1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 blk_unprep_request(req); 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /** 95 * __scsi_queue_insert - private queue insertion 96 * @cmd: The SCSI command being requeued 97 * @reason: The reason for the requeue 98 * @unbusy: Whether the queue should be unbusied 99 * 100 * This is a private queue insertion. The public interface 101 * scsi_queue_insert() always assumes the queue should be unbusied 102 * because it's always called before the completion. This function is 103 * for a requeue after completion, which should only occur in this 104 * file. 105 */ 106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 107 { 108 struct Scsi_Host *host = cmd->device->host; 109 struct scsi_device *device = cmd->device; 110 struct scsi_target *starget = scsi_target(device); 111 struct request_queue *q = device->request_queue; 112 unsigned long flags; 113 114 SCSI_LOG_MLQUEUE(1, 115 printk("Inserting command %p into mlqueue\n", cmd)); 116 117 /* 118 * Set the appropriate busy bit for the device/host. 119 * 120 * If the host/device isn't busy, assume that something actually 121 * completed, and that we should be able to queue a command now. 122 * 123 * Note that the prior mid-layer assumption that any host could 124 * always queue at least one command is now broken. The mid-layer 125 * will implement a user specifiable stall (see 126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 127 * if a command is requeued with no other commands outstanding 128 * either for the device or for the host. 129 */ 130 switch (reason) { 131 case SCSI_MLQUEUE_HOST_BUSY: 132 host->host_blocked = host->max_host_blocked; 133 break; 134 case SCSI_MLQUEUE_DEVICE_BUSY: 135 device->device_blocked = device->max_device_blocked; 136 break; 137 case SCSI_MLQUEUE_TARGET_BUSY: 138 starget->target_blocked = starget->max_target_blocked; 139 break; 140 } 141 142 /* 143 * Decrement the counters, since these commands are no longer 144 * active on the host/device. 145 */ 146 if (unbusy) 147 scsi_device_unbusy(device); 148 149 /* 150 * Requeue this command. It will go before all other commands 151 * that are already in the queue. 152 * 153 * NOTE: there is magic here about the way the queue is plugged if 154 * we have no outstanding commands. 155 * 156 * Although we *don't* plug the queue, we call the request 157 * function. The SCSI request function detects the blocked condition 158 * and plugs the queue appropriately. 159 */ 160 spin_lock_irqsave(q->queue_lock, flags); 161 blk_requeue_request(q, cmd->request); 162 spin_unlock_irqrestore(q->queue_lock, flags); 163 164 scsi_run_queue(q); 165 166 return 0; 167 } 168 169 /* 170 * Function: scsi_queue_insert() 171 * 172 * Purpose: Insert a command in the midlevel queue. 173 * 174 * Arguments: cmd - command that we are adding to queue. 175 * reason - why we are inserting command to queue. 176 * 177 * Lock status: Assumed that lock is not held upon entry. 178 * 179 * Returns: Nothing. 180 * 181 * Notes: We do this for one of two cases. Either the host is busy 182 * and it cannot accept any more commands for the time being, 183 * or the device returned QUEUE_FULL and can accept no more 184 * commands. 185 * Notes: This could be called either from an interrupt context or a 186 * normal process context. 187 */ 188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 189 { 190 return __scsi_queue_insert(cmd, reason, 1); 191 } 192 /** 193 * scsi_execute - insert request and wait for the result 194 * @sdev: scsi device 195 * @cmd: scsi command 196 * @data_direction: data direction 197 * @buffer: data buffer 198 * @bufflen: len of buffer 199 * @sense: optional sense buffer 200 * @timeout: request timeout in seconds 201 * @retries: number of times to retry request 202 * @flags: or into request flags; 203 * @resid: optional residual length 204 * 205 * returns the req->errors value which is the scsi_cmnd result 206 * field. 207 */ 208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 209 int data_direction, void *buffer, unsigned bufflen, 210 unsigned char *sense, int timeout, int retries, int flags, 211 int *resid) 212 { 213 struct request *req; 214 int write = (data_direction == DMA_TO_DEVICE); 215 int ret = DRIVER_ERROR << 24; 216 217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 218 219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 220 buffer, bufflen, __GFP_WAIT)) 221 goto out; 222 223 req->cmd_len = COMMAND_SIZE(cmd[0]); 224 memcpy(req->cmd, cmd, req->cmd_len); 225 req->sense = sense; 226 req->sense_len = 0; 227 req->retries = retries; 228 req->timeout = timeout; 229 req->cmd_type = REQ_TYPE_BLOCK_PC; 230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 231 232 /* 233 * head injection *required* here otherwise quiesce won't work 234 */ 235 blk_execute_rq(req->q, NULL, req, 1); 236 237 /* 238 * Some devices (USB mass-storage in particular) may transfer 239 * garbage data together with a residue indicating that the data 240 * is invalid. Prevent the garbage from being misinterpreted 241 * and prevent security leaks by zeroing out the excess data. 242 */ 243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 245 246 if (resid) 247 *resid = req->resid_len; 248 ret = req->errors; 249 out: 250 blk_put_request(req); 251 252 return ret; 253 } 254 EXPORT_SYMBOL(scsi_execute); 255 256 257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 258 int data_direction, void *buffer, unsigned bufflen, 259 struct scsi_sense_hdr *sshdr, int timeout, int retries, 260 int *resid) 261 { 262 char *sense = NULL; 263 int result; 264 265 if (sshdr) { 266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 267 if (!sense) 268 return DRIVER_ERROR << 24; 269 } 270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 271 sense, timeout, retries, 0, resid); 272 if (sshdr) 273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 274 275 kfree(sense); 276 return result; 277 } 278 EXPORT_SYMBOL(scsi_execute_req); 279 280 /* 281 * Function: scsi_init_cmd_errh() 282 * 283 * Purpose: Initialize cmd fields related to error handling. 284 * 285 * Arguments: cmd - command that is ready to be queued. 286 * 287 * Notes: This function has the job of initializing a number of 288 * fields related to error handling. Typically this will 289 * be called once for each command, as required. 290 */ 291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 292 { 293 cmd->serial_number = 0; 294 scsi_set_resid(cmd, 0); 295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 296 if (cmd->cmd_len == 0) 297 cmd->cmd_len = scsi_command_size(cmd->cmnd); 298 } 299 300 void scsi_device_unbusy(struct scsi_device *sdev) 301 { 302 struct Scsi_Host *shost = sdev->host; 303 struct scsi_target *starget = scsi_target(sdev); 304 unsigned long flags; 305 306 spin_lock_irqsave(shost->host_lock, flags); 307 shost->host_busy--; 308 starget->target_busy--; 309 if (unlikely(scsi_host_in_recovery(shost) && 310 (shost->host_failed || shost->host_eh_scheduled))) 311 scsi_eh_wakeup(shost); 312 spin_unlock(shost->host_lock); 313 spin_lock(sdev->request_queue->queue_lock); 314 sdev->device_busy--; 315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 316 } 317 318 /* 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 320 * and call blk_run_queue for all the scsi_devices on the target - 321 * including current_sdev first. 322 * 323 * Called with *no* scsi locks held. 324 */ 325 static void scsi_single_lun_run(struct scsi_device *current_sdev) 326 { 327 struct Scsi_Host *shost = current_sdev->host; 328 struct scsi_device *sdev, *tmp; 329 struct scsi_target *starget = scsi_target(current_sdev); 330 unsigned long flags; 331 332 spin_lock_irqsave(shost->host_lock, flags); 333 starget->starget_sdev_user = NULL; 334 spin_unlock_irqrestore(shost->host_lock, flags); 335 336 /* 337 * Call blk_run_queue for all LUNs on the target, starting with 338 * current_sdev. We race with others (to set starget_sdev_user), 339 * but in most cases, we will be first. Ideally, each LU on the 340 * target would get some limited time or requests on the target. 341 */ 342 blk_run_queue(current_sdev->request_queue); 343 344 spin_lock_irqsave(shost->host_lock, flags); 345 if (starget->starget_sdev_user) 346 goto out; 347 list_for_each_entry_safe(sdev, tmp, &starget->devices, 348 same_target_siblings) { 349 if (sdev == current_sdev) 350 continue; 351 if (scsi_device_get(sdev)) 352 continue; 353 354 spin_unlock_irqrestore(shost->host_lock, flags); 355 blk_run_queue(sdev->request_queue); 356 spin_lock_irqsave(shost->host_lock, flags); 357 358 scsi_device_put(sdev); 359 } 360 out: 361 spin_unlock_irqrestore(shost->host_lock, flags); 362 } 363 364 static inline int scsi_device_is_busy(struct scsi_device *sdev) 365 { 366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 367 return 1; 368 369 return 0; 370 } 371 372 static inline int scsi_target_is_busy(struct scsi_target *starget) 373 { 374 return ((starget->can_queue > 0 && 375 starget->target_busy >= starget->can_queue) || 376 starget->target_blocked); 377 } 378 379 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 380 { 381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 382 shost->host_blocked || shost->host_self_blocked) 383 return 1; 384 385 return 0; 386 } 387 388 /* 389 * Function: scsi_run_queue() 390 * 391 * Purpose: Select a proper request queue to serve next 392 * 393 * Arguments: q - last request's queue 394 * 395 * Returns: Nothing 396 * 397 * Notes: The previous command was completely finished, start 398 * a new one if possible. 