xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 5534b673)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 
34 #include <trace/events/scsi.h>
35 
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38 
39 
40 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE		2
42 
43 struct scsi_host_sg_pool {
44 	size_t		size;
45 	char		*name;
46 	struct kmem_cache	*slab;
47 	mempool_t	*pool;
48 };
49 
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55 	SP(8),
56 	SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 	SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 	SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62 	SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69 	SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72 
73 struct kmem_cache *scsi_sdb_cache;
74 
75 /*
76  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77  * not change behaviour from the previous unplug mechanism, experimentation
78  * may prove this needs changing.
79  */
80 #define SCSI_QUEUE_DELAY	3
81 
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85 	struct Scsi_Host *host = cmd->device->host;
86 	struct scsi_device *device = cmd->device;
87 	struct scsi_target *starget = scsi_target(device);
88 
89 	/*
90 	 * Set the appropriate busy bit for the device/host.
91 	 *
92 	 * If the host/device isn't busy, assume that something actually
93 	 * completed, and that we should be able to queue a command now.
94 	 *
95 	 * Note that the prior mid-layer assumption that any host could
96 	 * always queue at least one command is now broken.  The mid-layer
97 	 * will implement a user specifiable stall (see
98 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99 	 * if a command is requeued with no other commands outstanding
100 	 * either for the device or for the host.
101 	 */
102 	switch (reason) {
103 	case SCSI_MLQUEUE_HOST_BUSY:
104 		atomic_set(&host->host_blocked, host->max_host_blocked);
105 		break;
106 	case SCSI_MLQUEUE_DEVICE_BUSY:
107 	case SCSI_MLQUEUE_EH_RETRY:
108 		atomic_set(&device->device_blocked,
109 			   device->max_device_blocked);
110 		break;
111 	case SCSI_MLQUEUE_TARGET_BUSY:
112 		atomic_set(&starget->target_blocked,
113 			   starget->max_target_blocked);
114 		break;
115 	}
116 }
117 
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120 	struct scsi_device *sdev = cmd->device;
121 	struct request_queue *q = cmd->request->q;
122 
123 	blk_mq_requeue_request(cmd->request);
124 	blk_mq_kick_requeue_list(q);
125 	put_device(&sdev->sdev_gendev);
126 }
127 
128 /**
129  * __scsi_queue_insert - private queue insertion
130  * @cmd: The SCSI command being requeued
131  * @reason:  The reason for the requeue
132  * @unbusy: Whether the queue should be unbusied
133  *
134  * This is a private queue insertion.  The public interface
135  * scsi_queue_insert() always assumes the queue should be unbusied
136  * because it's always called before the completion.  This function is
137  * for a requeue after completion, which should only occur in this
138  * file.
139  */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142 	struct scsi_device *device = cmd->device;
143 	struct request_queue *q = device->request_queue;
144 	unsigned long flags;
145 
146 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 		"Inserting command %p into mlqueue\n", cmd));
148 
149 	scsi_set_blocked(cmd, reason);
150 
151 	/*
152 	 * Decrement the counters, since these commands are no longer
153 	 * active on the host/device.
154 	 */
155 	if (unbusy)
156 		scsi_device_unbusy(device);
157 
158 	/*
159 	 * Requeue this command.  It will go before all other commands
160 	 * that are already in the queue. Schedule requeue work under
161 	 * lock such that the kblockd_schedule_work() call happens
162 	 * before blk_cleanup_queue() finishes.
163 	 */
164 	cmd->result = 0;
165 	if (q->mq_ops) {
166 		scsi_mq_requeue_cmd(cmd);
167 		return;
168 	}
169 	spin_lock_irqsave(q->queue_lock, flags);
170 	blk_requeue_request(q, cmd->request);
171 	kblockd_schedule_work(&device->requeue_work);
172 	spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174 
175 /*
176  * Function:    scsi_queue_insert()
177  *
178  * Purpose:     Insert a command in the midlevel queue.
179  *
180  * Arguments:   cmd    - command that we are adding to queue.
181  *              reason - why we are inserting command to queue.
182  *
183  * Lock status: Assumed that lock is not held upon entry.
184  *
185  * Returns:     Nothing.
186  *
187  * Notes:       We do this for one of two cases.  Either the host is busy
188  *              and it cannot accept any more commands for the time being,
189  *              or the device returned QUEUE_FULL and can accept no more
190  *              commands.
191  * Notes:       This could be called either from an interrupt context or a
192  *              normal process context.
193  */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196 	__scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199  * scsi_execute - insert request and wait for the result
200  * @sdev:	scsi device
201  * @cmd:	scsi command
202  * @data_direction: data direction
203  * @buffer:	data buffer
204  * @bufflen:	len of buffer
205  * @sense:	optional sense buffer
206  * @timeout:	request timeout in seconds
207  * @retries:	number of times to retry request
208  * @flags:	or into request flags;
209  * @resid:	optional residual length
210  *
211  * returns the req->errors value which is the scsi_cmnd result
212  * field.
213  */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215 		 int data_direction, void *buffer, unsigned bufflen,
216 		 unsigned char *sense, int timeout, int retries, u64 flags,
217 		 int *resid)
218 {
219 	struct request *req;
220 	int write = (data_direction == DMA_TO_DEVICE);
221 	int ret = DRIVER_ERROR << 24;
222 
223 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224 	if (!req)
225 		return ret;
226 	blk_rq_set_block_pc(req);
227 
228 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
229 					buffer, bufflen, __GFP_WAIT))
230 		goto out;
231 
232 	req->cmd_len = COMMAND_SIZE(cmd[0]);
233 	memcpy(req->cmd, cmd, req->cmd_len);
234 	req->sense = sense;
235 	req->sense_len = 0;
236 	req->retries = retries;
237 	req->timeout = timeout;
238 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(req->q, NULL, req, 1);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253 
254 	if (resid)
255 		*resid = req->resid_len;
256 	ret = req->errors;
257  out:
258 	blk_put_request(req);
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263 
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265 		     int data_direction, void *buffer, unsigned bufflen,
266 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
267 		     int *resid, u64 flags)
268 {
269 	char *sense = NULL;
270 	int result;
271 
272 	if (sshdr) {
273 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274 		if (!sense)
275 			return DRIVER_ERROR << 24;
276 	}
277 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278 			      sense, timeout, retries, flags, resid);
279 	if (sshdr)
280 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281 
282 	kfree(sense);
283 	return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286 
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd	- command that is ready to be queued.
293  *
294  * Notes:       This function has the job of initializing a number of
295  *              fields related to error handling.   Typically this will
296  *              be called once for each command, as required.
297  */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300 	cmd->serial_number = 0;
301 	scsi_set_resid(cmd, 0);
302 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303 	if (cmd->cmd_len == 0)
304 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306 
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309 	struct Scsi_Host *shost = sdev->host;
310 	struct scsi_target *starget = scsi_target(sdev);
311 	unsigned long flags;
312 
313 	atomic_dec(&shost->host_busy);
314 	if (starget->can_queue > 0)
315 		atomic_dec(&starget->target_busy);
316 
317 	if (unlikely(scsi_host_in_recovery(shost) &&
318 		     (shost->host_failed || shost->host_eh_scheduled))) {
319 		spin_lock_irqsave(shost->host_lock, flags);
320 		scsi_eh_wakeup(shost);
321 		spin_unlock_irqrestore(shost->host_lock, flags);
322 	}
323 
324 	atomic_dec(&sdev->device_busy);
325 }
326 
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329 	if (q->mq_ops)
330 		blk_mq_start_hw_queues(q);
331 	else
332 		blk_run_queue(q);
333 }
334 
335 /*
336  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337  * and call blk_run_queue for all the scsi_devices on the target -
338  * including current_sdev first.
339  *
340  * Called with *no* scsi locks held.
341  */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344 	struct Scsi_Host *shost = current_sdev->host;
345 	struct scsi_device *sdev, *tmp;
346 	struct scsi_target *starget = scsi_target(current_sdev);
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(shost->host_lock, flags);
350 	starget->starget_sdev_user = NULL;
351 	spin_unlock_irqrestore(shost->host_lock, flags);
352 
353 	/*
354 	 * Call blk_run_queue for all LUNs on the target, starting with
355 	 * current_sdev. We race with others (to set starget_sdev_user),
356 	 * but in most cases, we will be first. Ideally, each LU on the
357 	 * target would get some limited time or requests on the target.
358 	 */
359 	scsi_kick_queue(current_sdev->request_queue);
360 
361 	spin_lock_irqsave(shost->host_lock, flags);
362 	if (starget->starget_sdev_user)
363 		goto out;
364 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
365 			same_target_siblings) {
366 		if (sdev == current_sdev)
367 			continue;
368 		if (scsi_device_get(sdev))
369 			continue;
370 
371 		spin_unlock_irqrestore(shost->host_lock, flags);
372 		scsi_kick_queue(sdev->request_queue);
373 		spin_lock_irqsave(shost->host_lock, flags);
374 
375 		scsi_device_put(sdev);
376 	}
377  out:
378 	spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380 
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384 		return true;
385 	if (atomic_read(&sdev->device_blocked) > 0)
386 		return true;
387 	return false;
388 }
389 
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392 	if (starget->can_queue > 0) {
393 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
394 			return true;
395 		if (atomic_read(&starget->target_blocked) > 0)
396 			return true;
397 	}
398 	return false;
399 }
400 
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 	if (shost->can_queue > 0 &&
404 	    atomic_read(&shost->host_busy) >= shost->can_queue)
405 		return true;
406 	if (atomic_read(&shost->host_blocked) > 0)
407 		return true;
408 	if (shost->host_self_blocked)
409 		return true;
410 	return false;
411 }
412 
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 	LIST_HEAD(starved_list);
416 	struct scsi_device *sdev;
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(shost->host_lock, flags);
420 	list_splice_init(&shost->starved_list, &starved_list);
421 
422 	while (!list_empty(&starved_list)) {
423 		struct request_queue *slq;
424 
425 		/*
426 		 * As long as shost is accepting commands and we have
427 		 * starved queues, call blk_run_queue. scsi_request_fn
428 		 * drops the queue_lock and can add us back to the
429 		 * starved_list.
430 		 *
431 		 * host_lock protects the starved_list and starved_entry.
432 		 * scsi_request_fn must get the host_lock before checking
433 		 * or modifying starved_list or starved_entry.
434 		 */
435 		if (scsi_host_is_busy(shost))
436 			break;
437 
438 		sdev = list_entry(starved_list.next,
439 				  struct scsi_device, starved_entry);
440 		list_del_init(&sdev->starved_entry);
441 		if (scsi_target_is_busy(scsi_target(sdev))) {
442 			list_move_tail(&sdev->starved_entry,
443 				       &shost->starved_list);
444 			continue;
445 		}
446 
447 		/*
448 		 * Once we drop the host lock, a racing scsi_remove_device()
449 		 * call may remove the sdev from the starved list and destroy
450 		 * it and the queue.  Mitigate by taking a reference to the
451 		 * queue and never touching the sdev again after we drop the
452 		 * host lock.  Note: if __scsi_remove_device() invokes
453 		 * blk_cleanup_queue() before the queue is run from this
454 		 * function then blk_run_queue() will return immediately since
455 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 		 */
457 		slq = sdev->request_queue;
458 		if (!blk_get_queue(slq))
459 			continue;
460 		spin_unlock_irqrestore(shost->host_lock, flags);
461 
462 		scsi_kick_queue(slq);
463 		blk_put_queue(slq);
464 
465 		spin_lock_irqsave(shost->host_lock, flags);
466 	}
467 	/* put any unprocessed entries back */
468 	list_splice(&starved_list, &shost->starved_list);
469 	spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471 
472 /*
473  * Function:   scsi_run_queue()
474  *
475  * Purpose:    Select a proper request queue to serve next
476  *
477  * Arguments:  q       - last request's queue
478  *
479  * Returns:     Nothing
480  *
481  * Notes:      The previous command was completely finished, start
482  *             a new one if possible.
