1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1999 Eric Youngdale 4 * Copyright (C) 2014 Christoph Hellwig 5 * 6 * SCSI queueing library. 7 * Initial versions: Eric Youngdale (eric@andante.org). 8 * Based upon conversations with large numbers 9 * of people at Linux Expo. 10 */ 11 12 #include <linux/bio.h> 13 #include <linux/bitops.h> 14 #include <linux/blkdev.h> 15 #include <linux/completion.h> 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 #include <linux/blk-mq.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include <scsi/scsi.h> 28 #include <scsi/scsi_cmnd.h> 29 #include <scsi/scsi_dbg.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_driver.h> 32 #include <scsi/scsi_eh.h> 33 #include <scsi/scsi_host.h> 34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 35 #include <scsi/scsi_dh.h> 36 37 #include <trace/events/scsi.h> 38 39 #include "scsi_debugfs.h" 40 #include "scsi_priv.h" 41 #include "scsi_logging.h" 42 43 /* 44 * Size of integrity metadata is usually small, 1 inline sg should 45 * cover normal cases. 46 */ 47 #ifdef CONFIG_ARCH_NO_SG_CHAIN 48 #define SCSI_INLINE_PROT_SG_CNT 0 49 #define SCSI_INLINE_SG_CNT 0 50 #else 51 #define SCSI_INLINE_PROT_SG_CNT 1 52 #define SCSI_INLINE_SG_CNT 2 53 #endif 54 55 static struct kmem_cache *scsi_sdb_cache; 56 static struct kmem_cache *scsi_sense_cache; 57 static struct kmem_cache *scsi_sense_isadma_cache; 58 static DEFINE_MUTEX(scsi_sense_cache_mutex); 59 60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd); 61 62 static inline struct kmem_cache * 63 scsi_select_sense_cache(bool unchecked_isa_dma) 64 { 65 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 66 } 67 68 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 69 unsigned char *sense_buffer) 70 { 71 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 72 sense_buffer); 73 } 74 75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 76 gfp_t gfp_mask, int numa_node) 77 { 78 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 79 gfp_mask, numa_node); 80 } 81 82 int scsi_init_sense_cache(struct Scsi_Host *shost) 83 { 84 struct kmem_cache *cache; 85 int ret = 0; 86 87 mutex_lock(&scsi_sense_cache_mutex); 88 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 89 if (cache) 90 goto exit; 91 92 if (shost->unchecked_isa_dma) { 93 scsi_sense_isadma_cache = 94 kmem_cache_create("scsi_sense_cache(DMA)", 95 SCSI_SENSE_BUFFERSIZE, 0, 96 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 97 if (!scsi_sense_isadma_cache) 98 ret = -ENOMEM; 99 } else { 100 scsi_sense_cache = 101 kmem_cache_create_usercopy("scsi_sense_cache", 102 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, 103 0, SCSI_SENSE_BUFFERSIZE, NULL); 104 if (!scsi_sense_cache) 105 ret = -ENOMEM; 106 } 107 exit: 108 mutex_unlock(&scsi_sense_cache_mutex); 109 return ret; 110 } 111 112 /* 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 114 * not change behaviour from the previous unplug mechanism, experimentation 115 * may prove this needs changing. 116 */ 117 #define SCSI_QUEUE_DELAY 3 118 119 static void 120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 121 { 122 struct Scsi_Host *host = cmd->device->host; 123 struct scsi_device *device = cmd->device; 124 struct scsi_target *starget = scsi_target(device); 125 126 /* 127 * Set the appropriate busy bit for the device/host. 128 * 129 * If the host/device isn't busy, assume that something actually 130 * completed, and that we should be able to queue a command now. 131 * 132 * Note that the prior mid-layer assumption that any host could 133 * always queue at least one command is now broken. The mid-layer 134 * will implement a user specifiable stall (see 135 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 136 * if a command is requeued with no other commands outstanding 137 * either for the device or for the host. 138 */ 139 switch (reason) { 140 case SCSI_MLQUEUE_HOST_BUSY: 141 atomic_set(&host->host_blocked, host->max_host_blocked); 142 break; 143 case SCSI_MLQUEUE_DEVICE_BUSY: 144 case SCSI_MLQUEUE_EH_RETRY: 145 atomic_set(&device->device_blocked, 146 device->max_device_blocked); 147 break; 148 case SCSI_MLQUEUE_TARGET_BUSY: 149 atomic_set(&starget->target_blocked, 150 starget->max_target_blocked); 151 break; 152 } 153 } 154 155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 156 { 157 if (cmd->request->rq_flags & RQF_DONTPREP) { 158 cmd->request->rq_flags &= ~RQF_DONTPREP; 159 scsi_mq_uninit_cmd(cmd); 160 } else { 161 WARN_ON_ONCE(true); 162 } 163 blk_mq_requeue_request(cmd->request, true); 164 } 165 166 /** 167 * __scsi_queue_insert - private queue insertion 168 * @cmd: The SCSI command being requeued 169 * @reason: The reason for the requeue 170 * @unbusy: Whether the queue should be unbusied 171 * 172 * This is a private queue insertion. The public interface 173 * scsi_queue_insert() always assumes the queue should be unbusied 174 * because it's always called before the completion. This function is 175 * for a requeue after completion, which should only occur in this 176 * file. 177 */ 178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy) 179 { 180 struct scsi_device *device = cmd->device; 181 182 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 183 "Inserting command %p into mlqueue\n", cmd)); 184 185 scsi_set_blocked(cmd, reason); 186 187 /* 188 * Decrement the counters, since these commands are no longer 189 * active on the host/device. 190 */ 191 if (unbusy) 192 scsi_device_unbusy(device, cmd); 193 194 /* 195 * Requeue this command. It will go before all other commands 196 * that are already in the queue. Schedule requeue work under 197 * lock such that the kblockd_schedule_work() call happens 198 * before blk_cleanup_queue() finishes. 199 */ 200 cmd->result = 0; 201 202 blk_mq_requeue_request(cmd->request, true); 203 } 204 205 /* 206 * Function: scsi_queue_insert() 207 * 208 * Purpose: Insert a command in the midlevel queue. 209 * 210 * Arguments: cmd - command that we are adding to queue. 211 * reason - why we are inserting command to queue. 212 * 213 * Lock status: Assumed that lock is not held upon entry. 214 * 215 * Returns: Nothing. 216 * 217 * Notes: We do this for one of two cases. Either the host is busy 218 * and it cannot accept any more commands for the time being, 219 * or the device returned QUEUE_FULL and can accept no more 220 * commands. 221 * Notes: This could be called either from an interrupt context or a 222 * normal process context. 223 */ 224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 225 { 226 __scsi_queue_insert(cmd, reason, true); 227 } 228 229 230 /** 231 * __scsi_execute - insert request and wait for the result 232 * @sdev: scsi device 233 * @cmd: scsi command 234 * @data_direction: data direction 235 * @buffer: data buffer 236 * @bufflen: len of buffer 237 * @sense: optional sense buffer 238 * @sshdr: optional decoded sense header 239 * @timeout: request timeout in seconds 240 * @retries: number of times to retry request 241 * @flags: flags for ->cmd_flags 242 * @rq_flags: flags for ->rq_flags 243 * @resid: optional residual length 244 * 245 * Returns the scsi_cmnd result field if a command was executed, or a negative 246 * Linux error code if we didn't get that far. 247 */ 248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 249 int data_direction, void *buffer, unsigned bufflen, 250 unsigned char *sense, struct scsi_sense_hdr *sshdr, 251 int timeout, int retries, u64 flags, req_flags_t rq_flags, 252 int *resid) 253 { 254 struct request *req; 255 struct scsi_request *rq; 256 int ret = DRIVER_ERROR << 24; 257 258 req = blk_get_request(sdev->request_queue, 259 data_direction == DMA_TO_DEVICE ? 260 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT); 261 if (IS_ERR(req)) 262 return ret; 263 rq = scsi_req(req); 264 265 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 266 buffer, bufflen, GFP_NOIO)) 267 goto out; 268 269 rq->cmd_len = COMMAND_SIZE(cmd[0]); 270 memcpy(rq->cmd, cmd, rq->cmd_len); 271 rq->retries = retries; 272 req->timeout = timeout; 273 req->cmd_flags |= flags; 274 req->rq_flags |= rq_flags | RQF_QUIET; 275 276 /* 277 * head injection *required* here otherwise quiesce won't work 278 */ 279 blk_execute_rq(req->q, NULL, req, 1); 280 281 /* 282 * Some devices (USB mass-storage in particular) may transfer 283 * garbage data together with a residue indicating that the data 284 * is invalid. Prevent the garbage from being misinterpreted 285 * and prevent security leaks by zeroing out the excess data. 286 */ 287 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 288 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 289 290 if (resid) 291 *resid = rq->resid_len; 292 if (sense && rq->sense_len) 293 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 294 if (sshdr) 295 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 296 ret = rq->result; 297 out: 298 blk_put_request(req); 299 300 return ret; 301 } 302 EXPORT_SYMBOL(__scsi_execute); 303 304 /* 305 * Function: scsi_init_cmd_errh() 306 * 307 * Purpose: Initialize cmd fields related to error handling. 308 * 309 * Arguments: cmd - command that is ready to be queued. 310 * 311 * Notes: This function has the job of initializing a number of 312 * fields related to error handling. Typically this will 313 * be called once for each command, as required. 314 */ 315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 316 { 317 scsi_set_resid(cmd, 0); 318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 319 if (cmd->cmd_len == 0) 320 cmd->cmd_len = scsi_command_size(cmd->cmnd); 321 } 322 323 /* 324 * Wake up the error handler if necessary. Avoid as follows that the error 325 * handler is not woken up if host in-flight requests number == 326 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination 327 * with an RCU read lock in this function to ensure that this function in 328 * its entirety either finishes before scsi_eh_scmd_add() increases the 329 * host_failed counter or that it notices the shost state change made by 330 * scsi_eh_scmd_add(). 331 */ 332 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd) 333 { 334 unsigned long flags; 335 336 rcu_read_lock(); 337 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state); 338 if (unlikely(scsi_host_in_recovery(shost))) { 339 spin_lock_irqsave(shost->host_lock, flags); 340 if (shost->host_failed || shost->host_eh_scheduled) 341 scsi_eh_wakeup(shost); 342 spin_unlock_irqrestore(shost->host_lock, flags); 343 } 344 rcu_read_unlock(); 345 } 346 347 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd) 348 { 349 struct Scsi_Host *shost = sdev->host; 350 struct scsi_target *starget = scsi_target(sdev); 351 352 scsi_dec_host_busy(shost, cmd); 353 354 if (starget->can_queue > 0) 355 atomic_dec(&starget->target_busy); 356 357 atomic_dec(&sdev->device_busy); 358 } 359 360 static void scsi_kick_queue(struct request_queue *q) 361 { 362 blk_mq_run_hw_queues(q, false); 363 } 364 365 /* 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 367 * and call blk_run_queue for all the scsi_devices on the target - 368 * including current_sdev first. 369 * 370 * Called with *no* scsi locks held. 371 */ 372 static void scsi_single_lun_run(struct scsi_device *current_sdev) 373 { 374 struct Scsi_Host *shost = current_sdev->host; 375 struct scsi_device *sdev, *tmp; 376 struct scsi_target *starget = scsi_target(current_sdev); 377 unsigned long flags; 378 379 spin_lock_irqsave(shost->host_lock, flags); 380 starget->starget_sdev_user = NULL; 381 spin_unlock_irqrestore(shost->host_lock, flags); 382 383 /* 384 * Call blk_run_queue for all LUNs on the target, starting with 385 * current_sdev. We race with others (to set starget_sdev_user), 386 * but in most cases, we will be first. Ideally, each LU on the 387 * target would get some limited time or requests on the target. 