399 */ 400 static void scsi_run_queue(struct request_queue *q) 401 { 402 struct scsi_device *sdev = q->queuedata; 403 struct Scsi_Host *shost = sdev->host; 404 LIST_HEAD(starved_list); 405 unsigned long flags; 406 407 if (scsi_target(sdev)->single_lun) 408 scsi_single_lun_run(sdev); 409 410 spin_lock_irqsave(shost->host_lock, flags); 411 list_splice_init(&shost->starved_list, &starved_list); 412 413 while (!list_empty(&starved_list)) { 414 int flagset; 415 416 /* 417 * As long as shost is accepting commands and we have 418 * starved queues, call blk_run_queue. scsi_request_fn 419 * drops the queue_lock and can add us back to the 420 * starved_list. 421 * 422 * host_lock protects the starved_list and starved_entry. 423 * scsi_request_fn must get the host_lock before checking 424 * or modifying starved_list or starved_entry. 425 */ 426 if (scsi_host_is_busy(shost)) 427 break; 428 429 sdev = list_entry(starved_list.next, 430 struct scsi_device, starved_entry); 431 list_del_init(&sdev->starved_entry); 432 if (scsi_target_is_busy(scsi_target(sdev))) { 433 list_move_tail(&sdev->starved_entry, 434 &shost->starved_list); 435 continue; 436 } 437 438 spin_unlock(shost->host_lock); 439 440 spin_lock(sdev->request_queue->queue_lock); 441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 442 !test_bit(QUEUE_FLAG_REENTER, 443 &sdev->request_queue->queue_flags); 444 if (flagset) 445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 446 __blk_run_queue(sdev->request_queue, false); 447 if (flagset) 448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 449 spin_unlock(sdev->request_queue->queue_lock); 450 451 spin_lock(shost->host_lock); 452 } 453 /* put any unprocessed entries back */ 454 list_splice(&starved_list, &shost->starved_list); 455 spin_unlock_irqrestore(shost->host_lock, flags); 456 457 blk_run_queue(q); 458 } 459 460 /* 461 * Function: scsi_requeue_command() 462 * 463 * Purpose: Handle post-processing of completed commands. 464 * 465 * Arguments: q - queue to operate on 466 * cmd - command that may need to be requeued. 467 * 468 * Returns: Nothing 469 * 470 * Notes: After command completion, there may be blocks left 471 * over which weren't finished by the previous command 472 * this can be for a number of reasons - the main one is 473 * I/O errors in the middle of the request, in which case 474 * we need to request the blocks that come after the bad 475 * sector. 476 * Notes: Upon return, cmd is a stale pointer. 477 */ 478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 479 { 480 struct request *req = cmd->request; 481 unsigned long flags; 482 483 spin_lock_irqsave(q->queue_lock, flags); 484 scsi_unprep_request(req); 485 blk_requeue_request(q, req); 486 spin_unlock_irqrestore(q->queue_lock, flags); 487 488 scsi_run_queue(q); 489 } 490 491 void scsi_next_command(struct scsi_cmnd *cmd) 492 { 493 struct scsi_device *sdev = cmd->device; 494 struct request_queue *q = sdev->request_queue; 495 496 /* need to hold a reference on the device before we let go of the cmd */ 497 get_device(&sdev->sdev_gendev); 498 499 scsi_put_command(cmd); 500 scsi_run_queue(q); 501 502 /* ok to remove device now */ 503 put_device(&sdev->sdev_gendev); 504 } 505 506 void scsi_run_host_queues(struct Scsi_Host *shost) 507 { 508 struct scsi_device *sdev; 509 510 shost_for_each_device(sdev, shost) 511 scsi_run_queue(sdev->request_queue); 512 } 513 514 static void __scsi_release_buffers(struct scsi_cmnd *, int); 515 516 /* 517 * Function: scsi_end_request() 518 * 519 * Purpose: Post-processing of completed commands (usually invoked at end 520 * of upper level post-processing and scsi_io_completion). 521 * 522 * Arguments: cmd - command that is complete. 523 * error - 0 if I/O indicates success, < 0 for I/O error. 524 * bytes - number of bytes of completed I/O 525 * requeue - indicates whether we should requeue leftovers. 526 * 527 * Lock status: Assumed that lock is not held upon entry. 528 * 529 * Returns: cmd if requeue required, NULL otherwise. 530 * 531 * Notes: This is called for block device requests in order to 532 * mark some number of sectors as complete. 533 * 534 * We are guaranteeing that the request queue will be goosed 535 * at some point during this call. 536 * Notes: If cmd was requeued, upon return it will be a stale pointer. 537 */ 538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 539 int bytes, int requeue) 540 { 541 struct request_queue *q = cmd->device->request_queue; 542 struct request *req = cmd->request; 543 544 /* 545 * If there are blocks left over at the end, set up the command 546 * to queue the remainder of them. 547 */ 548 if (blk_end_request(req, error, bytes)) { 549 /* kill remainder if no retrys */ 550 if (error && scsi_noretry_cmd(cmd)) 551 blk_end_request_all(req, error); 552 else { 553 if (requeue) { 554 /* 555 * Bleah. Leftovers again. Stick the 556 * leftovers in the front of the 557 * queue, and goose the queue again. 558 */ 559 scsi_release_buffers(cmd); 560 scsi_requeue_command(q, cmd); 561 cmd = NULL; 562 } 563 return cmd; 564 } 565 } 566 567 /* 568 * This will goose the queue request function at the end, so we don't 569 * need to worry about launching another command. 570 */ 571 __scsi_release_buffers(cmd, 0); 572 scsi_next_command(cmd); 573 return NULL; 574 } 575 576 static inline unsigned int scsi_sgtable_index(unsigned short nents) 577 { 578 unsigned int index; 579 580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 581 582 if (nents <= 8) 583 index = 0; 584 else 585 index = get_count_order(nents) - 3; 586 587 return index; 588 } 589 590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 591 { 592 struct scsi_host_sg_pool *sgp; 593 594 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 595 mempool_free(sgl, sgp->pool); 596 } 597 598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 599 { 600 struct scsi_host_sg_pool *sgp; 601 602 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 603 return mempool_alloc(sgp->pool, gfp_mask); 604 } 605 606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 607 gfp_t gfp_mask) 608 { 609 int ret; 610 611 BUG_ON(!nents); 612 613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 614 gfp_mask, scsi_sg_alloc); 615 if (unlikely(ret)) 616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 617 scsi_sg_free); 618 619 return ret; 620 } 621 622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 623 { 624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 625 } 626 627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 628 { 629 630 if (cmd->sdb.table.nents) 631 scsi_free_sgtable(&cmd->sdb); 632 633 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 634 635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 636 struct scsi_data_buffer *bidi_sdb = 637 cmd->request->next_rq->special; 638 scsi_free_sgtable(bidi_sdb); 639 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 640 cmd->request->next_rq->special = NULL; 641 } 642 643 if (scsi_prot_sg_count(cmd)) 644 scsi_free_sgtable(cmd->prot_sdb); 645 } 646 647 /* 648 * Function: scsi_release_buffers() 649 * 650 * Purpose: Completion processing for block device I/O requests. 651 * 652 * Arguments: cmd - command that we are bailing. 653 * 654 * Lock status: Assumed that no lock is held upon entry. 655 * 656 * Returns: Nothing 657 * 658 * Notes: In the event that an upper level driver rejects a 659 * command, we must release resources allocated during 660 * the __init_io() function. Primarily this would involve 661 * the scatter-gather table, and potentially any bounce 662 * buffers. 663 */ 664 void scsi_release_buffers(struct scsi_cmnd *cmd) 665 { 666 __scsi_release_buffers(cmd, 1); 667 } 668 EXPORT_SYMBOL(scsi_release_buffers); 669 670 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 671 { 672 int error = 0; 673 674 switch(host_byte(result)) { 675 case DID_TRANSPORT_FAILFAST: 676 error = -ENOLINK; 677 break; 678 case DID_TARGET_FAILURE: 679 cmd->result |= (DID_OK << 16); 680 error = -EREMOTEIO; 681 break; 682 case DID_NEXUS_FAILURE: 683 cmd->result |= (DID_OK << 16); 684 error = -EBADE; 685 break; 686 default: 687 error = -EIO; 688 break; 689 } 690 691 return error; 692 } 693 694 /* 695 * Function: scsi_io_completion() 696 * 697 * Purpose: Completion processing for block device I/O requests. 