483  */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486 	struct scsi_device *sdev = q->queuedata;
487 
488 	if (scsi_target(sdev)->single_lun)
489 		scsi_single_lun_run(sdev);
490 	if (!list_empty(&sdev->host->starved_list))
491 		scsi_starved_list_run(sdev->host);
492 
493 	if (q->mq_ops)
494 		blk_mq_start_stopped_hw_queues(q, false);
495 	else
496 		blk_run_queue(q);
497 }
498 
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501 	struct scsi_device *sdev;
502 	struct request_queue *q;
503 
504 	sdev = container_of(work, struct scsi_device, requeue_work);
505 	q = sdev->request_queue;
506 	scsi_run_queue(q);
507 }
508 
509 /*
510  * Function:	scsi_requeue_command()
511  *
512  * Purpose:	Handle post-processing of completed commands.
513  *
514  * Arguments:	q	- queue to operate on
515  *		cmd	- command that may need to be requeued.
516  *
517  * Returns:	Nothing
518  *
519  * Notes:	After command completion, there may be blocks left
520  *		over which weren't finished by the previous command
521  *		this can be for a number of reasons - the main one is
522  *		I/O errors in the middle of the request, in which case
523  *		we need to request the blocks that come after the bad
524  *		sector.
525  * Notes:	Upon return, cmd is a stale pointer.
526  */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529 	struct scsi_device *sdev = cmd->device;
530 	struct request *req = cmd->request;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(q->queue_lock, flags);
534 	blk_unprep_request(req);
535 	req->special = NULL;
536 	scsi_put_command(cmd);
537 	blk_requeue_request(q, req);
538 	spin_unlock_irqrestore(q->queue_lock, flags);
539 
540 	scsi_run_queue(q);
541 
542 	put_device(&sdev->sdev_gendev);
543 }
544 
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547 	struct scsi_device *sdev = cmd->device;
548 	struct request_queue *q = sdev->request_queue;
549 
550 	scsi_put_command(cmd);
551 	scsi_run_queue(q);
552 
553 	put_device(&sdev->sdev_gendev);
554 }
555 
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558 	struct scsi_device *sdev;
559 
560 	shost_for_each_device(sdev, shost)
561 		scsi_run_queue(sdev->request_queue);
562 }
563 
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566 	unsigned int index;
567 
568 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569 
570 	if (nents <= 8)
571 		index = 0;
572 	else
573 		index = get_count_order(nents) - 3;
574 
575 	return index;
576 }
577 
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580 	struct scsi_host_sg_pool *sgp;
581 
582 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583 	mempool_free(sgl, sgp->pool);
584 }
585 
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588 	struct scsi_host_sg_pool *sgp;
589 
590 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591 	return mempool_alloc(sgp->pool, gfp_mask);
592 }
593 
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596 	if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597 		return;
598 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600 
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602 			      gfp_t gfp_mask, bool mq)
603 {
604 	struct scatterlist *first_chunk = NULL;
605 	int ret;
606 
607 	BUG_ON(!nents);
608 
609 	if (mq) {
610 		if (nents <= SCSI_MAX_SG_SEGMENTS) {
611 			sdb->table.nents = nents;
612 			sg_init_table(sdb->table.sgl, sdb->table.nents);
613 			return 0;
614 		}
615 		first_chunk = sdb->table.sgl;
616 	}
617 
618 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 			       first_chunk, gfp_mask, scsi_sg_alloc);
620 	if (unlikely(ret))
621 		scsi_free_sgtable(sdb, mq);
622 	return ret;
623 }
624 
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
628 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629 
630 		if (drv->uninit_command)
631 			drv->uninit_command(cmd);
632 	}
633 }
634 
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637 	if (cmd->sdb.table.nents)
638 		scsi_free_sgtable(&cmd->sdb, true);
639 	if (cmd->request->next_rq && cmd->request->next_rq->special)
640 		scsi_free_sgtable(cmd->request->next_rq->special, true);
641 	if (scsi_prot_sg_count(cmd))
642 		scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644 
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647 	struct scsi_device *sdev = cmd->device;
648 	unsigned long flags;
649 
650 	BUG_ON(list_empty(&cmd->list));
651 
652 	scsi_mq_free_sgtables(cmd);
653 	scsi_uninit_cmd(cmd);
654 
655 	spin_lock_irqsave(&sdev->list_lock, flags);
656 	list_del_init(&cmd->list);
657 	spin_unlock_irqrestore(&sdev->list_lock, flags);
658 }
659 
660 /*
661  * Function:    scsi_release_buffers()
662  *
663  * Purpose:     Free resources allocate for a scsi_command.
664  *
665  * Arguments:   cmd	- command that we are bailing.
666  *
667  * Lock status: Assumed that no lock is held upon entry.
668  *
669  * Returns:     Nothing
670  *
671  * Notes:       In the event that an upper level driver rejects a
672  *		command, we must release resources allocated during
673  *		the __init_io() function.  Primarily this would involve
674  *		the scatter-gather table.
675  */
676 static void scsi_release_buffers(struct scsi_cmnd *cmd)
677 {
678 	if (cmd->sdb.table.nents)
679 		scsi_free_sgtable(&cmd->sdb, false);
680 
681 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
682 
683 	if (scsi_prot_sg_count(cmd))
684 		scsi_free_sgtable(cmd->prot_sdb, false);
685 }
686 
687 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
688 {
689 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
690 
691 	scsi_free_sgtable(bidi_sdb, false);
692 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
693 	cmd->request->next_rq->special = NULL;
694 }
695 
696 static bool scsi_end_request(struct request *req, int error,
697 		unsigned int bytes, unsigned int bidi_bytes)
698 {
699 	struct scsi_cmnd *cmd = req->special;
700 	struct scsi_device *sdev = cmd->device;
701 	struct request_queue *q = sdev->request_queue;
702 
703 	if (blk_update_request(req, error, bytes))
704 		return true;
705 
706 	/* Bidi request must be completed as a whole */
707 	if (unlikely(bidi_bytes) &&
708 	    blk_update_request(req->next_rq, error, bidi_bytes))
709 		return true;
710 
711 	if (blk_queue_add_random(q))
712 		add_disk_randomness(req->rq_disk);
713 
714 	if (req->mq_ctx) {
715 		/*
716 		 * In the MQ case the command gets freed by __blk_mq_end_io,
717 		 * so we have to do all cleanup that depends on it earlier.
718 		 *
719 		 * We also can't kick the queues from irq context, so we
720 		 * will have to defer it to a workqueue.
721 		 */
722 		scsi_mq_uninit_cmd(cmd);
723 
724 		__blk_mq_end_io(req, error);
725 
726 		if (scsi_target(sdev)->single_lun ||
727 		    !list_empty(&sdev->host->starved_list))
728 			kblockd_schedule_work(&sdev->requeue_work);
729 		else
730 			blk_mq_start_stopped_hw_queues(q, true);
731 
732 		put_device(&sdev->sdev_gendev);
733 	} else {
734 		unsigned long flags;
735 
736 		spin_lock_irqsave(q->queue_lock, flags);
737 		blk_finish_request(req, error);
738 		spin_unlock_irqrestore(q->queue_lock, flags);
739 
740 		if (bidi_bytes)
741 			scsi_release_bidi_buffers(cmd);
742 		scsi_release_buffers(cmd);
743 		scsi_next_command(cmd);
744 	}
745 
746 	return false;
747 }
748 
749 /**
750  * __scsi_error_from_host_byte - translate SCSI error code into errno
751  * @cmd:	SCSI command (unused)
752  * @result:	scsi error code
753  *
754  * Translate SCSI error code into standard UNIX errno.
755  * Return values:
756  * -ENOLINK	temporary transport failure
757  * -EREMOTEIO	permanent target failure, do not retry
758  * -EBADE	permanent nexus failure, retry on other path
759  * -ENOSPC	No write space available
760  * -ENODATA	Medium error
761  * -EIO		unspecified I/O error
762  */
763 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
764 {
765 	int error = 0;
766 
767 	switch(host_byte(result)) {
768 	case DID_TRANSPORT_FAILFAST:
769 		error = -ENOLINK;
770 		break;
771 	case DID_TARGET_FAILURE:
772 		set_host_byte(cmd, DID_OK);
773 		error = -EREMOTEIO;
774 		break;
775 	case DID_NEXUS_FAILURE:
776 		set_host_byte(cmd, DID_OK);
777 		error = -EBADE;
778 		break;
779 	case DID_ALLOC_FAILURE:
780 		set_host_byte(cmd, DID_OK);
781 		error = -ENOSPC;
782 		break;
783 	case DID_MEDIUM_ERROR:
784 		set_host_byte(cmd, DID_OK);
785 		error = -ENODATA;
786 		break;
787 	default:
788 		error = -EIO;
789 		break;
790 	}
791 
792 	return error;
793 }
794 
795 /*
796  * Function:    scsi_io_completion()
797  *
798  * Purpose:     Completion processing for block device I/O requests.
799  *
800  * Arguments:   cmd   - command that is finished.
801  *
802  * Lock status: Assumed that no lock is held upon entry.
803  *
804  * Returns:     Nothing
805  *
806  * Notes:       We will finish off the specified number of sectors.  If we
807  *		are done, the command block will be released and the queue
808  *		function will be goosed.  If we are not done then we have to
809  *		figure out what to do next:
810  *
811  *		a) We can call scsi_requeue_command().  The request
812  *		   will be unprepared and put back on the queue.  Then
813  *		   a new command will be created for it.  This should
814  *		   be used if we made forward progress, or if we want
815  *		   to switch from READ(10) to READ(6) for example.
816  *
817  *		b) We can call __scsi_queue_insert().  The request will
818  *		   be put back on the queue and retried using the same
819  *		   command as before, possibly after a delay.
820  *
821  *		c) We can call scsi_end_request() with -EIO to fail
822  *		   the remainder of the request.
823  */
824 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
825 {
826 	int result = cmd->result;
827 	struct request_queue *q = cmd->device->request_queue;
828 	struct request *req = cmd->request;
829 	int error = 0;
830 	struct scsi_sense_hdr sshdr;
831 	int sense_valid = 0;
832 	int sense_deferred = 0;
833 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
834 	      ACTION_DELAYED_RETRY} action;
835 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
836 
837 	if (result) {
838 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
839 		if (sense_valid)
840 			sense_deferred = scsi_sense_is_deferred(&sshdr);
841 	}
842 
843 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
844 		if (result) {
845 			if (sense_valid && req->sense) {
846 				/*
847 				 * SG_IO wants current and deferred errors
848 				 */
849 				int len = 8 + cmd->sense_buffer[7];
850 
851 				if (len > SCSI_SENSE_BUFFERSIZE)
852 					len = SCSI_SENSE_BUFFERSIZE;
853 				memcpy(req->sense, cmd->sense_buffer,  len);
854 				req->sense_len = len;
855 			}
856 			if (!sense_deferred)
857 				error = __scsi_error_from_host_byte(cmd, result);
858 		}
859 		/*
860 		 * __scsi_error_from_host_byte may have reset the host_byte
861 		 */
862 		req->errors = cmd->result;
863 
864 		req->resid_len = scsi_get_resid(cmd);
865 
866 		if (scsi_bidi_cmnd(cmd)) {
867 			/*
868 			 * Bidi commands Must be complete as a whole,
869 			 * both sides at once.
