1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/mempool.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include <scsi/scsi_host.h> 30 31 #include "scsi_priv.h" 32 #include "scsi_logging.h" 33 34 35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 36 #define SG_MEMPOOL_SIZE 2 37 38 struct scsi_host_sg_pool { 39 size_t size; 40 char *name; 41 struct kmem_cache *slab; 42 mempool_t *pool; 43 }; 44 45 #define SP(x) { x, "sgpool-" __stringify(x) } 46 #if (SCSI_MAX_SG_SEGMENTS < 32) 47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 48 #endif 49 static struct scsi_host_sg_pool scsi_sg_pools[] = { 50 SP(8), 51 SP(16), 52 #if (SCSI_MAX_SG_SEGMENTS > 32) 53 SP(32), 54 #if (SCSI_MAX_SG_SEGMENTS > 64) 55 SP(64), 56 #if (SCSI_MAX_SG_SEGMENTS > 128) 57 SP(128), 58 #if (SCSI_MAX_SG_SEGMENTS > 256) 59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 60 #endif 61 #endif 62 #endif 63 #endif 64 SP(SCSI_MAX_SG_SEGMENTS) 65 }; 66 #undef SP 67 68 static struct kmem_cache *scsi_sdb_cache; 69 70 static void scsi_run_queue(struct request_queue *q); 71 72 /* 73 * Function: scsi_unprep_request() 74 * 75 * Purpose: Remove all preparation done for a request, including its 76 * associated scsi_cmnd, so that it can be requeued. 77 * 78 * Arguments: req - request to unprepare 79 * 80 * Lock status: Assumed that no locks are held upon entry. 81 * 82 * Returns: Nothing. 83 */ 84 static void scsi_unprep_request(struct request *req) 85 { 86 struct scsi_cmnd *cmd = req->special; 87 88 req->cmd_flags &= ~REQ_DONTPREP; 89 req->special = NULL; 90 91 scsi_put_command(cmd); 92 } 93 94 /* 95 * Function: scsi_queue_insert() 96 * 97 * Purpose: Insert a command in the midlevel queue. 98 * 99 * Arguments: cmd - command that we are adding to queue. 100 * reason - why we are inserting command to queue. 101 * 102 * Lock status: Assumed that lock is not held upon entry. 103 * 104 * Returns: Nothing. 105 * 106 * Notes: We do this for one of two cases. Either the host is busy 107 * and it cannot accept any more commands for the time being, 108 * or the device returned QUEUE_FULL and can accept no more 109 * commands. 110 * Notes: This could be called either from an interrupt context or a 111 * normal process context. 112 */ 113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 114 { 115 struct Scsi_Host *host = cmd->device->host; 116 struct scsi_device *device = cmd->device; 117 struct request_queue *q = device->request_queue; 118 unsigned long flags; 119 120 SCSI_LOG_MLQUEUE(1, 121 printk("Inserting command %p into mlqueue\n", cmd)); 122 123 /* 124 * Set the appropriate busy bit for the device/host. 125 * 126 * If the host/device isn't busy, assume that something actually 127 * completed, and that we should be able to queue a command now. 128 * 129 * Note that the prior mid-layer assumption that any host could 130 * always queue at least one command is now broken. The mid-layer 131 * will implement a user specifiable stall (see 132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 133 * if a command is requeued with no other commands outstanding 134 * either for the device or for the host. 135 */ 136 if (reason == SCSI_MLQUEUE_HOST_BUSY) 137 host->host_blocked = host->max_host_blocked; 138 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY) 139 device->device_blocked = device->max_device_blocked; 140 141 /* 142 * Decrement the counters, since these commands are no longer 143 * active on the host/device. 144 */ 145 scsi_device_unbusy(device); 146 147 /* 148 * Requeue this command. It will go before all other commands 149 * that are already in the queue. 150 * 151 * NOTE: there is magic here about the way the queue is plugged if 152 * we have no outstanding commands. 153 * 154 * Although we *don't* plug the queue, we call the request 155 * function. The SCSI request function detects the blocked condition 156 * and plugs the queue appropriately. 157 */ 158 spin_lock_irqsave(q->queue_lock, flags); 159 blk_requeue_request(q, cmd->request); 160 spin_unlock_irqrestore(q->queue_lock, flags); 161 162 scsi_run_queue(q); 163 164 return 0; 165 } 166 167 /** 168 * scsi_execute - insert request and wait for the result 169 * @sdev: scsi device 170 * @cmd: scsi command 171 * @data_direction: data direction 172 * @buffer: data buffer 173 * @bufflen: len of buffer 174 * @sense: optional sense buffer 175 * @timeout: request timeout in seconds 176 * @retries: number of times to retry request 177 * @flags: or into request flags; 178 * 179 * returns the req->errors value which is the scsi_cmnd result 180 * field. 181 */ 182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 183 int data_direction, void *buffer, unsigned bufflen, 184 unsigned char *sense, int timeout, int retries, int flags) 185 { 186 struct request *req; 187 int write = (data_direction == DMA_TO_DEVICE); 188 int ret = DRIVER_ERROR << 24; 189 190 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 191 192 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 193 buffer, bufflen, __GFP_WAIT)) 194 goto out; 195 196 req->cmd_len = COMMAND_SIZE(cmd[0]); 197 memcpy(req->cmd, cmd, req->cmd_len); 198 req->sense = sense; 199 req->sense_len = 0; 200 req->retries = retries; 201 req->timeout = timeout; 202 req->cmd_type = REQ_TYPE_BLOCK_PC; 203 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 204 205 /* 206 * head injection *required* here otherwise quiesce won't work 207 */ 208 blk_execute_rq(req->q, NULL, req, 1); 209 210 /* 211 * Some devices (USB mass-storage in particular) may transfer 212 * garbage data together with a residue indicating that the data 213 * is invalid. Prevent the garbage from being misinterpreted 214 * and prevent security leaks by zeroing out the excess data. 215 */ 216 if (unlikely(req->data_len > 0 && req->data_len <= bufflen)) 217 memset(buffer + (bufflen - req->data_len), 0, req->data_len); 218 219 ret = req->errors; 220 out: 221 blk_put_request(req); 222 223 return ret; 224 } 225 EXPORT_SYMBOL(scsi_execute); 226 227 228 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd, 229 int data_direction, void *buffer, unsigned bufflen, 230 struct scsi_sense_hdr *sshdr, int timeout, int retries) 231 { 232 char *sense = NULL; 233 int result; 234 235 if (sshdr) { 236 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 237 if (!sense) 238 return DRIVER_ERROR << 24; 239 } 240 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 241 sense, timeout, retries, 0); 242 if (sshdr) 243 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 244 245 kfree(sense); 246 return result; 247 } 248 EXPORT_SYMBOL(scsi_execute_req); 249 250 struct scsi_io_context { 251 void *data; 252 void (*done)(void *data, char *sense, int result, int resid); 253 char sense[SCSI_SENSE_BUFFERSIZE]; 254 }; 255 256 static struct kmem_cache *scsi_io_context_cache; 257 258 static void scsi_end_async(struct request *req, int uptodate) 259 { 260 struct scsi_io_context *sioc = req->end_io_data; 261 262 if (sioc->done) 263 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len); 264 265 kmem_cache_free(scsi_io_context_cache, sioc); 266 __blk_put_request(req->q, req); 267 } 268 269 static int scsi_merge_bio(struct request *rq, struct bio *bio) 270 { 271 struct request_queue *q = rq->q; 272 273 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 274 if (rq_data_dir(rq) == WRITE) 275 bio->bi_rw |= (1 << BIO_RW); 276 blk_queue_bounce(q, &bio); 277 278 return blk_rq_append_bio(q, rq, bio); 279 } 280 281 static void scsi_bi_endio(struct bio *bio, int error) 282 { 283 bio_put(bio); 284 } 285 286 /** 287 * scsi_req_map_sg - map a scatterlist into a request 288 * @rq: request to fill 289 * @sgl: scatterlist 290 * @nsegs: number of elements 291 * @bufflen: len of buffer 292 * @gfp: memory allocation flags 293 * 294 * scsi_req_map_sg maps a scatterlist into a request so that the 295 * request can be sent to the block layer. We do not trust the scatterlist 296 * sent to use, as some ULDs use that struct to only organize the pages. 