698 * 699 * Arguments: cmd - command that is finished. 700 * 701 * Lock status: Assumed that no lock is held upon entry. 702 * 703 * Returns: Nothing 704 * 705 * Notes: This function is matched in terms of capabilities to 706 * the function that created the scatter-gather list. 707 * In other words, if there are no bounce buffers 708 * (the normal case for most drivers), we don't need 709 * the logic to deal with cleaning up afterwards. 710 * 711 * We must call scsi_end_request(). This will finish off 712 * the specified number of sectors. If we are done, the 713 * command block will be released and the queue function 714 * will be goosed. If we are not done then we have to 715 * figure out what to do next: 716 * 717 * a) We can call scsi_requeue_command(). The request 718 * will be unprepared and put back on the queue. Then 719 * a new command will be created for it. This should 720 * be used if we made forward progress, or if we want 721 * to switch from READ(10) to READ(6) for example. 722 * 723 * b) We can call scsi_queue_insert(). The request will 724 * be put back on the queue and retried using the same 725 * command as before, possibly after a delay. 726 * 727 * c) We can call blk_end_request() with -EIO to fail 728 * the remainder of the request. 729 */ 730 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 731 { 732 int result = cmd->result; 733 struct request_queue *q = cmd->device->request_queue; 734 struct request *req = cmd->request; 735 int error = 0; 736 struct scsi_sense_hdr sshdr; 737 int sense_valid = 0; 738 int sense_deferred = 0; 739 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 740 ACTION_DELAYED_RETRY} action; 741 char *description = NULL; 742 743 if (result) { 744 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 745 if (sense_valid) 746 sense_deferred = scsi_sense_is_deferred(&sshdr); 747 } 748 749 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 750 req->errors = result; 751 if (result) { 752 if (sense_valid && req->sense) { 753 /* 754 * SG_IO wants current and deferred errors 755 */ 756 int len = 8 + cmd->sense_buffer[7]; 757 758 if (len > SCSI_SENSE_BUFFERSIZE) 759 len = SCSI_SENSE_BUFFERSIZE; 760 memcpy(req->sense, cmd->sense_buffer, len); 761 req->sense_len = len; 762 } 763 if (!sense_deferred) 764 error = __scsi_error_from_host_byte(cmd, result); 765 } 766 767 req->resid_len = scsi_get_resid(cmd); 768 769 if (scsi_bidi_cmnd(cmd)) { 770 /* 771 * Bidi commands Must be complete as a whole, 772 * both sides at once. 773 */ 774 req->next_rq->resid_len = scsi_in(cmd)->resid; 775 776 scsi_release_buffers(cmd); 777 blk_end_request_all(req, 0); 778 779 scsi_next_command(cmd); 780 return; 781 } 782 } 783 784 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 785 BUG_ON(blk_bidi_rq(req)); 786 787 /* 788 * Next deal with any sectors which we were able to correctly 789 * handle. 790 */ 791 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 792 "%d bytes done.\n", 793 blk_rq_sectors(req), good_bytes)); 794 795 /* 796 * Recovered errors need reporting, but they're always treated 797 * as success, so fiddle the result code here. For BLOCK_PC 798 * we already took a copy of the original into rq->errors which 799 * is what gets returned to the user 800 */ 801 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 802 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 803 * print since caller wants ATA registers. Only occurs on 804 * SCSI ATA PASS_THROUGH commands when CK_COND=1 805 */ 806 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 807 ; 808 else if (!(req->cmd_flags & REQ_QUIET)) 809 scsi_print_sense("", cmd); 810 result = 0; 811 /* BLOCK_PC may have set error */ 812 error = 0; 813 } 814 815 /* 816 * A number of bytes were successfully read. If there 817 * are leftovers and there is some kind of error 818 * (result != 0), retry the rest. 819 */ 820 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 821 return; 822 823 error = __scsi_error_from_host_byte(cmd, result); 824 825 if (host_byte(result) == DID_RESET) { 826 /* Third party bus reset or reset for error recovery 827 * reasons. Just retry the command and see what 828 * happens. 829 */ 830 action = ACTION_RETRY; 831 } else if (sense_valid && !sense_deferred) { 832 switch (sshdr.sense_key) { 833 case UNIT_ATTENTION: 834 if (cmd->device->removable) { 835 /* Detected disc change. Set a bit 836 * and quietly refuse further access. 837 */ 838 cmd->device->changed = 1; 839 description = "Media Changed"; 840 action = ACTION_FAIL; 841 } else { 842 /* Must have been a power glitch, or a 843 * bus reset. Could not have been a 844 * media change, so we just retry the 845 * command and see what happens. 846 */ 847 action = ACTION_RETRY; 848 } 849 break; 850 case ILLEGAL_REQUEST: 851 /* If we had an ILLEGAL REQUEST returned, then 852 * we may have performed an unsupported 853 * command. The only thing this should be 854 * would be a ten byte read where only a six 855 * byte read was supported. Also, on a system 856 * where READ CAPACITY failed, we may have 857 * read past the end of the disk. 858 */ 859 if ((cmd->device->use_10_for_rw && 860 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 861 (cmd->cmnd[0] == READ_10 || 862 cmd->cmnd[0] == WRITE_10)) { 863 /* This will issue a new 6-byte command. */ 864 cmd->device->use_10_for_rw = 0; 865 action = ACTION_REPREP; 866 } else if (sshdr.asc == 0x10) /* DIX */ { 867 description = "Host Data Integrity Failure"; 868 action = ACTION_FAIL; 869 error = -EILSEQ; 870 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 871 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) && 872 (cmd->cmnd[0] == UNMAP || 873 cmd->cmnd[0] == WRITE_SAME_16 || 874 cmd->cmnd[0] == WRITE_SAME)) { 875 description = "Discard failure"; 876 action = ACTION_FAIL; 877 } else 878 action = ACTION_FAIL; 879 break; 880 case ABORTED_COMMAND: 881 action = ACTION_FAIL; 882 if (sshdr.asc == 0x10) { /* DIF */ 883 description = "Target Data Integrity Failure"; 884 error = -EILSEQ; 885 } 886 break; 887 case NOT_READY: 888 /* If the device is in the process of becoming 889 * ready, or has a temporary blockage, retry. 890 */ 891 if (sshdr.asc == 0x04) { 892 switch (sshdr.ascq) { 893 case 0x01: /* becoming ready */ 894 case 0x04: /* format in progress */ 895 case 0x05: /* rebuild in progress */ 896 case 0x06: /* recalculation in progress */ 897 case 0x07: /* operation in progress */ 898 case 0x08: /* Long write in progress */ 899 case 0x09: /* self test in progress */ 900 case 0x14: /* space allocation in progress */ 901 action = ACTION_DELAYED_RETRY; 902 break; 903 default: 904 description = "Device not ready"; 905 action = ACTION_FAIL; 906 break; 907 } 908 } else { 909 description = "Device not ready"; 910 action = ACTION_FAIL; 911 } 912 break; 913 case VOLUME_OVERFLOW: 914 /* See SSC3rXX or current. */ 915 action = ACTION_FAIL; 916 break; 917 default: 918 description = "Unhandled sense code"; 919 action = ACTION_FAIL; 920 break; 921 } 922 } else { 923 description = "Unhandled error code"; 924 action = ACTION_FAIL; 925 } 926 927 switch (action) { 928 case ACTION_FAIL: 929 /* Give up and fail the remainder of the request */ 930 scsi_release_buffers(cmd); 931 if (!(req->cmd_flags & REQ_QUIET)) { 932 if (description) 933 scmd_printk(KERN_INFO, cmd, "%s\n", 934 description); 935 scsi_print_result(cmd); 936 if (driver_byte(result) & DRIVER_SENSE) 937 scsi_print_sense("", cmd); 938 scsi_print_command(cmd); 939 } 940 if (blk_end_request_err(req, error)) 941 scsi_requeue_command(q, cmd); 942 else 943 scsi_next_command(cmd); 944 break; 945 case ACTION_REPREP: 946 /* Unprep the request and put it back at the head of the queue. 947 * A new command will be prepared and issued. 948 */ 949 scsi_release_buffers(cmd); 950 scsi_requeue_command(q, cmd); 951 break; 952 case ACTION_RETRY: 953 /* Retry the same command immediately */ 954 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 955 break; 956 case ACTION_DELAYED_RETRY: 957 /* Retry the same command after a delay */ 958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 959 break; 960 } 961 } 962 963 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 964 gfp_t gfp_mask) 965 { 966 int count; 967 968 /* 969 * If sg table allocation fails, requeue request later. 970 */ 971 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 972 gfp_mask))) { 973 return BLKPREP_DEFER; 974 } 975 976 req->buffer = NULL; 977 978 /* 979 * Next, walk the list, and fill in the addresses and sizes of 980 * each segment. 981 */ 982 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 983 BUG_ON(count > sdb->table.nents); 984 sdb->table.nents = count; 985 sdb->length = blk_rq_bytes(req); 986 return BLKPREP_OK; 987 } 988 989 /* 990 * Function: scsi_init_io() 991 * 992 * Purpose: SCSI I/O initialize function. 