xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 547840bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sdb_cache;
56 static struct kmem_cache *scsi_sense_cache;
57 static struct kmem_cache *scsi_sense_isadma_cache;
58 static DEFINE_MUTEX(scsi_sense_cache_mutex);
59 
60 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
61 
62 static inline struct kmem_cache *
63 scsi_select_sense_cache(bool unchecked_isa_dma)
64 {
65 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
66 }
67 
68 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
69 				   unsigned char *sense_buffer)
70 {
71 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
72 			sense_buffer);
73 }
74 
75 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
76 	gfp_t gfp_mask, int numa_node)
77 {
78 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
79 				     gfp_mask, numa_node);
80 }
81 
82 int scsi_init_sense_cache(struct Scsi_Host *shost)
83 {
84 	struct kmem_cache *cache;
85 	int ret = 0;
86 
87 	mutex_lock(&scsi_sense_cache_mutex);
88 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
89 	if (cache)
90 		goto exit;
91 
92 	if (shost->unchecked_isa_dma) {
93 		scsi_sense_isadma_cache =
94 			kmem_cache_create("scsi_sense_cache(DMA)",
95 				SCSI_SENSE_BUFFERSIZE, 0,
96 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
97 		if (!scsi_sense_isadma_cache)
98 			ret = -ENOMEM;
99 	} else {
100 		scsi_sense_cache =
101 			kmem_cache_create_usercopy("scsi_sense_cache",
102 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
103 				0, SCSI_SENSE_BUFFERSIZE, NULL);
104 		if (!scsi_sense_cache)
105 			ret = -ENOMEM;
106 	}
107  exit:
108 	mutex_unlock(&scsi_sense_cache_mutex);
109 	return ret;
110 }
111 
112 /*
113  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
114  * not change behaviour from the previous unplug mechanism, experimentation
115  * may prove this needs changing.
116  */
117 #define SCSI_QUEUE_DELAY	3
118 
119 static void
120 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct scsi_target *starget = scsi_target(device);
125 
126 	/*
127 	 * Set the appropriate busy bit for the device/host.
128 	 *
129 	 * If the host/device isn't busy, assume that something actually
130 	 * completed, and that we should be able to queue a command now.
131 	 *
132 	 * Note that the prior mid-layer assumption that any host could
133 	 * always queue at least one command is now broken.  The mid-layer
134 	 * will implement a user specifiable stall (see
135 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
136 	 * if a command is requeued with no other commands outstanding
137 	 * either for the device or for the host.
138 	 */
139 	switch (reason) {
140 	case SCSI_MLQUEUE_HOST_BUSY:
141 		atomic_set(&host->host_blocked, host->max_host_blocked);
142 		break;
143 	case SCSI_MLQUEUE_DEVICE_BUSY:
144 	case SCSI_MLQUEUE_EH_RETRY:
145 		atomic_set(&device->device_blocked,
146 			   device->max_device_blocked);
147 		break;
148 	case SCSI_MLQUEUE_TARGET_BUSY:
149 		atomic_set(&starget->target_blocked,
150 			   starget->max_target_blocked);
151 		break;
152 	}
153 }
154 
155 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
156 {
157 	if (cmd->request->rq_flags & RQF_DONTPREP) {
158 		cmd->request->rq_flags &= ~RQF_DONTPREP;
159 		scsi_mq_uninit_cmd(cmd);
160 	} else {
161 		WARN_ON_ONCE(true);
162 	}
163 	blk_mq_requeue_request(cmd->request, true);
164 }
165 
166 /**
167  * __scsi_queue_insert - private queue insertion
168  * @cmd: The SCSI command being requeued
169  * @reason:  The reason for the requeue
170  * @unbusy: Whether the queue should be unbusied
171  *
172  * This is a private queue insertion.  The public interface
173  * scsi_queue_insert() always assumes the queue should be unbusied
174  * because it's always called before the completion.  This function is
175  * for a requeue after completion, which should only occur in this
176  * file.
177  */
178 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
179 {
180 	struct scsi_device *device = cmd->device;
181 
182 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
183 		"Inserting command %p into mlqueue\n", cmd));
184 
185 	scsi_set_blocked(cmd, reason);
186 
187 	/*
188 	 * Decrement the counters, since these commands are no longer
189 	 * active on the host/device.
190 	 */
191 	if (unbusy)
192 		scsi_device_unbusy(device, cmd);
193 
194 	/*
195 	 * Requeue this command.  It will go before all other commands
196 	 * that are already in the queue. Schedule requeue work under
197 	 * lock such that the kblockd_schedule_work() call happens
198 	 * before blk_cleanup_queue() finishes.
199 	 */
200 	cmd->result = 0;
201 
202 	blk_mq_requeue_request(cmd->request, true);
203 }
204 
205 /*
206  * Function:    scsi_queue_insert()
207  *
208  * Purpose:     Insert a command in the midlevel queue.
209  *
210  * Arguments:   cmd    - command that we are adding to queue.
211  *              reason - why we are inserting command to queue.
212  *
213  * Lock status: Assumed that lock is not held upon entry.
214  *
215  * Returns:     Nothing.
216  *
217  * Notes:       We do this for one of two cases.  Either the host is busy
218  *              and it cannot accept any more commands for the time being,
219  *              or the device returned QUEUE_FULL and can accept no more
220  *              commands.
221  * Notes:       This could be called either from an interrupt context or a
222  *              normal process context.
223  */
224 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
225 {
226 	__scsi_queue_insert(cmd, reason, true);
227 }
228 
229 
230 /**
231  * __scsi_execute - insert request and wait for the result
232  * @sdev:	scsi device
233  * @cmd:	scsi command
234  * @data_direction: data direction
235  * @buffer:	data buffer
236  * @bufflen:	len of buffer
237  * @sense:	optional sense buffer
238  * @sshdr:	optional decoded sense header
239  * @timeout:	request timeout in seconds
240  * @retries:	number of times to retry request
241  * @flags:	flags for ->cmd_flags
242  * @rq_flags:	flags for ->rq_flags
243  * @resid:	optional residual length
244  *
245  * Returns the scsi_cmnd result field if a command was executed, or a negative
246  * Linux error code if we didn't get that far.
247  */
248 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
249 		 int data_direction, void *buffer, unsigned bufflen,
250 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
251 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
252 		 int *resid)
253 {
254 	struct request *req;
255 	struct scsi_request *rq;
256 	int ret = DRIVER_ERROR << 24;
257 
258 	req = blk_get_request(sdev->request_queue,
259 			data_direction == DMA_TO_DEVICE ?
260 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
261 	if (IS_ERR(req))
262 		return ret;
263 	rq = scsi_req(req);
264 
265 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
266 					buffer, bufflen, GFP_NOIO))
267 		goto out;
268 
269 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
270 	memcpy(rq->cmd, cmd, rq->cmd_len);
271 	rq->retries = retries;
272 	req->timeout = timeout;
273 	req->cmd_flags |= flags;
274 	req->rq_flags |= rq_flags | RQF_QUIET;
275 
276 	/*
277 	 * head injection *required* here otherwise quiesce won't work
278 	 */
279 	blk_execute_rq(req->q, NULL, req, 1);
280 
281 	/*
282 	 * Some devices (USB mass-storage in particular) may transfer
283 	 * garbage data together with a residue indicating that the data
284 	 * is invalid.  Prevent the garbage from being misinterpreted
285 	 * and prevent security leaks by zeroing out the excess data.
286 	 */
287 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
288 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
289 
290 	if (resid)
291 		*resid = rq->resid_len;
292 	if (sense && rq->sense_len)
293 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
294 	if (sshdr)
295 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
296 	ret = rq->result;
297  out:
298 	blk_put_request(req);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL(__scsi_execute);
303 
304 /*
305  * Function:    scsi_init_cmd_errh()
306  *
307  * Purpose:     Initialize cmd fields related to error handling.
308  *
309  * Arguments:   cmd	- command that is ready to be queued.
310  *
311  * Notes:       This function has the job of initializing a number of
312  *              fields related to error handling.   Typically this will
313  *              be called once for each command, as required.
314  */
315 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
316 {
317 	scsi_set_resid(cmd, 0);
318 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 	if (cmd->cmd_len == 0)
320 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322 
323 /*
324  * Wake up the error handler if necessary. Avoid as follows that the error
325  * handler is not woken up if host in-flight requests number ==
326  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
327  * with an RCU read lock in this function to ensure that this function in
328  * its entirety either finishes before scsi_eh_scmd_add() increases the
329  * host_failed counter or that it notices the shost state change made by
330  * scsi_eh_scmd_add().
331  */
332 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
333 {
334 	unsigned long flags;
335 
336 	rcu_read_lock();
337 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
338 	if (unlikely(scsi_host_in_recovery(shost))) {
339 		spin_lock_irqsave(shost->host_lock, flags);
340 		if (shost->host_failed || shost->host_eh_scheduled)
341 			scsi_eh_wakeup(shost);
342 		spin_unlock_irqrestore(shost->host_lock, flags);
343 	}
344 	rcu_read_unlock();
345 }
346 
347 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
348 {
349 	struct Scsi_Host *shost = sdev->host;
350 	struct scsi_target *starget = scsi_target(sdev);
351 
352 	scsi_dec_host_busy(shost, cmd);
353 
354 	if (starget->can_queue > 0)
355 		atomic_dec(&starget->target_busy);
356 
357 	atomic_dec(&sdev->device_busy);
358 }
359 
360 static void scsi_kick_queue(struct request_queue *q)
361 {
362 	blk_mq_run_hw_queues(q, false);
363 }
364 
365 /*
366  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
367  * and call blk_run_queue for all the scsi_devices on the target -
368  * including current_sdev first.
369  *
370  * Called with *no* scsi locks held.
371  */
372 static void scsi_single_lun_run(struct scsi_device *current_sdev)
373 {
374 	struct Scsi_Host *shost = current_sdev->host;
375 	struct scsi_device *sdev, *tmp;
376 	struct scsi_target *starget = scsi_target(current_sdev);
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(shost->host_lock, flags);
380 	starget->starget_sdev_user = NULL;
381 	spin_unlock_irqrestore(shost->host_lock, flags);
382 
383 	/*
384 	 * Call blk_run_queue for all LUNs on the target, starting with
385 	 * current_sdev. We race with others (to set starget_sdev_user),
386 	 * but in most cases, we will be first. Ideally, each LU on the
387 	 * target would get some limited time or requests on the target.
388 	 */
389 	scsi_kick_queue(current_sdev->request_queue);
390 
391 	spin_lock_irqsave(shost->host_lock, flags);
392 	if (starget->starget_sdev_user)
393 		goto out;
394 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
395 			same_target_siblings) {
396 		if (sdev == current_sdev)
397 			continue;
398 		if (scsi_device_get(sdev))
399 			continue;
400 
401 		spin_unlock_irqrestore(shost->host_lock, flags);
402 		scsi_kick_queue(sdev->request_queue);
403 		spin_lock_irqsave(shost->host_lock, flags);
404 
405 		scsi_device_put(sdev);
406 	}
407  out:
408 	spin_unlock_irqrestore(shost->host_lock, flags);
409 }
410 
411 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
412 {
413 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
414 		return true;
415 	if (atomic_read(&sdev->device_blocked) > 0)
416 		return true;
417 	return false;
418 }
419 
420 static inline bool scsi_target_is_busy(struct scsi_target *starget)
421 {
422 	if (starget->can_queue > 0) {
423 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
424 			return true;
425 		if (atomic_read(&starget->target_blocked) > 0)
426 			return true;
427 	}
428 	return false;
429 }
430 
431 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
432 {
433 	if (atomic_read(&shost->host_blocked) > 0)
434 		return true;
435 	if (shost->host_self_blocked)
436 		return true;
437 	return false;
438 }
439 
440 static void scsi_starved_list_run(struct Scsi_Host *shost)
441 {
442 	LIST_HEAD(starved_list);
443 	struct scsi_device *sdev;
444 	unsigned long flags;
445 
446 	spin_lock_irqsave(shost->host_lock, flags);
447 	list_splice_init(&shost->starved_list, &starved_list);
448 
449 	while (!list_empty(&starved_list)) {
450 		struct request_queue *slq;
451 
452 		/*
453 		 * As long as shost is accepting commands and we have
454 		 * starved queues, call blk_run_queue. scsi_request_fn
455 		 * drops the queue_lock and can add us back to the
456 		 * starved_list.