388 */ 389 scsi_kick_queue(current_sdev->request_queue); 390 391 spin_lock_irqsave(shost->host_lock, flags); 392 if (starget->starget_sdev_user) 393 goto out; 394 list_for_each_entry_safe(sdev, tmp, &starget->devices, 395 same_target_siblings) { 396 if (sdev == current_sdev) 397 continue; 398 if (scsi_device_get(sdev)) 399 continue; 400 401 spin_unlock_irqrestore(shost->host_lock, flags); 402 scsi_kick_queue(sdev->request_queue); 403 spin_lock_irqsave(shost->host_lock, flags); 404 405 scsi_device_put(sdev); 406 } 407 out: 408 spin_unlock_irqrestore(shost->host_lock, flags); 409 } 410 411 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 412 { 413 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 414 return true; 415 if (atomic_read(&sdev->device_blocked) > 0) 416 return true; 417 return false; 418 } 419 420 static inline bool scsi_target_is_busy(struct scsi_target *starget) 421 { 422 if (starget->can_queue > 0) { 423 if (atomic_read(&starget->target_busy) >= starget->can_queue) 424 return true; 425 if (atomic_read(&starget->target_blocked) > 0) 426 return true; 427 } 428 return false; 429 } 430 431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 432 { 433 if (atomic_read(&shost->host_blocked) > 0) 434 return true; 435 if (shost->host_self_blocked) 436 return true; 437 return false; 438 } 439 440 static void scsi_starved_list_run(struct Scsi_Host *shost) 441 { 442 LIST_HEAD(starved_list); 443 struct scsi_device *sdev; 444 unsigned long flags; 445 446 spin_lock_irqsave(shost->host_lock, flags); 447 list_splice_init(&shost->starved_list, &starved_list); 448 449 while (!list_empty(&starved_list)) { 450 struct request_queue *slq; 451 452 /* 453 * As long as shost is accepting commands and we have 454 * starved queues, call blk_run_queue. scsi_request_fn 455 * drops the queue_lock and can add us back to the 456 * starved_list. 457 * 458 * host_lock protects the starved_list and starved_entry. 459 * scsi_request_fn must get the host_lock before checking 460 * or modifying starved_list or starved_entry. 461 */ 462 if (scsi_host_is_busy(shost)) 463 break; 464 465 sdev = list_entry(starved_list.next, 466 struct scsi_device, starved_entry); 467 list_del_init(&sdev->starved_entry); 468 if (scsi_target_is_busy(scsi_target(sdev))) { 469 list_move_tail(&sdev->starved_entry, 470 &shost->starved_list); 471 continue; 472 } 473 474 /* 475 * Once we drop the host lock, a racing scsi_remove_device() 476 * call may remove the sdev from the starved list and destroy 477 * it and the queue. Mitigate by taking a reference to the 478 * queue and never touching the sdev again after we drop the 479 * host lock. Note: if __scsi_remove_device() invokes 480 * blk_cleanup_queue() before the queue is run from this 481 * function then blk_run_queue() will return immediately since 482 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 483 */ 484 slq = sdev->request_queue; 485 if (!blk_get_queue(slq)) 486 continue; 487 spin_unlock_irqrestore(shost->host_lock, flags); 488 489 scsi_kick_queue(slq); 490 blk_put_queue(slq); 491 492 spin_lock_irqsave(shost->host_lock, flags); 493 } 494 /* put any unprocessed entries back */ 495 list_splice(&starved_list, &shost->starved_list); 496 spin_unlock_irqrestore(shost->host_lock, flags); 497 } 498 499 /* 500 * Function: scsi_run_queue() 501 * 502 * Purpose: Select a proper request queue to serve next 503 * 504 * Arguments: q - last request's queue 505 * 506 * Returns: Nothing 507 * 508 * Notes: The previous command was completely finished, start 509 * a new one if possible. 510 */ 511 static void scsi_run_queue(struct request_queue *q) 512 { 513 struct scsi_device *sdev = q->queuedata; 514 515 if (scsi_target(sdev)->single_lun) 516 scsi_single_lun_run(sdev); 517 if (!list_empty(&sdev->host->starved_list)) 518 scsi_starved_list_run(sdev->host); 519 520 blk_mq_run_hw_queues(q, false); 521 } 522 523 void scsi_requeue_run_queue(struct work_struct *work) 524 { 525 struct scsi_device *sdev; 526 struct request_queue *q; 527 528 sdev = container_of(work, struct scsi_device, requeue_work); 529 q = sdev->request_queue; 530 scsi_run_queue(q); 531 } 532 533 void scsi_run_host_queues(struct Scsi_Host *shost) 534 { 535 struct scsi_device *sdev; 536 537 shost_for_each_device(sdev, shost) 538 scsi_run_queue(sdev->request_queue); 539 } 540 541 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 542 { 543 if (!blk_rq_is_passthrough(cmd->request)) { 544 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 545 546 if (drv->uninit_command) 547 drv->uninit_command(cmd); 548 } 549 } 550 551 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 552 { 553 if (cmd->sdb.table.nents) 554 sg_free_table_chained(&cmd->sdb.table, 555 SCSI_INLINE_SG_CNT); 556 if (scsi_prot_sg_count(cmd)) 557 sg_free_table_chained(&cmd->prot_sdb->table, 558 SCSI_INLINE_PROT_SG_CNT); 559 } 560 561 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 562 { 563 scsi_mq_free_sgtables(cmd); 564 scsi_uninit_cmd(cmd); 565 } 566 567 /* Returns false when no more bytes to process, true if there are more */ 568 static bool scsi_end_request(struct request *req, blk_status_t error, 569 unsigned int bytes) 570 { 571 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 572 struct scsi_device *sdev = cmd->device; 573 struct request_queue *q = sdev->request_queue; 574 575 if (blk_update_request(req, error, bytes)) 576 return true; 577 578 if (blk_queue_add_random(q)) 579 add_disk_randomness(req->rq_disk); 580 581 if (!blk_rq_is_scsi(req)) { 582 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED)); 583 cmd->flags &= ~SCMD_INITIALIZED; 584 } 585 586 /* 587 * Calling rcu_barrier() is not necessary here because the 588 * SCSI error handler guarantees that the function called by 589 * call_rcu() has been called before scsi_end_request() is 590 * called. 591 */ 592 destroy_rcu_head(&cmd->rcu); 593 594 /* 595 * In the MQ case the command gets freed by __blk_mq_end_request, 596 * so we have to do all cleanup that depends on it earlier. 597 * 598 * We also can't kick the queues from irq context, so we 599 * will have to defer it to a workqueue. 600 */ 601 scsi_mq_uninit_cmd(cmd); 602 603 /* 604 * queue is still alive, so grab the ref for preventing it 605 * from being cleaned up during running queue. 606 */ 607 percpu_ref_get(&q->q_usage_counter); 608 609 __blk_mq_end_request(req, error); 610 611 if (scsi_target(sdev)->single_lun || 612 !list_empty(&sdev->host->starved_list)) 613 kblockd_schedule_work(&sdev->requeue_work); 614 else 615 blk_mq_run_hw_queues(q, true); 616 617 percpu_ref_put(&q->q_usage_counter); 618 return false; 619 } 620 621 /** 622 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t 623 * @cmd: SCSI command 624 * @result: scsi error code 625 * 626 * Translate a SCSI result code into a blk_status_t value. May reset the host 627 * byte of @cmd->result. 628 */ 629 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result) 630 { 631 switch (host_byte(result)) { 632 case DID_OK: 633 /* 634 * Also check the other bytes than the status byte in result 635 * to handle the case when a SCSI LLD sets result to 636 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION. 637 */ 638 if (scsi_status_is_good(result) && (result & ~0xff) == 0) 639 return BLK_STS_OK; 640 return BLK_STS_IOERR; 641 case DID_TRANSPORT_FAILFAST: 642 return BLK_STS_TRANSPORT; 643 case DID_TARGET_FAILURE: 644 set_host_byte(cmd, DID_OK); 645 return BLK_STS_TARGET; 646 case DID_NEXUS_FAILURE: 647 set_host_byte(cmd, DID_OK); 648 return BLK_STS_NEXUS; 649 case DID_ALLOC_FAILURE: 650 set_host_byte(cmd, DID_OK); 651 return BLK_STS_NOSPC; 652 case DID_MEDIUM_ERROR: 653 set_host_byte(cmd, DID_OK); 654 return BLK_STS_MEDIUM; 655 default: 656 return BLK_STS_IOERR; 657 } 658 } 659 660 /* Helper for scsi_io_completion() when "reprep" action required. */ 661 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd, 662 struct request_queue *q) 663 { 664 /* A new command will be prepared and issued. */ 665 scsi_mq_requeue_cmd(cmd); 666 } 667 668 /* Helper for scsi_io_completion() when special action required. */ 669 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result) 670 { 671 struct request_queue *q = cmd->device->request_queue; 672 struct request *req = cmd->request; 673 int level = 0; 674 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 675 ACTION_DELAYED_RETRY} action; 676 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 677 struct scsi_sense_hdr sshdr; 678 bool sense_valid; 679 bool sense_current = true; /* false implies "deferred sense" */ 680 blk_status_t blk_stat; 681 682 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 683 if (sense_valid) 684 sense_current = !scsi_sense_is_deferred(&sshdr); 685 686 blk_stat = scsi_result_to_blk_status(cmd, result); 687 688 if (host_byte(result) == DID_RESET) { 689 /* Third party bus reset or reset for error recovery 690 * reasons. Just retry the command and see what 691 * happens. 692 */ 693 action = ACTION_RETRY; 694 } else if (sense_valid && sense_current) { 695 switch (sshdr.sense_key) { 696 case UNIT_ATTENTION: 697 if (cmd->device->removable) { 698 /* Detected disc change. Set a bit 699 * and quietly refuse further access. 700 */ 701 cmd->device->changed = 1; 702 action = ACTION_FAIL; 703 } else { 704 /* Must have been a power glitch, or a 705 * bus reset. Could not have been a 706 * media change, so we just retry the 707 * command and see what happens. 708 */ 709 action = ACTION_RETRY; 710 } 711 break; 712 case ILLEGAL_REQUEST: 713 /* If we had an ILLEGAL REQUEST returned, then 714 * we may have performed an unsupported 715 * command. The only thing this should be 716 * would be a ten byte read where only a six 717 * byte read was supported. Also, on a system 718 * where READ CAPACITY failed, we may have 719 * read past the end of the disk. 720 */ 721 if ((cmd->device->use_10_for_rw && 722 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 723 (cmd->cmnd[0] == READ_10 || 724 cmd->cmnd[0] == WRITE_10)) { 725 /* This will issue a new 6-byte command. */ 726 cmd->device->use_10_for_rw = 0; 727 action = ACTION_REPREP; 728 } else if (sshdr.asc == 0x10) /* DIX */ { 729 action = ACTION_FAIL; 730 blk_stat = BLK_STS_PROTECTION; 731 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 732 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 733 action = ACTION_FAIL; 734 blk_stat = BLK_STS_TARGET; 735 } else 736 action = ACTION_FAIL; 737 break; 738 case ABORTED_COMMAND: 739 action = ACTION_FAIL; 740 if (sshdr.asc == 0x10) /* DIF */ 741 blk_stat = BLK_STS_PROTECTION; 742 break; 743 case NOT_READY: 744 /* If the device is in the process of becoming 745 * ready, or has a temporary blockage, retry. 746 */ 747 if (sshdr.asc == 0x04) { 748 switch (sshdr.ascq) { 749 case 0x01: /* becoming ready */ 750 case 0x04: /* format in progress */ 751 case 0x05: /* rebuild in progress */ 752 case 0x06: /* recalculation in progress */ 753 case 0x07: /* operation in progress */ 754 case 0x08: /* Long write in progress */ 755 case 0x09: /* self test in progress */ 756 case 0x14: /* space allocation in progress */ 757 case 0x1a: /* start stop unit in progress */ 758 case 0x1b: /* sanitize in progress */ 759 case 0x1d: /* configuration in progress */ 760 case 0x24: /* depopulation in progress */ 761 action = ACTION_DELAYED_RETRY; 762 break; 763 default: 764 action = ACTION_FAIL; 765 break; 766 } 767 } else 768 action = ACTION_FAIL; 769 break; 770 case VOLUME_OVERFLOW: 771 /* See SSC3rXX or current. */ 772 action = ACTION_FAIL; 773 break; 774 default: 775 action = ACTION_FAIL; 776 break; 777 } 778 } else 779 action = ACTION_FAIL; 780 781 if (action != ACTION_FAIL && 782 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 783 action = ACTION_FAIL; 784 785 switch (action) { 786 case ACTION_FAIL: 787 /* Give up and fail the remainder of the request */ 788 if (!