870 			 */
871 			req->next_rq->resid_len = scsi_in(cmd)->resid;
872 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
873 					blk_rq_bytes(req->next_rq)))
874 				BUG();
875 			return;
876 		}
877 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
878 		/*
879 		 * Certain non BLOCK_PC requests are commands that don't
880 		 * actually transfer anything (FLUSH), so cannot use
881 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
882 		 * This sets the error explicitly for the problem case.
883 		 */
884 		error = __scsi_error_from_host_byte(cmd, result);
885 	}
886 
887 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
888 	BUG_ON(blk_bidi_rq(req));
889 
890 	/*
891 	 * Next deal with any sectors which we were able to correctly
892 	 * handle.
893 	 */
894 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
895 		"%u sectors total, %d bytes done.\n",
896 		blk_rq_sectors(req), good_bytes));
897 
898 	/*
899 	 * Recovered errors need reporting, but they're always treated
900 	 * as success, so fiddle the result code here.  For BLOCK_PC
901 	 * we already took a copy of the original into rq->errors which
902 	 * is what gets returned to the user
903 	 */
904 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
905 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
906 		 * print since caller wants ATA registers. Only occurs on
907 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
908 		 */
909 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
910 			;
911 		else if (!(req->cmd_flags & REQ_QUIET))
912 			scsi_print_sense("", cmd);
913 		result = 0;
914 		/* BLOCK_PC may have set error */
915 		error = 0;
916 	}
917 
918 	/*
919 	 * If we finished all bytes in the request we are done now.
920 	 */
921 	if (!scsi_end_request(req, error, good_bytes, 0))
922 		return;
923 
924 	/*
925 	 * Kill remainder if no retrys.
926 	 */
927 	if (error && scsi_noretry_cmd(cmd)) {
928 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
929 			BUG();
930 		return;
931 	}
932 
933 	/*
934 	 * If there had been no error, but we have leftover bytes in the
935 	 * requeues just queue the command up again.
936 	 */
937 	if (result == 0)
938 		goto requeue;
939 
940 	error = __scsi_error_from_host_byte(cmd, result);
941 
942 	if (host_byte(result) == DID_RESET) {
943 		/* Third party bus reset or reset for error recovery
944 		 * reasons.  Just retry the command and see what
945 		 * happens.
946 		 */
947 		action = ACTION_RETRY;
948 	} else if (sense_valid && !sense_deferred) {
949 		switch (sshdr.sense_key) {
950 		case UNIT_ATTENTION:
951 			if (cmd->device->removable) {
952 				/* Detected disc change.  Set a bit
953 				 * and quietly refuse further access.
954 				 */
955 				cmd->device->changed = 1;
956 				action = ACTION_FAIL;
957 			} else {
958 				/* Must have been a power glitch, or a
959 				 * bus reset.  Could not have been a
960 				 * media change, so we just retry the
961 				 * command and see what happens.
962 				 */
963 				action = ACTION_RETRY;
964 			}
965 			break;
966 		case ILLEGAL_REQUEST:
967 			/* If we had an ILLEGAL REQUEST returned, then
968 			 * we may have performed an unsupported
969 			 * command.  The only thing this should be
970 			 * would be a ten byte read where only a six
971 			 * byte read was supported.  Also, on a system
972 			 * where READ CAPACITY failed, we may have
973 			 * read past the end of the disk.
974 			 */
975 			if ((cmd->device->use_10_for_rw &&
976 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
977 			    (cmd->cmnd[0] == READ_10 ||
978 			     cmd->cmnd[0] == WRITE_10)) {
979 				/* This will issue a new 6-byte command. */
980 				cmd->device->use_10_for_rw = 0;
981 				action = ACTION_REPREP;
982 			} else if (sshdr.asc == 0x10) /* DIX */ {
983 				action = ACTION_FAIL;
984 				error = -EILSEQ;
985 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
986 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
987 				action = ACTION_FAIL;
988 				error = -EREMOTEIO;
989 			} else
990 				action = ACTION_FAIL;
991 			break;
992 		case ABORTED_COMMAND:
993 			action = ACTION_FAIL;
994 			if (sshdr.asc == 0x10) /* DIF */
995 				error = -EILSEQ;
996 			break;
997 		case NOT_READY:
998 			/* If the device is in the process of becoming
999 			 * ready, or has a temporary blockage, retry.
1000 			 */
1001 			if (sshdr.asc == 0x04) {
1002 				switch (sshdr.ascq) {
1003 				case 0x01: /* becoming ready */
1004 				case 0x04: /* format in progress */
1005 				case 0x05: /* rebuild in progress */
1006 				case 0x06: /* recalculation in progress */
1007 				case 0x07: /* operation in progress */
1008 				case 0x08: /* Long write in progress */
1009 				case 0x09: /* self test in progress */
1010 				case 0x14: /* space allocation in progress */
1011 					action = ACTION_DELAYED_RETRY;
1012 					break;
1013 				default:
1014 					action = ACTION_FAIL;
1015 					break;
1016 				}
1017 			} else
1018 				action = ACTION_FAIL;
1019 			break;
1020 		case VOLUME_OVERFLOW:
1021 			/* See SSC3rXX or current. */
1022 			action = ACTION_FAIL;
1023 			break;
1024 		default:
1025 			action = ACTION_FAIL;
1026 			break;
1027 		}
1028 	} else
1029 		action = ACTION_FAIL;
1030 
1031 	if (action != ACTION_FAIL &&
1032 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1033 		action = ACTION_FAIL;
1034 
1035 	switch (action) {
1036 	case ACTION_FAIL:
1037 		/* Give up and fail the remainder of the request */
1038 		if (!(req->cmd_flags & REQ_QUIET)) {
1039 			scsi_print_result(cmd);
1040 			if (driver_byte(result) & DRIVER_SENSE)
1041 				scsi_print_sense("", cmd);
1042 			scsi_print_command(cmd);
1043 		}
1044 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1045 			return;
1046 		/*FALLTHRU*/
1047 	case ACTION_REPREP:
1048 	requeue:
1049 		/* Unprep the request and put it back at the head of the queue.
1050 		 * A new command will be prepared and issued.
1051 		 */
1052 		if (q->mq_ops) {
1053 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1054 			scsi_mq_uninit_cmd(cmd);
1055 			scsi_mq_requeue_cmd(cmd);
1056 		} else {
1057 			scsi_release_buffers(cmd);
1058 			scsi_requeue_command(q, cmd);
1059 		}
1060 		break;
1061 	case ACTION_RETRY:
1062 		/* Retry the same command immediately */
1063 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1064 		break;
1065 	case ACTION_DELAYED_RETRY:
1066 		/* Retry the same command after a delay */
1067 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1068 		break;
1069 	}
1070 }
1071 
1072 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1073 			     gfp_t gfp_mask)
1074 {
1075 	int count;
1076 
1077 	/*
1078 	 * If sg table allocation fails, requeue request later.
1079 	 */
1080 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1081 					gfp_mask, req->mq_ctx != NULL)))
1082 		return BLKPREP_DEFER;
1083 
1084 	/*
1085 	 * Next, walk the list, and fill in the addresses and sizes of
1086 	 * each segment.
1087 	 */
1088 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1089 	BUG_ON(count > sdb->table.nents);
1090 	sdb->table.nents = count;
1091 	sdb->length = blk_rq_bytes(req);
1092 	return BLKPREP_OK;
1093 }
1094 
1095 /*
1096  * Function:    scsi_init_io()
1097  *
1098  * Purpose:     SCSI I/O initialize function.
1099  *
1100  * Arguments:   cmd   - Command descriptor we wish to initialize
1101  *
1102  * Returns:     0 on success
1103  *		BLKPREP_DEFER if the failure is retryable
1104  *		BLKPREP_KILL if the failure is fatal
1105  */
1106 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1107 {
1108 	struct scsi_device *sdev = cmd->device;
1109 	struct request *rq = cmd->request;
1110 	bool is_mq = (rq->mq_ctx != NULL);
1111 	int error;
1112 
1113 	BUG_ON(!rq->nr_phys_segments);
1114 
1115 	error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1116 	if (error)
1117 		goto err_exit;
1118 
1119 	if (blk_bidi_rq(rq)) {
1120 		if (!rq->q->mq_ops) {
1121 			struct scsi_data_buffer *bidi_sdb =
1122 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1123 			if (!bidi_sdb) {
1124 				error = BLKPREP_DEFER;
1125 				goto err_exit;
1126 			}
1127 
1128 			rq->next_rq->special = bidi_sdb;
1129 		}
1130 
1131 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1132 					  GFP_ATOMIC);
1133 		if (error)
1134 			goto err_exit;
1135 	}
1136 
1137 	if (blk_integrity_rq(rq)) {
1138 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1139 		int ivecs, count;
1140 
1141 		BUG_ON(prot_sdb == NULL);
1142 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1143 
1144 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1145 			error = BLKPREP_DEFER;
1146 			goto err_exit;
1147 		}
1148 
1149 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1150 						prot_sdb->table.sgl);
1151 		BUG_ON(unlikely(count > ivecs));
1152 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1153 
1154 		cmd->prot_sdb = prot_sdb;
1155 		cmd->prot_sdb->table.nents = count;
1156 	}
1157 
1158 	return BLKPREP_OK;
1159 err_exit:
1160 	if (is_mq) {
1161 		scsi_mq_free_sgtables(cmd);
1162 	} else {
1163 		scsi_release_buffers(cmd);
1164 		cmd->request->special = NULL;
1165 		scsi_put_command(cmd);
1166 		put_device(&sdev->sdev_gendev);
1167 	}
1168 	return error;
1169 }
1170 EXPORT_SYMBOL(scsi_init_io);
1171 
1172 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1173 		struct request *req)
1174 {
1175 	struct scsi_cmnd *cmd;
1176 
1177 	if (!req->special) {
1178 		/* Bail if we can't get a reference to the device */
1179 		if (!get_device(&sdev->sdev_gendev))
1180 			return NULL;
1181 
1182 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1183 		if (unlikely(!cmd)) {
1184 			put_device(&sdev->sdev_gendev);
1185 			return NULL;
1186 		}
1187 		req->special = cmd;
1188 	} else {
1189 		cmd = req->special;
1190 	}
1191 
1192 	/* pull a tag out of the request if we have one */
1193 	cmd->tag = req->tag;
1194 	cmd->request = req;
1195 
1196 	cmd->cmnd = req->cmd;
1197 	cmd->prot_op = SCSI_PROT_NORMAL;
1198 
1199 	return cmd;
1200 }
1201 
1202 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1203 {
1204 	struct scsi_cmnd *cmd = req->special;
1205 
1206 	/*
1207 	 * BLOCK_PC requests may transfer data, in which case they must
1208 	 * a bio attached to them.  Or they might contain a SCSI command
1209 	 * that does not transfer data, in which case they may optionally
1210 	 * submit a request without an attached bio.