457 		 *
458 		 * host_lock protects the starved_list and starved_entry.
459 		 * scsi_request_fn must get the host_lock before checking
460 		 * or modifying starved_list or starved_entry.
461 		 */
462 		if (scsi_host_is_busy(shost))
463 			break;
464 
465 		sdev = list_entry(starved_list.next,
466 				  struct scsi_device, starved_entry);
467 		list_del_init(&sdev->starved_entry);
468 		if (scsi_target_is_busy(scsi_target(sdev))) {
469 			list_move_tail(&sdev->starved_entry,
470 				       &shost->starved_list);
471 			continue;
472 		}
473 
474 		/*
475 		 * Once we drop the host lock, a racing scsi_remove_device()
476 		 * call may remove the sdev from the starved list and destroy
477 		 * it and the queue.  Mitigate by taking a reference to the
478 		 * queue and never touching the sdev again after we drop the
479 		 * host lock.  Note: if __scsi_remove_device() invokes
480 		 * blk_cleanup_queue() before the queue is run from this
481 		 * function then blk_run_queue() will return immediately since
482 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
483 		 */
484 		slq = sdev->request_queue;
485 		if (!blk_get_queue(slq))
486 			continue;
487 		spin_unlock_irqrestore(shost->host_lock, flags);
488 
489 		scsi_kick_queue(slq);
490 		blk_put_queue(slq);
491 
492 		spin_lock_irqsave(shost->host_lock, flags);
493 	}
494 	/* put any unprocessed entries back */
495 	list_splice(&starved_list, &shost->starved_list);
496 	spin_unlock_irqrestore(shost->host_lock, flags);
497 }
498 
499 /*
500  * Function:   scsi_run_queue()
501  *
502  * Purpose:    Select a proper request queue to serve next
503  *
504  * Arguments:  q       - last request's queue
505  *
506  * Returns:     Nothing
507  *
508  * Notes:      The previous command was completely finished, start
509  *             a new one if possible.
510  */
511 static void scsi_run_queue(struct request_queue *q)
512 {
513 	struct scsi_device *sdev = q->queuedata;
514 
515 	if (scsi_target(sdev)->single_lun)
516 		scsi_single_lun_run(sdev);
517 	if (!list_empty(&sdev->host->starved_list))
518 		scsi_starved_list_run(sdev->host);
519 
520 	blk_mq_run_hw_queues(q, false);
521 }
522 
523 void scsi_requeue_run_queue(struct work_struct *work)
524 {
525 	struct scsi_device *sdev;
526 	struct request_queue *q;
527 
528 	sdev = container_of(work, struct scsi_device, requeue_work);
529 	q = sdev->request_queue;
530 	scsi_run_queue(q);
531 }
532 
533 void scsi_run_host_queues(struct Scsi_Host *shost)
534 {
535 	struct scsi_device *sdev;
536 
537 	shost_for_each_device(sdev, shost)
538 		scsi_run_queue(sdev->request_queue);
539 }
540 
541 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
542 {
543 	if (!blk_rq_is_passthrough(cmd->request)) {
544 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
545 
546 		if (drv->uninit_command)
547 			drv->uninit_command(cmd);
548 	}
549 }
550 
551 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
552 {
553 	if (cmd->sdb.table.nents)
554 		sg_free_table_chained(&cmd->sdb.table,
555 				SCSI_INLINE_SG_CNT);
556 	if (scsi_prot_sg_count(cmd))
557 		sg_free_table_chained(&cmd->prot_sdb->table,
558 				SCSI_INLINE_PROT_SG_CNT);
559 }
560 
561 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
562 {
563 	scsi_mq_free_sgtables(cmd);
564 	scsi_uninit_cmd(cmd);
565 }
566 
567 /* Returns false when no more bytes to process, true if there are more */
568 static bool scsi_end_request(struct request *req, blk_status_t error,
569 		unsigned int bytes)
570 {
571 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
572 	struct scsi_device *sdev = cmd->device;
573 	struct request_queue *q = sdev->request_queue;
574 
575 	if (blk_update_request(req, error, bytes))
576 		return true;
577 
578 	if (blk_queue_add_random(q))
579 		add_disk_randomness(req->rq_disk);
580 
581 	if (!blk_rq_is_scsi(req)) {
582 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
583 		cmd->flags &= ~SCMD_INITIALIZED;
584 	}
585 
586 	/*
587 	 * Calling rcu_barrier() is not necessary here because the
588 	 * SCSI error handler guarantees that the function called by
589 	 * call_rcu() has been called before scsi_end_request() is
590 	 * called.
591 	 */
592 	destroy_rcu_head(&cmd->rcu);
593 
594 	/*
595 	 * In the MQ case the command gets freed by __blk_mq_end_request,
596 	 * so we have to do all cleanup that depends on it earlier.
597 	 *
598 	 * We also can't kick the queues from irq context, so we
599 	 * will have to defer it to a workqueue.
600 	 */
601 	scsi_mq_uninit_cmd(cmd);
602 
603 	/*
604 	 * queue is still alive, so grab the ref for preventing it
605 	 * from being cleaned up during running queue.
606 	 */
607 	percpu_ref_get(&q->q_usage_counter);
608 
609 	__blk_mq_end_request(req, error);
610 
611 	if (scsi_target(sdev)->single_lun ||
612 	    !list_empty(&sdev->host->starved_list))
613 		kblockd_schedule_work(&sdev->requeue_work);
614 	else
615 		blk_mq_run_hw_queues(q, true);
616 
617 	percpu_ref_put(&q->q_usage_counter);
618 	return false;
619 }
620 
621 /**
622  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
623  * @cmd:	SCSI command
624  * @result:	scsi error code
625  *
626  * Translate a SCSI result code into a blk_status_t value. May reset the host
627  * byte of @cmd->result.
628  */
629 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
630 {
631 	switch (host_byte(result)) {
632 	case DID_OK:
633 		/*
634 		 * Also check the other bytes than the status byte in result
635 		 * to handle the case when a SCSI LLD sets result to
636 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
637 		 */
638 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
639 			return BLK_STS_OK;
640 		return BLK_STS_IOERR;
641 	case DID_TRANSPORT_FAILFAST:
642 		return BLK_STS_TRANSPORT;
643 	case DID_TARGET_FAILURE:
644 		set_host_byte(cmd, DID_OK);
645 		return BLK_STS_TARGET;
646 	case DID_NEXUS_FAILURE:
647 		set_host_byte(cmd, DID_OK);
648 		return BLK_STS_NEXUS;
649 	case DID_ALLOC_FAILURE:
650 		set_host_byte(cmd, DID_OK);
651 		return BLK_STS_NOSPC;
652 	case DID_MEDIUM_ERROR:
653 		set_host_byte(cmd, DID_OK);
654 		return BLK_STS_MEDIUM;
655 	default:
656 		return BLK_STS_IOERR;
657 	}
658 }
659 
660 /* Helper for scsi_io_completion() when "reprep" action required. */
661 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
662 				      struct request_queue *q)
663 {
664 	/* A new command will be prepared and issued. */
665 	scsi_mq_requeue_cmd(cmd);
666 }
667 
668 /* Helper for scsi_io_completion() when special action required. */
669 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
670 {
671 	struct request_queue *q = cmd->device->request_queue;
672 	struct request *req = cmd->request;
673 	int level = 0;
674 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
675 	      ACTION_DELAYED_RETRY} action;
676 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
677 	struct scsi_sense_hdr sshdr;
678 	bool sense_valid;
679 	bool sense_current = true;      /* false implies "deferred sense" */
680 	blk_status_t blk_stat;
681 
682 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
683 	if (sense_valid)
684 		sense_current = !scsi_sense_is_deferred(&sshdr);
685 
686 	blk_stat = scsi_result_to_blk_status(cmd, result);
687 
688 	if (host_byte(result) == DID_RESET) {
689 		/* Third party bus reset or reset for error recovery
690 		 * reasons.  Just retry the command and see what
691 		 * happens.
692 		 */
693 		action = ACTION_RETRY;
694 	} else if (sense_valid && sense_current) {
695 		switch (sshdr.sense_key) {
696 		case UNIT_ATTENTION:
697 			if (cmd->device->removable) {
698 				/* Detected disc change.  Set a bit
699 				 * and quietly refuse further access.
700 				 */
701 				cmd->device->changed = 1;
702 				action = ACTION_FAIL;
703 			} else {
704 				/* Must have been a power glitch, or a
705 				 * bus reset.  Could not have been a
706 				 * media change, so we just retry the
707 				 * command and see what happens.
708 				 */
709 				action = ACTION_RETRY;
710 			}
711 			break;
712 		case ILLEGAL_REQUEST:
713 			/* If we had an ILLEGAL REQUEST returned, then
714 			 * we may have performed an unsupported
715 			 * command.  The only thing this should be
716 			 * would be a ten byte read where only a six
717 			 * byte read was supported.  Also, on a system
718 			 * where READ CAPACITY failed, we may have
719 			 * read past the end of the disk.
720 			 */
721 			if ((cmd->device->use_10_for_rw &&
722 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
723 			    (cmd->cmnd[0] == READ_10 ||
724 			     cmd->cmnd[0] == WRITE_10)) {
725 				/* This will issue a new 6-byte command. */
726 				cmd->device->use_10_for_rw = 0;
727 				action = ACTION_REPREP;
728 			} else if (sshdr.asc == 0x10) /* DIX */ {
729 				action = ACTION_FAIL;
730 				blk_stat = BLK_STS_PROTECTION;
731 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
732 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
733 				action = ACTION_FAIL;
734 				blk_stat = BLK_STS_TARGET;
735 			} else
736 				action = ACTION_FAIL;
737 			break;
738 		case ABORTED_COMMAND:
739 			action = ACTION_FAIL;
740 			if (sshdr.asc == 0x10) /* DIF */
741 				blk_stat = BLK_STS_PROTECTION;
742 			break;
743 		case NOT_READY:
744 			/* If the device is in the process of becoming
745 			 * ready, or has a temporary blockage, retry.
746 			 */
747 			if (sshdr.asc == 0x04) {
748 				switch (sshdr.ascq) {
749 				case 0x01: /* becoming ready */
750 				case 0x04: /* format in progress */
751 				case 0x05: /* rebuild in progress */
752 				case 0x06: /* recalculation in progress */
753 				case 0x07: /* operation in progress */
754 				case 0x08: /* Long write in progress */
755 				case 0x09: /* self test in progress */
756 				case 0x14: /* space allocation in progress */
757 				case 0x1a: /* start stop unit in progress */
758 				case 0x1b: /* sanitize in progress */
759 				case 0x1d: /* configuration in progress */
760 				case 0x24: /* depopulation in progress */
761 					action = ACTION_DELAYED_RETRY;
762 					break;
763 				default:
764 					action = ACTION_FAIL;
765 					break;
766 				}
767 			} else
768 				action = ACTION_FAIL;
769 			break;
770 		case VOLUME_OVERFLOW:
771 			/* See SSC3rXX or current. */
772 			action = ACTION_FAIL;
773 			break;
774 		default:
775 			action = ACTION_FAIL;
776 			break;
777 		}
778 	} else
779 		action = ACTION_FAIL;
780 
781 	if (action != ACTION_FAIL &&
782 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
783 		action = ACTION_FAIL;
784 
785 	switch (action) {
786 	case ACTION_FAIL:
787 		/* Give up and fail the remainder of the request */
788 		if (!(req->rq_flags & RQF_QUIET)) {
789 			static DEFINE_RATELIMIT_STATE(_rs,
790 					DEFAULT_RATELIMIT_INTERVAL,
791 					DEFAULT_RATELIMIT_BURST);
792 
793 			if (unlikely(scsi_logging_level))
794 				level =
795 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
796 						    SCSI_LOG_MLCOMPLETE_BITS);
797 
798 			/*
799 			 * if logging is enabled the failure will be printed
800 			 * in scsi_log_completion(), so avoid duplicate messages
801 			 */
802 			if (!level && __ratelimit(&_rs)) {
803 				scsi_print_result(cmd, NULL, FAILED);
804 				if (driver_byte(result) == DRIVER_SENSE)
805 					scsi_print_sense(cmd);
806 				scsi_print_command(cmd);
807 			}
808 		}
809 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
810 			return;
811 		/*FALLTHRU*/
812 	case ACTION_REPREP:
813 		scsi_io_completion_reprep(cmd, q);
814 		break;
815 	case ACTION_RETRY:
816 		/* Retry the same command immediately */
817 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
818 		break;
819 	case ACTION_DELAYED_RETRY:
820 		/* Retry the same command after a delay */
821 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
822 		break;
823 	}
824 }
825 
826 /*
827  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
828  * new result that may suppress further error checking. Also modifies
829  * *blk_statp in some cases.