(req->rq_flags & RQF_QUIET)) { 789 static DEFINE_RATELIMIT_STATE(_rs, 790 DEFAULT_RATELIMIT_INTERVAL, 791 DEFAULT_RATELIMIT_BURST); 792 793 if (unlikely(scsi_logging_level)) 794 level = 795 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 796 SCSI_LOG_MLCOMPLETE_BITS); 797 798 /* 799 * if logging is enabled the failure will be printed 800 * in scsi_log_completion(), so avoid duplicate messages 801 */ 802 if (!level && __ratelimit(&_rs)) { 803 scsi_print_result(cmd, NULL, FAILED); 804 if (driver_byte(result) == DRIVER_SENSE) 805 scsi_print_sense(cmd); 806 scsi_print_command(cmd); 807 } 808 } 809 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req))) 810 return; 811 /*FALLTHRU*/ 812 case ACTION_REPREP: 813 scsi_io_completion_reprep(cmd, q); 814 break; 815 case ACTION_RETRY: 816 /* Retry the same command immediately */ 817 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false); 818 break; 819 case ACTION_DELAYED_RETRY: 820 /* Retry the same command after a delay */ 821 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false); 822 break; 823 } 824 } 825 826 /* 827 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a 828 * new result that may suppress further error checking. Also modifies 829 * *blk_statp in some cases. 830 */ 831 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result, 832 blk_status_t *blk_statp) 833 { 834 bool sense_valid; 835 bool sense_current = true; /* false implies "deferred sense" */ 836 struct request *req = cmd->request; 837 struct scsi_sense_hdr sshdr; 838 839 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 840 if (sense_valid) 841 sense_current = !scsi_sense_is_deferred(&sshdr); 842 843 if (blk_rq_is_passthrough(req)) { 844 if (sense_valid) { 845 /* 846 * SG_IO wants current and deferred errors 847 */ 848 scsi_req(req)->sense_len = 849 min(8 + cmd->sense_buffer[7], 850 SCSI_SENSE_BUFFERSIZE); 851 } 852 if (sense_current) 853 *blk_statp = scsi_result_to_blk_status(cmd, result); 854 } else if (blk_rq_bytes(req) == 0 && sense_current) { 855 /* 856 * Flush commands do not transfers any data, and thus cannot use 857 * good_bytes != blk_rq_bytes(req) as the signal for an error. 858 * This sets *blk_statp explicitly for the problem case. 859 */ 860 *blk_statp = scsi_result_to_blk_status(cmd, result); 861 } 862 /* 863 * Recovered errors need reporting, but they're always treated as 864 * success, so fiddle the result code here. For passthrough requests 865 * we already took a copy of the original into sreq->result which 866 * is what gets returned to the user 867 */ 868 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 869 bool do_print = true; 870 /* 871 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d] 872 * skip print since caller wants ATA registers. Only occurs 873 * on SCSI ATA PASS_THROUGH commands when CK_COND=1 874 */ 875 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 876 do_print = false; 877 else if (req->rq_flags & RQF_QUIET) 878 do_print = false; 879 if (do_print) 880 scsi_print_sense(cmd); 881 result = 0; 882 /* for passthrough, *blk_statp may be set */ 883 *blk_statp = BLK_STS_OK; 884 } 885 /* 886 * Another corner case: the SCSI status byte is non-zero but 'good'. 887 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when 888 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD 889 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related 890 * intermediate statuses (both obsolete in SAM-4) as good. 891 */ 892 if (status_byte(result) && scsi_status_is_good(result)) { 893 result = 0; 894 *blk_statp = BLK_STS_OK; 895 } 896 return result; 897 } 898 899 /* 900 * Function: scsi_io_completion() 901 * 902 * Purpose: Completion processing for block device I/O requests. 903 * 904 * Arguments: cmd - command that is finished. 905 * 906 * Lock status: Assumed that no lock is held upon entry. 907 * 908 * Returns: Nothing 909 * 910 * Notes: We will finish off the specified number of sectors. If we 911 * are done, the command block will be released and the queue 912 * function will be goosed. If we are not done then we have to 913 * figure out what to do next: 914 * 915 * a) We can call scsi_requeue_command(). The request 916 * will be unprepared and put back on the queue. Then 917 * a new command will be created for it. This should 918 * be used if we made forward progress, or if we want 919 * to switch from READ(10) to READ(6) for example. 920 * 921 * b) We can call __scsi_queue_insert(). The request will 922 * be put back on the queue and retried using the same 923 * command as before, possibly after a delay. 924 * 925 * c) We can call scsi_end_request() with blk_stat other than 926 * BLK_STS_OK, to fail the remainder of the request. 927 */ 928 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 929 { 930 int result = cmd->result; 931 struct request_queue *q = cmd->device->request_queue; 932 struct request *req = cmd->request; 933 blk_status_t blk_stat = BLK_STS_OK; 934 935 if (unlikely(result)) /* a nz result may or may not be an error */ 936 result = scsi_io_completion_nz_result(cmd, result, &blk_stat); 937 938 if (unlikely(blk_rq_is_passthrough(req))) { 939 /* 940 * scsi_result_to_blk_status may have reset the host_byte 941 */ 942 scsi_req(req)->result = cmd->result; 943 } 944 945 /* 946 * Next deal with any sectors which we were able to correctly 947 * handle. 948 */ 949 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 950 "%u sectors total, %d bytes done.\n", 951 blk_rq_sectors(req), good_bytes)); 952 953 /* 954 * Next deal with any sectors which we were able to correctly 955 * handle. Failed, zero length commands always need to drop down 956 * to retry code. Fast path should return in this block. 957 */ 958 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) { 959 if (likely(!scsi_end_request(req, blk_stat, good_bytes))) 960 return; /* no bytes remaining */ 961 } 962 963 /* Kill remainder if no retries. */ 964 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) { 965 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req))) 966 WARN_ONCE(true, 967 "Bytes remaining after failed, no-retry command"); 968 return; 969 } 970 971 /* 972 * If there had been no error, but we have leftover bytes in the 973 * requeues just queue the command up again. 974 */ 975 if (likely(result == 0)) 976 scsi_io_completion_reprep(cmd, q); 977 else 978 scsi_io_completion_action(cmd, result); 979 } 980 981 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev, 982 struct request *rq) 983 { 984 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) && 985 !op_is_write(req_op(rq)) && 986 sdev->host->hostt->dma_need_drain(rq); 987 } 988 989 /* 990 * Function: scsi_init_io() 991 * 992 * Purpose: SCSI I/O initialize function. 993 * 994 * Arguments: cmd - Command descriptor we wish to initialize 995 * 996 * Returns: BLK_STS_OK on success 997 * BLK_STS_RESOURCE if the failure is retryable 998 * BLK_STS_IOERR if the failure is fatal 999 */ 1000 blk_status_t scsi_init_io(struct scsi_cmnd *cmd) 1001 { 1002 struct scsi_device *sdev = cmd->device; 1003 struct request *rq = cmd->request; 1004 unsigned short nr_segs = blk_rq_nr_phys_segments(rq); 1005 struct scatterlist *last_sg = NULL; 1006 blk_status_t ret; 1007 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq); 1008 int count; 1009 1010 if (WARN_ON_ONCE(!nr_segs)) 1011 return BLK_STS_IOERR; 1012 1013 /* 1014 * Make sure there is space for the drain. The driver must adjust 1015 * max_hw_segments to be prepared for this. 1016 */ 1017 if (need_drain) 1018 nr_segs++; 1019 1020 /* 1021 * If sg table allocation fails, requeue request later. 1022 */ 1023 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs, 1024 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT))) 1025 return BLK_STS_RESOURCE; 1026 1027 /* 1028 * Next, walk the list, and fill in the addresses and sizes of 1029 * each segment. 1030 */ 1031 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg); 1032 1033 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) { 1034 unsigned int pad_len = 1035 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; 1036 1037 last_sg->length += pad_len; 1038 cmd->extra_len += pad_len; 1039 } 1040 1041 if (need_drain) { 1042 sg_unmark_end(last_sg); 1043 last_sg = sg_next(last_sg); 1044 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len); 1045 sg_mark_end(last_sg); 1046 1047 cmd->extra_len += sdev->dma_drain_len; 1048 count++; 1049 } 1050 1051 BUG_ON(count > cmd->sdb.table.nents); 1052 cmd->sdb.table.nents = count; 1053 cmd->sdb.length = blk_rq_payload_bytes(rq); 1054 1055 if (blk_integrity_rq(rq)) { 1056 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1057 int ivecs; 1058 1059 if (WARN_ON_ONCE(!prot_sdb)) { 1060 /* 1061 * This can happen if someone (e.g. multipath) 1062 * queues a command to a device on an adapter 1063 * that does not support DIX. 1064 */ 1065 ret = BLK_STS_IOERR; 1066 goto out_free_sgtables; 1067 } 1068 1069 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1070 1071 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1072 prot_sdb->table.sgl, 1073 SCSI_INLINE_PROT_SG_CNT)) { 1074 ret = BLK_STS_RESOURCE; 1075 goto out_free_sgtables; 1076 } 1077 1078 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1079 prot_sdb->table.sgl); 1080 BUG_ON(count > ivecs); 1081 BUG_ON(count > queue_max_integrity_segments(rq->q)); 1082 1083 cmd->prot_sdb = prot_sdb; 1084 cmd->prot_sdb->table.nents = count; 1085 } 1086 1087 return BLK_STS_OK; 1088 out_free_sgtables: 1089 scsi_mq_free_sgtables(cmd); 1090 return ret; 1091 } 1092 EXPORT_SYMBOL(scsi_init_io); 1093 1094 /** 1095 * scsi_initialize_rq - initialize struct scsi_cmnd partially 1096 * @rq: Request associated with the SCSI command to be initialized. 1097 * 1098 * This function initializes the members of struct scsi_cmnd that must be 1099 * initialized before request processing starts and that won't be 1100 * reinitialized if a SCSI command is requeued. 1101 * 1102 * Called from inside blk_get_request() for pass-through requests and from 1103 * inside scsi_init_command() for filesystem requests. 