297 */ 298 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl, 299 int nsegs, unsigned bufflen, gfp_t gfp) 300 { 301 struct request_queue *q = rq->q; 302 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 303 unsigned int data_len = bufflen, len, bytes, off; 304 struct scatterlist *sg; 305 struct page *page; 306 struct bio *bio = NULL; 307 int i, err, nr_vecs = 0; 308 309 for_each_sg(sgl, sg, nsegs, i) { 310 page = sg_page(sg); 311 off = sg->offset; 312 len = sg->length; 313 314 while (len > 0 && data_len > 0) { 315 /* 316 * sg sends a scatterlist that is larger than 317 * the data_len it wants transferred for certain 318 * IO sizes 319 */ 320 bytes = min_t(unsigned int, len, PAGE_SIZE - off); 321 bytes = min(bytes, data_len); 322 323 if (!bio) { 324 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages); 325 nr_pages -= nr_vecs; 326 327 bio = bio_alloc(gfp, nr_vecs); 328 if (!bio) { 329 err = -ENOMEM; 330 goto free_bios; 331 } 332 bio->bi_end_io = scsi_bi_endio; 333 } 334 335 if (bio_add_pc_page(q, bio, page, bytes, off) != 336 bytes) { 337 bio_put(bio); 338 err = -EINVAL; 339 goto free_bios; 340 } 341 342 if (bio->bi_vcnt >= nr_vecs) { 343 err = scsi_merge_bio(rq, bio); 344 if (err) { 345 bio_endio(bio, 0); 346 goto free_bios; 347 } 348 bio = NULL; 349 } 350 351 page++; 352 len -= bytes; 353 data_len -=bytes; 354 off = 0; 355 } 356 } 357 358 rq->buffer = rq->data = NULL; 359 rq->data_len = bufflen; 360 return 0; 361 362 free_bios: 363 while ((bio = rq->bio) != NULL) { 364 rq->bio = bio->bi_next; 365 /* 366 * call endio instead of bio_put incase it was bounced 367 */ 368 bio_endio(bio, 0); 369 } 370 371 return err; 372 } 373 374 /** 375 * scsi_execute_async - insert request 376 * @sdev: scsi device 377 * @cmd: scsi command 378 * @cmd_len: length of scsi cdb 379 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE 380 * @buffer: data buffer (this can be a kernel buffer or scatterlist) 381 * @bufflen: len of buffer 382 * @use_sg: if buffer is a scatterlist this is the number of elements 383 * @timeout: request timeout in seconds 384 * @retries: number of times to retry request 385 * @privdata: data passed to done() 386 * @done: callback function when done 387 * @gfp: memory allocation flags 388 */ 389 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd, 390 int cmd_len, int data_direction, void *buffer, unsigned bufflen, 391 int use_sg, int timeout, int retries, void *privdata, 392 void (*done)(void *, char *, int, int), gfp_t gfp) 393 { 394 struct request *req; 395 struct scsi_io_context *sioc; 396 int err = 0; 397 int write = (data_direction == DMA_TO_DEVICE); 398 399 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp); 400 if (!sioc) 401 return DRIVER_ERROR << 24; 402 403 req = blk_get_request(sdev->request_queue, write, gfp); 404 if (!req) 405 goto free_sense; 406 req->cmd_type = REQ_TYPE_BLOCK_PC; 407 req->cmd_flags |= REQ_QUIET; 408 409 if (use_sg) 410 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp); 411 else if (bufflen) 412 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp); 413 414 if (err) 415 goto free_req; 416 417 req->cmd_len = cmd_len; 418 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */ 419 memcpy(req->cmd, cmd, req->cmd_len); 420 req->sense = sioc->sense; 421 req->sense_len = 0; 422 req->timeout = timeout; 423 req->retries = retries; 424 req->end_io_data = sioc; 425 426 sioc->data = privdata; 427 sioc->done = done; 428 429 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async); 430 return 0; 431 432 free_req: 433 blk_put_request(req); 434 free_sense: 435 kmem_cache_free(scsi_io_context_cache, sioc); 436 return DRIVER_ERROR << 24; 437 } 438 EXPORT_SYMBOL_GPL(scsi_execute_async); 439 440 /* 441 * Function: scsi_init_cmd_errh() 442 * 443 * Purpose: Initialize cmd fields related to error handling. 444 * 445 * Arguments: cmd - command that is ready to be queued. 446 * 447 * Notes: This function has the job of initializing a number of 448 * fields related to error handling. Typically this will 449 * be called once for each command, as required. 450 */ 451 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 452 { 453 cmd->serial_number = 0; 454 scsi_set_resid(cmd, 0); 455 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 456 if (cmd->cmd_len == 0) 457 cmd->cmd_len = scsi_command_size(cmd->cmnd); 458 } 459 460 void scsi_device_unbusy(struct scsi_device *sdev) 461 { 462 struct Scsi_Host *shost = sdev->host; 463 unsigned long flags; 464 465 spin_lock_irqsave(shost->host_lock, flags); 466 shost->host_busy--; 467 if (unlikely(scsi_host_in_recovery(shost) && 468 (shost->host_failed || shost->host_eh_scheduled))) 469 scsi_eh_wakeup(shost); 470 spin_unlock(shost->host_lock); 471 spin_lock(sdev->request_queue->queue_lock); 472 sdev->device_busy--; 473 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 474 } 475 476 /* 477 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 478 * and call blk_run_queue for all the scsi_devices on the target - 479 * including current_sdev first. 480 * 481 * Called with *no* scsi locks held. 482 */ 483 static void scsi_single_lun_run(struct scsi_device *current_sdev) 484 { 485 struct Scsi_Host *shost = current_sdev->host; 486 struct scsi_device *sdev, *tmp; 487 struct scsi_target *starget = scsi_target(current_sdev); 488 unsigned long flags; 489 490 spin_lock_irqsave(shost->host_lock, flags); 491 starget->starget_sdev_user = NULL; 492 spin_unlock_irqrestore(shost->host_lock, flags); 493 494 /* 495 * Call blk_run_queue for all LUNs on the target, starting with 496 * current_sdev. We race with others (to set starget_sdev_user), 497 * but in most cases, we will be first. Ideally, each LU on the 498 * target would get some limited time or requests on the target. 499 */ 500 blk_run_queue(current_sdev->request_queue); 501 502 spin_lock_irqsave(shost->host_lock, flags); 503 if (starget->starget_sdev_user) 504 goto out; 505 list_for_each_entry_safe(sdev, tmp, &starget->devices, 506 same_target_siblings) { 507 if (sdev == current_sdev) 508 continue; 509 if (scsi_device_get(sdev)) 510 continue; 511 512 spin_unlock_irqrestore(shost->host_lock, flags); 513 blk_run_queue(sdev->request_queue); 514 spin_lock_irqsave(shost->host_lock, flags); 515 516 scsi_device_put(sdev); 517 } 518 out: 519 spin_unlock_irqrestore(shost->host_lock, flags); 520 } 521 522 /* 523 * Function: scsi_run_queue() 524 * 525 * Purpose: Select a proper request queue to serve next 526 * 527 * Arguments: q - last request's queue 528 * 529 * Returns: Nothing 530 * 531 * Notes: The previous command was completely finished, start 532 * a new one if possible. 533 */ 534 static void scsi_run_queue(struct request_queue *q) 535 { 536 struct scsi_device *sdev = q->queuedata; 537 struct Scsi_Host *shost = sdev->host; 538 unsigned long flags; 539 540 if (scsi_target(sdev)->single_lun) 541 scsi_single_lun_run(sdev); 542 543 spin_lock_irqsave(shost->host_lock, flags); 544 while (!list_empty(&shost->starved_list) && 545 !shost->host_blocked && !shost->host_self_blocked && 546 !((shost->can_queue > 0) && 547 (shost->host_busy >= shost->can_queue))) { 548 549 int flagset; 550 551 /* 552 * As long as shost is accepting commands and we have 553 * starved queues, call blk_run_queue. scsi_request_fn 554 * drops the queue_lock and can add us back to the 555 * starved_list. 556 * 557 * host_lock protects the starved_list and starved_entry. 558 * scsi_request_fn must get the host_lock before checking 559 * or modifying starved_list or starved_entry. 560 */ 561 sdev = list_entry(shost->starved_list.next, 562 struct scsi_device, starved_entry); 563 list_del_init(&sdev->starved_entry); 564 spin_unlock(shost->host_lock); 565 566 spin_lock(sdev->request_queue->queue_lock); 567 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) && 568 !test_bit(QUEUE_FLAG_REENTER, 569 &sdev->request_queue->queue_flags); 570 if (flagset) 571 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue); 572 __blk_run_queue(sdev->request_queue); 573 if (flagset) 574 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue); 575 spin_unlock(sdev->request_queue->queue_lock); 576 577 spin_lock(shost->host_lock); 578 if (unlikely(!list_empty(&sdev->starved_entry))) 579 /* 580 * sdev lost a race, and was put back on the 581 * starved list. This is unlikely but without this 582 * in theory we could loop forever. 583 */ 584 break; 585 } 586 spin_unlock_irqrestore(shost->host_lock, flags); 587 588 blk_run_queue(q); 589 } 590 591 /* 592 * Function: scsi_requeue_command() 593 * 594 * Purpose: Handle post-processing of completed commands. 595 * 596 * Arguments: q - queue to operate on 597 * cmd - command that may need to be requeued. 598 * 599 * Returns: Nothing 600 * 601 * Notes: After command completion, there may be blocks left 602 * over which weren't finished by the previous command 603 * this can be for a number of reasons - the main one is 604 * I/O errors in the middle of the request, in which case 605 * we need to request the blocks that come after the bad 606 * sector. 607 * Notes: Upon return, cmd is a stale pointer. 