1211 	 */
1212 	if (req->bio) {
1213 		int ret = scsi_init_io(cmd, GFP_ATOMIC);
1214 		if (unlikely(ret))
1215 			return ret;
1216 	} else {
1217 		BUG_ON(blk_rq_bytes(req));
1218 
1219 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1220 	}
1221 
1222 	cmd->cmd_len = req->cmd_len;
1223 	cmd->transfersize = blk_rq_bytes(req);
1224 	cmd->allowed = req->retries;
1225 	return BLKPREP_OK;
1226 }
1227 
1228 /*
1229  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1230  * that still need to be translated to SCSI CDBs from the ULD.
1231  */
1232 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1233 {
1234 	struct scsi_cmnd *cmd = req->special;
1235 
1236 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1237 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1238 		int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1239 		if (ret != BLKPREP_OK)
1240 			return ret;
1241 	}
1242 
1243 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1244 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1245 }
1246 
1247 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1248 {
1249 	struct scsi_cmnd *cmd = req->special;
1250 
1251 	if (!blk_rq_bytes(req))
1252 		cmd->sc_data_direction = DMA_NONE;
1253 	else if (rq_data_dir(req) == WRITE)
1254 		cmd->sc_data_direction = DMA_TO_DEVICE;
1255 	else
1256 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1257 
1258 	switch (req->cmd_type) {
1259 	case REQ_TYPE_FS:
1260 		return scsi_setup_fs_cmnd(sdev, req);
1261 	case REQ_TYPE_BLOCK_PC:
1262 		return scsi_setup_blk_pc_cmnd(sdev, req);
1263 	default:
1264 		return BLKPREP_KILL;
1265 	}
1266 }
1267 
1268 static int
1269 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1270 {
1271 	int ret = BLKPREP_OK;
1272 
1273 	/*
1274 	 * If the device is not in running state we will reject some
1275 	 * or all commands.
1276 	 */
1277 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1278 		switch (sdev->sdev_state) {
1279 		case SDEV_OFFLINE:
1280 		case SDEV_TRANSPORT_OFFLINE:
1281 			/*
1282 			 * If the device is offline we refuse to process any
1283 			 * commands.  The device must be brought online
1284 			 * before trying any recovery commands.
1285 			 */
1286 			sdev_printk(KERN_ERR, sdev,
1287 				    "rejecting I/O to offline device\n");
1288 			ret = BLKPREP_KILL;
1289 			break;
1290 		case SDEV_DEL:
1291 			/*
1292 			 * If the device is fully deleted, we refuse to
1293 			 * process any commands as well.
1294 			 */
1295 			sdev_printk(KERN_ERR, sdev,
1296 				    "rejecting I/O to dead device\n");
1297 			ret = BLKPREP_KILL;
1298 			break;
1299 		case SDEV_QUIESCE:
1300 		case SDEV_BLOCK:
1301 		case SDEV_CREATED_BLOCK:
1302 			/*
1303 			 * If the devices is blocked we defer normal commands.
1304 			 */
1305 			if (!(req->cmd_flags & REQ_PREEMPT))
1306 				ret = BLKPREP_DEFER;
1307 			break;
1308 		default:
1309 			/*
1310 			 * For any other not fully online state we only allow
1311 			 * special commands.  In particular any user initiated
1312 			 * command is not allowed.
1313 			 */
1314 			if (!(req->cmd_flags & REQ_PREEMPT))
1315 				ret = BLKPREP_KILL;
1316 			break;
1317 		}
1318 	}
1319 	return ret;
1320 }
1321 
1322 static int
1323 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1324 {
1325 	struct scsi_device *sdev = q->queuedata;
1326 
1327 	switch (ret) {
1328 	case BLKPREP_KILL:
1329 		req->errors = DID_NO_CONNECT << 16;
1330 		/* release the command and kill it */
1331 		if (req->special) {
1332 			struct scsi_cmnd *cmd = req->special;
1333 			scsi_release_buffers(cmd);
1334 			scsi_put_command(cmd);
1335 			put_device(&sdev->sdev_gendev);
1336 			req->special = NULL;
1337 		}
1338 		break;
1339 	case BLKPREP_DEFER:
1340 		/*
1341 		 * If we defer, the blk_peek_request() returns NULL, but the
1342 		 * queue must be restarted, so we schedule a callback to happen
1343 		 * shortly.
1344 		 */
1345 		if (atomic_read(&sdev->device_busy) == 0)
1346 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1347 		break;
1348 	default:
1349 		req->cmd_flags |= REQ_DONTPREP;
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1356 {
1357 	struct scsi_device *sdev = q->queuedata;
1358 	struct scsi_cmnd *cmd;
1359 	int ret;
1360 
1361 	ret = scsi_prep_state_check(sdev, req);
1362 	if (ret != BLKPREP_OK)
1363 		goto out;
1364 
1365 	cmd = scsi_get_cmd_from_req(sdev, req);
1366 	if (unlikely(!cmd)) {
1367 		ret = BLKPREP_DEFER;
1368 		goto out;
1369 	}
1370 
1371 	ret = scsi_setup_cmnd(sdev, req);
1372 out:
1373 	return scsi_prep_return(q, req, ret);
1374 }
1375 
1376 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1377 {
1378 	scsi_uninit_cmd(req->special);
1379 }
1380 
1381 /*
1382  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1383  * return 0.
1384  *
1385  * Called with the queue_lock held.
1386  */
1387 static inline int scsi_dev_queue_ready(struct request_queue *q,
1388 				  struct scsi_device *sdev)
1389 {
1390 	unsigned int busy;
1391 
1392 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1393 	if (atomic_read(&sdev->device_blocked)) {
1394 		if (busy)
1395 			goto out_dec;
1396 
1397 		/*
1398 		 * unblock after device_blocked iterates to zero
1399 		 */
1400 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1401 			/*
1402 			 * For the MQ case we take care of this in the caller.
1403 			 */
1404 			if (!q->mq_ops)
1405 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1406 			goto out_dec;
1407 		}
1408 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1409 				   "unblocking device at zero depth\n"));
1410 	}
1411 
1412 	if (busy >= sdev->queue_depth)
1413 		goto out_dec;
1414 
1415 	return 1;
1416 out_dec:
1417 	atomic_dec(&sdev->device_busy);
1418 	return 0;
1419 }
1420 
1421 /*
1422  * scsi_target_queue_ready: checks if there we can send commands to target
1423  * @sdev: scsi device on starget to check.
1424  */
1425 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1426 					   struct scsi_device *sdev)
1427 {
1428 	struct scsi_target *starget = scsi_target(sdev);
1429 	unsigned int busy;
1430 
1431 	if (starget->single_lun) {
1432 		spin_lock_irq(shost->host_lock);
1433 		if (starget->starget_sdev_user &&
1434 		    starget->starget_sdev_user != sdev) {
1435 			spin_unlock_irq(shost->host_lock);
1436 			return 0;
1437 		}
1438 		starget->starget_sdev_user = sdev;
1439 		spin_unlock_irq(shost->host_lock);
1440 	}
1441 
1442 	if (starget->can_queue <= 0)
1443 		return 1;
1444 
1445 	busy = atomic_inc_return(&starget->target_busy) - 1;
1446 	if (atomic_read(&starget->target_blocked) > 0) {
1447 		if (busy)
1448 			goto starved;
1449 
1450 		/*
1451 		 * unblock after target_blocked iterates to zero
1452 		 */
1453 		if (atomic_dec_return(&starget->target_blocked) > 0)
1454 			goto out_dec;
1455 
1456 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1457 				 "unblocking target at zero depth\n"));
1458 	}
1459 
1460 	if (busy >= starget->can_queue)
1461 		goto starved;
1462 
1463 	return 1;
1464 
1465 starved:
1466 	spin_lock_irq(shost->host_lock);
1467 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1468 	spin_unlock_irq(shost->host_lock);
1469 out_dec:
1470 	if (starget->can_queue > 0)
1471 		atomic_dec(&starget->target_busy);
1472 	return 0;
1473 }
1474 
1475 /*
1476  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1477  * return 0. We must end up running the queue again whenever 0 is
1478  * returned, else IO can hang.
1479  */
1480 static inline int scsi_host_queue_ready(struct request_queue *q,
1481 				   struct Scsi_Host *shost,
1482 				   struct scsi_device *sdev)
1483 {
1484 	unsigned int busy;
1485 
1486 	if (scsi_host_in_recovery(shost))
1487 		return 0;
1488 
1489 	busy = atomic_inc_return(&shost->host_busy) - 1;
1490 	if (atomic_read(&shost->host_blocked) > 0) {
1491 		if (busy)
1492 			goto starved;
1493 
1494 		/*
1495 		 * unblock after host_blocked iterates to zero
1496 		 */
1497 		if (atomic_dec_return(&shost->host_blocked) > 0)
1498 			goto out_dec;
1499 
1500 		SCSI_LOG_MLQUEUE(3,
1501 			shost_printk(KERN_INFO, shost,
1502 				     "unblocking host at zero depth\n"));
1503 	}
1504 
1505 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1506 		goto starved;
1507 	if (shost->host_self_blocked)
1508 		goto starved;
1509 
1510 	/* We're OK to process the command, so we can't be starved */
1511 	if (!list_empty(&sdev->starved_entry)) {
1512 		spin_lock_irq(shost->host_lock);
1513 		if (!list_empty(&sdev->starved_entry))
1514 			list_del_init(&sdev->starved_entry);
1515 		spin_unlock_irq(shost->host_lock);
1516 	}
1517 
1518 	return 1;
1519 
1520 starved:
1521 	spin_lock_irq(shost->host_lock);
1522 	if (list_empty(&sdev->starved_entry))
1523 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1524 	spin_unlock_irq(shost->host_lock);
1525 out_dec:
1526 	atomic_dec(&shost->host_busy);
1527 	return 0;
1528 }
1529 
1530 /*
1531  * Busy state exporting function for request stacking drivers.
1532  *
1533  * For efficiency, no lock is taken to check the busy state of
1534  * shost/starget/sdev, since the returned value is not guaranteed and
1535  * may be changed after request stacking drivers call the function,
1536  * regardless of taking lock or not.
1537  *
1538  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1539  * needs to return 'not busy'. Otherwise, request stacking drivers
1540  * may hold requests forever.
1541  */
1542 static int scsi_lld_busy(struct request_queue *q)
1543 {
1544 	struct scsi_device *sdev = q->queuedata;
1545 	struct Scsi_Host *shost;
1546 
1547 	if (blk_queue_dying(q))
1548 		return 0;
1549 
1550 	shost = sdev->host;
1551 
1552 	/*
1553 	 * Ignore host/starget busy state.
1554 	 * Since block layer does not have a concept of fairness across
1555 	 * multiple queues, congestion of host/starget needs to be handled
1556 	 * in SCSI layer.
1557 	 */
1558 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1559 		return 1;
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * Kill a request for a dead device
1566  */
1567 static void scsi_kill_request(struct request *req, struct request_queue *q)
1568 {
1569 	struct scsi_cmnd *cmd = req->special;
1570 	struct scsi_device *sdev;
1571 	struct scsi_target *starget;
1572 	struct Scsi_Host *shost;
1573 
1574 	blk_start_request(req);
1575 
1576 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1577 
1578 	sdev = cmd->device;
1579 	starget = scsi_target(sdev);
1580 	shost = sdev->host;
1581 	scsi_init_cmd_errh(cmd);
1582 	cmd->result = DID_NO_CONNECT << 16;
1583 	atomic_inc(&cmd->device->iorequest_cnt);
1584 
1585 	/*
1586 	 * SCSI request completion path will do scsi_device_unbusy(),
1587 	 * bump busy counts.  To bump the counters, we need to dance
1588 	 * with the locks as normal issue path does.