830  */
831 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
832 					blk_status_t *blk_statp)
833 {
834 	bool sense_valid;
835 	bool sense_current = true;	/* false implies "deferred sense" */
836 	struct request *req = cmd->request;
837 	struct scsi_sense_hdr sshdr;
838 
839 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
840 	if (sense_valid)
841 		sense_current = !scsi_sense_is_deferred(&sshdr);
842 
843 	if (blk_rq_is_passthrough(req)) {
844 		if (sense_valid) {
845 			/*
846 			 * SG_IO wants current and deferred errors
847 			 */
848 			scsi_req(req)->sense_len =
849 				min(8 + cmd->sense_buffer[7],
850 				    SCSI_SENSE_BUFFERSIZE);
851 		}
852 		if (sense_current)
853 			*blk_statp = scsi_result_to_blk_status(cmd, result);
854 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
855 		/*
856 		 * Flush commands do not transfers any data, and thus cannot use
857 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
858 		 * This sets *blk_statp explicitly for the problem case.
859 		 */
860 		*blk_statp = scsi_result_to_blk_status(cmd, result);
861 	}
862 	/*
863 	 * Recovered errors need reporting, but they're always treated as
864 	 * success, so fiddle the result code here.  For passthrough requests
865 	 * we already took a copy of the original into sreq->result which
866 	 * is what gets returned to the user
867 	 */
868 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
869 		bool do_print = true;
870 		/*
871 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
872 		 * skip print since caller wants ATA registers. Only occurs
873 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
874 		 */
875 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
876 			do_print = false;
877 		else if (req->rq_flags & RQF_QUIET)
878 			do_print = false;
879 		if (do_print)
880 			scsi_print_sense(cmd);
881 		result = 0;
882 		/* for passthrough, *blk_statp may be set */
883 		*blk_statp = BLK_STS_OK;
884 	}
885 	/*
886 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
887 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
888 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
889 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
890 	 * intermediate statuses (both obsolete in SAM-4) as good.
891 	 */
892 	if (status_byte(result) && scsi_status_is_good(result)) {
893 		result = 0;
894 		*blk_statp = BLK_STS_OK;
895 	}
896 	return result;
897 }
898 
899 /*
900  * Function:    scsi_io_completion()
901  *
902  * Purpose:     Completion processing for block device I/O requests.
903  *
904  * Arguments:   cmd   - command that is finished.
905  *
906  * Lock status: Assumed that no lock is held upon entry.
907  *
908  * Returns:     Nothing
909  *
910  * Notes:       We will finish off the specified number of sectors.  If we
911  *		are done, the command block will be released and the queue
912  *		function will be goosed.  If we are not done then we have to
913  *		figure out what to do next:
914  *
915  *		a) We can call scsi_requeue_command().  The request
916  *		   will be unprepared and put back on the queue.  Then
917  *		   a new command will be created for it.  This should
918  *		   be used if we made forward progress, or if we want
919  *		   to switch from READ(10) to READ(6) for example.
920  *
921  *		b) We can call __scsi_queue_insert().  The request will
922  *		   be put back on the queue and retried using the same
923  *		   command as before, possibly after a delay.
924  *
925  *		c) We can call scsi_end_request() with blk_stat other than
926  *		   BLK_STS_OK, to fail the remainder of the request.
927  */
928 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
929 {
930 	int result = cmd->result;
931 	struct request_queue *q = cmd->device->request_queue;
932 	struct request *req = cmd->request;
933 	blk_status_t blk_stat = BLK_STS_OK;
934 
935 	if (unlikely(result))	/* a nz result may or may not be an error */
936 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
937 
938 	if (unlikely(blk_rq_is_passthrough(req))) {
939 		/*
940 		 * scsi_result_to_blk_status may have reset the host_byte
941 		 */
942 		scsi_req(req)->result = cmd->result;
943 	}
944 
945 	/*
946 	 * Next deal with any sectors which we were able to correctly
947 	 * handle.
948 	 */
949 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
950 		"%u sectors total, %d bytes done.\n",
951 		blk_rq_sectors(req), good_bytes));
952 
953 	/*
954 	 * Next deal with any sectors which we were able to correctly
955 	 * handle. Failed, zero length commands always need to drop down
956 	 * to retry code. Fast path should return in this block.
957 	 */
958 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
959 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
960 			return; /* no bytes remaining */
961 	}
962 
963 	/* Kill remainder if no retries. */
964 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
965 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
966 			WARN_ONCE(true,
967 			    "Bytes remaining after failed, no-retry command");
968 		return;
969 	}
970 
971 	/*
972 	 * If there had been no error, but we have leftover bytes in the
973 	 * requeues just queue the command up again.
974 	 */
975 	if (likely(result == 0))
976 		scsi_io_completion_reprep(cmd, q);
977 	else
978 		scsi_io_completion_action(cmd, result);
979 }
980 
981 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
982 		struct request *rq)
983 {
984 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
985 	       !op_is_write(req_op(rq)) &&
986 	       sdev->host->hostt->dma_need_drain(rq);
987 }
988 
989 /*
990  * Function:    scsi_init_io()
991  *
992  * Purpose:     SCSI I/O initialize function.
993  *
994  * Arguments:   cmd   - Command descriptor we wish to initialize
995  *
996  * Returns:     BLK_STS_OK on success
997  *		BLK_STS_RESOURCE if the failure is retryable
998  *		BLK_STS_IOERR if the failure is fatal
999  */
1000 blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1001 {
1002 	struct scsi_device *sdev = cmd->device;
1003 	struct request *rq = cmd->request;
1004 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1005 	struct scatterlist *last_sg = NULL;
1006 	blk_status_t ret;
1007 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1008 	int count;
1009 
1010 	if (WARN_ON_ONCE(!nr_segs))
1011 		return BLK_STS_IOERR;
1012 
1013 	/*
1014 	 * Make sure there is space for the drain.  The driver must adjust
1015 	 * max_hw_segments to be prepared for this.
1016 	 */
1017 	if (need_drain)
1018 		nr_segs++;
1019 
1020 	/*
1021 	 * If sg table allocation fails, requeue request later.
1022 	 */
1023 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1024 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1025 		return BLK_STS_RESOURCE;
1026 
1027 	/*
1028 	 * Next, walk the list, and fill in the addresses and sizes of
1029 	 * each segment.
1030 	 */
1031 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1032 
1033 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1034 		unsigned int pad_len =
1035 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1036 
1037 		last_sg->length += pad_len;
1038 		cmd->extra_len += pad_len;
1039 	}
1040 
1041 	if (need_drain) {
1042 		sg_unmark_end(last_sg);
1043 		last_sg = sg_next(last_sg);
1044 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1045 		sg_mark_end(last_sg);
1046 
1047 		cmd->extra_len += sdev->dma_drain_len;
1048 		count++;
1049 	}
1050 
1051 	BUG_ON(count > cmd->sdb.table.nents);
1052 	cmd->sdb.table.nents = count;
1053 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1054 
1055 	if (blk_integrity_rq(rq)) {
1056 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1057 		int ivecs;
1058 
1059 		if (WARN_ON_ONCE(!prot_sdb)) {
1060 			/*
1061 			 * This can happen if someone (e.g. multipath)
1062 			 * queues a command to a device on an adapter
1063 			 * that does not support DIX.
1064 			 */
1065 			ret = BLK_STS_IOERR;
1066 			goto out_free_sgtables;
1067 		}
1068 
1069 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1070 
1071 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1072 				prot_sdb->table.sgl,
1073 				SCSI_INLINE_PROT_SG_CNT)) {
1074 			ret = BLK_STS_RESOURCE;
1075 			goto out_free_sgtables;
1076 		}
1077 
1078 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1079 						prot_sdb->table.sgl);
1080 		BUG_ON(count > ivecs);
1081 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1082 
1083 		cmd->prot_sdb = prot_sdb;
1084 		cmd->prot_sdb->table.nents = count;
1085 	}
1086 
1087 	return BLK_STS_OK;
1088 out_free_sgtables:
1089 	scsi_mq_free_sgtables(cmd);
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL(scsi_init_io);
1093 
1094 /**
1095  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1096  * @rq: Request associated with the SCSI command to be initialized.
1097  *
1098  * This function initializes the members of struct scsi_cmnd that must be
1099  * initialized before request processing starts and that won't be
1100  * reinitialized if a SCSI command is requeued.
1101  *
1102  * Called from inside blk_get_request() for pass-through requests and from
1103  * inside scsi_init_command() for filesystem requests.
1104  */
1105 static void scsi_initialize_rq(struct request *rq)
1106 {
1107 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1108 
1109 	scsi_req_init(&cmd->req);
1110 	init_rcu_head(&cmd->rcu);
1111 	cmd->jiffies_at_alloc = jiffies;
1112 	cmd->retries = 0;
1113 }
1114 
1115 /*
1116  * Only called when the request isn't completed by SCSI, and not freed by
1117  * SCSI
1118  */
1119 static void scsi_cleanup_rq(struct request *rq)
1120 {
1121 	if (rq->rq_flags & RQF_DONTPREP) {
1122 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1123 		rq->rq_flags &= ~RQF_DONTPREP;
1124 	}
1125 }
1126 
1127 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1128 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1129 {
1130 	void *buf = cmd->sense_buffer;
1131 	void *prot = cmd->prot_sdb;
1132 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1133 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1134 	unsigned long jiffies_at_alloc;
1135 	int retries, to_clear;
1136 	bool in_flight;
1137 
1138 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1139 		flags |= SCMD_INITIALIZED;
1140 		scsi_initialize_rq(rq);
1141 	}
1142 
1143 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1144 	retries = cmd->retries;
1145 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1146 	/*
1147 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1148 	 * the driver-private command data if the LLD does not supply a
1149 	 * function to initialize that data.
1150 	 */
1151 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1152 	if (!dev->host->hostt->init_cmd_priv)
1153 		to_clear += dev->host->hostt->cmd_size;
1154 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1155 
1156 	cmd->device = dev;
1157 	cmd->sense_buffer = buf;
1158 	cmd->prot_sdb = prot;
1159 	cmd->flags = flags;
1160 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1161 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1162 	cmd->retries = retries;
1163 	if (in_flight)
1164 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1165 
1166 }
1167 
1168 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1169 		struct request *req)
1170 {
1171 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1172 
1173 	/*
1174 	 * Passthrough requests may transfer data, in which case they must
1175 	 * a bio attached to them.  Or they might contain a SCSI command
1176 	 * that does not transfer data, in which case they may optionally
1177 	 * submit a request without an attached bio.
1178 	 */
1179 	if (req->bio) {
1180 		blk_status_t ret = scsi_init_io(cmd);
1181 		if (unlikely(ret != BLK_STS_OK))
1182 			return ret;
1183 	} else {
1184 		BUG_ON(blk_rq_bytes(req));
1185 
1186 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1187 	}
1188 
1189 	cmd->cmd_len = scsi_req(req)->cmd_len;
1190 	cmd->cmnd = scsi_req(req)->cmd;
1191 	cmd->transfersize = blk_rq_bytes(req);
1192 	cmd->allowed = scsi_req(req)->retries;
1193 	return BLK_STS_OK;
1194 }
1195 
1196 /*
1197  * Setup a normal block command.  These are simple request from filesystems
1198  * that still need to be translated to SCSI CDBs from the ULD.