993 * 994 * Arguments: cmd - Command descriptor we wish to initialize 995 * 996 * Returns: 0 on success 997 * BLKPREP_DEFER if the failure is retryable 998 * BLKPREP_KILL if the failure is fatal 999 */ 1000 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1001 { 1002 struct request *rq = cmd->request; 1003 1004 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1005 if (error) 1006 goto err_exit; 1007 1008 if (blk_bidi_rq(rq)) { 1009 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1010 scsi_sdb_cache, GFP_ATOMIC); 1011 if (!bidi_sdb) { 1012 error = BLKPREP_DEFER; 1013 goto err_exit; 1014 } 1015 1016 rq->next_rq->special = bidi_sdb; 1017 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1018 if (error) 1019 goto err_exit; 1020 } 1021 1022 if (blk_integrity_rq(rq)) { 1023 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1024 int ivecs, count; 1025 1026 BUG_ON(prot_sdb == NULL); 1027 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1028 1029 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1030 error = BLKPREP_DEFER; 1031 goto err_exit; 1032 } 1033 1034 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1035 prot_sdb->table.sgl); 1036 BUG_ON(unlikely(count > ivecs)); 1037 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1038 1039 cmd->prot_sdb = prot_sdb; 1040 cmd->prot_sdb->table.nents = count; 1041 } 1042 1043 return BLKPREP_OK ; 1044 1045 err_exit: 1046 scsi_release_buffers(cmd); 1047 cmd->request->special = NULL; 1048 scsi_put_command(cmd); 1049 return error; 1050 } 1051 EXPORT_SYMBOL(scsi_init_io); 1052 1053 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1054 struct request *req) 1055 { 1056 struct scsi_cmnd *cmd; 1057 1058 if (!req->special) { 1059 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1060 if (unlikely(!cmd)) 1061 return NULL; 1062 req->special = cmd; 1063 } else { 1064 cmd = req->special; 1065 } 1066 1067 /* pull a tag out of the request if we have one */ 1068 cmd->tag = req->tag; 1069 cmd->request = req; 1070 1071 cmd->cmnd = req->cmd; 1072 cmd->prot_op = SCSI_PROT_NORMAL; 1073 1074 return cmd; 1075 } 1076 1077 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1078 { 1079 struct scsi_cmnd *cmd; 1080 int ret = scsi_prep_state_check(sdev, req); 1081 1082 if (ret != BLKPREP_OK) 1083 return ret; 1084 1085 cmd = scsi_get_cmd_from_req(sdev, req); 1086 if (unlikely(!cmd)) 1087 return BLKPREP_DEFER; 1088 1089 /* 1090 * BLOCK_PC requests may transfer data, in which case they must 1091 * a bio attached to them. Or they might contain a SCSI command 1092 * that does not transfer data, in which case they may optionally 1093 * submit a request without an attached bio. 1094 */ 1095 if (req->bio) { 1096 int ret; 1097 1098 BUG_ON(!req->nr_phys_segments); 1099 1100 ret = scsi_init_io(cmd, GFP_ATOMIC); 1101 if (unlikely(ret)) 1102 return ret; 1103 } else { 1104 BUG_ON(blk_rq_bytes(req)); 1105 1106 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1107 req->buffer = NULL; 1108 } 1109 1110 cmd->cmd_len = req->cmd_len; 1111 if (!blk_rq_bytes(req)) 1112 cmd->sc_data_direction = DMA_NONE; 1113 else if (rq_data_dir(req) == WRITE) 1114 cmd->sc_data_direction = DMA_TO_DEVICE; 1115 else 1116 cmd->sc_data_direction = DMA_FROM_DEVICE; 1117 1118 cmd->transfersize = blk_rq_bytes(req); 1119 cmd->allowed = req->retries; 1120 return BLKPREP_OK; 1121 } 1122 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1123 1124 /* 1125 * Setup a REQ_TYPE_FS command. These are simple read/write request 1126 * from filesystems that still need to be translated to SCSI CDBs from 1127 * the ULD. 1128 */ 1129 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1130 { 1131 struct scsi_cmnd *cmd; 1132 int ret = scsi_prep_state_check(sdev, req); 1133 1134 if (ret != BLKPREP_OK) 1135 return ret; 1136 1137 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1138 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1139 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1140 if (ret != BLKPREP_OK) 1141 return ret; 1142 } 1143 1144 /* 1145 * Filesystem requests must transfer data. 1146 */ 1147 BUG_ON(!req->nr_phys_segments); 1148 1149 cmd = scsi_get_cmd_from_req(sdev, req); 1150 if (unlikely(!cmd)) 1151 return BLKPREP_DEFER; 1152 1153 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1154 return scsi_init_io(cmd, GFP_ATOMIC); 1155 } 1156 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1157 1158 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1159 { 1160 int ret = BLKPREP_OK; 1161 1162 /* 1163 * If the device is not in running state we will reject some 1164 * or all commands. 1165 */ 1166 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1167 switch (sdev->sdev_state) { 1168 case SDEV_OFFLINE: 1169 /* 1170 * If the device is offline we refuse to process any 1171 * commands. The device must be brought online 1172 * before trying any recovery commands. 1173 */ 1174 sdev_printk(KERN_ERR, sdev, 1175 "rejecting I/O to offline device\n"); 1176 ret = BLKPREP_KILL; 1177 break; 1178 case SDEV_DEL: 1179 /* 1180 * If the device is fully deleted, we refuse to 1181 * process any commands as well. 1182 */ 1183 sdev_printk(KERN_ERR, sdev, 1184 "rejecting I/O to dead device\n"); 1185 ret = BLKPREP_KILL; 1186 break; 1187 case SDEV_QUIESCE: 1188 case SDEV_BLOCK: 1189 case SDEV_CREATED_BLOCK: 1190 /* 1191 * If the devices is blocked we defer normal commands. 1192 */ 1193 if (!(req->cmd_flags & REQ_PREEMPT)) 1194 ret = BLKPREP_DEFER; 1195 break; 1196 default: 1197 /* 1198 * For any other not fully online state we only allow 1199 * special commands. In particular any user initiated 1200 * command is not allowed. 1201 */ 1202 if (!(req->cmd_flags & REQ_PREEMPT)) 1203 ret = BLKPREP_KILL; 1204 break; 1205 } 1206 } 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(scsi_prep_state_check); 1210 1211 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1212 { 1213 struct scsi_device *sdev = q->queuedata; 1214 1215 switch (ret) { 1216 case BLKPREP_KILL: 1217 req->errors = DID_NO_CONNECT << 16; 1218 /* release the command and kill it */ 1219 if (req->special) { 1220 struct scsi_cmnd *cmd = req->special; 1221 scsi_release_buffers(cmd); 1222 scsi_put_command(cmd); 1223 req->special = NULL; 1224 } 1225 break; 1226 case BLKPREP_DEFER: 1227 /* 1228 * If we defer, the blk_peek_request() returns NULL, but the 1229 * queue must be restarted, so we plug here if no returning 1230 * command will automatically do that. 1231 */ 1232 if (sdev->device_busy == 0) 1233 blk_plug_device(q); 1234 break; 1235 default: 1236 req->cmd_flags |= REQ_DONTPREP; 1237 } 1238 1239 return ret; 1240 } 1241 EXPORT_SYMBOL(scsi_prep_return); 1242 1243 int scsi_prep_fn(struct request_queue *q, struct request *req) 1244 { 1245 struct scsi_device *sdev = q->queuedata; 1246 int ret = BLKPREP_KILL; 1247 1248 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1249 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1250 return scsi_prep_return(q, req, ret); 1251 } 1252 EXPORT_SYMBOL(scsi_prep_fn); 1253 1254 /* 1255 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1256 * return 0. 1257 * 1258 * Called with the queue_lock held. 1259 */ 1260 static inline int scsi_dev_queue_ready(struct request_queue *q, 1261 struct scsi_device *sdev) 1262 { 1263 if (sdev->device_busy == 0 && sdev->device_blocked) { 1264 /* 1265 * unblock after device_blocked iterates to zero 1266 */ 1267 if (--sdev->device_blocked == 0) { 1268 SCSI_LOG_MLQUEUE(3, 1269 sdev_printk(KERN_INFO, sdev, 1270 "unblocking device at zero depth\n")); 1271 } else { 1272 blk_plug_device(q); 1273 return 0; 1274 } 1275 } 1276 if (scsi_device_is_busy(sdev)) 1277 return 0; 1278 1279 return 1; 1280 } 1281 1282 1283 /* 1284 * scsi_target_queue_ready: checks if there we can send commands to target 1285 * @sdev: scsi device on starget to check. 