1589 	 */
1590 	atomic_inc(&sdev->device_busy);
1591 	atomic_inc(&shost->host_busy);
1592 	if (starget->can_queue > 0)
1593 		atomic_inc(&starget->target_busy);
1594 
1595 	blk_complete_request(req);
1596 }
1597 
1598 static void scsi_softirq_done(struct request *rq)
1599 {
1600 	struct scsi_cmnd *cmd = rq->special;
1601 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1602 	int disposition;
1603 
1604 	INIT_LIST_HEAD(&cmd->eh_entry);
1605 
1606 	atomic_inc(&cmd->device->iodone_cnt);
1607 	if (cmd->result)
1608 		atomic_inc(&cmd->device->ioerr_cnt);
1609 
1610 	disposition = scsi_decide_disposition(cmd);
1611 	if (disposition != SUCCESS &&
1612 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1613 		sdev_printk(KERN_ERR, cmd->device,
1614 			    "timing out command, waited %lus\n",
1615 			    wait_for/HZ);
1616 		disposition = SUCCESS;
1617 	}
1618 
1619 	scsi_log_completion(cmd, disposition);
1620 
1621 	switch (disposition) {
1622 		case SUCCESS:
1623 			scsi_finish_command(cmd);
1624 			break;
1625 		case NEEDS_RETRY:
1626 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1627 			break;
1628 		case ADD_TO_MLQUEUE:
1629 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1630 			break;
1631 		default:
1632 			if (!scsi_eh_scmd_add(cmd, 0))
1633 				scsi_finish_command(cmd);
1634 	}
1635 }
1636 
1637 /**
1638  * scsi_done - Invoke completion on finished SCSI command.
1639  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1640  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1641  *
1642  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1643  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1644  * calls blk_complete_request() for further processing.
1645  *
1646  * This function is interrupt context safe.
1647  */
1648 static void scsi_done(struct scsi_cmnd *cmd)
1649 {
1650 	trace_scsi_dispatch_cmd_done(cmd);
1651 	blk_complete_request(cmd->request);
1652 }
1653 
1654 /*
1655  * Function:    scsi_request_fn()
1656  *
1657  * Purpose:     Main strategy routine for SCSI.
1658  *
1659  * Arguments:   q       - Pointer to actual queue.
1660  *
1661  * Returns:     Nothing
1662  *
1663  * Lock status: IO request lock assumed to be held when called.
1664  */
1665 static void scsi_request_fn(struct request_queue *q)
1666 	__releases(q->queue_lock)
1667 	__acquires(q->queue_lock)
1668 {
1669 	struct scsi_device *sdev = q->queuedata;
1670 	struct Scsi_Host *shost;
1671 	struct scsi_cmnd *cmd;
1672 	struct request *req;
1673 
1674 	/*
1675 	 * To start with, we keep looping until the queue is empty, or until
1676 	 * the host is no longer able to accept any more requests.
1677 	 */
1678 	shost = sdev->host;
1679 	for (;;) {
1680 		int rtn;
1681 		/*
1682 		 * get next queueable request.  We do this early to make sure
1683 		 * that the request is fully prepared even if we cannot
1684 		 * accept it.
1685 		 */
1686 		req = blk_peek_request(q);
1687 		if (!req)
1688 			break;
1689 
1690 		if (unlikely(!scsi_device_online(sdev))) {
1691 			sdev_printk(KERN_ERR, sdev,
1692 				    "rejecting I/O to offline device\n");
1693 			scsi_kill_request(req, q);
1694 			continue;
1695 		}
1696 
1697 		if (!scsi_dev_queue_ready(q, sdev))
1698 			break;
1699 
1700 		/*
1701 		 * Remove the request from the request list.
1702 		 */
1703 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1704 			blk_start_request(req);
1705 
1706 		spin_unlock_irq(q->queue_lock);
1707 		cmd = req->special;
1708 		if (unlikely(cmd == NULL)) {
1709 			printk(KERN_CRIT "impossible request in %s.\n"
1710 					 "please mail a stack trace to "
1711 					 "linux-scsi@vger.kernel.org\n",
1712 					 __func__);
1713 			blk_dump_rq_flags(req, "foo");
1714 			BUG();
1715 		}
1716 
1717 		/*
1718 		 * We hit this when the driver is using a host wide
1719 		 * tag map. For device level tag maps the queue_depth check
1720 		 * in the device ready fn would prevent us from trying
1721 		 * to allocate a tag. Since the map is a shared host resource
1722 		 * we add the dev to the starved list so it eventually gets
1723 		 * a run when a tag is freed.
1724 		 */
1725 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1726 			spin_lock_irq(shost->host_lock);
1727 			if (list_empty(&sdev->starved_entry))
1728 				list_add_tail(&sdev->starved_entry,
1729 					      &shost->starved_list);
1730 			spin_unlock_irq(shost->host_lock);
1731 			goto not_ready;
1732 		}
1733 
1734 		if (!scsi_target_queue_ready(shost, sdev))
1735 			goto not_ready;
1736 
1737 		if (!scsi_host_queue_ready(q, shost, sdev))
1738 			goto host_not_ready;
1739 
1740 		/*
1741 		 * Finally, initialize any error handling parameters, and set up
1742 		 * the timers for timeouts.
1743 		 */
1744 		scsi_init_cmd_errh(cmd);
1745 
1746 		/*
1747 		 * Dispatch the command to the low-level driver.
1748 		 */
1749 		cmd->scsi_done = scsi_done;
1750 		rtn = scsi_dispatch_cmd(cmd);
1751 		if (rtn) {
1752 			scsi_queue_insert(cmd, rtn);
1753 			spin_lock_irq(q->queue_lock);
1754 			goto out_delay;
1755 		}
1756 		spin_lock_irq(q->queue_lock);
1757 	}
1758 
1759 	return;
1760 
1761  host_not_ready:
1762 	if (scsi_target(sdev)->can_queue > 0)
1763 		atomic_dec(&scsi_target(sdev)->target_busy);
1764  not_ready:
1765 	/*
1766 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1767 	 * must return with queue_lock held.
1768 	 *
1769 	 * Decrementing device_busy without checking it is OK, as all such
1770 	 * cases (host limits or settings) should run the queue at some
1771 	 * later time.
1772 	 */
1773 	spin_lock_irq(q->queue_lock);
1774 	blk_requeue_request(q, req);
1775 	atomic_dec(&sdev->device_busy);
1776 out_delay:
1777 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1778 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1779 }
1780 
1781 static inline int prep_to_mq(int ret)
1782 {
1783 	switch (ret) {
1784 	case BLKPREP_OK:
1785 		return 0;
1786 	case BLKPREP_DEFER:
1787 		return BLK_MQ_RQ_QUEUE_BUSY;
1788 	default:
1789 		return BLK_MQ_RQ_QUEUE_ERROR;
1790 	}
1791 }
1792 
1793 static int scsi_mq_prep_fn(struct request *req)
1794 {
1795 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1796 	struct scsi_device *sdev = req->q->queuedata;
1797 	struct Scsi_Host *shost = sdev->host;
1798 	unsigned char *sense_buf = cmd->sense_buffer;
1799 	struct scatterlist *sg;
1800 
1801 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1802 
1803 	req->special = cmd;
1804 
1805 	cmd->request = req;
1806 	cmd->device = sdev;
1807 	cmd->sense_buffer = sense_buf;
1808 
1809 	cmd->tag = req->tag;
1810 
1811 	cmd->cmnd = req->cmd;
1812 	cmd->prot_op = SCSI_PROT_NORMAL;
1813 
1814 	INIT_LIST_HEAD(&cmd->list);
1815 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1816 	cmd->jiffies_at_alloc = jiffies;
1817 
1818 	/*
1819 	 * XXX: cmd_list lookups are only used by two drivers, try to get
1820 	 * rid of this list in common code.
1821 	 */
1822 	spin_lock_irq(&sdev->list_lock);
1823 	list_add_tail(&cmd->list, &sdev->cmd_list);
1824 	spin_unlock_irq(&sdev->list_lock);
1825 
1826 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1827 	cmd->sdb.table.sgl = sg;
1828 
1829 	if (scsi_host_get_prot(shost)) {
1830 		cmd->prot_sdb = (void *)sg +
1831 			shost->sg_tablesize * sizeof(struct scatterlist);
1832 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1833 
1834 		cmd->prot_sdb->table.sgl =
1835 			(struct scatterlist *)(cmd->prot_sdb + 1);
1836 	}
1837 
1838 	if (blk_bidi_rq(req)) {
1839 		struct request *next_rq = req->next_rq;
1840 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1841 
1842 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1843 		bidi_sdb->table.sgl =
1844 			(struct scatterlist *)(bidi_sdb + 1);
1845 
1846 		next_rq->special = bidi_sdb;
1847 	}
1848 
1849 	return scsi_setup_cmnd(sdev, req);
1850 }
1851 
1852 static void scsi_mq_done(struct scsi_cmnd *cmd)
1853 {
1854 	trace_scsi_dispatch_cmd_done(cmd);
1855 	blk_mq_complete_request(cmd->request);
1856 }
1857 
1858 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req)
1859 {
1860 	struct request_queue *q = req->q;
1861 	struct scsi_device *sdev = q->queuedata;
1862 	struct Scsi_Host *shost = sdev->host;
1863 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1864 	int ret;
1865 	int reason;
1866 
1867 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1868 	if (ret)
1869 		goto out;
1870 
1871 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1872 	if (!get_device(&sdev->sdev_gendev))
1873 		goto out;
1874 
1875 	if (!scsi_dev_queue_ready(q, sdev))
1876 		goto out_put_device;
1877 	if (!scsi_target_queue_ready(shost, sdev))
1878 		goto out_dec_device_busy;
1879 	if (!scsi_host_queue_ready(q, shost, sdev))
1880 		goto out_dec_target_busy;
1881 
1882 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1883 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1884 		if (ret)
1885 			goto out_dec_host_busy;
1886 		req->cmd_flags |= REQ_DONTPREP;
1887 	}
1888 
1889 	scsi_init_cmd_errh(cmd);
1890 	cmd->scsi_done = scsi_mq_done;
1891 
1892 	reason = scsi_dispatch_cmd(cmd);
1893 	if (reason) {
1894 		scsi_set_blocked(cmd, reason);
1895 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1896 		goto out_dec_host_busy;
1897 	}
1898 
1899 	return BLK_MQ_RQ_QUEUE_OK;
1900 
1901 out_dec_host_busy:
1902 	atomic_dec(&shost->host_busy);
1903 out_dec_target_busy:
1904 	if (scsi_target(sdev)->can_queue > 0)
1905 		atomic_dec(&scsi_target(sdev)->target_busy);
1906 out_dec_device_busy:
1907 	atomic_dec(&sdev->device_busy);
1908 out_put_device:
1909 	put_device(&sdev->sdev_gendev);
1910 out:
1911 	switch (ret) {
1912 	case BLK_MQ_RQ_QUEUE_BUSY:
1913 		blk_mq_stop_hw_queue(hctx);
1914 		if (atomic_read(&sdev->device_busy) == 0 &&
1915 		    !scsi_device_blocked(sdev))
1916 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1917 		break;
1918 	case BLK_MQ_RQ_QUEUE_ERROR:
1919 		/*
1920 		 * Make sure to release all allocated ressources when
1921 		 * we hit an error, as we will never see this command
1922 		 * again.