1104 */ 1105 static void scsi_initialize_rq(struct request *rq) 1106 { 1107 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1108 1109 scsi_req_init(&cmd->req); 1110 init_rcu_head(&cmd->rcu); 1111 cmd->jiffies_at_alloc = jiffies; 1112 cmd->retries = 0; 1113 } 1114 1115 /* 1116 * Only called when the request isn't completed by SCSI, and not freed by 1117 * SCSI 1118 */ 1119 static void scsi_cleanup_rq(struct request *rq) 1120 { 1121 if (rq->rq_flags & RQF_DONTPREP) { 1122 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq)); 1123 rq->rq_flags &= ~RQF_DONTPREP; 1124 } 1125 } 1126 1127 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */ 1128 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1129 { 1130 void *buf = cmd->sense_buffer; 1131 void *prot = cmd->prot_sdb; 1132 struct request *rq = blk_mq_rq_from_pdu(cmd); 1133 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS; 1134 unsigned long jiffies_at_alloc; 1135 int retries, to_clear; 1136 bool in_flight; 1137 1138 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) { 1139 flags |= SCMD_INITIALIZED; 1140 scsi_initialize_rq(rq); 1141 } 1142 1143 jiffies_at_alloc = cmd->jiffies_at_alloc; 1144 retries = cmd->retries; 1145 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1146 /* 1147 * Zero out the cmd, except for the embedded scsi_request. Only clear 1148 * the driver-private command data if the LLD does not supply a 1149 * function to initialize that data. 1150 */ 1151 to_clear = sizeof(*cmd) - sizeof(cmd->req); 1152 if (!dev->host->hostt->init_cmd_priv) 1153 to_clear += dev->host->hostt->cmd_size; 1154 memset((char *)cmd + sizeof(cmd->req), 0, to_clear); 1155 1156 cmd->device = dev; 1157 cmd->sense_buffer = buf; 1158 cmd->prot_sdb = prot; 1159 cmd->flags = flags; 1160 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1161 cmd->jiffies_at_alloc = jiffies_at_alloc; 1162 cmd->retries = retries; 1163 if (in_flight) 1164 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1165 1166 } 1167 1168 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev, 1169 struct request *req) 1170 { 1171 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1172 1173 /* 1174 * Passthrough requests may transfer data, in which case they must 1175 * a bio attached to them. Or they might contain a SCSI command 1176 * that does not transfer data, in which case they may optionally 1177 * submit a request without an attached bio. 1178 */ 1179 if (req->bio) { 1180 blk_status_t ret = scsi_init_io(cmd); 1181 if (unlikely(ret != BLK_STS_OK)) 1182 return ret; 1183 } else { 1184 BUG_ON(blk_rq_bytes(req)); 1185 1186 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1187 } 1188 1189 cmd->cmd_len = scsi_req(req)->cmd_len; 1190 cmd->cmnd = scsi_req(req)->cmd; 1191 cmd->transfersize = blk_rq_bytes(req); 1192 cmd->allowed = scsi_req(req)->retries; 1193 return BLK_STS_OK; 1194 } 1195 1196 /* 1197 * Setup a normal block command. These are simple request from filesystems 1198 * that still need to be translated to SCSI CDBs from the ULD. 1199 */ 1200 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev, 1201 struct request *req) 1202 { 1203 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1204 1205 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1206 blk_status_t ret = sdev->handler->prep_fn(sdev, req); 1207 if (ret != BLK_STS_OK) 1208 return ret; 1209 } 1210 1211 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1212 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1213 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1214 } 1215 1216 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev, 1217 struct request *req) 1218 { 1219 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1220 1221 if (!blk_rq_bytes(req)) 1222 cmd->sc_data_direction = DMA_NONE; 1223 else if (rq_data_dir(req) == WRITE) 1224 cmd->sc_data_direction = DMA_TO_DEVICE; 1225 else 1226 cmd->sc_data_direction = DMA_FROM_DEVICE; 1227 1228 if (blk_rq_is_scsi(req)) 1229 return scsi_setup_scsi_cmnd(sdev, req); 1230 else 1231 return scsi_setup_fs_cmnd(sdev, req); 1232 } 1233 1234 static blk_status_t 1235 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1236 { 1237 switch (sdev->sdev_state) { 1238 case SDEV_OFFLINE: 1239 case SDEV_TRANSPORT_OFFLINE: 1240 /* 1241 * If the device is offline we refuse to process any 1242 * commands. The device must be brought online 1243 * before trying any recovery commands. 1244 */ 1245 if (!sdev->offline_already) { 1246 sdev->offline_already = true; 1247 sdev_printk(KERN_ERR, sdev, 1248 "rejecting I/O to offline device\n"); 1249 } 1250 return BLK_STS_IOERR; 1251 case SDEV_DEL: 1252 /* 1253 * If the device is fully deleted, we refuse to 1254 * process any commands as well. 1255 */ 1256 sdev_printk(KERN_ERR, sdev, 1257 "rejecting I/O to dead device\n"); 1258 return BLK_STS_IOERR; 1259 case SDEV_BLOCK: 1260 case SDEV_CREATED_BLOCK: 1261 return BLK_STS_RESOURCE; 1262 case SDEV_QUIESCE: 1263 /* 1264 * If the devices is blocked we defer normal commands. 1265 */ 1266 if (req && !(req->rq_flags & RQF_PREEMPT)) 1267 return BLK_STS_RESOURCE; 1268 return BLK_STS_OK; 1269 default: 1270 /* 1271 * For any other not fully online state we only allow 1272 * special commands. In particular any user initiated 1273 * command is not allowed. 1274 */ 1275 if (req && !(req->rq_flags & RQF_PREEMPT)) 1276 return BLK_STS_IOERR; 1277 return BLK_STS_OK; 1278 } 1279 } 1280 1281 /* 1282 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1283 * return 0. 1284 * 1285 * Called with the queue_lock held. 1286 */ 1287 static inline int scsi_dev_queue_ready(struct request_queue *q, 1288 struct scsi_device *sdev) 1289 { 1290 unsigned int busy; 1291 1292 busy = atomic_inc_return(&sdev->device_busy) - 1; 1293 if (atomic_read(&sdev->device_blocked)) { 1294 if (busy) 1295 goto out_dec; 1296 1297 /* 1298 * unblock after device_blocked iterates to zero 1299 */ 1300 if (atomic_dec_return(&sdev->device_blocked) > 0) 1301 goto out_dec; 1302 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1303 "unblocking device at zero depth\n")); 1304 } 1305 1306 if (busy >= sdev->queue_depth) 1307 goto out_dec; 1308 1309 return 1; 1310 out_dec: 1311 atomic_dec(&sdev->device_busy); 1312 return 0; 1313 } 1314 1315 /* 1316 * scsi_target_queue_ready: checks if there we can send commands to target 1317 * @sdev: scsi device on starget to check. 1318 */ 1319 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1320 struct scsi_device *sdev) 1321 { 1322 struct scsi_target *starget = scsi_target(sdev); 1323 unsigned int busy; 1324 1325 if (starget->single_lun) { 1326 spin_lock_irq(shost->host_lock); 1327 if (starget->starget_sdev_user && 1328 starget->starget_sdev_user != sdev) { 1329 spin_unlock_irq(shost->host_lock); 1330 return 0; 1331 } 1332 starget->starget_sdev_user = sdev; 1333 spin_unlock_irq(shost->host_lock); 1334 } 1335 1336 if (starget->can_queue <= 0) 1337 return 1; 1338 1339 busy = atomic_inc_return(&starget->target_busy) - 1; 1340 if (atomic_read(&starget->target_blocked) > 0) { 1341 if (busy) 1342 goto starved; 1343 1344 /* 1345 * unblock after target_blocked iterates to zero 1346 */ 1347 if (atomic_dec_return(&starget->target_blocked) > 0) 1348 goto out_dec; 1349 1350 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1351 "unblocking target at zero depth\n")); 1352 } 1353 1354 if (busy >= starget->can_queue) 1355 goto starved; 1356 1357 return 1; 1358 1359 starved: 1360 spin_lock_irq(shost->host_lock); 1361 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1362 spin_unlock_irq(shost->host_lock); 1363 out_dec: 1364 if (starget->can_queue > 0) 1365 atomic_dec(&starget->target_busy); 1366 return 0; 1367 } 1368 1369 /* 1370 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1371 * return 0. We must end up running the queue again whenever 0 is 1372 * returned, else IO can hang. 1373 */ 1374 static inline int scsi_host_queue_ready(struct request_queue *q, 1375 struct Scsi_Host *shost, 1376 struct scsi_device *sdev, 1377 struct scsi_cmnd *cmd) 1378 { 1379 if (scsi_host_in_recovery(shost)) 1380 return 0; 1381 1382 if (atomic_read(&shost->host_blocked) > 0) { 1383 if (scsi_host_busy(shost) > 0) 1384 goto starved; 1385 1386 /* 1387 * unblock after host_blocked iterates to zero 1388 */ 1389 if (atomic_dec_return(&shost->host_blocked) > 0) 1390 goto out_dec; 1391 1392 SCSI_LOG_MLQUEUE(3, 1393 shost_printk(KERN_INFO, shost, 1394 "unblocking host at zero depth\n")); 1395 } 1396 1397 if (shost->host_self_blocked) 1398 goto starved; 1399 1400 /* We're OK to process the command, so we can't be starved */ 1401 if (!list_empty(&sdev->starved_entry)) { 1402 spin_lock_irq(shost->host_lock); 1403 if (!list_empty(&sdev->starved_entry)) 1404 list_del_init(&sdev->starved_entry); 1405 spin_unlock_irq(shost->host_lock); 1406 } 1407 1408 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state); 1409 1410 return 1; 1411 1412 starved: 1413 spin_lock_irq(shost->host_lock); 1414 if (list_empty(&sdev->starved_entry)) 1415 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1416 spin_unlock_irq(shost->host_lock); 1417 out_dec: 1418 scsi_dec_host_busy(shost, cmd); 1419 return 0; 1420 } 1421 1422 /* 1423 * Busy state exporting function for request stacking drivers. 1424 * 1425 * For efficiency, no lock is taken to check the busy state of 1426 * shost/starget/sdev, since the returned value is not guaranteed and 1427 * may be changed after request stacking drivers call the function, 1428 * regardless of taking lock or not. 1429 * 1430 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1431 * needs to return 'not busy'. Otherwise, request stacking drivers 1432 * may hold requests forever. 1433 */ 1434 static bool scsi_mq_lld_busy(struct request_queue *q) 1435 { 1436 struct scsi_device *sdev = q->queuedata; 1437 struct Scsi_Host *shost; 1438 1439 if (blk_queue_dying(q)) 1440 return false; 1441 1442 shost = sdev->host; 1443 1444 /* 1445 * Ignore host/starget busy state. 1446 * Since block layer does not have a concept of fairness across 1447 * multiple queues, congestion of host/starget needs to be handled 1448 * in SCSI layer. 1449 */ 1450 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1451 return true; 1452 1453 return false; 1454 } 1455 1456 static void scsi_softirq_done(struct request *rq) 1457 { 1458 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1459 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1460 int disposition; 1461 1462 INIT_LIST_HEAD(&cmd->eh_entry); 1463 1464 atomic_inc(&cmd->device->iodone_cnt); 1465 if (cmd->result) 1466 atomic_inc(&cmd->device->ioerr_cnt); 1467 1468 disposition = scsi_decide_disposition(cmd); 1469 if (disposition != SUCCESS && 1470 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1471 scmd_printk(KERN_ERR, cmd, 1472 "timing out command, waited %lus\n", 1473 wait_for/HZ); 1474 disposition = SUCCESS; 1475 } 1476 1477 scsi_log_completion(cmd, disposition); 1478 1479 switch (disposition) { 1480 case SUCCESS: 1481 scsi_finish_command(cmd); 1482 break; 1483 case NEEDS_RETRY: 1484 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1485 break; 1486 case ADD_TO_MLQUEUE: 1487 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1488 break; 1489 default: 1490 scsi_eh_scmd_add(cmd); 1491 break; 1492 } 1493 } 1494 1495 /** 1496 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1497 * @cmd: command block we are dispatching. 1498 * 1499 * Return: nonzero return request was rejected and device's queue needs to be 1500 * plugged. 1501 */ 1502 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1503 { 1504 struct Scsi_Host *host = cmd->device->host; 1505 int rtn = 0; 1506 1507 atomic_inc(&cmd->device->iorequest_cnt); 1508 1509 /* check if the device is still usable */ 1510 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1511 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1512 * returns an immediate error upwards, and signals 1513 * that the device is no longer present */ 1514 cmd->result = DID_NO_CONNECT << 16; 1515 goto done; 1516 } 1517 1518 /* Check to see if the scsi lld made this device blocked. */ 1519 if (unlikely(scsi_device_blocked(cmd->device))) { 1520 /* 1521 * in blocked state, the command is just put back on 1522 * the device queue. The suspend state has already 1523 * blocked the queue so future requests should not 1524 * occur until the device transitions out of the 1525 * suspend state. 1526 */ 1527 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1528 "queuecommand : device blocked\n")); 1529 return SCSI_MLQUEUE_DEVICE_BUSY; 1530 } 1531 1532 /* Store the LUN value in cmnd, if needed. */ 1533 if (cmd->device->lun_in_cdb) 1534 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1535 (cmd->device->lun << 5 & 0xe0); 1536 1537 scsi_log_send(cmd); 1538 1539 /* 1540 * Before we queue this command, check if the command 1541 * length exceeds what the host adapter can handle. 