1199  */
1200 static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1201 		struct request *req)
1202 {
1203 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1204 
1205 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1206 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1207 		if (ret != BLK_STS_OK)
1208 			return ret;
1209 	}
1210 
1211 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1212 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1213 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1214 }
1215 
1216 static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1217 		struct request *req)
1218 {
1219 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1220 
1221 	if (!blk_rq_bytes(req))
1222 		cmd->sc_data_direction = DMA_NONE;
1223 	else if (rq_data_dir(req) == WRITE)
1224 		cmd->sc_data_direction = DMA_TO_DEVICE;
1225 	else
1226 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1227 
1228 	if (blk_rq_is_scsi(req))
1229 		return scsi_setup_scsi_cmnd(sdev, req);
1230 	else
1231 		return scsi_setup_fs_cmnd(sdev, req);
1232 }
1233 
1234 static blk_status_t
1235 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1236 {
1237 	switch (sdev->sdev_state) {
1238 	case SDEV_OFFLINE:
1239 	case SDEV_TRANSPORT_OFFLINE:
1240 		/*
1241 		 * If the device is offline we refuse to process any
1242 		 * commands.  The device must be brought online
1243 		 * before trying any recovery commands.
1244 		 */
1245 		if (!sdev->offline_already) {
1246 			sdev->offline_already = true;
1247 			sdev_printk(KERN_ERR, sdev,
1248 				    "rejecting I/O to offline device\n");
1249 		}
1250 		return BLK_STS_IOERR;
1251 	case SDEV_DEL:
1252 		/*
1253 		 * If the device is fully deleted, we refuse to
1254 		 * process any commands as well.
1255 		 */
1256 		sdev_printk(KERN_ERR, sdev,
1257 			    "rejecting I/O to dead device\n");
1258 		return BLK_STS_IOERR;
1259 	case SDEV_BLOCK:
1260 	case SDEV_CREATED_BLOCK:
1261 		return BLK_STS_RESOURCE;
1262 	case SDEV_QUIESCE:
1263 		/*
1264 		 * If the devices is blocked we defer normal commands.
1265 		 */
1266 		if (req && !(req->rq_flags & RQF_PREEMPT))
1267 			return BLK_STS_RESOURCE;
1268 		return BLK_STS_OK;
1269 	default:
1270 		/*
1271 		 * For any other not fully online state we only allow
1272 		 * special commands.  In particular any user initiated
1273 		 * command is not allowed.
1274 		 */
1275 		if (req && !(req->rq_flags & RQF_PREEMPT))
1276 			return BLK_STS_IOERR;
1277 		return BLK_STS_OK;
1278 	}
1279 }
1280 
1281 /*
1282  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1283  * return 0.
1284  *
1285  * Called with the queue_lock held.
1286  */
1287 static inline int scsi_dev_queue_ready(struct request_queue *q,
1288 				  struct scsi_device *sdev)
1289 {
1290 	unsigned int busy;
1291 
1292 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1293 	if (atomic_read(&sdev->device_blocked)) {
1294 		if (busy)
1295 			goto out_dec;
1296 
1297 		/*
1298 		 * unblock after device_blocked iterates to zero
1299 		 */
1300 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1301 			goto out_dec;
1302 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1303 				   "unblocking device at zero depth\n"));
1304 	}
1305 
1306 	if (busy >= sdev->queue_depth)
1307 		goto out_dec;
1308 
1309 	return 1;
1310 out_dec:
1311 	atomic_dec(&sdev->device_busy);
1312 	return 0;
1313 }
1314 
1315 /*
1316  * scsi_target_queue_ready: checks if there we can send commands to target
1317  * @sdev: scsi device on starget to check.
1318  */
1319 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1320 					   struct scsi_device *sdev)
1321 {
1322 	struct scsi_target *starget = scsi_target(sdev);
1323 	unsigned int busy;
1324 
1325 	if (starget->single_lun) {
1326 		spin_lock_irq(shost->host_lock);
1327 		if (starget->starget_sdev_user &&
1328 		    starget->starget_sdev_user != sdev) {
1329 			spin_unlock_irq(shost->host_lock);
1330 			return 0;
1331 		}
1332 		starget->starget_sdev_user = sdev;
1333 		spin_unlock_irq(shost->host_lock);
1334 	}
1335 
1336 	if (starget->can_queue <= 0)
1337 		return 1;
1338 
1339 	busy = atomic_inc_return(&starget->target_busy) - 1;
1340 	if (atomic_read(&starget->target_blocked) > 0) {
1341 		if (busy)
1342 			goto starved;
1343 
1344 		/*
1345 		 * unblock after target_blocked iterates to zero
1346 		 */
1347 		if (atomic_dec_return(&starget->target_blocked) > 0)
1348 			goto out_dec;
1349 
1350 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1351 				 "unblocking target at zero depth\n"));
1352 	}
1353 
1354 	if (busy >= starget->can_queue)
1355 		goto starved;
1356 
1357 	return 1;
1358 
1359 starved:
1360 	spin_lock_irq(shost->host_lock);
1361 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1362 	spin_unlock_irq(shost->host_lock);
1363 out_dec:
1364 	if (starget->can_queue > 0)
1365 		atomic_dec(&starget->target_busy);
1366 	return 0;
1367 }
1368 
1369 /*
1370  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1371  * return 0. We must end up running the queue again whenever 0 is
1372  * returned, else IO can hang.
1373  */
1374 static inline int scsi_host_queue_ready(struct request_queue *q,
1375 				   struct Scsi_Host *shost,
1376 				   struct scsi_device *sdev,
1377 				   struct scsi_cmnd *cmd)
1378 {
1379 	if (scsi_host_in_recovery(shost))
1380 		return 0;
1381 
1382 	if (atomic_read(&shost->host_blocked) > 0) {
1383 		if (scsi_host_busy(shost) > 0)
1384 			goto starved;
1385 
1386 		/*
1387 		 * unblock after host_blocked iterates to zero
1388 		 */
1389 		if (atomic_dec_return(&shost->host_blocked) > 0)
1390 			goto out_dec;
1391 
1392 		SCSI_LOG_MLQUEUE(3,
1393 			shost_printk(KERN_INFO, shost,
1394 				     "unblocking host at zero depth\n"));
1395 	}
1396 
1397 	if (shost->host_self_blocked)
1398 		goto starved;
1399 
1400 	/* We're OK to process the command, so we can't be starved */
1401 	if (!list_empty(&sdev->starved_entry)) {
1402 		spin_lock_irq(shost->host_lock);
1403 		if (!list_empty(&sdev->starved_entry))
1404 			list_del_init(&sdev->starved_entry);
1405 		spin_unlock_irq(shost->host_lock);
1406 	}
1407 
1408 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1409 
1410 	return 1;
1411 
1412 starved:
1413 	spin_lock_irq(shost->host_lock);
1414 	if (list_empty(&sdev->starved_entry))
1415 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1416 	spin_unlock_irq(shost->host_lock);
1417 out_dec:
1418 	scsi_dec_host_busy(shost, cmd);
1419 	return 0;
1420 }
1421 
1422 /*
1423  * Busy state exporting function for request stacking drivers.
1424  *
1425  * For efficiency, no lock is taken to check the busy state of
1426  * shost/starget/sdev, since the returned value is not guaranteed and
1427  * may be changed after request stacking drivers call the function,
1428  * regardless of taking lock or not.
1429  *
1430  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1431  * needs to return 'not busy'. Otherwise, request stacking drivers
1432  * may hold requests forever.
1433  */
1434 static bool scsi_mq_lld_busy(struct request_queue *q)
1435 {
1436 	struct scsi_device *sdev = q->queuedata;
1437 	struct Scsi_Host *shost;
1438 
1439 	if (blk_queue_dying(q))
1440 		return false;
1441 
1442 	shost = sdev->host;
1443 
1444 	/*
1445 	 * Ignore host/starget busy state.
1446 	 * Since block layer does not have a concept of fairness across
1447 	 * multiple queues, congestion of host/starget needs to be handled
1448 	 * in SCSI layer.
1449 	 */
1450 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1451 		return true;
1452 
1453 	return false;
1454 }
1455 
1456 static void scsi_softirq_done(struct request *rq)
1457 {
1458 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1459 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1460 	int disposition;
1461 
1462 	INIT_LIST_HEAD(&cmd->eh_entry);
1463 
1464 	atomic_inc(&cmd->device->iodone_cnt);
1465 	if (cmd->result)
1466 		atomic_inc(&cmd->device->ioerr_cnt);
1467 
1468 	disposition = scsi_decide_disposition(cmd);
1469 	if (disposition != SUCCESS &&
1470 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1471 		scmd_printk(KERN_ERR, cmd,
1472 			    "timing out command, waited %lus\n",
1473 			    wait_for/HZ);
1474 		disposition = SUCCESS;
1475 	}
1476 
1477 	scsi_log_completion(cmd, disposition);
1478 
1479 	switch (disposition) {
1480 		case SUCCESS:
1481 			scsi_finish_command(cmd);
1482 			break;
1483 		case NEEDS_RETRY:
1484 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1485 			break;
1486 		case ADD_TO_MLQUEUE:
1487 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1488 			break;
1489 		default:
1490 			scsi_eh_scmd_add(cmd);
1491 			break;
1492 	}
1493 }
1494 
1495 /**
1496  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1497  * @cmd: command block we are dispatching.
1498  *
1499  * Return: nonzero return request was rejected and device's queue needs to be
1500  * plugged.
1501  */
1502 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1503 {
1504 	struct Scsi_Host *host = cmd->device->host;
1505 	int rtn = 0;
1506 
1507 	atomic_inc(&cmd->device->iorequest_cnt);
1508 
1509 	/* check if the device is still usable */
1510 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1511 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1512 		 * returns an immediate error upwards, and signals
1513 		 * that the device is no longer present */
1514 		cmd->result = DID_NO_CONNECT << 16;
1515 		goto done;
1516 	}
1517 
1518 	/* Check to see if the scsi lld made this device blocked. */
1519 	if (unlikely(scsi_device_blocked(cmd->device))) {
1520 		/*
1521 		 * in blocked state, the command is just put back on
1522 		 * the device queue.  The suspend state has already
1523 		 * blocked the queue so future requests should not
1524 		 * occur until the device transitions out of the
1525 		 * suspend state.
1526 		 */
1527 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528 			"queuecommand : device blocked\n"));
1529 		return SCSI_MLQUEUE_DEVICE_BUSY;
1530 	}
1531 
1532 	/* Store the LUN value in cmnd, if needed. */
1533 	if (cmd->device->lun_in_cdb)
1534 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1535 			       (cmd->device->lun << 5 & 0xe0);
1536 
1537 	scsi_log_send(cmd);
1538 
1539 	/*
1540 	 * Before we queue this command, check if the command
1541 	 * length exceeds what the host adapter can handle.
1542 	 */
1543 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1544 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1545 			       "queuecommand : command too long. "
1546 			       "cdb_size=%d host->max_cmd_len=%d\n",
1547 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1548 		cmd->result = (DID_ABORT << 16);
1549 		goto done;
1550 	}
1551 
1552 	if (unlikely(host->shost_state == SHOST_DEL)) {
1553 		cmd->result = (DID_NO_CONNECT << 16);
1554 		goto done;
1555 
1556 	}
1557 
1558 	trace_scsi_dispatch_cmd_start(cmd);
1559 	rtn = host->hostt->queuecommand(host, cmd);
1560 	if (rtn) {
1561 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1562 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1563 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1564 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1565 
1566 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1567 			"queuecommand : request rejected\n"));
1568 	}
1569 
1570 	return rtn;
1571  done:
1572 	cmd->scsi_done(cmd);
1573 	return 0;
1574 }
1575 
1576 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1577 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1578 {
1579 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1580 		sizeof(struct scatterlist);
1581 }
1582 
1583 static blk_status_t scsi_mq_prep_fn(struct request *req)
1584 {
1585 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1586 	struct scsi_device *sdev = req->q->queuedata;
1587 	struct Scsi_Host *shost = sdev->host;
1588 	struct scatterlist *sg;
1589 
1590 	scsi_init_command(sdev, cmd);
1591 
1592 	cmd->request = req;
1593 	cmd->tag = req->tag;
1594 	cmd->prot_op = SCSI_PROT_NORMAL;
1595 
1596 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1597 	cmd->sdb.table.sgl = sg;
1598 
1599 	if (scsi_host_get_prot(shost)) {
1600 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1601 
1602 		cmd->prot_sdb->table.sgl =
1603 			(struct scatterlist *)(cmd->prot_sdb + 1);
1604 	}
1605 
1606 	blk_mq_start_request(req);
1607 
1608 	return scsi_setup_cmnd(sdev, req);
1609 }
1610 
1611 static void scsi_mq_done(struct scsi_cmnd *cmd)
1612 {
1613 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1614 		return;
1615 	trace_scsi_dispatch_cmd_done(cmd);
1616 
1617 	/*
1618 	 * If the block layer didn't complete the request due to a timeout
1619 	 * injection, scsi must clear its internal completed state so that the
1620 	 * timeout handler will see it needs to escalate its own error
1621 	 * recovery.