1923 		 */
1924 		if (req->cmd_flags & REQ_DONTPREP)
1925 			scsi_mq_uninit_cmd(cmd);
1926 		break;
1927 	default:
1928 		break;
1929 	}
1930 	return ret;
1931 }
1932 
1933 static int scsi_init_request(void *data, struct request *rq,
1934 		unsigned int hctx_idx, unsigned int request_idx,
1935 		unsigned int numa_node)
1936 {
1937 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1938 
1939 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1940 			numa_node);
1941 	if (!cmd->sense_buffer)
1942 		return -ENOMEM;
1943 	return 0;
1944 }
1945 
1946 static void scsi_exit_request(void *data, struct request *rq,
1947 		unsigned int hctx_idx, unsigned int request_idx)
1948 {
1949 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1950 
1951 	kfree(cmd->sense_buffer);
1952 }
1953 
1954 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1955 {
1956 	struct device *host_dev;
1957 	u64 bounce_limit = 0xffffffff;
1958 
1959 	if (shost->unchecked_isa_dma)
1960 		return BLK_BOUNCE_ISA;
1961 	/*
1962 	 * Platforms with virtual-DMA translation
1963 	 * hardware have no practical limit.
1964 	 */
1965 	if (!PCI_DMA_BUS_IS_PHYS)
1966 		return BLK_BOUNCE_ANY;
1967 
1968 	host_dev = scsi_get_device(shost);
1969 	if (host_dev && host_dev->dma_mask)
1970 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1971 
1972 	return bounce_limit;
1973 }
1974 
1975 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1976 {
1977 	struct device *dev = shost->dma_dev;
1978 
1979 	/*
1980 	 * this limit is imposed by hardware restrictions
1981 	 */
1982 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1983 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1984 
1985 	if (scsi_host_prot_dma(shost)) {
1986 		shost->sg_prot_tablesize =
1987 			min_not_zero(shost->sg_prot_tablesize,
1988 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1989 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1990 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1991 	}
1992 
1993 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1994 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1995 	blk_queue_segment_boundary(q, shost->dma_boundary);
1996 	dma_set_seg_boundary(dev, shost->dma_boundary);
1997 
1998 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1999 
2000 	if (!shost->use_clustering)
2001 		q->limits.cluster = 0;
2002 
2003 	/*
2004 	 * set a reasonable default alignment on word boundaries: the
2005 	 * host and device may alter it using
2006 	 * blk_queue_update_dma_alignment() later.
2007 	 */
2008 	blk_queue_dma_alignment(q, 0x03);
2009 }
2010 
2011 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2012 					 request_fn_proc *request_fn)
2013 {
2014 	struct request_queue *q;
2015 
2016 	q = blk_init_queue(request_fn, NULL);
2017 	if (!q)
2018 		return NULL;
2019 	__scsi_init_queue(shost, q);
2020 	return q;
2021 }
2022 EXPORT_SYMBOL(__scsi_alloc_queue);
2023 
2024 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2025 {
2026 	struct request_queue *q;
2027 
2028 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2029 	if (!q)
2030 		return NULL;
2031 
2032 	blk_queue_prep_rq(q, scsi_prep_fn);
2033 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2034 	blk_queue_softirq_done(q, scsi_softirq_done);
2035 	blk_queue_rq_timed_out(q, scsi_times_out);
2036 	blk_queue_lld_busy(q, scsi_lld_busy);
2037 	return q;
2038 }
2039 
2040 static struct blk_mq_ops scsi_mq_ops = {
2041 	.map_queue	= blk_mq_map_queue,
2042 	.queue_rq	= scsi_queue_rq,
2043 	.complete	= scsi_softirq_done,
2044 	.timeout	= scsi_times_out,
2045 	.init_request	= scsi_init_request,
2046 	.exit_request	= scsi_exit_request,
2047 };
2048 
2049 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2050 {
2051 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2052 	if (IS_ERR(sdev->request_queue))
2053 		return NULL;
2054 
2055 	sdev->request_queue->queuedata = sdev;
2056 	__scsi_init_queue(sdev->host, sdev->request_queue);
2057 	return sdev->request_queue;
2058 }
2059 
2060 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2061 {
2062 	unsigned int cmd_size, sgl_size, tbl_size;
2063 
2064 	tbl_size = shost->sg_tablesize;
2065 	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2066 		tbl_size = SCSI_MAX_SG_SEGMENTS;
2067 	sgl_size = tbl_size * sizeof(struct scatterlist);
2068 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2069 	if (scsi_host_get_prot(shost))
2070 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2071 
2072 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2073 	shost->tag_set.ops = &scsi_mq_ops;
2074 	shost->tag_set.nr_hw_queues = 1;
2075 	shost->tag_set.queue_depth = shost->can_queue;
2076 	shost->tag_set.cmd_size = cmd_size;
2077 	shost->tag_set.numa_node = NUMA_NO_NODE;
2078 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2079 	shost->tag_set.driver_data = shost;
2080 
2081 	return blk_mq_alloc_tag_set(&shost->tag_set);
2082 }
2083 
2084 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2085 {
2086 	blk_mq_free_tag_set(&shost->tag_set);
2087 }
2088 
2089 /*
2090  * Function:    scsi_block_requests()
2091  *
2092  * Purpose:     Utility function used by low-level drivers to prevent further
2093  *		commands from being queued to the device.
2094  *
2095  * Arguments:   shost       - Host in question
2096  *
2097  * Returns:     Nothing
2098  *
2099  * Lock status: No locks are assumed held.
2100  *
2101  * Notes:       There is no timer nor any other means by which the requests
2102  *		get unblocked other than the low-level driver calling
2103  *		scsi_unblock_requests().
2104  */
2105 void scsi_block_requests(struct Scsi_Host *shost)
2106 {
2107 	shost->host_self_blocked = 1;
2108 }
2109 EXPORT_SYMBOL(scsi_block_requests);
2110 
2111 /*
2112  * Function:    scsi_unblock_requests()
2113  *
2114  * Purpose:     Utility function used by low-level drivers to allow further
2115  *		commands from being queued to the device.
2116  *
2117  * Arguments:   shost       - Host in question
2118  *
2119  * Returns:     Nothing
2120  *
2121  * Lock status: No locks are assumed held.
2122  *
2123  * Notes:       There is no timer nor any other means by which the requests
2124  *		get unblocked other than the low-level driver calling
2125  *		scsi_unblock_requests().
2126  *
2127  *		This is done as an API function so that changes to the
2128  *		internals of the scsi mid-layer won't require wholesale
2129  *		changes to drivers that use this feature.
2130  */
2131 void scsi_unblock_requests(struct Scsi_Host *shost)
2132 {
2133 	shost->host_self_blocked = 0;
2134 	scsi_run_host_queues(shost);
2135 }
2136 EXPORT_SYMBOL(scsi_unblock_requests);
2137 
2138 int __init scsi_init_queue(void)
2139 {
2140 	int i;
2141 
2142 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2143 					   sizeof(struct scsi_data_buffer),
2144 					   0, 0, NULL);
2145 	if (!scsi_sdb_cache) {
2146 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2147 		return -ENOMEM;
2148 	}
2149 
2150 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2151 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2152 		int size = sgp->size * sizeof(struct scatterlist);
2153 
2154 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2155 				SLAB_HWCACHE_ALIGN, NULL);
2156 		if (!sgp->slab) {
2157 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2158 					sgp->name);
2159 			goto cleanup_sdb;
2160 		}
2161 
2162 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2163 						     sgp->slab);
2164 		if (!sgp->pool) {
2165 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2166 					sgp->name);
2167 			goto cleanup_sdb;
2168 		}
2169 	}
2170 
2171 	return 0;
2172 
2173 cleanup_sdb:
2174 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2175 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2176 		if (sgp->pool)
2177 			mempool_destroy(sgp->pool);
2178 		if (sgp->slab)
2179 			kmem_cache_destroy(sgp->slab);
2180 	}
2181 	kmem_cache_destroy(scsi_sdb_cache);
2182 
2183 	return -ENOMEM;
2184 }
2185 
2186 void scsi_exit_queue(void)
2187 {
2188 	int i;
2189 
2190 	kmem_cache_destroy(scsi_sdb_cache);
2191 
2192 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2193 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2194 		mempool_destroy(sgp->pool);
2195 		kmem_cache_destroy(sgp->slab);
2196 	}
2197 }
2198 
2199 /**
2200  *	scsi_mode_select - issue a mode select
2201  *	@sdev:	SCSI device to be queried
2202  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2203  *	@sp:	Save page bit (0 == don't save, 1 == save)
2204  *	@modepage: mode page being requested
2205  *	@buffer: request buffer (may not be smaller than eight bytes)
2206  *	@len:	length of request buffer.
2207  *	@timeout: command timeout
2208  *	@retries: number of retries before failing
2209  *	@data: returns a structure abstracting the mode header data
2210  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2211  *		must be SCSI_SENSE_BUFFERSIZE big.
2212  *
2213  *	Returns zero if successful; negative error number or scsi
2214  *	status on error
2215  *
2216  */
2217 int
2218 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2219 		 unsigned char *buffer, int len, int timeout, int retries,
2220 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2221 {
2222 	unsigned char cmd[10];
2223 	unsigned char *real_buffer;
2224 	int ret;
2225 
2226 	memset(cmd, 0, sizeof(cmd));
2227 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2228 
2229 	if (sdev->use_10_for_ms) {
2230 		if (len > 65535)
2231 			return -EINVAL;
2232 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2233 		if (!real_buffer)
2234 			return -ENOMEM;
2235 		memcpy(real_buffer + 8, buffer, len);
2236 		len += 8;
2237 		real_buffer[0] = 0;
2238 		real_buffer[1] = 0;
2239 		real_buffer[2] = data->medium_type;
2240 		real_buffer[3] = data->device_specific;
2241 		real_buffer[4] = data->longlba ? 0x01 : 0;
2242 		real_buffer[5] = 0;
2243 		real_buffer[6] = data->block_descriptor_length >> 8;
2244 		real_buffer[7] = data->block_descriptor_length;
2245 
2246 		cmd[0] = MODE_SELECT_10;
2247 		cmd[7] = len >> 8;
2248 		cmd[8] = len;
2249 	} else {
2250 		if (len > 255 || data->block_descriptor_length > 255 ||
2251 		    data->longlba)
2252 			return -EINVAL;
2253 
2254 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2255 		if (!real_buffer)
2256 			return -ENOMEM;
2257 		memcpy(real_buffer + 4, buffer, len);
2258 		len += 4;
2259 		real_buffer[0] = 0;
2260 		real_buffer[1] = data->medium_type;
2261 		real_buffer[2] = data->device_specific;
2262 		real_buffer[3] = data->block_descriptor_length;
2263 
2264 
2265 		cmd[0] = MODE_SELECT;
2266 		cmd[4] = len;
2267 	}
2268 
2269 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2270 			       sshdr, timeout, retries, NULL);
2271 	kfree(real_buffer);
2272 	return ret;
2273 }
2274 EXPORT_SYMBOL_GPL(scsi_mode_select);
2275 
2276 /**
2277  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2278  *	@sdev:	SCSI device to be queried
2279  *	@dbd:	set if mode sense will allow block descriptors to be returned
2280  *	@modepage: mode page being requested
2281  *	@buffer: request buffer (may not be smaller than eight bytes)
2282  *	@len:	length of request buffer.
