:    scsi_unblock_requests()
1729  *
1730  * Purpose:     Utility function used by low-level drivers to allow further
1731  *		commands from being queued to the device.
1732  *
1733  * Arguments:   shost       - Host in question
1734  *
1735  * Returns:     Nothing
1736  *
1737  * Lock status: No locks are assumed held.
1738  *
1739  * Notes:       There is no timer nor any other means by which the requests
1740  *		get unblocked other than the low-level driver calling
1741  *		scsi_unblock_requests().
1742  *
1743  *		This is done as an API function so that changes to the
1744  *		internals of the scsi mid-layer won't require wholesale
1745  *		changes to drivers that use this feature.
1746  */
1747 void scsi_unblock_requests(struct Scsi_Host *shost)
1748 {
1749 	shost->host_self_blocked = 0;
1750 	scsi_run_host_queues(shost);
1751 }
1752 EXPORT_SYMBOL(scsi_unblock_requests);
1753 
1754 int __init scsi_init_queue(void)
1755 {
1756 	int i;
1757 
1758 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1759 					   sizeof(struct scsi_data_buffer),
1760 					   0, 0, NULL);
1761 	if (!scsi_sdb_cache) {
1762 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1763 		return -ENOMEM;
1764 	}
1765 
1766 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1767 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1768 		int size = sgp->size * sizeof(struct scatterlist);
1769 
1770 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1771 				SLAB_HWCACHE_ALIGN, NULL);
1772 		if (!sgp->slab) {
1773 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1774 					sgp->name);
1775 			goto cleanup_sdb;
1776 		}
1777 
1778 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1779 						     sgp->slab);
1780 		if (!sgp->pool) {
1781 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1782 					sgp->name);
1783 			goto cleanup_sdb;
1784 		}
1785 	}
1786 
1787 	return 0;
1788 
1789 cleanup_sdb:
1790 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792 		if (sgp->pool)
1793 			mempool_destroy(sgp->pool);
1794 		if (sgp->slab)
1795 			kmem_cache_destroy(sgp->slab);
1796 	}
1797 	kmem_cache_destroy(scsi_sdb_cache);
1798 
1799 	return -ENOMEM;
1800 }
1801 
1802 void scsi_exit_queue(void)
1803 {
1804 	int i;
1805 
1806 	kmem_cache_destroy(scsi_sdb_cache);
1807 
1808 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1809 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1810 		mempool_destroy(sgp->pool);
1811 		kmem_cache_destroy(sgp->slab);
1812 	}
1813 }
1814 
1815 /**
1816  *	scsi_mode_select - issue a mode select
1817  *	@sdev:	SCSI device to be queried
1818  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1819  *	@sp:	Save page bit (0 == don't save, 1 == save)
1820  *	@modepage: mode page being requested
1821  *	@buffer: request buffer (may not be smaller than eight bytes)
1822  *	@len:	length of request buffer.
1823  *	@timeout: command timeout
1824  *	@retries: number of retries before failing
1825  *	@data: returns a structure abstracting the mode header data
1826  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1827  *		must be SCSI_SENSE_BUFFERSIZE big.
1828  *
1829  *	Returns zero if successful; negative error number or scsi
1830  *	status on error
1831  *
1832  */
1833 int
1834 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1835 		 unsigned char *buffer, int len, int timeout, int retries,
1836 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1837 {
1838 	unsigned char cmd[10];
1839 	unsigned char *real_buffer;
1840 	int ret;
1841 
1842 	memset(cmd, 0, sizeof(cmd));
1843 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1844 
1845 	if (sdev->use_10_for_ms) {
1846 		if (len > 65535)
1847 			return -EINVAL;
1848 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1849 		if (!real_buffer)
1850 			return -ENOMEM;
1851 		memcpy(real_buffer + 8, buffer, len);
1852 		len += 8;
1853 		real_buffer[0] = 0;
1854 		real_buffer[1] = 0;
1855 		real_buffer[2] = data->medium_type;
1856 		real_buffer[3] = data->device_specific;
1857 		real_buffer[4] = data->longlba ? 0x01 : 0;
1858 		real_buffer[5] = 0;
1859 		real_buffer[6] = data->block_descriptor_length >> 8;
1860 		real_buffer[7] = data->block_descriptor_length;
1861 
1862 		cmd[0] = MODE_SELECT_10;
1863 		cmd[7] = len >> 8;
1864 		cmd[8] = len;
1865 	} else {
1866 		if (len > 255 || data->block_descriptor_length > 255 ||
1867 		    data->longlba)
1868 			return -EINVAL;
1869 
1870 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1871 		if (!real_buffer)
1872 			return -ENOMEM;
1873 		memcpy(real_buffer + 4, buffer, len);
1874 		len += 4;
1875 		real_buffer[0] = 0;
1876 		real_buffer[1] = data->medium_type;
1877 		real_buffer[2] = data->device_specific;
1878 		real_buffer[3] = data->block_descriptor_length;
1879 
1880 
1881 		cmd[0] = MODE_SELECT;
1882 		cmd[4] = len;
1883 	}
1884 
1885 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1886 			       sshdr, timeout, retries, NULL);
1887 	kfree(real_buffer);
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL_GPL(scsi_mode_select);
1891 
1892 /**
1893  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1894  *	@sdev:	SCSI device to be queried
1895  *	@dbd:	set if mode sense will allow block descriptors to be returned
1896  *	@modepage: mode page being requested
1897  *	@buffer: request buffer (may not be smaller than eight bytes)
1898  *	@len:	length of request buffer.