1622 	 */
1623 	if (unlikely(!blk_mq_complete_request(cmd->request)))
1624 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1625 }
1626 
1627 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1628 {
1629 	struct request_queue *q = hctx->queue;
1630 	struct scsi_device *sdev = q->queuedata;
1631 
1632 	atomic_dec(&sdev->device_busy);
1633 }
1634 
1635 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1636 {
1637 	struct request_queue *q = hctx->queue;
1638 	struct scsi_device *sdev = q->queuedata;
1639 
1640 	return scsi_dev_queue_ready(q, sdev);
1641 }
1642 
1643 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1644 			 const struct blk_mq_queue_data *bd)
1645 {
1646 	struct request *req = bd->rq;
1647 	struct request_queue *q = req->q;
1648 	struct scsi_device *sdev = q->queuedata;
1649 	struct Scsi_Host *shost = sdev->host;
1650 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1651 	blk_status_t ret;
1652 	int reason;
1653 
1654 	/*
1655 	 * If the device is not in running state we will reject some or all
1656 	 * commands.
1657 	 */
1658 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1659 		ret = scsi_prep_state_check(sdev, req);
1660 		if (ret != BLK_STS_OK)
1661 			goto out_put_budget;
1662 	}
1663 
1664 	ret = BLK_STS_RESOURCE;
1665 	if (!scsi_target_queue_ready(shost, sdev))
1666 		goto out_put_budget;
1667 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1668 		goto out_dec_target_busy;
1669 
1670 	if (!(req->rq_flags & RQF_DONTPREP)) {
1671 		ret = scsi_mq_prep_fn(req);
1672 		if (ret != BLK_STS_OK)
1673 			goto out_dec_host_busy;
1674 		req->rq_flags |= RQF_DONTPREP;
1675 	} else {
1676 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1677 		blk_mq_start_request(req);
1678 	}
1679 
1680 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1681 	if (sdev->simple_tags)
1682 		cmd->flags |= SCMD_TAGGED;
1683 	if (bd->last)
1684 		cmd->flags |= SCMD_LAST;
1685 
1686 	scsi_init_cmd_errh(cmd);
1687 	cmd->scsi_done = scsi_mq_done;
1688 
1689 	reason = scsi_dispatch_cmd(cmd);
1690 	if (reason) {
1691 		scsi_set_blocked(cmd, reason);
1692 		ret = BLK_STS_RESOURCE;
1693 		goto out_dec_host_busy;
1694 	}
1695 
1696 	return BLK_STS_OK;
1697 
1698 out_dec_host_busy:
1699 	scsi_dec_host_busy(shost, cmd);
1700 out_dec_target_busy:
1701 	if (scsi_target(sdev)->can_queue > 0)
1702 		atomic_dec(&scsi_target(sdev)->target_busy);
1703 out_put_budget:
1704 	scsi_mq_put_budget(hctx);
1705 	switch (ret) {
1706 	case BLK_STS_OK:
1707 		break;
1708 	case BLK_STS_RESOURCE:
1709 	case BLK_STS_ZONE_RESOURCE:
1710 		if (atomic_read(&sdev->device_busy) ||
1711 		    scsi_device_blocked(sdev))
1712 			ret = BLK_STS_DEV_RESOURCE;
1713 		break;
1714 	default:
1715 		if (unlikely(!scsi_device_online(sdev)))
1716 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1717 		else
1718 			scsi_req(req)->result = DID_ERROR << 16;
1719 		/*
1720 		 * Make sure to release all allocated resources when
1721 		 * we hit an error, as we will never see this command
1722 		 * again.
1723 		 */
1724 		if (req->rq_flags & RQF_DONTPREP)
1725 			scsi_mq_uninit_cmd(cmd);
1726 		break;
1727 	}
1728 	return ret;
1729 }
1730 
1731 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1732 		bool reserved)
1733 {
1734 	if (reserved)
1735 		return BLK_EH_RESET_TIMER;
1736 	return scsi_times_out(req);
1737 }
1738 
1739 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740 				unsigned int hctx_idx, unsigned int numa_node)
1741 {
1742 	struct Scsi_Host *shost = set->driver_data;
1743 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1744 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745 	struct scatterlist *sg;
1746 	int ret = 0;
1747 
1748 	if (unchecked_isa_dma)
1749 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1750 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1751 						    GFP_KERNEL, numa_node);
1752 	if (!cmd->sense_buffer)
1753 		return -ENOMEM;
1754 	cmd->req.sense = cmd->sense_buffer;
1755 
1756 	if (scsi_host_get_prot(shost)) {
1757 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1758 			shost->hostt->cmd_size;
1759 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1760 	}
1761 
1762 	if (shost->hostt->init_cmd_priv) {
1763 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1764 		if (ret < 0)
1765 			scsi_free_sense_buffer(unchecked_isa_dma,
1766 					       cmd->sense_buffer);
1767 	}
1768 
1769 	return ret;
1770 }
1771 
1772 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1773 				 unsigned int hctx_idx)
1774 {
1775 	struct Scsi_Host *shost = set->driver_data;
1776 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1777 
1778 	if (shost->hostt->exit_cmd_priv)
1779 		shost->hostt->exit_cmd_priv(shost, cmd);
1780 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1781 			       cmd->sense_buffer);
1782 }
1783 
1784 static int scsi_map_queues(struct blk_mq_tag_set *set)
1785 {
1786 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1787 
1788 	if (shost->hostt->map_queues)
1789 		return shost->hostt->map_queues(shost);
1790 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1791 }
1792 
1793 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1794 {
1795 	struct device *dev = shost->dma_dev;
1796 
1797 	/*
1798 	 * this limit is imposed by hardware restrictions
1799 	 */
1800 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1801 					SG_MAX_SEGMENTS));
1802 
1803 	if (scsi_host_prot_dma(shost)) {
1804 		shost->sg_prot_tablesize =
1805 			min_not_zero(shost->sg_prot_tablesize,
1806 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1807 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1808 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1809 	}
1810 
1811 	if (dev->dma_mask) {
1812 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1813 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1814 	}
1815 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1816 	if (shost->unchecked_isa_dma)
1817 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1818 	blk_queue_segment_boundary(q, shost->dma_boundary);
1819 	dma_set_seg_boundary(dev, shost->dma_boundary);
1820 
1821 	blk_queue_max_segment_size(q, shost->max_segment_size);
1822 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1823 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1824 
1825 	/*
1826 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1827 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1828 	 * which is set by the platform.
1829 	 *
1830 	 * Devices that require a bigger alignment can increase it later.
1831 	 */
1832 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1833 }
1834 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1835 
1836 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1837 	.get_budget	= scsi_mq_get_budget,
1838 	.put_budget	= scsi_mq_put_budget,
1839 	.queue_rq	= scsi_queue_rq,
1840 	.complete	= scsi_softirq_done,
1841 	.timeout	= scsi_timeout,
1842 #ifdef CONFIG_BLK_DEBUG_FS
1843 	.show_rq	= scsi_show_rq,
1844 #endif
1845 	.init_request	= scsi_mq_init_request,
1846 	.exit_request	= scsi_mq_exit_request,
1847 	.initialize_rq_fn = scsi_initialize_rq,
1848 	.cleanup_rq	= scsi_cleanup_rq,
1849 	.busy		= scsi_mq_lld_busy,
1850 	.map_queues	= scsi_map_queues,
1851 };
1852 
1853 
1854 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1855 {
1856 	struct request_queue *q = hctx->queue;
1857 	struct scsi_device *sdev = q->queuedata;
1858 	struct Scsi_Host *shost = sdev->host;
1859 
1860 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1861 }
1862 
1863 static const struct blk_mq_ops scsi_mq_ops = {
1864 	.get_budget	= scsi_mq_get_budget,
1865 	.put_budget	= scsi_mq_put_budget,
1866 	.queue_rq	= scsi_queue_rq,
1867 	.commit_rqs	= scsi_commit_rqs,
1868 	.complete	= scsi_softirq_done,
1869 	.timeout	= scsi_timeout,
1870 #ifdef CONFIG_BLK_DEBUG_FS
1871 	.show_rq	= scsi_show_rq,
1872 #endif
1873 	.init_request	= scsi_mq_init_request,
1874 	.exit_request	= scsi_mq_exit_request,
1875 	.initialize_rq_fn = scsi_initialize_rq,
1876 	.cleanup_rq	= scsi_cleanup_rq,
1877 	.busy		= scsi_mq_lld_busy,
1878 	.map_queues	= scsi_map_queues,
1879 };
1880 
1881 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1882 {
1883 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1884 	if (IS_ERR(sdev->request_queue))
1885 		return NULL;
1886 
1887 	sdev->request_queue->queuedata = sdev;
1888 	__scsi_init_queue(sdev->host, sdev->request_queue);
1889 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1890 	return sdev->request_queue;
1891 }
1892 
1893 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1894 {
1895 	unsigned int cmd_size, sgl_size;
1896 
1897 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1898 				scsi_mq_inline_sgl_size(shost));
1899 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1900 	if (scsi_host_get_prot(shost))
1901 		cmd_size += sizeof(struct scsi_data_buffer) +
1902 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1903 
1904 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1905 	if (shost->hostt->commit_rqs)
1906 		shost->tag_set.ops = &scsi_mq_ops;
1907 	else
1908 		shost->tag_set.ops = &scsi_mq_ops_no_commit;
1909 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1910 	shost->tag_set.queue_depth = shost->can_queue;
1911 	shost->tag_set.cmd_size = cmd_size;
1912 	shost->tag_set.numa_node = NUMA_NO_NODE;
1913 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1914 	shost->tag_set.flags |=
1915 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1916 	shost->tag_set.driver_data = shost;
1917 
1918 	return blk_mq_alloc_tag_set(&shost->tag_set);
1919 }
1920 
1921 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1922 {
1923 	blk_mq_free_tag_set(&shost->tag_set);
1924 }
1925 
1926 /**
1927  * scsi_device_from_queue - return sdev associated with a request_queue
1928  * @q: The request queue to return the sdev from
1929  *
1930  * Return the sdev associated with a request queue or NULL if the
1931  * request_queue does not reference a SCSI device.
1932  */
1933 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1934 {
1935 	struct scsi_device *sdev = NULL;
1936 
1937 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1938 	    q->mq_ops == &scsi_mq_ops)
1939 		sdev = q->queuedata;
1940 	if (!sdev || !get_device(&sdev->sdev_gendev))
1941 		sdev = NULL;
1942 
1943 	return sdev;
1944 }
1945 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1946 
1947 /*
1948  * Function:    scsi_block_requests()
1949  *
1950  * Purpose:     Utility function used by low-level drivers to prevent further
1951  *		commands from being queued to the device.
1952  *
1953  * Arguments:   shost       - Host in question
1954  *
1955  * Returns:     Nothing
1956  *
1957  * Lock status: No locks are assumed held.
1958  *
1959  * Notes:       There is no timer nor any other means by which the requests
1960  *		get unblocked other than the low-level driver calling
1961  *		scsi_unblock_requests().
1962  */
1963 void scsi_block_requests(struct Scsi_Host *shost)
1964 {
1965 	shost->host_self_blocked = 1;
1966 }
1967 EXPORT_SYMBOL(scsi_block_requests);
1968 
1969 /*
1970  * Function:    scsi_unblock_requests()
1971  *
1972  * Purpose:     Utility function used by low-level drivers to allow further
1973  *		commands from being queued to the device.
1974  *
1975  * Arguments:   shost       - Host in question
1976  *
1977  * Returns:     Nothing
1978  *
1979  * Lock status: No locks are assumed held.
1980  *
1981  * Notes:       There is no timer nor any other means by which the requests
1982  *		get unblocked other than the low-level driver calling
1983  *		scsi_unblock_requests().
1984  *
1985  *		This is done as an API function so that changes to the
1986  *		internals of the scsi mid-layer won't require wholesale
1987  *		changes to drivers that use this feature.