1286 * 1287 * Called with the host lock held. 1288 */ 1289 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1290 struct scsi_device *sdev) 1291 { 1292 struct scsi_target *starget = scsi_target(sdev); 1293 1294 if (starget->single_lun) { 1295 if (starget->starget_sdev_user && 1296 starget->starget_sdev_user != sdev) 1297 return 0; 1298 starget->starget_sdev_user = sdev; 1299 } 1300 1301 if (starget->target_busy == 0 && starget->target_blocked) { 1302 /* 1303 * unblock after target_blocked iterates to zero 1304 */ 1305 if (--starget->target_blocked == 0) { 1306 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1307 "unblocking target at zero depth\n")); 1308 } else 1309 return 0; 1310 } 1311 1312 if (scsi_target_is_busy(starget)) { 1313 if (list_empty(&sdev->starved_entry)) 1314 list_add_tail(&sdev->starved_entry, 1315 &shost->starved_list); 1316 return 0; 1317 } 1318 1319 /* We're OK to process the command, so we can't be starved */ 1320 if (!list_empty(&sdev->starved_entry)) 1321 list_del_init(&sdev->starved_entry); 1322 return 1; 1323 } 1324 1325 /* 1326 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1327 * return 0. We must end up running the queue again whenever 0 is 1328 * returned, else IO can hang. 1329 * 1330 * Called with host_lock held. 1331 */ 1332 static inline int scsi_host_queue_ready(struct request_queue *q, 1333 struct Scsi_Host *shost, 1334 struct scsi_device *sdev) 1335 { 1336 if (scsi_host_in_recovery(shost)) 1337 return 0; 1338 if (shost->host_busy == 0 && shost->host_blocked) { 1339 /* 1340 * unblock after host_blocked iterates to zero 1341 */ 1342 if (--shost->host_blocked == 0) { 1343 SCSI_LOG_MLQUEUE(3, 1344 printk("scsi%d unblocking host at zero depth\n", 1345 shost->host_no)); 1346 } else { 1347 return 0; 1348 } 1349 } 1350 if (scsi_host_is_busy(shost)) { 1351 if (list_empty(&sdev->starved_entry)) 1352 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1353 return 0; 1354 } 1355 1356 /* We're OK to process the command, so we can't be starved */ 1357 if (!list_empty(&sdev->starved_entry)) 1358 list_del_init(&sdev->starved_entry); 1359 1360 return 1; 1361 } 1362 1363 /* 1364 * Busy state exporting function for request stacking drivers. 1365 * 1366 * For efficiency, no lock is taken to check the busy state of 1367 * shost/starget/sdev, since the returned value is not guaranteed and 1368 * may be changed after request stacking drivers call the function, 1369 * regardless of taking lock or not. 1370 * 1371 * When scsi can't dispatch I/Os anymore and needs to kill I/Os 1372 * (e.g. !sdev), scsi needs to return 'not busy'. 1373 * Otherwise, request stacking drivers may hold requests forever. 1374 */ 1375 static int scsi_lld_busy(struct request_queue *q) 1376 { 1377 struct scsi_device *sdev = q->queuedata; 1378 struct Scsi_Host *shost; 1379 struct scsi_target *starget; 1380 1381 if (!sdev) 1382 return 0; 1383 1384 shost = sdev->host; 1385 starget = scsi_target(sdev); 1386 1387 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) || 1388 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev)) 1389 return 1; 1390 1391 return 0; 1392 } 1393 1394 /* 1395 * Kill a request for a dead device 1396 */ 1397 static void scsi_kill_request(struct request *req, struct request_queue *q) 1398 { 1399 struct scsi_cmnd *cmd = req->special; 1400 struct scsi_device *sdev; 1401 struct scsi_target *starget; 1402 struct Scsi_Host *shost; 1403 1404 blk_start_request(req); 1405 1406 sdev = cmd->device; 1407 starget = scsi_target(sdev); 1408 shost = sdev->host; 1409 scsi_init_cmd_errh(cmd); 1410 cmd->result = DID_NO_CONNECT << 16; 1411 atomic_inc(&cmd->device->iorequest_cnt); 1412 1413 /* 1414 * SCSI request completion path will do scsi_device_unbusy(), 1415 * bump busy counts. To bump the counters, we need to dance 1416 * with the locks as normal issue path does. 1417 */ 1418 sdev->device_busy++; 1419 spin_unlock(sdev->request_queue->queue_lock); 1420 spin_lock(shost->host_lock); 1421 shost->host_busy++; 1422 starget->target_busy++; 1423 spin_unlock(shost->host_lock); 1424 spin_lock(sdev->request_queue->queue_lock); 1425 1426 blk_complete_request(req); 1427 } 1428 1429 static void scsi_softirq_done(struct request *rq) 1430 { 1431 struct scsi_cmnd *cmd = rq->special; 1432 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1433 int disposition; 1434 1435 INIT_LIST_HEAD(&cmd->eh_entry); 1436 1437 atomic_inc(&cmd->device->iodone_cnt); 1438 if (cmd->result) 1439 atomic_inc(&cmd->device->ioerr_cnt); 1440 1441 disposition = scsi_decide_disposition(cmd); 1442 if (disposition != SUCCESS && 1443 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1444 sdev_printk(KERN_ERR, cmd->device, 1445 "timing out command, waited %lus\n", 1446 wait_for/HZ); 1447 disposition = SUCCESS; 1448 } 1449 1450 scsi_log_completion(cmd, disposition); 1451 1452 switch (disposition) { 1453 case SUCCESS: 1454 scsi_finish_command(cmd); 1455 break; 1456 case NEEDS_RETRY: 1457 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1458 break; 1459 case ADD_TO_MLQUEUE: 1460 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1461 break; 1462 default: 1463 if (!scsi_eh_scmd_add(cmd, 0)) 1464 scsi_finish_command(cmd); 1465 } 1466 } 1467 1468 /* 1469 * Function: scsi_request_fn() 1470 * 1471 * Purpose: Main strategy routine for SCSI. 1472 * 1473 * Arguments: q - Pointer to actual queue. 1474 * 1475 * Returns: Nothing 1476 * 1477 * Lock status: IO request lock assumed to be held when called. 1478 */ 1479 static void scsi_request_fn(struct request_queue *q) 1480 { 1481 struct scsi_device *sdev = q->queuedata; 1482 struct Scsi_Host *shost; 1483 struct scsi_cmnd *cmd; 1484 struct request *req; 1485 1486 if (!sdev) { 1487 printk("scsi: killing requests for dead queue\n"); 1488 while ((req = blk_peek_request(q)) != NULL) 1489 scsi_kill_request(req, q); 1490 return; 1491 } 1492 1493 if(!get_device(&sdev->sdev_gendev)) 1494 /* We must be tearing the block queue down already */ 1495 return; 1496 1497 /* 1498 * To start with, we keep looping until the queue is empty, or until 1499 * the host is no longer able to accept any more requests. 1500 */ 1501 shost = sdev->host; 1502 while (!blk_queue_plugged(q)) { 1503 int rtn; 1504 /* 1505 * get next queueable request. We do this early to make sure 1506 * that the request is fully prepared even if we cannot 1507 * accept it. 1508 */ 1509 req = blk_peek_request(q); 1510 if (!req || !scsi_dev_queue_ready(q, sdev)) 1511 break; 1512 1513 if (unlikely(!scsi_device_online(sdev))) { 1514 sdev_printk(KERN_ERR, sdev, 1515 "rejecting I/O to offline device\n"); 1516 scsi_kill_request(req, q); 1517 continue; 1518 } 1519 1520 1521 /* 1522 * Remove the request from the request list. 1523 */ 1524 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1525 blk_start_request(req); 1526 sdev->device_busy++; 1527 1528 spin_unlock(q->queue_lock); 1529 cmd = req->special; 1530 if (unlikely(cmd == NULL)) { 1531 printk(KERN_CRIT "impossible request in %s.\n" 1532 "please mail a stack trace to " 1533 "linux-scsi@vger.kernel.org\n", 1534 __func__); 1535 blk_dump_rq_flags(req, "foo"); 1536 BUG(); 1537 } 1538 spin_lock(shost->host_lock); 1539 1540 /* 1541 * We hit this when the driver is using a host wide 1542 * tag map. For device level tag maps the queue_depth check 1543 * in the device ready fn would prevent us from trying 1544 * to allocate a tag. Since the map is a shared host resource 1545 * we add the dev to the starved list so it eventually gets 1546 * a run when a tag is freed. 1547 */ 1548 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1549 if (list_empty(&sdev->starved_entry)) 1550 list_add_tail(&sdev->starved_entry, 1551 &shost->starved_list); 1552 goto not_ready; 1553 } 1554 1555 if (!scsi_target_queue_ready(shost, sdev)) 1556 goto not_ready; 1557 1558 if (!scsi_host_queue_ready(q, shost, sdev)) 1559 goto not_ready; 1560 1561 scsi_target(sdev)->target_busy++; 1562 shost->host_busy++; 1563 1564 /* 1565 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1566 * take the lock again. 1567 */ 1568 spin_unlock_irq(shost->host_lock); 1569 1570 /* 1571 * Finally, initialize any error handling parameters, and set up 1572 * the timers for timeouts. 1573 */ 1574 scsi_init_cmd_errh(cmd); 1575 1576 /* 1577 * Dispatch the command to the low-level driver. 1578 */ 1579 rtn = scsi_dispatch_cmd(cmd); 1580 spin_lock_irq(q->queue_lock); 1581 if(rtn) { 1582 /* we're refusing the command; because of 1583 * the way locks get dropped, we need to 1584 * check here if plugging is required */ 1585 if(sdev->device_busy == 0) 1586 blk_plug_device(q); 1587 1588 break; 1589 } 1590 } 1591 1592 goto out; 1593 1594 not_ready: 1595 spin_unlock_irq(shost->host_lock); 1596 1597 /* 1598 * lock q, handle tag, requeue req, and decrement device_busy. We 1599 * must return with queue_lock held. 1600 * 1601 * Decrementing device_busy without checking it is OK, as all such 1602 * cases (host limits or settings) should run the queue at some 1603 * later time. 1604 */ 1605 spin_lock_irq(q->queue_lock); 1606 blk_requeue_request(q, req); 1607 sdev->device_busy--; 1608 if(sdev->device_busy == 0) 1609 blk_plug_device(q); 1610 out: 1611 /* must be careful here...if we trigger the ->remove() function 1612 * we cannot be holding the q lock */ 1613 spin_unlock_irq(q->queue_lock); 1614 put_device(&sdev->sdev_gendev); 1615 spin_lock_irq(q->queue_lock); 1616 } 1617 1618 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1619 { 1620 struct device *host_dev; 1621 u64 bounce_limit = 0xffffffff; 1622 1623 if (shost->unchecked_isa_dma) 1624 return BLK_BOUNCE_ISA; 1625 /* 1626 * Platforms with virtual-DMA translation 1627 * hardware have no practical limit. 