1899  *	@timeout: command timeout
1900  *	@retries: number of retries before failing
1901  *	@data: returns a structure abstracting the mode header data
1902  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1903  *		must be SCSI_SENSE_BUFFERSIZE big.
1904  *
1905  *	Returns zero if unsuccessful, or the header offset (either 4
1906  *	or 8 depending on whether a six or ten byte command was
1907  *	issued) if successful.
1908  */
1909 int
1910 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1911 		  unsigned char *buffer, int len, int timeout, int retries,
1912 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1913 {
1914 	unsigned char cmd[12];
1915 	int use_10_for_ms;
1916 	int header_length;
1917 	int result;
1918 	struct scsi_sense_hdr my_sshdr;
1919 
1920 	memset(data, 0, sizeof(*data));
1921 	memset(&cmd[0], 0, 12);
1922 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1923 	cmd[2] = modepage;
1924 
1925 	/* caller might not be interested in sense, but we need it */
1926 	if (!sshdr)
1927 		sshdr = &my_sshdr;
1928 
1929  retry:
1930 	use_10_for_ms = sdev->use_10_for_ms;
1931 
1932 	if (use_10_for_ms) {
1933 		if (len < 8)
1934 			len = 8;
1935 
1936 		cmd[0] = MODE_SENSE_10;
1937 		cmd[8] = len;
1938 		header_length = 8;
1939 	} else {
1940 		if (len < 4)
1941 			len = 4;
1942 
1943 		cmd[0] = MODE_SENSE;
1944 		cmd[4] = len;
1945 		header_length = 4;
1946 	}
1947 
1948 	memset(buffer, 0, len);
1949 
1950 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1951 				  sshdr, timeout, retries, NULL);
1952 
1953 	/* This code looks awful: what it's doing is making sure an
1954 	 * ILLEGAL REQUEST sense return identifies the actual command
1955 	 * byte as the problem.  MODE_SENSE commands can return
1956 	 * ILLEGAL REQUEST if the code page isn't supported */
1957 
1958 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1959 	    (driver_byte(result) & DRIVER_SENSE)) {
1960 		if (scsi_sense_valid(sshdr)) {
1961 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1962 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1963 				/*
1964 				 * Invalid command operation code
1965 				 */
1966 				sdev->use_10_for_ms = 0;
1967 				goto retry;
1968 			}
1969 		}
1970 	}
1971 
1972 	if(scsi_status_is_good(result)) {
1973 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1974 			     (modepage == 6 || modepage == 8))) {
1975 			/* Initio breakage? */
1976 			header_length = 0;
1977 			data->length = 13;
1978 			data->medium_type = 0;
1979 			data->device_specific = 0;
1980 			data->longlba = 0;
1981 			data->block_descriptor_length = 0;
1982 		} else if(use_10_for_ms) {
1983 			data->length = buffer[0]*256 + buffer[1] + 2;
1984 			data->medium_type = buffer[2];
1985 			data->device_specific = buffer[3];
1986 			data->longlba = buffer[4] & 0x01;
1987 			data->block_descriptor_length = buffer[6]*256
1988 				+ buffer[7];
1989 		} else {
1990 			data->length = buffer[0] + 1;
1991 			data->medium_type = buffer[1];
1992 			data->device_specific = buffer[2];
1993 			data->block_descriptor_length = buffer[3];
1994 		}
1995 		data->header_length = header_length;
1996 	}
1997 
1998 	return result;
1999 }
2000 EXPORT_SYMBOL(scsi_mode_sense);
2001 
2002 /**
2003  *	scsi_test_unit_ready - test if unit is ready
2004  *	@sdev:	scsi device to change the state of.