1542 */ 1543 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1544 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1545 "queuecommand : command too long. " 1546 "cdb_size=%d host->max_cmd_len=%d\n", 1547 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1548 cmd->result = (DID_ABORT << 16); 1549 goto done; 1550 } 1551 1552 if (unlikely(host->shost_state == SHOST_DEL)) { 1553 cmd->result = (DID_NO_CONNECT << 16); 1554 goto done; 1555 1556 } 1557 1558 trace_scsi_dispatch_cmd_start(cmd); 1559 rtn = host->hostt->queuecommand(host, cmd); 1560 if (rtn) { 1561 trace_scsi_dispatch_cmd_error(cmd, rtn); 1562 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1563 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1564 rtn = SCSI_MLQUEUE_HOST_BUSY; 1565 1566 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1567 "queuecommand : request rejected\n")); 1568 } 1569 1570 return rtn; 1571 done: 1572 cmd->scsi_done(cmd); 1573 return 0; 1574 } 1575 1576 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1577 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost) 1578 { 1579 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) * 1580 sizeof(struct scatterlist); 1581 } 1582 1583 static blk_status_t scsi_mq_prep_fn(struct request *req) 1584 { 1585 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1586 struct scsi_device *sdev = req->q->queuedata; 1587 struct Scsi_Host *shost = sdev->host; 1588 struct scatterlist *sg; 1589 1590 scsi_init_command(sdev, cmd); 1591 1592 cmd->request = req; 1593 cmd->tag = req->tag; 1594 cmd->prot_op = SCSI_PROT_NORMAL; 1595 1596 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1597 cmd->sdb.table.sgl = sg; 1598 1599 if (scsi_host_get_prot(shost)) { 1600 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1601 1602 cmd->prot_sdb->table.sgl = 1603 (struct scatterlist *)(cmd->prot_sdb + 1); 1604 } 1605 1606 blk_mq_start_request(req); 1607 1608 return scsi_setup_cmnd(sdev, req); 1609 } 1610 1611 static void scsi_mq_done(struct scsi_cmnd *cmd) 1612 { 1613 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state))) 1614 return; 1615 trace_scsi_dispatch_cmd_done(cmd); 1616 1617 /* 1618 * If the block layer didn't complete the request due to a timeout 1619 * injection, scsi must clear its internal completed state so that the 1620 * timeout handler will see it needs to escalate its own error 1621 * recovery. 1622 */ 1623 if (unlikely(!blk_mq_complete_request(cmd->request))) 1624 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1625 } 1626 1627 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx) 1628 { 1629 struct request_queue *q = hctx->queue; 1630 struct scsi_device *sdev = q->queuedata; 1631 1632 atomic_dec(&sdev->device_busy); 1633 } 1634 1635 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx) 1636 { 1637 struct request_queue *q = hctx->queue; 1638 struct scsi_device *sdev = q->queuedata; 1639 1640 return scsi_dev_queue_ready(q, sdev); 1641 } 1642 1643 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1644 const struct blk_mq_queue_data *bd) 1645 { 1646 struct request *req = bd->rq; 1647 struct request_queue *q = req->q; 1648 struct scsi_device *sdev = q->queuedata; 1649 struct Scsi_Host *shost = sdev->host; 1650 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1651 blk_status_t ret; 1652 int reason; 1653 1654 /* 1655 * If the device is not in running state we will reject some or all 1656 * commands. 1657 */ 1658 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1659 ret = scsi_prep_state_check(sdev, req); 1660 if (ret != BLK_STS_OK) 1661 goto out_put_budget; 1662 } 1663 1664 ret = BLK_STS_RESOURCE; 1665 if (!scsi_target_queue_ready(shost, sdev)) 1666 goto out_put_budget; 1667 if (!scsi_host_queue_ready(q, shost, sdev, cmd)) 1668 goto out_dec_target_busy; 1669 1670 if (!(req->rq_flags & RQF_DONTPREP)) { 1671 ret = scsi_mq_prep_fn(req); 1672 if (ret != BLK_STS_OK) 1673 goto out_dec_host_busy; 1674 req->rq_flags |= RQF_DONTPREP; 1675 } else { 1676 clear_bit(SCMD_STATE_COMPLETE, &cmd->state); 1677 blk_mq_start_request(req); 1678 } 1679 1680 cmd->flags &= SCMD_PRESERVED_FLAGS; 1681 if (sdev->simple_tags) 1682 cmd->flags |= SCMD_TAGGED; 1683 if (bd->last) 1684 cmd->flags |= SCMD_LAST; 1685 1686 scsi_init_cmd_errh(cmd); 1687 cmd->scsi_done = scsi_mq_done; 1688 1689 reason = scsi_dispatch_cmd(cmd); 1690 if (reason) { 1691 scsi_set_blocked(cmd, reason); 1692 ret = BLK_STS_RESOURCE; 1693 goto out_dec_host_busy; 1694 } 1695 1696 return BLK_STS_OK; 1697 1698 out_dec_host_busy: 1699 scsi_dec_host_busy(shost, cmd); 1700 out_dec_target_busy: 1701 if (scsi_target(sdev)->can_queue > 0) 1702 atomic_dec(&scsi_target(sdev)->target_busy); 1703 out_put_budget: 1704 scsi_mq_put_budget(hctx); 1705 switch (ret) { 1706 case BLK_STS_OK: 1707 break; 1708 case BLK_STS_RESOURCE: 1709 case BLK_STS_ZONE_RESOURCE: 1710 if (atomic_read(&sdev->device_busy) || 1711 scsi_device_blocked(sdev)) 1712 ret = BLK_STS_DEV_RESOURCE; 1713 break; 1714 default: 1715 if (unlikely(!scsi_device_online(sdev))) 1716 scsi_req(req)->result = DID_NO_CONNECT << 16; 1717 else 1718 scsi_req(req)->result = DID_ERROR << 16; 1719 /* 1720 * Make sure to release all allocated resources when 1721 * we hit an error, as we will never see this command 1722 * again. 1723 */ 1724 if (req->rq_flags & RQF_DONTPREP) 1725 scsi_mq_uninit_cmd(cmd); 1726 break; 1727 } 1728 return ret; 1729 } 1730 1731 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1732 bool reserved) 1733 { 1734 if (reserved) 1735 return BLK_EH_RESET_TIMER; 1736 return scsi_times_out(req); 1737 } 1738 1739 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1740 unsigned int hctx_idx, unsigned int numa_node) 1741 { 1742 struct Scsi_Host *shost = set->driver_data; 1743 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 1744 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1745 struct scatterlist *sg; 1746 int ret = 0; 1747 1748 if (unchecked_isa_dma) 1749 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 1750 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 1751 GFP_KERNEL, numa_node); 1752 if (!cmd->sense_buffer) 1753 return -ENOMEM; 1754 cmd->req.sense = cmd->sense_buffer; 1755 1756 if (scsi_host_get_prot(shost)) { 1757 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 1758 shost->hostt->cmd_size; 1759 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost); 1760 } 1761 1762 if (shost->hostt->init_cmd_priv) { 1763 ret = shost->hostt->init_cmd_priv(shost, cmd); 1764 if (ret < 0) 1765 scsi_free_sense_buffer(unchecked_isa_dma, 1766 cmd->sense_buffer); 1767 } 1768 1769 return ret; 1770 } 1771 1772 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1773 unsigned int hctx_idx) 1774 { 1775 struct Scsi_Host *shost = set->driver_data; 1776 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1777 1778 if (shost->hostt->exit_cmd_priv) 1779 shost->hostt->exit_cmd_priv(shost, cmd); 1780 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 1781 cmd->sense_buffer); 1782 } 1783 1784 static int scsi_map_queues(struct blk_mq_tag_set *set) 1785 { 1786 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 1787 1788 if (shost->hostt->map_queues) 1789 return shost->hostt->map_queues(shost); 1790 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1791 } 1792 1793 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 1794 { 1795 struct device *dev = shost->dma_dev; 1796 1797 /* 1798 * this limit is imposed by hardware restrictions 1799 */ 1800 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1801 SG_MAX_SEGMENTS)); 1802 1803 if (scsi_host_prot_dma(shost)) { 1804 shost->sg_prot_tablesize = 1805 min_not_zero(shost->sg_prot_tablesize, 1806 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1807 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1808 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1809 } 1810 1811 if (dev->dma_mask) { 1812 shost->max_sectors = min_t(unsigned int, shost->max_sectors, 1813 dma_max_mapping_size(dev) >> SECTOR_SHIFT); 1814 } 1815 blk_queue_max_hw_sectors(q, shost->max_sectors); 1816 if (shost->unchecked_isa_dma) 1817 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA); 1818 blk_queue_segment_boundary(q, shost->dma_boundary); 1819 dma_set_seg_boundary(dev, shost->dma_boundary); 1820 1821 blk_queue_max_segment_size(q, shost->max_segment_size); 1822 blk_queue_virt_boundary(q, shost->virt_boundary_mask); 1823 dma_set_max_seg_size(dev, queue_max_segment_size(q)); 1824 1825 /* 1826 * Set a reasonable default alignment: The larger of 32-byte (dword), 1827 * which is a common minimum for HBAs, and the minimum DMA alignment, 1828 * which is set by the platform. 1829 * 1830 * Devices that require a bigger alignment can increase it later. 1831 */ 1832 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1); 1833 } 1834 EXPORT_SYMBOL_GPL(__scsi_init_queue); 1835 1836 static const struct blk_mq_ops scsi_mq_ops_no_commit = { 1837 .get_budget = scsi_mq_get_budget, 1838 .put_budget = scsi_mq_put_budget, 1839 .queue_rq = scsi_queue_rq, 1840 .complete = scsi_softirq_done, 1841 .timeout = scsi_timeout, 1842 #ifdef CONFIG_BLK_DEBUG_FS 1843 .show_rq = scsi_show_rq, 1844 #endif 1845 .init_request = scsi_mq_init_request, 1846 .exit_request = scsi_mq_exit_request, 1847 .initialize_rq_fn = scsi_initialize_rq, 1848 .cleanup_rq = scsi_cleanup_rq, 1849 .busy = scsi_mq_lld_busy, 1850 .map_queues = scsi_map_queues, 1851 }; 1852 1853 1854 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx) 1855 { 1856 struct request_queue *q = hctx->queue; 1857 struct scsi_device *sdev = q->queuedata; 1858 struct Scsi_Host *shost = sdev->host; 1859 1860 shost->hostt->commit_rqs(shost, hctx->queue_num); 1861 } 1862 1863 static const struct blk_mq_ops scsi_mq_ops = { 1864 .get_budget = scsi_mq_get_budget, 1865 .put_budget = scsi_mq_put_budget, 1866 .queue_rq = scsi_queue_rq, 1867 .commit_rqs = scsi_commit_rqs, 1868 .complete = scsi_softirq_done, 1869 .timeout = scsi_timeout, 1870 #ifdef CONFIG_BLK_DEBUG_FS 1871 .show_rq = scsi_show_rq, 1872 #endif 1873 .init_request = scsi_mq_init_request, 1874 .exit_request = scsi_mq_exit_request, 1875 .initialize_rq_fn = scsi_initialize_rq, 1876 .cleanup_rq = scsi_cleanup_rq, 1877 .busy = scsi_mq_lld_busy, 1878 .map_queues = scsi_map_queues, 1879 }; 1880 1881 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 1882 { 1883 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 1884 if (IS_ERR(sdev->request_queue)) 1885 return NULL; 1886 1887 sdev->request_queue->queuedata = sdev; 1888 __scsi_init_queue(sdev->host, sdev->request_queue); 1889 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue); 1890 return sdev->request_queue; 1891 } 1892 1893 int scsi_mq_setup_tags(struct Scsi_Host *shost) 1894 { 1895 unsigned int cmd_size, sgl_size; 1896 1897 sgl_size = max_t(unsigned int, sizeof(struct scatterlist), 1898 scsi_mq_inline_sgl_size(shost)); 1899 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 1900 if (scsi_host_get_prot(shost)) 1901 cmd_size += sizeof(struct scsi_data_buffer) + 1902 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT; 1903 1904 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 1905 if (shost->hostt->commit_rqs) 1906 shost->tag_set.ops = &scsi_mq_ops; 1907 else 1908 shost->tag_set.ops = &scsi_mq_ops_no_commit; 1909 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 1910 shost->tag_set.queue_depth = shost->can_queue; 1911 shost->tag_set.cmd_size = cmd_size; 1912 shost->tag_set.numa_node = NUMA_NO_NODE; 1913 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1914 shost->tag_set.flags |= 1915 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 1916 shost->tag_set.driver_data = shost; 1917 1918 return blk_mq_alloc_tag_set(&shost->tag_set); 1919 } 1920 1921 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 1922 { 1923 blk_mq_free_tag_set(&shost->tag_set); 1924 } 1925 1926 /** 1927 * scsi_device_from_queue - return sdev associated with a request_queue 1928 * @q: The request queue to return the sdev from 1929 * 1930 * Return the sdev associated with a request queue or NULL if the 1931 * request_queue does not reference a SCSI device. 