608 */ 609 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 610 { 611 struct request *req = cmd->request; 612 unsigned long flags; 613 614 scsi_unprep_request(req); 615 spin_lock_irqsave(q->queue_lock, flags); 616 blk_requeue_request(q, req); 617 spin_unlock_irqrestore(q->queue_lock, flags); 618 619 scsi_run_queue(q); 620 } 621 622 void scsi_next_command(struct scsi_cmnd *cmd) 623 { 624 struct scsi_device *sdev = cmd->device; 625 struct request_queue *q = sdev->request_queue; 626 627 /* need to hold a reference on the device before we let go of the cmd */ 628 get_device(&sdev->sdev_gendev); 629 630 scsi_put_command(cmd); 631 scsi_run_queue(q); 632 633 /* ok to remove device now */ 634 put_device(&sdev->sdev_gendev); 635 } 636 637 void scsi_run_host_queues(struct Scsi_Host *shost) 638 { 639 struct scsi_device *sdev; 640 641 shost_for_each_device(sdev, shost) 642 scsi_run_queue(sdev->request_queue); 643 } 644 645 /* 646 * Function: scsi_end_request() 647 * 648 * Purpose: Post-processing of completed commands (usually invoked at end 649 * of upper level post-processing and scsi_io_completion). 650 * 651 * Arguments: cmd - command that is complete. 652 * error - 0 if I/O indicates success, < 0 for I/O error. 653 * bytes - number of bytes of completed I/O 654 * requeue - indicates whether we should requeue leftovers. 655 * 656 * Lock status: Assumed that lock is not held upon entry. 657 * 658 * Returns: cmd if requeue required, NULL otherwise. 659 * 660 * Notes: This is called for block device requests in order to 661 * mark some number of sectors as complete. 662 * 663 * We are guaranteeing that the request queue will be goosed 664 * at some point during this call. 665 * Notes: If cmd was requeued, upon return it will be a stale pointer. 666 */ 667 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 668 int bytes, int requeue) 669 { 670 struct request_queue *q = cmd->device->request_queue; 671 struct request *req = cmd->request; 672 673 /* 674 * If there are blocks left over at the end, set up the command 675 * to queue the remainder of them. 676 */ 677 if (blk_end_request(req, error, bytes)) { 678 int leftover = (req->hard_nr_sectors << 9); 679 680 if (blk_pc_request(req)) 681 leftover = req->data_len; 682 683 /* kill remainder if no retrys */ 684 if (error && blk_noretry_request(req)) 685 blk_end_request(req, error, leftover); 686 else { 687 if (requeue) { 688 /* 689 * Bleah. Leftovers again. Stick the 690 * leftovers in the front of the 691 * queue, and goose the queue again. 692 */ 693 scsi_requeue_command(q, cmd); 694 cmd = NULL; 695 } 696 return cmd; 697 } 698 } 699 700 /* 701 * This will goose the queue request function at the end, so we don't 702 * need to worry about launching another command. 703 */ 704 scsi_next_command(cmd); 705 return NULL; 706 } 707 708 static inline unsigned int scsi_sgtable_index(unsigned short nents) 709 { 710 unsigned int index; 711 712 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 713 714 if (nents <= 8) 715 index = 0; 716 else 717 index = get_count_order(nents) - 3; 718 719 return index; 720 } 721 722 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 723 { 724 struct scsi_host_sg_pool *sgp; 725 726 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 727 mempool_free(sgl, sgp->pool); 728 } 729 730 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 731 { 732 struct scsi_host_sg_pool *sgp; 733 734 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 735 return mempool_alloc(sgp->pool, gfp_mask); 736 } 737 738 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 739 gfp_t gfp_mask) 740 { 741 int ret; 742 743 BUG_ON(!nents); 744 745 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 746 gfp_mask, scsi_sg_alloc); 747 if (unlikely(ret)) 748 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 749 scsi_sg_free); 750 751 return ret; 752 } 753 754 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 755 { 756 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 757 } 758 759 /* 760 * Function: scsi_release_buffers() 761 * 762 * Purpose: Completion processing for block device I/O requests. 763 * 764 * Arguments: cmd - command that we are bailing. 765 * 766 * Lock status: Assumed that no lock is held upon entry. 767 * 768 * Returns: Nothing 769 * 770 * Notes: In the event that an upper level driver rejects a 771 * command, we must release resources allocated during 772 * the __init_io() function. Primarily this would involve 773 * the scatter-gather table, and potentially any bounce 774 * buffers. 775 */ 776 void scsi_release_buffers(struct scsi_cmnd *cmd) 777 { 778 if (cmd->sdb.table.nents) 779 scsi_free_sgtable(&cmd->sdb); 780 781 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 782 783 if (scsi_bidi_cmnd(cmd)) { 784 struct scsi_data_buffer *bidi_sdb = 785 cmd->request->next_rq->special; 786 scsi_free_sgtable(bidi_sdb); 787 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 788 cmd->request->next_rq->special = NULL; 789 } 790 } 791 EXPORT_SYMBOL(scsi_release_buffers); 792 793 /* 794 * Bidi commands Must be complete as a whole, both sides at once. 795 * If part of the bytes were written and lld returned 796 * scsi_in()->resid and/or scsi_out()->resid this information will be left 797 * in req->data_len and req->next_rq->data_len. The upper-layer driver can 798 * decide what to do with this information. 799 */ 800 static void scsi_end_bidi_request(struct scsi_cmnd *cmd) 801 { 802 struct request *req = cmd->request; 803 unsigned int dlen = req->data_len; 804 unsigned int next_dlen = req->next_rq->data_len; 805 806 req->data_len = scsi_out(cmd)->resid; 807 req->next_rq->data_len = scsi_in(cmd)->resid; 808 809 /* The req and req->next_rq have not been completed */ 810 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen)); 811 812 scsi_release_buffers(cmd); 813 814 /* 815 * This will goose the queue request function at the end, so we don't 816 * need to worry about launching another command. 817 */ 818 scsi_next_command(cmd); 819 } 820 821 /* 822 * Function: scsi_io_completion() 823 * 824 * Purpose: Completion processing for block device I/O requests. 825 * 826 * Arguments: cmd - command that is finished. 827 * 828 * Lock status: Assumed that no lock is held upon entry. 829 * 830 * Returns: Nothing 831 * 832 * Notes: This function is matched in terms of capabilities to 833 * the function that created the scatter-gather list. 834 * In other words, if there are no bounce buffers 835 * (the normal case for most drivers), we don't need 836 * the logic to deal with cleaning up afterwards. 837 * 838 * We must do one of several things here: 839 * 840 * a) Call scsi_end_request. This will finish off the 841 * specified number of sectors. If we are done, the 842 * command block will be released, and the queue 843 * function will be goosed. If we are not done, then 844 * scsi_end_request will directly goose the queue. 845 * 846 * b) We can just use scsi_requeue_command() here. This would 847 * be used if we just wanted to retry, for example. 848 */ 849 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 850 { 851 int result = cmd->result; 852 int this_count = scsi_bufflen(cmd); 853 struct request_queue *q = cmd->device->request_queue; 854 struct request *req = cmd->request; 855 int error = 0; 856 struct scsi_sense_hdr sshdr; 857 int sense_valid = 0; 858 int sense_deferred = 0; 859 860 if (result) { 861 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 862 if (sense_valid) 863 sense_deferred = scsi_sense_is_deferred(&sshdr); 864 } 865 866 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */ 867 req->errors = result; 868 if (result) { 869 if (sense_valid && req->sense) { 870 /* 871 * SG_IO wants current and deferred errors 872 */ 873 int len = 8 + cmd->sense_buffer[7]; 874 875 if (len > SCSI_SENSE_BUFFERSIZE) 876 len = SCSI_SENSE_BUFFERSIZE; 877 memcpy(req->sense, cmd->sense_buffer, len); 878 req->sense_len = len; 879 } 880 if (!sense_deferred) 881 error = -EIO; 882 } 883 if (scsi_bidi_cmnd(cmd)) { 884 /* will also release_buffers */ 885 scsi_end_bidi_request(cmd); 886 return; 887 } 888 req->data_len = scsi_get_resid(cmd); 889 } 890 891 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */ 892 scsi_release_buffers(cmd); 893 894 /* 895 * Next deal with any sectors which we were able to correctly 896 * handle. 897 */ 898 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, " 899 "%d bytes done.\n", 900 req->nr_sectors, good_bytes)); 901 902 /* A number of bytes were successfully read. If there 903 * are leftovers and there is some kind of error 904 * (result != 0), retry the rest. 905 */ 906 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 907 return; 908 909 /* good_bytes = 0, or (inclusive) there were leftovers and 910 * result = 0, so scsi_end_request couldn't retry. 911 */ 912 if (sense_valid && !sense_deferred) { 913 switch (sshdr.sense_key) { 914 case UNIT_ATTENTION: 915 if (cmd->device->removable) { 916 /* Detected disc change. Set a bit 917 * and quietly refuse further access. 918 */ 919 cmd->device->changed = 1; 920 scsi_end_request(cmd, -EIO, this_count, 1); 921 return; 922 } else { 923 /* Must have been a power glitch, or a 924 * bus reset. Could not have been a 925 * media change, so we just retry the 926 * request and see what happens. 