2005  *	@timeout: command timeout
2006  *	@retries: number of retries before failing
2007  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2008  *		returning sense. Make sure that this is cleared before passing
2009  *		in.
2010  *
2011  *	Returns zero if unsuccessful or an error if TUR failed.  For
2012  *	removable media, UNIT_ATTENTION sets ->changed flag.
2013  **/
2014 int
2015 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2016 		     struct scsi_sense_hdr *sshdr_external)
2017 {
2018 	char cmd[] = {
2019 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2020 	};
2021 	struct scsi_sense_hdr *sshdr;
2022 	int result;
2023 
2024 	if (!sshdr_external)
2025 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2026 	else
2027 		sshdr = sshdr_external;
2028 
2029 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2030 	do {
2031 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2032 					  timeout, retries, NULL);
2033 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2034 		    sshdr->sense_key == UNIT_ATTENTION)
2035 			sdev->changed = 1;
2036 	} while (scsi_sense_valid(sshdr) &&
2037 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2038 
2039 	if (!sshdr_external)
2040 		kfree(sshdr);
2041 	return result;
2042 }
2043 EXPORT_SYMBOL(scsi_test_unit_ready);
2044 
2045 /**
2046  *	scsi_device_set_state - Take the given device through the device state model.
2047  *	@sdev:	scsi device to change the state of.
2048  *	@state:	state to change to.
2049  *
2050  *	Returns zero if unsuccessful or an error if the requested
2051  *	transition is illegal.
2052  */
2053 int
2054 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2055 {
2056 	enum scsi_device_state oldstate = sdev->sdev_state;
2057 
2058 	if (state == oldstate)
2059 		return 0;
2060 
2061 	switch (state) {
2062 	case SDEV_CREATED:
2063 		switch (oldstate) {
2064 		case SDEV_CREATED_BLOCK:
2065 			break;
2066 		default:
2067 			goto illegal;
2068 		}
2069 		break;
2070 
2071 	case SDEV_RUNNING:
2072 		switch (oldstate) {
2073 		case SDEV_CREATED:
2074 		case SDEV_OFFLINE:
2075 		case SDEV_QUIESCE:
2076 		case SDEV_BLOCK:
2077 			break;
2078 		default:
2079 			goto illegal;
2080 		}
2081 		break;
2082 
2083 	case SDEV_QUIESCE:
2084 		switch (oldstate) {
2085 		case SDEV_RUNNING:
2086 		case SDEV_OFFLINE:
2087 			break;
2088 		default:
2089 			goto illegal;
2090 		}
2091 		break;
2092 
2093 	case SDEV_OFFLINE:
2094 		switch (oldstate) {
2095 		case SDEV_CREATED:
2096 		case SDEV_RUNNING:
2097 		case SDEV_QUIESCE:
2098 		case SDEV_BLOCK:
2099 			break;
2100 		default:
2101 			goto illegal;
2102 		}
2103 		break;
2104 
2105 	case SDEV_BLOCK:
2106 		switch (oldstate) {
2107 		case SDEV_RUNNING:
2108 		case SDEV_CREATED_BLOCK:
2109 			break;
2110 		default:
2111 			goto illegal;
2112 		}
2113 		break;
2114 
2115 	case SDEV_CREATED_BLOCK:
2116 		switch (oldstate) {
2117 		case SDEV_CREATED:
2118 			break;
2119 		default:
2120 			goto illegal;
2121 		}
2122 		break;
2123 
2124 	case SDEV_CANCEL:
2125 		switch (oldstate) {
2126 		case SDEV_CREATED:
2127 		case SDEV_RUNNING:
2128 		case SDEV_QUIESCE:
2129 		case SDEV_OFFLINE:
2130 		case SDEV_BLOCK:
2131 			break;
2132 		default:
2133 			goto illegal;
2134 		}
2135 		break;
2136 
2137 	case SDEV_DEL:
2138 		switch (oldstate) {
2139 		case SDEV_CREATED:
2140 		case SDEV_RUNNING:
2141 		case SDEV_OFFLINE:
2142 		case SDEV_CANCEL:
2143 			break;
2144 		default:
2145 			goto illegal;
2146 		}
2147 		break;
2148 
2149 	}
2150 	sdev->sdev_state = state;
2151 	return 0;
2152 
2153  illegal:
2154 	SCSI_LOG_ERROR_RECOVERY(1,
2155 				sdev_printk(KERN_ERR, sdev,
2156 					    "Illegal state transition %s->%s\n",
2157 					    scsi_device_state_name(oldstate),
2158 					    scsi_device_state_name(state))
2159 				);
2160 	return -EINVAL;
2161 }
2162 EXPORT_SYMBOL(scsi_device_set_state);
2163 
2164 /**
2165  * 	sdev_evt_emit - emit a single SCSI device uevent
2166  *	@sdev: associated SCSI device
2167  *	@evt: event to emit
2168  *
2169  *	Send a single uevent (scsi_event) to the associated scsi_device.