1932 */ 1933 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 1934 { 1935 struct scsi_device *sdev = NULL; 1936 1937 if (q->mq_ops == &scsi_mq_ops_no_commit || 1938 q->mq_ops == &scsi_mq_ops) 1939 sdev = q->queuedata; 1940 if (!sdev || !get_device(&sdev->sdev_gendev)) 1941 sdev = NULL; 1942 1943 return sdev; 1944 } 1945 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 1946 1947 /* 1948 * Function: scsi_block_requests() 1949 * 1950 * Purpose: Utility function used by low-level drivers to prevent further 1951 * commands from being queued to the device. 1952 * 1953 * Arguments: shost - Host in question 1954 * 1955 * Returns: Nothing 1956 * 1957 * Lock status: No locks are assumed held. 1958 * 1959 * Notes: There is no timer nor any other means by which the requests 1960 * get unblocked other than the low-level driver calling 1961 * scsi_unblock_requests(). 1962 */ 1963 void scsi_block_requests(struct Scsi_Host *shost) 1964 { 1965 shost->host_self_blocked = 1; 1966 } 1967 EXPORT_SYMBOL(scsi_block_requests); 1968 1969 /* 1970 * Function: scsi_unblock_requests() 1971 * 1972 * Purpose: Utility function used by low-level drivers to allow further 1973 * commands from being queued to the device. 1974 * 1975 * Arguments: shost - Host in question 1976 * 1977 * Returns: Nothing 1978 * 1979 * Lock status: No locks are assumed held. 1980 * 1981 * Notes: There is no timer nor any other means by which the requests 1982 * get unblocked other than the low-level driver calling 1983 * scsi_unblock_requests(). 1984 * 1985 * This is done as an API function so that changes to the 1986 * internals of the scsi mid-layer won't require wholesale 1987 * changes to drivers that use this feature. 1988 */ 1989 void scsi_unblock_requests(struct Scsi_Host *shost) 1990 { 1991 shost->host_self_blocked = 0; 1992 scsi_run_host_queues(shost); 1993 } 1994 EXPORT_SYMBOL(scsi_unblock_requests); 1995 1996 int __init scsi_init_queue(void) 1997 { 1998 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1999 sizeof(struct scsi_data_buffer), 2000 0, 0, NULL); 2001 if (!scsi_sdb_cache) { 2002 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2003 return -ENOMEM; 2004 } 2005 2006 return 0; 2007 } 2008 2009 void scsi_exit_queue(void) 2010 { 2011 kmem_cache_destroy(scsi_sense_cache); 2012 kmem_cache_destroy(scsi_sense_isadma_cache); 2013 kmem_cache_destroy(scsi_sdb_cache); 2014 } 2015 2016 /** 2017 * scsi_mode_select - issue a mode select 2018 * @sdev: SCSI device to be queried 2019 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2020 * @sp: Save page bit (0 == don't save, 1 == save) 2021 * @modepage: mode page being requested 2022 * @buffer: request buffer (may not be smaller than eight bytes) 2023 * @len: length of request buffer. 2024 * @timeout: command timeout 2025 * @retries: number of retries before failing 2026 * @data: returns a structure abstracting the mode header data 2027 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2028 * must be SCSI_SENSE_BUFFERSIZE big. 2029 * 2030 * Returns zero if successful; negative error number or scsi 2031 * status on error 2032 * 2033 */ 2034 int 2035 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2036 unsigned char *buffer, int len, int timeout, int retries, 2037 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2038 { 2039 unsigned char cmd[10]; 2040 unsigned char *real_buffer; 2041 int ret; 2042 2043 memset(cmd, 0, sizeof(cmd)); 2044 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2045 2046 if (sdev->use_10_for_ms) { 2047 if (len > 65535) 2048 return -EINVAL; 2049 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2050 if (!real_buffer) 2051 return -ENOMEM; 2052 memcpy(real_buffer + 8, buffer, len); 2053 len += 8; 2054 real_buffer[0] = 0; 2055 real_buffer[1] = 0; 2056 real_buffer[2] = data->medium_type; 2057 real_buffer[3] = data->device_specific; 2058 real_buffer[4] = data->longlba ? 0x01 : 0; 2059 real_buffer[5] = 0; 2060 real_buffer[6] = data->block_descriptor_length >> 8; 2061 real_buffer[7] = data->block_descriptor_length; 2062 2063 cmd[0] = MODE_SELECT_10; 2064 cmd[7] = len >> 8; 2065 cmd[8] = len; 2066 } else { 2067 if (len > 255 || data->block_descriptor_length > 255 || 2068 data->longlba) 2069 return -EINVAL; 2070 2071 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2072 if (!real_buffer) 2073 return -ENOMEM; 2074 memcpy(real_buffer + 4, buffer, len); 2075 len += 4; 2076 real_buffer[0] = 0; 2077 real_buffer[1] = data->medium_type; 2078 real_buffer[2] = data->device_specific; 2079 real_buffer[3] = data->block_descriptor_length; 2080 2081 2082 cmd[0] = MODE_SELECT; 2083 cmd[4] = len; 2084 } 2085 2086 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2087 sshdr, timeout, retries, NULL); 2088 kfree(real_buffer); 2089 return ret; 2090 } 2091 EXPORT_SYMBOL_GPL(scsi_mode_select); 2092 2093 /** 2094 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2095 * @sdev: SCSI device to be queried 2096 * @dbd: set if mode sense will allow block descriptors to be returned 2097 * @modepage: mode page being requested 2098 * @buffer: request buffer (may not be smaller than eight bytes) 2099 * @len: length of request buffer. 2100 * @timeout: command timeout 2101 * @retries: number of retries before failing 2102 * @data: returns a structure abstracting the mode header data 2103 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2104 * must be SCSI_SENSE_BUFFERSIZE big. 2105 * 2106 * Returns zero if unsuccessful, or the header offset (either 4 2107 * or 8 depending on whether a six or ten byte command was 2108 * issued) if successful. 2109 */ 2110 int 2111 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2112 unsigned char *buffer, int len, int timeout, int retries, 2113 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2114 { 2115 unsigned char cmd[12]; 2116 int use_10_for_ms; 2117 int header_length; 2118 int result, retry_count = retries; 2119 struct scsi_sense_hdr my_sshdr; 2120 2121 memset(data, 0, sizeof(*data)); 2122 memset(&cmd[0], 0, 12); 2123 2124 dbd = sdev->set_dbd_for_ms ? 8 : dbd; 2125 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2126 cmd[2] = modepage; 2127 2128 /* caller might not be interested in sense, but we need it */ 2129 if (!sshdr) 2130 sshdr = &my_sshdr; 2131 2132 retry: 2133 use_10_for_ms = sdev->use_10_for_ms; 2134 2135 if (use_10_for_ms) { 2136 if (len < 8) 2137 len = 8; 2138 2139 cmd[0] = MODE_SENSE_10; 2140 cmd[8] = len; 2141 header_length = 8; 2142 } else { 2143 if (len < 4) 2144 len = 4; 2145 2146 cmd[0] = MODE_SENSE; 2147 cmd[4] = len; 2148 header_length = 4; 2149 } 2150 2151 memset(buffer, 0, len); 2152 2153 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2154 sshdr, timeout, retries, NULL); 2155 2156 /* This code looks awful: what it's doing is making sure an 2157 * ILLEGAL REQUEST sense return identifies the actual command 2158 * byte as the problem. MODE_SENSE commands can return 2159 * ILLEGAL REQUEST if the code page isn't supported */ 2160 2161 if (use_10_for_ms && !scsi_status_is_good(result) && 2162 driver_byte(result) == DRIVER_SENSE) { 2163 if (scsi_sense_valid(sshdr)) { 2164 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2165 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2166 /* 2167 * Invalid command operation code 2168 */ 2169 sdev->use_10_for_ms = 0; 2170 goto retry; 2171 } 2172 } 2173 } 2174 2175 if(scsi_status_is_good(result)) { 2176 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2177 (modepage == 6 || modepage == 8))) { 2178 /* Initio breakage? */ 2179 header_length = 0; 2180 data->length = 13; 2181 data->medium_type = 0; 2182 data->device_specific = 0; 2183 data->longlba = 0; 2184 data->block_descriptor_length = 0; 2185 } else if(use_10_for_ms) { 2186 data->length = buffer[0]*256 + buffer[1] + 2; 2187 data->medium_type = buffer[2]; 2188 data->device_specific = buffer[3]; 2189 data->longlba = buffer[4] & 0x01; 2190 data->block_descriptor_length = buffer[6]*256 2191 + buffer[7]; 2192 } else { 2193 data->length = buffer[0] + 1; 2194 data->medium_type = buffer[1]; 2195 data->device_specific = buffer[2]; 2196 data->block_descriptor_length = buffer[3]; 2197 } 2198 data->header_length = header_length; 2199 } else if ((status_byte(result) == CHECK_CONDITION) && 2200 scsi_sense_valid(sshdr) && 2201 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2202 retry_count--; 2203 goto retry; 2204 } 2205 2206 return result; 2207 } 2208 EXPORT_SYMBOL(scsi_mode_sense); 2209 2210 /** 2211 * scsi_test_unit_ready - test if unit is ready 2212 * @sdev: scsi device to change the state of. 2213 * @timeout: command timeout 2214 * @retries: number of retries before failing 2215 * @sshdr: outpout pointer for decoded sense information. 2216 * 2217 * Returns zero if unsuccessful or an error if TUR failed. For 2218 * removable media, UNIT_ATTENTION sets ->changed flag. 2219 **/ 2220 int 2221 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2222 struct scsi_sense_hdr *sshdr) 2223 { 2224 char cmd[] = { 2225 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2226 }; 2227 int result; 2228 2229 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2230 do { 2231 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2232 timeout, 1, NULL); 2233 if (sdev->removable && scsi_sense_valid(sshdr) && 2234 sshdr->sense_key == UNIT_ATTENTION) 2235 sdev->changed = 1; 2236 } while (scsi_sense_valid(sshdr) && 2237 sshdr->sense_key == UNIT_ATTENTION && --retries); 2238 2239 return result; 2240 } 2241 EXPORT_SYMBOL(scsi_test_unit_ready); 2242 2243 /** 2244 * scsi_device_set_state - Take the given device through the device state model. 2245 * @sdev: scsi device to change the state of. 2246 * @state: state to change to. 2247 * 2248 * Returns zero if successful or an error if the requested 2249 * transition is illegal. 2250 */ 2251 int 2252 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2253 { 2254 enum scsi_device_state oldstate = sdev->sdev_state; 2255 2256 if (state == oldstate) 2257 return 0; 2258 2259 switch (state) { 2260 case SDEV_CREATED: 2261 switch (oldstate) { 2262 case SDEV_CREATED_BLOCK: 2263 break; 2264 default: 2265 goto illegal; 2266 } 2267 break; 2268 2269 case SDEV_RUNNING: 2270 switch (oldstate) { 2271 case SDEV_CREATED: 2272 case SDEV_OFFLINE: 2273 case SDEV_TRANSPORT_OFFLINE: 2274 case SDEV_QUIESCE: 2275 case SDEV_BLOCK: 2276 break; 2277 default: 2278 goto illegal; 2279 } 2280 break; 2281 2282 case SDEV_QUIESCE: 2283 switch (oldstate) { 2284 case SDEV_RUNNING: 2285 case SDEV_OFFLINE: 2286 case SDEV_TRANSPORT_OFFLINE: 2287 break; 2288 default: 2289 goto illegal; 2290 } 2291 break; 2292 2293 case SDEV_OFFLINE: 2294 case SDEV_TRANSPORT_OFFLINE: 2295 switch (oldstate) { 2296 case SDEV_CREATED: 2297 case SDEV_RUNNING: 2298 case SDEV_QUIESCE: 2299 case SDEV_BLOCK: 2300 break; 2301 default: 2302 goto illegal; 2303 } 2304 break; 2305 2306 case SDEV_BLOCK: 2307 switch (oldstate) { 2308 case SDEV_RUNNING: 2309 case SDEV_CREATED_BLOCK: 2310 case SDEV_QUIESCE: 2311 case SDEV_OFFLINE: 2312 break; 2313 default: 2314 goto illegal; 2315 } 2316 break; 2317 2318 case SDEV_CREATED_BLOCK: 2319 switch (oldstate) { 2320 case SDEV_CREATED: 2321 break; 2322 default: 2323 goto illegal; 2324 } 2325 break; 2326 2327 case SDEV_CANCEL: 2328 switch (oldstate) { 2329 case SDEV_CREATED: 2330 case SDEV_RUNNING: 2331 case SDEV_QUIESCE: 2332 case SDEV_OFFLINE: 2333 case SDEV_TRANSPORT_OFFLINE: 2334 break; 2335 default: 2336 goto illegal; 2337 } 2338 break; 2339 2340 case SDEV_DEL: 2341 switch (oldstate) { 2342 case SDEV_CREATED: 2343 case SDEV_RUNNING: 2344 case SDEV_OFFLINE: 2345 case SDEV_TRANSPORT_OFFLINE: 2346 case SDEV_CANCEL: 2347 case SDEV_BLOCK: 2348 case SDEV_CREATED_BLOCK: 2349 break; 2350 default: 2351 goto illegal; 2352 } 2353 break; 2354 2355 } 2356 sdev->offline_already = false; 2357 sdev->sdev_state = state; 2358 return 0; 2359 2360 illegal: 2361 SCSI_LOG_ERROR_RECOVERY(1, 2362 sdev_printk(KERN_ERR, sdev, 2363 "Illegal state transition %s->%s", 2364 scsi_device_state_name(oldstate), 2365 scsi_device_state_name(state)) 2366 ); 2367 return -EINVAL; 2368 } 2369 EXPORT_SYMBOL(scsi_device_set_state); 2370 2371 /** 2372 * sdev_evt_emit - emit a single SCSI device uevent 2373 * @sdev: associated SCSI device 2374 * @evt: event to emit 2375 * 2376 * Send a single uevent (scsi_event) to the associated scsi_device. 