927 */ 928 scsi_requeue_command(q, cmd); 929 return; 930 } 931 break; 932 case ILLEGAL_REQUEST: 933 /* If we had an ILLEGAL REQUEST returned, then 934 * we may have performed an unsupported 935 * command. The only thing this should be 936 * would be a ten byte read where only a six 937 * byte read was supported. Also, on a system 938 * where READ CAPACITY failed, we may have 939 * read past the end of the disk. 940 */ 941 if ((cmd->device->use_10_for_rw && 942 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 943 (cmd->cmnd[0] == READ_10 || 944 cmd->cmnd[0] == WRITE_10)) { 945 cmd->device->use_10_for_rw = 0; 946 /* This will cause a retry with a 947 * 6-byte command. 948 */ 949 scsi_requeue_command(q, cmd); 950 return; 951 } else { 952 scsi_end_request(cmd, -EIO, this_count, 1); 953 return; 954 } 955 break; 956 case NOT_READY: 957 /* If the device is in the process of becoming 958 * ready, or has a temporary blockage, retry. 959 */ 960 if (sshdr.asc == 0x04) { 961 switch (sshdr.ascq) { 962 case 0x01: /* becoming ready */ 963 case 0x04: /* format in progress */ 964 case 0x05: /* rebuild in progress */ 965 case 0x06: /* recalculation in progress */ 966 case 0x07: /* operation in progress */ 967 case 0x08: /* Long write in progress */ 968 case 0x09: /* self test in progress */ 969 scsi_requeue_command(q, cmd); 970 return; 971 default: 972 break; 973 } 974 } 975 if (!(req->cmd_flags & REQ_QUIET)) 976 scsi_cmd_print_sense_hdr(cmd, 977 "Device not ready", 978 &sshdr); 979 980 scsi_end_request(cmd, -EIO, this_count, 1); 981 return; 982 case VOLUME_OVERFLOW: 983 if (!(req->cmd_flags & REQ_QUIET)) { 984 scmd_printk(KERN_INFO, cmd, 985 "Volume overflow, CDB: "); 986 __scsi_print_command(cmd->cmnd); 987 scsi_print_sense("", cmd); 988 } 989 /* See SSC3rXX or current. */ 990 scsi_end_request(cmd, -EIO, this_count, 1); 991 return; 992 default: 993 break; 994 } 995 } 996 if (host_byte(result) == DID_RESET) { 997 /* Third party bus reset or reset for error recovery 998 * reasons. Just retry the request and see what 999 * happens. 1000 */ 1001 scsi_requeue_command(q, cmd); 1002 return; 1003 } 1004 if (result) { 1005 if (!(req->cmd_flags & REQ_QUIET)) { 1006 scsi_print_result(cmd); 1007 if (driver_byte(result) & DRIVER_SENSE) 1008 scsi_print_sense("", cmd); 1009 } 1010 } 1011 scsi_end_request(cmd, -EIO, this_count, !result); 1012 } 1013 1014 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1015 gfp_t gfp_mask) 1016 { 1017 int count; 1018 1019 /* 1020 * If sg table allocation fails, requeue request later. 1021 */ 1022 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1023 gfp_mask))) { 1024 return BLKPREP_DEFER; 1025 } 1026 1027 req->buffer = NULL; 1028 1029 /* 1030 * Next, walk the list, and fill in the addresses and sizes of 1031 * each segment. 1032 */ 1033 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1034 BUG_ON(count > sdb->table.nents); 1035 sdb->table.nents = count; 1036 if (blk_pc_request(req)) 1037 sdb->length = req->data_len; 1038 else 1039 sdb->length = req->nr_sectors << 9; 1040 return BLKPREP_OK; 1041 } 1042 1043 /* 1044 * Function: scsi_init_io() 1045 * 1046 * Purpose: SCSI I/O initialize function. 1047 * 1048 * Arguments: cmd - Command descriptor we wish to initialize 1049 * 1050 * Returns: 0 on success 1051 * BLKPREP_DEFER if the failure is retryable 1052 * BLKPREP_KILL if the failure is fatal 1053 */ 1054 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1055 { 1056 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask); 1057 if (error) 1058 goto err_exit; 1059 1060 if (blk_bidi_rq(cmd->request)) { 1061 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1062 scsi_sdb_cache, GFP_ATOMIC); 1063 if (!bidi_sdb) { 1064 error = BLKPREP_DEFER; 1065 goto err_exit; 1066 } 1067 1068 cmd->request->next_rq->special = bidi_sdb; 1069 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb, 1070 GFP_ATOMIC); 1071 if (error) 1072 goto err_exit; 1073 } 1074 1075 return BLKPREP_OK ; 1076 1077 err_exit: 1078 scsi_release_buffers(cmd); 1079 if (error == BLKPREP_KILL) 1080 scsi_put_command(cmd); 1081 else /* BLKPREP_DEFER */ 1082 scsi_unprep_request(cmd->request); 1083 1084 return error; 1085 } 1086 EXPORT_SYMBOL(scsi_init_io); 1087 1088 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1089 struct request *req) 1090 { 1091 struct scsi_cmnd *cmd; 1092 1093 if (!req->special) { 1094 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1095 if (unlikely(!cmd)) 1096 return NULL; 1097 req->special = cmd; 1098 } else { 1099 cmd = req->special; 1100 } 1101 1102 /* pull a tag out of the request if we have one */ 1103 cmd->tag = req->tag; 1104 cmd->request = req; 1105 1106 cmd->cmnd = req->cmd; 1107 1108 return cmd; 1109 } 1110 1111 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1112 { 1113 struct scsi_cmnd *cmd; 1114 int ret = scsi_prep_state_check(sdev, req); 1115 1116 if (ret != BLKPREP_OK) 1117 return ret; 1118 1119 cmd = scsi_get_cmd_from_req(sdev, req); 1120 if (unlikely(!cmd)) 1121 return BLKPREP_DEFER; 1122 1123 /* 1124 * BLOCK_PC requests may transfer data, in which case they must 1125 * a bio attached to them. Or they might contain a SCSI command 1126 * that does not transfer data, in which case they may optionally 1127 * submit a request without an attached bio. 1128 */ 1129 if (req->bio) { 1130 int ret; 1131 1132 BUG_ON(!req->nr_phys_segments); 1133 1134 ret = scsi_init_io(cmd, GFP_ATOMIC); 1135 if (unlikely(ret)) 1136 return ret; 1137 } else { 1138 BUG_ON(req->data_len); 1139 BUG_ON(req->data); 1140 1141 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1142 req->buffer = NULL; 1143 } 1144 1145 cmd->cmd_len = req->cmd_len; 1146 if (!req->data_len) 1147 cmd->sc_data_direction = DMA_NONE; 1148 else if (rq_data_dir(req) == WRITE) 1149 cmd->sc_data_direction = DMA_TO_DEVICE; 1150 else 1151 cmd->sc_data_direction = DMA_FROM_DEVICE; 1152 1153 cmd->transfersize = req->data_len; 1154 cmd->allowed = req->retries; 1155 cmd->timeout_per_command = req->timeout; 1156 return BLKPREP_OK; 1157 } 1158 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1159 1160 /* 1161 * Setup a REQ_TYPE_FS command. These are simple read/write request 1162 * from filesystems that still need to be translated to SCSI CDBs from 1163 * the ULD. 1164 */ 1165 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1166 { 1167 struct scsi_cmnd *cmd; 1168 int ret = scsi_prep_state_check(sdev, req); 1169 1170 if (ret != BLKPREP_OK) 1171 return ret; 1172 1173 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1174 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1175 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1176 if (ret != BLKPREP_OK) 1177 return ret; 1178 } 1179 1180 /* 1181 * Filesystem requests must transfer data. 1182 */ 1183 BUG_ON(!req->nr_phys_segments); 1184 1185 cmd = scsi_get_cmd_from_req(sdev, req); 1186 if (unlikely(!cmd)) 1187 return BLKPREP_DEFER; 1188 1189 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1190 return scsi_init_io(cmd, GFP_ATOMIC); 1191 } 1192 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1193 1194 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1195 { 1196 int ret = BLKPREP_OK; 1197 1198 /* 1199 * If the device is not in running state we will reject some 1200 * or all commands. 1201 */ 1202 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1203 switch (sdev->sdev_state) { 1204 case SDEV_OFFLINE: 1205 /* 1206 * If the device is offline we refuse to process any 1207 * commands. The device must be brought online 1208 * before trying any recovery commands. 1209 */ 1210 sdev_printk(KERN_ERR, sdev, 1211 "rejecting I/O to offline device\n"); 1212 ret = BLKPREP_KILL; 1213 break; 1214 case SDEV_DEL: 1215 /* 1216 * If the device is fully deleted, we refuse to 1217 * process any commands as well. 1218 */ 1219 sdev_printk(KERN_ERR, sdev, 1220 "rejecting I/O to dead device\n"); 1221 ret = BLKPREP_KILL; 1222 break; 1223 case SDEV_QUIESCE: 1224 case SDEV_BLOCK: 1225 /* 1226 * If the devices is blocked we defer normal commands. 1227 */ 1228 if (!(req->cmd_flags & REQ_PREEMPT)) 1229 ret = BLKPREP_DEFER; 1230 break; 1231 default: 1232 /* 1233 * For any other not fully online state we only allow 1234 * special commands. In particular any user initiated 1235 * command is not allowed. 1236 */ 1237 if (!