1628 */ 1629 if (!PCI_DMA_BUS_IS_PHYS) 1630 return BLK_BOUNCE_ANY; 1631 1632 host_dev = scsi_get_device(shost); 1633 if (host_dev && host_dev->dma_mask) 1634 bounce_limit = *host_dev->dma_mask; 1635 1636 return bounce_limit; 1637 } 1638 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1639 1640 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1641 request_fn_proc *request_fn) 1642 { 1643 struct request_queue *q; 1644 struct device *dev = shost->shost_gendev.parent; 1645 1646 q = blk_init_queue(request_fn, NULL); 1647 if (!q) 1648 return NULL; 1649 1650 /* 1651 * this limit is imposed by hardware restrictions 1652 */ 1653 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1654 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1655 1656 if (scsi_host_prot_dma(shost)) { 1657 shost->sg_prot_tablesize = 1658 min_not_zero(shost->sg_prot_tablesize, 1659 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1660 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1661 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1662 } 1663 1664 blk_queue_max_hw_sectors(q, shost->max_sectors); 1665 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1666 blk_queue_segment_boundary(q, shost->dma_boundary); 1667 dma_set_seg_boundary(dev, shost->dma_boundary); 1668 1669 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1670 1671 if (!shost->use_clustering) 1672 q->limits.cluster = 0; 1673 1674 /* 1675 * set a reasonable default alignment on word boundaries: the 1676 * host and device may alter it using 1677 * blk_queue_update_dma_alignment() later. 1678 */ 1679 blk_queue_dma_alignment(q, 0x03); 1680 1681 return q; 1682 } 1683 EXPORT_SYMBOL(__scsi_alloc_queue); 1684 1685 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1686 { 1687 struct request_queue *q; 1688 1689 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1690 if (!q) 1691 return NULL; 1692 1693 blk_queue_prep_rq(q, scsi_prep_fn); 1694 blk_queue_softirq_done(q, scsi_softirq_done); 1695 blk_queue_rq_timed_out(q, scsi_times_out); 1696 blk_queue_lld_busy(q, scsi_lld_busy); 1697 return q; 1698 } 1699 1700 void scsi_free_queue(struct request_queue *q) 1701 { 1702 blk_cleanup_queue(q); 1703 } 1704 1705 /* 1706 * Function: scsi_block_requests() 1707 * 1708 * Purpose: Utility function used by low-level drivers to prevent further 1709 * commands from being queued to the device. 1710 * 1711 * Arguments: shost - Host in question 1712 * 1713 * Returns: Nothing 1714 * 1715 * Lock status: No locks are assumed held. 1716 * 1717 * Notes: There is no timer nor any other means by which the requests 1718 * get unblocked other than the low-level driver calling 1719 * scsi_unblock_requests(). 1720 */ 1721 void scsi_block_requests(struct Scsi_Host *shost) 1722 { 1723 shost->host_self_blocked = 1; 1724 } 1725 EXPORT_SYMBOL(scsi_block_requests); 1726 1727 /* 1728 * Function: scsi_unblock_requests() 1729 * 1730 * Purpose: Utility function used by low-level drivers to allow further 1731 * commands from being queued to the device. 1732 * 1733 * Arguments: shost - Host in question 1734 * 1735 * Returns: Nothing 1736 * 1737 * Lock status: No locks are assumed held. 1738 * 1739 * Notes: There is no timer nor any other means by which the requests 1740 * get unblocked other than the low-level driver calling 1741 * scsi_unblock_requests(). 1742 * 1743 * This is done as an API function so that changes to the 1744 * internals of the scsi mid-layer won't require wholesale 1745 * changes to drivers that use this feature. 1746 */ 1747 void scsi_unblock_requests(struct Scsi_Host *shost) 1748 { 1749 shost->host_self_blocked = 0; 1750 scsi_run_host_queues(shost); 1751 } 1752 EXPORT_SYMBOL(scsi_unblock_requests); 1753 1754 int __init scsi_init_queue(void) 1755 { 1756 int i; 1757 1758 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1759 sizeof(struct scsi_data_buffer), 1760 0, 0, NULL); 1761 if (!scsi_sdb_cache) { 1762 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1763 return -ENOMEM; 1764 } 1765 1766 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1767 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1768 int size = sgp->size * sizeof(struct scatterlist); 1769 1770 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1771 SLAB_HWCACHE_ALIGN, NULL); 1772 if (!sgp->slab) { 1773 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1774 sgp->name); 1775 goto cleanup_sdb; 1776 } 1777 1778 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1779 sgp->slab); 1780 if (!sgp->pool) { 1781 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1782 sgp->name); 1783 goto cleanup_sdb; 1784 } 1785 } 1786 1787 return 0; 1788 1789 cleanup_sdb: 1790 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1791 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1792 if (sgp->pool) 1793 mempool_destroy(sgp->pool); 1794 if (sgp->slab) 1795 kmem_cache_destroy(sgp->slab); 1796 } 1797 kmem_cache_destroy(scsi_sdb_cache); 1798 1799 return -ENOMEM; 1800 } 1801 1802 void scsi_exit_queue(void) 1803 { 1804 int i; 1805 1806 kmem_cache_destroy(scsi_sdb_cache); 1807 1808 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1809 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1810 mempool_destroy(sgp->pool); 1811 kmem_cache_destroy(sgp->slab); 1812 } 1813 } 1814 1815 /** 1816 * scsi_mode_select - issue a mode select 1817 * @sdev: SCSI device to be queried 1818 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1819 * @sp: Save page bit (0 == don't save, 1 == save) 1820 * @modepage: mode page being requested 1821 * @buffer: request buffer (may not be smaller than eight bytes) 1822 * @len: length of request buffer. 1823 * @timeout: command timeout 1824 * @retries: number of retries before failing 1825 * @data: returns a structure abstracting the mode header data 1826 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1827 * must be SCSI_SENSE_BUFFERSIZE big. 1828 * 1829 * Returns zero if successful; negative error number or scsi 1830 * status on error 1831 * 1832 */ 1833 int 1834 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1835 unsigned char *buffer, int len, int timeout, int retries, 1836 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1837 { 1838 unsigned char cmd[10]; 1839 unsigned char *real_buffer; 1840 int ret; 1841 1842 memset(cmd, 0, sizeof(cmd)); 1843 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1844 1845 if (sdev->use_10_for_ms) { 1846 if (len > 65535) 1847 return -EINVAL; 1848 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1849 if (!real_buffer) 1850 return -ENOMEM; 1851 memcpy(real_buffer + 8, buffer, len); 1852 len += 8; 1853 real_buffer[0] = 0; 1854 real_buffer[1] = 0; 1855 real_buffer[2] = data->medium_type; 1856 real_buffer[3] = data->device_specific; 1857 real_buffer[4] = data->longlba ? 0x01 : 0; 1858 real_buffer[5] = 0; 1859 real_buffer[6] = data->block_descriptor_length >> 8; 1860 real_buffer[7] = data->block_descriptor_length; 1861 1862 cmd[0] = MODE_SELECT_10; 1863 cmd[7] = len >> 8; 1864 cmd[8] = len; 1865 } else { 1866 if (len > 255 || data->block_descriptor_length > 255 || 1867 data->longlba) 1868 return -EINVAL; 1869 1870 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1871 if (!real_buffer) 1872 return -ENOMEM; 1873 memcpy(real_buffer + 4, buffer, len); 1874 len += 4; 1875 real_buffer[0] = 0; 1876 real_buffer[1] = data->medium_type; 1877 real_buffer[2] = data->device_specific; 1878 real_buffer[3] = data->block_descriptor_length; 1879 1880 1881 cmd[0] = MODE_SELECT; 1882 cmd[4] = len; 1883 } 1884 1885 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1886 sshdr, timeout, retries, NULL); 1887 kfree(real_buffer); 1888 return ret; 1889 } 1890 EXPORT_SYMBOL_GPL(scsi_mode_select); 1891 1892 /** 1893 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1894 * @sdev: SCSI device to be queried 1895 * @dbd: set if mode sense will allow block descriptors to be returned 1896 * @modepage: mode page being requested 1897 * @buffer: request buffer (may not be smaller than eight bytes) 1898 * @len: length of request buffer. 1899 * @timeout: command timeout 1900 * @retries: number of retries before failing 1901 * @data: returns a structure abstracting the mode header data 1902 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1903 * must be SCSI_SENSE_BUFFERSIZE big. 1904 * 1905 * Returns zero if unsuccessful, or the header offset (either 4 1906 * or 8 depending on whether a six or ten byte command was 1907 * issued) if successful. 