2377 */ 2378 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2379 { 2380 int idx = 0; 2381 char *envp[3]; 2382 2383 switch (evt->evt_type) { 2384 case SDEV_EVT_MEDIA_CHANGE: 2385 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2386 break; 2387 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2388 scsi_rescan_device(&sdev->sdev_gendev); 2389 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2390 break; 2391 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2392 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2393 break; 2394 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2395 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2396 break; 2397 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2398 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2399 break; 2400 case SDEV_EVT_LUN_CHANGE_REPORTED: 2401 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2402 break; 2403 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2404 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2405 break; 2406 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2407 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED"; 2408 break; 2409 default: 2410 /* do nothing */ 2411 break; 2412 } 2413 2414 envp[idx++] = NULL; 2415 2416 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2417 } 2418 2419 /** 2420 * sdev_evt_thread - send a uevent for each scsi event 2421 * @work: work struct for scsi_device 2422 * 2423 * Dispatch queued events to their associated scsi_device kobjects 2424 * as uevents. 2425 */ 2426 void scsi_evt_thread(struct work_struct *work) 2427 { 2428 struct scsi_device *sdev; 2429 enum scsi_device_event evt_type; 2430 LIST_HEAD(event_list); 2431 2432 sdev = container_of(work, struct scsi_device, event_work); 2433 2434 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2435 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2436 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2437 2438 while (1) { 2439 struct scsi_event *evt; 2440 struct list_head *this, *tmp; 2441 unsigned long flags; 2442 2443 spin_lock_irqsave(&sdev->list_lock, flags); 2444 list_splice_init(&sdev->event_list, &event_list); 2445 spin_unlock_irqrestore(&sdev->list_lock, flags); 2446 2447 if (list_empty(&event_list)) 2448 break; 2449 2450 list_for_each_safe(this, tmp, &event_list) { 2451 evt = list_entry(this, struct scsi_event, node); 2452 list_del(&evt->node); 2453 scsi_evt_emit(sdev, evt); 2454 kfree(evt); 2455 } 2456 } 2457 } 2458 2459 /** 2460 * sdev_evt_send - send asserted event to uevent thread 2461 * @sdev: scsi_device event occurred on 2462 * @evt: event to send 2463 * 2464 * Assert scsi device event asynchronously. 2465 */ 2466 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2467 { 2468 unsigned long flags; 2469 2470 #if 0 2471 /* FIXME: currently this check eliminates all media change events 2472 * for polled devices. Need to update to discriminate between AN 2473 * and polled events */ 2474 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2475 kfree(evt); 2476 return; 2477 } 2478 #endif 2479 2480 spin_lock_irqsave(&sdev->list_lock, flags); 2481 list_add_tail(&evt->node, &sdev->event_list); 2482 schedule_work(&sdev->event_work); 2483 spin_unlock_irqrestore(&sdev->list_lock, flags); 2484 } 2485 EXPORT_SYMBOL_GPL(sdev_evt_send); 2486 2487 /** 2488 * sdev_evt_alloc - allocate a new scsi event 2489 * @evt_type: type of event to allocate 2490 * @gfpflags: GFP flags for allocation 2491 * 2492 * Allocates and returns a new scsi_event. 2493 */ 2494 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2495 gfp_t gfpflags) 2496 { 2497 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2498 if (!evt) 2499 return NULL; 2500 2501 evt->evt_type = evt_type; 2502 INIT_LIST_HEAD(&evt->node); 2503 2504 /* evt_type-specific initialization, if any */ 2505 switch (evt_type) { 2506 case SDEV_EVT_MEDIA_CHANGE: 2507 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2508 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2509 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2510 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2511 case SDEV_EVT_LUN_CHANGE_REPORTED: 2512 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2513 case SDEV_EVT_POWER_ON_RESET_OCCURRED: 2514 default: 2515 /* do nothing */ 2516 break; 2517 } 2518 2519 return evt; 2520 } 2521 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2522 2523 /** 2524 * sdev_evt_send_simple - send asserted event to uevent thread 2525 * @sdev: scsi_device event occurred on 2526 * @evt_type: type of event to send 2527 * @gfpflags: GFP flags for allocation 2528 * 2529 * Assert scsi device event asynchronously, given an event type. 2530 */ 2531 void sdev_evt_send_simple(struct scsi_device *sdev, 2532 enum scsi_device_event evt_type, gfp_t gfpflags) 2533 { 2534 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2535 if (!evt) { 2536 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2537 evt_type); 2538 return; 2539 } 2540 2541 sdev_evt_send(sdev, evt); 2542 } 2543 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2544 2545 /** 2546 * scsi_device_quiesce - Block user issued commands. 2547 * @sdev: scsi device to quiesce. 2548 * 2549 * This works by trying to transition to the SDEV_QUIESCE state 2550 * (which must be a legal transition). When the device is in this 2551 * state, only special requests will be accepted, all others will 2552 * be deferred. Since special requests may also be requeued requests, 2553 * a successful return doesn't guarantee the device will be 2554 * totally quiescent. 2555 * 2556 * Must be called with user context, may sleep. 2557 * 2558 * Returns zero if unsuccessful or an error if not. 2559 */ 2560 int 2561 scsi_device_quiesce(struct scsi_device *sdev) 2562 { 2563 struct request_queue *q = sdev->request_queue; 2564 int err; 2565 2566 /* 2567 * It is allowed to call scsi_device_quiesce() multiple times from 2568 * the same context but concurrent scsi_device_quiesce() calls are 2569 * not allowed. 2570 */ 2571 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current); 2572 2573 if (sdev->quiesced_by == current) 2574 return 0; 2575 2576 blk_set_pm_only(q); 2577 2578 blk_mq_freeze_queue(q); 2579 /* 2580 * Ensure that the effect of blk_set_pm_only() will be visible 2581 * for percpu_ref_tryget() callers that occur after the queue 2582 * unfreeze even if the queue was already frozen before this function 2583 * was called. See also https://lwn.net/Articles/573497/. 2584 */ 2585 synchronize_rcu(); 2586 blk_mq_unfreeze_queue(q); 2587 2588 mutex_lock(&sdev->state_mutex); 2589 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2590 if (err == 0) 2591 sdev->quiesced_by = current; 2592 else 2593 blk_clear_pm_only(q); 2594 mutex_unlock(&sdev->state_mutex); 2595 2596 return err; 2597 } 2598 EXPORT_SYMBOL(scsi_device_quiesce); 2599 2600 /** 2601 * scsi_device_resume - Restart user issued commands to a quiesced device. 2602 * @sdev: scsi device to resume. 2603 * 2604 * Moves the device from quiesced back to running and restarts the 2605 * queues. 2606 * 2607 * Must be called with user context, may sleep. 2608 */ 2609 void scsi_device_resume(struct scsi_device *sdev) 2610 { 2611 /* check if the device state was mutated prior to resume, and if 2612 * so assume the state is being managed elsewhere (for example 2613 * device deleted during suspend) 2614 */ 2615 mutex_lock(&sdev->state_mutex); 2616 if (sdev->quiesced_by) { 2617 sdev->quiesced_by = NULL; 2618 blk_clear_pm_only(sdev->request_queue); 2619 } 2620 if (sdev->sdev_state == SDEV_QUIESCE) 2621 scsi_device_set_state(sdev, SDEV_RUNNING); 2622 mutex_unlock(&sdev->state_mutex); 2623 } 2624 EXPORT_SYMBOL(scsi_device_resume); 2625 2626 static void 2627 device_quiesce_fn(struct scsi_device *sdev, void *data) 2628 { 2629 scsi_device_quiesce(sdev); 2630 } 2631 2632 void 2633 scsi_target_quiesce(struct scsi_target *starget) 2634 { 2635 starget_for_each_device(starget, NULL, device_quiesce_fn); 2636 } 2637 EXPORT_SYMBOL(scsi_target_quiesce); 2638 2639 static void 2640 device_resume_fn(struct scsi_device *sdev, void *data) 2641 { 2642 scsi_device_resume(sdev); 2643 } 2644 2645 void 2646 scsi_target_resume(struct scsi_target *starget) 2647 { 2648 starget_for_each_device(starget, NULL, device_resume_fn); 2649 } 2650 EXPORT_SYMBOL(scsi_target_resume); 2651 2652 /** 2653 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2654 * @sdev: device to block 2655 * 2656 * Pause SCSI command processing on the specified device. Does not sleep. 2657 * 2658 * Returns zero if successful or a negative error code upon failure. 2659 * 2660 * Notes: 2661 * This routine transitions the device to the SDEV_BLOCK state (which must be 2662 * a legal transition). When the device is in this state, command processing 2663 * is paused until the device leaves the SDEV_BLOCK state. See also 2664 * scsi_internal_device_unblock_nowait(). 2665 */ 2666 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2667 { 2668 struct request_queue *q = sdev->request_queue; 2669 int err = 0; 2670 2671 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2672 if (err) { 2673 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2674 2675 if (err) 2676 return err; 2677 } 2678 2679 /* 2680 * The device has transitioned to SDEV_BLOCK. Stop the 2681 * block layer from calling the midlayer with this device's 2682 * request queue. 2683 */ 2684 blk_mq_quiesce_queue_nowait(q); 2685 return 0; 2686 } 2687 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 2688 2689 /** 2690 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 2691 * @sdev: device to block 2692 * 2693 * Pause SCSI command processing on the specified device and wait until all 2694 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 2695 * 2696 * Returns zero if successful or a negative error code upon failure. 2697 * 2698 * Note: 2699 * This routine transitions the device to the SDEV_BLOCK state (which must be 2700 * a legal transition). When the device is in this state, command processing 2701 * is paused until the device leaves the SDEV_BLOCK state. See also 2702 * scsi_internal_device_unblock(). 2703 */ 2704 static int scsi_internal_device_block(struct scsi_device *sdev) 2705 { 2706 struct request_queue *q = sdev->request_queue; 2707 int err; 2708 2709 mutex_lock(&sdev->state_mutex); 2710 err = scsi_internal_device_block_nowait(sdev); 2711 if (err == 0) 2712 blk_mq_quiesce_queue(q); 2713 mutex_unlock(&sdev->state_mutex); 2714 2715 return err; 2716 } 2717 2718 void scsi_start_queue(struct scsi_device *sdev) 2719 { 2720 struct request_queue *q = sdev->request_queue; 2721 2722 blk_mq_unquiesce_queue(q); 2723 } 2724 2725 /** 2726 * scsi_internal_device_unblock_nowait - resume a device after a block request 2727 * @sdev: device to resume 2728 * @new_state: state to set the device to after unblocking 2729 * 2730 * Restart the device queue for a previously suspended SCSI device. Does not 2731 * sleep. 