(req->cmd_flags & REQ_PREEMPT)) 1238 ret = BLKPREP_KILL; 1239 break; 1240 } 1241 } 1242 return ret; 1243 } 1244 EXPORT_SYMBOL(scsi_prep_state_check); 1245 1246 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1247 { 1248 struct scsi_device *sdev = q->queuedata; 1249 1250 switch (ret) { 1251 case BLKPREP_KILL: 1252 req->errors = DID_NO_CONNECT << 16; 1253 /* release the command and kill it */ 1254 if (req->special) { 1255 struct scsi_cmnd *cmd = req->special; 1256 scsi_release_buffers(cmd); 1257 scsi_put_command(cmd); 1258 req->special = NULL; 1259 } 1260 break; 1261 case BLKPREP_DEFER: 1262 /* 1263 * If we defer, the elv_next_request() returns NULL, but the 1264 * queue must be restarted, so we plug here if no returning 1265 * command will automatically do that. 1266 */ 1267 if (sdev->device_busy == 0) 1268 blk_plug_device(q); 1269 break; 1270 default: 1271 req->cmd_flags |= REQ_DONTPREP; 1272 } 1273 1274 return ret; 1275 } 1276 EXPORT_SYMBOL(scsi_prep_return); 1277 1278 int scsi_prep_fn(struct request_queue *q, struct request *req) 1279 { 1280 struct scsi_device *sdev = q->queuedata; 1281 int ret = BLKPREP_KILL; 1282 1283 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1284 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1285 return scsi_prep_return(q, req, ret); 1286 } 1287 1288 /* 1289 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1290 * return 0. 1291 * 1292 * Called with the queue_lock held. 1293 */ 1294 static inline int scsi_dev_queue_ready(struct request_queue *q, 1295 struct scsi_device *sdev) 1296 { 1297 if (sdev->device_busy >= sdev->queue_depth) 1298 return 0; 1299 if (sdev->device_busy == 0 && sdev->device_blocked) { 1300 /* 1301 * unblock after device_blocked iterates to zero 1302 */ 1303 if (--sdev->device_blocked == 0) { 1304 SCSI_LOG_MLQUEUE(3, 1305 sdev_printk(KERN_INFO, sdev, 1306 "unblocking device at zero depth\n")); 1307 } else { 1308 blk_plug_device(q); 1309 return 0; 1310 } 1311 } 1312 if (sdev->device_blocked) 1313 return 0; 1314 1315 return 1; 1316 } 1317 1318 /* 1319 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1320 * return 0. We must end up running the queue again whenever 0 is 1321 * returned, else IO can hang. 1322 * 1323 * Called with host_lock held. 1324 */ 1325 static inline int scsi_host_queue_ready(struct request_queue *q, 1326 struct Scsi_Host *shost, 1327 struct scsi_device *sdev) 1328 { 1329 if (scsi_host_in_recovery(shost)) 1330 return 0; 1331 if (shost->host_busy == 0 && shost->host_blocked) { 1332 /* 1333 * unblock after host_blocked iterates to zero 1334 */ 1335 if (--shost->host_blocked == 0) { 1336 SCSI_LOG_MLQUEUE(3, 1337 printk("scsi%d unblocking host at zero depth\n", 1338 shost->host_no)); 1339 } else { 1340 return 0; 1341 } 1342 } 1343 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 1344 shost->host_blocked || shost->host_self_blocked) { 1345 if (list_empty(&sdev->starved_entry)) 1346 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1347 return 0; 1348 } 1349 1350 /* We're OK to process the command, so we can't be starved */ 1351 if (!list_empty(&sdev->starved_entry)) 1352 list_del_init(&sdev->starved_entry); 1353 1354 return 1; 1355 } 1356 1357 /* 1358 * Kill a request for a dead device 1359 */ 1360 static void scsi_kill_request(struct request *req, struct request_queue *q) 1361 { 1362 struct scsi_cmnd *cmd = req->special; 1363 struct scsi_device *sdev = cmd->device; 1364 struct Scsi_Host *shost = sdev->host; 1365 1366 blkdev_dequeue_request(req); 1367 1368 if (unlikely(cmd == NULL)) { 1369 printk(KERN_CRIT "impossible request in %s.\n", 1370 __FUNCTION__); 1371 BUG(); 1372 } 1373 1374 scsi_init_cmd_errh(cmd); 1375 cmd->result = DID_NO_CONNECT << 16; 1376 atomic_inc(&cmd->device->iorequest_cnt); 1377 1378 /* 1379 * SCSI request completion path will do scsi_device_unbusy(), 1380 * bump busy counts. To bump the counters, we need to dance 1381 * with the locks as normal issue path does. 1382 */ 1383 sdev->device_busy++; 1384 spin_unlock(sdev->request_queue->queue_lock); 1385 spin_lock(shost->host_lock); 1386 shost->host_busy++; 1387 spin_unlock(shost->host_lock); 1388 spin_lock(sdev->request_queue->queue_lock); 1389 1390 __scsi_done(cmd); 1391 } 1392 1393 static void scsi_softirq_done(struct request *rq) 1394 { 1395 struct scsi_cmnd *cmd = rq->completion_data; 1396 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command; 1397 int disposition; 1398 1399 INIT_LIST_HEAD(&cmd->eh_entry); 1400 1401 disposition = scsi_decide_disposition(cmd); 1402 if (disposition != SUCCESS && 1403 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1404 sdev_printk(KERN_ERR, cmd->device, 1405 "timing out command, waited %lus\n", 1406 wait_for/HZ); 1407 disposition = SUCCESS; 1408 } 1409 1410 scsi_log_completion(cmd, disposition); 1411 1412 switch (disposition) { 1413 case SUCCESS: 1414 scsi_finish_command(cmd); 1415 break; 1416 case NEEDS_RETRY: 1417 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1418 break; 1419 case ADD_TO_MLQUEUE: 1420 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1421 break; 1422 default: 1423 if (!scsi_eh_scmd_add(cmd, 0)) 1424 scsi_finish_command(cmd); 1425 } 1426 } 1427 1428 /* 1429 * Function: scsi_request_fn() 1430 * 1431 * Purpose: Main strategy routine for SCSI. 1432 * 1433 * Arguments: q - Pointer to actual queue. 1434 * 1435 * Returns: Nothing 1436 * 1437 * Lock status: IO request lock assumed to be held when called. 1438 */ 1439 static void scsi_request_fn(struct request_queue *q) 1440 { 1441 struct scsi_device *sdev = q->queuedata; 1442 struct Scsi_Host *shost; 1443 struct scsi_cmnd *cmd; 1444 struct request *req; 1445 1446 if (!sdev) { 1447 printk("scsi: killing requests for dead queue\n"); 1448 while ((req = elv_next_request(q)) != NULL) 1449 scsi_kill_request(req, q); 1450 return; 1451 } 1452 1453 if(!get_device(&sdev->sdev_gendev)) 1454 /* We must be tearing the block queue down already */ 1455 return; 1456 1457 /* 1458 * To start with, we keep looping until the queue is empty, or until 1459 * the host is no longer able to accept any more requests. 1460 */ 1461 shost = sdev->host; 1462 while (!blk_queue_plugged(q)) { 1463 int rtn; 1464 /* 1465 * get next queueable request. We do this early to make sure 1466 * that the request is fully prepared even if we cannot 1467 * accept it. 1468 */ 1469 req = elv_next_request(q); 1470 if (!req || !scsi_dev_queue_ready(q, sdev)) 1471 break; 1472 1473 if (unlikely(!scsi_device_online(sdev))) { 1474 sdev_printk(KERN_ERR, sdev, 1475 "rejecting I/O to offline device\n"); 1476 scsi_kill_request(req, q); 1477 continue; 1478 } 1479 1480 1481 /* 1482 * Remove the request from the request list. 1483 */ 1484 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1485 blkdev_dequeue_request(req); 1486 sdev->device_busy++; 1487 1488 spin_unlock(q->queue_lock); 1489 cmd = req->special; 1490 if (unlikely(cmd == NULL)) { 1491 printk(KERN_CRIT "impossible request in %s.\n" 1492 "please mail a stack trace to " 1493 "linux-scsi@vger.kernel.org\n", 1494 __FUNCTION__); 1495 blk_dump_rq_flags(req, "foo"); 1496 BUG(); 1497 } 1498 spin_lock(shost->host_lock); 1499 1500 if (!scsi_host_queue_ready(q, shost, sdev)) 1501 goto not_ready; 1502 if (scsi_target(sdev)->single_lun) { 1503 if (scsi_target(sdev)->starget_sdev_user && 1504 scsi_target(sdev)->starget_sdev_user != sdev) 1505 goto not_ready; 1506 scsi_target(sdev)->starget_sdev_user = sdev; 1507 } 1508 shost->host_busy++; 1509 1510 /* 1511 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1512 * take the lock again. 1513 */ 1514 spin_unlock_irq(shost->host_lock); 1515 1516 /* 1517 * Finally, initialize any error handling parameters, and set up 1518 * the timers for timeouts. 1519 */ 1520 scsi_init_cmd_errh(cmd); 1521 1522 /* 1523 * Dispatch the command to the low-level driver. 1524 */ 1525 rtn = scsi_dispatch_cmd(cmd); 1526 spin_lock_irq(q->queue_lock); 1527 if(rtn) { 1528 /* we're refusing the command; because of 1529 * the way locks get dropped, we need to 1530 * check here if plugging is required */ 1531 if(sdev->device_busy == 0) 1532 blk_plug_device(q); 1533 1534 break; 1535 } 1536 } 1537 1538 goto out; 1539 1540 not_ready: 1541 spin_unlock_irq(shost->host_lock); 1542 1543 /* 1544 * lock q, handle tag, requeue req, and decrement device_busy. We 1545 * must return with queue_lock held. 1546 * 1547 * Decrementing device_busy without checking it is OK, as all such 1548 * cases (host limits or settings) should run the queue at some 1549 * later time. 1550 */ 1551 spin_lock_irq(q->queue_lock); 1552 blk_requeue_request(q, req); 1553 sdev->device_busy--; 1554 if(sdev->device_busy == 0) 1555 blk_plug_device(q); 1556 out: 1557 /* must be careful here...if we trigger the ->remove() function 1558 * we cannot be holding the q lock */ 1559 spin_unlock_irq(q->queue_lock); 1560 put_device(&sdev->sdev_gendev); 1561 spin_lock_irq(q->queue_lock); 1562 } 1563 1564 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1565 { 1566 struct device *host_dev; 1567 u64 bounce_limit = 0xffffffff; 1568 1569 if (shost->unchecked_isa_dma) 1570 return BLK_BOUNCE_ISA; 1571 /* 1572 * Platforms with virtual-DMA translation 1573 * hardware have no practical limit. 