2170  */
2171 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2172 {
2173 	int idx = 0;
2174 	char *envp[3];
2175 
2176 	switch (evt->evt_type) {
2177 	case SDEV_EVT_MEDIA_CHANGE:
2178 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2179 		break;
2180 
2181 	default:
2182 		/* do nothing */
2183 		break;
2184 	}
2185 
2186 	envp[idx++] = NULL;
2187 
2188 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2189 }
2190 
2191 /**
2192  * 	sdev_evt_thread - send a uevent for each scsi event
2193  *	@work: work struct for scsi_device
2194  *
2195  *	Dispatch queued events to their associated scsi_device kobjects
2196  *	as uevents.
2197  */
2198 void scsi_evt_thread(struct work_struct *work)
2199 {
2200 	struct scsi_device *sdev;
2201 	LIST_HEAD(event_list);
2202 
2203 	sdev = container_of(work, struct scsi_device, event_work);
2204 
2205 	while (1) {
2206 		struct scsi_event *evt;
2207 		struct list_head *this, *tmp;
2208 		unsigned long flags;
2209 
2210 		spin_lock_irqsave(&sdev->list_lock, flags);
2211 		list_splice_init(&sdev->event_list, &event_list);
2212 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2213 
2214 		if (list_empty(&event_list))
2215 			break;
2216 
2217 		list_for_each_safe(this, tmp, &event_list) {
2218 			evt = list_entry(this, struct scsi_event, node);
2219 			list_del(&evt->node);
2220 			scsi_evt_emit(sdev, evt);
2221 			kfree(evt);
2222 		}
2223 	}
2224 }
2225 
2226 /**
2227  * 	sdev_evt_send - send asserted event to uevent thread
2228  *	@sdev: scsi_device event occurred on
2229  *	@evt: event to send
2230  *
2231  *	Assert scsi device event asynchronously.
2232  */
2233 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2234 {
2235 	unsigned long flags;
2236 
2237 #if 0
2238 	/* FIXME: currently this check eliminates all media change events
2239 	 * for polled devices.  Need to update to discriminate between AN
2240 	 * and polled events */
2241 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2242 		kfree(evt);
2243 		return;
2244 	}
2245 #endif
2246 
2247 	spin_lock_irqsave(&sdev->list_lock, flags);
2248 	list_add_tail(&evt->node, &sdev->event_list);
2249 	schedule_work(&sdev->event_work);
2250 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2251 }
2252 EXPORT_SYMBOL_GPL(sdev_evt_send);
2253 
2254 /**
2255  * 	sdev_evt_alloc - allocate a new scsi event
2256  *	@evt_type: type of event to allocate
2257  *	@gfpflags: GFP flags for allocation
2258  *
2259  *	Allocates and returns a new scsi_event.
2260  */
2261 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2262 				  gfp_t gfpflags)
2263 {
2264 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2265 	if (!evt)
2266 		return NULL;
2267 
2268 	evt->evt_type = evt_type;
2269 	INIT_LIST_HEAD(&evt->node);
2270 
2271 	/* evt_type-specific initialization, if any */
2272 	switch (evt_type) {
2273 	case SDEV_EVT_MEDIA_CHANGE:
2274 	default:
2275 		/* do nothing */
2276 		break;
2277 	}
2278 
2279 	return evt;
2280 }
2281 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2282 
2283 /**
2284  * 	sdev_evt_send_simple - send asserted event to uevent thread
2285  *	@sdev: scsi_device event occurred on
2286  *	@evt_type: type of event to send
2287  *	@gfpflags: GFP flags for allocation
2288  *
2289  *	Assert scsi device event asynchronously, given an event type.