1988  */
1989 void scsi_unblock_requests(struct Scsi_Host *shost)
1990 {
1991 	shost->host_self_blocked = 0;
1992 	scsi_run_host_queues(shost);
1993 }
1994 EXPORT_SYMBOL(scsi_unblock_requests);
1995 
1996 int __init scsi_init_queue(void)
1997 {
1998 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1999 					   sizeof(struct scsi_data_buffer),
2000 					   0, 0, NULL);
2001 	if (!scsi_sdb_cache) {
2002 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2003 		return -ENOMEM;
2004 	}
2005 
2006 	return 0;
2007 }
2008 
2009 void scsi_exit_queue(void)
2010 {
2011 	kmem_cache_destroy(scsi_sense_cache);
2012 	kmem_cache_destroy(scsi_sense_isadma_cache);
2013 	kmem_cache_destroy(scsi_sdb_cache);
2014 }
2015 
2016 /**
2017  *	scsi_mode_select - issue a mode select
2018  *	@sdev:	SCSI device to be queried
2019  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2020  *	@sp:	Save page bit (0 == don't save, 1 == save)
2021  *	@modepage: mode page being requested
2022  *	@buffer: request buffer (may not be smaller than eight bytes)
2023  *	@len:	length of request buffer.
2024  *	@timeout: command timeout
2025  *	@retries: number of retries before failing
2026  *	@data: returns a structure abstracting the mode header data
2027  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2028  *		must be SCSI_SENSE_BUFFERSIZE big.
2029  *
2030  *	Returns zero if successful; negative error number or scsi
2031  *	status on error
2032  *
2033  */
2034 int
2035 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2036 		 unsigned char *buffer, int len, int timeout, int retries,
2037 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2038 {
2039 	unsigned char cmd[10];
2040 	unsigned char *real_buffer;
2041 	int ret;
2042 
2043 	memset(cmd, 0, sizeof(cmd));
2044 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2045 
2046 	if (sdev->use_10_for_ms) {
2047 		if (len > 65535)
2048 			return -EINVAL;
2049 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2050 		if (!real_buffer)
2051 			return -ENOMEM;
2052 		memcpy(real_buffer + 8, buffer, len);
2053 		len += 8;
2054 		real_buffer[0] = 0;
2055 		real_buffer[1] = 0;
2056 		real_buffer[2] = data->medium_type;
2057 		real_buffer[3] = data->device_specific;
2058 		real_buffer[4] = data->longlba ? 0x01 : 0;
2059 		real_buffer[5] = 0;
2060 		real_buffer[6] = data->block_descriptor_length >> 8;
2061 		real_buffer[7] = data->block_descriptor_length;
2062 
2063 		cmd[0] = MODE_SELECT_10;
2064 		cmd[7] = len >> 8;
2065 		cmd[8] = len;
2066 	} else {
2067 		if (len > 255 || data->block_descriptor_length > 255 ||
2068 		    data->longlba)
2069 			return -EINVAL;
2070 
2071 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2072 		if (!real_buffer)
2073 			return -ENOMEM;
2074 		memcpy(real_buffer + 4, buffer, len);
2075 		len += 4;
2076 		real_buffer[0] = 0;
2077 		real_buffer[1] = data->medium_type;
2078 		real_buffer[2] = data->device_specific;
2079 		real_buffer[3] = data->block_descriptor_length;
2080 
2081 
2082 		cmd[0] = MODE_SELECT;
2083 		cmd[4] = len;
2084 	}
2085 
2086 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2087 			       sshdr, timeout, retries, NULL);
2088 	kfree(real_buffer);
2089 	return ret;
2090 }
2091 EXPORT_SYMBOL_GPL(scsi_mode_select);
2092 
2093 /**
2094  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2095  *	@sdev:	SCSI device to be queried
2096  *	@dbd:	set if mode sense will allow block descriptors to be returned
2097  *	@modepage: mode page being requested
2098  *	@buffer: request buffer (may not be smaller than eight bytes)
2099  *	@len:	length of request buffer.
2100  *	@timeout: command timeout
2101  *	@retries: number of retries before failing
2102  *	@data: returns a structure abstracting the mode header data
2103  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2104  *		must be SCSI_SENSE_BUFFERSIZE big.
2105  *
2106  *	Returns zero if unsuccessful, or the header offset (either 4
2107  *	or 8 depending on whether a six or ten byte command was
2108  *	issued) if successful.
2109  */
2110 int
2111 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2112 		  unsigned char *buffer, int len, int timeout, int retries,
2113 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2114 {
2115 	unsigned char cmd[12];
2116 	int use_10_for_ms;
2117 	int header_length;
2118 	int result, retry_count = retries;
2119 	struct scsi_sense_hdr my_sshdr;
2120 
2121 	memset(data, 0, sizeof(*data));
2122 	memset(&cmd[0], 0, 12);
2123 
2124 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2125 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2126 	cmd[2] = modepage;
2127 
2128 	/* caller might not be interested in sense, but we need it */
2129 	if (!sshdr)
2130 		sshdr = &my_sshdr;
2131 
2132  retry:
2133 	use_10_for_ms = sdev->use_10_for_ms;
2134 
2135 	if (use_10_for_ms) {
2136 		if (len < 8)
2137 			len = 8;
2138 
2139 		cmd[0] = MODE_SENSE_10;
2140 		cmd[8] = len;
2141 		header_length = 8;
2142 	} else {
2143 		if (len < 4)
2144 			len = 4;
2145 
2146 		cmd[0] = MODE_SENSE;
2147 		cmd[4] = len;
2148 		header_length = 4;
2149 	}
2150 
2151 	memset(buffer, 0, len);
2152 
2153 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2154 				  sshdr, timeout, retries, NULL);
2155 
2156 	/* This code looks awful: what it's doing is making sure an
2157 	 * ILLEGAL REQUEST sense return identifies the actual command
2158 	 * byte as the problem.  MODE_SENSE commands can return
2159 	 * ILLEGAL REQUEST if the code page isn't supported */
2160 
2161 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2162 	    driver_byte(result) == DRIVER_SENSE) {
2163 		if (scsi_sense_valid(sshdr)) {
2164 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2165 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2166 				/*
2167 				 * Invalid command operation code
2168 				 */
2169 				sdev->use_10_for_ms = 0;
2170 				goto retry;
2171 			}
2172 		}
2173 	}
2174 
2175 	if(scsi_status_is_good(result)) {
2176 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2177 			     (modepage == 6 || modepage == 8))) {
2178 			/* Initio breakage? */
2179 			header_length = 0;
2180 			data->length = 13;
2181 			data->medium_type = 0;
2182 			data->device_specific = 0;
2183 			data->longlba = 0;
2184 			data->block_descriptor_length = 0;
2185 		} else if(use_10_for_ms) {
2186 			data->length = buffer[0]*256 + buffer[1] + 2;
2187 			data->medium_type = buffer[2];
2188 			data->device_specific = buffer[3];
2189 			data->longlba = buffer[4] & 0x01;
2190 			data->block_descriptor_length = buffer[6]*256
2191 				+ buffer[7];
2192 		} else {
2193 			data->length = buffer[0] + 1;
2194 			data->medium_type = buffer[1];
2195 			data->device_specific = buffer[2];
2196 			data->block_descriptor_length = buffer[3];
2197 		}
2198 		data->header_length = header_length;
2199 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2200 		   scsi_sense_valid(sshdr) &&
2201 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2202 		retry_count--;
2203 		goto retry;
2204 	}
2205 
2206 	return result;
2207 }
2208 EXPORT_SYMBOL(scsi_mode_sense);
2209 
2210 /**
2211  *	scsi_test_unit_ready - test if unit is ready
2212  *	@sdev:	scsi device to change the state of.
2213  *	@timeout: command timeout
2214  *	@retries: number of retries before failing
2215  *	@sshdr: outpout pointer for decoded sense information.
2216  *
2217  *	Returns zero if unsuccessful or an error if TUR failed.  For
2218  *	removable media, UNIT_ATTENTION sets ->changed flag.
2219  **/
2220 int
2221 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2222 		     struct scsi_sense_hdr *sshdr)
2223 {
2224 	char cmd[] = {
2225 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2226 	};
2227 	int result;
2228 
2229 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2230 	do {
2231 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2232 					  timeout, 1, NULL);
2233 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2234 		    sshdr->sense_key == UNIT_ATTENTION)
2235 			sdev->changed = 1;
2236 	} while (scsi_sense_valid(sshdr) &&
2237 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2238 
2239 	return result;
2240 }
2241 EXPORT_SYMBOL(scsi_test_unit_ready);
2242 
2243 /**
2244  *	scsi_device_set_state - Take the given device through the device state model.
2245  *	@sdev:	scsi device to change the state of.
2246  *	@state:	state to change to.
2247  *
2248  *	Returns zero if successful or an error if the requested
2249  *	transition is illegal.
2250  */
2251 int
2252 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2253 {
2254 	enum scsi_device_state oldstate = sdev->sdev_state;
2255 
2256 	if (state == oldstate)
2257 		return 0;
2258 
2259 	switch (state) {
2260 	case SDEV_CREATED:
2261 		switch (oldstate) {
2262 		case SDEV_CREATED_BLOCK:
2263 			break;
2264 		default:
2265 			goto illegal;
2266 		}
2267 		break;
2268 
2269 	case SDEV_RUNNING:
2270 		switch (oldstate) {
2271 		case SDEV_CREATED:
2272 		case SDEV_OFFLINE:
2273 		case SDEV_TRANSPORT_OFFLINE:
2274 		case SDEV_QUIESCE:
2275 		case SDEV_BLOCK:
2276 			break;
2277 		default:
2278 			goto illegal;
2279 		}
2280 		break;
2281 
2282 	case SDEV_QUIESCE:
2283 		switch (oldstate) {
2284 		case SDEV_RUNNING:
2285 		case SDEV_OFFLINE:
2286 		case SDEV_TRANSPORT_OFFLINE:
2287 			break;
2288 		default:
2289 			goto illegal;
2290 		}
2291 		break;
2292 
2293 	case SDEV_OFFLINE:
2294 	case SDEV_TRANSPORT_OFFLINE:
2295 		switch (oldstate) {
2296 		case SDEV_CREATED:
2297 		case SDEV_RUNNING:
2298 		case SDEV_QUIESCE:
2299 		case SDEV_BLOCK:
2300 			break;
2301 		default:
2302 			goto illegal;
2303 		}
2304 		break;
2305 
2306 	case SDEV_BLOCK:
2307 		switch (oldstate) {
2308 		case SDEV_RUNNING:
2309 		case SDEV_CREATED_BLOCK:
2310 		case SDEV_QUIESCE:
2311 		case SDEV_OFFLINE:
2312 			break;
2313 		default:
2314 			goto illegal;
2315 		}
2316 		break;
2317 
2318 	case SDEV_CREATED_BLOCK:
2319 		switch (oldstate) {
2320 		case SDEV_CREATED:
2321 			break;
2322 		default:
2323 			goto illegal;
2324 		}
2325 		break;
2326 
2327 	case SDEV_CANCEL:
2328 		switch (oldstate) {
2329 		case SDEV_CREATED:
2330 		case SDEV_RUNNING:
2331 		case SDEV_QUIESCE:
2332 		case SDEV_OFFLINE:
2333 		case SDEV_TRANSPORT_OFFLINE:
2334 			break;
2335 		default:
2336 			goto illegal;
2337 		}
2338 		break;
2339 
2340 	case SDEV_DEL:
2341 		switch (oldstate) {
2342 		case SDEV_CREATED:
2343 		case SDEV_RUNNING:
2344 		case SDEV_OFFLINE:
2345 		case SDEV_TRANSPORT_OFFLINE:
2346 		case SDEV_CANCEL:
2347 		case SDEV_BLOCK:
2348 		case SDEV_CREATED_BLOCK:
2349 			break;
2350 		default:
2351 			goto illegal;
2352 		}
2353 		break;
2354 
2355 	}
2356 	sdev->offline_already = false;
2357 	sdev->sdev_state = state;
2358 	return 0;
2359 
2360  illegal:
2361 	SCSI_LOG_ERROR_RECOVERY(1,
2362 				sdev_printk(KERN_ERR, sdev,
2363 					    "Illegal state transition %s->%s",
2364 					    scsi_device_state_name(oldstate),
2365 					    scsi_device_state_name(state))
2366 				);
2367 	return -EINVAL;
2368 }
2369 EXPORT_SYMBOL(scsi_device_set_state);
2370 
2371 /**
2372  * 	sdev_evt_emit - emit a single SCSI device uevent
2373  *	@sdev: associated SCSI device
2374  *	@evt: event to emit
2375  *
2376  *	Send a single uevent (scsi_event) to the associated scsi_device.