1574 */ 1575 if (!PCI_DMA_BUS_IS_PHYS) 1576 return BLK_BOUNCE_ANY; 1577 1578 host_dev = scsi_get_device(shost); 1579 if (host_dev && host_dev->dma_mask) 1580 bounce_limit = *host_dev->dma_mask; 1581 1582 return bounce_limit; 1583 } 1584 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1585 1586 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1587 request_fn_proc *request_fn) 1588 { 1589 struct request_queue *q; 1590 struct device *dev = shost->shost_gendev.parent; 1591 1592 q = blk_init_queue(request_fn, NULL); 1593 if (!q) 1594 return NULL; 1595 1596 /* 1597 * this limit is imposed by hardware restrictions 1598 */ 1599 blk_queue_max_hw_segments(q, shost->sg_tablesize); 1600 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS); 1601 1602 blk_queue_max_sectors(q, shost->max_sectors); 1603 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1604 blk_queue_segment_boundary(q, shost->dma_boundary); 1605 dma_set_seg_boundary(dev, shost->dma_boundary); 1606 1607 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1608 1609 /* New queue, no concurrency on queue_flags */ 1610 if (!shost->use_clustering) 1611 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1612 1613 /* 1614 * set a reasonable default alignment on word boundaries: the 1615 * host and device may alter it using 1616 * blk_queue_update_dma_alignment() later. 1617 */ 1618 blk_queue_dma_alignment(q, 0x03); 1619 1620 return q; 1621 } 1622 EXPORT_SYMBOL(__scsi_alloc_queue); 1623 1624 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1625 { 1626 struct request_queue *q; 1627 1628 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1629 if (!q) 1630 return NULL; 1631 1632 blk_queue_prep_rq(q, scsi_prep_fn); 1633 blk_queue_softirq_done(q, scsi_softirq_done); 1634 return q; 1635 } 1636 1637 void scsi_free_queue(struct request_queue *q) 1638 { 1639 blk_cleanup_queue(q); 1640 } 1641 1642 /* 1643 * Function: scsi_block_requests() 1644 * 1645 * Purpose: Utility function used by low-level drivers to prevent further 1646 * commands from being queued to the device. 1647 * 1648 * Arguments: shost - Host in question 1649 * 1650 * Returns: Nothing 1651 * 1652 * Lock status: No locks are assumed held. 1653 * 1654 * Notes: There is no timer nor any other means by which the requests 1655 * get unblocked other than the low-level driver calling 1656 * scsi_unblock_requests(). 1657 */ 1658 void scsi_block_requests(struct Scsi_Host *shost) 1659 { 1660 shost->host_self_blocked = 1; 1661 } 1662 EXPORT_SYMBOL(scsi_block_requests); 1663 1664 /* 1665 * Function: scsi_unblock_requests() 1666 * 1667 * Purpose: Utility function used by low-level drivers to allow further 1668 * commands from being queued to the device. 1669 * 1670 * Arguments: shost - Host in question 1671 * 1672 * Returns: Nothing 1673 * 1674 * Lock status: No locks are assumed held. 1675 * 1676 * Notes: There is no timer nor any other means by which the requests 1677 * get unblocked other than the low-level driver calling 1678 * scsi_unblock_requests(). 1679 * 1680 * This is done as an API function so that changes to the 1681 * internals of the scsi mid-layer won't require wholesale 1682 * changes to drivers that use this feature. 1683 */ 1684 void scsi_unblock_requests(struct Scsi_Host *shost) 1685 { 1686 shost->host_self_blocked = 0; 1687 scsi_run_host_queues(shost); 1688 } 1689 EXPORT_SYMBOL(scsi_unblock_requests); 1690 1691 int __init scsi_init_queue(void) 1692 { 1693 int i; 1694 1695 scsi_io_context_cache = kmem_cache_create("scsi_io_context", 1696 sizeof(struct scsi_io_context), 1697 0, 0, NULL); 1698 if (!scsi_io_context_cache) { 1699 printk(KERN_ERR "SCSI: can't init scsi io context cache\n"); 1700 return -ENOMEM; 1701 } 1702 1703 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1704 sizeof(struct scsi_data_buffer), 1705 0, 0, NULL); 1706 if (!scsi_sdb_cache) { 1707 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1708 goto cleanup_io_context; 1709 } 1710 1711 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1712 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1713 int size = sgp->size * sizeof(struct scatterlist); 1714 1715 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1716 SLAB_HWCACHE_ALIGN, NULL); 1717 if (!sgp->slab) { 1718 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1719 sgp->name); 1720 goto cleanup_sdb; 1721 } 1722 1723 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1724 sgp->slab); 1725 if (!sgp->pool) { 1726 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1727 sgp->name); 1728 goto cleanup_sdb; 1729 } 1730 } 1731 1732 return 0; 1733 1734 cleanup_sdb: 1735 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1736 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1737 if (sgp->pool) 1738 mempool_destroy(sgp->pool); 1739 if (sgp->slab) 1740 kmem_cache_destroy(sgp->slab); 1741 } 1742 kmem_cache_destroy(scsi_sdb_cache); 1743 cleanup_io_context: 1744 kmem_cache_destroy(scsi_io_context_cache); 1745 1746 return -ENOMEM; 1747 } 1748 1749 void scsi_exit_queue(void) 1750 { 1751 int i; 1752 1753 kmem_cache_destroy(scsi_io_context_cache); 1754 kmem_cache_destroy(scsi_sdb_cache); 1755 1756 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1757 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1758 mempool_destroy(sgp->pool); 1759 kmem_cache_destroy(sgp->slab); 1760 } 1761 } 1762 1763 /** 1764 * scsi_mode_select - issue a mode select 1765 * @sdev: SCSI device to be queried 1766 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1767 * @sp: Save page bit (0 == don't save, 1 == save) 1768 * @modepage: mode page being requested 1769 * @buffer: request buffer (may not be smaller than eight bytes) 1770 * @len: length of request buffer. 1771 * @timeout: command timeout 1772 * @retries: number of retries before failing 1773 * @data: returns a structure abstracting the mode header data 1774 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1775 * must be SCSI_SENSE_BUFFERSIZE big. 1776 * 1777 * Returns zero if successful; negative error number or scsi 1778 * status on error 1779 * 1780 */ 1781 int 1782 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1783 unsigned char *buffer, int len, int timeout, int retries, 1784 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1785 { 1786 unsigned char cmd[10]; 1787 unsigned char *real_buffer; 1788 int ret; 1789 1790 memset(cmd, 0, sizeof(cmd)); 1791 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1792 1793 if (sdev->use_10_for_ms) { 1794 if (len > 65535) 1795 return -EINVAL; 1796 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1797 if (!real_buffer) 1798 return -ENOMEM; 1799 memcpy(real_buffer + 8, buffer, len); 1800 len += 8; 1801 real_buffer[0] = 0; 1802 real_buffer[1] = 0; 1803 real_buffer[2] = data->medium_type; 1804 real_buffer[3] = data->device_specific; 1805 real_buffer[4] = data->longlba ? 0x01 : 0; 1806 real_buffer[5] = 0; 1807 real_buffer[6] = data->block_descriptor_length >> 8; 1808 real_buffer[7] = data->block_descriptor_length; 1809 1810 cmd[0] = MODE_SELECT_10; 1811 cmd[7] = len >> 8; 1812 cmd[8] = len; 1813 } else { 1814 if (len > 255 || data->block_descriptor_length > 255 || 1815 data->longlba) 1816 return -EINVAL; 1817 1818 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1819 if (!real_buffer) 1820 return -ENOMEM; 1821 memcpy(real_buffer + 4, buffer, len); 1822 len += 4; 1823 real_buffer[0] = 0; 1824 real_buffer[1] = data->medium_type; 1825 real_buffer[2] = data->device_specific; 1826 real_buffer[3] = data->block_descriptor_length; 1827 1828 1829 cmd[0] = MODE_SELECT; 1830 cmd[4] = len; 1831 } 1832 1833 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1834 sshdr, timeout, retries); 1835 kfree(real_buffer); 1836 return ret; 1837 } 1838 EXPORT_SYMBOL_GPL(scsi_mode_select); 1839 1840 /** 1841 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1842 * @sdev: SCSI device to be queried 1843 * @dbd: set if mode sense will allow block descriptors to be returned 1844 * @modepage: mode page being requested 1845 * @buffer: request buffer (may not be smaller than eight bytes) 1846 * @len: length of request buffer. 1847 * @timeout: command timeout 1848 * @retries: number of retries before failing 1849 * @data: returns a structure abstracting the mode header data 1850 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1851 * must be SCSI_SENSE_BUFFERSIZE big. 1852 * 1853 * Returns zero if unsuccessful, or the header offset (either 4 1854 * or 8 depending on whether a six or ten byte command was 1855 * issued) if successful. 