2290  */
2291 void sdev_evt_send_simple(struct scsi_device *sdev,
2292 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2293 {
2294 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2295 	if (!evt) {
2296 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2297 			    evt_type);
2298 		return;
2299 	}
2300 
2301 	sdev_evt_send(sdev, evt);
2302 }
2303 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2304 
2305 /**
2306  *	scsi_device_quiesce - Block user issued commands.
2307  *	@sdev:	scsi device to quiesce.
2308  *
2309  *	This works by trying to transition to the SDEV_QUIESCE state
2310  *	(which must be a legal transition).  When the device is in this
2311  *	state, only special requests will be accepted, all others will
2312  *	be deferred.  Since special requests may also be requeued requests,
2313  *	a successful return doesn't guarantee the device will be
2314  *	totally quiescent.
2315  *
2316  *	Must be called with user context, may sleep.
2317  *
2318  *	Returns zero if unsuccessful or an error if not.
2319  */
2320 int
2321 scsi_device_quiesce(struct scsi_device *sdev)
2322 {
2323 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2324 	if (err)
2325 		return err;
2326 
2327 	scsi_run_queue(sdev->request_queue);
2328 	while (sdev->device_busy) {
2329 		msleep_interruptible(200);
2330 		scsi_run_queue(sdev->request_queue);
2331 	}
2332 	return 0;
2333 }
2334 EXPORT_SYMBOL(scsi_device_quiesce);
2335 
2336 /**
2337  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2338  *	@sdev:	scsi device to resume.
2339  *
2340  *	Moves the device from quiesced back to running and restarts the
2341  *	queues.
2342  *
2343  *	Must be called with user context, may sleep.
2344  */
2345 void
2346 scsi_device_resume(struct scsi_device *sdev)
2347 {
2348 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2349 		return;
2350 	scsi_run_queue(sdev->request_queue);
2351 }
2352 EXPORT_SYMBOL(scsi_device_resume);
2353 
2354 static void
2355 device_quiesce_fn(struct scsi_device *sdev, void *data)
2356 {
2357 	scsi_device_quiesce(sdev);
2358 }
2359 
2360 void
2361 scsi_target_quiesce(struct scsi_target *starget)
2362 {
2363 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2364 }
2365 EXPORT_SYMBOL(scsi_target_quiesce);
2366 
2367 static void
2368 device_resume_fn(struct scsi_device *sdev, void *data)
2369 {
2370 	scsi_device_resume(sdev);
2371 }
2372 
2373 void
2374 scsi_target_resume(struct scsi_target *starget)
2375 {
2376 	starget_for_each_device(starget, NULL, device_resume_fn);
2377 }
2378 EXPORT_SYMBOL(scsi_target_resume);
2379 
2380 /**
2381  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2382  * @sdev:	device to block
2383  *
2384  * Block request made by scsi lld's to temporarily stop all
2385  * scsi commands on the specified device.  Called from interrupt
2386  * or normal process context.
2387  *
2388  * Returns zero if successful or error if not
2389  *
2390  * Notes:
2391  *	This routine transitions the device to the SDEV_BLOCK state
2392  *	(which must be a legal transition).  When the device is in this
2393  *	state, all commands are deferred until the scsi lld reenables
2394  *	the device with scsi_device_unblock or device_block_tmo fires.
2395  *	This routine assumes the host_lock is held on entry.
2396  */
2397 int
2398 scsi_internal_device_block(struct scsi_device *sdev)
2399 {
2400 	struct request_queue *q = sdev->request_queue;
2401 	unsigned long flags;
2402 	int err = 0;
2403 
2404 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2405 	if (err) {
2406 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2407 
2408 		if (err)
2409 			return err;
2410 	}
2411 
2412 	/*
2413 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2414 	 * block layer from calling the midlayer with this device's
2415 	 * request queue.
2416 	 */
2417 	spin_lock_irqsave(q->queue_lock, flags);
2418 	blk_stop_queue(q);
2419 	spin_unlock_irqrestore(q->queue_lock, flags);
2420 
2421 	return 0;
2422 }
2423 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2424 
2425 /**
2426  * scsi_internal_device_unblock - resume a device after a block request
2427  * @sdev:	device to resume
2428  *
2429  * Called by scsi lld's or the midlayer to restart the device queue
2430  * for the previously suspended scsi device.  Called from interrupt or
2431  * normal process context.
2432  *
2433  * Returns zero if successful or error if not.
2434  *
2435  * Notes:
2436  *	This routine transitions the device to the SDEV_RUNNING state
2437  *	(which must be a legal transition) allowing the midlayer to
2438  *	goose the queue for this device.  This routine assumes the
2439  *	host_lock is held upon entry.