2283  *	@timeout: command timeout
2284  *	@retries: number of retries before failing
2285  *	@data: returns a structure abstracting the mode header data
2286  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2287  *		must be SCSI_SENSE_BUFFERSIZE big.
2288  *
2289  *	Returns zero if unsuccessful, or the header offset (either 4
2290  *	or 8 depending on whether a six or ten byte command was
2291  *	issued) if successful.
2292  */
2293 int
2294 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2295 		  unsigned char *buffer, int len, int timeout, int retries,
2296 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2297 {
2298 	unsigned char cmd[12];
2299 	int use_10_for_ms;
2300 	int header_length;
2301 	int result;
2302 	struct scsi_sense_hdr my_sshdr;
2303 
2304 	memset(data, 0, sizeof(*data));
2305 	memset(&cmd[0], 0, 12);
2306 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2307 	cmd[2] = modepage;
2308 
2309 	/* caller might not be interested in sense, but we need it */
2310 	if (!sshdr)
2311 		sshdr = &my_sshdr;
2312 
2313  retry:
2314 	use_10_for_ms = sdev->use_10_for_ms;
2315 
2316 	if (use_10_for_ms) {
2317 		if (len < 8)
2318 			len = 8;
2319 
2320 		cmd[0] = MODE_SENSE_10;
2321 		cmd[8] = len;
2322 		header_length = 8;
2323 	} else {
2324 		if (len < 4)
2325 			len = 4;
2326 
2327 		cmd[0] = MODE_SENSE;
2328 		cmd[4] = len;
2329 		header_length = 4;
2330 	}
2331 
2332 	memset(buffer, 0, len);
2333 
2334 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2335 				  sshdr, timeout, retries, NULL);
2336 
2337 	/* This code looks awful: what it's doing is making sure an
2338 	 * ILLEGAL REQUEST sense return identifies the actual command
2339 	 * byte as the problem.  MODE_SENSE commands can return
2340 	 * ILLEGAL REQUEST if the code page isn't supported */
2341 
2342 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2343 	    (driver_byte(result) & DRIVER_SENSE)) {
2344 		if (scsi_sense_valid(sshdr)) {
2345 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2346 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2347 				/*
2348 				 * Invalid command operation code
2349 				 */
2350 				sdev->use_10_for_ms = 0;
2351 				goto retry;
2352 			}
2353 		}
2354 	}
2355 
2356 	if(scsi_status_is_good(result)) {
2357 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2358 			     (modepage == 6 || modepage == 8))) {
2359 			/* Initio breakage? */
2360 			header_length = 0;
2361 			data->length = 13;
2362 			data->medium_type = 0;
2363 			data->device_specific = 0;
2364 			data->longlba = 0;
2365 			data->block_descriptor_length = 0;
2366 		} else if(use_10_for_ms) {
2367 			data->length = buffer[0]*256 + buffer[1] + 2;
2368 			data->medium_type = buffer[2];
2369 			data->device_specific = buffer[3];
2370 			data->longlba = buffer[4] & 0x01;
2371 			data->block_descriptor_length = buffer[6]*256
2372 				+ buffer[7];
2373 		} else {
2374 			data->length = buffer[0] + 1;
2375 			data->medium_type = buffer[1];
2376 			data->device_specific = buffer[2];
2377 			data->block_descriptor_length = buffer[3];
2378 		}
2379 		data->header_length = header_length;
2380 	}
2381 
2382 	return result;
2383 }
2384 EXPORT_SYMBOL(scsi_mode_sense);
2385 
2386 /**
2387  *	scsi_test_unit_ready - test if unit is ready
2388  *	@sdev:	scsi device to change the state of.
2389  *	@timeout: command timeout
2390  *	@retries: number of retries before failing
2391  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2392  *		returning sense. Make sure that this is cleared before passing
2393  *		in.
2394  *
2395  *	Returns zero if unsuccessful or an error if TUR failed.  For
2396  *	removable media, UNIT_ATTENTION sets ->changed flag.
2397  **/
2398 int
2399 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2400 		     struct scsi_sense_hdr *sshdr_external)
2401 {
2402 	char cmd[] = {
2403 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2404 	};
2405 	struct scsi_sense_hdr *sshdr;
2406 	int result;
2407 
2408 	if (!sshdr_external)
2409 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2410 	else
2411 		sshdr = sshdr_external;
2412 
2413 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2414 	do {
2415 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2416 					  timeout, retries, NULL);
2417 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2418 		    sshdr->sense_key == UNIT_ATTENTION)
2419 			sdev->changed = 1;
2420 	} while (scsi_sense_valid(sshdr) &&
2421 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2422 
2423 	if (!sshdr_external)
2424 		kfree(sshdr);
2425 	return result;
2426 }
2427 EXPORT_SYMBOL(scsi_test_unit_ready);
2428 
2429 /**
2430  *	scsi_device_set_state - Take the given device through the device state model.
2431  *	@sdev:	scsi device to change the state of.
2432  *	@state:	state to change to.
2433  *
2434  *	Returns zero if unsuccessful or an error if the requested
2435  *	transition is illegal.
2436  */
2437 int
2438 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2439 {
2440 	enum scsi_device_state oldstate = sdev->sdev_state;
2441 
2442 	if (state == oldstate)
2443 		return 0;
2444 
2445 	switch (state) {
2446 	case SDEV_CREATED:
2447 		switch (oldstate) {
2448 		case SDEV_CREATED_BLOCK:
2449 			break;
2450 		default:
2451 			goto illegal;
2452 		}
2453 		break;
2454 
2455 	case SDEV_RUNNING:
2456 		switch (oldstate) {
2457 		case SDEV_CREATED:
2458 		case SDEV_OFFLINE:
2459 		case SDEV_TRANSPORT_OFFLINE:
2460 		case SDEV_QUIESCE:
2461 		case SDEV_BLOCK:
2462 			break;
2463 		default:
2464 			goto illegal;
2465 		}
2466 		break;
2467 
2468 	case SDEV_QUIESCE:
2469 		switch (oldstate) {
2470 		case SDEV_RUNNING:
2471 		case SDEV_OFFLINE:
2472 		case SDEV_TRANSPORT_OFFLINE:
2473 			break;
2474 		default:
2475 			goto illegal;
2476 		}
2477 		break;
2478 
2479 	case SDEV_OFFLINE:
2480 	case SDEV_TRANSPORT_OFFLINE:
2481 		switch (oldstate) {
2482 		case SDEV_CREATED:
2483 		case SDEV_RUNNING:
2484 		case SDEV_QUIESCE:
2485 		case SDEV_BLOCK:
2486 			break;
2487 		default:
2488 			goto illegal;
2489 		}
2490 		break;
2491 
2492 	case SDEV_BLOCK:
2493 		switch (oldstate) {
2494 		case SDEV_RUNNING:
2495 		case SDEV_CREATED_BLOCK:
2496 			break;
2497 		default:
2498 			goto illegal;
2499 		}
2500 		break;
2501 
2502 	case SDEV_CREATED_BLOCK:
2503 		switch (oldstate) {
2504 		case SDEV_CREATED:
2505 			break;
2506 		default:
2507 			goto illegal;
2508 		}
2509 		break;
2510 
2511 	case SDEV_CANCEL:
2512 		switch (oldstate) {
2513 		case SDEV_CREATED:
2514 		case SDEV_RUNNING:
2515 		case SDEV_QUIESCE:
2516 		case SDEV_OFFLINE:
2517 		case SDEV_TRANSPORT_OFFLINE:
2518 		case SDEV_BLOCK:
2519 			break;
2520 		default:
2521 			goto illegal;
2522 		}
2523 		break;
2524 
2525 	case SDEV_DEL:
2526 		switch (oldstate) {
2527 		case SDEV_CREATED:
2528 		case SDEV_RUNNING:
2529 		case SDEV_OFFLINE:
2530 		case SDEV_TRANSPORT_OFFLINE:
2531 		case SDEV_CANCEL:
2532 		case SDEV_CREATED_BLOCK:
2533 			break;
2534 		default:
2535 			goto illegal;
2536 		}
2537 		break;
2538 
2539 	}
2540 	sdev->sdev_state = state;
2541 	return 0;
2542 
2543  illegal:
2544 	SCSI_LOG_ERROR_RECOVERY(1,
2545 				sdev_printk(KERN_ERR, sdev,
2546 					    "Illegal state transition %s->%s",
2547 					    scsi_device_state_name(oldstate),
2548 					    scsi_device_state_name(state))
2549 				);
2550 	return -EINVAL;
2551 }
2552 EXPORT_SYMBOL(scsi_device_set_state);
2553 
2554 /**
2555  * 	sdev_evt_emit - emit a single SCSI device uevent
2556  *	@sdev: associated SCSI device
2557  *	@evt: event to emit
2558  *
2559  *	Send a single uevent (scsi_event) to the associated scsi_device.
2560  */
2561 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2562 {
2563 	int idx = 0;
2564 	char *envp[3];
2565 
2566 	switch (evt->evt_type) {
2567 	case SDEV_EVT_MEDIA_CHANGE:
2568 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2569 		break;
2570 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2571 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2572 		break;
2573 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2574 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2575 		break;
2576 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2577 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2578 		break;
2579 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2580 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2581 		break;
2582 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2583 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2584 		break;
2585 	default:
2586 		/* do nothing */
2587 		break;
2588 	}
2589 
2590 	envp[idx++] = NULL;
2591 
2592 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2593 }
2594 
2595 /**
2596  * 	sdev_evt_thread - send a uevent for each scsi event
2597  *	@work: work struct for scsi_device
2598  *
2599  *	Dispatch queued events to their associated scsi_device kobjects
2600  *	as uevents.
2601  */
2602 void scsi_evt_thread(struct work_struct *work)
2603 {
2604 	struct scsi_device *sdev;
2605 	enum scsi_device_event evt_type;
2606 	LIST_HEAD(event_list);
2607 
2608 	sdev = container_of(work, struct scsi_device, event_work);
2609 
2610 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2611 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2612 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2613 
2614 	while (1) {
2615 		struct scsi_event *evt;
2616 		struct list_head *this, *tmp;
2617 		unsigned long flags;
2618 
2619 		spin_lock_irqsave(&sdev->list_lock, flags);
2620 		list_splice_init(&sdev->event_list, &event_list);
2621 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2622 
2623 		if (list_empty(&event_list))
2624 			break;
2625 
2626 		list_for_each_safe(this, tmp, &event_list) {
2627 			evt = list_entry(this, struct scsi_event, node);
2628 			list_del(&evt->node);
2629 			scsi_evt_emit(sdev, evt);
2630 			kfree(evt);
2631 		}
2632 	}
2633 }
2634 
2635 /**
2636  * 	sdev_evt_send - send asserted event to uevent thread
2637  *	@sdev: scsi_device event occurred on
2638  *	@evt: event to send
2639  *
2640  *	Assert scsi device event asynchronously.