1856 */ 1857 int 1858 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1859 unsigned char *buffer, int len, int timeout, int retries, 1860 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1861 { 1862 unsigned char cmd[12]; 1863 int use_10_for_ms; 1864 int header_length; 1865 int result; 1866 struct scsi_sense_hdr my_sshdr; 1867 1868 memset(data, 0, sizeof(*data)); 1869 memset(&cmd[0], 0, 12); 1870 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1871 cmd[2] = modepage; 1872 1873 /* caller might not be interested in sense, but we need it */ 1874 if (!sshdr) 1875 sshdr = &my_sshdr; 1876 1877 retry: 1878 use_10_for_ms = sdev->use_10_for_ms; 1879 1880 if (use_10_for_ms) { 1881 if (len < 8) 1882 len = 8; 1883 1884 cmd[0] = MODE_SENSE_10; 1885 cmd[8] = len; 1886 header_length = 8; 1887 } else { 1888 if (len < 4) 1889 len = 4; 1890 1891 cmd[0] = MODE_SENSE; 1892 cmd[4] = len; 1893 header_length = 4; 1894 } 1895 1896 memset(buffer, 0, len); 1897 1898 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 1899 sshdr, timeout, retries); 1900 1901 /* This code looks awful: what it's doing is making sure an 1902 * ILLEGAL REQUEST sense return identifies the actual command 1903 * byte as the problem. MODE_SENSE commands can return 1904 * ILLEGAL REQUEST if the code page isn't supported */ 1905 1906 if (use_10_for_ms && !scsi_status_is_good(result) && 1907 (driver_byte(result) & DRIVER_SENSE)) { 1908 if (scsi_sense_valid(sshdr)) { 1909 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 1910 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 1911 /* 1912 * Invalid command operation code 1913 */ 1914 sdev->use_10_for_ms = 0; 1915 goto retry; 1916 } 1917 } 1918 } 1919 1920 if(scsi_status_is_good(result)) { 1921 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 1922 (modepage == 6 || modepage == 8))) { 1923 /* Initio breakage? */ 1924 header_length = 0; 1925 data->length = 13; 1926 data->medium_type = 0; 1927 data->device_specific = 0; 1928 data->longlba = 0; 1929 data->block_descriptor_length = 0; 1930 } else if(use_10_for_ms) { 1931 data->length = buffer[0]*256 + buffer[1] + 2; 1932 data->medium_type = buffer[2]; 1933 data->device_specific = buffer[3]; 1934 data->longlba = buffer[4] & 0x01; 1935 data->block_descriptor_length = buffer[6]*256 1936 + buffer[7]; 1937 } else { 1938 data->length = buffer[0] + 1; 1939 data->medium_type = buffer[1]; 1940 data->device_specific = buffer[2]; 1941 data->block_descriptor_length = buffer[3]; 1942 } 1943 data->header_length = header_length; 1944 } 1945 1946 return result; 1947 } 1948 EXPORT_SYMBOL(scsi_mode_sense); 1949 1950 /** 1951 * scsi_test_unit_ready - test if unit is ready 1952 * @sdev: scsi device to change the state of. 1953 * @timeout: command timeout 1954 * @retries: number of retries before failing 1955 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 1956 * returning sense. Make sure that this is cleared before passing 1957 * in. 1958 * 1959 * Returns zero if unsuccessful or an error if TUR failed. For 1960 * removable media, a return of NOT_READY or UNIT_ATTENTION is 1961 * translated to success, with the ->changed flag updated. 1962 **/ 1963 int 1964 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 1965 struct scsi_sense_hdr *sshdr_external) 1966 { 1967 char cmd[] = { 1968 TEST_UNIT_READY, 0, 0, 0, 0, 0, 1969 }; 1970 struct scsi_sense_hdr *sshdr; 1971 int result; 1972 1973 if (!sshdr_external) 1974 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1975 else 1976 sshdr = sshdr_external; 1977 1978 /* try to eat the UNIT_ATTENTION if there are enough retries */ 1979 do { 1980 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 1981 timeout, retries); 1982 } while ((driver_byte(result) & DRIVER_SENSE) && 1983 sshdr && sshdr->sense_key == UNIT_ATTENTION && 1984 --retries); 1985 1986 if (!sshdr) 1987 /* could not allocate sense buffer, so can't process it */ 1988 return result; 1989 1990 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) { 1991 1992 if ((scsi_sense_valid(sshdr)) && 1993 ((sshdr->sense_key == UNIT_ATTENTION) || 1994 (sshdr->sense_key == NOT_READY))) { 1995 sdev->changed = 1; 1996 result = 0; 1997 } 1998 } 1999 if (!sshdr_external) 2000 kfree(sshdr); 2001 return result; 2002 } 2003 EXPORT_SYMBOL(scsi_test_unit_ready); 2004 2005 /** 2006 * scsi_device_set_state - Take the given device through the device state model. 2007 * @sdev: scsi device to change the state of. 2008 * @state: state to change to. 2009 * 2010 * Returns zero if unsuccessful or an error if the requested 2011 * transition is illegal. 2012 */ 2013 int 2014 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2015 { 2016 enum scsi_device_state oldstate = sdev->sdev_state; 2017 2018 if (state == oldstate) 2019 return 0; 2020 2021 switch (state) { 2022 case SDEV_CREATED: 2023 /* There are no legal states that come back to 2024 * created. This is the manually initialised start 2025 * state */ 2026 goto illegal; 2027 2028 case SDEV_RUNNING: 2029 switch (oldstate) { 2030 case SDEV_CREATED: 2031 case SDEV_OFFLINE: 2032 case SDEV_QUIESCE: 2033 case SDEV_BLOCK: 2034 break; 2035 default: 2036 goto illegal; 2037 } 2038 break; 2039 2040 case SDEV_QUIESCE: 2041 switch (oldstate) { 2042 case SDEV_RUNNING: 2043 case SDEV_OFFLINE: 2044 break; 2045 default: 2046 goto illegal; 2047 } 2048 break; 2049 2050 case SDEV_OFFLINE: 2051 switch (oldstate) { 2052 case SDEV_CREATED: 2053 case SDEV_RUNNING: 2054 case SDEV_QUIESCE: 2055 case SDEV_BLOCK: 2056 break; 2057 default: 2058 goto illegal; 2059 } 2060 break; 2061 2062 case SDEV_BLOCK: 2063 switch (oldstate) { 2064 case SDEV_CREATED: 2065 case SDEV_RUNNING: 2066 break; 2067 default: 2068 goto illegal; 2069 } 2070 break; 2071 2072 case SDEV_CANCEL: 2073 switch (oldstate) { 2074 case SDEV_CREATED: 2075 case SDEV_RUNNING: 2076 case SDEV_QUIESCE: 2077 case SDEV_OFFLINE: 2078 case SDEV_BLOCK: 2079 break; 2080 default: 2081 goto illegal; 2082 } 2083 break; 2084 2085 case SDEV_DEL: 2086 switch (oldstate) { 2087 case SDEV_CREATED: 2088 case SDEV_RUNNING: 2089 case SDEV_OFFLINE: 2090 case SDEV_CANCEL: 2091 break; 2092 default: 2093 goto illegal; 2094 } 2095 break; 2096 2097 } 2098 sdev->sdev_state = state; 2099 return 0; 2100 2101 illegal: 2102 SCSI_LOG_ERROR_RECOVERY(1, 2103 sdev_printk(KERN_ERR, sdev, 2104 "Illegal state transition %s->%s\n", 2105 scsi_device_state_name(oldstate), 2106 scsi_device_state_name(state)) 2107 ); 2108 return -EINVAL; 2109 } 2110 EXPORT_SYMBOL(scsi_device_set_state); 2111 2112 /** 2113 * sdev_evt_emit - emit a single SCSI device uevent 2114 * @sdev: associated SCSI device 2115 * @evt: event to emit 2116 * 2117 * Send a single uevent (scsi_event) to the associated scsi_device. 2118 */ 2119 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2120 { 2121 int idx = 0; 2122 char *envp[3]; 2123 2124 switch (evt->evt_type) { 2125 case SDEV_EVT_MEDIA_CHANGE: 2126 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2127 break; 2128 2129 default: 2130 /* do nothing */ 2131 break; 2132 } 2133 2134 envp[idx++] = NULL; 2135 2136 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2137 } 2138 2139 /** 2140 * sdev_evt_thread - send a uevent for each scsi event 2141 * @work: work struct for scsi_device 2142 * 2143 * Dispatch queued events to their associated scsi_device kobjects 2144 * as uevents. 2145 */ 2146 void scsi_evt_thread(struct work_struct *work) 2147 { 2148 struct scsi_device *sdev; 2149 LIST_HEAD(event_list); 2150 2151 sdev = container_of(work, struct scsi_device, event_work); 2152 2153 while (1) { 2154 struct scsi_event *evt; 2155 struct list_head *this, *tmp; 2156 unsigned long flags; 2157 2158 spin_lock_irqsave(&sdev->list_lock, flags); 2159 list_splice_init(&sdev->event_list, &event_list); 2160 spin_unlock_irqrestore(&sdev->list_lock, flags); 2161 2162 if (list_empty(&event_list)) 2163 break; 2164 2165 list_for_each_safe(this, tmp, &event_list) { 2166 evt = list_entry(this, struct scsi_event, node); 2167 list_del(&evt->node); 2168 scsi_evt_emit(sdev, evt); 2169 kfree(evt); 2170 } 2171 } 2172 } 2173 2174 /** 2175 * sdev_evt_send - send asserted event to uevent thread 2176 * @sdev: scsi_device event occurred on 2177 * @evt: event to send 2178 * 2179 * Assert scsi device event asynchronously. 2180 */ 2181 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2182 { 2183 unsigned long flags; 2184 2185 #if 0 2186 /* FIXME: currently this check eliminates all media change events 2187 * for polled devices. Need to update to discriminate between AN 2188 * and polled events */ 2189 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2190 kfree(evt); 2191 return; 2192 } 2193 #endif 2194 2195 spin_lock_irqsave(&sdev->list_lock, flags); 2196 list_add_tail(&evt->node, &sdev->event_list); 2197 schedule_work(&sdev->event_work); 2198 spin_unlock_irqrestore(&sdev->list_lock, flags); 2199 } 2200 EXPORT_SYMBOL_GPL(sdev_evt_send); 2201 2202 /** 2203 * sdev_evt_alloc - allocate a new scsi event 2204 * @evt_type: type of event to allocate 2205 * @gfpflags: GFP flags for allocation 2206 * 2207 * Allocates and returns a new scsi_event. 