2377  */
2378 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2379 {
2380 	int idx = 0;
2381 	char *envp[3];
2382 
2383 	switch (evt->evt_type) {
2384 	case SDEV_EVT_MEDIA_CHANGE:
2385 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2386 		break;
2387 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2388 		scsi_rescan_device(&sdev->sdev_gendev);
2389 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2390 		break;
2391 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2392 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2393 		break;
2394 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2395 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2396 		break;
2397 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2398 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2399 		break;
2400 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2401 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2402 		break;
2403 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2404 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2405 		break;
2406 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2407 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2408 		break;
2409 	default:
2410 		/* do nothing */
2411 		break;
2412 	}
2413 
2414 	envp[idx++] = NULL;
2415 
2416 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2417 }
2418 
2419 /**
2420  * 	sdev_evt_thread - send a uevent for each scsi event
2421  *	@work: work struct for scsi_device
2422  *
2423  *	Dispatch queued events to their associated scsi_device kobjects
2424  *	as uevents.
2425  */
2426 void scsi_evt_thread(struct work_struct *work)
2427 {
2428 	struct scsi_device *sdev;
2429 	enum scsi_device_event evt_type;
2430 	LIST_HEAD(event_list);
2431 
2432 	sdev = container_of(work, struct scsi_device, event_work);
2433 
2434 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2435 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2436 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2437 
2438 	while (1) {
2439 		struct scsi_event *evt;
2440 		struct list_head *this, *tmp;
2441 		unsigned long flags;
2442 
2443 		spin_lock_irqsave(&sdev->list_lock, flags);
2444 		list_splice_init(&sdev->event_list, &event_list);
2445 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2446 
2447 		if (list_empty(&event_list))
2448 			break;
2449 
2450 		list_for_each_safe(this, tmp, &event_list) {
2451 			evt = list_entry(this, struct scsi_event, node);
2452 			list_del(&evt->node);
2453 			scsi_evt_emit(sdev, evt);
2454 			kfree(evt);
2455 		}
2456 	}
2457 }
2458 
2459 /**
2460  * 	sdev_evt_send - send asserted event to uevent thread
2461  *	@sdev: scsi_device event occurred on
2462  *	@evt: event to send
2463  *
2464  *	Assert scsi device event asynchronously.
2465  */
2466 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2467 {
2468 	unsigned long flags;
2469 
2470 #if 0
2471 	/* FIXME: currently this check eliminates all media change events
2472 	 * for polled devices.  Need to update to discriminate between AN
2473 	 * and polled events */
2474 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2475 		kfree(evt);
2476 		return;
2477 	}
2478 #endif
2479 
2480 	spin_lock_irqsave(&sdev->list_lock, flags);
2481 	list_add_tail(&evt->node, &sdev->event_list);
2482 	schedule_work(&sdev->event_work);
2483 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2484 }
2485 EXPORT_SYMBOL_GPL(sdev_evt_send);
2486 
2487 /**
2488  * 	sdev_evt_alloc - allocate a new scsi event
2489  *	@evt_type: type of event to allocate
2490  *	@gfpflags: GFP flags for allocation
2491  *
2492  *	Allocates and returns a new scsi_event.
2493  */
2494 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2495 				  gfp_t gfpflags)
2496 {
2497 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2498 	if (!evt)
2499 		return NULL;
2500 
2501 	evt->evt_type = evt_type;
2502 	INIT_LIST_HEAD(&evt->node);
2503 
2504 	/* evt_type-specific initialization, if any */
2505 	switch (evt_type) {
2506 	case SDEV_EVT_MEDIA_CHANGE:
2507 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2508 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2509 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2510 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2511 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2512 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2513 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2514 	default:
2515 		/* do nothing */
2516 		break;
2517 	}
2518 
2519 	return evt;
2520 }
2521 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2522 
2523 /**
2524  * 	sdev_evt_send_simple - send asserted event to uevent thread
2525  *	@sdev: scsi_device event occurred on
2526  *	@evt_type: type of event to send
2527  *	@gfpflags: GFP flags for allocation
2528  *
2529  *	Assert scsi device event asynchronously, given an event type.
2530  */
2531 void sdev_evt_send_simple(struct scsi_device *sdev,
2532 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2533 {
2534 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2535 	if (!evt) {
2536 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2537 			    evt_type);
2538 		return;
2539 	}
2540 
2541 	sdev_evt_send(sdev, evt);
2542 }
2543 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2544 
2545 /**
2546  *	scsi_device_quiesce - Block user issued commands.
2547  *	@sdev:	scsi device to quiesce.
2548  *
2549  *	This works by trying to transition to the SDEV_QUIESCE state
2550  *	(which must be a legal transition).  When the device is in this
2551  *	state, only special requests will be accepted, all others will
2552  *	be deferred.  Since special requests may also be requeued requests,
2553  *	a successful return doesn't guarantee the device will be
2554  *	totally quiescent.
2555  *
2556  *	Must be called with user context, may sleep.
2557  *
2558  *	Returns zero if unsuccessful or an error if not.
2559  */
2560 int
2561 scsi_device_quiesce(struct scsi_device *sdev)
2562 {
2563 	struct request_queue *q = sdev->request_queue;
2564 	int err;
2565 
2566 	/*
2567 	 * It is allowed to call scsi_device_quiesce() multiple times from
2568 	 * the same context but concurrent scsi_device_quiesce() calls are
2569 	 * not allowed.
2570 	 */
2571 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2572 
2573 	if (sdev->quiesced_by == current)
2574 		return 0;
2575 
2576 	blk_set_pm_only(q);
2577 
2578 	blk_mq_freeze_queue(q);
2579 	/*
2580 	 * Ensure that the effect of blk_set_pm_only() will be visible
2581 	 * for percpu_ref_tryget() callers that occur after the queue
2582 	 * unfreeze even if the queue was already frozen before this function
2583 	 * was called. See also https://lwn.net/Articles/573497/.
2584 	 */
2585 	synchronize_rcu();
2586 	blk_mq_unfreeze_queue(q);
2587 
2588 	mutex_lock(&sdev->state_mutex);
2589 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2590 	if (err == 0)
2591 		sdev->quiesced_by = current;
2592 	else
2593 		blk_clear_pm_only(q);
2594 	mutex_unlock(&sdev->state_mutex);
2595 
2596 	return err;
2597 }
2598 EXPORT_SYMBOL(scsi_device_quiesce);
2599 
2600 /**
2601  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2602  *	@sdev:	scsi device to resume.
2603  *
2604  *	Moves the device from quiesced back to running and restarts the
2605  *	queues.
2606  *
2607  *	Must be called with user context, may sleep.
2608  */
2609 void scsi_device_resume(struct scsi_device *sdev)
2610 {
2611 	/* check if the device state was mutated prior to resume, and if
2612 	 * so assume the state is being managed elsewhere (for example
2613 	 * device deleted during suspend)
2614 	 */
2615 	mutex_lock(&sdev->state_mutex);
2616 	if (sdev->quiesced_by) {
2617 		sdev->quiesced_by = NULL;
2618 		blk_clear_pm_only(sdev->request_queue);
2619 	}
2620 	if (sdev->sdev_state == SDEV_QUIESCE)
2621 		scsi_device_set_state(sdev, SDEV_RUNNING);
2622 	mutex_unlock(&sdev->state_mutex);
2623 }
2624 EXPORT_SYMBOL(scsi_device_resume);
2625 
2626 static void
2627 device_quiesce_fn(struct scsi_device *sdev, void *data)
2628 {
2629 	scsi_device_quiesce(sdev);
2630 }
2631 
2632 void
2633 scsi_target_quiesce(struct scsi_target *starget)
2634 {
2635 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2636 }
2637 EXPORT_SYMBOL(scsi_target_quiesce);
2638 
2639 static void
2640 device_resume_fn(struct scsi_device *sdev, void *data)
2641 {
2642 	scsi_device_resume(sdev);
2643 }
2644 
2645 void
2646 scsi_target_resume(struct scsi_target *starget)
2647 {
2648 	starget_for_each_device(starget, NULL, device_resume_fn);
2649 }
2650 EXPORT_SYMBOL(scsi_target_resume);
2651 
2652 /**
2653  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2654  * @sdev: device to block
2655  *
2656  * Pause SCSI command processing on the specified device. Does not sleep.
2657  *
2658  * Returns zero if successful or a negative error code upon failure.
2659  *
2660  * Notes:
2661  * This routine transitions the device to the SDEV_BLOCK state (which must be
2662  * a legal transition). When the device is in this state, command processing
2663  * is paused until the device leaves the SDEV_BLOCK state. See also
2664  * scsi_internal_device_unblock_nowait().
2665  */
2666 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2667 {
2668 	struct request_queue *q = sdev->request_queue;
2669 	int err = 0;
2670 
2671 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2672 	if (err) {
2673 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2674 
2675 		if (err)
2676 			return err;
2677 	}
2678 
2679 	/*
2680 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2681 	 * block layer from calling the midlayer with this device's
2682 	 * request queue.
2683 	 */
2684 	blk_mq_quiesce_queue_nowait(q);
2685 	return 0;
2686 }
2687 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2688 
2689 /**
2690  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2691  * @sdev: device to block
2692  *
2693  * Pause SCSI command processing on the specified device and wait until all
2694  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2695  *
2696  * Returns zero if successful or a negative error code upon failure.
2697  *
2698  * Note:
2699  * This routine transitions the device to the SDEV_BLOCK state (which must be
2700  * a legal transition). When the device is in this state, command processing
2701  * is paused until the device leaves the SDEV_BLOCK state. See also
2702  * scsi_internal_device_unblock().
2703  */
2704 static int scsi_internal_device_block(struct scsi_device *sdev)
2705 {
2706 	struct request_queue *q = sdev->request_queue;
2707 	int err;
2708 
2709 	mutex_lock(&sdev->state_mutex);
2710 	err = scsi_internal_device_block_nowait(sdev);
2711 	if (err == 0)
2712 		blk_mq_quiesce_queue(q);
2713 	mutex_unlock(&sdev->state_mutex);
2714 
2715 	return err;
2716 }
2717 
2718 void scsi_start_queue(struct scsi_device *sdev)
2719 {
2720 	struct request_queue *q = sdev->request_queue;
2721 
2722 	blk_mq_unquiesce_queue(q);
2723 }
2724 
2725 /**
2726  * scsi_internal_device_unblock_nowait - resume a device after a block request
2727  * @sdev:	device to resume
2728  * @new_state:	state to set the device to after unblocking
2729  *
2730  * Restart the device queue for a previously suspended SCSI device. Does not
2731  * sleep.
2732  *
2733  * Returns zero if successful or a negative error code upon failure.
2734  *
2735  * Notes:
2736  * This routine transitions the device to the SDEV_RUNNING state or to one of
2737  * the offline states (which must be a legal transition) allowing the midlayer
2738  * to goose the queue for this device.
2739  */
2740 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2741 					enum scsi_device_state new_state)
2742 {
2743 	switch (new_state) {
2744 	case SDEV_RUNNING:
2745 	case SDEV_TRANSPORT_OFFLINE:
2746 		break;
2747 	default:
2748 		return -EINVAL;
2749 	}
2750 
2751 	/*
2752 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2753 	 * offlined states and goose the device queue if successful.
2754 	 */
2755 	switch (sdev->sdev_state) {
2756 	case SDEV_BLOCK:
2757 	case SDEV_TRANSPORT_OFFLINE:
2758 		sdev->sdev_state = new_state;
2759 		break;
2760 	case SDEV_CREATED_BLOCK:
2761 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2762 		    new_state == SDEV_OFFLINE)
2763 			sdev->sdev_state = new_state;
2764 		else
2765 			sdev->sdev_state = SDEV_CREATED;
2766 		break;
2767 	case SDEV_CANCEL:
2768 	case SDEV_OFFLINE:
2769 		break;
2770 	default:
2771 		return -EINVAL;
2772 	}
2773 	scsi_start_queue(sdev);
2774 
2775 	return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2778 
2779 /**
2780  * scsi_internal_device_unblock - resume a device after a block request
2781  * @sdev:	device to resume
2782  * @new_state:	state to set the device to after unblocking
2783  *
2784  * Restart the device queue for a previously suspended SCSI device. May sleep.