2641  */
2642 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2643 {
2644 	unsigned long flags;
2645 
2646 #if 0
2647 	/* FIXME: currently this check eliminates all media change events
2648 	 * for polled devices.  Need to update to discriminate between AN
2649 	 * and polled events */
2650 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2651 		kfree(evt);
2652 		return;
2653 	}
2654 #endif
2655 
2656 	spin_lock_irqsave(&sdev->list_lock, flags);
2657 	list_add_tail(&evt->node, &sdev->event_list);
2658 	schedule_work(&sdev->event_work);
2659 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2660 }
2661 EXPORT_SYMBOL_GPL(sdev_evt_send);
2662 
2663 /**
2664  * 	sdev_evt_alloc - allocate a new scsi event
2665  *	@evt_type: type of event to allocate
2666  *	@gfpflags: GFP flags for allocation
2667  *
2668  *	Allocates and returns a new scsi_event.
2669  */
2670 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2671 				  gfp_t gfpflags)
2672 {
2673 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2674 	if (!evt)
2675 		return NULL;
2676 
2677 	evt->evt_type = evt_type;
2678 	INIT_LIST_HEAD(&evt->node);
2679 
2680 	/* evt_type-specific initialization, if any */
2681 	switch (evt_type) {
2682 	case SDEV_EVT_MEDIA_CHANGE:
2683 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2684 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2685 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2686 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2687 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2688 	default:
2689 		/* do nothing */
2690 		break;
2691 	}
2692 
2693 	return evt;
2694 }
2695 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2696 
2697 /**
2698  * 	sdev_evt_send_simple - send asserted event to uevent thread
2699  *	@sdev: scsi_device event occurred on
2700  *	@evt_type: type of event to send
2701  *	@gfpflags: GFP flags for allocation
2702  *
2703  *	Assert scsi device event asynchronously, given an event type.
2704  */
2705 void sdev_evt_send_simple(struct scsi_device *sdev,
2706 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2707 {
2708 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2709 	if (!evt) {
2710 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2711 			    evt_type);
2712 		return;
2713 	}
2714 
2715 	sdev_evt_send(sdev, evt);
2716 }
2717 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2718 
2719 /**
2720  *	scsi_device_quiesce - Block user issued commands.
2721  *	@sdev:	scsi device to quiesce.
2722  *
2723  *	This works by trying to transition to the SDEV_QUIESCE state
2724  *	(which must be a legal transition).  When the device is in this
2725  *	state, only special requests will be accepted, all others will
2726  *	be deferred.  Since special requests may also be requeued requests,
2727  *	a successful return doesn't guarantee the device will be
2728  *	totally quiescent.
2729  *
2730  *	Must be called with user context, may sleep.
2731  *
2732  *	Returns zero if unsuccessful or an error if not.
2733  */
2734 int
2735 scsi_device_quiesce(struct scsi_device *sdev)
2736 {
2737 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2738 	if (err)
2739 		return err;
2740 
2741 	scsi_run_queue(sdev->request_queue);
2742 	while (atomic_read(&sdev->device_busy)) {
2743 		msleep_interruptible(200);
2744 		scsi_run_queue(sdev->request_queue);
2745 	}
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL(scsi_device_quiesce);
2749 
2750 /**
2751  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2752  *	@sdev:	scsi device to resume.
2753  *
2754  *	Moves the device from quiesced back to running and restarts the
2755  *	queues.
2756  *
2757  *	Must be called with user context, may sleep.
2758  */
2759 void scsi_device_resume(struct scsi_device *sdev)
2760 {
2761 	/* check if the device state was mutated prior to resume, and if
2762 	 * so assume the state is being managed elsewhere (for example
2763 	 * device deleted during suspend)
2764 	 */
2765 	if (sdev->sdev_state != SDEV_QUIESCE ||
2766 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2767 		return;
2768 	scsi_run_queue(sdev->request_queue);
2769 }
2770 EXPORT_SYMBOL(scsi_device_resume);
2771 
2772 static void
2773 device_quiesce_fn(struct scsi_device *sdev, void *data)
2774 {
2775 	scsi_device_quiesce(sdev);
2776 }
2777 
2778 void
2779 scsi_target_quiesce(struct scsi_target *starget)
2780 {
2781 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2782 }
2783 EXPORT_SYMBOL(scsi_target_quiesce);
2784 
2785 static void
2786 device_resume_fn(struct scsi_device *sdev, void *data)
2787 {
2788 	scsi_device_resume(sdev);
2789 }
2790 
2791 void
2792 scsi_target_resume(struct scsi_target *starget)
2793 {
2794 	starget_for_each_device(starget, NULL, device_resume_fn);
2795 }
2796 EXPORT_SYMBOL(scsi_target_resume);
2797 
2798 /**
2799  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2800  * @sdev:	device to block
2801  *
2802  * Block request made by scsi lld's to temporarily stop all
2803  * scsi commands on the specified device.  Called from interrupt
2804  * or normal process context.
2805  *
2806  * Returns zero if successful or error if not
2807  *
2808  * Notes:
2809  *	This routine transitions the device to the SDEV_BLOCK state
2810  *	(which must be a legal transition).  When the device is in this
2811  *	state, all commands are deferred until the scsi lld reenables
2812  *	the device with scsi_device_unblock or device_block_tmo fires.
2813  */
2814 int
2815 scsi_internal_device_block(struct scsi_device *sdev)
2816 {
2817 	struct request_queue *q = sdev->request_queue;
2818 	unsigned long flags;
2819 	int err = 0;
2820 
2821 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2822 	if (err) {
2823 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824 
2825 		if (err)
2826 			return err;
2827 	}
2828 
2829 	/*
2830 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2831 	 * block layer from calling the midlayer with this device's
2832 	 * request queue.
2833 	 */
2834 	if (q->mq_ops) {
2835 		blk_mq_stop_hw_queues(q);
2836 	} else {
2837 		spin_lock_irqsave(q->queue_lock, flags);
2838 		blk_stop_queue(q);
2839 		spin_unlock_irqrestore(q->queue_lock, flags);
2840 	}
2841 
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2845 
2846 /**
2847  * scsi_internal_device_unblock - resume a device after a block request
2848  * @sdev:	device to resume
2849  * @new_state:	state to set devices to after unblocking
2850  *
2851  * Called by scsi lld's or the midlayer to restart the device queue
2852  * for the previously suspended scsi device.  Called from interrupt or
2853  * normal process context.
2854  *
2855  * Returns zero if successful or error if not.
2856  *
2857  * Notes:
2858  *	This routine transitions the device to the SDEV_RUNNING state
2859  *	or to one of the offline states (which must be a legal transition)
2860  *	allowing the midlayer to goose the queue for this device.
2861  */
2862 int
2863 scsi_internal_device_unblock(struct scsi_device *sdev,
2864 			     enum scsi_device_state new_state)
2865 {
2866 	struct request_queue *q = sdev->request_queue;
2867 	unsigned long flags;
2868 
2869 	/*
2870 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2871 	 * offlined states and goose the device queue if successful.
2872 	 */
2873 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2874 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2875 		sdev->sdev_state = new_state;
2876 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2877 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2878 		    new_state == SDEV_OFFLINE)
2879 			sdev->sdev_state = new_state;
2880 		else
2881 			sdev->sdev_state = SDEV_CREATED;
2882 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2883 		 sdev->sdev_state != SDEV_OFFLINE)
2884 		return -EINVAL;
2885 
2886 	if (q->mq_ops) {
2887 		blk_mq_start_stopped_hw_queues(q, false);
2888 	} else {
2889 		spin_lock_irqsave(q->queue_lock, flags);
2890 		blk_start_queue(q);
2891 		spin_unlock_irqrestore(q->queue_lock, flags);
2892 	}
2893 
2894 	return 0;
2895 }
2896 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2897 
2898 static void
2899 device_block(struct scsi_device *sdev, void *data)
2900 {
2901 	scsi_internal_device_block(sdev);
2902 }
2903 
2904 static int
2905 target_block(struct device *dev, void *data)
2906 {
2907 	if (scsi_is_target_device(dev))
2908 		starget_for_each_device(to_scsi_target(dev), NULL,
2909 					device_block);
2910 	return 0;
2911 }
2912 
2913 void
2914 scsi_target_block(struct device *dev)
2915 {
2916 	if (scsi_is_target_device(dev))
2917 		starget_for_each_device(to_scsi_target(dev), NULL,
2918 					device_block);
2919 	else
2920 		device_for_each_child(dev, NULL, target_block);
2921 }
2922 EXPORT_SYMBOL_GPL(scsi_target_block);
2923 
2924 static void
2925 device_unblock(struct scsi_device *sdev, void *data)
2926 {
2927 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2928 }
2929 
2930 static int
2931 target_unblock(struct device *dev, void *data)
2932 {
2933 	if (scsi_is_target_device(dev))
2934 		starget_for_each_device(to_scsi_target(dev), data,
2935 					device_unblock);
2936 	return 0;
2937 }
2938 
2939 void
2940 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2941 {
2942 	if (scsi_is_target_device(dev))
2943 		starget_for_each_device(to_scsi_target(dev), &new_state,
2944 					device_unblock);
2945 	else
2946 		device_for_each_child(dev, &new_state, target_unblock);
2947 }
2948 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2949 
2950 /**
2951  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2952  * @sgl:	scatter-gather list
2953  * @sg_count:	number of segments in sg
2954  * @offset:	offset in bytes into sg, on return offset into the mapped area
2955  * @len:	bytes to map, on return number of bytes mapped
2956  *
2957  * Returns virtual address of the start of the mapped page
2958  */
2959 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2960 			  size_t *offset, size_t *len)
2961 {
2962 	int i;
2963 	size_t sg_len = 0, len_complete = 0;
2964 	struct scatterlist *sg;
2965 	struct page *page;
2966 
2967 	WARN_ON(!irqs_disabled());
2968 
2969 	for_each_sg(sgl, sg, sg_count, i) {
2970 		len_complete = sg_len; /* Complete sg-entries */
2971 		sg_len += sg->length;
2972 		if (sg_len > *offset)
2973 			break;
2974 	}
2975 
2976 	if (unlikely(i == sg_count)) {
2977 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2978 			"elements %d\n",
2979 		       __func__, sg_len, *offset, sg_count);
2980 		WARN_ON(1);
2981 		return NULL;
2982 	}
2983 
2984 	/* Offset starting from the beginning of first page in this sg-entry */
2985 	*offset = *offset - len_complete + sg->offset;
2986 
2987 	/* Assumption: contiguous pages can be accessed as "page + i" */
2988 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2989 	*offset &= ~PAGE_MASK;
2990 
2991 	/* Bytes in this sg-entry from *offset to the end of the page */
2992 	sg_len = PAGE_SIZE - *offset;
2993 	if (*len > sg_len)
2994 		*len = sg_len;
2995 
2996 	return kmap_atomic(page);
2997 }
2998 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2999 
3000 /**
3001  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3002  * @virt:	virtual address to be unmapped
3003  */
3004 void scsi_kunmap_atomic_sg(void *virt)
3005 {
3006 	kunmap_atomic(virt);
3007 }
3008 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3009 
3010 void sdev_disable_disk_events(struct scsi_device *sdev)
3011 {
3012 	atomic_inc(&sdev->disk_events_disable_depth);
3013 }
3014 EXPORT_SYMBOL(sdev_disable_disk_events);
3015 
3016 void sdev_enable_disk_events(struct scsi_device *sdev)
3017 {
3018 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3019 		return;
3020 	atomic_dec(&sdev->disk_events_disable_depth);
3021 }
3022 EXPORT_SYMBOL(sdev_enable_disk_events);
3023