2208 */ 2209 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2210 gfp_t gfpflags) 2211 { 2212 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2213 if (!evt) 2214 return NULL; 2215 2216 evt->evt_type = evt_type; 2217 INIT_LIST_HEAD(&evt->node); 2218 2219 /* evt_type-specific initialization, if any */ 2220 switch (evt_type) { 2221 case SDEV_EVT_MEDIA_CHANGE: 2222 default: 2223 /* do nothing */ 2224 break; 2225 } 2226 2227 return evt; 2228 } 2229 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2230 2231 /** 2232 * sdev_evt_send_simple - send asserted event to uevent thread 2233 * @sdev: scsi_device event occurred on 2234 * @evt_type: type of event to send 2235 * @gfpflags: GFP flags for allocation 2236 * 2237 * Assert scsi device event asynchronously, given an event type. 2238 */ 2239 void sdev_evt_send_simple(struct scsi_device *sdev, 2240 enum scsi_device_event evt_type, gfp_t gfpflags) 2241 { 2242 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2243 if (!evt) { 2244 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2245 evt_type); 2246 return; 2247 } 2248 2249 sdev_evt_send(sdev, evt); 2250 } 2251 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2252 2253 /** 2254 * scsi_device_quiesce - Block user issued commands. 2255 * @sdev: scsi device to quiesce. 2256 * 2257 * This works by trying to transition to the SDEV_QUIESCE state 2258 * (which must be a legal transition). When the device is in this 2259 * state, only special requests will be accepted, all others will 2260 * be deferred. Since special requests may also be requeued requests, 2261 * a successful return doesn't guarantee the device will be 2262 * totally quiescent. 2263 * 2264 * Must be called with user context, may sleep. 2265 * 2266 * Returns zero if unsuccessful or an error if not. 2267 */ 2268 int 2269 scsi_device_quiesce(struct scsi_device *sdev) 2270 { 2271 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2272 if (err) 2273 return err; 2274 2275 scsi_run_queue(sdev->request_queue); 2276 while (sdev->device_busy) { 2277 msleep_interruptible(200); 2278 scsi_run_queue(sdev->request_queue); 2279 } 2280 return 0; 2281 } 2282 EXPORT_SYMBOL(scsi_device_quiesce); 2283 2284 /** 2285 * scsi_device_resume - Restart user issued commands to a quiesced device. 2286 * @sdev: scsi device to resume. 2287 * 2288 * Moves the device from quiesced back to running and restarts the 2289 * queues. 2290 * 2291 * Must be called with user context, may sleep. 2292 */ 2293 void 2294 scsi_device_resume(struct scsi_device *sdev) 2295 { 2296 if(scsi_device_set_state(sdev, SDEV_RUNNING)) 2297 return; 2298 scsi_run_queue(sdev->request_queue); 2299 } 2300 EXPORT_SYMBOL(scsi_device_resume); 2301 2302 static void 2303 device_quiesce_fn(struct scsi_device *sdev, void *data) 2304 { 2305 scsi_device_quiesce(sdev); 2306 } 2307 2308 void 2309 scsi_target_quiesce(struct scsi_target *starget) 2310 { 2311 starget_for_each_device(starget, NULL, device_quiesce_fn); 2312 } 2313 EXPORT_SYMBOL(scsi_target_quiesce); 2314 2315 static void 2316 device_resume_fn(struct scsi_device *sdev, void *data) 2317 { 2318 scsi_device_resume(sdev); 2319 } 2320 2321 void 2322 scsi_target_resume(struct scsi_target *starget) 2323 { 2324 starget_for_each_device(starget, NULL, device_resume_fn); 2325 } 2326 EXPORT_SYMBOL(scsi_target_resume); 2327 2328 /** 2329 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2330 * @sdev: device to block 2331 * 2332 * Block request made by scsi lld's to temporarily stop all 2333 * scsi commands on the specified device. Called from interrupt 2334 * or normal process context. 2335 * 2336 * Returns zero if successful or error if not 2337 * 2338 * Notes: 2339 * This routine transitions the device to the SDEV_BLOCK state 2340 * (which must be a legal transition). When the device is in this 2341 * state, all commands are deferred until the scsi lld reenables 2342 * the device with scsi_device_unblock or device_block_tmo fires. 2343 * This routine assumes the host_lock is held on entry. 2344 */ 2345 int 2346 scsi_internal_device_block(struct scsi_device *sdev) 2347 { 2348 struct request_queue *q = sdev->request_queue; 2349 unsigned long flags; 2350 int err = 0; 2351 2352 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2353 if (err) 2354 return err; 2355 2356 /* 2357 * The device has transitioned to SDEV_BLOCK. Stop the 2358 * block layer from calling the midlayer with this device's 2359 * request queue. 2360 */ 2361 spin_lock_irqsave(q->queue_lock, flags); 2362 blk_stop_queue(q); 2363 spin_unlock_irqrestore(q->queue_lock, flags); 2364 2365 return 0; 2366 } 2367 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2368 2369 /** 2370 * scsi_internal_device_unblock - resume a device after a block request 2371 * @sdev: device to resume 2372 * 2373 * Called by scsi lld's or the midlayer to restart the device queue 2374 * for the previously suspended scsi device. Called from interrupt or 2375 * normal process context. 2376 * 2377 * Returns zero if successful or error if not. 2378 * 2379 * Notes: 2380 * This routine transitions the device to the SDEV_RUNNING state 2381 * (which must be a legal transition) allowing the midlayer to 2382 * goose the queue for this device. This routine assumes the 2383 * host_lock is held upon entry. 2384 */ 2385 int 2386 scsi_internal_device_unblock(struct scsi_device *sdev) 2387 { 2388 struct request_queue *q = sdev->request_queue; 2389 int err; 2390 unsigned long flags; 2391 2392 /* 2393 * Try to transition the scsi device to SDEV_RUNNING 2394 * and goose the device queue if successful. 2395 */ 2396 err = scsi_device_set_state(sdev, SDEV_RUNNING); 2397 if (err) 2398 return err; 2399 2400 spin_lock_irqsave(q->queue_lock, flags); 2401 blk_start_queue(q); 2402 spin_unlock_irqrestore(q->queue_lock, flags); 2403 2404 return 0; 2405 } 2406 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2407 2408 static void 2409 device_block(struct scsi_device *sdev, void *data) 2410 { 2411 scsi_internal_device_block(sdev); 2412 } 2413 2414 static int 2415 target_block(struct device *dev, void *data) 2416 { 2417 if (scsi_is_target_device(dev)) 2418 starget_for_each_device(to_scsi_target(dev), NULL, 2419 device_block); 2420 return 0; 2421 } 2422 2423 void 2424 scsi_target_block(struct device *dev) 2425 { 2426 if (scsi_is_target_device(dev)) 2427 starget_for_each_device(to_scsi_target(dev), NULL, 2428 device_block); 2429 else 2430 device_for_each_child(dev, NULL, target_block); 2431 } 2432 EXPORT_SYMBOL_GPL(scsi_target_block); 2433 2434 static void 2435 device_unblock(struct scsi_device *sdev, void *data) 2436 { 2437 scsi_internal_device_unblock(sdev); 2438 } 2439 2440 static int 2441 target_unblock(struct device *dev, void *data) 2442 { 2443 if (scsi_is_target_device(dev)) 2444 starget_for_each_device(to_scsi_target(dev), NULL, 2445 device_unblock); 2446 return 0; 2447 } 2448 2449 void 2450 scsi_target_unblock(struct device *dev) 2451 { 2452 if (scsi_is_target_device(dev)) 2453 starget_for_each_device(to_scsi_target(dev), NULL, 2454 device_unblock); 2455 else 2456 device_for_each_child(dev, NULL, target_unblock); 2457 } 2458 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2459 2460 /** 2461 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2462 * @sgl: scatter-gather list 2463 * @sg_count: number of segments in sg 2464 * @offset: offset in bytes into sg, on return offset into the mapped area 2465 * @len: bytes to map, on return number of bytes mapped 2466 * 2467 * Returns virtual address of the start of the mapped page 2468 */ 2469 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2470 size_t *offset, size_t *len) 2471 { 2472 int i; 2473 size_t sg_len = 0, len_complete = 0; 2474 struct scatterlist *sg; 2475 struct page *page; 2476 2477 WARN_ON(!irqs_disabled()); 2478 2479 for_each_sg(sgl, sg, sg_count, i) { 2480 len_complete = sg_len; /* Complete sg-entries */ 2481 sg_len += sg->length; 2482 if (sg_len > *offset) 2483 break; 2484 } 2485 2486 if (unlikely(i == sg_count)) { 2487 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2488 "elements %d\n", 2489 __FUNCTION__, sg_len, *offset, sg_count); 2490 WARN_ON(1); 2491 return NULL; 2492 } 2493 2494 /* Offset starting from the beginning of first page in this sg-entry */ 2495 *offset = *offset - len_complete + sg->offset; 2496 2497 /* Assumption: contiguous pages can be accessed as "page + i" */ 2498 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2499 *offset &= ~PAGE_MASK; 2500 2501 /* Bytes in this sg-entry from *offset to the end of the page */ 2502 sg_len = PAGE_SIZE - *offset; 2503 if (*len > sg_len) 2504 *len = sg_len; 2505 2506 return kmap_atomic(page, KM_BIO_SRC_IRQ); 2507 } 2508 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2509 2510 /** 2511 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2512 * @virt: virtual address to be unmapped 2513 */ 2514 void scsi_kunmap_atomic_sg(void *virt) 2515 { 2516 kunmap_atomic(virt, KM_BIO_SRC_IRQ); 2517 } 2518 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2519