1908 */ 1909 int 1910 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1911 unsigned char *buffer, int len, int timeout, int retries, 1912 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1913 { 1914 unsigned char cmd[12]; 1915 int use_10_for_ms; 1916 int header_length; 1917 int result; 1918 struct scsi_sense_hdr my_sshdr; 1919 1920 memset(data, 0, sizeof(*data)); 1921 memset(&cmd[0], 0, 12); 1922 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1923 cmd[2] = modepage; 1924 1925 /* caller might not be interested in sense, but we need it */ 1926 if (!sshdr) 1927 sshdr = &my_sshdr; 1928 1929 retry: 1930 use_10_for_ms = sdev->use_10_for_ms; 1931 1932 if (use_10_for_ms) { 1933 if (len < 8) 1934 len = 8; 1935 1936 cmd[0] = MODE_SENSE_10; 1937 cmd[8] = len; 1938 header_length = 8; 1939 } else { 1940 if (len < 4) 1941 len = 4; 1942 1943 cmd[0] = MODE_SENSE; 1944 cmd[4] = len; 1945 header_length = 4; 1946 } 1947 1948 memset(buffer, 0, len); 1949 1950 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1951 sshdr, timeout, retries, NULL); 1952 1953 /* This code looks awful: what it's doing is making sure an 1954 * ILLEGAL REQUEST sense return identifies the actual command 1955 * byte as the problem. MODE_SENSE commands can return 1956 * ILLEGAL REQUEST if the code page isn't supported */ 1957 1958 if (use_10_for_ms && !scsi_status_is_good(result) && 1959 (driver_byte(result) & DRIVER_SENSE)) { 1960 if (scsi_sense_valid(sshdr)) { 1961 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1962 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1963 /* 1964 * Invalid command operation code 1965 */ 1966 sdev->use_10_for_ms = 0; 1967 goto retry; 1968 } 1969 } 1970 } 1971 1972 if(scsi_status_is_good(result)) { 1973 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1974 (modepage == 6 || modepage == 8))) { 1975 /* Initio breakage? */ 1976 header_length = 0; 1977 data->length = 13; 1978 data->medium_type = 0; 1979 data->device_specific = 0; 1980 data->longlba = 0; 1981 data->block_descriptor_length = 0; 1982 } else if(use_10_for_ms) { 1983 data->length = buffer[0]*256 + buffer[1] + 2; 1984 data->medium_type = buffer[2]; 1985 data->device_specific = buffer[3]; 1986 data->longlba = buffer[4] & 0x01; 1987 data->block_descriptor_length = buffer[6]*256 1988 + buffer[7]; 1989 } else { 1990 data->length = buffer[0] + 1; 1991 data->medium_type = buffer[1]; 1992 data->device_specific = buffer[2]; 1993 data->block_descriptor_length = buffer[3]; 1994 } 1995 data->header_length = header_length; 1996 } 1997 1998 return result; 1999 } 2000 EXPORT_SYMBOL(scsi_mode_sense); 2001 2002 /** 2003 * scsi_test_unit_ready - test if unit is ready 2004 * @sdev: scsi device to change the state of. 2005 * @timeout: command timeout 2006 * @retries: number of retries before failing 2007 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2008 * returning sense. Make sure that this is cleared before passing 2009 * in. 2010 * 2011 * Returns zero if unsuccessful or an error if TUR failed. For 2012 * removable media, UNIT_ATTENTION sets ->changed flag. 2013 **/ 2014 int 2015 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2016 struct scsi_sense_hdr *sshdr_external) 2017 { 2018 char cmd[] = { 2019 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2020 }; 2021 struct scsi_sense_hdr *sshdr; 2022 int result; 2023 2024 if (!sshdr_external) 2025 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2026 else 2027 sshdr = sshdr_external; 2028 2029 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2030 do { 2031 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2032 timeout, retries, NULL); 2033 if (sdev->removable && scsi_sense_valid(sshdr) && 2034 sshdr->sense_key == UNIT_ATTENTION) 2035 sdev->changed = 1; 2036 } while (scsi_sense_valid(sshdr) && 2037 sshdr->sense_key == UNIT_ATTENTION && --retries); 2038 2039 if (!sshdr_external) 2040 kfree(sshdr); 2041 return result; 2042 } 2043 EXPORT_SYMBOL(scsi_test_unit_ready); 2044 2045 /** 2046 * scsi_device_set_state - Take the given device through the device state model. 2047 * @sdev: scsi device to change the state of. 2048 * @state: state to change to. 2049 * 2050 * Returns zero if unsuccessful or an error if the requested 2051 * transition is illegal. 2052 */ 2053 int 2054 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2055 { 2056 enum scsi_device_state oldstate = sdev->sdev_state; 2057 2058 if (state == oldstate) 2059 return 0; 2060 2061 switch (state) { 2062 case SDEV_CREATED: 2063 switch (oldstate) { 2064 case SDEV_CREATED_BLOCK: 2065 break; 2066 default: 2067 goto illegal; 2068 } 2069 break; 2070 2071 case SDEV_RUNNING: 2072 switch (oldstate) { 2073 case SDEV_CREATED: 2074 case SDEV_OFFLINE: 2075 case SDEV_QUIESCE: 2076 case SDEV_BLOCK: 2077 break; 2078 default: 2079 goto illegal; 2080 } 2081 break; 2082 2083 case SDEV_QUIESCE: 2084 switch (oldstate) { 2085 case SDEV_RUNNING: 2086 case SDEV_OFFLINE: 2087 break; 2088 default: 2089 goto illegal; 2090 } 2091 break; 2092 2093 case SDEV_OFFLINE: 2094 switch (oldstate) { 2095 case SDEV_CREATED: 2096 case SDEV_RUNNING: 2097 case SDEV_QUIESCE: 2098 case SDEV_BLOCK: 2099 break; 2100 default: 2101 goto illegal; 2102 } 2103 break; 2104 2105 case SDEV_BLOCK: 2106 switch (oldstate) { 2107 case SDEV_RUNNING: 2108 case SDEV_CREATED_BLOCK: 2109 break; 2110 default: 2111 goto illegal; 2112 } 2113 break; 2114 2115 case SDEV_CREATED_BLOCK: 2116 switch (oldstate) { 2117 case SDEV_CREATED: 2118 break; 2119 default: 2120 goto illegal; 2121 } 2122 break; 2123 2124 case SDEV_CANCEL: 2125 switch (oldstate) { 2126 case SDEV_CREATED: 2127 case SDEV_RUNNING: 2128 case SDEV_QUIESCE: 2129 case SDEV_OFFLINE: 2130 case SDEV_BLOCK: 2131 break; 2132 default: 2133 goto illegal; 2134 } 2135 break; 2136 2137 case SDEV_DEL: 2138 switch (oldstate) { 2139 case SDEV_CREATED: 2140 case SDEV_RUNNING: 2141 case SDEV_OFFLINE: 2142 case SDEV_CANCEL: 2143 break; 2144 default: 2145 goto illegal; 2146 } 2147 break; 2148 2149 } 2150 sdev->sdev_state = state; 2151 return 0; 2152 2153 illegal: 2154 SCSI_LOG_ERROR_RECOVERY(1, 2155 sdev_printk(KERN_ERR, sdev, 2156 "Illegal state transition %s->%s\n", 2157 scsi_device_state_name(oldstate), 2158 scsi_device_state_name(state)) 2159 ); 2160 return -EINVAL; 2161 } 2162 EXPORT_SYMBOL(scsi_device_set_state); 2163 2164 /** 2165 * sdev_evt_emit - emit a single SCSI device uevent 2166 * @sdev: associated SCSI device 2167 * @evt: event to emit 2168 * 2169 * Send a single uevent (scsi_event) to the associated scsi_device. 2170 */ 2171 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2172 { 2173 int idx = 0; 2174 char *envp[3]; 2175 2176 switch (evt->evt_type) { 2177 case SDEV_EVT_MEDIA_CHANGE: 2178 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2179 break; 2180 2181 default: 2182 /* do nothing */ 2183 break; 2184 } 2185 2186 envp[idx++] = NULL; 2187 2188 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2189 } 2190 2191 /** 2192 * sdev_evt_thread - send a uevent for each scsi event 2193 * @work: work struct for scsi_device 2194 * 2195 * Dispatch queued events to their associated scsi_device kobjects 2196 * as uevents. 2197 */ 2198 void scsi_evt_thread(struct work_struct *work) 2199 { 2200 struct scsi_device *sdev; 2201 LIST_HEAD(event_list); 2202 2203 sdev = container_of(work, struct scsi_device, event_work); 2204 2205 while (1) { 2206 struct scsi_event *evt; 2207 struct list_head *this, *tmp; 2208 unsigned long flags; 2209 2210 spin_lock_irqsave(&sdev->list_lock, flags); 2211 list_splice_init(&sdev->event_list, &event_list); 2212 spin_unlock_irqrestore(&sdev->list_lock, flags); 2213 2214 if (list_empty(&event_list)) 2215 break; 2216 2217 list_for_each_safe(this, tmp, &event_list) { 2218 evt = list_entry(this, struct scsi_event, node); 2219 list_del(&evt->node); 2220 scsi_evt_emit(sdev, evt); 2221 kfree(evt); 2222 } 2223 } 2224 } 2225 2226 /** 2227 * sdev_evt_send - send asserted event to uevent thread 2228 * @sdev: scsi_device event occurred on 2229 * @evt: event to send 2230 * 2231 * Assert scsi device event asynchronously. 2232 */ 2233 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2234 { 2235 unsigned long flags; 2236 2237 #if 0 2238 /* FIXME: currently this check eliminates all media change events 2239 * for polled devices. Need to update to discriminate between AN 2240 * and polled events */ 2241 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2242 kfree(evt); 2243 return; 2244 } 2245 #endif 2246 2247 spin_lock_irqsave(&sdev->list_lock, flags); 2248 list_add_tail(&evt->node, &sdev->event_list); 2249 schedule_work(&sdev->event_work); 2250 spin_unlock_irqrestore(&sdev->list_lock, flags); 2251 } 2252 EXPORT_SYMBOL_GPL(sdev_evt_send); 2253 2254 /** 2255 * sdev_evt_alloc - allocate a new scsi event 2256 * @evt_type: type of event to allocate 2257 * @gfpflags: GFP flags for allocation 2258 * 2259 * Allocates and returns a new scsi_event. 