2732 * 2733 * Returns zero if successful or a negative error code upon failure. 2734 * 2735 * Notes: 2736 * This routine transitions the device to the SDEV_RUNNING state or to one of 2737 * the offline states (which must be a legal transition) allowing the midlayer 2738 * to goose the queue for this device. 2739 */ 2740 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 2741 enum scsi_device_state new_state) 2742 { 2743 switch (new_state) { 2744 case SDEV_RUNNING: 2745 case SDEV_TRANSPORT_OFFLINE: 2746 break; 2747 default: 2748 return -EINVAL; 2749 } 2750 2751 /* 2752 * Try to transition the scsi device to SDEV_RUNNING or one of the 2753 * offlined states and goose the device queue if successful. 2754 */ 2755 switch (sdev->sdev_state) { 2756 case SDEV_BLOCK: 2757 case SDEV_TRANSPORT_OFFLINE: 2758 sdev->sdev_state = new_state; 2759 break; 2760 case SDEV_CREATED_BLOCK: 2761 if (new_state == SDEV_TRANSPORT_OFFLINE || 2762 new_state == SDEV_OFFLINE) 2763 sdev->sdev_state = new_state; 2764 else 2765 sdev->sdev_state = SDEV_CREATED; 2766 break; 2767 case SDEV_CANCEL: 2768 case SDEV_OFFLINE: 2769 break; 2770 default: 2771 return -EINVAL; 2772 } 2773 scsi_start_queue(sdev); 2774 2775 return 0; 2776 } 2777 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 2778 2779 /** 2780 * scsi_internal_device_unblock - resume a device after a block request 2781 * @sdev: device to resume 2782 * @new_state: state to set the device to after unblocking 2783 * 2784 * Restart the device queue for a previously suspended SCSI device. May sleep. 2785 * 2786 * Returns zero if successful or a negative error code upon failure. 2787 * 2788 * Notes: 2789 * This routine transitions the device to the SDEV_RUNNING state or to one of 2790 * the offline states (which must be a legal transition) allowing the midlayer 2791 * to goose the queue for this device. 2792 */ 2793 static int scsi_internal_device_unblock(struct scsi_device *sdev, 2794 enum scsi_device_state new_state) 2795 { 2796 int ret; 2797 2798 mutex_lock(&sdev->state_mutex); 2799 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 2800 mutex_unlock(&sdev->state_mutex); 2801 2802 return ret; 2803 } 2804 2805 static void 2806 device_block(struct scsi_device *sdev, void *data) 2807 { 2808 int ret; 2809 2810 ret = scsi_internal_device_block(sdev); 2811 2812 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n", 2813 dev_name(&sdev->sdev_gendev), ret); 2814 } 2815 2816 static int 2817 target_block(struct device *dev, void *data) 2818 { 2819 if (scsi_is_target_device(dev)) 2820 starget_for_each_device(to_scsi_target(dev), NULL, 2821 device_block); 2822 return 0; 2823 } 2824 2825 void 2826 scsi_target_block(struct device *dev) 2827 { 2828 if (scsi_is_target_device(dev)) 2829 starget_for_each_device(to_scsi_target(dev), NULL, 2830 device_block); 2831 else 2832 device_for_each_child(dev, NULL, target_block); 2833 } 2834 EXPORT_SYMBOL_GPL(scsi_target_block); 2835 2836 static void 2837 device_unblock(struct scsi_device *sdev, void *data) 2838 { 2839 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2840 } 2841 2842 static int 2843 target_unblock(struct device *dev, void *data) 2844 { 2845 if (scsi_is_target_device(dev)) 2846 starget_for_each_device(to_scsi_target(dev), data, 2847 device_unblock); 2848 return 0; 2849 } 2850 2851 void 2852 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2853 { 2854 if (scsi_is_target_device(dev)) 2855 starget_for_each_device(to_scsi_target(dev), &new_state, 2856 device_unblock); 2857 else 2858 device_for_each_child(dev, &new_state, target_unblock); 2859 } 2860 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2861 2862 int 2863 scsi_host_block(struct Scsi_Host *shost) 2864 { 2865 struct scsi_device *sdev; 2866 int ret = 0; 2867 2868 shost_for_each_device(sdev, shost) { 2869 ret = scsi_internal_device_block(sdev); 2870 if (ret) 2871 break; 2872 } 2873 return ret; 2874 } 2875 EXPORT_SYMBOL_GPL(scsi_host_block); 2876 2877 int 2878 scsi_host_unblock(struct Scsi_Host *shost, int new_state) 2879 { 2880 struct scsi_device *sdev; 2881 int ret = 0; 2882 2883 shost_for_each_device(sdev, shost) { 2884 ret = scsi_internal_device_unblock(sdev, new_state); 2885 if (ret) 2886 break; 2887 } 2888 return ret; 2889 } 2890 EXPORT_SYMBOL_GPL(scsi_host_unblock); 2891 2892 /** 2893 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2894 * @sgl: scatter-gather list 2895 * @sg_count: number of segments in sg 2896 * @offset: offset in bytes into sg, on return offset into the mapped area 2897 * @len: bytes to map, on return number of bytes mapped 2898 * 2899 * Returns virtual address of the start of the mapped page 2900 */ 2901 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2902 size_t *offset, size_t *len) 2903 { 2904 int i; 2905 size_t sg_len = 0, len_complete = 0; 2906 struct scatterlist *sg; 2907 struct page *page; 2908 2909 WARN_ON(!irqs_disabled()); 2910 2911 for_each_sg(sgl, sg, sg_count, i) { 2912 len_complete = sg_len; /* Complete sg-entries */ 2913 sg_len += sg->length; 2914 if (sg_len > *offset) 2915 break; 2916 } 2917 2918 if (unlikely(i == sg_count)) { 2919 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2920 "elements %d\n", 2921 __func__, sg_len, *offset, sg_count); 2922 WARN_ON(1); 2923 return NULL; 2924 } 2925 2926 /* Offset starting from the beginning of first page in this sg-entry */ 2927 *offset = *offset - len_complete + sg->offset; 2928 2929 /* Assumption: contiguous pages can be accessed as "page + i" */ 2930 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2931 *offset &= ~PAGE_MASK; 2932 2933 /* Bytes in this sg-entry from *offset to the end of the page */ 2934 sg_len = PAGE_SIZE - *offset; 2935 if (*len > sg_len) 2936 *len = sg_len; 2937 2938 return kmap_atomic(page); 2939 } 2940 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2941 2942 /** 2943 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2944 * @virt: virtual address to be unmapped 2945 */ 2946 void scsi_kunmap_atomic_sg(void *virt) 2947 { 2948 kunmap_atomic(virt); 2949 } 2950 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2951 2952 void sdev_disable_disk_events(struct scsi_device *sdev) 2953 { 2954 atomic_inc(&sdev->disk_events_disable_depth); 2955 } 2956 EXPORT_SYMBOL(sdev_disable_disk_events); 2957 2958 void sdev_enable_disk_events(struct scsi_device *sdev) 2959 { 2960 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2961 return; 2962 atomic_dec(&sdev->disk_events_disable_depth); 2963 } 2964 EXPORT_SYMBOL(sdev_enable_disk_events); 2965 2966 /** 2967 * scsi_vpd_lun_id - return a unique device identification 2968 * @sdev: SCSI device 2969 * @id: buffer for the identification 2970 * @id_len: length of the buffer 2971 * 2972 * Copies a unique device identification into @id based 2973 * on the information in the VPD page 0x83 of the device. 2974 * The string will be formatted as a SCSI name string. 2975 * 2976 * Returns the length of the identification or error on failure. 2977 * If the identifier is longer than the supplied buffer the actual 2978 * identifier length is returned and the buffer is not zero-padded. 2979 */ 2980 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 2981 { 2982 u8 cur_id_type = 0xff; 2983 u8 cur_id_size = 0; 2984 const unsigned char *d, *cur_id_str; 2985 const struct scsi_vpd *vpd_pg83; 2986 int id_size = -EINVAL; 2987 2988 rcu_read_lock(); 2989 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 2990 if (!vpd_pg83) { 2991 rcu_read_unlock(); 2992 return -ENXIO; 2993 } 2994 2995 /* 2996 * Look for the correct descriptor. 2997 * Order of preference for lun descriptor: 2998 * - SCSI name string 2999 * - NAA IEEE Registered Extended 3000 * - EUI-64 based 16-byte 3001 * - EUI-64 based 12-byte 3002 * - NAA IEEE Registered 3003 * - NAA IEEE Extended 3004 * - T10 Vendor ID 3005 * as longer descriptors reduce the likelyhood 3006 * of identification clashes. 3007 */ 3008 3009 /* The id string must be at least 20 bytes + terminating NULL byte */ 3010 if (id_len < 21) { 3011 rcu_read_unlock(); 3012 return -EINVAL; 3013 } 3014 3015 memset(id, 0, id_len); 3016 d = vpd_pg83->data + 4; 3017 while (d < vpd_pg83->data + vpd_pg83->len) { 3018 /* Skip designators not referring to the LUN */ 3019 if ((d[1] & 0x30) != 0x00) 3020 goto next_desig; 3021 3022 switch (d[1] & 0xf) { 3023 case 0x1: 3024 /* T10 Vendor ID */ 3025 if (cur_id_size > d[3]) 3026 break; 3027 /* Prefer anything */ 3028 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3029 break; 3030 cur_id_size = d[3]; 3031 if (cur_id_size + 4 > id_len) 3032 cur_id_size = id_len - 4; 3033 cur_id_str = d + 4; 3034 cur_id_type = d[1] & 0xf; 3035 id_size = snprintf(id, id_len, "t10.%*pE", 3036 cur_id_size, cur_id_str); 3037 break; 3038 case 0x2: 3039 /* EUI-64 */ 3040 if (cur_id_size > d[3]) 3041 break; 3042 /* Prefer NAA IEEE Registered Extended */ 3043 if (cur_id_type == 0x3 && 3044 cur_id_size == d[3]) 3045 break; 3046 cur_id_size = d[3]; 3047 cur_id_str = d + 4; 3048 cur_id_type = d[1] & 0xf; 3049 switch (cur_id_size) { 3050 case 8: 3051 id_size = snprintf(id, id_len, 3052 "eui.%8phN", 3053 cur_id_str); 3054 break; 3055 case 12: 3056 id_size = snprintf(id, id_len, 3057 "eui.%12phN", 3058 cur_id_str); 3059 break; 3060 case 16: 3061 id_size = snprintf(id, id_len, 3062 "eui.%16phN", 3063 cur_id_str); 3064 break; 3065 default: 3066 cur_id_size = 0; 3067 break; 3068 } 3069 break; 3070 case 0x3: 3071 /* NAA */ 3072 if (cur_id_size > d[3]) 3073 break; 3074 cur_id_size = d[3]; 3075 cur_id_str = d + 4; 3076 cur_id_type = d[1] & 0xf; 3077 switch (cur_id_size) { 3078 case 8: 3079 id_size = snprintf(id, id_len, 3080 "naa.%8phN", 3081 cur_id_str); 3082 break; 3083 case 16: 3084 id_size = snprintf(id, id_len, 3085 "naa.%16phN", 3086 cur_id_str); 3087 break; 3088 default: 3089 cur_id_size = 0; 3090 break; 3091 } 3092 break; 3093 case 0x8: 3094 /* SCSI name string */ 3095 if (cur_id_size + 4 > d[3]) 3096 break; 3097 /* Prefer others for truncated descriptor */ 3098 if (cur_id_size && d[3] > id_len) 3099 break; 3100 cur_id_size = id_size = d[3]; 3101 cur_id_str = d + 4; 3102 cur_id_type = d[1] & 0xf; 3103 if (cur_id_size >= id_len) 3104 cur_id_size = id_len - 1; 3105 memcpy(id, cur_id_str, cur_id_size); 3106 /* Decrease priority for truncated descriptor */ 3107 if (cur_id_size != id_size) 3108 cur_id_size = 6; 3109 break; 3110 default: 3111 break; 3112 } 3113 next_desig: 3114 d += d[3] + 4; 3115 } 3116 rcu_read_unlock(); 3117 3118 return id_size; 3119 } 3120 EXPORT_SYMBOL(scsi_vpd_lun_id); 3121 3122 /* 3123 * scsi_vpd_tpg_id - return a target port group identifier 3124 * @sdev: SCSI device 3125 * 3126 * Returns the Target Port Group identifier from the information 3127 * froom VPD page 0x83 of the device. 3128 * 3129 * Returns the identifier or error on failure. 3130 */ 3131 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3132 { 3133 const unsigned char *d; 3134 const struct scsi_vpd *vpd_pg83; 3135 int group_id = -EAGAIN, rel_port = -1; 3136 3137 rcu_read_lock(); 3138 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3139 if (!vpd_pg83) { 3140 rcu_read_unlock(); 3141 return -ENXIO; 3142 } 3143 3144 d = vpd_pg83->data + 4; 3145 while (d < vpd_pg83->data + vpd_pg83->len) { 3146 switch (d[1] & 0xf) { 3147 case 0x4: 3148 /* Relative target port */ 3149 rel_port = get_unaligned_be16(&d[6]); 3150 break; 3151 case 0x5: 3152 /* Target port group */ 3153 group_id = get_unaligned_be16(&d[6]); 3154 break; 3155 default: 3156 break; 3157 } 3158 d += d[3] + 4; 3159 } 3160 rcu_read_unlock(); 3161 3162 if (group_id >= 0 && rel_id && rel_port != -1) 3163 *rel_id = rel_port; 3164 3165 return group_id; 3166 } 3167 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3168