2440  */
2441 int
2442 scsi_internal_device_unblock(struct scsi_device *sdev)
2443 {
2444 	struct request_queue *q = sdev->request_queue;
2445 	unsigned long flags;
2446 
2447 	/*
2448 	 * Try to transition the scsi device to SDEV_RUNNING
2449 	 * and goose the device queue if successful.
2450 	 */
2451 	if (sdev->sdev_state == SDEV_BLOCK)
2452 		sdev->sdev_state = SDEV_RUNNING;
2453 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2454 		sdev->sdev_state = SDEV_CREATED;
2455 	else if (sdev->sdev_state != SDEV_CANCEL &&
2456 		 sdev->sdev_state != SDEV_OFFLINE)
2457 		return -EINVAL;
2458 
2459 	spin_lock_irqsave(q->queue_lock, flags);
2460 	blk_start_queue(q);
2461 	spin_unlock_irqrestore(q->queue_lock, flags);
2462 
2463 	return 0;
2464 }
2465 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2466 
2467 static void
2468 device_block(struct scsi_device *sdev, void *data)
2469 {
2470 	scsi_internal_device_block(sdev);
2471 }
2472 
2473 static int
2474 target_block(struct device *dev, void *data)
2475 {
2476 	if (scsi_is_target_device(dev))
2477 		starget_for_each_device(to_scsi_target(dev), NULL,
2478 					device_block);
2479 	return 0;
2480 }
2481 
2482 void
2483 scsi_target_block(struct device *dev)
2484 {
2485 	if (scsi_is_target_device(dev))
2486 		starget_for_each_device(to_scsi_target(dev), NULL,
2487 					device_block);
2488 	else
2489 		device_for_each_child(dev, NULL, target_block);
2490 }
2491 EXPORT_SYMBOL_GPL(scsi_target_block);
2492 
2493 static void
2494 device_unblock(struct scsi_device *sdev, void *data)
2495 {
2496 	scsi_internal_device_unblock(sdev);
2497 }
2498 
2499 static int
2500 target_unblock(struct device *dev, void *data)
2501 {
2502 	if (scsi_is_target_device(dev))
2503 		starget_for_each_device(to_scsi_target(dev), NULL,
2504 					device_unblock);
2505 	return 0;
2506 }
2507 
2508 void
2509 scsi_target_unblock(struct device *dev)
2510 {
2511 	if (scsi_is_target_device(dev))
2512 		starget_for_each_device(to_scsi_target(dev), NULL,
2513 					device_unblock);
2514 	else
2515 		device_for_each_child(dev, NULL, target_unblock);
2516 }
2517 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2518 
2519 /**
2520  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2521  * @sgl:	scatter-gather list
2522  * @sg_count:	number of segments in sg
2523  * @offset:	offset in bytes into sg, on return offset into the mapped area
2524  * @len:	bytes to map, on return number of bytes mapped
2525  *
2526  * Returns virtual address of the start of the mapped page
2527  */
2528 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2529 			  size_t *offset, size_t *len)
2530 {
2531 	int i;
2532 	size_t sg_len = 0, len_complete = 0;
2533 	struct scatterlist *sg;
2534 	struct page *page;
2535 
2536 	WARN_ON(!irqs_disabled());
2537 
2538 	for_each_sg(sgl, sg, sg_count, i) {
2539 		len_complete = sg_len; /* Complete sg-entries */
2540 		sg_len += sg->length;
2541 		if (sg_len > *offset)
2542 			break;
2543 	}
2544 
2545 	if (unlikely(i == sg_count)) {
2546 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2547 			"elements %d\n",
2548 		       __func__, sg_len, *offset, sg_count);
2549 		WARN_ON(1);
2550 		return NULL;
2551 	}
2552 
2553 	/* Offset starting from the beginning of first page in this sg-entry */
2554 	*offset = *offset - len_complete + sg->offset;
2555 
2556 	/* Assumption: contiguous pages can be accessed as "page + i" */
2557 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2558 	*offset &= ~PAGE_MASK;
2559 
2560 	/* Bytes in this sg-entry from *offset to the end of the page */
2561 	sg_len = PAGE_SIZE - *offset;
2562 	if (*len > sg_len)
2563 		*len = sg_len;
2564 
2565 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2566 }
2567 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2568 
2569 /**
2570  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2571  * @virt:	virtual address to be unmapped
2572  */
2573 void scsi_kunmap_atomic_sg(void *virt)
2574 {
2575 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2576 }
2577 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2578