2260 */ 2261 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2262 gfp_t gfpflags) 2263 { 2264 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2265 if (!evt) 2266 return NULL; 2267 2268 evt->evt_type = evt_type; 2269 INIT_LIST_HEAD(&evt->node); 2270 2271 /* evt_type-specific initialization, if any */ 2272 switch (evt_type) { 2273 case SDEV_EVT_MEDIA_CHANGE: 2274 default: 2275 /* do nothing */ 2276 break; 2277 } 2278 2279 return evt; 2280 } 2281 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2282 2283 /** 2284 * sdev_evt_send_simple - send asserted event to uevent thread 2285 * @sdev: scsi_device event occurred on 2286 * @evt_type: type of event to send 2287 * @gfpflags: GFP flags for allocation 2288 * 2289 * Assert scsi device event asynchronously, given an event type. 2290 */ 2291 void sdev_evt_send_simple(struct scsi_device *sdev, 2292 enum scsi_device_event evt_type, gfp_t gfpflags) 2293 { 2294 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2295 if (!evt) { 2296 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2297 evt_type); 2298 return; 2299 } 2300 2301 sdev_evt_send(sdev, evt); 2302 } 2303 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2304 2305 /** 2306 * scsi_device_quiesce - Block user issued commands. 2307 * @sdev: scsi device to quiesce. 2308 * 2309 * This works by trying to transition to the SDEV_QUIESCE state 2310 * (which must be a legal transition). When the device is in this 2311 * state, only special requests will be accepted, all others will 2312 * be deferred. Since special requests may also be requeued requests, 2313 * a successful return doesn't guarantee the device will be 2314 * totally quiescent. 2315 * 2316 * Must be called with user context, may sleep. 2317 * 2318 * Returns zero if unsuccessful or an error if not. 2319 */ 2320 int 2321 scsi_device_quiesce(struct scsi_device *sdev) 2322 { 2323 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2324 if (err) 2325 return err; 2326 2327 scsi_run_queue(sdev->request_queue); 2328 while (sdev->device_busy) { 2329 msleep_interruptible(200); 2330 scsi_run_queue(sdev->request_queue); 2331 } 2332 return 0; 2333 } 2334 EXPORT_SYMBOL(scsi_device_quiesce); 2335 2336 /** 2337 * scsi_device_resume - Restart user issued commands to a quiesced device. 2338 * @sdev: scsi device to resume. 2339 * 2340 * Moves the device from quiesced back to running and restarts the 2341 * queues. 2342 * 2343 * Must be called with user context, may sleep. 2344 */ 2345 void 2346 scsi_device_resume(struct scsi_device *sdev) 2347 { 2348 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2349 return; 2350 scsi_run_queue(sdev->request_queue); 2351 } 2352 EXPORT_SYMBOL(scsi_device_resume); 2353 2354 static void 2355 device_quiesce_fn(struct scsi_device *sdev, void *data) 2356 { 2357 scsi_device_quiesce(sdev); 2358 } 2359 2360 void 2361 scsi_target_quiesce(struct scsi_target *starget) 2362 { 2363 starget_for_each_device(starget, NULL, device_quiesce_fn); 2364 } 2365 EXPORT_SYMBOL(scsi_target_quiesce); 2366 2367 static void 2368 device_resume_fn(struct scsi_device *sdev, void *data) 2369 { 2370 scsi_device_resume(sdev); 2371 } 2372 2373 void 2374 scsi_target_resume(struct scsi_target *starget) 2375 { 2376 starget_for_each_device(starget, NULL, device_resume_fn); 2377 } 2378 EXPORT_SYMBOL(scsi_target_resume); 2379 2380 /** 2381 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2382 * @sdev: device to block 2383 * 2384 * Block request made by scsi lld's to temporarily stop all 2385 * scsi commands on the specified device. Called from interrupt 2386 * or normal process context. 2387 * 2388 * Returns zero if successful or error if not 2389 * 2390 * Notes: 2391 * This routine transitions the device to the SDEV_BLOCK state 2392 * (which must be a legal transition). When the device is in this 2393 * state, all commands are deferred until the scsi lld reenables 2394 * the device with scsi_device_unblock or device_block_tmo fires. 2395 * This routine assumes the host_lock is held on entry. 2396 */ 2397 int 2398 scsi_internal_device_block(struct scsi_device *sdev) 2399 { 2400 struct request_queue *q = sdev->request_queue; 2401 unsigned long flags; 2402 int err = 0; 2403 2404 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2405 if (err) { 2406 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2407 2408 if (err) 2409 return err; 2410 } 2411 2412 /* 2413 * The device has transitioned to SDEV_BLOCK. Stop the 2414 * block layer from calling the midlayer with this device's 2415 * request queue. 2416 */ 2417 spin_lock_irqsave(q->queue_lock, flags); 2418 blk_stop_queue(q); 2419 spin_unlock_irqrestore(q->queue_lock, flags); 2420 2421 return 0; 2422 } 2423 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2424 2425 /** 2426 * scsi_internal_device_unblock - resume a device after a block request 2427 * @sdev: device to resume 2428 * 2429 * Called by scsi lld's or the midlayer to restart the device queue 2430 * for the previously suspended scsi device. Called from interrupt or 2431 * normal process context. 2432 * 2433 * Returns zero if successful or error if not. 2434 * 2435 * Notes: 2436 * This routine transitions the device to the SDEV_RUNNING state 2437 * (which must be a legal transition) allowing the midlayer to 2438 * goose the queue for this device. This routine assumes the 2439 * host_lock is held upon entry. 2440 */ 2441 int 2442 scsi_internal_device_unblock(struct scsi_device *sdev) 2443 { 2444 struct request_queue *q = sdev->request_queue; 2445 unsigned long flags; 2446 2447 /* 2448 * Try to transition the scsi device to SDEV_RUNNING 2449 * and goose the device queue if successful. 2450 */ 2451 if (sdev->sdev_state == SDEV_BLOCK) 2452 sdev->sdev_state = SDEV_RUNNING; 2453 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) 2454 sdev->sdev_state = SDEV_CREATED; 2455 else if (sdev->sdev_state != SDEV_CANCEL && 2456 sdev->sdev_state != SDEV_OFFLINE) 2457 return -EINVAL; 2458 2459 spin_lock_irqsave(q->queue_lock, flags); 2460 blk_start_queue(q); 2461 spin_unlock_irqrestore(q->queue_lock, flags); 2462 2463 return 0; 2464 } 2465 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2466 2467 static void 2468 device_block(struct scsi_device *sdev, void *data) 2469 { 2470 scsi_internal_device_block(sdev); 2471 } 2472 2473 static int 2474 target_block(struct device *dev, void *data) 2475 { 2476 if (scsi_is_target_device(dev)) 2477 starget_for_each_device(to_scsi_target(dev), NULL, 2478 device_block); 2479 return 0; 2480 } 2481 2482 void 2483 scsi_target_block(struct device *dev) 2484 { 2485 if (scsi_is_target_device(dev)) 2486 starget_for_each_device(to_scsi_target(dev), NULL, 2487 device_block); 2488 else 2489 device_for_each_child(dev, NULL, target_block); 2490 } 2491 EXPORT_SYMBOL_GPL(scsi_target_block); 2492 2493 static void 2494 device_unblock(struct scsi_device *sdev, void *data) 2495 { 2496 scsi_internal_device_unblock(sdev); 2497 } 2498 2499 static int 2500 target_unblock(struct device *dev, void *data) 2501 { 2502 if (scsi_is_target_device(dev)) 2503 starget_for_each_device(to_scsi_target(dev), NULL, 2504 device_unblock); 2505 return 0; 2506 } 2507 2508 void 2509 scsi_target_unblock(struct device *dev) 2510 { 2511 if (scsi_is_target_device(dev)) 2512 starget_for_each_device(to_scsi_target(dev), NULL, 2513 device_unblock); 2514 else 2515 device_for_each_child(dev, NULL, target_unblock); 2516 } 2517 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2518 2519 /** 2520 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2521 * @sgl: scatter-gather list 2522 * @sg_count: number of segments in sg 2523 * @offset: offset in bytes into sg, on return offset into the mapped area 2524 * @len: bytes to map, on return number of bytes mapped 2525 * 2526 * Returns virtual address of the start of the mapped page 2527 */ 2528 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2529 size_t *offset, size_t *len) 2530 { 2531 int i; 2532 size_t sg_len = 0, len_complete = 0; 2533 struct scatterlist *sg; 2534 struct page *page; 2535 2536 WARN_ON(!irqs_disabled()); 2537 2538 for_each_sg(sgl, sg, sg_count, i) { 2539 len_complete = sg_len; /* Complete sg-entries */ 2540 sg_len += sg->length; 2541 if (sg_len > *offset) 2542 break; 2543 } 2544 2545 if (unlikely(i == sg_count)) { 2546 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2547 "elements %d\n", 2548 __func__, sg_len, *offset, sg_count); 2549 WARN_ON(1); 2550 return NULL; 2551 } 2552 2553 /* Offset starting from the beginning of first page in this sg-entry */ 2554 *offset = *offset - len_complete + sg->offset; 2555 2556 /* Assumption: contiguous pages can be accessed as "page + i" */ 2557 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2558 *offset &= ~PAGE_MASK; 2559 2560 /* Bytes in this sg-entry from *offset to the end of the page */ 2561 sg_len = PAGE_SIZE - *offset; 2562 if (*len > sg_len) 2563 *len = sg_len; 2564 2565 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2566 } 2567 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2568 2569 /** 2570 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2571 * @virt: virtual address to be unmapped 2572 */ 2573 void scsi_kunmap_atomic_sg(void *virt) 2574 { 2575 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2576 } 2577 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2578