2785  *
2786  * Returns zero if successful or a negative error code upon failure.
2787  *
2788  * Notes:
2789  * This routine transitions the device to the SDEV_RUNNING state or to one of
2790  * the offline states (which must be a legal transition) allowing the midlayer
2791  * to goose the queue for this device.
2792  */
2793 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2794 					enum scsi_device_state new_state)
2795 {
2796 	int ret;
2797 
2798 	mutex_lock(&sdev->state_mutex);
2799 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2800 	mutex_unlock(&sdev->state_mutex);
2801 
2802 	return ret;
2803 }
2804 
2805 static void
2806 device_block(struct scsi_device *sdev, void *data)
2807 {
2808 	int ret;
2809 
2810 	ret = scsi_internal_device_block(sdev);
2811 
2812 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2813 		  dev_name(&sdev->sdev_gendev), ret);
2814 }
2815 
2816 static int
2817 target_block(struct device *dev, void *data)
2818 {
2819 	if (scsi_is_target_device(dev))
2820 		starget_for_each_device(to_scsi_target(dev), NULL,
2821 					device_block);
2822 	return 0;
2823 }
2824 
2825 void
2826 scsi_target_block(struct device *dev)
2827 {
2828 	if (scsi_is_target_device(dev))
2829 		starget_for_each_device(to_scsi_target(dev), NULL,
2830 					device_block);
2831 	else
2832 		device_for_each_child(dev, NULL, target_block);
2833 }
2834 EXPORT_SYMBOL_GPL(scsi_target_block);
2835 
2836 static void
2837 device_unblock(struct scsi_device *sdev, void *data)
2838 {
2839 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2840 }
2841 
2842 static int
2843 target_unblock(struct device *dev, void *data)
2844 {
2845 	if (scsi_is_target_device(dev))
2846 		starget_for_each_device(to_scsi_target(dev), data,
2847 					device_unblock);
2848 	return 0;
2849 }
2850 
2851 void
2852 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2853 {
2854 	if (scsi_is_target_device(dev))
2855 		starget_for_each_device(to_scsi_target(dev), &new_state,
2856 					device_unblock);
2857 	else
2858 		device_for_each_child(dev, &new_state, target_unblock);
2859 }
2860 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2861 
2862 int
2863 scsi_host_block(struct Scsi_Host *shost)
2864 {
2865 	struct scsi_device *sdev;
2866 	int ret = 0;
2867 
2868 	shost_for_each_device(sdev, shost) {
2869 		ret = scsi_internal_device_block(sdev);
2870 		if (ret)
2871 			break;
2872 	}
2873 	return ret;
2874 }
2875 EXPORT_SYMBOL_GPL(scsi_host_block);
2876 
2877 int
2878 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2879 {
2880 	struct scsi_device *sdev;
2881 	int ret = 0;
2882 
2883 	shost_for_each_device(sdev, shost) {
2884 		ret = scsi_internal_device_unblock(sdev, new_state);
2885 		if (ret)
2886 			break;
2887 	}
2888 	return ret;
2889 }
2890 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2891 
2892 /**
2893  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2894  * @sgl:	scatter-gather list
2895  * @sg_count:	number of segments in sg
2896  * @offset:	offset in bytes into sg, on return offset into the mapped area
2897  * @len:	bytes to map, on return number of bytes mapped
2898  *
2899  * Returns virtual address of the start of the mapped page
2900  */
2901 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2902 			  size_t *offset, size_t *len)
2903 {
2904 	int i;
2905 	size_t sg_len = 0, len_complete = 0;
2906 	struct scatterlist *sg;
2907 	struct page *page;
2908 
2909 	WARN_ON(!irqs_disabled());
2910 
2911 	for_each_sg(sgl, sg, sg_count, i) {
2912 		len_complete = sg_len; /* Complete sg-entries */
2913 		sg_len += sg->length;
2914 		if (sg_len > *offset)
2915 			break;
2916 	}
2917 
2918 	if (unlikely(i == sg_count)) {
2919 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2920 			"elements %d\n",
2921 		       __func__, sg_len, *offset, sg_count);
2922 		WARN_ON(1);
2923 		return NULL;
2924 	}
2925 
2926 	/* Offset starting from the beginning of first page in this sg-entry */
2927 	*offset = *offset - len_complete + sg->offset;
2928 
2929 	/* Assumption: contiguous pages can be accessed as "page + i" */
2930 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2931 	*offset &= ~PAGE_MASK;
2932 
2933 	/* Bytes in this sg-entry from *offset to the end of the page */
2934 	sg_len = PAGE_SIZE - *offset;
2935 	if (*len > sg_len)
2936 		*len = sg_len;
2937 
2938 	return kmap_atomic(page);
2939 }
2940 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2941 
2942 /**
2943  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2944  * @virt:	virtual address to be unmapped
2945  */
2946 void scsi_kunmap_atomic_sg(void *virt)
2947 {
2948 	kunmap_atomic(virt);
2949 }
2950 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2951 
2952 void sdev_disable_disk_events(struct scsi_device *sdev)
2953 {
2954 	atomic_inc(&sdev->disk_events_disable_depth);
2955 }
2956 EXPORT_SYMBOL(sdev_disable_disk_events);
2957 
2958 void sdev_enable_disk_events(struct scsi_device *sdev)
2959 {
2960 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2961 		return;
2962 	atomic_dec(&sdev->disk_events_disable_depth);
2963 }
2964 EXPORT_SYMBOL(sdev_enable_disk_events);
2965 
2966 /**
2967  * scsi_vpd_lun_id - return a unique device identification
2968  * @sdev: SCSI device
2969  * @id:   buffer for the identification
2970  * @id_len:  length of the buffer
2971  *
2972  * Copies a unique device identification into @id based
2973  * on the information in the VPD page 0x83 of the device.
2974  * The string will be formatted as a SCSI name string.
2975  *
2976  * Returns the length of the identification or error on failure.
2977  * If the identifier is longer than the supplied buffer the actual
2978  * identifier length is returned and the buffer is not zero-padded.
2979  */
2980 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2981 {
2982 	u8 cur_id_type = 0xff;
2983 	u8 cur_id_size = 0;
2984 	const unsigned char *d, *cur_id_str;
2985 	const struct scsi_vpd *vpd_pg83;
2986 	int id_size = -EINVAL;
2987 
2988 	rcu_read_lock();
2989 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2990 	if (!vpd_pg83) {
2991 		rcu_read_unlock();
2992 		return -ENXIO;
2993 	}
2994 
2995 	/*
2996 	 * Look for the correct descriptor.
2997 	 * Order of preference for lun descriptor:
2998 	 * - SCSI name string
2999 	 * - NAA IEEE Registered Extended
3000 	 * - EUI-64 based 16-byte
3001 	 * - EUI-64 based 12-byte
3002 	 * - NAA IEEE Registered
3003 	 * - NAA IEEE Extended
3004 	 * - T10 Vendor ID
3005 	 * as longer descriptors reduce the likelyhood
3006 	 * of identification clashes.
3007 	 */
3008 
3009 	/* The id string must be at least 20 bytes + terminating NULL byte */
3010 	if (id_len < 21) {
3011 		rcu_read_unlock();
3012 		return -EINVAL;
3013 	}
3014 
3015 	memset(id, 0, id_len);
3016 	d = vpd_pg83->data + 4;
3017 	while (d < vpd_pg83->data + vpd_pg83->len) {
3018 		/* Skip designators not referring to the LUN */
3019 		if ((d[1] & 0x30) != 0x00)
3020 			goto next_desig;
3021 
3022 		switch (d[1] & 0xf) {
3023 		case 0x1:
3024 			/* T10 Vendor ID */
3025 			if (cur_id_size > d[3])
3026 				break;
3027 			/* Prefer anything */
3028 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3029 				break;
3030 			cur_id_size = d[3];
3031 			if (cur_id_size + 4 > id_len)
3032 				cur_id_size = id_len - 4;
3033 			cur_id_str = d + 4;
3034 			cur_id_type = d[1] & 0xf;
3035 			id_size = snprintf(id, id_len, "t10.%*pE",
3036 					   cur_id_size, cur_id_str);
3037 			break;
3038 		case 0x2:
3039 			/* EUI-64 */
3040 			if (cur_id_size > d[3])
3041 				break;
3042 			/* Prefer NAA IEEE Registered Extended */
3043 			if (cur_id_type == 0x3 &&
3044 			    cur_id_size == d[3])
3045 				break;
3046 			cur_id_size = d[3];
3047 			cur_id_str = d + 4;
3048 			cur_id_type = d[1] & 0xf;
3049 			switch (cur_id_size) {
3050 			case 8:
3051 				id_size = snprintf(id, id_len,
3052 						   "eui.%8phN",
3053 						   cur_id_str);
3054 				break;
3055 			case 12:
3056 				id_size = snprintf(id, id_len,
3057 						   "eui.%12phN",
3058 						   cur_id_str);
3059 				break;
3060 			case 16:
3061 				id_size = snprintf(id, id_len,
3062 						   "eui.%16phN",
3063 						   cur_id_str);
3064 				break;
3065 			default:
3066 				cur_id_size = 0;
3067 				break;
3068 			}
3069 			break;
3070 		case 0x3:
3071 			/* NAA */
3072 			if (cur_id_size > d[3])
3073 				break;
3074 			cur_id_size = d[3];
3075 			cur_id_str = d + 4;
3076 			cur_id_type = d[1] & 0xf;
3077 			switch (cur_id_size) {
3078 			case 8:
3079 				id_size = snprintf(id, id_len,
3080 						   "naa.%8phN",
3081 						   cur_id_str);
3082 				break;
3083 			case 16:
3084 				id_size = snprintf(id, id_len,
3085 						   "naa.%16phN",
3086 						   cur_id_str);
3087 				break;
3088 			default:
3089 				cur_id_size = 0;
3090 				break;
3091 			}
3092 			break;
3093 		case 0x8:
3094 			/* SCSI name string */
3095 			if (cur_id_size + 4 > d[3])
3096 				break;
3097 			/* Prefer others for truncated descriptor */
3098 			if (cur_id_size && d[3] > id_len)
3099 				break;
3100 			cur_id_size = id_size = d[3];
3101 			cur_id_str = d + 4;
3102 			cur_id_type = d[1] & 0xf;
3103 			if (cur_id_size >= id_len)
3104 				cur_id_size = id_len - 1;
3105 			memcpy(id, cur_id_str, cur_id_size);
3106 			/* Decrease priority for truncated descriptor */
3107 			if (cur_id_size != id_size)
3108 				cur_id_size = 6;
3109 			break;
3110 		default:
3111 			break;
3112 		}
3113 next_desig:
3114 		d += d[3] + 4;
3115 	}
3116 	rcu_read_unlock();
3117 
3118 	return id_size;
3119 }
3120 EXPORT_SYMBOL(scsi_vpd_lun_id);
3121 
3122 /*
3123  * scsi_vpd_tpg_id - return a target port group identifier
3124  * @sdev: SCSI device
3125  *
3126  * Returns the Target Port Group identifier from the information
3127  * froom VPD page 0x83 of the device.
3128  *
3129  * Returns the identifier or error on failure.
3130  */
3131 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3132 {
3133 	const unsigned char *d;
3134 	const struct scsi_vpd *vpd_pg83;
3135 	int group_id = -EAGAIN, rel_port = -1;
3136 
3137 	rcu_read_lock();
3138 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3139 	if (!vpd_pg83) {
3140 		rcu_read_unlock();
3141 		return -ENXIO;
3142 	}
3143 
3144 	d = vpd_pg83->data + 4;
3145 	while (d < vpd_pg83->data + vpd_pg83->len) {
3146 		switch (d[1] & 0xf) {
3147 		case 0x4:
3148 			/* Relative target port */
3149 			rel_port = get_unaligned_be16(&d[6]);
3150 			break;
3151 		case 0x5:
3152 			/* Target port group */
3153 			group_id = get_unaligned_be16(&d[6]);
3154 			break;
3155 		default:
3156 			break;
3157 		}
3158 		d += d[3] + 4;
3159 	}
3160 	rcu_read_unlock();
3161 
3162 	if (group_id >= 0 && rel_id && rel_port != -1)
3163 		*rel_id = rel_port;
3164 
3165 	return group_id;
3166 }
3167 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3168